WO2008053524A1 - Semiconductor inspecting apparatus and semiconductor inspecting method - Google Patents

Semiconductor inspecting apparatus and semiconductor inspecting method Download PDF

Info

Publication number
WO2008053524A1
WO2008053524A1 PCT/JP2006/321715 JP2006321715W WO2008053524A1 WO 2008053524 A1 WO2008053524 A1 WO 2008053524A1 JP 2006321715 W JP2006321715 W JP 2006321715W WO 2008053524 A1 WO2008053524 A1 WO 2008053524A1
Authority
WO
WIPO (PCT)
Prior art keywords
abnormality
measurement target
target portion
electron beam
semiconductor inspection
Prior art date
Application number
PCT/JP2006/321715
Other languages
French (fr)
Japanese (ja)
Inventor
Keizo Yamada
Yoshishige Sato
Takeo Ushiki
Original Assignee
Topcon Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Topcon Corporation filed Critical Topcon Corporation
Priority to PCT/JP2006/321715 priority Critical patent/WO2008053524A1/en
Publication of WO2008053524A1 publication Critical patent/WO2008053524A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/20Sequence of activities consisting of a plurality of measurements, corrections, marking or sorting steps

Definitions

  • the present invention relates to a semiconductor inspection apparatus and a semiconductor inspection method using an electron beam, and more particularly to a semiconductor inspection apparatus and an inspection method suitable for evaluating a semiconductor device manufacturing process.
  • This device has the power of an electron gun for generating an electron beam, a tray for holding a sample, an XY stage for determining the irradiation position of the electron beam, and a substrate current measuring device for measuring a substrate current. It is summer.
  • the measured substrate current and the like are stored in a database and configured to be reusable (see Patent Document 1).
  • Patent Document 1 Japanese Patent Laid-Open No. 2005-026449
  • the present invention obtains necessary information on the spot and automatically classifies such troubles as non-visual differentials that cannot be obtained by conventional surface observation methods, such as foreign matter and defects at the bottom of a hole.
  • the purpose of the present invention is to provide a semiconductor inspection apparatus and inspection method that can estimate the cause!
  • a semiconductor inspection method includes a first step of irradiating a measurement target portion of a semiconductor substrate with an electron beam, and the measurement target portion based on the electron beam. A second step of detecting the flowing substrate current, and a third step of analyzing the substrate current to detect the occurrence of an abnormality in the measurement target portion and classifying the abnormality content. And a.
  • the sorted wafers can continue to be processed into semiconductors.
  • a fourth step of measuring a distance between the objective lens for controlling the electron beam and the semiconductor substrate, and a second electron image based on the electron beam are measured. 5 is further provided, and the third step classifies the abnormality in the measurement target portion by analyzing the substrate current, the distance between the object lens and the semiconductor substrate, and the secondary electron image. To do.
  • a blanket mode in which the measurement object part is irradiated with the first step force electron beam having a predetermined energy with a predetermined focus size for a predetermined time To have.
  • the first step force has a line scan mode in which the measurement target portion is irradiated in one or two dimensions while moving the electron beam at a predetermined interval and speed.
  • the height abnormality of the measurement target portion is detected based on the measurement result of the third step force and the fourth step.
  • the surface shape abnormality of the measurement target portion is performed by performing pattern matching between the secondary electron image measured in the third step force and the pattern stored in advance in the storage unit. Is detected.
  • the shape abnormality of the opening portion of the hole formed in the wafer can be detected.
  • the third step force, under-etching, over-etching, and over-etching of the measurement target portion Detect hole bottom interface anomalies.
  • the abnormal contents of holes formed in the wafer can be analyzed.
  • the abnormal contents of holes formed in the wafer can be analyzed.
  • the third step force is an area standard obtained by dividing the substrate current of the entire measurement target portion by the area of the measurement target portion. Classify.
  • the area of the measurement target portion is obtained based on the substrate current obtained by the electron beam line scanning.
  • the area of the measurement target portion is obtained based on layout information.
  • the third step force is obtained by performing pattern matching on an image or waveform obtained by secondary electrons, reflected electrons, and substrate current generated when the measurement target portion is irradiated with an electron beam. Anomaly classification is performed based on the comparison result between the obtained pattern matching score and the predetermined permissible pattern matching score.
  • the third step performs abnormality classification based on the database describing the relationship between the measured value and the abnormality.
  • the method further includes a sixth step of displaying an abnormality classification result of the measurement target portion on a display device.
  • the abnormal content can be immediately detected visually.
  • the seventh step of detecting an abnormal device by searching the abnormal device symmetry table previously stored in the storage means based on the result of abnormality classification of the measurement target portion. Be included.
  • a semiconductor inspection apparatus includes an electron beam irradiation means for irradiating a measurement target portion of a semiconductor substrate with an electron beam, and the electron beam based on the electron beam.
  • a substrate current detecting means for detecting a substrate current flowing in the measurement target part;
  • an abnormality classification means for analyzing the substrate current to detect occurrence of an abnormality in the measurement target portion and classifying the abnormality content.
  • a distance measuring unit that measures a distance between the objective lens that controls the electron beam and the semiconductor substrate, and a secondary electron measurement that measures a secondary electron image based on the electron beam.
  • anomaly classification means for analyzing the substrate current, the distance between the objective lens and the semiconductor substrate, and the secondary electron image to classify the anomaly of the measurement target portion.
  • the electron beam irradiation means has a blanket mode function of irradiating the measurement target portion with an electron beam having a predetermined energy with a predetermined focus size for a predetermined time.
  • the electron beam irradiation means has a line scan mode function of irradiating the measurement target portion with one or two dimensions while moving the electron beam at a predetermined interval and speed.
  • the abnormality classification unit detects an abnormality in the height of the measurement target portion based on the measurement result of the distance measurement unit.
  • the abnormality classification means performs pattern matching between the secondary electron image measured by the secondary electron measurement means and a pattern stored in advance in the storage means, thereby measuring the surface shape of the measurement target portion. Detect abnormalities.
  • the abnormality classification means is based on a substrate current obtained by irradiating the electron beam in the blanket mode !, and under-etching, over-etching, and hole bottom of the measurement target portion. Detect interface anomalies.
  • the abnormality classification means is an electronic device based on the line scan mode. Based on the substrate current obtained by the beam irradiation, the surface size abnormality, hole bottom size abnormality and hole bottom shape abnormality of the measurement target portion are detected.
  • the abnormality classification means classifies the abnormality of the measurement target portion based on an area standard obtained by dividing the substrate current of the entire measurement target portion by the area of the measurement target portion.
  • the area of the measurement target portion is obtained based on the substrate current obtained by the electron beam line scanning.
  • the area of the measurement target portion is obtained based on layout information.
  • the abnormality classification means performs pattern matching on an image or waveform obtained by secondary electrons, reflected electrons, and substrate current generated when the measurement target portion is irradiated with an electron beam. Then, the abnormality classification is performed based on the comparison result between the obtained pattern matching score, the predetermined allowable pattern matching score, and the obtained measurement value.
  • the abnormality classification means performs abnormality classification based on a database describing the relationship between the measured value and the abnormality.
  • the above apparatus is further provided with display means for displaying the result of classifying the abnormality of the measurement target portion.
  • the apparatus further includes an abnormal apparatus detecting means for detecting an abnormal apparatus by searching an abnormal apparatus symmetry table stored in advance in the storage means based on an abnormality classification result of the measurement target portion.
  • the present invention it is possible to automatically classify (auto-classification) a class of defects called in-line non-visual differences. Since the present invention is non-destructive, wafers after sorting can be made into products by continuing the semiconductor process. Moreover, since the cause of the failure is automatically classified or estimated, it is not necessary for the person to estimate the cause of the failure. In addition, according to the present invention, the failure classification and the cause of the failure are displayed on the screen. You can take action to correct the match.
  • the cause of the failure is automatically estimated over a plurality of processes simply by classifying the failure that occurred in a single process, it is possible to easily reach the basis of the cause of the process failure.
  • failure analysis can be performed on the spot where a failure occurs, the failure location can be confirmed while maintaining the state of the process equipment that caused the failure. This can quickly solve the problem. Since the contents of defects can be determined quickly, the equipment that caused the process defects can be repaired quickly, and the process loss can be reduced, improving the profits of the semiconductor factory.
  • FIG. 1 is a configuration diagram of a semiconductor inspection apparatus according to an embodiment of the present invention.
  • FIG. 2 is a flowchart showing an operation flow of the semiconductor inspection apparatus according to the embodiment of the present invention.
  • FIG. 3 is a table showing the relationship between each measurement function and measurement content of the semiconductor inspection apparatus according to the embodiment of the present invention.
  • FIG. 5 is a flowchart showing another measurement process of the area standard substrate current in the semiconductor inspection apparatus according to the embodiment of the present invention and a tip area view of an electron beam.
  • FIG. 6 is a diagram showing a measurement result of the semiconductor inspection apparatus according to the embodiment of the present invention, and is a diagram showing a measurement result when the hole bottom is normal.
  • FIG. 7 is a diagram showing a measurement result of the semiconductor inspection apparatus according to the embodiment of the present invention, and a diagram showing a measurement result when the hole bottom is abnormal.
  • FIG. 8 is a diagram showing a measurement result of the semiconductor inspection apparatus according to the embodiment of the present invention, and a diagram showing a measurement result when the hole bottom is abnormal.
  • FIG. 9 is a view showing a measurement result of the semiconductor inspection apparatus according to the embodiment of the present invention, and is a view showing a measurement result when there is no hole abnormality over the entire surface of the wafer.
  • FIG. 10 is a diagram illustrating a measurement result of the semiconductor inspection apparatus according to the embodiment of the present invention, and is a diagram illustrating a measurement result when there is a hole abnormality in a part of the wafer.
  • FIG. 11 is a diagram showing an abnormality content that can be detected in the semiconductor inspection apparatus according to the embodiment of the present invention.
  • FIG. 12 is a diagram showing a measurement waveform in the semiconductor inspection apparatus according to the embodiment of the present invention, and is a waveform diagram when there is no abnormality.
  • FIG. 14 is a diagram showing a measurement pattern obtained by the semiconductor inspection apparatus according to the embodiment of the present invention, and is a diagram showing a measurement figure when there is an abnormality.
  • FIG. 15 is a diagram showing a measurement waveform in the semiconductor inspection apparatus according to the embodiment of the present invention, and is a waveform diagram when there is no abnormality.
  • FIG. 16 is a diagram showing a measurement pattern by the semiconductor inspection apparatus according to the embodiment of the present invention, and is a diagram showing a measurement pattern when there is an abnormality.
  • FIG. 18 is a flowchart showing measurement types and details of abnormality detected by each measurement in the semiconductor inspection apparatus according to the embodiment of the present invention.
  • FIG. 19 is a block diagram showing a relationship between the semiconductor inspection apparatus according to the embodiment of the present invention and another apparatus.
  • FIG. 20 is a diagram showing an example of abnormal display in the semiconductor inspection apparatus according to the embodiment of the present invention.
  • FIG. 21 is a diagram showing an example of abnormal display in the semiconductor inspection apparatus according to the embodiment of the present invention.
  • FIG. 22 is a diagram showing an example of abnormal display in the semiconductor inspection apparatus according to the embodiment of the present invention.
  • FIG. 23 is a diagram showing an example of abnormality display in the semiconductor inspection apparatus according to the embodiment of the present invention.
  • FIG. 24 is a diagram showing an example of abnormality display in the semiconductor inspection apparatus according to the embodiment of the present invention.
  • FIG. 25 is a diagram showing a measurement result and a hole structure of the semiconductor inspection apparatus according to the embodiment of the present invention.
  • FIG. 1 shows the configuration of a semiconductor inspection apparatus according to an embodiment of the present invention.
  • This semiconductor inspection apparatus irradiates a semiconductor substrate (hereinafter referred to as a wafer), which is an object to be measured (sample), with an electron beam, measures a substrate current induced in the wafer by the electron beam, and
  • the basic principle is to obtain the evaluation value of the microstructure formed on the wafer from the current.
  • emitted secondary electrons or reflected electrons are also used.
  • a wafer identification device 20 is provided so that the measurement target wafer 23 can read a unique ID that can discriminate what feature wafer force. Forces on which various semiconductor devices are formed on the measurement target wafer 23. Shot coordinates and chip coordinates are uniquely determined in accordance with a global alignment coordinate system previously provided on the wafer 23. By specifying the position using these coordinate systems, all semiconductor elements formed on the semiconductor wafer 23 can be uniquely determined. Conversely, the position of the detected defect is also uniquely determined by using this coordinate system. By using these coordinate systems, it is possible to collate with the CA information blueprint that is the design information that is the result of the inspection or electrical test output from other devices.
  • An electron gun 10 that generates an electron beam EB is attached to a chamber 20 that accommodates a wafer 23 that is an object to be measured (sample).
  • the electron gun 10 includes an electron beam source 11, and this electron
  • a high voltage power source 40 is connected to the beam source 11.
  • a deflection device 100 is connected to the deflection lens 14 so that the electron beam EB can be deflected with high accuracy.
  • a wafer objective lens distance measuring device 16 that measures the distance between the objective lens 15 and the wafer 23 is provided below the objective lens 15.
  • the energy, current amount, and focus state of the electron beam EB of the electron gun 10 can be arbitrarily controlled.
  • the substrate current generated by irradiating the wafer 23 with the electron beam is measured by the substrate current measuring device 30, and the secondary electrons and the reflected electrons are respectively detected by the secondary electron reflected electron detecting device 24.
  • an XY stage 21 and a tray 22 for moving and supporting the wafer 23 at a fixed position are accommodated, and the half wafer 23 is placed on the tray 22.
  • the electron beam EB emitted from the electron gun 10 is directed to the surface of the wafer 23 placed on the tray 22.
  • the electron beam EB is transferred to the wafer 23.
  • the irradiation position of beam EB can be adjusted.
  • the XY stage 21 performs the irradiation with respect to the fixed irradiation axis of the electron beam EB.
  • the position of the wafer 23 is relatively moved.
  • a driving device for the XY stage 21 a pulse motor, an ultrasonic motor, a linear motor, or a piezoelectric element is used.
  • high-precision measurement technology such as a laser length meter and laser scale, the positional accuracy of the wafer 23 placed on the XY stage 21 is controlled to about several nm.
  • a current measuring device 30 is connected to the tray 22 on which the wafer 23 is placed, and the substrate current induced in the wafer 23 is measured by the current measuring device 30 via the tray 22. It has become like that.
  • the current measuring device 30 is built in the tray 22 or disposed in the vicinity thereof, and is configured to cut electromagnetic wave noise from the outside.
  • This current measuring device 30 various types such as a resistance, a voltage conversion type device, an AC amplifier, and a charge amplifier can be used.
  • This current measuring device 30 has an AZD conversion that converts the measured substrate current value into a digital signal by AZD (Analog / Digital). The measured value is output as digital data.
  • the semiconductor inspection apparatus includes a two-dimensional scanning control apparatus (including a pattern matching engine) 110, a secondary electron reflected electron signal processing apparatus 190, a current waveform storage apparatus 120, a waveform shaping apparatus 130, and a waveform image recognition process.
  • a device 140, a display device 150, and a database device 160 are provided, which are constructed on an information processing device such as a computer.
  • the two-dimensional scanning control device 110 controls the deflection device 100 so that the electron beam EB scans the surface of the wafer 23 in a two-dimensional manner, and the irradiation position of the electron beam EB with high accuracy. It controls the pattern matching for matching.
  • the two-dimensional scanning means that the line-shaped scanning is repeated a plurality of times at regular intervals.
  • it is a concept similar to horizontal scanning and vertical scanning on a television screen.
  • Secondary electrons, reflected electron images, or substrate current images are formed from the scanned electron beam and used for pattern matching.
  • the center coordinates of the measurement target (hole or the like) are calculated.
  • the semiconductor inspection apparatus includes the above-described deflection apparatus 100 with high resolution for accurately scanning the electron beam EB linearly.
  • the two-dimensional scanning control device 110 includes an image recognition device and software for performing pattern matching.
  • the current waveform storage device 120 stores the waveform of the substrate current value measured by the current measurement device 30 in association with the irradiation coordinates or time of the electron beam EB at that time.
  • the waveform shaping device 130 shapes the waveform of the substrate current value and performs unnecessary waveform shaping.
  • the noise component is removed.
  • the waveform image recognition processing device 140 calculates an evaluation value related to the shape of the fine structure formed on the wafer 23 by performing waveform processing on the waveform-shaped substrate current waveform.
  • the display device 150 displays the evaluation value.
  • the database device 160 stores the evaluation value.
  • step 1 first specify the position coordinates of the hole to be measured with respect to the control system of the XY stage 21 holding the wafer 23, move the XY stage 21, and center the holes formed on the wafer 23. Perform (alignment) (step 1).
  • the center of the hall is roughly adjusted to a position within a range where the electron beam EB can be irradiated by the XY stage 21.
  • the distance between the wafer 23 and the objective lens 15 is measured using the wafer objective lens distance measuring device 16 provided at the lower end of the electron gun 10 (Step 2), and the initial position of the electron beam focus is determined.
  • the electron beam EB is irradiated while scanning two-dimensionally within a predetermined region including the hole, and secondary electrons generated at that time are collected to form a secondary electron image.
  • Autofocus (step 3) is performed using the formed secondary electron image, and the strength of the objective lens is automatically adjusted to focus on the sample.
  • pattern matching is performed by comparing the secondary electron image obtained by scanning the focused electron beam with the template image stored in advance in the two-dimensional scanning controller 110 (step 4). Calculate the amount of deviation between the center of the template image and the center of the hole. This calculated amount of deviation is input to the deflecting device 100, and the irradiation position of the electron beam EB is shifted, so that the irradiation position of the electron beam EB is accurately aligned with the center of the hole to be measured.
  • the predetermined region on the surface of the wafer 23 is two-dimensionally scanned by the electron beam EB with reference to the hole center (step 5). That is, by controlling the objective lens 15 of the electron gun 10 so that the electron beam EB has a desired tip size, and by controlling the control voltage in the deflecting device 100, the electron beam scanning is made constant in a line shape. Repeat on the pitch. As a result, secondary electrons and reflected electrons are generated from a minute area on the surface of the wafer 23 irradiated with the electron beam EB, and A substrate current is induced.
  • Secondary electron, reflected electron or substrate current induced on the wafer 23 is measured by the secondary electron reflected electron detection device 24 and the current measurement device 30, and the measured value is a digital signal having a necessary resolution. Will be converted immediately. For example, the resolution of this digital signal is 16 bits and its sampling frequency is 400 MHz. This speed can be changed if necessary.
  • the secondary and reflected electrons obtained by two-dimensional scanning of the electron beam EB include hole surface shape information, and the substrate current measurement value includes information about the two-dimensional shape of the bottom surface of the hole.
  • Position) or measurement time is obtained as waveform information with respect to the time axis and is digitally recorded in the current waveform recorder 120 (eg, memory, flash memory, hard disk, magneto-optical disk, etc.) Be done
  • the signal waveform information acquired as described above is waveform-shaped by the waveform shaping device 130 in order to remove unnecessary noise and high-frequency components included in the waveform.
  • Examples of the waveform processing include moving average filter processing, waveform processing for removing a specific frequency, filter processing for extracting only a signal of a specific frequency, and Fourier filter processing. These waveform shaping processes may be performed by hardware or software.
  • step 6 only useful waveforms are extracted from the waveform-shaped waveforms, and hole bottom area measurement is performed (step 6).
  • the electron beam irradiation area does not contain holes, or there are cases where the waveform is dirty due to the edge of the hole.
  • the accuracy of the edge coordinate value obtained by processing decreases.
  • a good current waveform useful for hole edge extraction is extracted only for signals whose absolute value is larger than a certain value using the threshold method.
  • the electron beam is not only scanned in a line, but it is also possible to acquire a current waveform by irradiating the measurement point with the electron beam for a certain period of time. In these cases, waveform processing similar to the above is performed, and necessary information is extracted.
  • the wafer 23 used for the measurement is an identification number provided on the wafer 23, or Information is recorded so that it can be identified by a computer. More generally, there is an equipment operation management system called MES (Manufacturing Execution System) in a semiconductor factory, and it records all of what time and what processing each wafer has undergone. By correlating with such information, it is useful for estimating failure classification and its cause.
  • MES Manufacturing Execution System
  • FIG. 3 lists information groups obtained by this semiconductor inspection apparatus.
  • the semiconductor inspection apparatus includes a wafer identification apparatus for identifying a wafer, a probe generator for generating an electron beam probe for acquiring information (electron gun 10 and electron beam source 11), a probe Secondary electron backscattered electron detector 24, current measuring device 30, and wafer objective lens distance measuring device and XY stage for accurately irradiating the probe with the measurement target.
  • a wafer identification apparatus for identifying a wafer
  • a probe generator for generating an electron beam probe for acquiring information (electron gun 10 and electron beam source 11)
  • a probe Secondary electron backscattered electron detector 24 for a probe Secondary electron backscattered electron detector
  • current measuring device 30 current measuring device
  • wafer objective lens distance measuring device for accurately irradiating the probe with the measurement target.
  • the electron gun 10 and the electron beam source 11 have a plurality of parameters for changing the electron beam state such as electron beam energy, irradiation current, probe size, probe shape, irradiation time, etc. Probes suitable for the target can be generated. Since the obtained information changes when the probe state is different, the measurement value obtained by this device and the probe condition are always paired to form one piece of information.
  • the secondary electron intensity generated by the probe irradiation can be obtained.
  • the electron beam is two-dimensionally scanned over the hole to be measured, and the secondary electrons generated as a result are guided to the electrode, and the intensity is signaled and arranged in two dimensions in the scanning order (position, time order).
  • a secondary electron image is obtained. This is generally called an SEM image.
  • Each pixel unit has contrast information, and its time change is also obtained as information.
  • the pixel also has position information.
  • Secondary electron reflection Electron detection device The reflected electron detection device power in the 24 Trust information or its time-varying signal is obtained. From the current measuring device 30, a substrate current image, contrast information for each pixel, and time change information of the substrate current value are obtained.
  • the Z sensor (height sensor) and the focus value are responsible for the distance measurement function, and distance information between the objective lens 15 and the wafer 23 to be measured can be obtained.
  • the Z sensor force is an average height force in the range of several centimeters square.
  • the focus value of the objective lens provides local height information on the wafer 23 within a few microns.
  • the XY stage 21 has high-accuracy position coordinate measurement capability, and the measurement point coordinates are always measured with accuracy on the order of nm.
  • the measurement target can be distinguished using the electron beam shift amount.
  • the inspection apparatus has a function of electrically changing the strength of the objective lens 15 in order to focus the electron beam on the measurement target.
  • a value representing the strength of the objective lens necessary for just focusing the measurement object is called an electron beam focus value.
  • the distance between the wafer 23 and the objective lens 15 can be obtained from the electron beam focus value or the Z sensor. In general, when the objective lens 15 and the wafer tray 22 are fixed to the apparatus housing and the distance between the objective lens 15 and the wafer tray 22 is unchanged, information on the surface height of the wafer 23 can be obtained from the fluctuation of this value.
  • the pattern matching engine in the two-dimensional scanning control device 110 compares the reference image with the figure to be measured at high speed.
  • a digital image consists of a collection of unit pixels called pixels, and has brightness and color attributes. The figure is recognized using the spatial connection of these two attributes.
  • the pattern matching engine has two main functions. One is a function that calculates how similar the two figures are, and the other is a search function that searches for similar figures. Of course, as an attached function, there is a function for calculating parameters representing characteristics of all figures such as area, length, angle, and distortion.
  • a search function for pattern matching is used in order to precisely position a measurement location.
  • one or more are registered in advance.
  • V a standard image called a template
  • secondary electrons, reflected electrons, etc. are compared with images obtained by measurement, such as substrate current, and the same image as the standard image is extracted from the obtained images.
  • the distance between multiple objects can be measured from the results of pattern matching performed on multiple objects.
  • the alignment error can also be known from this value.
  • the standard value can be used by determining the layout of the semiconductor device and extracting the CAD data.
  • CAD data and this device are linked.
  • This device has a function to import GDSII file of CAD data.
  • the layer information of the measurement target is extracted from the GDSII file that is the CAD data, and the coordinates of the measurement target location are extracted.
  • the alignment error information obtained by the measurement can be reflected in the CAD data through the reverse path. In other words, by feeding back to the design data the locations where alignment errors are likely to occur, prescriptions such as changing the design values to make alignment errors less likely to occur can be executed.
  • a value called a pattern matching score is obtained.
  • this value indicates that the force with 100 points is the highest in a certain device. In that case, the registered figure and the measured figure are completely the same.
  • the pattern matching score value S is small, the shape of the figure obtained is deviated from the standard image power. Therefore, for example, by using the pattern matching score, it is possible to evaluate how much the measurement target image shape is similar to the standard image.
  • an electron beam is irradiated to the measured object for a certain period of time, for example, about 1 second at a predetermined electron beam energy, irradiation current amount, and focus size.
  • the method of measuring the average current value of the substrate current is called blanket mode, and information such as the relative change in the hole bottom size, hole bottom residual film, and hole bottom surface state can be obtained.
  • a method of measuring a substrate current waveform obtained by two-dimensional scanning an electron beam focused on a measurement object at a predetermined interval and speed is called a line scan mode.
  • the edge information power of the board current waveform can also obtain the hole bottom size and shape.
  • the height force of the waveform can also know the state of the hole bottom residual film.
  • the standard value will be the board current value per unit area.
  • the amount is irrelevant to the size and size of the hole.
  • the value obtained by measuring the area obtained by the blanket method is an area standard, which indicates the surface condition of the hole bottom universally, and it is possible to compare the difference in the condition of the hole bottom surface between various holes of different shapes and sizes. It becomes. In some cases, it may be compared by performing an area standard using the hole surface area.
  • FIG. 4 shows a method for normalizing the substrate current value area.
  • the substrate current is measured by first irradiating an electron beam in blanket mode to include one or several equivalent holes. Next, the line scan mode measurement is performed on the representative hole of the same hole or multiple holes, and the hole bottom area is evaluated. In this case, an average area of a plurality of holes may be used. Using the obtained hole bottom area information, a blanket mode measurement value obtained in advance is divided to obtain a standard value for the substrate current value per unit area. Since the obtained value is the substrate current value per unit area, the amount is independent of the hole area.
  • the force obtained by calculating the hole size using the line scan mode may be used when the hole size is divided by other means. Blanket mode measurement It is also possible to follow the line scan mode without having to perform the setting first.
  • FIG. 5 discloses another method for obtaining the substrate current amount per unit area in this inspection apparatus.
  • the tip of the electron beam can be changed to various shapes and sizes by controlling the objective lens.
  • the relationship between the electron beam focus value and the electron beam tip area is measured in advance by other means, and a known electron beam tip size is always realized.
  • the substrate current value is measured by irradiating the measurement target with the electron beam so that the electron beam has a desired size. Even if this electron beam irradiation is performed, the irradiation position may be controlled so that the electron beam hits only the inside of the hole.
  • the height of the substrate current waveform corresponds to the substrate current per unit area.
  • the average value of the substrate current value generated by irradiation becomes the substrate current value per unit area.
  • the substrate current value subjected to the area standardization as a measurement value, it is possible to compare elements having different layout sizes. For example, a plurality of holes of different sizes are provided on the mask, the process proceeds, and each size element is irradiated with an electron beam with a known tip area, and the normalized substrate current value is compared. By making a graph, the bottom of the hole can be estimated.
  • FIG. 6, FIG. 7, and FIG. 8 show experimental examples in which etching is performed normally and there is no residual film contact product and etching residue is present at the bottom of the hole.
  • etching is performed normally and there is no residual film contact product and etching residue is present at the bottom of the hole.
  • a polymer such as a resist remains on the bottom of a contact hole due to poor cleaning, the contact resistance value increases and the device becomes defective.
  • the polymer acts directly as an insulator, causing high resistance, or vaporizing during the process of filling the hole with the conductor. This will cause insufficient conductor embedding.
  • the horizontal axis of the graph represents the hole diameter (Bottom CD; nm) measured on the same wafer, and the vertical axis represents the standardized substrate current value (EBS Value; pA). Select holes with the same design layout on one wafer as the measurement target and plot.
  • the substrate current value normalized by the hole size is almost constant even when the hole size is different in the samples that are etched normally. Is shown.
  • the sample with residual film on the bottom of the hole has a smaller or larger measured value as the hole bottom size becomes smaller.
  • the substrate current depends on the secondary electron emission efficiency of the hole bottom material.
  • a polymer containing a large amount of carbon such as a resist has a lower secondary electron emission efficiency than silicon. Therefore, when an organic material such as a resist appears at the bottom of the hole, the substrate current value increases as the hole bottom size decreases. Hall force with multiple hole diameters By graphing the obtained data and using the slope as an index for process judgment, the cause of process failure can be classified in detail.
  • the in-plane distribution of the normalized substrate current value can be known. Since the substrate current value after normalization by the hole area is invariable with respect to the size of the object to be measured, it is possible to know the process distribution only for the state of the hole bottom by evaluating the in-plane distribution with that value.
  • the hole surface diameter will also be affected. Therefore, the process distribution obtained after etching is a combination of the two, and if measured directly, it is not possible to extract only the distribution unique to the etching apparatus.
  • the substrate current is By standardizing the hole bottom diameter, the influence of exposure can be eliminated and only the distribution unique to the etching apparatus can be extracted.
  • FIGS. 9 and 10 show experimental examples in which the data obtained as described above (basic current values after normalization) are displayed on a two-dimensional contour color map.
  • a defect that cannot be classified simply by the measurement value at one measurement point can be classified in more detail by observing the entire wafer, shot, or distribution within the chip.
  • Fig. 9 shows the force of a normal wafer.
  • Fig. 10 the locations where the measured values change greatly are distributed below the wafer. For example, if a process device that distributes defects in a place as shown in FIG. 10 is pre-distributed, if the device causes a failure,! / .
  • FIG. 11 shows examples of classification of defects targeted by the present invention.
  • Each defect has a feature that can be expressed numerically. Corresponding to describe the feature ⁇ ⁇ ⁇ The failure can be classified by setting the optimal numerical range (control value) for the measured value. . The following describes the classification method for each defect.
  • CMP Chemical Mechanical Polishing
  • CMP height affects subsequent photoresist processes and etching processes. For example, if a step of several hundreds of nanometers is caused by CMP in a specific area of the device, the depth of focus of the exposure apparatus will be several hundred nanometers, so there is no way to expose the photoresist in places where there is a step. Unlikely, it causes trouble. By analyzing the focus value of the measurement point or the Z sensor value, it can be estimated that the CMP gap is the cause of the failure.
  • the hole surface size can be obtained with SEM image power. Set the standard hole surface size such as normal CDSEM and design data, and determine the upper limit value or lower limit value (for example, 0.1 micron or more and 0.12 micron or less). . By comparing the hole size obtained by this equipment with the allowable value, the hole surface size is smaller or larger than the standard, and if it is classified as a defect somewhere in the exposure process. it can.
  • the MES database that automatically tracks the device status of the exposure device, development device, etc. used in the exposure process is automatically contacted. Investigate retrospectively whether there is no difference from the control data during operation. For example, by checking against the exposure amount recorded in the tracking data, it is possible to determine the root cause such as underexposure or insufficient development. If the cause is found in this way, the exposure process is checked on the spot, and the process parameters can be re-optimized to eliminate defects.
  • the hole surface shape can be classified using pattern matching information. For example, a figure having a shape that should be originally obtained in the process is adopted as a figure to be used as a pattern matching template, and pattern matching is performed on the measurement target. If the pattern matching score, which is the pattern matching output, is less than 100, it can be determined that the shape force to be obtained is also different. The surface pattern of the pattern is most affected by the exposure process. In this case, it can be estimated that there is an abnormality in the exposure process. Pattern matching templates are not limited to normal ones, but various different shapes (for example, circles, ellipses, rectangles, etc.) are registered, and how much force resembles each figure is calculated. be able to.
  • the hole bottom size can be obtained from line scan mode. If the normal hole bottom size is defined in advance as a normal range of 0.04 microns or more and 0.045 microns or less, for example, normality / abnormality can be discriminated within or outside that value. If only the hole bottom size is abnormal, it is estimated that there is a problem with the etching process.
  • the etching depth is known as the pre-deposited film thickness (for example, 300 °), so that the etching inclination angle can be obtained.
  • the hole tilt angle range that a normal hole should have, for example, 88 degrees or more and 90 degrees or less, it is possible to determine normality / abnormality depending on whether it is within that value. If the angle is smaller or larger than the standard value, it can be estimated that the source gas flow rate change such as oxygen gas flow rate is the cause.
  • the source gas flow rate change such as oxygen gas flow rate is the cause.
  • Hole bottom shape anomalies can be evaluated by performing pattern matching on line scan data or substrate current images. For example, if an allowable distortion range for a standard graphic is defined in advance, it is possible to determine normality / abnormality depending on whether it is within the range or not. As with the measurement of the hole surface shape, multiple pattern markers with different shapes are used. The template can be defined and the shape can be known by performing pattern matching. For example, if etching is insufficient, holes that are much smaller than normal holes can be obtained. Conversely, if excessive etching occurs, a hole bottom that is larger than the original shape can be obtained. By classifying this, defects can be classified.
  • the etching may proceed through the hole bottom wiring.
  • Such excessive etching can cause leaks, etc.
  • Spike-shaped hole shapes are generated at the bottom of the holes. These can be classified as hole shape anomalies at the bottom of the hole.
  • the bottom of the hall may have a crescent shape. In such a case, it can be classified as a cause of an alignment error during exposure.
  • crescent moon shape judgment and hole bottom position measurement can be performed. Misalignment can be extracted and classified by comparing the measured value with a predetermined reference value.
  • Hole bottom residual film can be detected by performing blanket mode measurement or line scan mode measurement.
  • Figure 12 shows the line scan waveform when there is a normal hole.
  • Fig. 13 shows the line scan waveform when there is an insulating residual film at the bottom of the hole. If there is an insulating film at the bottom of the hole, the electrical characteristics of the object to be measured will change when the hole is expressed by an equivalent electric circuit because it has an extra capacitance component that is not found in a normal hole. Therefore, for example, the response time constant and amplitude of the line scan waveform change, and the line scan mode measurement waveform changes. By detecting this change, it can be distinguished that a residual film is formed at the bottom of the hole.
  • Figure 25 shows an example where the hole bottom is an oxide film (Si02) and TiN.
  • the left figure shows the substrate current
  • the middle figure shows the hole bottom diameter
  • the right figure shows the hole structure.
  • the hole bottom is an oxide film
  • the larger the hole diameter the smaller the substrate current.
  • the hole bottom is TiN
  • the larger the value the larger the substrate current.
  • the hole bottom residual film When the hole bottom residual film is detected, it is estimated that under-etching has occurred.
  • under-etching occurs, a substrate current value that is different from the substrate current value observed when etching is performed as a standard is observed, so that the hole residual film can be detected by defining the range in advance. Can be classified.
  • the cause is considered to be the secular change of the etching apparatus, the setting error of the etching time parameter, or the difference between the set value and the effective value.
  • the bottom state of the hole can be known from the magnitude of the normalized substrate current. If a hole bottom layer is missing, a material different from the material that should normally be present at the hole bottom is irradiated with an electron beam, so a value different from the standard observed substrate current is detected. By defining in advance the range of the substrate current value that occurs when a layer is missing, it is possible to determine whether a layer is missing depending on whether the force is outside the range. This is the same as determining the material constituting the hole bottom. As a cause of missing layers, overetching due to excessive plasma is estimated. If overetching is detected, the cause can be determined by matching the tracking data of the etching equipment. Etching time setting error, An abnormal plasma energy setting or an abnormal gas flow rate is estimated.
  • Hole bottom interface anomalies can be detected by blanket mode measurement or line scan mode measurement.
  • the amount of secondary electron emission differs depending on the material, so the hole bottom state can be known from the magnitude of the normalized substrate current.
  • an electron beam is irradiated onto a material different from the material that should normally exist at the hole bottom. Therefore, a value different from the substrate current value observed in the standard is detected.
  • Possible causes of the hole bottom interface abnormality include, for example, abnormalities in cleaning performed after etching on the residue after cleaning, film deterioration due to excessive application of plasma, and the like. By querying and matching the data server that tracks cleaning condition data, the cause of abnormal cleaning conditions can be determined.
  • the substrate current changes characteristically at a certain hole diameter.
  • exposure process conditions can be optimized and fed back using scatter plots such as those shown in Figs.
  • Misalignment is a defect in which holes are placed at positions different from the design positions.
  • the area of the conductive layer in contact with the bottom of the hole is reduced, leading to an increase in the contact resistance value or contact with the adjacent circuit to cause current leakage.
  • the substrate current image is measured, the hole bottom shape can be measured. Pattern matching is performed between the obtained substrate current image and the standard image to calculate the pattern matching score.
  • FIG. 14 and FIG. 15 are a substrate current image and a waveform of holes that are normally aligned.
  • Figures 16 and 17 show the substrate current image and waveform for holes with misalignment. It is. If there is a misalignment, the shape of the bottom of the hole becomes a half-moon shape. In addition, the center position of the crescent moon deviates greatly from the design value. By predetermining the allowable distortion range of the measurement substrate current image with respect to the standard image, it is possible to determine whether or not misalignment has occurred depending on whether it is within the range or outside the range.
  • the cause of misalignment is presumed to be a defect S in the exposure process, particularly in the alignment operation of the exposure apparatus.
  • causes such as an abnormality in the alignment device itself or an abnormality in the alignment mark.
  • the alignment mark itself is automatically registered as a new measurement point and automatically inspected.
  • the cause of the defect can be classified as being in the alignment mark. In other cases, it is presumed that the exposure machine itself is the cause.
  • the measured data force can be classified or estimated as the cause of the defect.
  • the measured data force can be classified or estimated as the cause of the defect.
  • the past history including the process conditions actually used in the process of the wafer used for measurement from MES and analyzing it at the same time, which device causes an abnormality at any time. You can track immediately. Once an abnormal device is clearly identified, it is possible to take action on that device, stop the device for maintenance, or change the contents of the recipe.
  • FIG. 18 shows a procedure for performing automatic defect classification specifically using the above function.
  • a First, wafer height variation determination is performed by the distance measurement device 16 between wafer objective lenses. This is done with a fixed value.
  • the permissible variation amount is set independently for local variation within a few microns and global variation throughout the wafer. It may be set for a specific location on the wafer. For example, if there is a global wafer height variation of 300 nm or more, it is determined that there is a global height variation. Or, if there is a local variation of lOOnm or more, it is determined that there is a local height variation.
  • Surface shape determination is performed by setting a reference for the pattern matching score calculated as a result of pattern matching used to accurately perform the electron beam irradiation position.
  • a reference for the pattern matching score calculated as a result of pattern matching used to accurately perform the electron beam irradiation position.
  • the range that a normal hole has is set to, for example, a pattern matching score of 90 or more, and classified according to the range or outside the range.
  • the line scan method is applied to the measurement object, and the secondary electron profile and substrate current profile are measured. These signal profile forces also evaluate the hole surface diameter, bottom diameter and their shape.
  • the normal hole surface diameter range and hole bottom diameter range are determined in advance by design values, etc., and classified according to the range or outside the range.
  • Surface shape anomalies can be further categorized by the line scan method using the hole surface size and hole roundness as criteria. For example, if the hole surface diameter is smaller than the design value by 0.02 microns or more, there is an exposure abnormality. Alternatively, if the roundness of the hole is 0.5 or less, it is classified as an error in the exposure device setting parameters.
  • the edge information power of the substrate current profile can also be acquired. For example, if the hole size is smaller than the design value by 0.01 micron or more, the etching is abnormal. Alternatively, if the Honoré roundness is 0.5 or less, it is judged that the etching is abnormal and classified.
  • blanket mode A measurement mode called blanket mode is used, which measures the substrate current by irradiating the entire object with an electron beam.
  • Blanket mode is a change in the bottom material of the hole, surface It is sensitive enough to detect changes at the monolayer level that are very sensitive to state changes.
  • the substrate current value normalized using the hole size obtained by the line scan method etc. Is used for judgment. For example, when an oxide film remains at the bottom of the hole, the oxide film emits a large amount of secondary electrons, so that the substrate current value changes more negatively than the standard value. Therefore, if it changes to a negative value exceeding a certain reference value, it is classified as an oxide film at the bottom of the hole.
  • the stopper may be penetrated to reach silicide. Since silicide has a higher secondary electron emission capability than that of an oxide film, if silicide exists at the bottom of the hole, the substrate current value fluctuates more negatively than in the case of an oxide film. Therefore, if the obtained measured value is more negative than that of the oxide film, it is classified as silicide.
  • a material that does not originally constitute a semiconductor device may also adhere to the bottom of the hole, which may change the properties of the hole surface. Most of them are cleaning residues, and resist residues are best known. Contrary to the above silicide materials, the resist has the property of absorbing electrons whose secondary electron emission capability is very small. Therefore, if a resist residue is present at the bottom of the hole, the amount of secondary electrons emitted is small compared to the standard state, resulting in a large positive substrate current. Therefore, if a substrate current larger than the standard value flows, it is classified as a resist residue.
  • the above standard values can be uniquely determined by using the area standard and the substrate current value.
  • Misalignment determination is performed using a line scan method or a substrate current image. Depending on whether the alignment is normal or abnormal, the hole size, area and shape to be measured will change. By classifying and comparing these evaluation values, misalignments are classified. For example, misalignment occurs when the hole size is 0.04 microns or less, or when the area is 0.002 square microns or less. Alternatively, pattern matching is performed on the substrate current image, and the center position is measured. If the standard center position deviates more than a certain standard, it is determined that there is misalignment. Alternatively, this is done by comparing the position with the CAD layout data that determines the design information of the semiconductor device. In general, CAD data and the actual size of devices formed on a wafer are different.
  • the cause of this is that the absolute value differs even with the same layout due to a transfer error (magnification error) caused by the exposure device and the expansion and contraction of the wafer itself due to the difference in wafer temperature. Therefore, when collating with CAD data, only the information of the layer subject to file force inspection such as GDSII is extracted, and furthermore, using a coordinate system starting from a reliable point inside the wafer, etc. Compare with the coordinate system on the actual wafer.
  • the measurement object can be classified as being normally formed.
  • the above flowchart is an attempt to classify one measurement point. Force Wafer An arbitrary number of measurement points can be provided on one surface, and the correlation between measured values at each location is used. Can be newly categorized. For example, the difference between a certain place and a certain place is used as an evaluation value, and a classification criterion is set for that value. It is known that semiconductor processes exhibit different process dependencies such as wafer-in-plane dependency, shot-inside dependency, and layout dependency. Therefore, by arranging the measurement points so that the above dependency can be known, and evaluating the difference in the measured values at each of the arrangement points, it is possible to classify the problems related to the location dependency.
  • the difference between the measurement values at the measurement points in the wafer arranged for examining the in-wafer dependence is greater than or equal to a reference value, it is determined that the in-wafer dependence has occurred. For example, if concentric wafer in-plane dependence starting from the wafer center occurs, this means that the entire wafer process was performed simultaneously in one process chamber. It can be estimated that there is a cause of defects in the process steps to which various processing methods are applied (for example, etching process).
  • the contour map can be drawn using these 200 points.
  • the obtained contour map can be regarded as an image with 200 pixel force, and similar image information that has been measured in advance and recorded in the database and image processing such as pattern matching can be performed to determine the degree of approximation.
  • classification is performed based on data measured with one electron beam energy. For example, more detailed classification can be performed by using a plurality of electron beam energies used for measurement. It becomes possible. Since the specific material has a characteristic dependency of the amount of substrate current on the irradiation electron beam energy, the material can be specified using the property. In this case as well, by comparing the electron beam energy dependence using the values obtained by standardizing the measured values obtained under each electron beam energy measurement condition with the hole size, it is possible to compare holes of any size. It is possible to classify the type of material at the bottom of the hole.
  • FIG. 19 shows the relationship between the present inspection apparatus 200 and another database 210 or other measurement apparatus 220.
  • This inspection device can perform further detailed failure analysis or classification in cooperation with the database 210 and the measurement device 220 other than this device.
  • This defect database 230 is a database that shows the correspondence between each measured value range and the defect, a database that links the defect distribution and the cause of the defect, and a defect that shows characteristic data with respect to time changes. It includes a database that records failure changes as a function of time.
  • Semiconductor as a database used to identify the device and process name that caused the failure, and the date and time when the failure occurred Use the MES (HOST) 240 database to manage body factory processes.
  • the data obtained in the measurement by the electron beam measurement unit 270 is compared with the data in the defect database 230 by the comparison unit 250, and the comparison result is the defect selection display unit 2
  • the defect selection display means 260 detects and displays the defect contents based on the output of the comparison means.
  • a database for managing the product name, lot number, slot number, wafer number, etc. for identifying the wafer itself is also used for specifying the measurement target wafer. Such information can be obtained by reading the wafer unique number formed on the wafer surface with a number reader. Correlation analysis may be performed using data stored in the database of the LSI tester, prober, other inspection equipment, analysis equipment (FIB.TEM) or CAD system that is design information.
  • FIB.TEM analysis equipment
  • each database stores the location information necessary to accurately determine the location of the defect.
  • These data can be imported to the inspection device from the outside as integrated data with pairs of defects and coordinates. The imported data can be converted and offset by the coordinate system so that the location information can be used by this device. Specifically, coordinate deviation between apparatuses is corrected using apparatus-specific glow alignment information.
  • the classification contents must be coded so that it can be easily processed by a computer etc.
  • the classified defects are displayed on the computer screen as symbols, colors, numerical values, graphics, and tables.
  • Figure 20 One example is shown.
  • the defect type is displayed in a pop-up manner at the position where the defect is detected on the wafer-shaped shape. If necessary, the content of the defect can be notified by voice guidance.
  • Defect contents can be statistically processed by defect classification, and the statistical values can be shown on the screen.
  • the MES HOST
  • the data server that manages the field management information
  • the integrated analysis of the data it is possible to determine which faults are in which equipment.
  • the classification data obtained by this inspection apparatus is finally subjected to integrated analysis together with various databases in the semiconductor factory. In particular, it is important to know what kind of trouble has occurred on what equipment and at what time.
  • the contents of the failure, the name of the device that caused the failure, and the date and time when the failure occurred are analyzed and displayed on the computer screen. If necessary, the cause is analyzed and displayed.
  • the analysis display information can of course be transmitted to the host computer, other inspection devices, and terminals by communication means such as LAN or the Internet.
  • the correspondence table between the defect contents and the defective device is stored in a storage device such as a memory in advance.
  • the depth of analysis pursuit can be controlled depending on the degree of failure, so that analysis can be performed efficiently.
  • it since it has an integrated GUI and database, it can centrally manage various problems.
  • Flashing, voice guidance, and the like are also used for fault indication, so they are definitely recognized.
  • Defect type statistics can also be acquired, and it is possible to track what kind of defect occurred where and how often. By utilizing these data, it can be used for future process improvement.
  • the present invention is useful for an apparatus used for analysis, manufacture, measurement, or evaluation in a semiconductor device or a manufacturing process thereof.
  • the present invention can be used in the fields of analysis techniques, measurement techniques, evaluation techniques, inspection techniques, and semiconductor device manufacturing apparatuses and methods that use a method of irradiating a semiconductor substrate such as a wafer with an electron beam or ion beam. I'll do it.

Landscapes

  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

Provided is a semiconductor inspecting method for acquiring necessary information on site, automatically classifying the information, and estimating the causes of troubles with respect to troubles of non visual defects, such as foreign materials and troubles at the hole bottom, of which information could not have been obtained by conventional surface observation method. The method is provided with a first step of irradiating a part of a semiconductor substrate to be measured with an electron beam; a second step of detecting a substrate current flowing at the part to be measured, based on the electron beam; a third step of detecting abnormality of the part to be measured by analyzing the substrate current and classifying the abnormality contents.

Description

明 細 書  Specification
半導体検査装置および半導体検査方法  Semiconductor inspection apparatus and semiconductor inspection method
技術分野  Technical field
[0001] 本発明は、電子ビームを利用した半導体検査装置および半導体検査方法に関し、 特に半導体デバイスの製造工程を評価するのに好適な半導体検査装置および検査 方法に関する。  The present invention relates to a semiconductor inspection apparatus and a semiconductor inspection method using an electron beam, and more particularly to a semiconductor inspection apparatus and an inspection method suitable for evaluating a semiconductor device manufacturing process.
背景技術  Background art
[0002] 半導体デバイスの出来具合を調べるために電子ビームをサンプルに照射した際に 生じる基板電流を用いる技術が広く使われるようになって来た。この技術を用いると、 従来の二次電子を直接用いる電子顕微鏡では判別が難し力つたプロセス上の不具 合を非破壊検出することができる。この装置は、電子ビームを発生するための電子銃 、サンプルを保持するためのトレイ、電子ビームの照射位置を定めるための XYステー ジ、そして、基板電流を測定するための基板電流測定装置など力もなつている。測定 された基板電流などはデータベースに蓄積され再利用可能なように構成されて 、る ( 特許文献 1参照)。  [0002] In order to investigate the performance of semiconductor devices, a technique using a substrate current generated when an electron beam is irradiated onto a sample has been widely used. Using this technology, it is difficult to discriminate with conventional electron microscopes that directly use secondary electrons, and it is possible to detect non-destructive process failures that are difficult. This device has the power of an electron gun for generating an electron beam, a tray for holding a sample, an XY stage for determining the irradiation position of the electron beam, and a substrate current measuring device for measuring a substrate current. It is summer. The measured substrate current and the like are stored in a database and configured to be reusable (see Patent Document 1).
[0003] 発明者らは既に、電子ビームを利用して半導体デバイスの出来具合をインラインで 評価する技術を開発している。この技術を利用すると、僅かなプロセス揺らぎが生じ た際に、揺らぎ量に比例した評価値を出力できるので、プロセス制御に活用できる。 この技術の活用範囲は広ぐ大部分の半導体プロセス制御に利用できる可能性があ る。  [0003] The inventors have already developed a technique for evaluating in-line the performance of a semiconductor device using an electron beam. If this technology is used, an evaluation value proportional to the amount of fluctuation can be output when slight process fluctuation occurs, which can be used for process control. The range of application of this technology may be applicable to the vast majority of semiconductor process control.
[0004] し力しながら、現在のところ、本技術は導入途中である。また、半導体工場で使われ る装置は非常に沢山あり、かつ、時間に対しても装置状態が変化するので、全ての 装置が常に理想状態には管理されていない。そのため、本来のプロセス制御値から 知らないうちに大きく外れてしまい、実際に不具合を起こしてしまうことも多々起こる。 従って、このような不慮の事故によって工場で起こった不具合をインライン検出、ある いは、その場検出を行い、検出した不具合をその場で解析したいというニーズも多く 存在する。 [0005] 従来は、不良発生が起こって数週間後、あるいは 1月以上経ってデバイスが完成し 、電気テストなどで始めて不具合が判明した後に、対象デバイスを FIB(Focused Ion Beam)などを用いて断面解析を行 ヽ、不具合を起こした装置まで遡って行く遡上解析 法が使われている。しかし、残念なことに、装置状態は刻々と変化するため不具合を 起こしたときの装置状態は保存されておらず、たとえ遡りが出来ても、不具合の直接 原因を追究することはほとんど不可能であった。 [0004] However, at present, the present technology is being introduced. In addition, there are many devices used in semiconductor factories, and the device state changes with time, so not all devices are always managed in the ideal state. For this reason, it often deviates from the original process control value without knowing it, and it often causes problems. Therefore, there are many needs for in-line detection or in-situ detection of defects that occurred in factories due to such accidents, and to analyze the detected defects on the spot. [0005] Conventionally, a device is completed several weeks after a defect occurs, or after a month or more, and after a defect is first found by an electrical test or the like, the target device is used using FIB (Focused Ion Beam) or the like. A cross-sectional analysis is performed, and a run-up analysis method is used that goes back to the device that caused the failure. Unfortunately, however, the device status changes every moment, so the device state at the time of failure is not saved, and even if you can go back, it is almost impossible to investigate the direct cause of the failure. there were.
[0006] 一方、旧来力 の不良原因とされてきた表面に存在するパーティクル、異物などは 、電子顕微鏡 (インラインセム)によって、工程途中のウェハー表面を拡大して SEM (S canning electron microscope)像を取り込み、その形状や大きさあるいは EDX (Energy Dispersive X-ray Analysis)材料分析値などから、不具合原因を自動分類する ADC ( Auto Defect Classification)技術が進んでいる。  [0006] On the other hand, particles, foreign matter, etc. present on the surface, which have been considered to be the cause of the failure of the conventional force, are enlarged by the electron microscope (in-line sem) to enlarge the wafer surface in the middle of the process and form an SEM (S canning electron microscope) image. ADC (Auto Defect Classification) technology that automatically classifies the cause of defects based on the shape, size, EDX (Energy Dispersive X-ray Analysis) material analysis value, etc. is advancing.
特許文献 1:特開 2005— 026449号公報  Patent Document 1: Japanese Patent Laid-Open No. 2005-026449
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0007] しかし、ノンビジュアルディフエタトと呼ばれる、最先端デバイスで顕著に現れるよう に成ったホール底にある異物や超薄膜残渣、ホール底界面異常などの不具合は、 従来から行われて 、るインラインセム等の表面観察によっては情報が得られな 、ため 、不具合を検出すること自身が本質的に不可能であり、さらにその不具合を自動分 類する技術は開発途上という課題があった。 [0007] However, defects such as foreign matter on the bottom of the hole, ultra-thin film residue, and abnormality at the interface of the bottom of the hole, which are called “non-visual diffuse”, which have been prominently appearing in the most advanced devices, have been performed conventionally. Since information cannot be obtained by surface observation such as in-line sem, it is essentially impossible to detect the defect itself, and there is a problem that a technology for automatically classifying the defect is still under development.
本発明は、ホール底の異物や不具合などのように従来の表面観察方法では情報を 得る事が出来な力つたノンビジュアルディフエタト等不具合について、必要な情報を その場取得し、自動分類し、その原因を推定することを可能とする半導体検査装置 および検査方法を提供することを目的として!/ヽる。  The present invention obtains necessary information on the spot and automatically classifies such troubles as non-visual differentials that cannot be obtained by conventional surface observation methods, such as foreign matter and defects at the bottom of a hole. The purpose of the present invention is to provide a semiconductor inspection apparatus and inspection method that can estimate the cause!
課題を解決するための手段  Means for solving the problem
[0008] 上記の課題を解決するために、本発明に係る半導体検査方法は、半導体基板の 測定対象部分へ電子ビームを照射する第 1のステップと、前記電子ビームに基づい て前記測定対象部分に流れる基板電流を検出する第 2のステップと、前記基板電流 を分析して前記測定対象部分の異常発生を検出し、異常内容を分類する第 3のステ ップとを具備する。 In order to solve the above problems, a semiconductor inspection method according to the present invention includes a first step of irradiating a measurement target portion of a semiconductor substrate with an electron beam, and the measurement target portion based on the electron beam. A second step of detecting the flowing substrate current, and a third step of analyzing the substrate current to detect the occurrence of an abnormality in the measurement target portion and classifying the abnormality content. And a.
上記の方法によれば、インラインでノンビジュアルディフエタトと呼ばれる部類の不 具合を自動分類 (オートクラシフィケーシヨン)することが出来るようになる。また、非破 壊による処理であるので、分類した後のウェハーはそのまま半導体プロセスを継続し て製品まで作り上げることが出来る。  According to the method described above, it becomes possible to automatically classify (auto-classification) a class of defects called in-line non-visual differences. In addition, since it is a non-destructive process, the sorted wafers can continue to be processed into semiconductors.
[0009] 上記方法にぉ 、て、前記電子ビームを制御する対物レンズと、前記半導体基板と の間の距離を測定する第 4のステップと、前記電子ビームに基づく二次電子像を測定 する第 5のステップとをさらに設け、前記第 3のステップが、前記基板電流と、前記対 物レンズおよび半導体基板間の距離と、前記二次電子像とを分析して前記測定対象 部分の異常を分類するようにする。  [0009] According to the above method, a fourth step of measuring a distance between the objective lens for controlling the electron beam and the semiconductor substrate, and a second electron image based on the electron beam are measured. 5 is further provided, and the third step classifies the abnormality in the measurement target portion by analyzing the substrate current, the distance between the object lens and the semiconductor substrate, and the secondary electron image. To do.
上記の方法によれば、さらに多くの種類の異常を検出し分類することができる。  According to the above method, it is possible to detect and classify more types of abnormalities.
[0010] 上記の方法において、前記第 1のステップ力 予め定められたエネルギーの電子ビ ームを予め定められたフォーカスサイズで、予め定められた時間、前記測定対象部 分へ照射するブランケットモードを有するようにする。  [0010] In the above method, a blanket mode in which the measurement object part is irradiated with the first step force electron beam having a predetermined energy with a predetermined focus size for a predetermined time. To have.
上記の方法において、前記第 1のステップ力 電子ビームを予め定められた間隔お よび速度で移動させつつ前記測定対象部分へ 1、 2次元照射するラインスキャンモー ドを有するようにする。  In the above method, the first step force has a line scan mode in which the measurement target portion is irradiated in one or two dimensions while moving the electron beam at a predetermined interval and speed.
[0011] 上記の方法において、前記第 3のステップ力 前記第 4のステップの測定結果に基 づいて前記測定対象部分の高さ異常を検出する。  [0011] In the above method, the height abnormality of the measurement target portion is detected based on the measurement result of the third step force and the fourth step.
この方法により、ウェハーの測定対象部分の高さ異常を検出することができる。 上記の方法において、前記第 3のステップ力 前記第 5のステップにおいて測定され た二次電子像と、予め記憶手段に記憶されたパターンとのパターンマッチングを行う ことによって測定対象部分の表面形状の異常を検出する。  By this method, it is possible to detect an abnormality in the height of the measurement target portion of the wafer. In the above method, the surface shape abnormality of the measurement target portion is performed by performing pattern matching between the secondary electron image measured in the third step force and the pattern stored in advance in the storage unit. Is detected.
この方法により、例えば、ウェハーに形成されたホールの開口部分の形状異常を検 出することができる。  By this method, for example, the shape abnormality of the opening portion of the hole formed in the wafer can be detected.
[0012] 上記の方法お!/、て、前記第 3のステップ力 前記ブランケットモードによる電子ビー ムの照射によって得られた基板電流に基づ 、て、前記測定対象部分のアンダーエツ チング、オーバーエッチングおよびホール底界面異常を検出する。 この方法によれば、例えば、ウェハーに形成されたホールの異常内容を分析するこ とがでさる。 [0012] Based on the substrate current obtained by irradiating the electron beam in the blanket mode with the above-mentioned method! /, The third step force, under-etching, over-etching, and over-etching of the measurement target portion Detect hole bottom interface anomalies. According to this method, for example, the abnormal contents of holes formed in the wafer can be analyzed.
上記の方法において、前記第 3のステップ力 前記ラインスキャンモードによる電子 ビームの照射によって得られた基板電流に基づいて、前記測定対象部分の表面サイ ズ異常、ホール底サイズ異常およびホール底形状異常を検出する。  In the above method, based on the substrate current obtained by electron beam irradiation in the third step force line scan mode, surface size abnormality, hole bottom size abnormality and hole bottom shape abnormality of the measurement target portion are detected. To detect.
この方法によれば、例えば、ウェハーに形成されたホールの異常内容を分析するこ とがでさる。  According to this method, for example, the abnormal contents of holes formed in the wafer can be analyzed.
[0013] 上記の方法にぉ 、て、前記第 3のステップ力 前記測定対象部分全体の基板電流 を測定対象部分の面積で割った面積規格ィ匕基板電流に基づいて前記測定対象部 分の異常を分類する。  [0013] According to the above method, the third step force is an area standard obtained by dividing the substrate current of the entire measurement target portion by the area of the measurement target portion. Classify.
この方法によれば、測定対象部分の大きさが異なる場合においても、測定結果を 同列に扱うことができる。  According to this method, measurement results can be handled in the same row even when the sizes of the measurement target portions are different.
上記の方法にぉ 、て、前記測定対象部分の面積を電子ビームのライン走査によつ て得られた基板電流に基づ ヽて求める。  According to the above method, the area of the measurement target portion is obtained based on the substrate current obtained by the electron beam line scanning.
上記の方法において、前記測定対象部分の面積をレイアウト情報に基づいて求め る。  In the above method, the area of the measurement target portion is obtained based on layout information.
上記の方法において、前記第 3のステップ力 前記測定対象部分に電子ビームを 照射した際に生じる二次電子、反射電子、基板電流によって得られる画像あるいは 波形に対してパターンマッチングを行 、、得られたパターンマッチングスコアと予め決 められた許容パターンマッチングスコアと得られた測定値との比較結果に基づいて異 常分類を行う。  In the above method, the third step force is obtained by performing pattern matching on an image or waveform obtained by secondary electrons, reflected electrons, and substrate current generated when the measurement target portion is irradiated with an electron beam. Anomaly classification is performed based on the comparison result between the obtained pattern matching score and the predetermined permissible pattern matching score.
上記の方法にぉ 、て、前記第 3のステップが測定値と異常の関係を記述したデータ ベースに基づいて異常分類を行う。  In the above method, the third step performs abnormality classification based on the database describing the relationship between the measured value and the abnormality.
[0014] 上記の方法において、前記測定対象部分の異常の分類結果を表示装置に表示す る第 6のステップをさらに有する。 [0014] In the above method, the method further includes a sixth step of displaying an abnormality classification result of the measurement target portion on a display device.
この方法によれば、異常内容を直ちに目視で検知することができる。  According to this method, the abnormal content can be immediately detected visually.
上記の方法お 、て、前記測定対象部分の異常の分類結果に基づ 、て予め記憶手 段に記憶された異常 装置対称表を検索して異常発生装置を検出する第 7のステツ プをさらに含むようにする。 According to the above method, the seventh step of detecting an abnormal device by searching the abnormal device symmetry table previously stored in the storage means based on the result of abnormality classification of the measurement target portion. Be included.
この方法によれば、異常が検出されると直ぐに修正するためのアクションを取ること が出来る。  According to this method, when an abnormality is detected, an action can be taken to correct it immediately.
[0015] また、上記の課題を解決するために、本発明に係る半導体検査装置は、半導体基 板の測定対象部分へ電子ビームを照射する電子ビーム照射手段と、前記電子ビー ムに基づいて前記測定対象部分に流れる基板電流を検出する基板電流検出手段と [0015] In order to solve the above problems, a semiconductor inspection apparatus according to the present invention includes an electron beam irradiation means for irradiating a measurement target portion of a semiconductor substrate with an electron beam, and the electron beam based on the electron beam. A substrate current detecting means for detecting a substrate current flowing in the measurement target part;
、前記基板電流を分析して前記測定対象部分の異常発生を検出し、異常内容を分 類する異常分類手段とを具備する。 And an abnormality classification means for analyzing the substrate current to detect occurrence of an abnormality in the measurement target portion and classifying the abnormality content.
[0016] 上記の装置において、前記電子ビームを制御する対物レンズと前記半導体基板と の間の距離を測定する距離測定手段と、前記電子ビームに基づく二次電子像を測 定する二次電子測定手段とをさらに具備し、前記異常分類手段は、前記基板電流と 、前記対物レンズおよび半導体基板間の距離と、前記二次電子像とを分析して前記 測定対象部分の異常を分類する。 [0016] In the above apparatus, a distance measuring unit that measures a distance between the objective lens that controls the electron beam and the semiconductor substrate, and a secondary electron measurement that measures a secondary electron image based on the electron beam. And anomaly classification means for analyzing the substrate current, the distance between the objective lens and the semiconductor substrate, and the secondary electron image to classify the anomaly of the measurement target portion.
上記の装置において、前記電子ビーム照射手段は、予め定められたエネルギーの 電子ビームを予め定められたフォーカスサイズで、予め定められた時間、前記測定対 象部分へ照射するブランケットモード機能を有する。  In the above apparatus, the electron beam irradiation means has a blanket mode function of irradiating the measurement target portion with an electron beam having a predetermined energy with a predetermined focus size for a predetermined time.
[0017] 上記の装置において、前記電子ビーム照射手段は、電子ビームを予め定められた 間隔および速度で移動させつつ前記測定対象部分へ 1、 2次元照射するラインスキヤ ンモード機能を有する。 [0017] In the above apparatus, the electron beam irradiation means has a line scan mode function of irradiating the measurement target portion with one or two dimensions while moving the electron beam at a predetermined interval and speed.
上記の装置において、前記異常分類手段は、前記距離測定手段の測定結果に基 づいて前記測定対象部分の高さ異常を検出する。  In the above apparatus, the abnormality classification unit detects an abnormality in the height of the measurement target portion based on the measurement result of the distance measurement unit.
上記の装置において、前記異常分類手段は、前記二次電子測定手段によって測 定された二次電子像と、予め記憶手段に記憶されたパターンとのパターンマッチング を行うことによって測定対象部分の表面形状の異常を検出する。  In the above apparatus, the abnormality classification means performs pattern matching between the secondary electron image measured by the secondary electron measurement means and a pattern stored in advance in the storage means, thereby measuring the surface shape of the measurement target portion. Detect abnormalities.
[0018] 上記の装置において、前記異常分類手段は、前記ブランケットモードによる電子ビ ームの照射によって得られた基板電流に基づ!、て、前記測定対象部分のアンダー エッチング、オーバーエッチングおよびホール底界面異常を検出する。 [0018] In the above apparatus, the abnormality classification means is based on a substrate current obtained by irradiating the electron beam in the blanket mode !, and under-etching, over-etching, and hole bottom of the measurement target portion. Detect interface anomalies.
上記の装置において、前記異常分類手段は、前記ラインスキャンモードによる電子 ビームの照射によって得られた基板電流に基づいて、前記測定対象部分の表面サイ ズ異常、ホール底サイズ異常およびホール底形状異常を検出する。 In the above apparatus, the abnormality classification means is an electronic device based on the line scan mode. Based on the substrate current obtained by the beam irradiation, the surface size abnormality, hole bottom size abnormality and hole bottom shape abnormality of the measurement target portion are detected.
上記の装置において、前記異常分類手段は、前記測定対象部分全体の基板電流 を測定対象部分の面積で割った面積規格ィ匕基板電流に基づいて前記測定対象部 分の異常を分類する。  In the above apparatus, the abnormality classification means classifies the abnormality of the measurement target portion based on an area standard obtained by dividing the substrate current of the entire measurement target portion by the area of the measurement target portion.
上記の装置において、前記測定対象部分の面積を電子ビームのライン走査によつ て得られた基板電流に基づ ヽて求める。  In the above-described apparatus, the area of the measurement target portion is obtained based on the substrate current obtained by the electron beam line scanning.
上記の装置において、前記測定対象部分の面積をレイアウト情報に基づいて求め る。  In the above apparatus, the area of the measurement target portion is obtained based on layout information.
[0019] 上記の装置において、前記異常分類手段は、前記測定対象部分に電子ビームを 照射した際に生じる二次電子、反射電子、基板電流によって得られる画像あるいは 波形に対してパターンマッチングを行 、、得られたパターンマッチングスコアと予め決 められた許容パターンマッチングスコアと得られた測定値との比較結果に基づいて異 常分類を行う。  [0019] In the above apparatus, the abnormality classification means performs pattern matching on an image or waveform obtained by secondary electrons, reflected electrons, and substrate current generated when the measurement target portion is irradiated with an electron beam. Then, the abnormality classification is performed based on the comparison result between the obtained pattern matching score, the predetermined allowable pattern matching score, and the obtained measurement value.
上記の装置において、前記異常分類手段は測定値と異常の関係を記述したデー タベースに基づ 、て異常分類を行う。  In the above apparatus, the abnormality classification means performs abnormality classification based on a database describing the relationship between the measured value and the abnormality.
上記の装置にお!、て、前記測定対象部分の異常の分類結果を表示する表示手段 をさらに設ける。  The above apparatus is further provided with display means for displaying the result of classifying the abnormality of the measurement target portion.
上記の装置において、前記測定対象部分の異常の分類結果に基づいて予め記憶 手段に記憶された異常 装置対称表を検索して異常発生装置を検出する異常装置 検出手段をさらに設ける。  In the above apparatus, the apparatus further includes an abnormal apparatus detecting means for detecting an abnormal apparatus by searching an abnormal apparatus symmetry table stored in advance in the storage means based on an abnormality classification result of the measurement target portion.
発明の効果  The invention's effect
[0020] 本発明によれば、インラインでノンビジュアルディフエタトと呼ばれる部類の不具合を 自動分類 (オートクラシフィケーシヨン)することが出来るようになる。本発明は非破壊 なので、分類した後のウェハーはそのまま半導体プロセスを継続して製品まで作り上 げることが出来る。また、自動的に不具合原因が分類あるいは推定されるので、不具 合を起こした原因を態々人が推定する必要が無い。また、本発明によれば、不具合 分類および不具合原因を画面上に表示するので、不具合が検出されると直ぐに不具 合を修正するためのアクションを取ることが出来る。 [0020] According to the present invention, it is possible to automatically classify (auto-classification) a class of defects called in-line non-visual differences. Since the present invention is non-destructive, wafers after sorting can be made into products by continuing the semiconductor process. Moreover, since the cause of the failure is automatically classified or estimated, it is not necessary for the person to estimate the cause of the failure. In addition, according to the present invention, the failure classification and the cause of the failure are displayed on the screen. You can take action to correct the match.
[0021] また、単に、単一のプロセスで起こった不具合を分類するだけでなぐ複数プロセス に渡って総合的に不具合原因を自動推定するので、容易にプロセス不具合原因の 基にたどり着くことが出来る。また、不具合が起こったその場で不具合解析が出来る ので、不具合を引き起こした状態のプロセス装置状態を保持した状態で不具合箇所 を確認できる。これにより迅速に不具合を解消できる。不具合内容が早く確定できる のでプロセス不具合を引き起こした装置を迅速に直すことが可能で、プロセス損失を 小さくして半導体工場の利益向上に効果がある。  [0021] Further, since the cause of the failure is automatically estimated over a plurality of processes simply by classifying the failure that occurred in a single process, it is possible to easily reach the basis of the cause of the process failure. In addition, since failure analysis can be performed on the spot where a failure occurs, the failure location can be confirmed while maintaining the state of the process equipment that caused the failure. This can quickly solve the problem. Since the contents of defects can be determined quickly, the equipment that caused the process defects can be repaired quickly, and the process loss can be reduced, improving the profits of the semiconductor factory.
図面の簡単な説明  Brief Description of Drawings
[0022] [図 1]本発明の実施形態に係る半導体検査装置の構成図である。  FIG. 1 is a configuration diagram of a semiconductor inspection apparatus according to an embodiment of the present invention.
[図 2]本発明の実施形態に係る半導体検査装置の動作の流れを示すフローチャート である。  FIG. 2 is a flowchart showing an operation flow of the semiconductor inspection apparatus according to the embodiment of the present invention.
[図 3]本発明の実施形態に係る半導体検査装置の各測定機能と、測定内容との関係 を示す表である。  FIG. 3 is a table showing the relationship between each measurement function and measurement content of the semiconductor inspection apparatus according to the embodiment of the present invention.
圆 4]本発明の実施形態に係る半導体検査装置における面積規格ィ匕基板電流の測 定過程を示すフローチャートである。  4] A flowchart showing a process of measuring an area standard substrate current in the semiconductor inspection apparatus according to the embodiment of the present invention.
[図 5]本発明の実施形態に係る半導体検査装置における面積規格ィ匕基板電流の他 の測定過程を示すフローチャートおよび電子ビームの先端面積図である。  FIG. 5 is a flowchart showing another measurement process of the area standard substrate current in the semiconductor inspection apparatus according to the embodiment of the present invention and a tip area view of an electron beam.
[図 6]本発明の実施形態に係る半導体検査装置の測定結果を示す図であり、ホール 底が正常な場合の測定結果を示す図である。  FIG. 6 is a diagram showing a measurement result of the semiconductor inspection apparatus according to the embodiment of the present invention, and is a diagram showing a measurement result when the hole bottom is normal.
[図 7]本発明の実施形態に係る半導体検査装置の測定結果を示す図であり、ホール 底が異常な場合の測定結果を示す図である。  FIG. 7 is a diagram showing a measurement result of the semiconductor inspection apparatus according to the embodiment of the present invention, and a diagram showing a measurement result when the hole bottom is abnormal.
[図 8]本発明の実施形態に係る半導体検査装置の測定結果を示す図であり、ホール 底が異常な場合の測定結果を示す図である。  FIG. 8 is a diagram showing a measurement result of the semiconductor inspection apparatus according to the embodiment of the present invention, and a diagram showing a measurement result when the hole bottom is abnormal.
[図 9]本発明の実施形態に係る半導体検査装置の測定結果を示す図であり、ウェハ 一全面にわたりホール異常がない場合の測定結果を示す図である。  FIG. 9 is a view showing a measurement result of the semiconductor inspection apparatus according to the embodiment of the present invention, and is a view showing a measurement result when there is no hole abnormality over the entire surface of the wafer.
[図 10]本発明の実施形態に係る半導体検査装置の測定結果を示す図であり、ゥェ ハーの一部にホール異常がある場合の測定結果を示す図である。 圆 11]本発明の実施形態に係る半導体検査装置において検出することができる異常 内容を示す図である。 FIG. 10 is a diagram illustrating a measurement result of the semiconductor inspection apparatus according to the embodiment of the present invention, and is a diagram illustrating a measurement result when there is a hole abnormality in a part of the wafer. [11] FIG. 11 is a diagram showing an abnormality content that can be detected in the semiconductor inspection apparatus according to the embodiment of the present invention.
圆 12]本発明の実施形態に係る半導体検査装置における測定波形を示す図であり 、異常がない場合の波形図である。 FIG. 12 is a diagram showing a measurement waveform in the semiconductor inspection apparatus according to the embodiment of the present invention, and is a waveform diagram when there is no abnormality.
圆 13]本発明の実施形態に係る半導体検査装置における測定波形を示す図であり 、異常がある場合の波形図である。 13] A diagram showing a measurement waveform in the semiconductor inspection apparatus according to the embodiment of the present invention, and is a waveform diagram when there is an abnormality.
[図 14]本発明の実施形態に係る半導体検査装置による測定図形を示す図であり、異 常がな ヽ場合の測定図形を示す図である。  FIG. 14 is a diagram showing a measurement pattern obtained by the semiconductor inspection apparatus according to the embodiment of the present invention, and is a diagram showing a measurement figure when there is an abnormality.
圆 15]本発明の実施形態に係る半導体検査装置における測定波形を示す図であり 、異常がない場合の波形図である。 FIG. 15 is a diagram showing a measurement waveform in the semiconductor inspection apparatus according to the embodiment of the present invention, and is a waveform diagram when there is no abnormality.
[図 16]本発明の実施形態に係る半導体検査装置による測定図形を示す図であり、異 常がある場合の測定図形を示す図である。  FIG. 16 is a diagram showing a measurement pattern by the semiconductor inspection apparatus according to the embodiment of the present invention, and is a diagram showing a measurement pattern when there is an abnormality.
圆 17]本発明の実施形態に係る半導体検査装置における測定波形を示す図であり 、異常がある場合の波形図である。 17] A diagram showing a measurement waveform in the semiconductor inspection apparatus according to the embodiment of the present invention, and is a waveform diagram when there is an abnormality.
[図 18]本発明の実施形態に係る半導体検査装置における測定種類および各測定に よって検出される異常内容を示すフローチャートである。  FIG. 18 is a flowchart showing measurement types and details of abnormality detected by each measurement in the semiconductor inspection apparatus according to the embodiment of the present invention.
圆 19]本発明の実施形態に係る半導体検査装置と他の装置との関係を示すブロック 図である。 [19] FIG. 19 is a block diagram showing a relationship between the semiconductor inspection apparatus according to the embodiment of the present invention and another apparatus.
[図 20]本発明の実施形態に係る半導体検査装置における異常表示例を示す図であ る。  FIG. 20 is a diagram showing an example of abnormal display in the semiconductor inspection apparatus according to the embodiment of the present invention.
[図 21]本発明の実施形態に係る半導体検査装置における異常表示例を示す図であ る。  FIG. 21 is a diagram showing an example of abnormal display in the semiconductor inspection apparatus according to the embodiment of the present invention.
[図 22]本発明の実施形態に係る半導体検査装置における異常表示例を示す図であ る。  FIG. 22 is a diagram showing an example of abnormal display in the semiconductor inspection apparatus according to the embodiment of the present invention.
[図 23]本発明の実施形態に係る半導体検査装置における異常表示例を示す図であ る。  FIG. 23 is a diagram showing an example of abnormality display in the semiconductor inspection apparatus according to the embodiment of the present invention.
[図 24]本発明の実施形態に係る半導体検査装置における異常表示例を示す図であ る。 [図 25]本発明の実施形態に係る半導体検査装置の測定結果およびホール構造を示 す図である。 FIG. 24 is a diagram showing an example of abnormality display in the semiconductor inspection apparatus according to the embodiment of the present invention. FIG. 25 is a diagram showing a measurement result and a hole structure of the semiconductor inspection apparatus according to the embodiment of the present invention.
符号の説明 Explanation of symbols
10 電子銃  10 electron gun
11 電子ビーム源  11 Electron beam source
12 コンデンサレンズ  12 condenser lens
13 ァパチヤ一  13 Apachiya
14 偏向レンズ  14 Deflection lens
15 対物レンズ  15 Objective lens
16 ウェハー対物レンズ間距離測定装置  16 Wafer objective lens distance measuring device
20 ウェハー識別装置  20 Wafer identification device
21 XYステージ  21 XY stage
22 卜レイ  22 Aoi Rei
23 ウエノ、一  23 Ueno, Ichi
24 二次電子反射電子検出装置  24 Secondary electron backscattered electron detector
30 電流測定装置  30 Current measuring device
40 高圧電源  40 High voltage power supply
100 偏向装置  100 Deflector
110 2次元走査制御装置  110 2D scanning controller
120 電流波形記憶装置  120 Current waveform memory
130 波形整形装置  130 Waveform shaping device
140 波形処理装置  140 Waveform processor
150 表示装置  150 display devices
160 データベース装置  160 Database device
170 電子ビーム照射位置記録装置  170 Electron beam irradiation position recorder
180 電子ビーム照射位置測定装置  180 Electron beam irradiation position measuring device
190 二次電子反射電子信号処理装置  190 Secondary electron reflected electron signal processor
200 半導体検査装置 210 データベース 200 Semiconductor inspection equipment 210 Database
220 別の測定装置  220 Another measuring device
230 不具合データベース  230 Defect database
240 MES  240 MES
250 比較手段  250 means of comparison
260 不具合選択手段  260 Fault selection method
270 電子ビーム測定部  270 Electron beam measurement unit
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0024] 次に本発明を実施するための最良の形態について、図面を参照して説明する。 Next, the best mode for carrying out the present invention will be described with reference to the drawings.
図 1に、本発明の一実施形態による半導体検査装置の構成を示す。この半導体検 查装置は、測定対象物 (試料)である半導体基板 (以下、ウェハーと言う)に電子ビー ムを照射し、該電子ビームによって上記ウェハーに誘起された基板電流を測定し、 該基板電流から上記ウェハーに形成された微細構造の評価値を得ることを基本原理 として 、る。パターンマッチングのためには放出される二次電子ある 、は反射電子も 利用する。  FIG. 1 shows the configuration of a semiconductor inspection apparatus according to an embodiment of the present invention. This semiconductor inspection apparatus irradiates a semiconductor substrate (hereinafter referred to as a wafer), which is an object to be measured (sample), with an electron beam, measures a substrate current induced in the wafer by the electron beam, and The basic principle is to obtain the evaluation value of the microstructure formed on the wafer from the current. For pattern matching, emitted secondary electrons or reflected electrons are also used.
[0025] 同図に示すように、測定対象ウェハー 23がどのような素性ウェハー力判別可能な 固有 IDを読めるように、ウェハー識別装置 20を有している。測定対象ウェハー 23上 には、種々の半導体デバイスが形成されている力 それらは、ウェハー 23上に予め 設けられたグローバルァライメント座標系に従って、ショット座標、チップ座標が一義 的に決定されている。これら座標系を用いて位置指定することにより、半導体ウェハ 一 23上に形成された全ての半導体素子を一義的に決定する事が出来る。逆に検出 された不具合の位置もこの座標系を用いることによって一義的に決定される。これら の座標系を用いる事で、他の装置の出力する検査結果や電気テストの結果ある 、は 設計情報である CAひ f青報と照合することも出来る。  [0025] As shown in the figure, a wafer identification device 20 is provided so that the measurement target wafer 23 can read a unique ID that can discriminate what feature wafer force. Forces on which various semiconductor devices are formed on the measurement target wafer 23. Shot coordinates and chip coordinates are uniquely determined in accordance with a global alignment coordinate system previously provided on the wafer 23. By specifying the position using these coordinate systems, all semiconductor elements formed on the semiconductor wafer 23 can be uniquely determined. Conversely, the position of the detected defect is also uniquely determined by using this coordinate system. By using these coordinate systems, it is possible to collate with the CA information blueprint that is the design information that is the result of the inspection or electrical test output from other devices.
[0026] 測定対象物(試料)であるウェハー 23を収容するチャンバ一 20には、電子ビーム E Bを発生する電子銃 10が取り付けられ、この電子銃 10は電子ビーム源 11を備え、こ の電子ビーム源 11には高圧電源 40が接続されている。電子銃 10の内部には、上記 電子ビーム源 11からの電子流の放出方向に沿って、コンデンサレンズ 12、ァパチヤ 一 13、偏向レンズ 14、対物レンズ 15がこの順に配置されている。このうち、偏向レン ズ 14には偏向装置 100が接続され、電子ビーム EBを高精度で偏向可能となってい る。また、対物レンズ 15の下方に対物レンズ 15とウェハー 23との間の距離を測定す るウェハー対物レンズ間距離測定装置 16が設けられている。また、この電子銃 10の 電子ビーム EBのエネルギー、電流量、フォーカス状態も任意に制御可能となってい る。ウェハー 23に電子ビームが照射されることによって生じる基板電流は、基板電流 測定装置 30によって測定され、二次電子、反射電子はそれぞれ二次電子反射電子 検出装置 24によって検出される。 [0026] An electron gun 10 that generates an electron beam EB is attached to a chamber 20 that accommodates a wafer 23 that is an object to be measured (sample). The electron gun 10 includes an electron beam source 11, and this electron A high voltage power source 40 is connected to the beam source 11. Inside the electron gun 10, there are a condenser lens 12 and an aperture along the emission direction of the electron flow from the electron beam source 11. 13, the deflection lens 14 and the objective lens 15 are arranged in this order. Among these, a deflection device 100 is connected to the deflection lens 14 so that the electron beam EB can be deflected with high accuracy. A wafer objective lens distance measuring device 16 that measures the distance between the objective lens 15 and the wafer 23 is provided below the objective lens 15. Further, the energy, current amount, and focus state of the electron beam EB of the electron gun 10 can be arbitrarily controlled. The substrate current generated by irradiating the wafer 23 with the electron beam is measured by the substrate current measuring device 30, and the secondary electrons and the reflected electrons are respectively detected by the secondary electron reflected electron detecting device 24.
[0027] チャンバ一 20の内部には、ウェハー 23を移動および一定位置に支持するための X Yステージ 21とトレイ 22とが収容され、トレイ 22に半ウェハー 23が載置されている。 上記電子銃 10から放出される電子ビーム EBは、トレイ 22に載置されたウェハー 23 の表面に向けられており、 XYステージ 21によりトレイ 22の位置を移動させることによ り、ウェハー 23に対する電子ビーム EBの照射位置を調整することが可能となってい る。 Inside the chamber 20, an XY stage 21 and a tray 22 for moving and supporting the wafer 23 at a fixed position are accommodated, and the half wafer 23 is placed on the tray 22. The electron beam EB emitted from the electron gun 10 is directed to the surface of the wafer 23 placed on the tray 22. By moving the position of the tray 22 by the XY stage 21, the electron beam EB is transferred to the wafer 23. The irradiation position of beam EB can be adjusted.
[0028] ここで、電子銃 10から照射された電子ビーム EBを nmオーダーの位置精度でゥェ ハー 23に照射するために、 XYステージ 21により、固定された電子ビーム EBの照射 軸に対して相対的にウェハー 23の位置を移動するようになっている。 XYステージ 21 の駆動装置としてはパルスモーターや超音波モーター、リニアモーターある 、は圧電 素子などが利用される。レーザー測長器やレーザースケール等高精度測定技術を 併用することにより、 XYステージ 21上に載置されたウェハー 23の位置精度は数 nm 程度に制御される。  [0028] Here, in order to irradiate the wafer 23 with the electron beam EB irradiated from the electron gun 10 with a position accuracy of the order of nm, the XY stage 21 performs the irradiation with respect to the fixed irradiation axis of the electron beam EB. The position of the wafer 23 is relatively moved. As a driving device for the XY stage 21, a pulse motor, an ultrasonic motor, a linear motor, or a piezoelectric element is used. By using high-precision measurement technology such as a laser length meter and laser scale, the positional accuracy of the wafer 23 placed on the XY stage 21 is controlled to about several nm.
[0029] また、ウェハー 23を載置するトレイ 22には、電流測定装置 30が接続されており、上 記ウェハー 23に誘起された基板電流がトレイ 22を介して電流測定装置 30により測 定されるようになつている。電流測定装置 30は、トレイ 22に内蔵され、あるいは近傍 に配置されており、外部からの電磁波ノイズをカットできる様に成っている。  In addition, a current measuring device 30 is connected to the tray 22 on which the wafer 23 is placed, and the substrate current induced in the wafer 23 is measured by the current measuring device 30 via the tray 22. It has become like that. The current measuring device 30 is built in the tray 22 or disposed in the vicinity thereof, and is configured to cut electromagnetic wave noise from the outside.
電流測定装置 30としては、抵抗、電圧変換型の装置や交流アンプ、チャージアン プなど種々の形式を用いることが出来る。この電流測定装置 30は、測定した基板電 流値をデジタル信号に AZD (Analog/Digital)変換する AZD変翻を備えており、 測定値をデジタルデータとして出力する。 As the current measuring device 30, various types such as a resistance, a voltage conversion type device, an AC amplifier, and a charge amplifier can be used. This current measuring device 30 has an AZD conversion that converts the measured substrate current value into a digital signal by AZD (Analog / Digital). The measured value is output as digital data.
[0030] また、本半導体検査装置は、 2次元走査制御装置 (パターンマッチングエンジンを 含む) 110、二次電子反射電子信号処理装置 190、電流波形記憶装置 120、波形 整形装置 130、波形画像認識処理装置 140、表示装置 150、データベース装置 16 0を備え、これらは、コンピュータ等の情報処理装置上に構築されている。  In addition, the semiconductor inspection apparatus includes a two-dimensional scanning control apparatus (including a pattern matching engine) 110, a secondary electron reflected electron signal processing apparatus 190, a current waveform storage apparatus 120, a waveform shaping apparatus 130, and a waveform image recognition process. A device 140, a display device 150, and a database device 160 are provided, which are constructed on an information processing device such as a computer.
[0031] このうち、 2次元走査制御装置 110は、電子ビーム EBがウェハー 23の表面を 2次 元的に走査するように偏向装置 100を制御すると共に、電子ビーム EBの照射位置を 高精度に合わせるためのパターンマッチングに関する制御を担うものである。  Among these, the two-dimensional scanning control device 110 controls the deflection device 100 so that the electron beam EB scans the surface of the wafer 23 in a two-dimensional manner, and the irradiation position of the electron beam EB with high accuracy. It controls the pattern matching for matching.
なお、本実施形態では、 2次元的に走査するとは、ライン状の走査を一定の間隔で 複数回にわたって繰り返すことを意味している。例えるならば、テレビ画面における水 平走査および垂直走査と同様の概念である。このように走査された電子ビームからは 二次電子あるいは反射電子像あるいは基板電流像が形成され、パターンマッチング に利用される。  In the present embodiment, the two-dimensional scanning means that the line-shaped scanning is repeated a plurality of times at regular intervals. For example, it is a concept similar to horizontal scanning and vertical scanning on a television screen. Secondary electrons, reflected electron images, or substrate current images are formed from the scanned electron beam and used for pattern matching.
[0032] ここで、パターンマッチングについて補足すると、ウェハー 23上に形成されたホー ル等のパターンの位置は、同一ロットであってもウェハーごとにわずかに異なる。この ため、 XYステージ 21による位置合わせと併用して、ウェハーごとに実際のパターンと 基準パターンとを比較するパターンマッチングを実施し、ウェハーごとに数 nmの精度 で電子ビームの照射位置を正確に調整する。 [0032] Here, supplementing pattern matching, the position of a pattern such as a hole formed on the wafer 23 is slightly different for each wafer even in the same lot. For this reason, in combination with alignment using the XY stage 21, pattern matching is performed to compare the actual pattern and the reference pattern for each wafer, and the electron beam irradiation position is accurately adjusted with a precision of several nanometers for each wafer. To do.
[0033] このパターンマッチングを行うと、測定対象 (ホール等)の中心座標が算出される。  When this pattern matching is performed, the center coordinates of the measurement target (hole or the like) are calculated.
その座標が目標値と異なっている場合、その差分に相当する分だけ電子ビームシフ トする事で、電子ビームを目標座標に照射するようにする。それを実現するために、 電子ビーム照射位置を精度よくシフトさせる必要上、本半導体検査装置は、電子ビ ーム EBを正確に直線走査するための高分解能の上述の偏向装置 100を備えている 。また、 2次元走査制御装置 110は、パターンマッチングを実施するための画像認識 装置およびソフトウェア等を備えて 、る。  If the coordinates are different from the target value, the electron beam is irradiated to the target coordinates by shifting the electron beam by the amount corresponding to the difference. In order to realize this, since the electron beam irradiation position needs to be accurately shifted, the semiconductor inspection apparatus includes the above-described deflection apparatus 100 with high resolution for accurately scanning the electron beam EB linearly. . Further, the two-dimensional scanning control device 110 includes an image recognition device and software for performing pattern matching.
[0034] 電流波形記憶装置 120は、上記電流測定装置 30によって測定された基板電流値 の波形を、そのときの電子ビーム EBの照射座標あるいは時間と対応づけて記憶する ものである。波形整形装置 130は、上記基板電流値の波形を波形整形して不要なノ ィズ成分を除去するものである。波形画像認識処理装置 140は、波形整形された基 板電流波形を波形処理することにより、ウェハー 23上に形成された微細構造の形状 に関する評価値を演算するものである。表示装置 150は、上記評価値を表示するも のである。データベース装置 160は、上記評価値を格納しておくものである。 The current waveform storage device 120 stores the waveform of the substrate current value measured by the current measurement device 30 in association with the irradiation coordinates or time of the electron beam EB at that time. The waveform shaping device 130 shapes the waveform of the substrate current value and performs unnecessary waveform shaping. The noise component is removed. The waveform image recognition processing device 140 calculates an evaluation value related to the shape of the fine structure formed on the wafer 23 by performing waveform processing on the waveform-shaped substrate current waveform. The display device 150 displays the evaluation value. The database device 160 stores the evaluation value.
[0035] 図 2に示すフローに沿って、本半導体検査装置の動作の概略を説明する。この例 では、ウェハー 23上に形成されたホールを測定対象とする。  An outline of the operation of the semiconductor inspection apparatus will be described along the flow shown in FIG. In this example, the hole formed on the wafer 23 is the measurement target.
測定時には、最初に、ウェハー 23を保持している XYステージ 21の制御系に対し て測定対象のホールの位置座標を指定して XYステージ 21を移動させ、ウェハー 23 に形成されたホールの中心出し (位置合わせ)を行う(ステップ 1)。  During measurement, first specify the position coordinates of the hole to be measured with respect to the control system of the XY stage 21 holding the wafer 23, move the XY stage 21, and center the holes formed on the wafer 23. Perform (alignment) (step 1).
[0036] 具体的には、 XYステージ 21により、電子ビーム EBの照射可能な範囲の位置にホ ール中心を大まかに合わせる。続いて、電子銃 10の下端に設けられたウェハー対物 レンズ間距離測定装置 16を用いてウェハー 23と対物レンズ 15の距離を測定し (ステ ップ 2)、電子ビームフォーカスの初期位置を決定する。次いで電子ビーム EBを、ホ ールを含む所定領域内で二次元走査しながら照射し、そのときに発生する二次電子 を集めて二次電子像を形成する。この形成された二次電子像を用いてオートフォー カス (ステップ 3)を行 、、試料上に焦点を結ぶように対物レンズの強さを自動調節す る。次に、フォーカスされた電子ビームを走査する事によって得られる二次電子画像 と予め 2次元走査制御装置 110内に記憶されているテンプレート画像とを比較してパ ターンマッチングを行い(ステップ 4)、テンプレート画像の中心とホール中心とのずれ 量を算出する。この算出されたずれ量を偏向装置 100に入力し、電子ビーム EBの照 射位置をシフトさせ、これにより、電子ビーム EBの照射位置を測定対象のホール中 心に正確に合わせる。  Specifically, the center of the hall is roughly adjusted to a position within a range where the electron beam EB can be irradiated by the XY stage 21. Subsequently, the distance between the wafer 23 and the objective lens 15 is measured using the wafer objective lens distance measuring device 16 provided at the lower end of the electron gun 10 (Step 2), and the initial position of the electron beam focus is determined. . Next, the electron beam EB is irradiated while scanning two-dimensionally within a predetermined region including the hole, and secondary electrons generated at that time are collected to form a secondary electron image. Autofocus (step 3) is performed using the formed secondary electron image, and the strength of the objective lens is automatically adjusted to focus on the sample. Next, pattern matching is performed by comparing the secondary electron image obtained by scanning the focused electron beam with the template image stored in advance in the two-dimensional scanning controller 110 (step 4). Calculate the amount of deviation between the center of the template image and the center of the hole. This calculated amount of deviation is input to the deflecting device 100, and the irradiation position of the electron beam EB is shifted, so that the irradiation position of the electron beam EB is accurately aligned with the center of the hole to be measured.
[0037] 続いて、 2次元走査制御装置 110の制御の下に、ホール中心を基準として電子ビ ーム EBによりウェハー 23の表面上の上記所定領域を 2次元的に走査する(ステップ 5)。即ち、電子ビーム EBを所望の先端サイズになるように電子銃 10の対物レンズ 15 を制御すると共に、偏向装置 100に制御電圧をカ卩えることにより、ライン状に電子ビ ーム走査を一定のピッチで繰り返す。これにより、電子ビーム EBが照射されたウェハ 一 23の表面上の微小領域から二次電子、反射電子が生じると共に、ウェハー 23に 基板電流が誘起される。 Subsequently, under the control of the two-dimensional scanning control device 110, the predetermined region on the surface of the wafer 23 is two-dimensionally scanned by the electron beam EB with reference to the hole center (step 5). That is, by controlling the objective lens 15 of the electron gun 10 so that the electron beam EB has a desired tip size, and by controlling the control voltage in the deflecting device 100, the electron beam scanning is made constant in a line shape. Repeat on the pitch. As a result, secondary electrons and reflected electrons are generated from a minute area on the surface of the wafer 23 irradiated with the electron beam EB, and A substrate current is induced.
[0038] ウェハー 23に誘起された、二次電子、反射電子あるいは基板電流は、二次電子反 射電子検出装置 24および電流測定装置 30によって測定され、その測定値は必要な 分解能を持つデジタル信号に即座に変換される。例えば、このデジタル信号の分解 能は 16ビットであり、そのサンプリング周波数は 400MHzである。この速度は必要に よって変更することも可能である。  [0038] Secondary electron, reflected electron or substrate current induced on the wafer 23 is measured by the secondary electron reflected electron detection device 24 and the current measurement device 30, and the measured value is a digital signal having a necessary resolution. Will be converted immediately. For example, the resolution of this digital signal is 16 bits and its sampling frequency is 400 MHz. This speed can be changed if necessary.
電子ビーム EBの 2次元的な走査により得られた二次電子、反射電子はホール表面 形状情報、基板電流測定値は、ホール底面の 2次元的形状に関する情報を含み、 測定座標 (電子ビームの照射位置)又は測定時間 (電子ビーム EBの照射時刻)の関 数である時間軸に対する波形情報として取得され、電流波形記録装置 120 (例えば 、メモリー、フラッシュメモリ、ハードディスク、光磁気ディスク等)にデジタル記録される  The secondary and reflected electrons obtained by two-dimensional scanning of the electron beam EB include hole surface shape information, and the substrate current measurement value includes information about the two-dimensional shape of the bottom surface of the hole. Position) or measurement time (electron beam EB irradiation time) is obtained as waveform information with respect to the time axis and is digitally recorded in the current waveform recorder 120 (eg, memory, flash memory, hard disk, magneto-optical disk, etc.) Be done
[0039] 以上のようにして取得された信号波形情報は、波形整形装置 130において、波形 に含まれる不要なノイズや高周波成分を除去するために波形整形される。上記波形 処理の例としては、移動平均フィルター処理、特定の周波数を取り除く波形処理、あ るいは特定の周波数の信号だけを取り出すフィルター処理、フーリエフィルター処理 等がある。これらの波形整形処理はハードウェアで行われても、ソフトウェアで行われ ても良い。 The signal waveform information acquired as described above is waveform-shaped by the waveform shaping device 130 in order to remove unnecessary noise and high-frequency components included in the waveform. Examples of the waveform processing include moving average filter processing, waveform processing for removing a specific frequency, filter processing for extracting only a signal of a specific frequency, and Fourier filter processing. These waveform shaping processes may be performed by hardware or software.
[0040] 続いて、波形整形された波形の中から、有用な波形のみを抽出し、ホールボトム面 積測定を行う(ステップ 6)。この場合、電子ビーム照射領域にはホールが含まれてい ない場所や、ホールのエッジに掛かっていて波形が汚い場合もあるので、そのような 波形を含んだ状態でエッジ抽出処理を行うと、その処理によって得られるエッジ座標 値の精度が低下する。このため、ホールエッジ抽出に有用な良好な電流波形は、閾 値法などを用いてある一定の値よりも絶対値が大きな信号の場合だけ抽出する。電 子ビームはライン状にスキャンされるだけではなぐ測定点に一定時間電子ビームを 照射して電流波形を取得することも行われる。これらの場合も上記と同様の波形処理 が行われ、必要な情報が抽出される。  [0040] Subsequently, only useful waveforms are extracted from the waveform-shaped waveforms, and hole bottom area measurement is performed (step 6). In this case, there are cases where the electron beam irradiation area does not contain holes, or there are cases where the waveform is dirty due to the edge of the hole. The accuracy of the edge coordinate value obtained by processing decreases. For this reason, a good current waveform useful for hole edge extraction is extracted only for signals whose absolute value is larger than a certain value using the threshold method. The electron beam is not only scanned in a line, but it is also possible to acquire a current waveform by irradiating the measurement point with the electron beam for a certain period of time. In these cases, waveform processing similar to the above is performed, and necessary information is extracted.
[0041] 測定に供せられるウェハー 23は、ウェハー 23上に設けられた識別番号、あるいは コンピュータによって識別可能なように情報が記録されている。より一般的には半導 体工場には MES (Manufacturing Execution System)と呼ばれる装置運用管理システ ムが存在して、各ウェハーがどの装置で何時、どのような処理を受けたのか全て記録 しており、それらの情報と相関を取る事により、不具合分類およびその原因を推定す る事に役立てる。 [0041] The wafer 23 used for the measurement is an identification number provided on the wafer 23, or Information is recorded so that it can be identified by a computer. More generally, there is an equipment operation management system called MES (Manufacturing Execution System) in a semiconductor factory, and it records all of what time and what processing each wafer has undergone. By correlating with such information, it is useful for estimating failure classification and its cause.
[0042] 図 3に本半導体検査装置で得られる情報群を列挙する。  FIG. 3 lists information groups obtained by this semiconductor inspection apparatus.
本半導体検査装置には、図 1に説明したように、ウェハーを識別するウェハー識別 装置、情報を取得するための電子ビームプローブを発生させるプローブ発生装置( 電子銃 10および電子ビーム源 11)、プローブを測定対象に照射することによって発 生する信号を検出する二次電子反射電子検出装置 24、電流測定装置 30、プローブ を測定対象に正確に照射するためのウェハー対物レンズ距離測定装置および XYス テージ 21、得られた信号の二次元的性質を基準画像との相関を取ることでパターン マッチングを行う 2次元走査制御装置 110などが設けられて 、る。  As shown in FIG. 1, the semiconductor inspection apparatus includes a wafer identification apparatus for identifying a wafer, a probe generator for generating an electron beam probe for acquiring information (electron gun 10 and electron beam source 11), a probe Secondary electron backscattered electron detector 24, current measuring device 30, and wafer objective lens distance measuring device and XY stage for accurately irradiating the probe with the measurement target. 21. A two-dimensional scanning control device 110 that performs pattern matching by correlating the two-dimensional properties of the obtained signal with a reference image is provided.
[0043] <プローブ発生装置 >  [0043] <Probe generator>
電子銃 10および電子ビーム源 11には電子ビームエネルギー、照射電流、プロ一 ブサイズ、プローブ形状、照射時間などの電子ビーム状態を変化させるための複数 のパラメータが存在し、それらを組み合わせることにより、測定対象に適したプローブ を発生させる事ができる。プローブ状態が異なると、得られる情報が変化するので、 本装置によって得られる測定値とプローブ条件とは常に対になって 1つの情報を形 成する。  The electron gun 10 and the electron beam source 11 have a plurality of parameters for changing the electron beam state such as electron beam energy, irradiation current, probe size, probe shape, irradiation time, etc. Probes suitable for the target can be generated. Since the obtained information changes when the probe state is different, the measurement value obtained by this device and the probe condition are always paired to form one piece of information.
[0044] <二次電子検出装置 >  [0044] <Secondary electron detector>
二次電子反射電子検出装置 24内の二次電子検出装置からは、プローブ照射によ つて発生した二次電子強度を得ることが出来る。電子ビームを測定対象のホール上 にて二次元走査し、その結果発生した二次電子を MCPある 、は電極に導 、てその 強度を信号として走査順 (位置、時間順)に二次元に並べると二次電子画像が得ら れる。これを一般に SEM像と呼んでいる。各ピクセル単位でコントラスト情報を有し、そ の時間変化も情報として得られる。ピクセルは位置情報も有している。二次電子反射 電子検出装置 24内の反射電子検出装置力 も反射電子画像、ピクセル単位のコン トラスト情報、あるいはその時間変化信号が得られる。電流測定装置 30からは、基板 電流像、各ピクセル単位のコントラスト情報、および基板電流値の時間変化情報が得 られる。 From the secondary electron detector in the secondary electron backscattered electron detector 24, the secondary electron intensity generated by the probe irradiation can be obtained. The electron beam is two-dimensionally scanned over the hole to be measured, and the secondary electrons generated as a result are guided to the electrode, and the intensity is signaled and arranged in two dimensions in the scanning order (position, time order). A secondary electron image is obtained. This is generally called an SEM image. Each pixel unit has contrast information, and its time change is also obtained as information. The pixel also has position information. Secondary electron reflection Electron detection device The reflected electron detection device power in the 24 Trust information or its time-varying signal is obtained. From the current measuring device 30, a substrate current image, contrast information for each pixel, and time change information of the substrate current value are obtained.
[0045] <ウェハー対物レンズ間距離測定装置 >  <Wafer Objective Lens Distance Measuring Device>
ウェハー対物レンズ距離測定装置においては、 Zセンサ(高さセンサ)およびフォー カス値が距離測定の機能を担当し、対物レンズ 15と、被測定対象であるウェハー 23 間の距離情報が得られる。 Zセンサ力 は数センチ平方メートル範囲の平均的な高さ 力 対物レンズのフォーカス値からは、ウェハー 23上の数ミクロン以内の局所的な高 さ情報が得られる。 XYステージ 21には、高精度位置座標測定能力があり、測定点座 標が nmオーダーの精度で常に測定されており、電子ビームシフト量と共に利用して 測定対象を区別できる。  In the wafer objective lens distance measuring device, the Z sensor (height sensor) and the focus value are responsible for the distance measurement function, and distance information between the objective lens 15 and the wafer 23 to be measured can be obtained. The Z sensor force is an average height force in the range of several centimeters square. The focus value of the objective lens provides local height information on the wafer 23 within a few microns. The XY stage 21 has high-accuracy position coordinate measurement capability, and the measurement point coordinates are always measured with accuracy on the order of nm. The measurement target can be distinguished using the electron beam shift amount.
[0046] 本検査装置は、電子ビームを測定対象にフォーカスするために、対物レンズ 15の 強さを電気的に変化させる機能を有している。この測定対象物にジャストフォーカスさ せるために必要な対物レンズの強さを表す値を電子ビームフォーカス値と呼ぶ。電子 ビームフォーカス値あるいは Zセンサからは、ウェハー 23と対物レンズ 15の距離を得 る事が出来る。一般に、対物レンズ 15とウェハートレイ 22が装置筐体に固定されて V、てその距離が不変であることを考慮すると、この値の変動からウェハー 23の表面 高さの情報が得られる。  The inspection apparatus has a function of electrically changing the strength of the objective lens 15 in order to focus the electron beam on the measurement target. A value representing the strength of the objective lens necessary for just focusing the measurement object is called an electron beam focus value. The distance between the wafer 23 and the objective lens 15 can be obtained from the electron beam focus value or the Z sensor. In general, when the objective lens 15 and the wafer tray 22 are fixed to the apparatus housing and the distance between the objective lens 15 and the wafer tray 22 is unchanged, information on the surface height of the wafer 23 can be obtained from the fluctuation of this value.
[0047] くパターンマッチングエンジン >  [0047] Pattern Matching Engine>
2次元走査制御装置 110内のパターンマッチングエンジンは基準画像と測定対象 図形を高速比較するものである。デジタル画像はピクセルと呼ばれる単位画素の集 合体からなり、明るさとカラーの属性を持っている。この 2つの属性の空間的な繋がり を利用して図形を認識する。パターンマッチングエンジンには大きく分けて 2つの機 能がある。 1つは、 2つの図形がどの程度、似ている力を算出する機能、もう 1つは似 ている図形を探し出してくるサーチ機能である。もちろん付属機能として、面積、長さ 、角度、歪などあらゆる図形の特徴を表すパラメータを算出する機能がある。  The pattern matching engine in the two-dimensional scanning control device 110 compares the reference image with the figure to be measured at high speed. A digital image consists of a collection of unit pixels called pixels, and has brightness and color attributes. The figure is recognized using the spatial connection of these two attributes. The pattern matching engine has two main functions. One is a function that calculates how similar the two figures are, and the other is a search function that searches for similar figures. Of course, as an attached function, there is a function for calculating parameters representing characteristics of all figures such as area, length, angle, and distortion.
[0048] 本検査装置では、測定箇所を精密位置出しするために、パターンマッチングのサ ーチ機能が利用されている。この場合、 1つあるいは複数個、予め内部に登録されて V、るテンプレートと呼ばれる標準画像と二次電子、反射電子ある 、は基板電流等、 測定で得られた画像を比較して、得られた画像の中から、標準画像と同じ物を抽出し て中心座標を算出する。中心座標を設計値などの標準値と比較することも可能であ る。標準値との差カもァライメントエラーを検出することもできる。複数の測定対象に 対して行ったパターンマッチングの結果から、複数の測定対象物間距離を測定する ことが出来る。この値からもァライメントエラーを知ることが出来る。 [0048] In this inspection apparatus, a search function for pattern matching is used in order to precisely position a measurement location. In this case, one or more are registered in advance. V, a standard image called a template, and secondary electrons, reflected electrons, etc. are compared with images obtained by measurement, such as substrate current, and the same image as the standard image is extracted from the obtained images. Calculate center coordinates. It is also possible to compare the center coordinates with standard values such as design values. Difference errors from standard values can also detect alignment errors. The distance between multiple objects can be measured from the results of pattern matching performed on multiple objects. The alignment error can also be known from this value.
[0049] 標準値は半導体デバイスのレイアウトを決定して 、る CADデータ力 抽出して利用 することが出来る。この機能を利用するためには、 CADデータと本装置をリンクさせて 使う。本装置は CADデータの GDSIIファイルをインポートする機能をもつ。 CADデータ である GDSIIファイル等の中から測定対象のレイヤー情報を抽出し、さらに、測定対 象箇所の座標を抽出する。測定によって得られたァライメントエラー情報は逆の経路 を通じて、 CADデータに反映させることも出来る。つまり、ァライメントエラーが起こり易 い場所を設計データにフィードバックする事により、設計値を変えて、ァライメントエラ 一を起こりにくくする等の処方を実行できる。  [0049] The standard value can be used by determining the layout of the semiconductor device and extracting the CAD data. To use this function, CAD data and this device are linked. This device has a function to import GDSII file of CAD data. The layer information of the measurement target is extracted from the GDSII file that is the CAD data, and the coordinates of the measurement target location are extracted. The alignment error information obtained by the measurement can be reflected in the CAD data through the reverse path. In other words, by feeding back to the design data the locations where alignment errors are likely to occur, prescriptions such as changing the design values to make alignment errors less likely to occur can be executed.
[0050] 一方、表面形状の判定を行うためには、画像が基準に対してどの位似ているかを 算出する機能を活用する。画像比較方法にはいろいろなアルゴリズムが存在し、プロ ッブと呼ぶコントラスト集合体に測定対象を抽象して比較する方法、測定対象のエツ ジを抽出して、幾何学的相関を取り比較する方法など種々の画像認識に利用される アルゴリズムがある。知られている方法の内一番適切なものを選択利用する。  [0050] On the other hand, in order to determine the surface shape, a function for calculating how similar the image is to the reference is utilized. There are various algorithms in the image comparison method, a method of comparing the measurement object by abstracting it into a contrast assembly called a probe, and a method of extracting the measurement object edge and comparing the geometric correlation. There are various algorithms used for image recognition. Select and use the most appropriate of the known methods.
上記パターンマッチングを行うと、パターンマッチングスコアと呼ばれる値が得られ る。この値は例えば、ある装置では 100点が最高である力 その場合は登録されてい る図形形状と測定された図形が完全に同じである事を示している。パターンマツチン グスコア値力 S小さくなると、得られた図形の形状が標準画像力 ずれていることを表し ている。従って、例えば、パターンマッチングスコアを利用することで測定対象画像形 状が標準画像とどの程度似て 、るのかを評価できる。  When the pattern matching is performed, a value called a pattern matching score is obtained. For example, this value indicates that the force with 100 points is the highest in a certain device. In that case, the registered figure and the measured figure are completely the same. When the pattern matching score value S is small, the shape of the figure obtained is deviated from the standard image power. Therefore, for example, by using the pattern matching score, it is possible to evaluate how much the measurement target image shape is similar to the standard image.
[0051] <ブランケットモード > [0051] <Blanket mode>
位置決めされた測定対象に、予め定められた電子ビームエネルギー、照射電流量 、フォーカスサイズにて、例えば 1秒程度の一定時間電子ビームを照射した際に得ら れる基板電流の平均電流値を測定する方法をブランケットモードと呼び、ホール底サ ィズ、ホール底残膜、ホール底表面状態の相対変化などの情報が得られる。 Obtained when an electron beam is irradiated to the measured object for a certain period of time, for example, about 1 second at a predetermined electron beam energy, irradiation current amount, and focus size. The method of measuring the average current value of the substrate current is called blanket mode, and information such as the relative change in the hole bottom size, hole bottom residual film, and hole bottom surface state can be obtained.
[0052] くラインスキャンモード〉  [0052] Ku Line Scan Mode>
測定対象にフォーカスした電子ビームを予め決められた間隔、および速度で二次 元走査して得られる基板電流波形を測定する方法をラインスキャンモードと呼ぶ。基 板電流波形のエッジ情報力もホール底サイズや形状を得る事が出来る。波形の高さ 力もは、ホール底残膜の状態を知ることも出来る。ホール底サイズや形状、およびホ ールが存在すべき位置情報を含む設計値を総合比較することで、ァライメントエラー などを知ることも出来る。  A method of measuring a substrate current waveform obtained by two-dimensional scanning an electron beam focused on a measurement object at a predetermined interval and speed is called a line scan mode. The edge information power of the board current waveform can also obtain the hole bottom size and shape. The height force of the waveform can also know the state of the hole bottom residual film. By comparing the design values including the hole bottom size and shape, and the location information where the holes should be, it is possible to know alignment errors.
[0053] <ホール面積規格化基板電流(図 4) >  [0053] <Hole area normalized substrate current (Figure 4)>
前述のブランケットモードで得られた基板電流値を設計レイアウト上のホール面積、 あるいは実測に基づくホール面積を利用して規格ィ匕すると規格ィ匕測定値は単位面 積あたりの基板電流値と成るため、ホールの大きさやサイズに無関係な量と成る。ブ ランケット法で得られた測定値を面積規格ィ匕した値は普遍的にホール底の表面状態 を示し、形状およびサイズの異なる種々のホール間のホール底表面の状態差を比較 することが可能と成る。場合によっては、ホール表面面積を用いて面積規格ィ匕を行い it較することちある。  If the board current value obtained in the blanket mode described above is standardized using the hole area on the design layout or the hole area based on actual measurement, the standard value will be the board current value per unit area. The amount is irrelevant to the size and size of the hole. The value obtained by measuring the area obtained by the blanket method is an area standard, which indicates the surface condition of the hole bottom universally, and it is possible to compare the difference in the condition of the hole bottom surface between various holes of different shapes and sizes. It becomes. In some cases, it may be compared by performing an area standard using the hole surface area.
[0054] 図 4に基板電流値面積規格化の方法を示した。例えば、最初にブランケットモード で 1つあるいは幾つかの同等のホールを含むように電子ビームを照射し、基板電流 値を測定する。次に、ラインスキャンモード測定を同じホールあるいは複数あるホール の内の代表ホールに対して行い、ホール底面積評価を行う。この場合、複数ホール の平均面積を用いても良い。得られたホール底面積情報を用いて、予め得られてい るブランケットモード測定値を割り算して単位面積あたりの基板電流値に規格ィ匕する 。得られた値は単位面積あたりの基板電流値なので、ホール面積とは無関係の量と 成っている。従って、それぞれの測定対象の単位面積あたりの基板電流値を比較す る事で、ホール底の膜の残り具合、ホール表面状態などを比較することができる。ここ では、ラインスキャンモードを用いてホールサイズを算出した力 ホールサイズが他の 手段で分力つている場合にはその値を用いても構わない。また、ブランケットモード測 定を必ずしも最初に行う必要も無ぐラインスキャンモードの後力 行っても良い。 FIG. 4 shows a method for normalizing the substrate current value area. For example, the substrate current is measured by first irradiating an electron beam in blanket mode to include one or several equivalent holes. Next, the line scan mode measurement is performed on the representative hole of the same hole or multiple holes, and the hole bottom area is evaluated. In this case, an average area of a plurality of holes may be used. Using the obtained hole bottom area information, a blanket mode measurement value obtained in advance is divided to obtain a standard value for the substrate current value per unit area. Since the obtained value is the substrate current value per unit area, the amount is independent of the hole area. Therefore, by comparing the substrate current value per unit area of each measurement object, it is possible to compare the remaining state of the film at the bottom of the hole, the surface state of the hole, and the like. Here, the force obtained by calculating the hole size using the line scan mode may be used when the hole size is divided by other means. Blanket mode measurement It is also possible to follow the line scan mode without having to perform the setting first.
[0055] 図 5は本検査装置において単位面積あたりの基板電流量を求める別の方法を開示 している。電子ビームは対物レンズなどを制御する事により、その先端形状を種々の 形、サイズに変えることが出来る。予め電子ビームフォーカス値と電子ビーム先端面 積の関係を他の手段で測定しておき、既知の電子ビーム先端サイズが常に実現出 来るように準備しておく。次に、測定対象に対して電子ビームが所望のサイズとなるよ うに制御して電子ビームを照射し、基板電流値を測定する。この電子ビーム照射は走 查しても、ホールの中だけに電子ビームが当たるように照射位置を制御して照射して も構わない。 FIG. 5 discloses another method for obtaining the substrate current amount per unit area in this inspection apparatus. The tip of the electron beam can be changed to various shapes and sizes by controlling the objective lens. The relationship between the electron beam focus value and the electron beam tip area is measured in advance by other means, and a known electron beam tip size is always realized. Next, the substrate current value is measured by irradiating the measurement target with the electron beam so that the electron beam has a desired size. Even if this electron beam irradiation is performed, the irradiation position may be controlled so that the electron beam hits only the inside of the hole.
[0056] 電子ビーム照射が走査方式の場合には、基板電流波形の高さが単位面積あたりの 基板電流に相当する。後者のようにビームをホールの中だけに当てるようにした場合 には、照射によって生じた基板電流値の平均値などが単位面積あたりの基板電流値 になる。この方法では、ホールで無くても単位面積あたりの基板電流値を知ることが できる。また、ホールに適用することも出来る力 その際ホールの面積を態々測定す る必要がないので測定スピードを上げることが出来る。  [0056] When electron beam irradiation is a scanning method, the height of the substrate current waveform corresponds to the substrate current per unit area. In the latter case, when the beam is applied only to the inside of the hole, the average value of the substrate current value generated by irradiation becomes the substrate current value per unit area. With this method, the substrate current value per unit area can be known even if it is not a hole. In addition, the force that can be applied to the hole, it is not necessary to measure the area of the hole.
[0057] 以上のように面積規格ィ匕を行った基板電流値を測定値として利用する事により、レ ィアウトサイズの違う素子同士を比較することが可能である。例えば、サイズの異なつ た複数のホールをマスク上に設けて、プロセスを進め、それぞれのサイズの素子に関 して、先端面積が既知の電子ビームを照射し規格化基板電流値を比較してグラフ化 することにより、ホールの底の状態を推定可能となる。もちろん、大きさの異なるホー ルは偶然できた異なるホール径を持つホールを実測して使用しても良 、。 1つのホー ルカ 得られた情報を基にホールの状態を推定するよりも、より確実にホール状態を 推定することが可能と成る。  As described above, by using the substrate current value subjected to the area standardization as a measurement value, it is possible to compare elements having different layout sizes. For example, a plurality of holes of different sizes are provided on the mask, the process proceeds, and each size element is irradiated with an electron beam with a known tip area, and the normalized substrate current value is compared. By making a graph, the bottom of the hole can be estimated. Of course, for holes of different sizes, it is possible to measure and use holes with different hole diameters that were accidentally created. One hole can estimate the hole state more reliably than the estimated hole state based on the obtained information.
[0058] 図 6と図 7、図 8はエッチングが正常に行われている残膜の無いコンタクト品とホー ル底にエッチング残りが存在する場合の実験例を示している。例えば、洗浄不良など でレジストなどのポリマーがコンタクトホール底に僅か〖こでも残ると、コンタクト抵抗値 の上昇が起こり、そのデバイスは不良となる。ポリマーが直接絶縁体として機能して高 抵抗の原因となる、あるいはホールに導体を埋め込むプロセス中に気化してボイドを 形成し、導体の埋め込みが不十分になる原因となる。色々な不良モードが存在する。 本実験例では、その不具合モードを自動分類するために必要な情報を得る方法を 記す。グラフ横軸には同一ウェハーで測定されたホールの径(Bottom CD ;nm)、縦 軸には規格ィ匕した基板電流値 (EBS Value;pA)を取る。 1枚のウェハー上に存在する 設計上同じレイアウトのホールを測定対象として選択し、プロットする。 FIG. 6, FIG. 7, and FIG. 8 show experimental examples in which etching is performed normally and there is no residual film contact product and etching residue is present at the bottom of the hole. For example, if a polymer such as a resist remains on the bottom of a contact hole due to poor cleaning, the contact resistance value increases and the device becomes defective. The polymer acts directly as an insulator, causing high resistance, or vaporizing during the process of filling the hole with the conductor. This will cause insufficient conductor embedding. There are various failure modes. In this experimental example, a method for obtaining information necessary to automatically classify the failure mode is described. The horizontal axis of the graph represents the hole diameter (Bottom CD; nm) measured on the same wafer, and the vertical axis represents the standardized substrate current value (EBS Value; pA). Select holes with the same design layout on one wafer as the measurement target and plot.
[0059] 図 6から明らかなように、エッチングが正常に行われているサンプルではホールサイ ズで規格化した基板電流値 (単位面積あたりの基板電流値)はホールサイズが異な つてもほぼ一定の値を示している。一方、ホール底に残膜が生じるサンプルでは、図 7、図 8に示すように、ホール底サイズが小さくなるにつれて、規格化後の測定値が小 または大となる。すなわち、基板電流はホール底材料の二次電子放出効率に依存す る。シリコン酸ィ匕膜等がホール底にあると、二次電子放出が大きくなり、ホール底サイ ズカ 、さくなるに従って、規格ィ匕基板電流値が下降する (図 7)。  [0059] As is apparent from FIG. 6, the substrate current value normalized by the hole size (substrate current value per unit area) is almost constant even when the hole size is different in the samples that are etched normally. Is shown. On the other hand, as shown in Figs. 7 and 8, the sample with residual film on the bottom of the hole has a smaller or larger measured value as the hole bottom size becomes smaller. In other words, the substrate current depends on the secondary electron emission efficiency of the hole bottom material. When a silicon oxide film or the like is present at the bottom of the hole, secondary electron emission increases, and as the hole bottom size decreases, the standard substrate current value decreases (Fig. 7).
[0060] 一方、レジストなど炭素を多く含む高分子は二次電子の放出効率が、シリコンなどと 比較して低い。そのため、ホール底にレジストなどの有機材料が出現するような場合 には、ホール底サイズが小さくなるに従って、基板電流値が上昇する。複数のホール 径をもつホール力 得られたデータをグラフにして、その傾きをプロセス判断の指標 にすることで、プロセス不具合原因を詳細に分類することができる。  [0060] On the other hand, a polymer containing a large amount of carbon such as a resist has a lower secondary electron emission efficiency than silicon. Therefore, when an organic material such as a resist appears at the bottom of the hole, the substrate current value increases as the hole bottom size decreases. Hall force with multiple hole diameters By graphing the obtained data and using the slope as an index for process judgment, the cause of process failure can be classified in detail.
[0061] 以上説明したように、本検査装置によると、基板電流測定値力 ホール底に残膜が あるか無いか、酸化膜、レジスト等の残留物があるかないかをはっきりと検出すること が出来る。  [0061] As described above, according to the present inspection apparatus, it is possible to clearly detect whether there is a residual film at the bottom of the substrate current measurement force, and whether there is a residue such as an oxide film or a resist. I can do it.
本検出装置では、規格化基板電流値の面内分布を知ることが出来る。ホール面積 で規格化した後の基板電流値は、測定対象サイズに対して不変量なので、その値で 面内分布を評価することにより、ホール底の状態のみのプロセス分布を知ることが出 来る。  In this detection apparatus, the in-plane distribution of the normalized substrate current value can be known. Since the substrate current value after normalization by the hole area is invariable with respect to the size of the object to be measured, it is possible to know the process distribution only for the state of the hole bottom by evaluating the in-plane distribution with that value.
例えば、エッチング装置には、装置固有のプロセス分布が存在する力 露光プロセ スに分布があると、ホール表面径にも影響を与える。そのため、エッチング後に得ら れるプロセス分布は両者の合成と成り、そのまま測定したのでは、エッチング装置固 有の分布だけを抽出することが出来ない。しかし、基板電流をホール表面径あるいは ホール底径で規格ィ匕する事によって、露光による影響を排除し、エッチング装置固有 の分布だけを抽出することができる。 For example, in an etching apparatus, if there is a distribution in the force exposure process where a process distribution unique to the apparatus exists, the hole surface diameter will also be affected. Therefore, the process distribution obtained after etching is a combination of the two, and if measured directly, it is not possible to extract only the distribution unique to the etching apparatus. However, the substrate current is By standardizing the hole bottom diameter, the influence of exposure can be eliminated and only the distribution unique to the etching apparatus can be extracted.
[0062] 図 9, 10は以上のようにして得られたデータ(規格化後の基盤電流値)を二次元等 高線カラーマップに表示した実験例を示している。単に、 1つの測定点の測定値では 分類出来ない不具合も、ウェハー全体あるいはショット、あるいはチップ内と分布を観 察することによって、より詳細に不具合を分類することができる。例えば、図 9は、正常 品ウェハーである力 図 10では、ウェハーの下部に測定値が大きく変化する場所が 分布している。例えば、図 10のような場所に不良分布をするプロセス装置が予め分 力つて 、れば、その装置が不良を引き起こして 、ると!/、うことが不良分布力も分類す ることがでさる。  FIGS. 9 and 10 show experimental examples in which the data obtained as described above (basic current values after normalization) are displayed on a two-dimensional contour color map. A defect that cannot be classified simply by the measurement value at one measurement point can be classified in more detail by observing the entire wafer, shot, or distribution within the chip. For example, Fig. 9 shows the force of a normal wafer. In Fig. 10, the locations where the measured values change greatly are distributed below the wafer. For example, if a process device that distributes defects in a place as shown in FIG. 10 is pre-distributed, if the device causes a failure,! / .
[0063] 図 11は本発明が対象とする不具合の分類例を示して!/ヽる。  FIG. 11 shows examples of classification of defects targeted by the present invention.
例えば、ホール形成エッチング後に検出される不具合としては、次に上げる 9種類 が知られている。  For example, the following nine types of defects detected after hole formation etching are known.
1 ウェハー高さ異常  1 Wafer height error
2 ホール表面サイズ異常  2 Hole surface size abnormality
3 ホール表面形状異常  3 Hole surface shape abnormality
4 ホール底サイズ異常  4 Hole bottom size error
5 ホール底形状異常  5 Hole bottom shape abnormality
6 ホール底残膜異常 (アンダーエッチング)  6 Hole bottom residual film abnormality (under etching)
7 ホール底レイヤー抜け異常 (オーバーエッチング)  7 Hole bottom layer missing error (Overetching)
8 ホール底界面異常  8 Hole bottom interface anomaly
9 ミスァライメント  9 Misalignment
それぞれの不具合は、数値表現可能な特徴を有するので、特徴を記述するのに相 応 ヽ測定値に対して最適な数値範囲 (管理値)を設定する事で、不具合を分類す ることが出来る。以下、それぞれの不具合の分類方法に関して記述する。  Each defect has a feature that can be expressed numerically. Corresponding to describe the feature 不 具 合 The failure can be classified by setting the optimal numerical range (control value) for the measured value. . The following describes the classification method for each defect.
[0064] 1 ウェハー高さ異常 [0064] 1 Wafer height abnormality
CMP (化学機械研磨)はウェハーを削って平坦ィ匕するプロセスである力 必ずしも その研磨面は平らではなぐウェハー裏面の高さに対しても高さは一定で無い。従つ て、ウェハーの高さが変化している場合など、ウェハー各所のフォーカス値を測定す ることで、ウェハー基準面に対する高さの分布を知ることが出来る。 CMP (Chemical Mechanical Polishing) is a process that removes and flattens the wafer. The polishing surface is not necessarily flat. Follow By measuring the focus value of each part of the wafer, such as when the height of the wafer is changing, the height distribution relative to the wafer reference plane can be determined.
CMPの高さばらつきは、引き続き行われるフォトレジストプロセスやエッチングプロセ スに対して影響を与える。例えば、デバイスの特定領域に CMPによって数百 nmの段 差が生じると、露光装置の焦点深度は数百 nmし力ないので、段差のある場所と無い 場所では、フォトレジストの露光されかたが異なり、不具合を引き起こす。測定点のフ オーカス値、あるいは Zセンサ値を分析する事で、デイツシングゃ CMP断差が不具合 原因であると推定することが出来る。  The variation in CMP height affects subsequent photoresist processes and etching processes. For example, if a step of several hundreds of nanometers is caused by CMP in a specific area of the device, the depth of focus of the exposure apparatus will be several hundred nanometers, so there is no way to expose the photoresist in places where there is a step. Unlikely, it causes trouble. By analyzing the focus value of the measurement point or the Z sensor value, it can be estimated that the CMP gap is the cause of the failure.
[0065] 2 ホール表面サイズ異常 [0065] 2 Hole surface size anomaly
ホール表面サイズは SEM像力 得られる。通常の CDSEMと設計データなど力 予 め標準のホール表面サイズを設定しておき、その上限許容値、あるいは下限許容値 などを決定しておく(例えば、 0. 1ミクロン以上 0. 12ミクロン以下)。本装置によって 取得されたホールサイズを許容値と比較する事で、ホール表面サイズが標準よりも小 έ 、、ある 、は大き 、場合には露光プロセスのどこかに不具合が生じて 、ると分類で きる。  The hole surface size can be obtained with SEM image power. Set the standard hole surface size such as normal CDSEM and design data, and determine the upper limit value or lower limit value (for example, 0.1 micron or more and 0.12 micron or less). . By comparing the hole size obtained by this equipment with the allowable value, the hole surface size is smaller or larger than the standard, and if it is classified as a defect somewhere in the exposure process. it can.
このように不具合原因が露光装置起因と分類された場合、自動的に露光プロセス に利用された露光装置、現像装置等の装置状態をトラッキングしている MESデータべ ースなどに問 、合わせ、通常運用時の制御データと違 、が無 、かどうかなどを過去 に遡って調査する。例えば、トラッキングデータに記録された露光量と照合する事に よって露光不足であるとか、現像不足などを根本原因として確定することが可能と成 る。このように原因が判明すれば、その場で露光プロセスを点検するなり、プロセスパ ラメータを最適化し直すことで、不具合を無くすように出来る。  When the cause of failure is classified as exposure device exposure, the MES database that automatically tracks the device status of the exposure device, development device, etc. used in the exposure process is automatically contacted. Investigate retrospectively whether there is no difference from the control data during operation. For example, by checking against the exposure amount recorded in the tracking data, it is possible to determine the root cause such as underexposure or insufficient development. If the cause is found in this way, the exposure process is checked on the spot, and the process parameters can be re-optimized to eliminate defects.
[0066] 3 ホール表面形状異常 [0066] 3 hole surface shape anomaly
ホール表面形状は、パターンマッチング情報を利用して分類できる。例えば、バタ ーンマッチングテンプレートとして採用する図形にプロセスで本来得られるべき形状 を有した図形を採用し、測定対象に対してパターンマッチングを行う。パターンマッチ ング出力であるパターンマッチングスコアが 100よりも小さい場合は、得られるべき形 状力も異なっていると判定できる。ノ ターン表面形状は露光プロセスによって最も影 響を受けるので、この場合、露光プロセスに異常があると推定できる。パターンマッチ ングテンプレートは必ずしも正常時の物だけではなぐ種々の異なった (例えば、円と か楕円とか長方形など)複数の形状を登録しておき、それぞれの図形にどれだけ似 ている力を算出することができる。以上のように形状を詳しく分析する事で露光照明 条件異常やマスク異常を分離する事が出来る。例えば、以上のような手続きによって ホール形状が予想に反し楕円であると判明した場合は、照明が傾斜していることが推 定される。あるいはホーノレのエッジがぎざぎざの場合には、マスク異常や現像不足な どが推定される。 The hole surface shape can be classified using pattern matching information. For example, a figure having a shape that should be originally obtained in the process is adopted as a figure to be used as a pattern matching template, and pattern matching is performed on the measurement target. If the pattern matching score, which is the pattern matching output, is less than 100, it can be determined that the shape force to be obtained is also different. The surface pattern of the pattern is most affected by the exposure process. In this case, it can be estimated that there is an abnormality in the exposure process. Pattern matching templates are not limited to normal ones, but various different shapes (for example, circles, ellipses, rectangles, etc.) are registered, and how much force resembles each figure is calculated. be able to. By analyzing the shape in detail as described above, it is possible to isolate exposure illumination condition abnormalities and mask abnormalities. For example, if the hole shape is found to be an ellipse unexpectedly by the above procedure, it is estimated that the lighting is inclined. Or, if the edge of the Honoré is jagged, it is estimated that the mask is abnormal or that the development is insufficient.
[0067] 4 ホール底サイズ異常  [0067] 4 Hole bottom size abnormality
ホール底サイズはラインスキャンモードカゝら得る事が出来る。正常なホール底サイズ を例えば 0. 04ミクロン以上 0. 045ミクロン以下を正常範囲と予め定義することにより 、その値以内か、以外かで正常異常を判別できる。ホール底サイズのみ異常がある 場合には、エッチングプロセスに不具合があると推定される。  The hole bottom size can be obtained from line scan mode. If the normal hole bottom size is defined in advance as a normal range of 0.04 microns or more and 0.045 microns or less, for example, normality / abnormality can be discriminated within or outside that value. If only the hole bottom size is abnormal, it is estimated that there is a problem with the etching process.
[0068] 4a ホール傾斜角度異常  [0068] 4a Hall tilt angle error
ホール表面径とホール底径の測定値を両方利用すると、エッチング深さは予め付 けた膜厚み (例えば 300應)として把握されているので、エッチングの傾斜角度が得 られる。正常なホールが持つべきホール傾斜角度範囲を例えば 88度以上 90度以内 などと定義することにより、その値以内か以外かで正常異常を判別できる。その角度 が標準値よりも小さぐあるいは大きくなつていれば、酸素ガスの流量などの原料ガス の流量変化が原因と推定できる。以上の例のように特定のプロセスのプロセスパラメ ータの変動と不具合症状が関係する場合、測定値と不具合を起こしたと考えられる 装置の実際に利用されたパラメータの相関関係を見ることで、不具合原因を確定す る事が出来る。  When both the hole surface diameter and hole bottom diameter measurements are used, the etching depth is known as the pre-deposited film thickness (for example, 300 °), so that the etching inclination angle can be obtained. By defining the hole tilt angle range that a normal hole should have, for example, 88 degrees or more and 90 degrees or less, it is possible to determine normality / abnormality depending on whether it is within that value. If the angle is smaller or larger than the standard value, it can be estimated that the source gas flow rate change such as oxygen gas flow rate is the cause. As shown in the above example, when fluctuations in the process parameters of a specific process are related to the failure symptom, it is possible to check the correlation between the measured value and the parameters actually used by the device that is considered to have caused the failure. The cause can be determined.
[0069] 5 ホール底形状異常  [0069] 5 Hole bottom shape anomaly
ホール底形状異常は、ラインスキャン法のデータあるいは、基板電流像に対してパ ターンマッチングを行うことで評価することが出来る。例えば、標準図形に対する許容 歪範囲を予め定義して置けば、その範囲内か範囲外かにより正常異常を判別できる 。ホール表面形状の測定と同じように、お互いに異なる形状を持つ複数のパターンマ ツチング用のテンプレートを定義しておき、パターンマッチングを行うことによって形状 を知ることが出来る。例えば、エッチング不足が起これば、正常のホールよりも非常に 小さなホールが得られる。逆に、エッチング過剰が起こると、本来の形状よりも大きな ホール底が得られるので、これを分類することで不具合を分類できる。 Hole bottom shape anomalies can be evaluated by performing pattern matching on line scan data or substrate current images. For example, if an allowable distortion range for a standard graphic is defined in advance, it is possible to determine normality / abnormality depending on whether it is within the range or not. As with the measurement of the hole surface shape, multiple pattern markers with different shapes are used. The template can be defined and the shape can be known by performing pattern matching. For example, if etching is insufficient, holes that are much smaller than normal holes can be obtained. Conversely, if excessive etching occurs, a hole bottom that is larger than the original shape can be obtained. By classifying this, defects can be classified.
[0070] また、ァライメントエラーがある場合、ホール底配線を突きぬけて、エッチングが進行 する場合がある。そのような過剰エッチングはリークなどの原因に成る力 ホール底に スパイク状の穴形状が生じる。これらは、ホール底の穴形状異常として分類出来る。 あるいは、過剰エッチングが無い場合も、ホールの位置とホール底配線の位置関係 が正常で無い場合、ホール底形状異常が起こる。この場合は、ホール底が三日月形 状と成る場合がある。そのような場合は、露光時ァライメントエラーが原因であると分 類できる。  [0070] Further, when there is an alignment error, the etching may proceed through the hole bottom wiring. Such excessive etching can cause leaks, etc. Spike-shaped hole shapes are generated at the bottom of the holes. These can be classified as hole shape anomalies at the bottom of the hole. Alternatively, even if there is no excessive etching, if the positional relationship between the hole position and the hole bottom wiring is not normal, a hole bottom shape abnormality will occur. In this case, the bottom of the hall may have a crescent shape. In such a case, it can be classified as a cause of an alignment error during exposure.
複数の種々の形をした三日月形状をパターンマッチング用のテンプレートとして利 用する事で、三日月の形状判断やホール底位置計測をすることができる。得られた 計測値と予め定めた基準値比較する事で、ミスァライメントを抽出分類出来る。  By using crescent moon shapes with multiple different shapes as templates for pattern matching, crescent moon shape judgment and hole bottom position measurement can be performed. Misalignment can be extracted and classified by comparing the measured value with a predetermined reference value.
[0071] 6 ホール底残膜異常 (アンダーエッチング)  [0071] 6 hole bottom residual film abnormality (under etching)
ブランケットモード測定、あるいはラインスキャンモード測定を行う事によって、ホー ル底残膜を検出できる。図 12は正常なホールを有する場合のラインスキャン波形で ある。一方、図 13はホール底に絶縁性の残膜が存在するときのラインスキャン波形で ある。ホール底に絶縁膜が存在すると、ホールを等価電気回路で表現した場合、通 常のホールには無い、余分な電気容量成分を持っため、測定対象の電気的特性が 変化する。そのため、例えば、ラインスキャン波形の応答時定数や振幅が変化し、ラ インスキャンモード測定波形が変化する。この変化を検出する事でホール底に残膜 が生じて 、ることを区別できる。  Hole bottom residual film can be detected by performing blanket mode measurement or line scan mode measurement. Figure 12 shows the line scan waveform when there is a normal hole. On the other hand, Fig. 13 shows the line scan waveform when there is an insulating residual film at the bottom of the hole. If there is an insulating film at the bottom of the hole, the electrical characteristics of the object to be measured will change when the hole is expressed by an equivalent electric circuit because it has an extra capacitance component that is not found in a normal hole. Therefore, for example, the response time constant and amplitude of the line scan waveform change, and the line scan mode measurement waveform changes. By detecting this change, it can be distinguished that a residual film is formed at the bottom of the hole.
[0072] 一方、二次電子放出量は材料によって異なるので、面積規格化基板電流の大きさ から、ホール底状態を知ることが出来る。図 25にホール底が酸ィ匕膜 (Si02)の例と TiN の例を示した。左側の図が基板電流量、中央の図がホール底の直径、右側の図がホ ール構造を示している。ホール底が酸ィ匕膜の例では、ホール径が大きければ大きい ほど基板電流量が少ない。一方、ホール底が TiNの例では、ホール径が大きければ 大きいほど基板電流量が大きい。このように材料が異なると同じホール径のホールで あっても観測される基板電流値の大きさが変わってくる。 2つのグラフを並べることで 人間が膜の違いを定性的に検出することができる。し力しながら、即座に、どの膜種 がホール底に残っているのかを言い当てる事は困難である。 [0072] On the other hand, since the amount of secondary electron emission varies depending on the material, the state of the hole bottom can be known from the magnitude of the area normalized substrate current. Figure 25 shows an example where the hole bottom is an oxide film (Si02) and TiN. The left figure shows the substrate current, the middle figure shows the hole bottom diameter, and the right figure shows the hole structure. In the example where the hole bottom is an oxide film, the larger the hole diameter, the smaller the substrate current. On the other hand, if the hole bottom is TiN, The larger the value, the larger the substrate current. Thus, when the materials are different, the observed substrate current value changes even for holes of the same hole diameter. By arranging two graphs, humans can qualitatively detect differences in membranes. However, it is difficult to immediately tell which film type remains at the bottom of the hole.
[0073] 本検査装置では、これらの判断をコンピュータが自動的に行えるようにした。具体的 には、ブランケットモードとラインスキャンモードから得られた情報から、ホール面積を x、面積規格化基板電流を yとし、 2つの因子により得られる直線近似方程式 y=ax+b の係数 aの数値を求めることで行う。もちろんもっと高度な近似式を用いても良い。 予め係数 aと膜種あるいは材料の関係を調べて置き、データベースに記憶しておく ことで、 Si02、 TiN以外でも Si、 Ti、 SiN、 SiO、 SiOC、 Al、 W、 Cuなど様々な膜種の判別 が可能である。 [0073] In this inspection apparatus, the computer can automatically make these determinations. Specifically, from the information obtained from the blanket mode and line scan mode, the hole area is x, the area normalized substrate current is y, and the coefficient a of the linear approximation equation y = ax + b obtained by two factors This is done by obtaining a numerical value. Of course, a more advanced approximate expression may be used. By investigating the relationship between the coefficient a and the film type or material in advance and storing it in the database, various film types such as Si, Ti, SiN, SiO, SiOC, Al, W, Cu can be used in addition to Si02 and TiN. Discrimination is possible.
[0074] ホール底残膜が検出された場合は、アンダーエッチングを起こしている事が推定さ れる。アンダーエッチングを起こした場合は、標準にエッチングされた場合に観測さ れる基板電流値とは異なった基板電流値が観測されるので、その範囲を予め定義し ておくことにより、ホール残膜を検出分類できる。  [0074] When the hole bottom residual film is detected, it is estimated that under-etching has occurred. When under-etching occurs, a substrate current value that is different from the substrate current value observed when etching is performed as a standard is observed, so that the hole residual film can be detected by defining the range in advance. Can be classified.
ホール残膜が生じて 、る場合、エッチング装置の経年変化やエッチング時間パラメ ータの設定異常あるいは設定値と実効値に差があるなどがその原因と考えられる。  If a hole residue film is generated, the cause is considered to be the secular change of the etching apparatus, the setting error of the etching time parameter, or the difference between the set value and the effective value.
[0075] 7 ホール底レイヤー抜け異常 (オーバーエッチング) [0075] 7 Hole bottom layer missing error (Overetching)
ブランケットモード測定をすることによって、ホール底抜けを検出できる。二次電子 放出量は材料によって異なるので、規格化基板電流の大きさから、ホール底状態を 知ることが出来る。ホール底レイヤー抜けが存在すると、通常ホール底に存在すべき 材料とは異なる材料に電子ビームが照射されるため、標準で観測される基板電流値 とは異なった値が検出される。予め、レイヤー抜けの場合に生じる基板電流値の範囲 を定義することによって、その範囲内力範囲外かによつて、レイヤー抜けを判断する ことが出来る。これは、ホール底を構成している材料を判別していることと同じである。 レイヤー抜けの原因としては、プラズマの掛けすぎによるオーバーエッチングなどが 推定される。オーバーエッチングが検出された場合には、エッチング装置のトラツキン グデータとつき合わせる事で、原因が確定可能である。エッチング時間の設定異常、 プラズマエネルギーの設定異常あるいは、ガス流量異常などが推定される。 By measuring the blanket mode, it is possible to detect the bottom of the hole. Since the amount of secondary electron emission differs depending on the material, the bottom state of the hole can be known from the magnitude of the normalized substrate current. If a hole bottom layer is missing, a material different from the material that should normally be present at the hole bottom is irradiated with an electron beam, so a value different from the standard observed substrate current is detected. By defining in advance the range of the substrate current value that occurs when a layer is missing, it is possible to determine whether a layer is missing depending on whether the force is outside the range. This is the same as determining the material constituting the hole bottom. As a cause of missing layers, overetching due to excessive plasma is estimated. If overetching is detected, the cause can be determined by matching the tracking data of the etching equipment. Etching time setting error, An abnormal plasma energy setting or an abnormal gas flow rate is estimated.
[0076] 8 ホール底界面異常  [0076] 8 hole bottom interface anomaly
ブランケットモード測定あるいはラインスキャンモード測定する事によって、ホール底 界面異常を検出できる。正常なホール底を持つ場合と異常なホール底状態を持つ 場合、二次電子放出量は材料によって異なるので、規格化基板電流の大きさから、 ホール底状態を知ることが出来る。ホール底界面異常が存在すると、通常ホール底 に存在するはずの材料とは異なる材料に電子ビームが照射される。そのため、標準 で観測される基板電流値とは異なった値が検出される。予め、ホール底界面異常の 場合に生じる基板電流値の範囲を定義する事によって、その範囲内か範囲外かによ つて、ホール底界面異常を判断することが出来る。  Hole bottom interface anomalies can be detected by blanket mode measurement or line scan mode measurement. When there is a normal hole bottom and an abnormal hole bottom state, the amount of secondary electron emission differs depending on the material, so the hole bottom state can be known from the magnitude of the normalized substrate current. When a hole bottom interface anomaly exists, an electron beam is irradiated onto a material different from the material that should normally exist at the hole bottom. Therefore, a value different from the substrate current value observed in the standard is detected. By defining the range of the substrate current value that occurs in the case of a hole bottom interface abnormality in advance, it is possible to determine the hole bottom interface abnormality depending on whether it is within that range or not.
[0077] ホール底界面異常の原因としては、例えば、洗浄後の残渣などがエッチング後に 行われる洗浄の異常や、プラズマの掛けすぎによる膜変質などが推定される。洗浄 条件データをトラッキングしているデータサーバーに問い合わせ、突き合わせることで 、洗浄条件異常などの原因を確定できる。  [0077] Possible causes of the hole bottom interface abnormality include, for example, abnormalities in cleaning performed after etching on the residue after cleaning, film deterioration due to excessive application of plasma, and the like. By querying and matching the data server that tracks cleaning condition data, the cause of abnormal cleaning conditions can be determined.
図 7、 8のような例では、ある特定のホール径を境に基板電流量が特徴的に変化す る。このような特徴がある場合は、大きすぎる、或いは小さすぎるホール径を示したシ ヨットに対し、露光条件を最適化する事で不良の発生を抑制する事が可能である。つ まりは図 7, 8のような散布図を用いることで露光プロセス条件の最適化、フィードバッ クが可能である。  In the examples shown in Figs. 7 and 8, the substrate current changes characteristically at a certain hole diameter. When such a feature is present, it is possible to suppress the occurrence of defects by optimizing the exposure conditions for a yacht exhibiting a hole diameter that is too large or too small. In other words, exposure process conditions can be optimized and fed back using scatter plots such as those shown in Figs.
[0078] 9 ミスァライメント  [0078] 9 Misalignment
ミスァライメントは、設計上の位置とは異なる位置にホールが配置される不具合であ る。ミスァライメントが起こると、ホール底と接する導電層の面積が小さくなるためコンタ タト抵抗値が上昇、あるいは、隣の回路に接触して電流が漏れるなどして不具合が起 こる。基板電流画像測定を行うと、ホール底形状を測定することが出来る。得られた 基板電流画像と標準画像との間でパターンマッチングを行 ヽ、パターンマッチングス コアを算出する。  Misalignment is a defect in which holes are placed at positions different from the design positions. When misalignment occurs, the area of the conductive layer in contact with the bottom of the hole is reduced, leading to an increase in the contact resistance value or contact with the adjacent circuit to cause current leakage. When the substrate current image is measured, the hole bottom shape can be measured. Pattern matching is performed between the obtained substrate current image and the standard image to calculate the pattern matching score.
[0079] 図 14、図 15は正常にァライメントされたホールの基板電流像および波形である。一 方、図 16、 17はミスァライメントが存在するホールの場合の基板電流像および波形 である。ミスァライメントがあると、ホール底形状が半月状になるため、標準画像からは 、大きく歪んだ図形と成る。また、三日月の中心位置は、設計値と大きくずれる。予め 、標準画像に対する測定基板電流画像の許容歪範囲を定めておくことにより、その 範囲内か範囲外かにより、ミスァライメントが生じたかどうかを判別できる。 FIG. 14 and FIG. 15 are a substrate current image and a waveform of holes that are normally aligned. On the other hand, Figures 16 and 17 show the substrate current image and waveform for holes with misalignment. It is. If there is a misalignment, the shape of the bottom of the hole becomes a half-moon shape. In addition, the center position of the crescent moon deviates greatly from the design value. By predetermining the allowable distortion range of the measurement substrate current image with respect to the standard image, it is possible to determine whether or not misalignment has occurred depending on whether it is within the range or outside the range.
[0080] 図形の歪だけでなく、図形の中心座標を評価して、その許容範囲を定め、その範 囲内範囲外を判断する。あるいは、ホール底面積を評価してその値が許容範囲内に ある力範囲外にあるかを調べることで、ミスァライメントが起こったかどうかを知ることが 出来る。また、ブランケットモードにより得られる基板電流値によってもミスァライメント を評価可能である。予め基板電流値の管理値を設定しておくことにより、その範囲内 か範囲外かにより、ミスァライメントが生じたかどうかを判別できる。  [0080] Not only the distortion of the figure but also the center coordinates of the figure are evaluated to determine the allowable range, and the outside of the range is determined. Alternatively, it is possible to know whether misalignment has occurred by evaluating the hole bottom area and checking if the value is outside the allowable force range. Misalignment can also be evaluated by the substrate current value obtained in the blanket mode. By setting the management value of the substrate current value in advance, it is possible to determine whether or not misalignment has occurred, depending on whether it is within the range or not.
[0081] ミスァライメントの原因は露光プロセス、特に露光装置のァライメント操作に不具合 力 Sあると推定される。ァライメント装置自身に異常がある、あるいはァライメントマーク に異常があるなど複数の原因が上げられる。例えば、複数の原因がある場合は、そ れを区別するために、最初の測定点とは異なった測定点を自動的に設定してさらに 検査を行い、その情報を基に分類することも出来る。例えば、ァライメントマーク自身 を新たに測定点として自動登録し自動的に検査する。例えば、ァライメントマークの 形状が歪んでいるなどがパターンマッチング等、形状認識手段により判明した場合に は、不具合原因は、ァライメントマークにあると分類できる。それ以外の場合は露光機 自身が原因であると推定される。  [0081] The cause of misalignment is presumed to be a defect S in the exposure process, particularly in the alignment operation of the exposure apparatus. There are several causes, such as an abnormality in the alignment device itself or an abnormality in the alignment mark. For example, if there are multiple causes, in order to distinguish them, it is possible to automatically set a measurement point different from the first measurement point, perform further inspection, and classify based on that information . For example, the alignment mark itself is automatically registered as a new measurement point and automatically inspected. For example, if the alignment mark shape is distorted by pattern recognition or other shape recognition means, the cause of the defect can be classified as being in the alignment mark. In other cases, it is presumed that the exposure machine itself is the cause.
[0082] 以上の様にそれぞれの不具合に対して特徴的な基準値を利用することで、測定さ れたデータ力も不具合原因の分類あるいは推定が出来る。特に、測定に供したゥェ ハーのプロセス処理に際する実際に用いられたプロセス条件等を含む過去履歴を M ESから引き出してきて同時に解析する事により、どの装置が何時その異常発生を起 こしたかを直ちに追跡できる。異常発生を起こした装置が明らかに成ったら、その装 置に対してアクションする事が可能で、装置を停止してメンテナンスを行う、あるいは 、レシピ内容を変更する。  [0082] By using the characteristic reference value for each defect as described above, the measured data force can be classified or estimated as the cause of the defect. In particular, by pulling out the past history including the process conditions actually used in the process of the wafer used for measurement from MES and analyzing it at the same time, which device causes an abnormality at any time. You can track immediately. Once an abnormal device is clearly identified, it is possible to take action on that device, stop the device for maintenance, or change the contents of the recipe.
[0083] 図 18は上記機能を用 、て具体的に自動不良分類を行うための手順を示して 、る。  FIG. 18 shows a procedure for performing automatic defect classification specifically using the above function.
A 最初にウェハー高さばらつき判定をウェハー対物レンズ間距離測定装置 16の測 定値によって行う。 A First, wafer height variation determination is performed by the distance measurement device 16 between wafer objective lenses. This is done with a fixed value.
予め許容ばらつき量を数ミクロン以内の領域に置ける局所的ばらつき、ウェハー全 体を通してのグローバル的ばらつきに関してそれぞれ独立に設定する。ウェハーの 特定箇所に対して設定しても良い。例えば、グローバル 300nm以上のウェハー面内 高さばらつきが存在する場合は、グローバル高さばらつきがあると判定する。あるい はローカルに lOOnm以上のばらつきが存在する場合には、ローカル高さばらつきが あると判定する。  In advance, the permissible variation amount is set independently for local variation within a few microns and global variation throughout the wafer. It may be set for a specific location on the wafer. For example, if there is a global wafer height variation of 300 nm or more, it is determined that there is a global height variation. Or, if there is a local variation of lOOnm or more, it is determined that there is a local height variation.
[0084] B ホール表面形状判定を行う。  [0084] B hole surface shape determination is performed.
電子ビーム照射位置を正確に行うために利用されるパターンマッチングの結果算 出されるパターンマッチングスコアに対して基準を設ける事で表面形状判定を行う。 例えば、正常なホールが有する範囲を、例えば、パターンマッチングスコア 90以上と 設定し、その範囲内あるいは範囲外により分類する。  Surface shape determination is performed by setting a reference for the pattern matching score calculated as a result of pattern matching used to accurately perform the electron beam irradiation position. For example, the range that a normal hole has is set to, for example, a pattern matching score of 90 or more, and classified according to the range or outside the range.
[0085] C ホール表面サイズおよび形状、ホール底サイズおよび底形状判定を行う。  [0085] C Hole surface size and shape, hole bottom size and bottom shape determination are performed.
測定対象に対して、ラインスキャン法を適用し、二次電子プロファイルおよび基板電 流プロファイルを測定する。これらの信号プロファイル力もホール表面径、底径および それらの形状を評価する。予め正常なホール表面径範囲、ホール底径範囲を設計 値などにより定め、その範囲内あるいはその範囲外により、分類する。表面形状異常 は、ラインスキャン法により、ホール表面サイズ、ホール真円度を判断基準とすること でさらに細力べ分類できる。例えば、ホール表面径が設計値よりも 0. 02ミクロン以上 小さい場合は露光異常がある。あるいは、ホールの真円度が 0. 5以下の場合、露光 装置の設定パラメータに異常があるなどと分類する。  The line scan method is applied to the measurement object, and the secondary electron profile and substrate current profile are measured. These signal profile forces also evaluate the hole surface diameter, bottom diameter and their shape. The normal hole surface diameter range and hole bottom diameter range are determined in advance by design values, etc., and classified according to the range or outside the range. Surface shape anomalies can be further categorized by the line scan method using the hole surface size and hole roundness as criteria. For example, if the hole surface diameter is smaller than the design value by 0.02 microns or more, there is an exposure abnormality. Alternatively, if the roundness of the hole is 0.5 or less, it is classified as an error in the exposure device setting parameters.
ホール底サイズ、形状は基板電流プロファイルのエッジ情報力も取得可能である。 例えば、ホールサイズが設計値よりも 0. 01ミクロン以上小さい場合はエッチングに異 常がある。あるいはホーノレ真円度が 0. 5以下の場合エッチングに異常があると判定 分類する。  As for the hole bottom size and shape, the edge information power of the substrate current profile can also be acquired. For example, if the hole size is smaller than the design value by 0.01 micron or more, the etching is abnormal. Alternatively, if the Honoré roundness is 0.5 or less, it is judged that the etching is abnormal and classified.
[0086] D アンダーエッチング、オーバーエッチング ホーノレ底界面異常  [0086] D Under-etching, over-etching Honore bottom interface anomaly
ブランケットモードと呼ばれる、電子ビームを測定対象全体に照射して基板電流を 測定する測定モードを適用する。ブランケットモードはホール底材料の変化、表面状 態変化に対して非常に感度が高ぐ単原子層レベルの変化を検出するほどの感度が ある。しかし測定値は、ホール面積にも比例するので、表面状態変化のみに比例し た信号を抽出するために、ラインスキャン法などで得られたホールサイズなどを利用 して規格化された基板電流値を判定に用いる。例えば、ホール底に酸ィ匕膜が残って いる場合、酸ィ匕膜は二次電子を非常に多く放出するので、基板電流値は標準値より はマイナスに向力つて変化する。従って、標準値よりもある基準量を超えてマイナスに 変化した場合には、ホール底に酸ィ匕膜が存在すると分類する。 A measurement mode called blanket mode is used, which measures the substrate current by irradiating the entire object with an electron beam. Blanket mode is a change in the bottom material of the hole, surface It is sensitive enough to detect changes at the monolayer level that are very sensitive to state changes. However, since the measured value is also proportional to the hole area, in order to extract a signal proportional to only the surface state change, the substrate current value normalized using the hole size obtained by the line scan method etc. Is used for judgment. For example, when an oxide film remains at the bottom of the hole, the oxide film emits a large amount of secondary electrons, so that the substrate current value changes more negatively than the standard value. Therefore, if it changes to a negative value exceeding a certain reference value, it is classified as an oxide film at the bottom of the hole.
[0087] エッチングが過剰に進むと、ストッパを突きぬけて、シリサイドにまで達する場合があ る。シリサイドは酸ィ匕膜以上に二次電子放出能力が高いので、ホール底にシリサイド が存在すると、基板電流値は酸ィ匕膜の場合よりも大きくマイナス側に振れる。従って、 得られた測定値が酸ィ匕膜の場合と比較してさらに負になった場合には、シリサイドが 出ていると分類する。  [0087] If etching proceeds excessively, the stopper may be penetrated to reach silicide. Since silicide has a higher secondary electron emission capability than that of an oxide film, if silicide exists at the bottom of the hole, the substrate current value fluctuates more negatively than in the case of an oxide film. Therefore, if the obtained measured value is more negative than that of the oxide film, it is classified as silicide.
[0088] ホール底には半導体デバイスを本来構成しない材料も付着し、ホール表面の性質 を変えることがある。その多くは、洗浄残渣であり、レジスト残渣が最も良く知られてい る。レジストは上記シリサイド材料とは逆に二次電子放出能力が非常に小さぐ電子を 吸収する性質がある。そのため、レジスト残渣がホール底に存在すると、標準の状態 と比較して二次電子放出量が小さいので、結果的に大きなプラスの基板電流が流れ る。従って、標準値より大きな基板電流が流れる場合には、レジスト残渣が発生して いると分類する。以上の標準値は面積規格ィ匕基板電流値を使用すると一義的に決 定できる。  [0088] A material that does not originally constitute a semiconductor device may also adhere to the bottom of the hole, which may change the properties of the hole surface. Most of them are cleaning residues, and resist residues are best known. Contrary to the above silicide materials, the resist has the property of absorbing electrons whose secondary electron emission capability is very small. Therefore, if a resist residue is present at the bottom of the hole, the amount of secondary electrons emitted is small compared to the standard state, resulting in a large positive substrate current. Therefore, if a substrate current larger than the standard value flows, it is classified as a resist residue. The above standard values can be uniquely determined by using the area standard and the substrate current value.
[0089] E ミスァライメント判定  [0089] E Misalignment Judgment
ミスァライメント判定はラインスキャン法、あるいは基板電流像を用いて行う。正常な ァライメントがされている場合と異常な場合では、測定されるホールサイズや面積、形 状に変化が生じる。これらの評価値に基準を与え、比較することで、ミスァライメントを 分類する。例えば、ホールサイズが 0. 04ミクロン以下の場合、あるいは面積が 0. 00 2平方ミクロン以下の場合は、ミスァライメントがある。あるいは基板電流像に対してパ ターンマッチングを行い、中心位置測定を行う。標準の中心位置から一定基準以上 ずれて 、る場合には、ミスァライメントがあると判定する。 [0090] あるいは、半導体デバイスの設計情報を決めている CADレイアウトデータと位置を 比較する事によって行われる。一般に、 CADデータと実際にウェハー上に形成され ているデバイスのサイズは異なる。その原因は、露光装置による転写ミス (倍率誤差) 、ウェハー温度の違いによるウェハー自身の伸縮などにより同じレイアウトを持ちなが らも絶対値が異なってくる。そこで、 CADデータと照合する際は GDSIIなどのファイル 力 検査対象のレイヤーの情報のみを抽出し、さらに、温度補正や、ウェハー内部に ある信頼できる点を起点とした座標系を使うなどして、実際のウェハー上の座標系に 補正して比較する。 Misalignment determination is performed using a line scan method or a substrate current image. Depending on whether the alignment is normal or abnormal, the hole size, area and shape to be measured will change. By classifying and comparing these evaluation values, misalignments are classified. For example, misalignment occurs when the hole size is 0.04 microns or less, or when the area is 0.002 square microns or less. Alternatively, pattern matching is performed on the substrate current image, and the center position is measured. If the standard center position deviates more than a certain standard, it is determined that there is misalignment. Alternatively, this is done by comparing the position with the CAD layout data that determines the design information of the semiconductor device. In general, CAD data and the actual size of devices formed on a wafer are different. The cause of this is that the absolute value differs even with the same layout due to a transfer error (magnification error) caused by the exposure device and the expansion and contraction of the wafer itself due to the difference in wafer temperature. Therefore, when collating with CAD data, only the information of the layer subject to file force inspection such as GDSII is extracted, and furthermore, using a coordinate system starting from a reliable point inside the wafer, etc. Compare with the coordinate system on the actual wafer.
以上の様なタリテリアのどれにも該当しない場合には、測定対象は正常に形成され ていると分類できる。  If none of the above-mentioned tariterias are applicable, the measurement object can be classified as being normally formed.
[0091] 以上のフローチャートは 1つの測定点に関して分類を試みたものである力 ウェハ 一面内には任意の数の測定点を設けることが可能であり、それぞれの場所における 測定値の相互関係を用いて、新たに分類することが出来る。例えば、ある場所とある 場所の差を評価値とし、その値に対して分類基準を設ける。半導体プロセスでは、ゥ ェハ一面内依存性、ショット内依存性、レイアウト依存性等それぞれ異なったプロセス 依存性を示すことが知られている。従って、以上の依存性を知る事が出来るように測 定点を配置し、それぞれの配置点における測定値の差を評価することで、上記場所 依存性に関わる不具合を分類することが出来る。  [0091] The above flowchart is an attempt to classify one measurement point. Force Wafer An arbitrary number of measurement points can be provided on one surface, and the correlation between measured values at each location is used. Can be newly categorized. For example, the difference between a certain place and a certain place is used as an evaluation value, and a classification criterion is set for that value. It is known that semiconductor processes exhibit different process dependencies such as wafer-in-plane dependency, shot-inside dependency, and layout dependency. Therefore, by arranging the measurement points so that the above dependency can be known, and evaluating the difference in the measured values at each of the arrangement points, it is possible to classify the problems related to the location dependency.
[0092] 例えば、ウェハー面内依存性を調べるために配置したウェハー内の測定点の測定 値の差が基準値以上になった場合、ウェハー面内依存性が生じていると判断される 。例えば、ウェハー中心を起点とした同心円状のウェハー面内依存性が生じる場合 は、ウェハー全体に渡るプロセスが 1つのプロセスチャンバ一の中で同時間に行われ たことを意味しており、そのような処理方法を適用するプロセス工程に不具合原因が あると推定できる(例えばエッチングプロセス)。  [0092] For example, if the difference between the measurement values at the measurement points in the wafer arranged for examining the in-wafer dependence is greater than or equal to a reference value, it is determined that the in-wafer dependence has occurred. For example, if concentric wafer in-plane dependence starting from the wafer center occurs, this means that the entire wafer process was performed simultaneously in one process chamber. It can be estimated that there is a cause of defects in the process steps to which various processing methods are applied (for example, etching process).
[0093] 同様に、ショット内依存性の存在を知ることが出来るように、 1つのショット内に複数 の測定点を配置し、それぞれの配置点における測定値の差が基準値以上になった 場合、ショット内依存性があると判定される。ショット内依存性を生じるプロセス装置は 露光装置しか存在しないので、露光装置に異常原因があると分類される。特定のレイ アウトに関して依存性がある場合は、マイクロローデイング効果あるいは近接効果が あると考えられ、エッチングプロセスあるいは、露光プロセスに異常があると分類され る。 [0093] Similarly, when multiple measurement points are placed in one shot so that the existence of in-shot dependency exists, the difference between the measured values at each placement point exceeds the reference value. It is determined that there is in-shot dependency. Since only an exposure apparatus exists as a process apparatus that generates in-shot dependency, the exposure apparatus is classified as having a cause of abnormality. Specific ray If there is a dependency on the out, it is considered that there is a microloading effect or a proximity effect, and the etching process or the exposure process is classified as abnormal.
[0094] 位置依存性を知るためには、上記のように四則演算を行うだけでなぐ得られた分 布を画像として認識し、画像処理を行うことによって特徴量を掴むことも出来る。例え ば、ウェハー面内に 200点程度の測定点を設けた場合、その 200点を用いる事で、 等高線図が書ける。得られた等高線図を 200ピクセル力もなる画像と見なし、予め測 定してデータベースに記録してある同様の画像情報とパターンマッチング等の画像 処理を行い、近似度判定を行うことが出来る。  [0094] In order to know the position dependency, it is also possible to recognize the distribution obtained just by performing the four arithmetic operations as described above as an image and grasp the feature amount by performing image processing. For example, if about 200 measurement points are provided on the wafer surface, the contour map can be drawn using these 200 points. The obtained contour map can be regarded as an image with 200 pixel force, and similar image information that has been measured in advance and recorded in the database and image processing such as pattern matching can be performed to determine the degree of approximation.
[0095] 以上示した例は 1つの電子ビームエネルギーで測定されたデータを基に分類を行 つているが、例えば、測定に利用する電子ビームのエネルギーを複数用いることによ つてさらに詳細な分類が可能となる。特定の材料は特徴的な基板電流量の照射電子 ビームエネルギー依存性を有して 、るので、その性質を用いて材料を特定することも 出来る。この場合にも、それぞれの電子ビームエネルギー測定条件で得られた測定 値をホールサイズで規格ィ匕した値を利用した電子ビームエネルギー依存性を調べる 事で、任意のサイズを持つホール同士の比較が可能で、かつホール底の材料の種 類を分類することが出来る。  [0095] In the example described above, classification is performed based on data measured with one electron beam energy. For example, more detailed classification can be performed by using a plurality of electron beam energies used for measurement. It becomes possible. Since the specific material has a characteristic dependency of the amount of substrate current on the irradiation electron beam energy, the material can be specified using the property. In this case as well, by comparing the electron beam energy dependence using the values obtained by standardizing the measured values obtained under each electron beam energy measurement condition with the hole size, it is possible to compare holes of any size. It is possible to classify the type of material at the bottom of the hole.
[0096] <分類データベース > [0096] <Classification database>
図 19は、本検査装置 200と他のデータベース 210あるいは他の測定装置 220の関 係を示している。本検査装置は本装置以外のデータベース 210、測定装置 220など と共同してさらに詳細な不具合解析あるいは分類を実行することが出来る。本検査装 置で得られたそれぞれの測定値および種々の測定値範囲と不具合の種類に関して は一定の関係が存在する。これらの関係を関数あるいはデータとして不具合データ ベース 230に蓄積しておく。この不具合データベース 230は、各測定値範囲と不具 合の対応関係を示したデータベース、不具合分布と不具合原因とを結びつけるデー タベース、時間変化に対して特徴的なデータを示す不具合を分離するための、不具 合変化を時間関数として記録したデータベースを含んでいる。不具合を起こした装 置や工程名、不具合発生日時を特定するために利用されるデータベースとして半導 体工場のプロセスを管理して 、る MES (HOST) 240データベースを利用する。 FIG. 19 shows the relationship between the present inspection apparatus 200 and another database 210 or other measurement apparatus 220. This inspection device can perform further detailed failure analysis or classification in cooperation with the database 210 and the measurement device 220 other than this device. There is a certain relationship between each measured value obtained by this inspection device, various measured value ranges, and types of defects. These relationships are stored in the defect database 230 as functions or data. This defect database 230 is a database that shows the correspondence between each measured value range and the defect, a database that links the defect distribution and the cause of the defect, and a defect that shows characteristic data with respect to time changes. It includes a database that records failure changes as a function of time. Semiconductor as a database used to identify the device and process name that caused the failure, and the date and time when the failure occurred Use the MES (HOST) 240 database to manage body factory processes.
[0097] 電子ビーム測定部 270の測定において得られたデータは、比較手段 250において 不具合データベース 230内のデータと比較され、比較結果が不具合選択表示手段 2The data obtained in the measurement by the electron beam measurement unit 270 is compared with the data in the defect database 230 by the comparison unit 250, and the comparison result is the defect selection display unit 2
60へ入力される。不具合選択表示手段 260は、比較手段の出力に基づいて不具合 内容を検出し表示する。 Input to 60. The defect selection display means 260 detects and displays the defect contents based on the output of the comparison means.
[0098] ウェハー自身を識別するための品種名、ロット番号、スロット番号、ウェハー番号な どを管理するデータベースも測定対象ウェハーを特定するために利用する。これらの 情報はウェハー表面に形成されているウェハー固有番号を番号リーダーなどで読み 込むことによって得られる。 LSIテスター、プロバーやその他の検査装置、解析装置( FIB.TEM)あるいは設計情報である CADシステムの持つデータベースに蓄積された データを利用して相関解析を行っても良 、。 [0098] A database for managing the product name, lot number, slot number, wafer number, etc. for identifying the wafer itself is also used for specifying the measurement target wafer. Such information can be obtained by reading the wafer unique number formed on the wafer surface with a number reader. Correlation analysis may be performed using data stored in the database of the LSI tester, prober, other inspection equipment, analysis equipment (FIB.TEM) or CAD system that is design information.
[0099] そのほかの検査装置、解析装置との相関を取るためには不具合が起こっている場 所を特定することが必須である。それを実現するために、それぞれのデータベースに は精密に不具合位置を決定するために必要な位置情報が蓄積されて 、る。これらの データは不具合箇所と座標を対にした統合データとして本検査装置に外部からイン ポートすることが可能である。インポートされたデータは、本装置にて位置情報を利用 できるように、座標系の変換、オフセット処理が出来るように成っている。具体的には 、装置固有のグローノ レアライメント情報を用いて、装置間の座標ずれを補正する。  [0099] In order to correlate with other inspection devices and analysis devices, it is essential to identify the location where the failure occurs. In order to achieve this, each database stores the location information necessary to accurately determine the location of the defect. These data can be imported to the inspection device from the outside as integrated data with pairs of defects and coordinates. The imported data can be converted and offset by the coordinate system so that the location information can be used by this device. Specifically, coordinate deviation between apparatuses is corrected using apparatus-specific glow alignment information.
[0100] 上記のような構成を取る事によって他の装置にて発見された不具合を本装置の不 具合分類機能を用いてより詳細に分類することが出来る。さらには、分類した後の情 報を他の装置にエクスポート出来るように構成されて 、る。  [0100] By adopting the configuration as described above, defects found in other devices can be classified in more detail using the defect classification function of this device. Furthermore, it is configured so that the information after classification can be exported to other devices.
これらのデータベースに蓄積されたデータと測定値データを相互比較することによ り、不具合内容、不具合原因、不具合発生日時、不具合を起こした装置やチャンバ 一名、どの過程で不具合が生じた力などを詳細に特定することが出来る。  By comparing the data stored in these databases with the measured value data, the content of the failure, the cause of the failure, the date and time of the failure, the name of the device or chamber that caused the failure, the power of the failure in which process, etc. Can be specified in detail.
[0101] <分類の表現方法 >  [0101] <Classification expression>
分類された不良箇所ある 、は分類内容は人間に見えるように、ある!、はコンビユー タ等で処理され易いように符号ィ匕される必要がある。例えば、分類された不良は記号 ィ匕、着色、数値化、グラフィ匕、表にされてコンピュータ画面上に表示される。図 20は その 1つの例を示している。図 21では、ウェハーを摸した形状の上に、不良が検出さ れた位置に不良種類をポップアップ式で表示する。必要によっては、音声ガイダンス により、不良内容を知らせることが出来る。不具合内容は不具合分類別の統計処理 を行い、統計値を画面上に示すことが出来る。 If there is a classified defective part, the classification contents must be coded so that it can be easily processed by a computer etc. For example, the classified defects are displayed on the computer screen as symbols, colors, numerical values, graphics, and tables. Figure 20 One example is shown. In Fig. 21, the defect type is displayed in a pop-up manner at the position where the defect is detected on the wafer-shaped shape. If necessary, the content of the defect can be notified by voice guidance. Defect contents can be statistically processed by defect classification, and the statistical values can be shown on the screen.
[0102] 半導体工場のプロセス装置を制御およびトラッキングして 、る MES (HOST)、ィール ドマネジメント情報を統括しているデータサーバーとデータを統合解析することによつ て、どの装置でどの不具合がどの程度起こったかの統計を計算し、その値を画面に 表示することが出来る。例えば、図 22パイチャートや図 23ヒストグラムを示すことが出 来る。このような表示によれば、画面上に視認性高く不具合原因が表示されるので、 プロセスエンジニアある 、は半導体プロセス管理者は、直ぐに不具合内容を理解す ることが出来る。 [0102] By controlling and tracking the process equipment in the semiconductor factory, the MES (HOST), the data server that manages the field management information, and the integrated analysis of the data, it is possible to determine which faults are in which equipment. You can calculate statistics about how much happened and display the values on the screen. For example, you can show the pie chart in Fig. 22 and the histogram in Fig. 23. According to such a display, the cause of the failure is displayed on the screen with high visibility, so that the process engineer or the semiconductor process manager can immediately understand the content of the failure.
[0103] 本検査装置によって得られた分類データは最終的には半導体工場にある種々の データベースとともに統合解析が成される。特に、重要なのが、どのような不具合がど の装置で何時に何が原因で起こつたかを知ることである。  [0103] The classification data obtained by this inspection apparatus is finally subjected to integrated analysis together with various databases in the semiconductor factory. In particular, it is important to know what kind of trouble has occurred on what equipment and at what time.
本検査装置を利用すると、図 24に示したように、不具合内容、不具合を起こした装 置名、不具合を起こした日時が分析され、コンピュータ画面上に表示される。必要に よって原因も解析され表示される。これら解析表示情報は、当然の事ながら LANある いはインターネット等通信手段によりホストコンピュータや他の検査装置および端末 に伝達することができる。なお、不具合内容と不具合装置の対応表は予めメモリ等の 記憶装置に記憶されて 、る。  Using this inspection device, as shown in Fig. 24, the contents of the failure, the name of the device that caused the failure, and the date and time when the failure occurred are analyzed and displayed on the computer screen. If necessary, the cause is analyzed and displayed. The analysis display information can of course be transmitted to the host computer, other inspection devices, and terminals by communication means such as LAN or the Internet. The correspondence table between the defect contents and the defective device is stored in a storage device such as a memory in advance.
また、本検査装置によれば、不具合程度によって分析追求する深さを制御できるの で、効率的に解析できる。また、統合 GUI、データベースを備えているので、種々の 不具合を一元管理できる。  In addition, according to the present inspection apparatus, the depth of analysis pursuit can be controlled depending on the degree of failure, so that analysis can be performed efficiently. In addition, since it has an integrated GUI and database, it can centrally manage various problems.
[0104] 不具合表示には、点滅や音声ガイダンスなども利用されるので、間違いなく認識さ れる。不具合種類の統計も取得することが可能であり、どのような不具合がどこで、ど のくらいの頻度で起こつたかをトラッキングすることが出来る。これらのデータを活用 することにより、今後のプロセス改良に役立てることが出来る。 [0104] Flashing, voice guidance, and the like are also used for fault indication, so they are definitely recognized. Defect type statistics can also be acquired, and it is possible to track what kind of defect occurred where and how often. By utilizing these data, it can be used for future process improvement.
また、どのウェハーが測定対象であるのかを識別しているので、その不具合を起こ す基に成ったプロセスに利用された装置情報を本検査装置の出力する分類結果と 一緒に蓄積、相互解析することにより、どの装置に異常が発生し易いか、どの装置を 修正すれば良 、かが即座に分かる。これらの情報を用いてプロセス管理を行うことに より、工場の歩留まりは定常的に向上し、利益を増大させることが出来る。 In addition, it identifies which wafer is the object to be measured, causing the problem. By accumulating the device information used in the process based on this process together with the classification result output by this inspection device, and analyzing each other, which device is likely to cause an abnormality, which device should be corrected, You can see immediately. By using this information for process management, the factory yield can be steadily improved and profits can be increased.
産業上の利用可能性 Industrial applicability
本発明は、半導体デバイス又はその製造工程での分析、製造、測定又は評価など に用いられる装置に有用である。例えば、ウェハーなどの半導体基板に電子ビーム 又はイオンビームを照射する手法を用いる分析技術、測定技術、評価技術、検査技 術、および半導体デバイス製造装置および方法の分野において本発明を利用するこ とがでさる。  The present invention is useful for an apparatus used for analysis, manufacture, measurement, or evaluation in a semiconductor device or a manufacturing process thereof. For example, the present invention can be used in the fields of analysis techniques, measurement techniques, evaluation techniques, inspection techniques, and semiconductor device manufacturing apparatuses and methods that use a method of irradiating a semiconductor substrate such as a wafer with an electron beam or ion beam. I'll do it.

Claims

請求の範囲 The scope of the claims
[1] 半導体基板の測定対象部分へ電子ビームを照射する第 1のステップと、  [1] a first step of irradiating a measurement target portion of a semiconductor substrate with an electron beam;
前記電子ビームに基づいて前記測定対象部分に流れる基板電流を検出する第 2 のステップと、  A second step of detecting a substrate current flowing in the portion to be measured based on the electron beam;
前記基板電流を分析して前記測定対象部分の異常発生を検出し、異常内容を分 類する第 3のステップと、  A third step of analyzing the substrate current to detect an abnormality in the measurement target portion and classifying the abnormality content;
を具備することを特徴とする半導体検査方法。  A semiconductor inspection method comprising:
[2] 前記電子ビームを制御する対物レンズと、前記半導体基板との間の距離を測定す る第 4のステップと、 [2] a fourth step of measuring a distance between the objective lens that controls the electron beam and the semiconductor substrate;
前記電子ビームに基づく二次電子像を測定する第 5のステップと、  A fifth step of measuring a secondary electron image based on the electron beam;
をさらに具備し、  Further comprising
前記第 3のステップは、前記基板電流と、前記対物レンズおよび半導体基板間の距 離と、前記二次電子像とを分析して前記測定対象部分の異常を分類することを特徴 とする請求項 1に記載の半導体検査方法。  The third step classifies the abnormality of the measurement target portion by analyzing the substrate current, a distance between the objective lens and the semiconductor substrate, and the secondary electron image. The semiconductor inspection method according to 1.
[3] 前記第 1のステップは、予め定められたエネルギーの電子ビームを予め定められた フォーカスサイズで、予め定められた時間、前記測定対象部分へ照射するブランケッ トモードを有することを特徴とする請求項 1または請求項 2に記載の半導体検査方法 [3] The first step includes a blanket mode in which an electron beam having a predetermined energy is irradiated to the measurement target portion for a predetermined time with a predetermined focus size. The semiconductor inspection method of Claim 1 or Claim 2
[4] 前記第 1のステップは、電子ビームを予め定められた間隔および速度で移動させつ つ前記測定対象部分へ 2次元照射するラインスキャンモードを有することを特徴とす る請求項 1または請求項 2に記載の半導体検査方法。 [4] The first step according to claim 1 or 2, wherein the first step has a line scan mode in which the measurement target portion is two-dimensionally irradiated while moving the electron beam at a predetermined interval and speed. Item 3. The semiconductor inspection method according to Item 2.
[5] 前記第 3のステップは、前記第 4のステップの測定結果に基づいて前記測定対象部 分の高さ異常を検出することを特徴とする請求項 2に記載の半導体検査方法。  5. The semiconductor inspection method according to claim 2, wherein the third step detects a height abnormality of the measurement target portion based on the measurement result of the fourth step.
[6] 前記第 3のステップは、前記第 5のステップにお 、て測定された二次電子像と、予め 記憶手段に記憶されたパターンとのパターンマッチングを行うことによって測定対象 部分の表面形状の異常を検出することを特徴とする請求項 2に記載の半導体検査方 法。  [6] In the third step, the surface shape of the measurement target portion is performed by performing pattern matching between the secondary electron image measured in the fifth step and the pattern stored in the storage unit in advance. 3. The semiconductor inspection method according to claim 2, wherein an abnormality of the semiconductor is detected.
[7] 前記第 3のステップは、前記ブランケットモードによる電子ビームの照射によって得 られた基板電流に基づいて、前記測定対象部分のアンダーエッチング、オーバーェ ツチングおよびホール底界面異常を検出することを特徴とする請求項 3に記載の半 導体検査方法。 [7] The third step is obtained by electron beam irradiation in the blanket mode. 4. The semiconductor inspection method according to claim 3, wherein under-etching, over-etching, and hole bottom interface abnormality of the measurement target portion are detected based on the measured substrate current.
[8] 前記第 3のステップは、前記ラインスキャンモードによる電子ビームの照射によって 得られた基板電流に基づいて、前記測定対象部分の表面サイズ異常、ホール底サイ ズ異常およびホール底形状異常を検出することを特徴とする請求項 4に記載の半導 体検査方法。  [8] The third step detects a surface size abnormality, a hole bottom size abnormality, and a hole bottom shape abnormality of the measurement target portion based on the substrate current obtained by the electron beam irradiation in the line scan mode. The semiconductor inspection method according to claim 4, wherein:
[9] 前記第 3のステップは、前記測定対象部分全体の基板電流を測定対象部分の面積 で割った面積規格ィ匕基板電流に基づいて前記測定対象部分の異常を分類すること を特徴とする請求項 1に記載の半導体検査方法。  [9] In the third step, the abnormality of the measurement target portion is classified based on an area standard 匕 substrate current obtained by dividing the substrate current of the entire measurement target portion by the area of the measurement target portion. The semiconductor inspection method according to claim 1.
[10] 前記測定対象部分の面積を電子ビームのライン走査によって得られた基板電流に 基づいて求めることを特徴とする請求項 9に記載の半導体検査方法。  10. The semiconductor inspection method according to claim 9, wherein the area of the measurement target portion is obtained based on a substrate current obtained by line scanning with an electron beam.
[11] 前記測定対象部分の面積をレイアウト情報に基づいて求めることを特徴とする請求 項 9に記載の半導体検査方法。  11. The semiconductor inspection method according to claim 9, wherein the area of the measurement target portion is obtained based on layout information.
[12] 前記第 3のステップは、前記測定対象部分に電子ビームを照射した際に生じる二次 電子、反射電子、基板電流によって得られる画像あるいは波形に対してパターンマツ チングを行 、、得られたパターンマッチングスコアと予め決められた許容パターンマツ チンダスコアと得られた測定値との比較結果に基づいて異常分類を行うことを特徴と する請求項 1に記載の半導体検査方法。  [12] The third step is obtained by performing pattern matching on an image or waveform obtained by secondary electrons, reflected electrons, and substrate current generated when the measurement target portion is irradiated with an electron beam. 2. The semiconductor inspection method according to claim 1, wherein abnormality classification is performed on the basis of a comparison result between the obtained pattern matching score and a predetermined allowable pattern mattin score and an obtained measurement value.
[13] 前記第 3のステップは測定値と異常の関係を記述したデータベースに基づ 、て異 常分類を行うことを特徴とする請求項 1に記載の半導体検査方法。 13. The semiconductor inspection method according to claim 1, wherein in the third step, abnormality classification is performed based on a database describing a relationship between a measured value and an abnormality.
[14] 前記測定対象部分の異常の分類結果を表示装置に表示する第 6のステップをさら に有することを特徴とする請求項 1に記載の半導体検査方法。 14. The semiconductor inspection method according to claim 1, further comprising a sixth step of displaying an abnormality classification result of the measurement target portion on a display device.
[15] 前記測定対象部分の異常の分類結果に基づいて予め記憶手段に記憶された異常 装置対象表を検索して異常発生装置を検出する第 7のステップをさらに有すること を特徴とする請求項 1に記載の半導体検査方法。 [15] The method further comprises a seventh step of detecting an abnormality generating device by searching an abnormal device object table stored in advance in a storage unit based on an abnormality classification result of the measurement target portion. The semiconductor inspection method according to 1.
[16] 半導体基板の測定対象部分へ電子ビームを照射する電子ビーム照射手段と、 前記電子ビームに基づいて前記測定対象部分に流れる基板電流を検出する基板 電流検出手段と、 [16] Electron beam irradiation means for irradiating an electron beam to a measurement target portion of a semiconductor substrate, and a substrate for detecting a substrate current flowing in the measurement target portion based on the electron beam Current detection means;
前記基板電流を分析して前記測定対象部分の異常発生を検出し、異常内容を分 類する異常分類手段と、  An abnormality classification means for analyzing the substrate current to detect an abnormality in the measurement target portion and classifying the abnormality content;
を具備することを特徴とする半導体検査装置。  A semiconductor inspection apparatus comprising:
[17] 前記電子ビームを制御する対物レンズと前記半導体基板との間の距離を測定する 距離測定手段と、 [17] A distance measuring means for measuring a distance between the objective lens for controlling the electron beam and the semiconductor substrate;
前記電子ビームに基づく二次電子像を測定する二次電子測定手段と、 をさらに具備し、  A secondary electron measuring means for measuring a secondary electron image based on the electron beam, and
前記異常分類手段は、前記基板電流と、前記対物レンズおよび半導体基板間の 距離と、前記二次電子像とを分析して前記測定対象部分の異常を分類することを特 徴とする請求項 16に記載の半導体検査装置。  17. The abnormality classification unit classifies the abnormality of the measurement target portion by analyzing the substrate current, the distance between the objective lens and the semiconductor substrate, and the secondary electron image. The semiconductor inspection apparatus described in 1.
[18] 前記電子ビーム照射手段は、予め定められたエネルギーの電子ビームを予め定め られたフォーカスサイズで、予め定められた時間、前記測定対象部分へ照射するブ ランケットモード機能を有することを特徴とする請求項 16または請求項 17に記載の 半導体検査装置。 [18] The electron beam irradiation means has a blanket mode function of irradiating the measurement target portion with an electron beam having a predetermined energy with a predetermined focus size for a predetermined time. The semiconductor inspection apparatus according to claim 16 or 17.
[19] 前記電子ビーム照射手段は、電子ビームを予め定められた間隔および速度で移動 させつつ前記測定対象部分へ 2次元照射するラインスキャンモード機能を有すること を特徴とする請求項 16または請求項 17に記載の半導体検査装置。  [19] The electron beam irradiation means has a line scan mode function of two-dimensionally irradiating the measurement target portion while moving the electron beam at a predetermined interval and speed. 17. The semiconductor inspection apparatus according to 17.
[20] 前記異常分類手段は、前記距離測定手段の測定結果に基づ!、て前記測定対象 部分の高さ異常を検出することを特徴とする請求項 17に記載の半導体検査装置。  20. The semiconductor inspection apparatus according to claim 17, wherein the abnormality classification unit detects a height abnormality of the measurement target portion based on a measurement result of the distance measurement unit.
[21] 前記異常分類手段は、前記二次電子測定手段によって測定された二次電子像と、 予め記憶手段に記憶されたパターンとのパターンマッチングを行うことによって測定 対象部分の表面形状の異常を検出することを特徴とする請求項 17に記載の半導体 検査装置。  [21] The abnormality classification means performs pattern matching between the secondary electron image measured by the secondary electron measurement means and a pattern stored in advance in the storage means, thereby detecting an abnormality in the surface shape of the measurement target portion. The semiconductor inspection apparatus according to claim 17, wherein the semiconductor inspection apparatus is detected.
[22] 前記異常分類手段は、前記ブランケットモードによる電子ビームの照射によって得 られた基板電流に基づいて、前記測定対象部分のアンダーエッチング、オーバーェ ツチングおよびホール底界面異常を検出することを特徴とする請求項 18に記載の半 導体検査装置。 [22] The abnormality classification means detects under-etching, overetching, and hole bottom interface abnormality of the measurement target portion based on the substrate current obtained by the electron beam irradiation in the blanket mode. The semiconductor inspection device according to claim 18.
[23] 前記異常分類手段は、前記ラインスキャンモードによる電子ビームの照射によって 得られた基板電流に基づいて、前記測定対象部分の表面サイズ異常、ホール底サイ ズ異常およびホール底形状異常を検出することを特徴とする請求項 19に記載の半 導体検査装置。 [23] The abnormality classification means detects a surface size abnormality, a hole bottom size abnormality, and a hole bottom shape abnormality of the measurement target portion based on the substrate current obtained by the electron beam irradiation in the line scan mode. 20. The semiconductor inspection apparatus according to claim 19, wherein
[24] 前記異常分類手段は、前記測定対象部分全体の基板電流を測定対象部分の面 積で割った面積規格ィ匕基板電流に基づいて前記測定対象部分の異常を分類するこ とを特徴とする請求項 16に記載の半導体検査装置。  [24] The abnormality classification means classifies the abnormality of the measurement target portion based on an area standard 匕 substrate current obtained by dividing the substrate current of the entire measurement target portion by the area of the measurement target portion. The semiconductor inspection apparatus according to claim 16.
[25] 前記測定対象部分の面積を電子ビームのライン走査によって得られた基板電流に 基づいて求めることを特徴とする請求項 24に記載の半導体検査装置。 25. The semiconductor inspection apparatus according to claim 24, wherein an area of the measurement target portion is obtained based on a substrate current obtained by electron beam line scanning.
[26] 前記測定対象部分の面積をレイアウト情報に基づいて求めることを特徴とする請求 項 24に記載の半導体検査装置。 26. The semiconductor inspection apparatus according to claim 24, wherein an area of the measurement target portion is obtained based on layout information.
[27] 前記異常分類手段は、前記測定対象部分に電子ビームを照射した際に生じる二 次電子、反射電子、基板電流によって得られる画像あるいは波形に対してパターン マッチングを行 、、得られたパターンマッチングスコアと予め決められた許容パターン マッチングスコアと得られた測定値との比較結果に基づいて異常分類を行うことを特 徴とする請求項 16に記載の半導体検査装置。 [27] The abnormality classification means performs pattern matching on an image or waveform obtained by secondary electrons, reflected electrons, and substrate current generated when the measurement target portion is irradiated with an electron beam, and the obtained pattern 17. The semiconductor inspection apparatus according to claim 16, wherein abnormality classification is performed based on a comparison result between a matching score and a predetermined allowable pattern matching score and an obtained measurement value.
[28] 前記異常分類手段は測定値と異常の関係を記述したデータベースに基づいて異 常分類を行うことを特徴とする請求項 16に記載の半導体検査装置。 28. The semiconductor inspection apparatus according to claim 16, wherein the abnormality classification means performs abnormality classification based on a database describing a relationship between a measured value and an abnormality.
[29] 前記測定対象部分の異常の分類結果を表示する表示手段をさらに有することを特 徴とする請求項 16に記載の半導体検査装置。 29. The semiconductor inspection apparatus according to claim 16, further comprising display means for displaying an abnormality classification result of the measurement target portion.
[30] 前記測定対象部分の異常の分類結果に基づ!、て予め記憶手段に記憶された異常 装置対象表を検索して異常発生装置を検出する異常装置検出手段をさらに有す ることを特徴とする請求項 16に記載の半導体検査装置。 [30] The apparatus further comprises an abnormal device detecting means for detecting an abnormal device by searching the abnormal device target table stored in the storage means in advance based on the result of abnormality classification of the measurement target portion. The semiconductor inspection apparatus according to claim 16, wherein
PCT/JP2006/321715 2006-10-31 2006-10-31 Semiconductor inspecting apparatus and semiconductor inspecting method WO2008053524A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/321715 WO2008053524A1 (en) 2006-10-31 2006-10-31 Semiconductor inspecting apparatus and semiconductor inspecting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/321715 WO2008053524A1 (en) 2006-10-31 2006-10-31 Semiconductor inspecting apparatus and semiconductor inspecting method

Publications (1)

Publication Number Publication Date
WO2008053524A1 true WO2008053524A1 (en) 2008-05-08

Family

ID=39343883

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/321715 WO2008053524A1 (en) 2006-10-31 2006-10-31 Semiconductor inspecting apparatus and semiconductor inspecting method

Country Status (1)

Country Link
WO (1) WO2008053524A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102053106A (en) * 2009-11-09 2011-05-11 中芯国际集成电路制造(上海)有限公司 Defect detection method
WO2017024065A1 (en) * 2015-08-05 2017-02-09 Kla-Tencor Corporation Range-based real-time scanning electron microscope non-visual binner
CN107923856A (en) * 2015-08-05 2018-04-17 科磊股份有限公司 The non-vision dividing instrument of real time scan electron microscope based on scope

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001210689A (en) * 2000-01-25 2001-08-03 Jeol Ltd Method and apparatus for electron beam inspection
JP2002083849A (en) * 1999-11-05 2002-03-22 Nec Corp Semiconductor device inspecting device
JP2004036639A (en) * 2002-06-28 2004-02-05 Tsubakimoto Sprocket Co Sprocket with abrasion limit indication
JP2005032760A (en) * 2003-07-07 2005-02-03 Fab Solution Kk Method for inspecting defect of semiconductor device
WO2006120722A1 (en) * 2005-05-02 2006-11-16 Topcon Corporation Semiconductor device fabricating method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002083849A (en) * 1999-11-05 2002-03-22 Nec Corp Semiconductor device inspecting device
JP2001210689A (en) * 2000-01-25 2001-08-03 Jeol Ltd Method and apparatus for electron beam inspection
JP2004036639A (en) * 2002-06-28 2004-02-05 Tsubakimoto Sprocket Co Sprocket with abrasion limit indication
JP2005032760A (en) * 2003-07-07 2005-02-03 Fab Solution Kk Method for inspecting defect of semiconductor device
WO2006120722A1 (en) * 2005-05-02 2006-11-16 Topcon Corporation Semiconductor device fabricating method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102053106A (en) * 2009-11-09 2011-05-11 中芯国际集成电路制造(上海)有限公司 Defect detection method
WO2017024065A1 (en) * 2015-08-05 2017-02-09 Kla-Tencor Corporation Range-based real-time scanning electron microscope non-visual binner
US9947596B2 (en) 2015-08-05 2018-04-17 Kla-Tencor Corporation Range-based real-time scanning electron microscope non-visual binner
CN107923856A (en) * 2015-08-05 2018-04-17 科磊股份有限公司 The non-vision dividing instrument of real time scan electron microscope based on scope
TWI688763B (en) * 2015-08-05 2020-03-21 美商克萊譚克公司 Systems and methods for classification of defects
CN107923856B (en) * 2015-08-05 2021-02-26 科磊股份有限公司 Non-visual grid for range-based real-time scanning electron microscope

Similar Documents

Publication Publication Date Title
KR101600209B1 (en) Region setting device, inspection device, region setting method, and inspection method using region setting method
JP4312910B2 (en) Review SEM
US9201022B2 (en) Extraction of systematic defects
US9311697B2 (en) Inspection method and device therefor
JP5097335B2 (en) Process variation monitoring system and method
US6952492B2 (en) Method and apparatus for inspecting a semiconductor device
JP4533306B2 (en) Semiconductor wafer inspection method and defect review apparatus
JP5357725B2 (en) Defect inspection method and defect inspection apparatus
US20080058977A1 (en) Reviewing apparatus using a sem and method for reviewing defects or detecting defects using the reviewing apparatus
US5847821A (en) Use of fiducial marks for improved blank wafer defect review
US7593564B2 (en) Method and apparatus for reviewing defect of subject to be inspected
US8462352B2 (en) Surface inspection tool and surface inspection method
US20050194536A1 (en) Charged particle beam apparatus
KR20150140349A (en) Adaptive sampling for semiconductor inspection recipe creation, defect review, and metrology
JP2002083850A (en) Device inspecting apparatus and inspecting method
US6566654B1 (en) Inspection of circuit patterns for defects and analysis of defects using a charged particle beam
JP4287863B2 (en) Review SEM
WO2008053524A1 (en) Semiconductor inspecting apparatus and semiconductor inspecting method
JP2010103320A (en) Semiconductor inspection apparatus
JP5036889B2 (en) Review SEM
JP4745380B2 (en) Review SEM
JP2008113027A (en) Method of manufacturing device
WO2006120722A1 (en) Semiconductor device fabricating method
JP6310676B2 (en) Electron beam application apparatus and defect classification method using the same
JP2010123934A (en) Methods of processing and displaying data of semiconductor test device, and the semiconductor test device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06822644

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06822644

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP