WO2008053557A1 - Moving picture re-encoding device, moving picture re-encoding method, moving picture re-encoding program, and recording medium containing the moving picture re-encoding program - Google Patents

Moving picture re-encoding device, moving picture re-encoding method, moving picture re-encoding program, and recording medium containing the moving picture re-encoding program Download PDF

Info

Publication number
WO2008053557A1
WO2008053557A1 PCT/JP2006/321959 JP2006321959W WO2008053557A1 WO 2008053557 A1 WO2008053557 A1 WO 2008053557A1 JP 2006321959 W JP2006321959 W JP 2006321959W WO 2008053557 A1 WO2008053557 A1 WO 2008053557A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
encoding
encoded
groups
images
Prior art date
Application number
PCT/JP2006/321959
Other languages
French (fr)
Japanese (ja)
Inventor
Kenji Tsunekawa
Original Assignee
Pioneer Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pioneer Corporation filed Critical Pioneer Corporation
Priority to JP2008541969A priority Critical patent/JPWO2008053557A1/en
Priority to PCT/JP2006/321959 priority patent/WO2008053557A1/en
Publication of WO2008053557A1 publication Critical patent/WO2008053557A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/189Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the adaptation method, adaptation tool or adaptation type used for the adaptive coding
    • H04N19/192Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the adaptation method, adaptation tool or adaptation type used for the adaptive coding the adaptation method, adaptation tool or adaptation type being iterative or recursive
    • H04N19/194Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the adaptation method, adaptation tool or adaptation type used for the adaptive coding the adaptation method, adaptation tool or adaptation type being iterative or recursive involving only two passes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/103Selection of coding mode or of prediction mode
    • H04N19/114Adapting the group of pictures [GOP] structure, e.g. number of B-frames between two anchor frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/146Data rate or code amount at the encoder output
    • H04N19/152Data rate or code amount at the encoder output by measuring the fullness of the transmission buffer
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/177Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being a group of pictures [GOP]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/60Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding
    • H04N19/61Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding in combination with predictive coding

Definitions

  • Moving image re-encoding device moving image re-encoding method, moving image re-encoding program, and recording medium storing moving image re-encoding program
  • the present invention relates to a moving image re-encoding device, a moving image re-encoding method, and a moving image re-encoding that re-encodes a moving image that has been encoded once by changing a coding scheme or a bit rate.
  • the present invention relates to a recording medium storing a computer program and a moving picture re-encoding program.
  • Moving images are often digitally recorded or broadcast. However, since moving images have an enormous amount of data, they are usually recorded or broadcast with a small amount of data by means of codes.
  • MPEG Motion Picture Experts Group 2 or the like is used as such a moving image encoding method.
  • a moving picture encoded in MPEG 2 or the like can be re-encoded by converting the bit rate according to the capacity of the recording medium to be recorded or the speed of the transmission line to be transmitted.
  • re-encoding may be performed using a more efficient encoding method than MPEG-2 such as EG-4 ⁇ H.264.
  • transcoder described in Patent Document 1 As an apparatus for decoding and re-encoding a moving image once encoded.
  • the I frame, the P frame, and the B frame that are decoded in the order in which the decoding unit 1 is input are again in the decoding order.
  • Patent Document 1 JP 2000-92497 A
  • the present invention for example, when a coded moving image is re-encoded by changing the bit rate or the encoding method, the delay time and memory are reduced, and an appropriate code amount is set. It is an object of the present invention to provide a moving image re-encoding device, a moving image re-encoding method, a moving image re-encoding program, and a recording medium storing the moving image re-encoding program that can be predicted and encoded. .
  • the invention according to claim 1 is characterized in that at least the intra-coded image among the intra-coded image, the forward predictive coded image, and the bi-directional predictive coded image.
  • a decoding unit that receives a bit stream composed of an image group including at least one image and decodes the bit stream to obtain image data and encoding information; and the image data and the code decoded by the decoding unit
  • a moving image re-encoding apparatus that encodes the image data again based on the encoded information, based on the encoded information, the forward prediction in each of the plurality of image groups
  • the number of encoded images is counted, and at least one of the image groups having the maximum value or the minimum value of the number of forward prediction encoded images in each of the counted plurality of image groups.
  • An average value of the forward prediction encoded image and the bidirectional predictive encoded image in a plurality of the image groups excluding one or more of the one image group is used as a predicted structure of the image group.
  • An image group structure predicting means for outputting to the sign key means is provided.
  • the invention according to claim 8 is an image including at least one intra-screen encoded image among an intra-screen encoded image, a forward prediction encoded image, and a bidirectional predictive encoded image.
  • a bit stream composed of group power is input and the bit stream is decoded, and image data and And a video re-encoding method for obtaining the encoded information and encoding the image data again based on the decoded image data and the encoded information, and based on the encoded information
  • the number of the forward prediction coded images in each of the plurality of image groups is counted, and the maximum or minimum number of the forward prediction coded images in each of the plurality of counted image groups is obtained.
  • the average value of the forward prediction encoded image and the bidirectional predictive encoded image in a plurality of the image groups excluding at least one of the image groups of the image groups is predicted. As a structure of an image group, it is used at the time of signing.
  • the invention according to claim 9 includes at least one of the intra-frame encoded images, of the intra-coded image, the forward predicted encoded image, and the bidirectional predicted encoded image.
  • a bit stream configured by an image group is input and a decoding unit that decodes the bit stream to obtain image data and encoding information; and based on the image data and the encoding information decoded by the decoding unit
  • the forward prediction encoded image of each of the plurality of image groups And at least one of the image groups having the maximum value or the minimum value of the number of forward prediction encoded images in each of the plurality of counted image groups.
  • An average value of the forward prediction encoded image and the bidirectional predictive encoded image in a plurality of the image groups excluding one or more of any one of the image groups is used as a predicted structure of the image group.
  • a computer is caused to function as an image group structure predicting unit that outputs to the encoding unit.
  • FIG. 1 is a block diagram of a moving picture re-encoding device that is useful in an embodiment of the present invention.
  • FIG. 2 is a block diagram of a code key information analysis unit of the moving picture re-coding key device shown in FIG.
  • FIG. 3 is an explanatory diagram of an example of a GOP.
  • FIG. 4 is a flowchart illustrating the operation of the GOP structure prediction unit.
  • FIG. 5 is an explanatory diagram of counting the number of P pictures and the number of B pictures in each GOP.
  • FIG. 6 is an explanatory diagram when calculating the average of P and B pictures from multiple GOPs.
  • FIG. 7 is a flowchart for explaining the operation of the code key frame rate prediction unit.
  • FIG. 8 is an explanatory diagram of a sign key picture and a display picture.
  • FIG. 9 is an explanatory diagram for counting the number of sign pictures and the number of displayed pictures in each GOP.
  • FIG. 10 is a flowchart illustrating an operation of a GOP code amount prediction unit.
  • FIG. 11 is an explanatory diagram for obtaining an average of a P picture and a B picture when there are a plurality of maximum values or minimum values of the P picture.
  • FIG. 12 is an operation flowchart of the moving picture code key program.
  • the moving image re-encoding device includes a forward prediction code key image and a bidirectional prediction code key in the image group for reference by the image group structure prediction unit during re-encoding.
  • a forward prediction code key image When predicting the number of images as the structure of an image group, at least one of the image group having the maximum value or the image group having the minimum value of the number of forward-predicted encoded images in a plurality of image groups.
  • the average value of the forward prediction encoded image and the average value of the bi-directional predictive encoded image of a plurality of image groups excluding one or more groups are predicted as the structure of the image group, and the code means means the image group.
  • the structure of the average image group can be predicted without being influenced by the image group having the extreme number of forward-predicted encoded images that temporarily appeared, and thus more appropriate. Code amount can be predicted. Also, it is necessary to retain extra images for the structure prediction of the image group Since there is no delay, the delay time and the amount of memory are reduced.
  • the image group structure predicting unit excludes one or more image groups each having a maximum value and a minimum value from the number of forward prediction encoded images in each of the counted plurality of image groups.
  • the average value of the forward prediction encoded image and the bidirectional predictive encoded image in the group may be output to the encoding means as the structure of the image group. By doing this, the average image group can be obtained with higher accuracy without being affected by the image group having the number of extreme forward prediction encoded images that temporarily appear in both the maximum value direction and the minimum value direction. Can be predicted.
  • the image group structure prediction means adds the plurality of image groups to the plurality of image groups except for the plurality of image groups in order of size, out of the number of forward-predicted code images in each of the plurality of counted image groups.
  • the average value of the forward prediction encoded image and the bidirectional prediction encoded image may be output to the encoding means as the structure of the image group. By doing this, even if there are multiple image groups with the number of extreme forward predictive encoded images that appeared temporarily in the maximum value direction, the average is more accurate without being affected by them.
  • the structure of the image group can be predicted.
  • the image group structure prediction unit is arranged so that the number of forward prediction codes in each of the plurality of image groups counted before the plurality of image groups excluding the plurality of image groups in ascending order.
  • the average value of the direction prediction encoded image and the bidirectional prediction encoded image may be output to the encoding means as the structure of the image group.
  • the image group structure prediction means counts the number of bidirectional prediction code images in each of the plurality of image groups, and the number of forward prediction encoded images in each of the counted plurality of image groups. If there are a plurality of image groups each having a maximum value or a minimum value, among the image groups having a plurality of maximum values or minimum values, the bidirectional prediction codes in the plurality of image groups counted are counted.
  • the average value of the forward predictive coded image and the bidirectional predictive coded image in a plurality of image groups excluding the image group having a value far from the average value is used as the image group configuration. It may be output to the sign key means as a structure.
  • the number of encoded images in each of the plurality of image groups and the number of images to be displayed in each of the plurality of image groups are counted, respectively.
  • the number of images that the encoding means should re-encode per second (code frame) Frame rate prediction means for predicting the rate) may be provided.
  • code frame code frame
  • coding is performed based on the structure of the image group predicted by the image group structure prediction unit, the code frame rate predicted by the frame rate prediction unit, and a preset re-encoding bit rate.
  • a code amount prediction means for predicting the code amount per image group when the encoding means encodes. By doing this, it is possible to accurately predict the code amount per image group in consideration of the image group structure and the rebate picture when re-encoding.
  • the moving image re-encoding method uses the number of forward prediction code images and bidirectional prediction code images in an image group for reference during re-encoding.
  • predicting the structure of the image group at least one of the image groups having the maximum value or the minimum value of the number of forward-predictive codes in a plurality of image groups is selected.
  • the structure of the group can be predicted.
  • there is no need to hold extra images for image group prediction so the delay time and memory size are reduced.
  • the moving image re-encoding key program is a forward-predictive encoded image in an image group that is referred to by the image group structure prediction unit during re-encoding. And predicting the number of bidirectional predictive encoded images as the structure of the image group, the image group having the maximum value or the image group having the minimum value of the number of forward prediction code images in a plurality of image groups.
  • the structure of the image group predicts the average value of the forward predictive encoded image and the average value of the bidirectional predictive encoded image of a plurality of image groups excluding at least one of the image groups.
  • Means causes the computer to function to re-encode based on the structure of the image group.
  • the moving image re-encoding program according to claim 9 may be stored in a recording medium.
  • a moving picture recoding apparatus 100 re-encodes the bit stream encoded from the moving image input from the input terminal 110 while changing the bit rate and the encoding method, and outputs the re-encoded signal.
  • the moving image recoding apparatus 100 includes a decoding unit 101, an encoded information analysis unit 102, an encoding unit 103, an input terminal 110, a setting data terminal 111, and an output terminal 115. And.
  • Decoding section 101 as decoding means decodes the bit stream input from input terminal 110, outputs image data 113 to encoding section 103, and encodes information 112. And output to the sign key information analysis unit 102. For example, when a bit stream encoded by the MPEG-2 system is input, the bit stream is decoded, and the decoded image data 113 (luminance, color difference data, etc.) is encoded by the encoding unit 103. Output to. Enter The header information and the like in the output bit stream are output to the code key information analysis unit 102 and the code key unit 103 as the code key information 112.
  • the code information 112 includes, for example, a picture type (I picture power P picture power, B picture power, field redisplay information, frame redisplay information, and frame rate information (the frame rate when displayed on the screen). For example, NTSC 29.97 frame Z seconds) is output, etc.
  • I picture, P picture, and B picture are classifications of coded images used in MPEG, etc.
  • P picture shows an image with forward prediction code
  • B picture shows an image with bi-directional prediction code.
  • the encoded information analysis unit 102 includes a GOP structure prediction unit 200, a code frame rate prediction unit 201, and a GOP code amount prediction unit 202, as shown in FIG.
  • the setting data and the sign information 112 inputted from the child 111 are inputted, and the code amount is calculated for re-signing in the code section 103 based on the setting data and the sign information 112.
  • the analysis result information 114 is output to the sign key unit 103.
  • the setting data terminal 111 receives parameters set when the moving image re-encoding device 100 is initially set, for example, a bit rate of an output bit stream.
  • the analysis result information 114 outputs, for example, an allocated code amount in GOP units, a predicted number of P pictures in a GOP, a predicted number of B pictures, a code frame rate, and the like.
  • GOP as an image group is an abbreviation of Group Of Pictures, and is a unit composed of at least one I picture (usually composed of multiple picture powers).
  • the GOP structure is the number of I, P, and B pictures in the GOP.
  • Figure 3 shows an example of a GOP structure. A GOP starts with an I picture, and a GOP is the one picture before the next I picture. In Fig. 3, 1 GOP consists of 12 pictures. There are 1 I picture, 3 P pictures, and 8 B pictures in the GOP.
  • the GOP structure prediction unit 200 serving as the image group structure prediction means receives the sign key information 112, predicts the GOP structure based on the code key information 112, and outputs the GOP structure information 210.
  • step S101 an initial value of the GOP structure is set, and the process proceeds to step S102.
  • the initial value of the GOP structure is the number of I-pictures, P-pictures, and B-pictures that are set before moving pictures are input. These are initial values of prediction and do not need to match the number of pictures of the actually input moving picture.
  • the initial value can be stored in the GOP structure prediction unit 200 in advance, or can be set from the setting data terminal 111 !.
  • step S102 the picture type of the image input to the decoding unit 101 is input via the encoding information 112, and the process proceeds to step S103.
  • step S103 it is determined whether or not the picture type of the image input to the decoding unit 101 is an I picture cover. If it is an I picture (YES), the process proceeds to step S106, and so on. If not (NO), go to step S104.
  • step S104 it is determined whether or not the picture type of the image input to the decoding unit 101 is a P picture, and if it is a P picture (YES), the process proceeds to step S108, and so on. If not (NO), go to step S105.
  • step S105 if it is neither an I picture nor a P picture, it is determined that the picture type of the image input to the decoding unit 101 is a B picture and a B picture in the current GO P Add 1 to the number of sheets and return to step S102.
  • step S106 it is determined that an I picture has been input. Since the range from the I picture to the previous image of the next I picture is in the range of 1 GOP, assuming that the beginning of the GOP was detected by I picture detection, the GOP having the maximum and minimum number of P pictures in the previous multiple GOPs Divide one by one, and then calculate the average value of the number of P pictures and the average number of B pictures for multiple past GOPs, excluding the maximum and minimum GOP of the number of P pictures. Proceed to 107. That is, the average value of P pictures and B pictures in a plurality of GOPs is calculated by excluding one or more GOPs having the maximum and minimum values from the number of P pictures in the plurality of GOPs. That is, the average value of P pictures and B pictures in a plurality of GOPs excluding at least one GOP from among GOPs having the minimum value or the maximum value is calculated.
  • Step S106 will be described in detail with reference to FIG. 5 and FIG. Figure 5 shows an example when 8 GOPs are held as the previous GOPs.
  • GOP containing the input I picture The current GOP is GOP [0], GOP [l], GO P [2], GOP [3], GOP [4], GOP [5], GOP [6] , GOP [7], and the number of P pictures in each GOP is Np [0], Np [l], Np [2], Np [3], Np [4], Np [5], Np [6], NP [7] and the number of B pictures in each GOP is Nb [0], Nb [l], Nb [2], Nb [3], Nb [4], Nb [5], Nb [6], Nb [7].
  • the number of P pictures and B pictures for 8GOPs from the previous GOP is always maintained. If the number of P pictures and the number of B pictures in each GOP are as shown in Fig. 6, excluding Np [2] which is the maximum number of P pictures and Np [6] which is the minimum value, If the average value AVR-Np of the P picture and the average value AVR-Nb of the B picture are obtained, the values 4 and 10 are obtained as shown in FIG.
  • step S107 the average value (AVR—Np, AVR—Nb) of the P picture and B picture calculated in step S106 is output to the GOP code amount prediction unit 202 as GOP structure information 210. Return to S102.
  • step S108 since the picture type of the image input to the decoding unit 101 is P picture, 1 is added to the number of P pictures in the current GOP, and the process returns to step S102.
  • the code frame rate prediction unit 201 as a frame rate prediction unit receives the encoded information 112, calculates the code frame rate based on the encoded information 112, and generates the code frame rate information 211. Output.
  • step S201 initial values of the number of displayed pictures and the number of encoded pictures are set, and the process proceeds to step S202. These are initial values of prediction and do not need to match the number of display pictures or the number of sign pictures that are actually input.
  • the initial value may be stored in advance in the code frame rate prediction unit 201 and set from the setting data terminal 111.
  • the number of displayed pictures and the number of encoded pictures will be described with reference to FIG.
  • the number of displayed pictures as the number of images to be displayed indicates the number of pictures when decoded and displayed on the screen, and the number of encoded pictures as the number of encoded images is actually a sign. This is the number of pictures that have been issued.
  • the picture for which field redisplay information or frame redisplay information has been detected when decoding is performed by the decoding unit 101 has one encoded picture number, but the number of displayed pictures is one or more. In the case of Fig. 8, if the number of displayed pictures per second is 12 between the arrows, the frame rate is 12 frames Z seconds, and the encoding frame rate is 8 frames / second.
  • the frame rate information included in the code key information 112 indicates the frame rate of the display picture.
  • the code amount per frame is 1Z12 for 1 second.
  • the number of code frames per second is divided into eight, so the allocated code amount per frame increases to 1Z8 for one second. Therefore, by using the redisplay information, it is possible to assign an appropriate code by assigning the code amount as the target of re-encoding and the actual number of code-excluded pictures excluding the number of repeat pictures at the time of re-encoding. It becomes.
  • step S202 the picture type of the image input to the decoding unit 101 is input via the encoding information 112, and the process proceeds to step S203.
  • step S203 it is determined whether or not the picture type of the image input to the decoding unit 101 is an I picture cover. If it is an I picture (YES), the process proceeds to step S204. If not (NO), go to step S206.
  • step S204 it is determined that an I picture has been input. Since the range from the I picture to the image before the next I picture is 1 GOP, assuming that the beginning of the GOP was detected by I picture detection, the number of sign pictures and the number of display pictures in the previous GOPs are also sign signs. The frame rate is calculated and the process proceeds to step S205.
  • coded_frame_rate is the coding frame rate
  • num is the number of GOPs holding the data
  • i 0, l, ---, (num-l)
  • the display picture number Nd [i] a in the past i-th GOP when the frame rate information contained in the fra m e _rat e the sign i spoon information 112, For example, it is expressed by the formula shown in Equation 1.
  • Nc [i] Number of encoded pictures in the last ⁇ th GOP
  • Nd [i] Number of pictures displayed in the GOP of the past frame frame jate: Frame rate information included in the encoding information
  • the code frame rate that also predicts the ratio between the number of coded pictures and the number of displayed pictures and the frame rate information power included in the coded information 112 is calculated.
  • Step S204 will be described in detail with reference to FIG. Fig. 9 shows an example when 8 GOPs are held as the previous GOPs.
  • the current GOP including the input I picture is the current GOP, GOP [0], GOP [l], GOP [2], GOP [3], GOP [4], GOP [5], GOP [6], and GOP [7].
  • the number of encoded pictures in each GOP is Nc [0], Nc [l], Nc [2], Nc [3], Nc [4], Nc [ 5], Nc [6], Nc [7]
  • the number of displayed pictures in each GOP is Nd [0], Nd [l], Nd [2], Nd [3], Nd [4], Nd [5] , Nd [6] and Nd [7].
  • the code number predicted by multiplying the total number from Nc [0] to Nc [7] by the total number from Nd [0] to Nd [7] is multiplied by the frame rate information. It can be obtained as a frame rate.
  • step S205 the encoding frame rate (coded_frame_rate) calculated in step S204 is output to the GOP code amount prediction unit 202 as the encoding frame rate information 211, and the process proceeds to step S206.
  • step S 206 1 or (1 + the number of repeat pictures) is added to the current number of GOP encoded pictures and display pictures from the encoding information 112, and the process returns to step S 202. That is, 1 is always added to the number of sign pictures, and (1 + the number of repeat pictures) is added to the number of display pictures.
  • the GOP code amount prediction unit 202 serving as a code amount predicting unit includes an input target bit set from input code information 112, GOP structure information 210, code key frame rate information 211, and a setting data terminal 111.
  • the GOP allocation code amount is calculated, and together with the predicted number of P pictures, the predicted number of B pictures included in the GOP structure information 210, and the code frame rate included in the code frame rate information 211
  • the analysis result information 114 is output to the encoding unit 103.
  • GOP code amount prediction unit 202 The operation of the GOP code amount prediction unit 202 will be described with reference to the flowchart of FIG.
  • step S301 the picture type of the image input to the decoding unit 101 is input via the encoding information 112, and the process proceeds to step S302.
  • step S302 it is determined whether or not the picture type of the image input to decoding section 101 is an I picture cover. If it is an I picture (YES), the process proceeds to step S303; If yes (NO), return to step S301.
  • step S303 it is determined whether or not the GOP structure information 210 has been updated. If updated (YES), the process proceeds to step S304. If not (NO)
  • step S304 it is determined whether or not the code frame rate information 211 has been updated. If it has been updated (YES), the process proceeds to step S305;
  • step S305 based on the output target bit rate set from encoding information 112, GOP structure information 210, encoding frame rate information 211, and setting data terminal 111! /, Allocation per GOP The code amount is calculated and the process proceeds to step S306.
  • Assigned code amount per GOP GOP_bits encodes the average number of P pictures predicted by the GOP structure prediction unit 200 for AVR_Np, the average number of B pictures predicted by the GOP structure prediction unit 200, and the coded frame rate. Assuming that the encoding frame rate and bitrate predicted by the frame rate prediction unit 201 are the output target bit rate preset from the setting data terminal 111, it is expressed by, for example, the following equation (2).
  • GOP— bits ” ⁇ —— x bitrate
  • AVR—Nb Average number of B pictures
  • coded_frame_rate coded frame rate
  • the part with 1 means the number of I pictures, and when field coding, since one frame is 2 fields, the average I in the GOP Calculate 1Z2 field number and replace it. (In this case, AVR_Np and AVR_Nb are also calculated with 1Z2 of the number of fields.)
  • step S306 the allocated code amount (GOP-bits) per GOP calculated in step S305, the GOP structure information 210, and the sign key frame rate information 211 are analyzed as analysis result information 114.
  • the data is output to unit 103 and the process returns to step S301.
  • the code key unit 103 as the code key means outputs the image data 113 input from the decoding unit 101 based on the encoding information 112, the analysis result information 114, and the initial setting input from the setting data terminal 111. Re-encoding is performed, and the output bit stream is output from the output terminal 115.
  • code amount control is performed based on the allocated code amount per GOP predicted by the code information analysis unit 102, and the predicted number of P and B pictures is allocated to each picture. . Further, the code amount control may be changed based on the code key information 112, information in the code key unit 103, or the like. For example, after obtaining the allocated code amount per GOP of the analysis result information 114, the allocated code amount of GOP may be increased or decreased based on the complexity of the input image data 113.
  • the code key frame rate prediction unit 201 calculates the code key frame rate from the obtained frame rate from the number of code key pictures, the number of displayed pictures, and the code key information 112, and predicts the code. Frame rate. Then, the code amount per GOP is calculated from the predicted GOP structure, the predicted code frame rate, and the bit rate set from the setting data terminal 111, and is used as the predicted code amount.
  • the code key unit 103 performs re-coding with reference to the predicted GOP structure, the predicted encoding frame rate, and the predicted code amount. By doing so, the prediction accuracy of the GOP structure, frame rate and code amount is improved, and it is not necessary to store multiple images in the memory for GOP structure prediction, frame rate prediction and code amount prediction. Delay time and memory amount can be reduced.
  • the GOP structure prediction unit 200 excludes the GOP having the maximum value and the GOP having the minimum value from the number of P pictures for each GOP, and the GOP of the P picture and the B picture.
  • the GOP structure prediction unit 200 excludes the GOP having the maximum value and the GOP having the minimum value from the number of P pictures for each GOP, and the GOP of the P picture and the B picture.
  • the maximum value of P picture is Np [2] and Np [3] and the minimum value is Np [6] and Np [7], so Nb [2], Nb [3] and Nb
  • the number of B pictures in [6] and Nb [7] is compared, and the average value of B pictures (the average value of Nb [0] to Nb [7]) is significantly different.
  • the GOP including Nb [2] The average number of P pictures AVR—Np and the average number of B pictures AVR—Nb are determined by dividing the GOP including Nb [6] as the minimum value as the maximum value. Also, you can select and delete one GOP from each GOP that takes multiple maximum values and multiple minimum values without using this method.
  • the GOP excluded when the GOP structure is predicted may be only one of the maximum value and the minimum value.
  • a plurality of forward prediction code images in a plurality of GOPs may be removed in descending order of the number of images, or may be removed in ascending order. For example, in Fig. 11, both N P [2] and Np [3] can be excluded, but both Np [6] and Np [7] can be excluded!
  • the moving image re-encoding device 100 has been described. However, a program that operates on a computer may be used. That is, the moving image re-encoding device 100 is replaced with a CPU, RAM, and ROM, and a moving image re-encoding program is recorded in the ROM, and the decoding unit 101, the encoding unit 103, and the code key information analysis are stored in the CPU. Provide the function of part 102.
  • Fig. 12 shows a flowchart of the moving image re-encoding key program.
  • step S401 the input bit stream is decoded in step S401 as decoding means.
  • step S402 draw In step S402 as image group structure prediction means, GOP structure prediction is performed.
  • the contents of step S402 are the same as those in the flowchart of FIG.
  • the encoding frame rate is predicted in step S403 as frame rate prediction means.
  • the contents of step S403 are the same as the flowchart in FIG.
  • the allocated code amount per GOP is predicted in step S404 as the code amount predicting means.
  • step S404 are the same as those in the flowchart of FIG.
  • re-encoding is performed in step S405 as an encoding key means.
  • the present invention can also be implemented in the force field described using a picture as a frame.
  • the decoding means and the encoding means in the present invention include an intra-screen encoded image such as MPEG-1, 2, 4 and H.264, a forward prediction encoded image, and a bidirectional predictive encoded image. Any combination may be used as long as it is a moving image coding scheme that is a bit stream composed of a group of images including at least one of the intra-coded images. Of course, it may be used for bit rate conversion between the same code system.
  • the present invention is applied when a moving image is broadcast on a broadcast station or transmitted to a communication line, the coding method and bit rate according to the band of the broadcast wave or the communication line are low delay and The moving image can be re-encoded at low cost.
  • the present invention is applied when recording an encoded moving image such as terrestrial digital broadcasting on a hard disk recorder, a DVD recorder, a Blu-ray recorder, an HD DVD recorder, or the like, it is higher than before re-encoding. It is possible to record in an efficient code method with low delay and low cost.
  • the following moving image re-encoding device, moving image re-encoding method, and moving image re-encoding program can be obtained.
  • a bitstream composed of a GOP including at least one I picture among one picture, P picture, and B picture is input, the bitstream is decoded, and image data 113 And a decoding unit 101 for obtaining encoded information 112,
  • a moving image re-encoding device 100 having an encoding unit 103 that encodes the image data 113 again based on the image data 113 and the encoding information 112 decoded by the decoding unit 101.
  • the number of P pictures in each of the plurality of GOPs is counted, and at least one of the GOPs having the maximum value or the minimum value of the number of P pictures in each of the plurality of counted GOPs
  • a video characterized by having a GOP structure prediction unit 200 that outputs the POP picture and the average value of B pictures in a plurality of GOPs, excluding one or more GOPs, to the code section 103 as a GOP structure predicted Image re-encoding device 100.
  • this moving image recoding apparatus 100 it is possible to predict an average GOP structure without being influenced by a GOP having an extreme number of P pictures that appear temporarily. In addition, there is no need to store extra images for GOP structure prediction, thus reducing delay time and memory.
  • bitstream composed of a GOP including at least one I picture among one picture, P picture, and B picture is input, and the bitstream is decoded and image data 113 And a video re-encoding method that obtains the code information 112 and encodes the image data 113 again based on the decoded image data 113 and the encoded information 112.
  • the number of P pictures in each of the plurality of GOPs is counted, and at least one of the GOPs having the maximum value or the minimum value of the number of P pictures in each of the plurality of counted GOPs
  • a moving picture re-encoding method which is used as a GOP structure in which an average value of P-pictures and B-pictures in a plurality of GOPs excluding one or more GOPs is predicted at the time of encoding.
  • this moving image re-encoding method it is possible to predict an average GOP structure without being influenced by a GOP having an extreme number of P pictures that appear temporarily. Also, there is no need to store extra images for GOP structure prediction, so the delay time reduces the amount of memory.
  • bitstream composed of a GOP including at least one I picture among one picture, P picture, and B picture is input and the bitstream is decoded to obtain image data 113 And step S401 for obtaining the encoding information 112;
  • Step S405 for encoding the image data 113
  • the number of P pictures in each of the plurality of GOPs is counted, and at least one of the GOPs having the maximum value or the minimum value of the number of P pictures in each of the plurality of counted GOPs
  • step S402 which outputs to step S405 as a GOP structure that predicts the average value of P pictures and B pictures in multiple GOPs excluding one or more GOPs Video re-encoding program.
  • this moving picture re-encoding program it is possible to predict an average GOP structure without being influenced by a GOP having an extreme number of P pictures that appear temporarily. In addition, there is no need to store extra images for GOP structure prediction, thus reducing delay time and memory.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)

Abstract

[PROBLEMS] To provide a moving picture re-encoding device for temporarily decoding an encoded moving picture and then re-encoding the image, wherein it is possible to reduce a delay time and a memory and predict an appropriate code amount. [MEANS FOR SOLVING PROBLEMS] An encoded information analysis unit (102) includes a GOP structure prediction unit (200). From a picture type obtained when an input bit stream is decoded by a decoding unit (101), the GOP structure prediction unit (200) counts the number of P pictures in 8 GOPS, for example, and calculates an average value of the number of P pictures and the B pictures from 6 GOPs excluding the GOP having the maximum and the minimum value, which is predicted by the GOP structure. An encoding unit (103) references the predicted GOP structure and performs re-encoding.

Description

明 細 書  Specification
動画像再符号化装置、動画像再符号化方法、動画像再符号化プログラ ムおよび動画像再符号化プログラムを格納した記録媒体  Moving image re-encoding device, moving image re-encoding method, moving image re-encoding program, and recording medium storing moving image re-encoding program
技術分野  Technical field
[0001] 本発明は、一度符号化された動画像を符号ィ匕方式やビットレートなどを変更して再 度符号化する動画像再符号化装置、動画像再符号化方法、動画像再符号化プログ ラムおよび動画像再符号ィ匕プログラムを格納した記録媒体に関する。  [0001] The present invention relates to a moving image re-encoding device, a moving image re-encoding method, and a moving image re-encoding that re-encodes a moving image that has been encoded once by changing a coding scheme or a bit rate. The present invention relates to a recording medium storing a computer program and a moving picture re-encoding program.
背景技術  Background art
[0002] 動画像をデジタルィ匕して記録または放送されることが多くなつている。しかし動画像 はデータ量が膨大であるために、通常、符号ィ匕によりデータ量を少なくして記録また は放送されている。そのような動画像の符号化の方式として MPEG (Moving Picture Experts Group) 2などが用いられる。  [0002] Moving images are often digitally recorded or broadcast. However, since moving images have an enormous amount of data, they are usually recorded or broadcast with a small amount of data by means of codes. MPEG (Moving Picture Experts Group) 2 or the like is used as such a moving image encoding method.
[0003] MPEG 2などで符号化された動画像を、記録する記録媒体の容量や伝送する通 信回線の速度などに応じてビットレートを変換して再符号ィ匕したり、近年登場した MP EG-4^H. 264などの MPEG— 2よりも高効率な符号ィ匕方式で再符号ィ匕したりす ることがある。  [0003] A moving picture encoded in MPEG 2 or the like can be re-encoded by converting the bit rate according to the capacity of the recording medium to be recorded or the speed of the transmission line to be transmitted. In some cases, re-encoding may be performed using a more efficient encoding method than MPEG-2 such as EG-4 ^ H.264.
[0004] このような、一度符号化した動画像をー且復号して再度符号化する装置として例え ば特許文献 1に記載のトランスコーダがある。特許文献 1に記載のトランスコーダは、 復号部 1が入力された順に復号した Iフレーム、 Pフレーム、 Bフレームを、復号した順 のまま再度 Iフレームは Iフレーム、 Pフレームは Pフレーム、 Bフレームは Bフレームと して符号化することで、遅延時間やメモリの削減を可能としている。  [0004] For example, there is a transcoder described in Patent Document 1 as an apparatus for decoding and re-encoding a moving image once encoded. In the transcoder described in Patent Document 1, the I frame, the P frame, and the B frame that are decoded in the order in which the decoding unit 1 is input are again in the decoding order. Is encoded as a B-frame, enabling a reduction in delay time and memory.
特許文献 1:特開 2000— 92497号公報  Patent Document 1: JP 2000-92497 A
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0005] 上述した特許文献 1に記載のトランスコーダは、復号した際に画像を表示順に並べ 替える並べ替え器を有しないので表示順に並べ替えるための遅延時間やメモリが削 減できる。しカゝしながら、ビットレートや符号化方式を変えて再符号化する場合は、復 号前のビットストリームと再符号ィ匕時に割当てる符号量が異なることが多ぐ前記特許 文献 1には再符号ィ匕時に割当てる符号量に関する記載はないために、例えば適切 な符号量が割当てられないことから画質が低下する可能性があった。 [0005] Since the transcoder described in Patent Document 1 described above does not have a rearranger that rearranges images in the display order when decoding, delay time and memory for rearranging the images in the display order can be reduced. However, if you want to re-encode by changing the bit rate or encoding method, Since the code amount allocated at the time of re-encoding is often different from the bit stream before the signal, there is no description on the code amount allocated at the time of re-encoding, so for example, an appropriate code amount cannot be allocated. Therefore, there was a possibility that the image quality was degraded.
[0006] 適切な符号量を割当てるためには、例えば 1GOP (Group Of Pictures)分などある 程度まとまった画像をメモリ等に記憶することで、適切な符号量を割当てることができ る力 このようにすると、多くのメモリが必要となることによるコスト上昇に加え、遅延時 間が大きくなつてしまう。  [0006] In order to assign an appropriate code amount, for example, the ability to assign an appropriate code amount by storing a certain amount of images such as 1 GOP (Group Of Pictures) in a memory or the like. Then, in addition to the cost increase due to the need for a large amount of memory, the delay time increases.
[0007] そこで、本発明は、例えば符号ィ匕した動画像をビットレートや符号ィ匕方式を変更し て再符号ィ匕する際に、遅延時間やメモリが削減されるとともに適切な符号量を予測し て符号化することができる動画像再符号化装置、動画像再符号化方法、動画像再符 号化プログラムおよび動画像再符号化プログラムを格納した記録媒体を提供すること を課題とする。  [0007] Therefore, according to the present invention, for example, when a coded moving image is re-encoded by changing the bit rate or the encoding method, the delay time and memory are reduced, and an appropriate code amount is set. It is an object of the present invention to provide a moving image re-encoding device, a moving image re-encoding method, a moving image re-encoding program, and a recording medium storing the moving image re-encoding program that can be predicted and encoded. .
課題を解決するための手段  Means for solving the problem
[0008] 上記課題を解決するために、請求項 1に記載の発明は、画面内符号化画像と、前 方向予測符号化画像と、双方向予測符号化画像のうち少なくとも前記画面内符号化 画像が 1枚以上含まれる画像群カゝら構成されるビットストリームが入力され該ビットスト リームを復号し、画像データおよび符号化情報を得る復号手段と、前記復号手段が 復号した前記画像データおよび前記符号化情報に基づいて再度前記画像データを 符号化する符号化手段と、を有した動画像再符号ィ匕装置において、前記符号化情 報に基づいて、複数の前記画像群各々における前記前方向予測符号化画像の数を カウントし、カウントされた複数の前記画像群各々における前記前方向予測符号化画 像の数の最大値または最小値を持つ前記画像群のうち少なくともいずれか一方の前 記画像群を一つ以上除いた複数の前記画像群における前記前方向予測符号化画 像および前記双方向予測符号化画像の平均値を、予測した前記画像群の構造とし て前記符号ィ匕手段に出力する画像群構造予測手段を有することを特徴としている。  [0008] In order to solve the above-mentioned problem, the invention according to claim 1 is characterized in that at least the intra-coded image among the intra-coded image, the forward predictive coded image, and the bi-directional predictive coded image. A decoding unit that receives a bit stream composed of an image group including at least one image and decodes the bit stream to obtain image data and encoding information; and the image data and the code decoded by the decoding unit A moving image re-encoding apparatus that encodes the image data again based on the encoded information, based on the encoded information, the forward prediction in each of the plurality of image groups The number of encoded images is counted, and at least one of the image groups having the maximum value or the minimum value of the number of forward prediction encoded images in each of the counted plurality of image groups. An average value of the forward prediction encoded image and the bidirectional predictive encoded image in a plurality of the image groups excluding one or more of the one image group is used as a predicted structure of the image group. An image group structure predicting means for outputting to the sign key means is provided.
[0009] 請求項 8記載の発明は、画面内符号化画像と、前方向予測符号化画像と、双方向 予測符号ィ匕画像のうち少なくとも前記画面内符号ィ匕画像が 1枚以上含まれる画像群 力 構成されるビットストリームが入力され該ビットストリームを復号し、画像データおよ び符号化情報を得て、復号した前記画像データおよび前記符号化情報に基づ ヽて 再度前記画像データを符号化する動画像再符号化方法にお!ゝて、前記符号化情報 に基づいて、複数の前記画像群各々における前記前方向予測符号化画像の数を力 ゥントし、カウントされた複数の前記画像群各々における前記前方向予測符号化画 像の数の最大値または最小値を持つ前記画像群のうち少なくともいずれか一方の前 記画像群を一つ以上除いた複数の前記画像群における前記前方向予測符号化画 像および前記双方向予測符号化画像の平均値を、予測した前記画像群の構造とし て前記符号ィ匕時に用いることを特徴として 、る。 [0009] The invention according to claim 8 is an image including at least one intra-screen encoded image among an intra-screen encoded image, a forward prediction encoded image, and a bidirectional predictive encoded image. A bit stream composed of group power is input and the bit stream is decoded, and image data and And a video re-encoding method for obtaining the encoded information and encoding the image data again based on the decoded image data and the encoded information, and based on the encoded information The number of the forward prediction coded images in each of the plurality of image groups is counted, and the maximum or minimum number of the forward prediction coded images in each of the plurality of counted image groups is obtained. The average value of the forward prediction encoded image and the bidirectional predictive encoded image in a plurality of the image groups excluding at least one of the image groups of the image groups is predicted. As a structure of an image group, it is used at the time of signing.
[0010] 請求項 9に記載の発明は、画面内符号化画像と、前方向予測符号化画像と、双方 向予測符号ィ匕画像のうち少なくとも前記画面内符号ィ匕画像が 1枚以上含まれる画像 群カゝら構成されるビットストリームが入力され該ビットストリームを復号し、画像データ および符号化情報を得る復号手段と、前記復号手段が復号した前記画像データお よび前記符号化情報に基づいて再度前記画像データを符号化する符号化手段とし てコンピュータに機能させる動画像再符号ィ匕プログラムにおいて、前記符号ィ匕情報 に基づいて、複数の前記画像群各々における前記前方向予測符号化画像の数を力 ゥントし、カウントされた複数の前記画像群各々における前記前方向予測符号化画 像の数の最大値または最小値を持つ前記画像群のうち少なくともいずれか一方の前 記画像群を一つ以上除いた複数の前記画像群における前記前方向予測符号化画 像および前記双方向予測符号化画像の平均値を、予測した前記画像群の構造とし て前記符号ィ匕手段に出力する画像群構造予測手段としてコンピュータに機能させる ことを特徴としている。  [0010] The invention according to claim 9 includes at least one of the intra-frame encoded images, of the intra-coded image, the forward predicted encoded image, and the bidirectional predicted encoded image. A bit stream configured by an image group is input and a decoding unit that decodes the bit stream to obtain image data and encoding information; and based on the image data and the encoding information decoded by the decoding unit In a moving image re-encoding program that causes a computer to function as an encoding unit that encodes the image data again, based on the encoding information, the forward prediction encoded image of each of the plurality of image groups And at least one of the image groups having the maximum value or the minimum value of the number of forward prediction encoded images in each of the plurality of counted image groups. An average value of the forward prediction encoded image and the bidirectional predictive encoded image in a plurality of the image groups excluding one or more of any one of the image groups is used as a predicted structure of the image group. A computer is caused to function as an image group structure predicting unit that outputs to the encoding unit.
図面の簡単な説明  Brief Description of Drawings
[0011] [図 1]本発明の一実施例に力かる動画像再符号ィ匕装置のブロック図である。 FIG. 1 is a block diagram of a moving picture re-encoding device that is useful in an embodiment of the present invention.
[図 2]図 1に示された動画像再符号ィ匕装置の符号ィ匕情報解析部のブロック図である。  2 is a block diagram of a code key information analysis unit of the moving picture re-coding key device shown in FIG.
[図 3]GOPの一例の説明図である。  FIG. 3 is an explanatory diagram of an example of a GOP.
[図 4]GOP構造予測部の動作を説明したフローチャートである。  FIG. 4 is a flowchart illustrating the operation of the GOP structure prediction unit.
[図 5]各 GOPにおける Pピクチャ枚数と Bピクチャ枚数のカウントの説明図である。  FIG. 5 is an explanatory diagram of counting the number of P pictures and the number of B pictures in each GOP.
[図 6]複数の GOPから Pピクチャと Bピクチャの平均を求める際の説明図である。 [図 7]符号ィ匕フレームレート予測部の動作を説明したフローチャートである。 FIG. 6 is an explanatory diagram when calculating the average of P and B pictures from multiple GOPs. FIG. 7 is a flowchart for explaining the operation of the code key frame rate prediction unit.
[図 8]符号ィ匕ピクチャと表示ピクチヤの説明図である。  FIG. 8 is an explanatory diagram of a sign key picture and a display picture.
[図 9]各 GOPにおける符号ィ匕ピクチャ枚数と表示ピクチャ枚数のカウントの説明図で ある。  FIG. 9 is an explanatory diagram for counting the number of sign pictures and the number of displayed pictures in each GOP.
[図 10]GOP符号量予測部の動作を説明したフローチャートである。  FIG. 10 is a flowchart illustrating an operation of a GOP code amount prediction unit.
[図 11]Pピクチャの最大値または最小値が複数ある場合の Pピクチャと Bピクチャの平 均を求める際の説明図である。  FIG. 11 is an explanatory diagram for obtaining an average of a P picture and a B picture when there are a plurality of maximum values or minimum values of the P picture.
[図 12]動画像符号ィ匕プログラムの動作フローチャートである。  FIG. 12 is an operation flowchart of the moving picture code key program.
符号の説明  Explanation of symbols
[0012] 100 動画像再符号化装置 [0012] 100 moving image re-encoding device
101 復号部 (復号手段)  101 Decoding unit (Decoding means)
102 符号化情報解析部  102 Coding information analysis unit
103 符号化部 (符号化手段)  103 Encoder (Encoding means)
200 GOP構造予測部 (画像群構造予測手段)  200 GOP structure prediction unit (image group structure prediction means)
201 符号ィ匕フレームレート予測部(フレームレート予測手段)  201 Code frame rate prediction unit (frame rate prediction means)
202 GOP符号量予測部 (符号量予測手段)  202 GOP code amount prediction unit (code amount prediction means)
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0013] 以下、本発明の一実施形態にかかる動画像再符号化装置を説明する。本発明の 一実施形態にかかる動画像再符号化装置は、画像群構造予測手段が、再符号化時 に参照するための、画像群における前方向予測符号ィ匕画像と双方向予測符号ィ匕画 像の枚数を画像群の構造として予測する際に、複数の画像群における前方向予測 符号化画像の数の最大値を持つ画像群または最小値を持つ画像群のうち少なくとも いずれか一方の画像群を一つ以上除いた複数の画像群の前方向予測符号ィ匕画像 の平均値と双方向予測符号化画像の平均値を画像群の構造として予測し、符号ィ匕 手段が、その画像群の構造に基づいて再符号化する。このようにすることにより、一 時的に現れた極端な前方向予測符号化画像の枚数を持つ画像群に影響されること なぐより平均的な画像群の構造を予測することができるのでより適切な符号量を予 測することが出来る。また、画像群の構造予測のために余分な画像を保持する必要 が無いので遅延時間やメモリ量が削減される。 Hereinafter, a moving image re-encoding device according to an embodiment of the present invention will be described. The moving image re-encoding device according to the embodiment of the present invention includes a forward prediction code key image and a bidirectional prediction code key in the image group for reference by the image group structure prediction unit during re-encoding. When predicting the number of images as the structure of an image group, at least one of the image group having the maximum value or the image group having the minimum value of the number of forward-predicted encoded images in a plurality of image groups The average value of the forward prediction encoded image and the average value of the bi-directional predictive encoded image of a plurality of image groups excluding one or more groups are predicted as the structure of the image group, and the code means means the image group. Re-encoding based on the structure of In this way, the structure of the average image group can be predicted without being influenced by the image group having the extreme number of forward-predicted encoded images that temporarily appeared, and thus more appropriate. Code amount can be predicted. Also, it is necessary to retain extra images for the structure prediction of the image group Since there is no delay, the delay time and the amount of memory are reduced.
[0014] また、画像群構造予測手段が、カウントされた複数の画像群各々における前方向 予測符号化画像の数のうち最大値および最小値を持つ画像群をそれぞれ一つ以上 除いた複数の画像群における前方向予測符号化画像および双方向予測符号化画 像の平均値を画像群の構造として符号ィ匕手段に出力しても良い。このようにすること により、最大値方向と最小値方向の両方に一時的に現れた極端な前方向予測符号 化画像の枚数を持つ画像群に影響されることなぐより精度良く平均的な画像群の構 造を予測することができる。  [0014] Further, the image group structure predicting unit excludes one or more image groups each having a maximum value and a minimum value from the number of forward prediction encoded images in each of the counted plurality of image groups. The average value of the forward prediction encoded image and the bidirectional predictive encoded image in the group may be output to the encoding means as the structure of the image group. By doing this, the average image group can be obtained with higher accuracy without being affected by the image group having the number of extreme forward prediction encoded images that temporarily appear in both the maximum value direction and the minimum value direction. Can be predicted.
[0015] また、画像群構造予測手段が、カウントされた複数の画像群各々における前方向 予測符号ィ匕画像の数のうち、大き 、順に複数の画像群を除 、た複数の画像群にお ける前方向予測符号化画像および双方向予測符号化画像の平均値を画像群の構 造として符号ィ匕手段に出力しても良い。このようにすることにより、最大値方向に一時 的に現れた極端な前方向予測符号化画像の枚数を持つ画像群が複数存在してもそ れらに影響されることなぐより精度良く平均的な画像群の構造を予測することができ る。  [0015] In addition, the image group structure prediction means adds the plurality of image groups to the plurality of image groups except for the plurality of image groups in order of size, out of the number of forward-predicted code images in each of the plurality of counted image groups. The average value of the forward prediction encoded image and the bidirectional prediction encoded image may be output to the encoding means as the structure of the image group. By doing this, even if there are multiple image groups with the number of extreme forward predictive encoded images that appeared temporarily in the maximum value direction, the average is more accurate without being affected by them. The structure of the image group can be predicted.
[0016] また、画像群構造予測手段が、カウントされた複数の画像群各々における前方向 予測符号ィ匕画像の数のうち、小さい順に複数の画像群を除いた複数の画像群にお ける前方向予測符号化画像および双方向予測符号化画像の平均値を画像群の構 造として符号ィ匕手段に出力しても良い。このようにすることにより、最小値方向に一時 的に現れた極端な前方向予測符号化画像の枚数を持つ画像群が複数存在してもそ れらに影響されることなぐより精度良く平均的な画像群の構造を予測することができ る。  [0016] In addition, the image group structure prediction unit is arranged so that the number of forward prediction codes in each of the plurality of image groups counted before the plurality of image groups excluding the plurality of image groups in ascending order. The average value of the direction prediction encoded image and the bidirectional prediction encoded image may be output to the encoding means as the structure of the image group. By doing this, even if there are multiple image groups with the number of extreme forward predictive encoded images that appeared temporarily in the minimum value direction, the average is more accurate without being affected by them. The structure of the image group can be predicted.
[0017] また、画像群構造予測手段が、複数の画像群各々における双方向予測符号ィ匕画 像の数をカウントし、カウントされた複数の画像群各々における前方向予測符号化画 像の数のうち、最大値または最小値を持つ画像群が夫々複数ある場合は、複数の最 大値または最小値を持つ画像群のうち、カウントされた複数の画像群における双方 向予測符号ィ匕画像の平均値カゝら離れた値をもつ画像群を除いた複数の画像群にお ける前方向予測符号化画像および双方向予測符号化画像の平均値を画像群の構 造として符号ィ匕手段に出力しても良い。このようにすることにより、前方向予測符号化 画像の最大値または最小値を持つ画像群が複数あっても、双方向予測符号化画像 の極端な値を持つ方を除くことが出来るので、前方向予測符号ィ匕画像だけでなく双 方向予測符号ィ匕画像においても、より精度良く平均的な画像群の構造を予測するこ とがでさる。 [0017] Further, the image group structure prediction means counts the number of bidirectional prediction code images in each of the plurality of image groups, and the number of forward prediction encoded images in each of the counted plurality of image groups. If there are a plurality of image groups each having a maximum value or a minimum value, among the image groups having a plurality of maximum values or minimum values, the bidirectional prediction codes in the plurality of image groups counted are counted. The average value of the forward predictive coded image and the bidirectional predictive coded image in a plurality of image groups excluding the image group having a value far from the average value is used as the image group configuration. It may be output to the sign key means as a structure. In this way, even if there are multiple image groups having the maximum value or minimum value of the forward prediction encoded image, it is possible to exclude the one having the extreme value of the bidirectional predictive encoded image. It is possible to predict the structure of the average image group with higher accuracy not only in the direction prediction code image but also in the bi-directional prediction code image.
[0018] また、符号化情報に基づいて、複数の画像群各々における符号化された画像の数 および複数の画像群各々における表示されるべき画像の数を夫々カウントし、複数 の画像群各々における符号化された画像の数と複数の画像群各々における表示さ れるべき画像の数との比と、符号化情報から、符号化手段が 1秒間に再符号化すベ き画像枚数 (符号ィヒフレームレート)を予測するフレームレート予測手段を有しても良 い。このようにすることにより、符号化された画像の数だけでなく表示されるべき画像 の数も参照して 、るので、再表示情報 (リピートピクチャ情報)を持つ画像が多 、場合 は再符号ィ匕する際に実質的な符号ィ匕フレームレートを精度良く予測することが出来 るのでより適切な符号量を予測することが出来る。  [0018] Further, based on the encoding information, the number of encoded images in each of the plurality of image groups and the number of images to be displayed in each of the plurality of image groups are counted, respectively. Based on the ratio between the number of encoded images and the number of images to be displayed in each of the plurality of image groups, and the encoding information, the number of images that the encoding means should re-encode per second (code frame) Frame rate prediction means for predicting the rate) may be provided. In this way, not only the number of encoded images but also the number of images to be displayed is referred to, so there are many images with redisplay information (repeat picture information). Therefore, a substantial code amount frame rate can be predicted with high accuracy, so that a more appropriate code amount can be predicted.
[0019] また、画像群構造予測手段が予測した画像群の構造と、フレームレート予測手段が 予測した符号ィ匕フレームレートと、予め設定された再符号化のビットレートと、に基づ いて符号化手段が符号化する際の画像群当たりの符号量を予測する符号量予測手 段を有しても良い。このよう〖こすること〖こより、再符号化する際に画像群構造やリビー トビクチャを考慮した実質的な画像群当たりの符号量を精度良く予測することが出来 る。  [0019] Also, coding is performed based on the structure of the image group predicted by the image group structure prediction unit, the code frame rate predicted by the frame rate prediction unit, and a preset re-encoding bit rate. There may be provided a code amount prediction means for predicting the code amount per image group when the encoding means encodes. By doing this, it is possible to accurately predict the code amount per image group in consideration of the image group structure and the rebate picture when re-encoding.
[0020] また、本発明の一実施形態にかかる動画像再符号化方法は、再符号化時に参照 するために画像群における前方向予測符号ィ匕画像と双方向予測符号ィ匕画像の枚数 を画像群の構造として予測する際に、複数の画像群における前方向予測符号ィ匕画 像の数の最大値を持つ画像群または最小値を持つ画像群のうち少なくとも 、ずれか 一方の画像群を一つ以上除いた複数の画像群の前方向予測符号ィ匕画像の平均値 と双方向予測符号ィ匕画像の平均値を予測した画像群の構造として、その画像群の 構造に基づいて再符号化する。このようにすることにより、一時的に現れた極端な前 方向予測符号化画像の枚数を持つ画像群に影響されることなぐより平均的な画像 群の構造を予測することができる。また、画像群予測のために余分な画像を保持する 必要が無いので遅延時間やメモリ量が削減される。 [0020] In addition, the moving image re-encoding method according to an embodiment of the present invention uses the number of forward prediction code images and bidirectional prediction code images in an image group for reference during re-encoding. When predicting the structure of the image group, at least one of the image groups having the maximum value or the minimum value of the number of forward-predictive codes in a plurality of image groups is selected. Recode based on the structure of the image group as the structure of the image group that predicted the average value of the forward prediction code and the average value of the bidirectional prediction code Turn into. By doing so, a more average image without being affected by the image group having the number of extreme forward predictive encoded images that appear temporarily. The structure of the group can be predicted. In addition, there is no need to hold extra images for image group prediction, so the delay time and memory size are reduced.
[0021] また、本発明の一実施形態にカゝかる動画像再符号ィ匕プログラムは、画像群構造予 測手段が、再符号化時に参照するための、画像群における前方向予測符号化画像 と双方向予測符号化画像の枚数を画像群の構造として予測する際に、複数の画像 群における前方向予測符号ィヒ画像の数の最大値を持つ画像群または最小値を持 つ画像群のうち少なくともいずれか一方の画像群を一つ以上除いた複数の画像群の 前方向予測符号化画像の平均値と双方向予測符号化画像の平均値を予測した画 像群の構造とし、符号化手段が、その画像群の構造に基づいて再符号ィ匕するよう〖こ コンピュータに機能させる。このよう〖こすること〖こより、一時的に現れた極端な前方向 予測符号化画像の枚数を持つ画像群に影響されることなぐより平均的な画像群の 構造を予測することができる。また、画像群予測のために余分な画像を保持する必要 が無いので遅延時間やメモリ量が削減される。  [0021] Further, the moving image re-encoding key program according to the embodiment of the present invention is a forward-predictive encoded image in an image group that is referred to by the image group structure prediction unit during re-encoding. And predicting the number of bidirectional predictive encoded images as the structure of the image group, the image group having the maximum value or the image group having the minimum value of the number of forward prediction code images in a plurality of image groups. The structure of the image group predicts the average value of the forward predictive encoded image and the average value of the bidirectional predictive encoded image of a plurality of image groups excluding at least one of the image groups. Means causes the computer to function to re-encode based on the structure of the image group. By doing so, it is possible to predict the structure of an average image group without being influenced by the image group having the extreme number of forward-predicted encoded images that appear temporarily. In addition, since there is no need to hold an extra image for image group prediction, the delay time and the amount of memory are reduced.
[0022] また、請求項 9に記載の動画像再符号化プログラムを記録媒体に格納してもよい。  [0022] The moving image re-encoding program according to claim 9 may be stored in a recording medium.
このようにすることにより、動画像再符号ィ匕プログラムを機器に組み込む以外に単体 でち流通させることがでさる。  In this way, it is possible to distribute the moving image re-encoding program in addition to incorporating it into the device.
実施例  Example
[0023] 本発明の一実施例に力かる動画像再符号ィ匕装置 100を図 1乃至図 10を参照して 説明する。動画像再符号化装置 100は、入力端子 110から入力される動画像が符 号化されたビットストリームをビットレートや符号ィ匕方式を変更して再符号ィ匕して出力 端子 115から出力する装置である。動画像再符号ィ匕装置 100は、図 1に示すように 復号部 101と、符号化情報解析部 102と、符号化部 103と、入力端子 110と設定デ ータ端子 111と、出力端子 115とを備えている。  [0023] A moving picture recoding apparatus 100 according to an embodiment of the present invention will be described with reference to Figs. The moving image re-encoding device 100 re-encodes the bit stream encoded from the moving image input from the input terminal 110 while changing the bit rate and the encoding method, and outputs the re-encoded signal. Device. As shown in FIG. 1, the moving image recoding apparatus 100 includes a decoding unit 101, an encoded information analysis unit 102, an encoding unit 103, an input terminal 110, a setting data terminal 111, and an output terminal 115. And.
[0024] 復号手段としての復号部 101は、入力端子 110から入力されるビットストリームを復 号し、画像データ 113を符号ィ匕部 103へ出力するとともに、符号ィ匕情報 112を符号 化部 103および符号ィ匕情報解析部 102へ出力する。例えば、 MPEG— 2方式によつ て符号化されたビットストリームが入力された場合は、該ビットストリームを復号し、復 号された画像データ 113 (輝度や色差データなど)を符号ィ匕部 103へ出力する。入 力ビットストリーム中のヘッダ情報などは符号ィ匕情報 112として符号ィ匕情報解析部 10 2および符号ィ匕部 103へ出力する。 [0024] Decoding section 101 as decoding means decodes the bit stream input from input terminal 110, outputs image data 113 to encoding section 103, and encodes information 112. And output to the sign key information analysis unit 102. For example, when a bit stream encoded by the MPEG-2 system is input, the bit stream is decoded, and the decoded image data 113 (luminance, color difference data, etc.) is encoded by the encoding unit 103. Output to. Enter The header information and the like in the output bit stream are output to the code key information analysis unit 102 and the code key unit 103 as the code key information 112.
[0025] 符号ィ匕情報 112は、例えば、ピクチャタイプ (Iピクチャ力 Pピクチャ力、 Bピクチャ 力 やフィールド再表示情報またはフレーム再表示情報およびフレームレート情報( 画面上に表示する際のフレームレートで、例えば NTSCであれば 29. 97フレーム Z 秒)などが出力される。 Iピクチャ、 Pピクチャ、 Bピクチャは MPEGなどで用いられる符 号化された画像の分類であり、 Iピクチャは画面内符号化が施された画像、 Pピクチャ は前方向予測符号ィ匕が施された画像、 Bピクチャは双方向予測符号ィ匕が施された画 像を示している。 [0025] The code information 112 includes, for example, a picture type (I picture power P picture power, B picture power, field redisplay information, frame redisplay information, and frame rate information (the frame rate when displayed on the screen). For example, NTSC 29.97 frame Z seconds) is output, etc. I picture, P picture, and B picture are classifications of coded images used in MPEG, etc. P picture shows an image with forward prediction code and B picture shows an image with bi-directional prediction code.
[0026] 符号化情報解析部 102では、図 2に示すように GOP構造予測部 200と、符号ィ匕フ レームレート予測部 201と、 GOP符号量予測部 202とを備えており、設定データ端 子 111から入力される設定データおよび符号ィヒ情報 112が入力され、前記設定デー タおよび符号ィ匕情報 112に基づいて符号ィ匕部 103において再符号ィ匕する際の割当 て符号量を算出し、解析結果情報 114として符号ィ匕部 103へ出力する。  The encoded information analysis unit 102 includes a GOP structure prediction unit 200, a code frame rate prediction unit 201, and a GOP code amount prediction unit 202, as shown in FIG. The setting data and the sign information 112 inputted from the child 111 are inputted, and the code amount is calculated for re-signing in the code section 103 based on the setting data and the sign information 112. The analysis result information 114 is output to the sign key unit 103.
[0027] 設定データ端子 111は、動画像再符号化装置 100の初期設定時に設定されるパ ラメータ、例えば出力ビットストリームのビットレートなどが入力される。  [0027] The setting data terminal 111 receives parameters set when the moving image re-encoding device 100 is initially set, for example, a bit rate of an output bit stream.
[0028] 解析結果情報 114は、例えば、 GOP単位の割当て符号量や GOP内の Pピクチャ 予測枚数および Bピクチャ予測枚数や符号ィ匕フレームレートなどが出力される。画像 群としての GOPとは Group Of Picturesの略で、少なくとも 1枚以上の Iピクチャから構 成される単位である(通常、複数のピクチャ力 構成されることが多い)。 GOP構造と は GOP内の Iピクチャ、 Pピクチャおよび Bピクチャの枚数構成である。図 3に GOP構 造の例を示す。 GOPは Iピクチャから始まり、次の Iピクチャの 1枚前のピクチヤまでが 1GOPとなる。図 3では 1GOPは 12枚のピクチヤで構成されており、 GOP内の Iピク チヤは 1枚、 Pピクチャは 3枚、 Bピクチャは 8枚である。  [0028] The analysis result information 114 outputs, for example, an allocated code amount in GOP units, a predicted number of P pictures in a GOP, a predicted number of B pictures, a code frame rate, and the like. GOP as an image group is an abbreviation of Group Of Pictures, and is a unit composed of at least one I picture (usually composed of multiple picture powers). The GOP structure is the number of I, P, and B pictures in the GOP. Figure 3 shows an example of a GOP structure. A GOP starts with an I picture, and a GOP is the one picture before the next I picture. In Fig. 3, 1 GOP consists of 12 pictures. There are 1 I picture, 3 P pictures, and 8 B pictures in the GOP.
[0029] 画像群構造予測手段としての GOP構造予測部 200は、符号ィ匕情報 112が入力さ れ、それに基づいて GOP構造を予測し、 GOP構造情報 210を出力する。  [0029] The GOP structure prediction unit 200 serving as the image group structure prediction means receives the sign key information 112, predicts the GOP structure based on the code key information 112, and outputs the GOP structure information 210.
[0030] GOP構造予測部 200における GOP構造の予測方法を図 4のフローチャートを参 照して説明する。 [0031] まず、ステップ S 101において、 GOP構造の初期値を設定し、ステップ S 102へ進 む。 GOP構造の初期値とは、動画像が入力される前に設定される Iピクチャ、 Pピクチ ャ、 Bピクチャの枚数である。これらは、予測の初期値であって実際に入力される動画 像の各ピクチャの枚数と一致しなくともよい。初期値は予め GOP構造予測部 200内 部に持ってぉ 、ても良 、し、設定データ端子 111から設定するようにしても良!、。 [0030] A GOP structure prediction method in the GOP structure prediction unit 200 will be described with reference to the flowchart of FIG. [0031] First, in step S101, an initial value of the GOP structure is set, and the process proceeds to step S102. The initial value of the GOP structure is the number of I-pictures, P-pictures, and B-pictures that are set before moving pictures are input. These are initial values of prediction and do not need to match the number of pictures of the actually input moving picture. The initial value can be stored in the GOP structure prediction unit 200 in advance, or can be set from the setting data terminal 111 !.
[0032] 次に、ステップ S102において、復号部 101に入力された画像のピクチャタイプが符 号化情報 112を経由して入力されステップ S 103に進む。  [0032] Next, in step S102, the picture type of the image input to the decoding unit 101 is input via the encoding information 112, and the process proceeds to step S103.
[0033] 次に、ステップ S103において、復号部 101に入力された画像のピクチャタイプが I ピクチャカゝ否かを判断して Iピクチャである場合 (YESの場合)はステップ S 106に進 み、そうでない場合 (NOの場合)はステップ S104に進む。  [0033] Next, in step S103, it is determined whether or not the picture type of the image input to the decoding unit 101 is an I picture cover. If it is an I picture (YES), the process proceeds to step S106, and so on. If not (NO), go to step S104.
[0034] 次に、ステップ S104において、復号部 101に入力された画像のピクチャタイプが P ピクチャカゝ否かを判断して Pピクチャである場合 (YESの場合)はステップ S 108に進 み、そうでない場合 (NOの場合)はステップ S 105に進む。  [0034] Next, in step S104, it is determined whether or not the picture type of the image input to the decoding unit 101 is a P picture, and if it is a P picture (YES), the process proceeds to step S108, and so on. If not (NO), go to step S105.
[0035] 次に、ステップ S105において、 Iピクチャでもなく Pピクチヤでもないということは、復 号部 101に入力された画像のピクチャタイプは Bピクチヤであると判断して現在の GO Pにおける Bピクチャの枚数に 1を加算してステップ S102に戻る。  [0035] Next, in step S105, if it is neither an I picture nor a P picture, it is determined that the picture type of the image input to the decoding unit 101 is a B picture and a B picture in the current GO P Add 1 to the number of sheets and return to step S102.
[0036] ステップ S106においては、 Iピクチャが入力されたと判断する。 Iピクチャから次の I ピクチャの前の画像までが 1GOPの範囲なので Iピクチャ検出で GOPの先頭を検出 したとして、直前の過去複数の GOPにおける Pピクチャ枚数の最大値と最小値を持 つ GOPを 1つずつ除!、て、それら Pピクチャ枚数の最大値と最小値の GOPを 1つず つ除いた過去複数の GOPの Pピクチヤ枚数の平均値と Bピクチャ枚数の平均値を算 出しステップ S 107に進む。すなわち、複数の GOPにおける Pピクチャの枚数のうち、 最大値および最小値を持つ GOPをそれぞれ一つ以上除いた複数の GOPにおける Pピクチャおよび Bピクチャの平均値を算出している。つまり、最小値か最大値を持つ GOPのうち少なくともいずれか一方の GOPを一つ以上除いた複数の GOPにおける Pピクチャおよび Bピクチャの平均値を算出している。  In step S106, it is determined that an I picture has been input. Since the range from the I picture to the previous image of the next I picture is in the range of 1 GOP, assuming that the beginning of the GOP was detected by I picture detection, the GOP having the maximum and minimum number of P pictures in the previous multiple GOPs Divide one by one, and then calculate the average value of the number of P pictures and the average number of B pictures for multiple past GOPs, excluding the maximum and minimum GOP of the number of P pictures. Proceed to 107. That is, the average value of P pictures and B pictures in a plurality of GOPs is calculated by excluding one or more GOPs having the maximum and minimum values from the number of P pictures in the plurality of GOPs. That is, the average value of P pictures and B pictures in a plurality of GOPs excluding at least one GOP from among GOPs having the minimum value or the maximum value is calculated.
[0037] ステップ S106を、図 5と図 6を参照して詳細に説明する。図 5は、直前の過去複数 の GOPとして 8GOPを保持した場合の例である。入力された Iピクチャを含む GOPを 現在の GOPとすると、現在の GOPから時間的に近い順に GOP[0]、 GOP[l]、 GO P[2]、 GOP[3]、 GOP[4]、 GOP[5]、 GOP[6]、 GOP[7]とし、各 GOPにおける Pピクチャの枚数を Np[0]、 Np [l]、 Np [2]、 Np [3]、 Np[4]、 Np [5]、 Np [6]、 N P [7]とし、各 GOPにおける Bピクチャの枚数を Nb [0]、 Nb[l]、 Nb [2]、 Nb [3]、 N b [4]、 Nb [5]、 Nb [6]、 Nb[7]とする。すなわち、常に直前の GOPから数えて 8GO P分の Pピクチャと Bピクチャの枚数を保持する。そして、各 GOPにおける Pピクチャの 枚数と Bピクチャの枚数が図 6のようになつていた場合は、 Pピクチャ枚数の最大値で ある Np [2]と最小値である Np [6]を除 、て Pピクチャの平均値 AVR— Npと Bピクチ ャの平均値 AVR—Nbを求めると図 6に示すようにそれぞれ 4と 10という値が求まる。 Step S106 will be described in detail with reference to FIG. 5 and FIG. Figure 5 shows an example when 8 GOPs are held as the previous GOPs. GOP containing the input I picture The current GOP is GOP [0], GOP [l], GO P [2], GOP [3], GOP [4], GOP [5], GOP [6] , GOP [7], and the number of P pictures in each GOP is Np [0], Np [l], Np [2], Np [3], Np [4], Np [5], Np [6], NP [7] and the number of B pictures in each GOP is Nb [0], Nb [l], Nb [2], Nb [3], Nb [4], Nb [5], Nb [6], Nb [7]. In other words, the number of P pictures and B pictures for 8GOPs from the previous GOP is always maintained. If the number of P pictures and the number of B pictures in each GOP are as shown in Fig. 6, excluding Np [2] which is the maximum number of P pictures and Np [6] which is the minimum value, If the average value AVR-Np of the P picture and the average value AVR-Nb of the B picture are obtained, the values 4 and 10 are obtained as shown in FIG.
[0038] 次に、ステップ S107において、ステップ S 106で算出した Pピクチャと Bピクチャの 平均値 (AVR— Np、 AVR—Nb)を GOP構造情報 210として GOP符号量予測部 2 02に出力しステップ S102に戻る。  [0038] Next, in step S107, the average value (AVR—Np, AVR—Nb) of the P picture and B picture calculated in step S106 is output to the GOP code amount prediction unit 202 as GOP structure information 210. Return to S102.
[0039] ステップ S108においては、復号部 101に入力された画像のピクチャタイプは Pピク チヤであることから現在の GOPにおける Pピクチャの枚数に 1を力卩算しステップ S102 に戻る。  In step S108, since the picture type of the image input to the decoding unit 101 is P picture, 1 is added to the number of P pictures in the current GOP, and the process returns to step S102.
[0040] フレームレート予測手段としての符号ィ匕フレームレート予測部 201は、符号化情報 112が入力され、それを基づいて符号ィ匕フレームレートを算出し、符号ィ匕フレームレ ート情報 211を出力する。  The code frame rate prediction unit 201 as a frame rate prediction unit receives the encoded information 112, calculates the code frame rate based on the encoded information 112, and generates the code frame rate information 211. Output.
[0041] 符号ィ匕フレームレート予測部 201における符号ィ匕フレームレートの算出方法を図 7 のフローチャートを参照して説明する。  A method for calculating the code frame rate in the code frame rate prediction unit 201 will be described with reference to the flowchart of FIG.
[0042] まず、ステップ S 201にお 、て、表示ピクチャ枚数と符号ィ匕ピクチャ枚数の初期値を 設定し、ステップ S202へ進む。これらは、予測の初期値であって実際に入力される 表示ピクチャ枚数や符号ィ匕ピクチャ枚数と一致しなくともよい。初期値は予め符号ィ匕 フレームレート予測部 201に持ってぉ 、ても良 、し、設定データ端子 111から設定す るようにしてちょい。  [0042] First, in step S201, initial values of the number of displayed pictures and the number of encoded pictures are set, and the process proceeds to step S202. These are initial values of prediction and do not need to match the number of display pictures or the number of sign pictures that are actually input. The initial value may be stored in advance in the code frame rate prediction unit 201 and set from the setting data terminal 111.
[0043] 表示ピクチャ枚数と、符号ィ匕ピクチャ枚数について図 8を参照して説明する。表示さ れるべき画像の数としての表示ピクチャ枚数とは、復号して画面に表示する際のピク チヤ枚数を示し、符号化された画像の数としての符号ィ匕ピクチャ枚数とは、実際に符 号ィ匕されているピクチャ枚数である。復号部 101で復号した際に、フィールド再表示 情報またはフレーム再表示情報が検出されたピクチャは、符号ィ匕ピクチャ枚数は 1枚 であるが表示ピクチャ枚数としては 1枚以上となる。図 8の場合は、 1秒間の表示ピク チヤ枚数を矢印の間の 12枚とすると、フレームレートは 12フレーム Z秒、符号化フレ ームレートは 8フレーム/秒となる。また、符号ィ匕情報 112に含まれるフレームレート 情報は表示ピクチヤのフレームレートを指している。ここで再表示情報を検出せずに フレームレート情報のみ力も符号ィ匕ピクチャ 12枚に対して 1秒分の符号量を割当て た場合、 1枚当たりの符号量は 1秒分の 1Z12となる。しかし、再表示情報を検出す れば、 1秒あたり符号ィ匕ピクチャが 8枚であることが分力るために、 1枚当たりの割当て 符号量が 1秒分の 1Z8に増大する。したがって、再表示情報を用いることで再符号 化時にリピートピクチャ枚数を除いた実際の符号ィ匕ピクチャ枚数を再符号ィ匕の対象と して符号量を割当てることで、適切な符号の割当てが可能となる。 [0043] The number of displayed pictures and the number of encoded pictures will be described with reference to FIG. The number of displayed pictures as the number of images to be displayed indicates the number of pictures when decoded and displayed on the screen, and the number of encoded pictures as the number of encoded images is actually a sign. This is the number of pictures that have been issued. The picture for which field redisplay information or frame redisplay information has been detected when decoding is performed by the decoding unit 101 has one encoded picture number, but the number of displayed pictures is one or more. In the case of Fig. 8, if the number of displayed pictures per second is 12 between the arrows, the frame rate is 12 frames Z seconds, and the encoding frame rate is 8 frames / second. The frame rate information included in the code key information 112 indicates the frame rate of the display picture. Here, if the recoding information is not detected and only the frame rate information is assigned the code amount for 1 second to 12 code pictures, the code amount per frame is 1Z12 for 1 second. However, if the re-display information is detected, the number of code frames per second is divided into eight, so the allocated code amount per frame increases to 1Z8 for one second. Therefore, by using the redisplay information, it is possible to assign an appropriate code by assigning the code amount as the target of re-encoding and the actual number of code-excluded pictures excluding the number of repeat pictures at the time of re-encoding. It becomes.
[0044] 次に、ステップ S202において、復号部 101に入力された画像のピクチャタイプが符 号化情報 112を経由して入力されステップ S 203に進む。  [0044] Next, in step S202, the picture type of the image input to the decoding unit 101 is input via the encoding information 112, and the process proceeds to step S203.
[0045] 次に、ステップ S203において、復号部 101に入力された画像のピクチャタイプが I ピクチャカゝ否かを判断して Iピクチャである場合 (YESの場合)はステップ S 204に進 み、そうでない場合 (NOの場合)はステップ S206に進む。  [0045] Next, in step S203, it is determined whether or not the picture type of the image input to the decoding unit 101 is an I picture cover. If it is an I picture (YES), the process proceeds to step S204. If not (NO), go to step S206.
[0046] ステップ S204においては、 Iピクチャが入力されたと判断する。 Iピクチャから次の I ピクチャの前の画像までが 1GOPの範囲なので Iピクチャ検出で GOPの先頭を検出 したとして、直前の過去複数の GOPにおける符号ィ匕ピクチャ枚数と表示ピクチャ枚 数力も符号ィ匕フレームレートを算出しステップ S205に進む。  In step S204, it is determined that an I picture has been input. Since the range from the I picture to the image before the next I picture is 1 GOP, assuming that the beginning of the GOP was detected by I picture detection, the number of sign pictures and the number of display pictures in the previous GOPs are also sign signs. The frame rate is calculated and the process proceeds to step S205.
[0047] 符号化フレームレートは、 coded_frame_rateを符号化フレームレート、 numをデータを 保持しておく GOP数、 i=0,l,- --,(num-l), Nc[i]を直前から数えて過去 i番目の GOPに おける符号ィ匕ピクチャ枚数、 Nd[i]を過去 i番目の GOPにおける表示ピクチャ枚数、 fra me_rateを符号ィ匕情報 112に含まれるフレームレート情報とすると、例えば数 1に示す 式で表される。 [0047] As for the coding frame rate, coded_frame_rate is the coding frame rate, num is the number of GOPs holding the data, i = 0, l, ---, (num-l), Nc [i] counted definitive code i spoon picture number in the past i-th GOP, the display picture number Nd [i] a in the past i-th GOP, when the frame rate information contained in the fra m e _rat e the sign i spoon information 112, For example, it is expressed by the formula shown in Equation 1.
[0048] [数 1] num-1 [0048] [Equation 1] num-1
Z Nc[i]  Z Nc [i]
coded— frame—rate = x frame— rate  coded— frame—rate = x frame— rate
7 Nd [i]  7 Nd [i]
i=0  i = 0
num :データを保持しておく GOP数  num: Number of GOPs to store data
i : i = 0,1,■■■, (num-1 )  i: i = 0,1, ■■■, (num-1)
Nc [i]:過去 ί番目の GOPにおける符号化ピクチャ枚数  Nc [i]: Number of encoded pictures in the last ίth GOP
Nd [i]:過去潘目の GOPにおける表示ピクチャ枚数 frame jate :符号化情報に含まれるフレームレート情報  Nd [i]: Number of pictures displayed in the GOP of the past frame frame jate: Frame rate information included in the encoding information
[0049] すなわち、符号ィ匕ピクチャ枚数と表示ピクチャ枚数との比と、符号化情報 112に含 まれるフレームレート情報力も予測した符号ィ匕フレームレートを算出している。 That is to say, the code frame rate that also predicts the ratio between the number of coded pictures and the number of displayed pictures and the frame rate information power included in the coded information 112 is calculated.
[0050] ステップ S204を、図 9を参照して詳細に説明する。図 9は、直前の過去複数の GO Pとして 8GOPを保持した場合の例である。入力された Iピクチャを含む GOPを現在 の GOPとすると、現在の GOPから時間的に近い順に GOP[0]、 GOP[l]、 GOP [2 ]、 GOP[3]、 GOP[4]、 GOP[5]、 GOP[6]、 GOP[7]とし、各 GOPにおける符号 化ピクチャ枚数を Nc [0]、 Nc[l]、 Nc [2]、 Nc [3]、 Nc[4]、 Nc [5]、 Nc[6]、 Nc[ 7]とし、各 GOPにおける表示ピクチャ枚数を Nd[0]、 Nd[l]、 Nd[2]、 Nd[3]、 Nd [4]、 Nd[5]、 Nd[6]、 Nd[7]とする。すなわち、常に直前の GOPから数えて 8GOP 分の符号ィ匕ピクチャ枚数と表示ピクチャ枚数を保持する。これらを数 1に当てはめると 、 Nc [0]〜Nc[7]まで総数を、 Nd[0]〜Nd[7]まで総数で割った値にフレームレー ト情報を掛けることで予測した符号ィ匕フレームレートとして求めることができる。  [0050] Step S204 will be described in detail with reference to FIG. Fig. 9 shows an example when 8 GOPs are held as the previous GOPs. If the current GOP including the input I picture is the current GOP, GOP [0], GOP [l], GOP [2], GOP [3], GOP [4], GOP [5], GOP [6], and GOP [7]. The number of encoded pictures in each GOP is Nc [0], Nc [l], Nc [2], Nc [3], Nc [4], Nc [ 5], Nc [6], Nc [7], and the number of displayed pictures in each GOP is Nd [0], Nd [l], Nd [2], Nd [3], Nd [4], Nd [5] , Nd [6] and Nd [7]. That is, the number of sign pictures and the number of displayed pictures for 8 GOPs from the previous GOP are always retained. When these are applied to the number 1, the code number predicted by multiplying the total number from Nc [0] to Nc [7] by the total number from Nd [0] to Nd [7] is multiplied by the frame rate information. It can be obtained as a frame rate.
[0051] 次に、ステップ S205において、ステップ S204で算出した符号化フレームレート(co ded_frame_rate)を符号化フレームレート情報 211として GOP符号量予測部 202に出 力しステップ S 206に進む。  [0051] Next, in step S205, the encoding frame rate (coded_frame_rate) calculated in step S204 is output to the GOP code amount prediction unit 202 as the encoding frame rate information 211, and the process proceeds to step S206.
[0052] 次に、ステップ S 206において、符号化情報 112から現在の GOPの符号化ピクチャ 枚数と表示ピクチャ枚数にそれぞれ 1または(1 +リピートピクチャ枚数)を加算してス テツプ S202に戻る。すなわち、符号ィ匕ピクチャ枚数には常に 1を加算し、表示ピクチ ャ枚数には(1 +リピートピクチャ枚数)を加算する。 [0053] 符号量予測手段としての GOP符号量予測部 202は、入力される符号ィ匕情報 112、 GOP構造情報 210、符号ィ匕フレームレート情報 211および設定データ端子 111より 設定される出力目標ビットレートに基づいて GOPの割当て符号量を算出し、 GOP構 造情報 210に含まれる Pピクチャ予測枚数、 Bピクチャ予測枚数と、符号ィ匕フレームレ ート情報 211に含まれる符号ィ匕フレームレートとともに解析結果情報 114として符号 化部 103へ出力する。 Next, in step S 206, 1 or (1 + the number of repeat pictures) is added to the current number of GOP encoded pictures and display pictures from the encoding information 112, and the process returns to step S 202. That is, 1 is always added to the number of sign pictures, and (1 + the number of repeat pictures) is added to the number of display pictures. [0053] The GOP code amount prediction unit 202 serving as a code amount predicting unit includes an input target bit set from input code information 112, GOP structure information 210, code key frame rate information 211, and a setting data terminal 111. Based on the rate, the GOP allocation code amount is calculated, and together with the predicted number of P pictures, the predicted number of B pictures included in the GOP structure information 210, and the code frame rate included in the code frame rate information 211 The analysis result information 114 is output to the encoding unit 103.
[0054] GOP符号量予測部 202の動作を図 10のフローチャートを参照して説明する。  The operation of the GOP code amount prediction unit 202 will be described with reference to the flowchart of FIG.
[0055] まず、ステップ S301において、復号部 101に入力された画像のピクチャタイプが符 号化情報 112を経由して入力されステップ S 302に進む。 First, in step S301, the picture type of the image input to the decoding unit 101 is input via the encoding information 112, and the process proceeds to step S302.
[0056] 次に、ステップ S302において、復号部 101に入力された画像のピクチャタイプが I ピクチャカゝ否かを判断して Iピクチャである場合 (YESの場合)はステップ S303に進 み、そうでない場合 (NOの場合)はステップ S301に戻る。 [0056] Next, in step S302, it is determined whether or not the picture type of the image input to decoding section 101 is an I picture cover. If it is an I picture (YES), the process proceeds to step S303; If yes (NO), return to step S301.
[0057] 次に、ステップ S303において、 GOP構造情報 210が更新された力否かを判断し、 更新された場合 (YESの場合)はステップ S304に進み、そうでない場合 (NOの場合[0057] Next, in step S303, it is determined whether or not the GOP structure information 210 has been updated. If updated (YES), the process proceeds to step S304. If not (NO)
)は更新されるまで待機する。 ) Wait until it is updated.
[0058] 次に、ステップ S304において、符号ィ匕フレームレート情報 211が更新されたか否 かを判定し、更新された場合 (YESの場合)はステップ S305に進み、そうでない場合[0058] Next, in step S304, it is determined whether or not the code frame rate information 211 has been updated. If it has been updated (YES), the process proceeds to step S305;
(NOの場合)は更新されるまで待機する。 (If NO), wait until updated.
[0059] 次に、ステップ S305において、符号化情報 112、 GOP構造情報 210、符号化フレ ームレート情報 211および設定データ端子 111より設定される出力目標ビットレート に基づ!/、て GOP当たりの割当て符号量を算出しステップ S306へ進む。 [0059] Next, in step S305, based on the output target bit rate set from encoding information 112, GOP structure information 210, encoding frame rate information 211, and setting data terminal 111! /, Allocation per GOP The code amount is calculated and the process proceeds to step S306.
[0060] GOP当たりの割当て符号量 GOP_bitsは、 AVR_Npを GOP構造予測部 200で予測 した平均 Pピクチャ枚数、 AVR_Nbを GOP構造予測部 200で予測した平均 Bピクチャ 枚数、 coded— frame— rateを符号化フレームレート予測部 201で予測した符号化フレー ムレート、 bitrateを設定データ端子 111より予め設定される出力目標ビットレートとす ると、例えば数 2に示す式で表される。 [0060] Assigned code amount per GOP GOP_bits encodes the average number of P pictures predicted by the GOP structure prediction unit 200 for AVR_Np, the average number of B pictures predicted by the GOP structure prediction unit 200, and the coded frame rate. Assuming that the encoding frame rate and bitrate predicted by the frame rate prediction unit 201 are the output target bit rate preset from the setting data terminal 111, it is expressed by, for example, the following equation (2).
[0061] [数 2] r,D .t (1 +AVR Np+AVR Nb) レ. [0061] [Equation 2] r , D. t (1 + AVR Np + AVR Nb)
GOP— bits = 」 ~ —— x bitrate  GOP— bits = ”~ —— x bitrate
^ coded_frame_rate  ^ coded_frame_rate
AVR— Np:平均 Pピクチャ枚数  AVR—Np: Average number of P pictures
AVR— Nb:平均 Bピクチャ枚数  AVR—Nb: Average number of B pictures
coded_frame_rate:符号化フレームレート  coded_frame_rate: coded frame rate
bitrate :設定データより得られる出力目標ビットレ一ト  bitrate: Output target bit rate obtained from setting data
[0062] 数 2に示した式中の 1となっている部分は Iピクチャの枚数を意味しており、フィール ド符号化時は、 1フレームが 2フィールドであることから、 GOP内の平均 Iフィールド枚 数の 1Z2を算出してそれに置き換えればよい。(この場合、 AVR_Npおよび AVR_Nbも 夫々フィールド枚数の 1Z2で算出される。) [0062] In the equation shown in Equation 2, the part with 1 means the number of I pictures, and when field coding, since one frame is 2 fields, the average I in the GOP Calculate 1Z2 field number and replace it. (In this case, AVR_Np and AVR_Nb are also calculated with 1Z2 of the number of fields.)
[0063] 次に、ステップ S306において、ステップ S305で算出した GOP当たりの割当て符 号量 (GOP— bits)と GOP構造情報 210と符号ィ匕フレームレート情報 211とを解析結果 情報 114として符号ィ匕部 103に出力しステップ S301に戻る。  [0063] Next, in step S306, the allocated code amount (GOP-bits) per GOP calculated in step S305, the GOP structure information 210, and the sign key frame rate information 211 are analyzed as analysis result information 114. The data is output to unit 103 and the process returns to step S301.
[0064] 符号ィ匕手段としての符号ィ匕部 103は、符号化情報 112、解析結果情報 114および 設定データ端子 111から入力される初期設定に基づいて復号部 101から入力される 画像データ 113を再符号化し、出力ビットストリームを出力端子 115から出力する。す なわち、符号ィ匕情報解析部 102で予測した GOP当たりの割当て符号量に基づいて 符号量制御を行ったり、 Pピクチャと Bピクチャの予測枚数力 各ピクチャへの符号量 の割当てなどを行う。また、符号ィ匕情報 112や符号ィ匕部 103内部での情報などから 符号量制御に変化を加えてもよい。例えば、解析結果情報 114の GOP当たり割当て 符号量などを得た上で、入力される画像データ 113の複雑度を基に GOPゃピクチャ の割当て符号量を増減してもよ 、。  The code key unit 103 as the code key means outputs the image data 113 input from the decoding unit 101 based on the encoding information 112, the analysis result information 114, and the initial setting input from the setting data terminal 111. Re-encoding is performed, and the output bit stream is output from the output terminal 115. In other words, code amount control is performed based on the allocated code amount per GOP predicted by the code information analysis unit 102, and the predicted number of P and B pictures is allocated to each picture. . Further, the code amount control may be changed based on the code key information 112, information in the code key unit 103, or the like. For example, after obtaining the allocated code amount per GOP of the analysis result information 114, the allocated code amount of GOP may be increased or decreased based on the complexity of the input image data 113.
[0065] 本実施例によれば、 GOP構造予測部 200において、 8つの GOP内の Pピクチャ枚 数のうち、最大値と最小値を持つ GOPを除 、た 6つの GOP力 Pピクチヤ枚数と Bピ クチャ枚数の平均値を算出し、それを予測した GOP構造とする。符号ィ匕フレームレ ート予測部 201において、符号ィ匕ピクチャ枚数と表示ピクチャ枚数と符号ィ匕情報 112 力 得られたフレームレートから符号ィ匕フレームレートを算出し、それを予測した符号 化フレームレートとする。そして、予測した GOP構造と予測した符号ィ匕フレームレート と設定データ端子 111から設定したビットレートから GOP当たりの符号量を算出し、 それを予測した符号量とする。符号ィ匕部 103では、前記予測した GOP構造と、予測 した符号化フレームレートと、予測した符号量を参照して再符号ィ匕を行う。このように することで、 GOP構造やフレームレートおよび符号量の予測精度が上がるとともに、 GOP構造予測やフレームレート予測および符号量予測のために複数の画像をメモリ に記憶することが必要ないために遅延時間やメモリ量の削減が出来る。 [0065] According to the present embodiment, in the GOP structure prediction unit 200, except for the GOP having the maximum value and the minimum value among the number of P pictures in the 8 GOPs, only the 6 GOP powers P-picture number and B The average value of the number of pictures is calculated and used as the predicted GOP structure. The code key frame rate prediction unit 201 calculates the code key frame rate from the obtained frame rate from the number of code key pictures, the number of displayed pictures, and the code key information 112, and predicts the code. Frame rate. Then, the code amount per GOP is calculated from the predicted GOP structure, the predicted code frame rate, and the bit rate set from the setting data terminal 111, and is used as the predicted code amount. The code key unit 103 performs re-coding with reference to the predicted GOP structure, the predicted encoding frame rate, and the predicted code amount. By doing so, the prediction accuracy of the GOP structure, frame rate and code amount is improved, and it is not necessary to store multiple images in the memory for GOP structure prediction, frame rate prediction and code amount prediction. Delay time and memory amount can be reduced.
[0066] なお、上述した実施例において GOP構造予測部 200は、 GOP毎の Pピクチャの枚 数のうち最大値を持つ GOPと最小値を持つ GOPを除 、て、 Pピクチャと Bピクチャの GOPの平均枚数を算出して 、たが、図 11に示すように Pピクチヤの最大値または最 小値が複数あった場合は、 Bピクチャの枚数を比較して、 Bピクチャの平均値力 の 差異が大きい GOPを除くようにしてもよい。図 11では、 Pピクチャの最大値が Np [2] と Np [3]であって、最小値が Np [6]と Np [7]であるため、 Nb [2]と Nb[3]および Nb [6]と Nb [7]の Bピクチヤの枚数を比較し Bピクチャの平均値(Nb [0]〜Nb [7]の平 均値)力もの差異が大き 、Nb [2]を含む GOPを最大値として、 Nb [6]を含む GOP を最小値として、それぞれ除 、て Pピクチャの平均枚数 AVR— Npと Bピクチャの平 均枚数 AVR— Nbを求める。また、このような方法をとらずに複数の最大値や複数の 最小値をとる GOPからそれぞれ任意に 1つずつ GOPを選択して削除しても良 、。  [0066] In the above-described embodiment, the GOP structure prediction unit 200 excludes the GOP having the maximum value and the GOP having the minimum value from the number of P pictures for each GOP, and the GOP of the P picture and the B picture. When the average number of images is calculated, but there are multiple P-picture maximum values or minimum values as shown in Fig. 11, the number of B-pictures is compared, and the difference in average power of B-pictures You may make it exclude GOP with large. In Fig. 11, the maximum value of P picture is Np [2] and Np [3] and the minimum value is Np [6] and Np [7], so Nb [2], Nb [3] and Nb The number of B pictures in [6] and Nb [7] is compared, and the average value of B pictures (the average value of Nb [0] to Nb [7]) is significantly different. The GOP including Nb [2] The average number of P pictures AVR—Np and the average number of B pictures AVR—Nb are determined by dividing the GOP including Nb [6] as the minimum value as the maximum value. Also, you can select and delete one GOP from each GOP that takes multiple maximum values and multiple minimum values without using this method.
[0067] また、 GOP構造を予測する際に除く GOPは、最大値または最小値のうちいずれか 一方のみでも良い。さらに、複数の GOPにおける前方向予測符号ィ匕画像の枚数のう ち大きい順に複数除いても良いし、小さい順に複数除いても良い。図 11で例えると N P [2]と Np [3]の両方を除!、てもよ 、し、 Np [6]と Np [7]の両方を除!、ても良!、。  [0067] Further, the GOP excluded when the GOP structure is predicted may be only one of the maximum value and the minimum value. Further, a plurality of forward prediction code images in a plurality of GOPs may be removed in descending order of the number of images, or may be removed in ascending order. For example, in Fig. 11, both N P [2] and Np [3] can be excluded, but both Np [6] and Np [7] can be excluded!
[0068] また、上述した実施例では動画像再符号化装置 100として説明したが、コンビユー タ上で動作するプログラムとすることもできる。すなわち、動画像再符号ィ匕装置 100を CPUと RAM、 ROMに置き換えて、 ROMに動画像再符号化プログラムを記録して おき、 CPUに復号部 101、符号化部 103、符号ィ匕情報解析部 102の機能を持たせ る。図 12に動画像再符号ィ匕プログラムのフローチャートを示す。  [0068] In the above-described embodiment, the moving image re-encoding device 100 has been described. However, a program that operates on a computer may be used. That is, the moving image re-encoding device 100 is replaced with a CPU, RAM, and ROM, and a moving image re-encoding program is recorded in the ROM, and the decoding unit 101, the encoding unit 103, and the code key information analysis are stored in the CPU. Provide the function of part 102. Fig. 12 shows a flowchart of the moving image re-encoding key program.
[0069] まず、復号手段としてのステップ S401で入力ビットストリームを復号する。次に、画 像群構造予測手段としてのステップ S402で GOP構造予測を行う。ステップ S402の 内容は図 4のフローチャートと同様である。次に、フレームレート予測手段としてのス テツプ S403で符号化フレームレートを予測する。ステップ S403の内容は図 7のフロ 一チャートと同様である。次に、符号量予測手段としてのステップ S404で GOP当た りの割当て符号量を予測する。ステップ S404の内容は図 10のフローチャートと同様 である。そして、符号ィ匕手段としてのステップ S405で再符号ィ匕を行う。以上のステツ プをピクチャ単位で繰り返すことで動画像再符号ィ匕プログラムとして機能することがで きる。 [0069] First, the input bit stream is decoded in step S401 as decoding means. Next, draw In step S402 as image group structure prediction means, GOP structure prediction is performed. The contents of step S402 are the same as those in the flowchart of FIG. Next, the encoding frame rate is predicted in step S403 as frame rate prediction means. The contents of step S403 are the same as the flowchart in FIG. Next, the allocated code amount per GOP is predicted in step S404 as the code amount predicting means. The contents of step S404 are the same as those in the flowchart of FIG. Then, re-encoding is performed in step S405 as an encoding key means. By repeating the above steps in units of pictures, it can function as a moving picture re-encoding program.
[0070] また、上述した実施例ではピクチャをフレームとして説明した力 フィールドでも実施 可能である。  [0070] Further, in the above-described embodiment, the present invention can also be implemented in the force field described using a picture as a frame.
[0071] また、本発明における復号手段と符号化手段は、 MPEG— 1, 2, 4や H. 264など 画面内符号化画像と、前方向予測符号化画像と、双方向予測符号化画像のうち少 なくとも前記画面内符号化画像が 1枚以上含まれる画像群から構成されるビットストリ ームとなる動画像の符号ィ匕方式であれば、いずれの組合せでもよい。勿論、同じ符 号ィ匕方式間でビットレートの変換に用いても良 、。  [0071] Further, the decoding means and the encoding means in the present invention include an intra-screen encoded image such as MPEG-1, 2, 4 and H.264, a forward prediction encoded image, and a bidirectional predictive encoded image. Any combination may be used as long as it is a moving image coding scheme that is a bit stream composed of a group of images including at least one of the intra-coded images. Of course, it may be used for bit rate conversion between the same code system.
[0072] また、動画像を放送局で放送する際や通信回線に送信する際に本発明を適用す れば、放送波や通信回線の帯域に合わせた符号化方式やビットレートで低遅延かつ 低コストに動画像を再符号ィ匕することができる。また、例えば地上デジタル放送など 符号化された動画像を、ハードディスクレコーダや DVDレコーダや Blu— rayレコー ダおよび HD DVDレコーダなどに記録する際に本発明を適用すれば、再符号化前 よりも高効率な符号ィ匕方式に低遅延かつ低コストに記録することができる。  [0072] If the present invention is applied when a moving image is broadcast on a broadcast station or transmitted to a communication line, the coding method and bit rate according to the band of the broadcast wave or the communication line are low delay and The moving image can be re-encoded at low cost. In addition, if the present invention is applied when recording an encoded moving image such as terrestrial digital broadcasting on a hard disk recorder, a DVD recorder, a Blu-ray recorder, an HD DVD recorder, or the like, it is higher than before re-encoding. It is possible to record in an efficient code method with low delay and low cost.
[0073] 前述した実施例によれば、以下の動画像再符号化装置、動画像再符号化方法お よび動画像再符号化プログラムが得られる。 [0073] According to the above-described embodiment, the following moving image re-encoding device, moving image re-encoding method, and moving image re-encoding program can be obtained.
[0074] (付記 1) 1ピクチャと、 Pピクチャと、 Bピクチャのうち少なくとも Iピクチャが 1枚以上含 まれる GOPから構成されるビットストリームが入力され該ビットストリームを復号し、画 像データ 113および符号化情報 112を得る復号部 101と、 [0074] (Supplementary note 1) A bitstream composed of a GOP including at least one I picture among one picture, P picture, and B picture is input, the bitstream is decoded, and image data 113 And a decoding unit 101 for obtaining encoded information 112,
復号部 101が復号した画像データ 113および符号化情報 112に基づ ヽて再度画 像データ 113を符号化する符号化部 103と、を有した動画像再符号化装置 100にお いて、 A moving image re-encoding device 100 having an encoding unit 103 that encodes the image data 113 again based on the image data 113 and the encoding information 112 decoded by the decoding unit 101. And
符号ィ匕情報 112に基づいて、複数の GOP各々における Pピクチャの数をカウントし 、カウントされた複数の GOP各々における Pピクチャの数の最大値または最小値を持 つ GOPのうち少なくともいずれか一方の GOPを一つ以上除いた複数の GOPにおけ る Pピクチヤおよび Bピクチャの平均値を予測した GOPの構造として符号ィ匕部 103に 出力する GOP構造予測部 200を有することを特徴とする動画像再符号化装置 100。  Based on the sign key information 112, the number of P pictures in each of the plurality of GOPs is counted, and at least one of the GOPs having the maximum value or the minimum value of the number of P pictures in each of the plurality of counted GOPs A video characterized by having a GOP structure prediction unit 200 that outputs the POP picture and the average value of B pictures in a plurality of GOPs, excluding one or more GOPs, to the code section 103 as a GOP structure predicted Image re-encoding device 100.
[0075] この動画像再符号ィ匕装置 100によれば、一時的に現れた極端な Pピクチャの枚数 を持つ GOPに影響されることなぐより平均的な GOPの構造を予測することができる 。また、 GOPの構造予測のために余分な画像を保持する必要が無いので遅延時間 やメモリ量が削減される。  [0075] According to this moving image recoding apparatus 100, it is possible to predict an average GOP structure without being influenced by a GOP having an extreme number of P pictures that appear temporarily. In addition, there is no need to store extra images for GOP structure prediction, thus reducing delay time and memory.
[0076] (付記 2) 1ピクチャと、 Pピクチャと、 Bピクチャのうち少なくとも Iピクチャが 1枚以上含 まれる GOPから構成されるビットストリームが入力され該ビットストリームを復号し、画 像データ 113および符号ィ匕情報 112を得て、復号した画像データ 113および符号化 情報 112に基づ ヽて再度画像データ 113を符号化する動画像再符号化方法にぉ ヽ て、  (Supplementary Note 2) A bitstream composed of a GOP including at least one I picture among one picture, P picture, and B picture is input, and the bitstream is decoded and image data 113 And a video re-encoding method that obtains the code information 112 and encodes the image data 113 again based on the decoded image data 113 and the encoded information 112.
符号ィ匕情報 112に基づいて、複数の GOP各々における Pピクチャの数をカウントし 、カウントされた複数の GOP各々における Pピクチャの数の最大値または最小値を持 つ GOPのうち少なくともいずれか一方の GOPを一つ以上除いた複数の GOPにおけ る Pピクチヤおよび Bピクチャの平均値を予測した GOPの構造として符号ィ匕時に用い ることを特徴とする動画像再符号化方法。  Based on the sign key information 112, the number of P pictures in each of the plurality of GOPs is counted, and at least one of the GOPs having the maximum value or the minimum value of the number of P pictures in each of the plurality of counted GOPs A moving picture re-encoding method, which is used as a GOP structure in which an average value of P-pictures and B-pictures in a plurality of GOPs excluding one or more GOPs is predicted at the time of encoding.
[0077] この動画像再符号化方法によれば、一時的に現れた極端な Pピクチャの枚数を持 つ GOPに影響されることなぐより平均的な GOPの構造を予測することができる。ま た、 GOPの構造予測のために余分な画像を保持する必要が無!、ので遅延時間ゃメ モリ量が削減される。 [0077] According to this moving image re-encoding method, it is possible to predict an average GOP structure without being influenced by a GOP having an extreme number of P pictures that appear temporarily. Also, there is no need to store extra images for GOP structure prediction, so the delay time reduces the amount of memory.
[0078] (付記 3) 1ピクチャと、 Pピクチャと、 Bピクチャのうち少なくとも Iピクチャが 1枚以上含 まれる GOPから構成されるビットストリームが入力され該ビットストリームを復号し、画 像データ 113および符号化情報 112を得るステップ S401と、  [0078] (Supplementary Note 3) A bitstream composed of a GOP including at least one I picture among one picture, P picture, and B picture is input and the bitstream is decoded to obtain image data 113 And step S401 for obtaining the encoding information 112;
ステップ S401が復号した画像データ 113および符号化情報 112に基づ 、て再度 画像データ 113を符号ィ匕するステップ S405と Based on the image data 113 and the encoded information 112 decoded in step S401, again Step S405 for encoding the image data 113
してコンピュータに機能させる動画像再符号ィ匕プログラムにおいて、  In the moving image re-encoding program that causes the computer to function,
符号ィ匕情報 112に基づいて、複数の GOP各々における Pピクチャの数をカウントし 、カウントされた複数の GOP各々における Pピクチャの数の最大値または最小値を持 つ GOPのうち少なくともいずれか一方の GOPを一つ以上除いた複数の GOPにおけ る Pピクチヤおよび Bピクチャの平均値を予測した GOPの構造としてステップ S405に 出力するステップ S402としてコンピュータに機能させることを特徴とするコンピュータ 読み取り可能な動画像再符号ィ匕プログラム。  Based on the sign key information 112, the number of P pictures in each of the plurality of GOPs is counted, and at least one of the GOPs having the maximum value or the minimum value of the number of P pictures in each of the plurality of counted GOPs A computer readable by causing the computer to function as step S402, which outputs to step S405 as a GOP structure that predicts the average value of P pictures and B pictures in multiple GOPs excluding one or more GOPs Video re-encoding program.
[0079] この動画像再符号ィ匕プログラムによれば、一時的に現れた極端な Pピクチャの枚数 を持つ GOPに影響されることなぐより平均的な GOPの構造を予測することができる 。また、 GOPの構造予測のために余分な画像を保持する必要が無いので遅延時間 やメモリ量が削減される。  [0079] According to this moving picture re-encoding program, it is possible to predict an average GOP structure without being influenced by a GOP having an extreme number of P pictures that appear temporarily. In addition, there is no need to store extra images for GOP structure prediction, thus reducing delay time and memory.
[0080] なお、前述した実施例は本発明の代表的な形態を示したに過ぎず、本発明は、実 施例に限定されるものではない。すなわち、本発明の骨子を逸脱しない範囲で種々 変形して実施することができる。  It should be noted that the above-described embodiments are merely representative forms of the present invention, and the present invention is not limited to the embodiments. That is, various modifications can be made without departing from the scope of the present invention.

Claims

請求の範囲 The scope of the claims
[1] 画面内符号化画像と、前方向予測符号化画像と、双方向予測符号化画像のうち少 なくとも前記画面内符号ィ匕画像が 1枚以上含まれる画像群カゝら構成されるビットストリ ームが入力され該ビットストリームを復号し、画像データおよび符号ィ匕情報を得る復 号手段と、  [1] An image group including at least one of the intra-frame encoded images among the intra-coded image, the forward prediction encoded image, and the bidirectional predictive encoded image is configured. Decoding means for receiving a bitstream and decoding the bitstream to obtain image data and code information;
前記復号手段が復号した前記画像データおよび前記符号化情報に基づいて再度 前記画像データを符号化する符号化手段と、を有した動画像再符号化装置にぉ ヽ て、  A moving image re-encoding device comprising: encoding means for encoding the image data again based on the image data and the encoding information decoded by the decoding means;
前記符号化情報に基づいて、複数の前記画像群各々における前記前方向予測符 号ィ匕画像の数をカウントし、カウントされた複数の前記画像群各々における前記前方 向予測符号ィ匕画像の数の最大値または最小値を持つ前記画像群のうち少なくともい ずれか一方の前記画像群を一つ以上除いた複数の前記画像群における前記前方 向予測符号化画像および前記双方向予測符号化画像の平均値を、予測した前記画 像群の構造として前記符号化手段に出力する画像群構造予測手段を有することを 特徴とする動画像再符号化装置。  Based on the encoding information, the number of forward prediction code images in each of the plurality of image groups is counted, and the number of forward prediction code image in each of the counted plurality of image groups. Of the forward prediction encoded image and the bi-directional predictive encoded image in a plurality of the image groups excluding at least one of the image groups having the maximum value or the minimum value. A moving image re-encoding apparatus, comprising: an image group structure prediction unit that outputs an average value to the encoding unit as a predicted structure of the image group.
[2] 前記画像群構造予測手段が、カウントされた複数の前記画像群各々における前記 前方向予測符号化画像の数のうち最大値および最小値を持つ前記画像群をそれぞ れ一つ以上除いた複数の前記画像群における前記前方向予測符号化画像および 前記双方向予測符号化画像の平均値を前記画像群の構造として前記符号化手段 に出力することを特徴とする請求項 1に記載の動画像再符号ィ匕装置。  [2] The image group structure prediction unit excludes one or more of the image groups having the maximum value and the minimum value from the number of the forward prediction encoded images in each of the counted plurality of image groups. 2. The average value of the forward prediction encoded image and the bidirectional predictive encoded image in the plurality of image groups is output to the encoding unit as the structure of the image group. Video re-encoding device.
[3] 前記画像群構造予測手段が、カウントされた複数の前記画像群各々における前記 前方向予測符号ィ匕画像の数のうち、大きい順に複数の前記画像群を除いた複数の 前記画像群における前記前方向予測符号化画像および前記双方向予測符号化画 像の平均値を前記画像群の構造として前記符号化手段に出力することを特徴とする 請求項 1または 2に記載の動画像再符号化装置。  [3] In the plurality of image groups, the image group structure predicting unit excludes the plurality of image groups in descending order from the number of the forward prediction code images in each of the plurality of counted image groups. The moving image re-encoding according to claim 1 or 2, wherein an average value of the forward prediction encoded image and the bidirectional predictive encoded image is output to the encoding unit as a structure of the image group. Device.
[4] 前記画像群構造予測手段が、カウントされた複数の画像群各々における前記前方 向予測符号ィ匕画像の数のうち、小さい順に複数の前記画像群を除いた複数の前記 画像群における前記前方向予測符号化画像および前記双方向予測符号化画像の 平均値を前記画像群の構造として前記符号化手段に出力することを特徴とする請求 項 1乃至 3のうちいずれか一項に記載の動画像再符号ィ匕装置。 [4] The image group structure prediction unit includes the plurality of image groups except for the plurality of image groups in ascending order among the counted number of the forward prediction codes in the plurality of image groups. Forward-predicted encoded image and bi-directional predictive encoded image The moving image recoding apparatus according to any one of claims 1 to 3, wherein an average value is output to the encoding means as the structure of the image group.
[5] 前記画像群構造予測手段が、複数の前記画像群各々における前記双方向予測符 号ィ匕画像の数をカウントし、カウントされた複数の前記画像群各々における前記前方 向予測符号ィ匕画像の数のうち、最大値または最小値を持つ前記画像群が夫々複数 ある場合は、複数の最大値または最小値を持つ前記画像群のうち、カウントされた複 数の前記画像群における前記双方向予測符号化画像の平均値から離れた値をもつ 前記画像群を除いた複数の前記画像群における前記前方向予測符号化画像およ び前記双方向予測符号化画像の平均値を前記画像群の構造として前記符号化手 段に出力することを特徴とする請求項 1乃至 4のうちいずれか一項に記載の動画像 再符号化装置。 [5] The image group structure prediction means counts the number of the bidirectional prediction code images in each of the plurality of image groups, and the forward prediction code signal in each of the counted plurality of image groups. In the case where there are a plurality of the image groups each having the maximum value or the minimum value among the number of images, the both of the image groups having a plurality of maximum values or minimum values are counted in the plurality of image groups counted. The average value of the forward prediction encoded image and the bidirectional predictive encoded image in a plurality of the image groups excluding the image group having a value far from the average value of the bidirectional predictive encoded image is the image group. 5. The moving image re-encoding device according to claim 1, wherein the moving image re-encoding device outputs to the encoding unit as a structure of the moving image.
[6] 前記符号化情報に基づ!、て、複数の前記画像群各々における符号化された画像 の数および複数の前記画像群各々における表示されるべき画像の数を夫々カウント し、複数の前記画像群各々における符号化された画像の数と複数の前記画像群各 々における表示されるべき画像の数との比と、前記符号化情報から、前記符号化手 段が符号ィヒする際におけるフレームレートを予測するフレームレート予測手段を有し たことを特徴とする請求項 1乃至 5のうちいずれか一項に記載の動画像再符号ィ匕装 置。  [6] Based on the encoding information, the number of encoded images in each of the plurality of image groups and the number of images to be displayed in each of the plurality of image groups are respectively counted, and a plurality of images are counted. When the encoding means performs encoding based on the ratio between the number of encoded images in each of the image groups and the number of images to be displayed in each of the plurality of image groups and the encoding information. 6. The moving image recoding apparatus according to claim 1, further comprising a frame rate predicting unit that predicts a frame rate in the moving image recoding apparatus.
[7] 前記画像群構造予測手段が予測した前記画像群の構造と、前記フレームレート予 測手段が予測したフレームレートと、予め設定された前記符号化手段が再符号化す る際のビットレートと、に基づいて前記符号化手段が符号化する際の前記画像群当 たりの符号量を予測する符号量予測手段を有したことを特徴とする請求項 1乃至 6の うちいずれか一項に記載の動画像再符号ィ匕装置。  [7] The structure of the image group predicted by the image group structure prediction means, the frame rate predicted by the frame rate prediction means, and the bit rate at which the encoding means set in advance is re-encoded. The code amount predicting means for predicting the code amount per image group when the encoding means performs encoding based on the above, according to any one of claims 1 to 6. Video re-coding device.
[8] 画面内符号化画像と、前方向予測符号化画像と、双方向予測符号化画像のうち少 なくとも前記画面内符号化画像が 1枚以上含まれる画像群から構成されるビットストリ ームが入力され該ビットストリームを復号し、画像データおよび符号ィ匕情報を得て、復 号した前記画像データおよび前記符号化情報に基づいて再度前記画像データを符 号化する動画像再符号化方法にぉ ヽて、 前記符号化情報に基づいて、複数の前記画像群各々における前記前方向予測符 号ィ匕画像の数をカウントし、カウントされた複数の前記画像群各々における前記前方 向予測符号ィ匕画像の数の最大値または最小値を持つ前記画像群のうち少なくともい ずれか一方の前記画像群を一つ以上除いた複数の前記画像群における前記前方 向予測符号化画像および前記双方向予測符号化画像の平均値を、予測した前記画 像群の構造として前記符号化時に用いることを特徴とする動画像再符号化方法。 [8] A bitstream composed of an image group including at least one of the intra-coded images among the intra-coded image, the forward predictive coded image, and the bidirectional predictive coded image. Video is decoded, the bit stream is decoded, image data and code information are obtained, and the image data is encoded again based on the decoded image data and the encoded information. Talk to the method Based on the encoding information, the number of forward prediction code images in each of the plurality of image groups is counted, and the number of forward prediction code image in each of the counted plurality of image groups. Of the forward prediction encoded image and the bi-directional predictive encoded image in a plurality of the image groups excluding at least one of the image groups having the maximum value or the minimum value. A moving image re-encoding method, wherein an average value is used as the predicted structure of the image group at the time of encoding.
[9] 画面内符号化画像と、前方向予測符号化画像と、双方向予測符号化画像のうち少 なくとも前記画面内符号ィ匕画像が 1枚以上含まれる画像群カゝら構成されるビットストリ ームが入力され該ビットストリームを復号し、画像データおよび符号ィ匕情報を得る復 号手段と、  [9] An image group including at least one of the intra-screen encoded images among the intra-screen encoded image, the forward predictive encoded image, and the bidirectional predictive encoded image is configured. Decoding means for receiving a bitstream and decoding the bitstream to obtain image data and code information;
前記復号手段が復号した前記画像データおよび前記符号化情報に基づいて再度 前記画像データを符号化する符号化手段と  Encoding means for encoding the image data again based on the image data and the encoding information decoded by the decoding means;
してコンピュータに機能させる動画像再符号ィ匕プログラムにおいて、  In the moving image re-encoding program that causes the computer to function,
前記符号化情報に基づいて、複数の前記画像群各々における前記前方向予測符 号ィ匕画像の数をカウントし、カウントされた複数の前記画像群各々における前記前方 向予測符号ィ匕画像の数の最大値または最小値を持つ前記画像群のうち少なくともい ずれか一方の前記画像群を一つ以上除いた複数の前記画像群における前記前方 向予測符号化画像および前記双方向予測符号化画像の平均値を、予測した前記画 像群の構造として前記符号ィ匕手段に出力する画像群構造予測手段としてコンビユー タに機能させることを特徴とするコンピュータ読み取り可能な動画像再符号ィ匕プログ ラム。  Based on the encoding information, the number of forward prediction code images in each of the plurality of image groups is counted, and the number of forward prediction code image in each of the counted plurality of image groups. Of the forward prediction encoded image and the bi-directional predictive encoded image in a plurality of the image groups excluding at least one of the image groups having the maximum value or the minimum value. A computer-readable moving image re-encoding program, which causes a computer to function as an image group structure predicting unit that outputs an average value to the encoding unit as a predicted structure of the image group.
[10] 請求項 9に記載の動画像再符号ィ匕プログラムを格納したことを特徴とするコンビュ ータ読み取り可能な記録媒体。  [10] A computer-readable recording medium in which the moving picture re-encoding program according to claim 9 is stored.
PCT/JP2006/321959 2006-11-02 2006-11-02 Moving picture re-encoding device, moving picture re-encoding method, moving picture re-encoding program, and recording medium containing the moving picture re-encoding program WO2008053557A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008541969A JPWO2008053557A1 (en) 2006-11-02 2006-11-02 Moving image re-encoding device, moving image re-encoding method, moving image re-encoding program, and recording medium storing moving image re-encoding program
PCT/JP2006/321959 WO2008053557A1 (en) 2006-11-02 2006-11-02 Moving picture re-encoding device, moving picture re-encoding method, moving picture re-encoding program, and recording medium containing the moving picture re-encoding program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/321959 WO2008053557A1 (en) 2006-11-02 2006-11-02 Moving picture re-encoding device, moving picture re-encoding method, moving picture re-encoding program, and recording medium containing the moving picture re-encoding program

Publications (1)

Publication Number Publication Date
WO2008053557A1 true WO2008053557A1 (en) 2008-05-08

Family

ID=39343916

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/321959 WO2008053557A1 (en) 2006-11-02 2006-11-02 Moving picture re-encoding device, moving picture re-encoding method, moving picture re-encoding program, and recording medium containing the moving picture re-encoding program

Country Status (2)

Country Link
JP (1) JPWO2008053557A1 (en)
WO (1) WO2008053557A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011009949A (en) * 2009-06-24 2011-01-13 Toshiba Corp Video processor and video processing method
JP2016040955A (en) * 2010-07-30 2016-03-24 ドイッチェ テレコム アーゲー Method for estimating type of group of picture structure of plural video frames in video stream
CN113055673A (en) * 2021-04-23 2021-06-29 北京汇钧科技有限公司 Video stream processing method and device, electronic equipment and storage medium
CN115119009A (en) * 2022-06-29 2022-09-27 北京奇艺世纪科技有限公司 Video alignment method, video encoding device and storage medium

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09261631A (en) * 1996-03-27 1997-10-03 Sony Corp Target code amount control method
JPH10174098A (en) * 1996-12-12 1998-06-26 Sony Corp Video data compressor and its method
JP2000341691A (en) * 1999-05-31 2000-12-08 Toshiba Corp Transcoder device
JP2001238215A (en) * 2000-02-21 2001-08-31 Victor Co Of Japan Ltd Moving picture coding apparatus and its method
JP2002218464A (en) * 2001-01-15 2002-08-02 Yamaha Corp Method, device and program for performing transcoding of moving image coded data and recording medium
JP2004532540A (en) * 2001-03-05 2004-10-21 インタービデオインコーポレイテッド System and method for error resilient coding
JP2005341601A (en) * 2005-06-08 2005-12-08 Mitsubishi Electric Corp Motion picture encoder
JP2006287864A (en) * 2005-04-05 2006-10-19 Nippon Hoso Kyokai <Nhk> Coding apparatus and coding program

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09261631A (en) * 1996-03-27 1997-10-03 Sony Corp Target code amount control method
JPH10174098A (en) * 1996-12-12 1998-06-26 Sony Corp Video data compressor and its method
JP2000341691A (en) * 1999-05-31 2000-12-08 Toshiba Corp Transcoder device
JP2001238215A (en) * 2000-02-21 2001-08-31 Victor Co Of Japan Ltd Moving picture coding apparatus and its method
JP2002218464A (en) * 2001-01-15 2002-08-02 Yamaha Corp Method, device and program for performing transcoding of moving image coded data and recording medium
JP2004532540A (en) * 2001-03-05 2004-10-21 インタービデオインコーポレイテッド System and method for error resilient coding
JP2006287864A (en) * 2005-04-05 2006-10-19 Nippon Hoso Kyokai <Nhk> Coding apparatus and coding program
JP2005341601A (en) * 2005-06-08 2005-12-08 Mitsubishi Electric Corp Motion picture encoder

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011009949A (en) * 2009-06-24 2011-01-13 Toshiba Corp Video processor and video processing method
US8358918B2 (en) 2009-06-24 2013-01-22 Kabushiki Kaisha Toshiba Video processing apparatus and video processing method
JP2016040955A (en) * 2010-07-30 2016-03-24 ドイッチェ テレコム アーゲー Method for estimating type of group of picture structure of plural video frames in video stream
CN113055673A (en) * 2021-04-23 2021-06-29 北京汇钧科技有限公司 Video stream processing method and device, electronic equipment and storage medium
CN115119009A (en) * 2022-06-29 2022-09-27 北京奇艺世纪科技有限公司 Video alignment method, video encoding device and storage medium
CN115119009B (en) * 2022-06-29 2023-09-01 北京奇艺世纪科技有限公司 Video alignment method, video encoding device and storage medium

Also Published As

Publication number Publication date
JPWO2008053557A1 (en) 2010-02-25

Similar Documents

Publication Publication Date Title
EP0923243B1 (en) Editing device, editing method, splicing device, splicing method, encoding device, and encoding method
KR100754205B1 (en) Multi-view video encoding apparatus and method
JP4769717B2 (en) Image decoding method
US6587506B1 (en) Video editing apparatus, video editing method, and data storage medium for a video editing program
EP0732856B1 (en) Hierarchical video encoder and decoder
US8804825B2 (en) Bi-pred mode decision in GOP architecture
TWI507016B (en) Moving picture coding control method, moving picture coding apparatus, and moving picture coding program
US9392276B2 (en) Video encoding apparatus, video decoding apparatus, video encoding method, and video decoding method
CN100521791C (en) Image processing device and image processing method
JPH09214962A (en) Moving video image compression system having vacant/ full buffer look ahead bit allocator
JP4358215B2 (en) Video encoding apparatus and method
EP1699244B1 (en) Moving image encoding method and apparatus
JP5064305B2 (en) Bit rate conversion apparatus and conversion method
US20020028061A1 (en) Method and apparatus of processing video coding bit stream, and medium recording the programs of the processing
US8494047B2 (en) Encoding device, method for adjusting target amount of code and record medium
US7333711B2 (en) Data distribution apparatus and method, and data distribution system
JP4788250B2 (en) Moving picture signal encoding apparatus, moving picture signal encoding method, and computer-readable recording medium
WO2008053557A1 (en) Moving picture re-encoding device, moving picture re-encoding method, moving picture re-encoding program, and recording medium containing the moving picture re-encoding program
US6226326B1 (en) Coding device and coding method
WO2006040896A1 (en) Moving picture re-encoder, moving picture editor, program, and recording medium
US6549671B1 (en) Picture data encoding apparatus with bit amount adjustment
US20100027428A1 (en) Scheduling method of providing multimedia service
JP4285431B2 (en) Video information editing apparatus, method and program
JP4073541B2 (en) Video re-encoding device
US20090185620A1 (en) Video encoding apparatus and method for the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06822877

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2008541969

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06822877

Country of ref document: EP

Kind code of ref document: A1