WO2008050832A1 - Substrate cleaning apparatus, substrate cleaning method, program and recording medium - Google Patents

Substrate cleaning apparatus, substrate cleaning method, program and recording medium Download PDF

Info

Publication number
WO2008050832A1
WO2008050832A1 PCT/JP2007/070811 JP2007070811W WO2008050832A1 WO 2008050832 A1 WO2008050832 A1 WO 2008050832A1 JP 2007070811 W JP2007070811 W JP 2007070811W WO 2008050832 A1 WO2008050832 A1 WO 2008050832A1
Authority
WO
WIPO (PCT)
Prior art keywords
cleaning
cleaning liquid
supply pipe
gas
substrate
Prior art date
Application number
PCT/JP2007/070811
Other languages
French (fr)
Japanese (ja)
Inventor
Tsukasa Watanabe
Naoki Shindo
Original Assignee
Tokyo Electron Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Limited filed Critical Tokyo Electron Limited
Priority to JP2008541020A priority Critical patent/JPWO2008050832A1/en
Publication of WO2008050832A1 publication Critical patent/WO2008050832A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02043Cleaning before device manufacture, i.e. Begin-Of-Line process
    • H01L21/02052Wet cleaning only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B3/00Cleaning by methods involving the use or presence of liquid or steam
    • B08B3/04Cleaning involving contact with liquid
    • B08B3/10Cleaning involving contact with liquid with additional treatment of the liquid or of the object being cleaned, e.g. by heat, by electricity or by vibration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B3/00Cleaning by methods involving the use or presence of liquid or steam
    • B08B3/04Cleaning involving contact with liquid
    • B08B3/10Cleaning involving contact with liquid with additional treatment of the liquid or of the object being cleaned, e.g. by heat, by electricity or by vibration
    • B08B3/12Cleaning involving contact with liquid with additional treatment of the liquid or of the object being cleaned, e.g. by heat, by electricity or by vibration by sonic or ultrasonic vibrations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02057Cleaning during device manufacture
    • H01L21/0206Cleaning during device manufacture during, before or after processing of insulating layers
    • H01L21/02063Cleaning during device manufacture during, before or after processing of insulating layers the processing being the formation of vias or contact holes
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/26Apparatus or processes specially adapted for the manufacture of record carriers

Definitions

  • Substrate cleaning apparatus substrate cleaning method, program, and recording medium
  • the present invention immerses a substrate to be processed in a cleaning liquid and generates ultrasonic waves in the cleaning liquid.
  • the present invention relates to a substrate cleaning method and a substrate cleaning apparatus that remove particles (dirt, etc.) adhering to a substrate to be processed, and in particular, removes particles from a substrate to be processed with high removal efficiency while greatly suppressing damage to wiring patterns.
  • the present invention relates to a substrate cleaning method and a substrate cleaning apparatus.
  • the present invention also relates to a substrate cleaning method for immersing a substrate to be processed in a cleaning liquid and generating ultrasonic waves in the cleaning liquid to remove particles (dirt etc.) adhering to the substrate to be processed.
  • the present invention relates to a program for executing a substrate cleaning method capable of removing a particle from a substrate to be processed with high removal efficiency while greatly suppressing pattern damage, and a program recording medium storing the program.
  • a method in which a substrate to be processed is immersed in a cleaning solution while being held by a holding member and ultrasonic waves are generated in the cleaning solution to clean the substrate to be processed.
  • V so-called ultrasonic cleaning (also called megasonic processing) 1S
  • ultrasonic cleaning also called megasonic processing
  • the present invention has been made in consideration of such points, and the particles (dirt etc.) adhered to the substrate to be processed by immersing the substrate to be processed in the cleaning solution and generating ultrasonic waves in the cleaning solution.
  • a substrate cleaning method and a substrate cleaning apparatus capable of removing particles from a substrate to be processed with high removal efficiency while greatly suppressing damage to a wiring pattern are provided. Intended to provide
  • the present invention is a substrate cleaning method for removing particles (dirt or the like) adhering to a substrate to be processed by immersing the substrate to be processed in a cleaning solution and generating ultrasonic waves in the cleaning solution.
  • a program for executing a substrate cleaning method capable of removing particles from a substrate to be processed with high removal efficiency while greatly suppressing damage to a wiring pattern and a program recording medium storing the program. I will make it available.
  • the inventors of the present invention conducted various experiments. (1) Generation of a large amount of bubbles hinders improvement in particle removal efficiency. (2) Gas dissolved in cleaning solution prevents damage to wiring pattern. The experimental results were found to be effective. The present invention has been made based on such experimental results.
  • a substrate cleaning apparatus supplies a cleaning tank that stores a cleaning liquid, an ultrasonic generator that generates ultrasonic waves in the cleaning liquid in the cleaning tank, and a cleaning liquid in which a gas that is difficult to dissolve in the cleaning liquid is dissolved. And a second supply pipe for supplying a cleaning liquid in which a gas easily dissolved in the cleaning liquid is dissolved.
  • the first supply pipe is connected to the cleaning tank, and supplies the cleaning liquid in which the gas difficult to dissolve in the cleaning liquid is dissolved into the cleaning tank
  • the second supply pipe may be connected to the cleaning tank so that the second supply pipe is easily dissolved in the cleaning liquid and / or the cleaning liquid in which the gas is dissolved is supplied into the cleaning tank.
  • the substrate cleaning apparatus according to the present invention is connected to the first supply pipe and the second supply pipe and is connected to the cleaning tank, and the cleaning liquid supplied from the first supply pipe and the second supply pipe The supplied cleaning solution You may make it further provide the mixing supply pipe
  • the first supply pipe and the second supply pipe may be connected in series! /.
  • a substrate cleaning apparatus is connected to the first supply pipe and the second supply pipe, and supplies a degassed cleaning liquid to the first supply pipe and the second supply pipe.
  • a second dissolving device that dissolves the easily soluble gas in the cleaning liquid flowing in the supply pipe may be further provided.
  • the dissolved gas concentration of the degassed cleaning liquid supplied from the third supply pipe to the first supply pipe and the second supply pipe is 0% when rounded off to the nearest decimal place. You may make it.
  • the gas that is hardly dissolved may be any one of nitrogen, hydrogen, oxygen, an inert gas, and a combination thereof. .
  • the hard-to-dissolve gas is nitrogen
  • the dissolved gas concentration of the nitrogen in the cleaning liquid supplied from the first supply pipe is rounded off to the nearest decimal place. You may make it%.
  • the gas that is easily dissolved may be carbon dioxide.
  • the temperature of the cleaning liquid in the cleaning tank during cleaning may be maintained at 28 ° C or lower.
  • a substrate cleaning method includes a step of immersing a substrate to be processed in a cleaning liquid in a cleaning tank, and a step of generating ultrasonic waves in the cleaning liquid in the cleaning tank, and generates the ultrasonic waves.
  • the gas is easily dissolved in the cleaning liquid! /, And the gas and the gas that is difficult to dissolve in the cleaning liquid are dissolved in the cleaning liquid in the cleaning tank.
  • the gas that is difficult to dissolve may be any one of nitrogen, hydrogen, oxygen, an inert gas, and a combination thereof. .
  • the hard-to-dissolve gas may be nitrogen, and the dissolved gas concentration of the nitrogen in the cleaning liquid may be 14% by rounding off the decimals. .
  • the gas that is easily dissolved may be carbon dioxide.
  • the temperature of the cleaning liquid in the cleaning tank may be 28 ° C or lower.
  • a program according to the present invention is a program executed by a computer that controls a substrate cleaning apparatus, and is executed by the computer to immerse a substrate to be processed in a cleaning liquid in a cleaning tank;
  • a step of generating an ultrasonic wave in the cleaning liquid in the cleaning tank, and in the step of generating the ultrasonic wave, V, which is easily dissolved in the cleaning liquid, and a gas which is difficult to dissolve in the cleaning liquid are contained in the cleaning tank.
  • the substrate cleaning apparatus is caused to perform a method for cleaning a substrate to be processed, which is dissolved in the cleaning solution.
  • a program recording medium is a computer-readable recording medium in which a program executed by a computer controlling a substrate cleaning apparatus is recorded, and the program is executed by the computer.
  • the step of immersing the substrate to be cleaned in the cleaning tank in the cleaning tank and the step of generating ultrasonic waves in the cleaning liquid in the cleaning tank are easy to dissolve in the cleaning liquid in the step of generating ultrasonic waves.
  • the substrate cleaning apparatus is caused to perform a method for cleaning a substrate to be processed, in which a gas and a gas difficult to dissolve in the cleaning solution are dissolved in the cleaning solution in the cleaning tank.
  • the cavity can be actively generated by the hardly dissolved gas dissolved in the cleaning liquid.
  • the easily dissolved gas dissolved in the cleaning liquid can absorb the shock wave propagating in the cleaning liquid due to the cavity.
  • FIG. 1 is a diagram schematically showing a configuration of an embodiment of a substrate cleaning apparatus according to the present invention.
  • FIG. 2 is a top view showing a processing tank of the substrate cleaning apparatus.
  • FIG. 3 is a diagram for explaining the propagation action of ultrasonic waves in the cleaning liquid when a large amount of bubbles are generated in the cleaning tank.
  • FIG. 4 is a diagram for explaining the propagation action of ultrasonic waves in the cleaning liquid when a small amount of bubbles is generated in the cleaning tank.
  • FIG. 5 is a view corresponding to FIG. 1 and schematically showing a configuration of a modified example of the substrate cleaning apparatus shown in FIG. 1.
  • FIG. 6 is a diagram for explaining the relationship between dissolved gas concentration and particle removal efficiency.
  • FIG. 7 is a diagram for explaining the relationship between the dissolved gas concentration and the region in the wafer where the particle removal efficiency is high.
  • the substrate cleaning apparatus according to the present invention is applied to a semiconductor wafer cleaning apparatus.
  • the substrate cleaning apparatus according to the present invention is not limited to the application to the cleaning of semiconductor wafers, but can be applied to the cleaning of substrates widely.
  • 1 to 4 are diagrams for explaining an embodiment of a substrate cleaning method, a substrate cleaning apparatus, a program, and a recording medium according to the present invention.
  • FIG. 1 is a diagram schematically showing the configuration of the substrate cleaning apparatus
  • FIG. 2 is a top view showing a processing tank of the substrate cleaning apparatus
  • FIGS. 3 and 4 are diagrams of ultrasonic waves in the cleaning liquid. It is a figure for demonstrating a propagation action.
  • the substrate cleaning apparatus 10 includes a cleaning tank (DIP tank) 12, a cleaning liquid supply facility 40 that supplies a cleaning liquid into the cleaning tank 12, and a wafer to be processed (subject to be processed).
  • Processing substrate) Holding member (also called wafer boat) 20 for holding W and cleaning liquid in cleaning tank 12
  • An ultrasonic generator 30 for generating ultrasonic waves and a control device 18 connected to the cleaning liquid supply equipment 40 are provided.
  • Such a substrate cleaning apparatus 10 is an apparatus for ultrasonically cleaning the wafer W to be processed by generating ultrasonic waves in the cleaning liquid while the wafer W to be processed is immersed in the cleaning liquid stored in the cleaning tank 12. It is.
  • the cleaning liquid supply facility 40 is connected to the cleaning tank 12, and is connected to the first supply pipe 50 that supplies the first cleaning liquid into the cleaning tank 12, and the cleaning tank 12, and cleans the second cleaning liquid.
  • the second supply pipe 60 that supplies the tank 12 and the first supply pipe 50 and the second supply pipe are connected to the first supply pipe 50 and the second supply pipe 60 and the deaerated cleaning liquid (third cleaning liquid) is supplied to the first supply pipe 50 and the second supply pipe.
  • a third supply pipe 70 that supplies the cleaning liquid to the 60; and a cleaning liquid source 72 that supplies the cleaning liquid to the third supply pipe 70.
  • pure water DIW
  • DIW pure water
  • the first cleaning liquid is obtained by dissolving a gas that is difficult to dissolve (dissolve) in pure water as the cleaning liquid in the third cleaning liquid at a predetermined dissolved concentration.
  • a gas that is difficult to dissolve refers to a gas that is difficult to stabilize when dissolved in pure water. Therefore, when these gases are dissolved in pure water, cavitation caused by these gases is actively generated when the pure water is irradiated with ultrasonic waves. Further, when the cavity is generated, these dissolved gases are easily bubbled.
  • examples of such “dissolvable gases” include nitrogen, hydrogen, oxygen, inert gases (helium, neon, argon, xenon, etc.), and combinations of these! / Can be used.
  • the second cleaning liquid herein is a solution obtained by dissolving (dissolving) in a pure water as a cleaning liquid! /, And dissolving a gas in the second cleaning liquid at a predetermined dissolved concentration.
  • “easily soluble gas” refers to a gas that is easily stabilized in a state dissolved in pure water. Therefore, when these gases are dissolved in pure water, cavitation due to these gases is unlikely to occur even when ultrasonic waves are applied to the pure water. In addition, since it is difficult to generate cavity, these dissolved gases are less likely to be bubbled.
  • a “dissolvable gas” for example, carbon dioxide can be used.
  • the upstream end of the third supply pipe 70 is connected to the cleaning liquid source 72.
  • the downstream end of the third supply pipe is connected to the upstream end of the first supply pipe 50 and the upstream end of the second supply pipe 60 via the branch pipe 43.
  • the third supply pipe 70 is provided with a deaeration device 75 for degassing the cleaning liquid flowing in the third supply pipe 70.
  • the degassing device 75 various known degassing devices using principles such as membrane degassing and vacuum degassing can be employed.
  • the relationship between the output of the degassing device 75 and the degree of gas that can be degassed from the cleaning liquid at each output (that is, the amount of decrease in dissolved concentration at each output) is grasped in advance. Based on the grasped relationship, the output of the degassing device 75 is determined according to the target degassing amount, and the degassing device 75 is operated with the output, thereby removing the degassed cleaning liquid (third cleaning liquid). ) Can be obtained.
  • This deaeration device 75 is connected to the control device 18, and its operation is controlled by the control device 18.
  • the dissolved gas concentration of the third cleaning liquid is set to Oppm.
  • the dissolved gas concentration of can be set to the planned dissolved gas concentration (Oppm)
  • the dissolved gas concentration used in the present application is judged by a value obtained by rounding off the decimal point in units of "ppm".
  • “Oppm” as used in this application shall include dissolved gas concentrations that are Oppm when rounded to one decimal place, that is, less than 0.5 ppm.
  • the first supply pipe 50 and the second supply pipe 60 flow through the supply pipes 50 and 60 and the on-off valves 54 and 64 that open and close the supply pipes 50 and 60, respectively.
  • flow meters 52 and 62 capable of adjusting the flow rate of the cleaning liquid.
  • Each flow meter 52, 62 is connected to the control device 18.
  • the flow rate of the cleaning liquid flowing in the first supply pipe 50 and the second supply pipe 60 The flow rate of the cleaning liquid flowing in the inside can be controlled by the control device 18 through the flow meters 52 and 62.
  • the first supply pipe 50 is provided with a first dissolving device 55 for dissolving a gas that is difficult to dissolve in the cleaning liquid flowing in the first supply pipe 50.
  • the first melting device 55 is connected to a first gas source 55a that supplies a gas that is difficult to dissolve.
  • the nitrogen power first gas source 55a is supplied to the first dissolving device 55 as a gas that is difficult to dissolve.
  • the second supply pipe 60 is provided with a second dissolving device 65 for dissolving a gas that is easily dissolved in the cleaning liquid flowing in the second supply pipe 60.
  • the second melting device 65 is connected to a second gas source 65a that supplies a gas that is easily dissolved.
  • carbon dioxide power is supplied to the second melting device 65 from the second gas source 65a as a gas that is easily dissolved.
  • first and second dissolving devices 55 and 65 various known dissolving devices can be used in the same manner as the deaeration device 75 described above.
  • the relationship between the output of the dissolving devices 55 and 65 and the amount of gas that can be dissolved by the cleaning solution at each output (that is, the amount of increase in dissolved concentration at each output) is grasped in advance.
  • the first and second cleaning liquids in which the gas is dissolved at the desired dissolved gas concentration can be obtained by determining the outputs of the dissolution apparatuses 55 and 65 based on the relationship and operating the dissolution apparatuses 55 and 65 with the output. it can.
  • the first melting device 55 and the second melting device 65 are each connected to a control device 18, and their operations are controlled by the control device 18, respectively.
  • the first supply pipe 50 and the second supply pipe 60 are provided with temperature control mechanisms 58 and 68.
  • the temperature control mechanisms 58 and 68 the temperature of the first cleaning liquid flowing in the first supply pipe 50 and the temperature of the second cleaning liquid flowing in the second supply pipe 60 are adjusted within the desired temperature ranges, respectively. .
  • the generation of bubbles in the cleaning tank 12 it is advantageous that the temperature of the cleaning solution is low, and it is preferable that the temperature is 28 ° C. or lower based on the results in the examples described later!
  • first cleaning nozzles 56 are opposed to the wall surface of the cleaning tank 12. It is provided along.
  • second cleaning nozzles 66 are provided along the opposing wall surfaces of the cleaning tank 12 at the downstream end of the second supply pipe 60 on the cleaning tank 12 side.
  • first cleaning liquid nozzle 56 is shown, but the second cleaning liquid nozzle 66 has the same configuration as the illustrated first cleaning liquid nozzle 56.
  • the first cleaning nozzle 56 and the second cleaning nozzle 66 are formed of a cylindrical member extending in an elongated shape along the wall surface of the cleaning tank 12.
  • the cylindrical member is provided with a large number of nozzle holes 56a and 66a arranged at regular intervals along the longitudinal direction thereof.
  • the arrangement positions of the nozzle holes 56a and 66a are determined based on the arrangement position of the processing target wafer W held by the holding member 20, as will be described later.
  • the first cleaning nozzle 56 is disposed above the second cleaning nozzle 66.
  • the present invention is not limited to this, and the second cleaning nozzle 66 may be disposed above the first cleaning nozzle 56, or the first cleaning liquid and the second cleaning liquid may be described later as modified examples. May be supplied to the cleaning tank 12 by the same nozzle.
  • the washing tank 12 that receives the first cleaning liquid and the second cleaning liquid from the cleaning liquid supply facility 40 will be described.
  • the washing tank 12 has a substantially rectangular parallelepiped outline as shown in FIGS.
  • the cleaning tank 12 has an upper opening for taking in and out the wafer W as will be described later.
  • an exhaust pipe 13 for discharging the stored cleaning liquid is provided on the bottom surface of the cleaning tank 12.
  • an outer tank 15 is provided so as to surround the upper opening of the cleaning tank 12.
  • the outer tank 15 collects the cleaning liquid overflowing from the upper opening of the cleaning tank 12. Similar to the cleaning tank 12, the outer tank 15 is also provided with a discharge pipe 16 for discharging the recovered cleaning liquid.
  • the cleaning tank 12 and the outer tank 15 are formed using, for example, quartz having high chemical resistance.
  • the cleaning liquid discharged from the discharge pipes 13 and 16 of the cleaning tank 12 and the outer tank 15 May be discarded as it is, or may be recycled.
  • the holding member 20 that holds the wafer W will be described.
  • the holding member 20 has four rod-shaped members 22 extending in a substantially horizontal direction, and a base 24 that cantilever-supports the four rod-shaped members 22 from one side.
  • the rod-shaped holding member 22 is configured to support a plurality of wafers W, for example, 50 wafers W, to be cleaned at a time from below. For this reason, each rod-like member 22 is formed with grooves (not shown) arranged at regular intervals along the longitudinal direction thereof.
  • the wafer 20 is engaged with the groove, and the holding member is formed so that the plate surface of each wafer W is substantially orthogonal to the extending direction of the rod-like member, that is, the plate surface of each wafer W is along the vertical direction. 20 (see Fig. 1).
  • the arrangement pitch of the nozzle holes 56 a and 66 a of the first cleaning liquid nozzle 56 and the second cleaning liquid nozzle 66 described above is held by the holding member 20.
  • C It is almost the same as the pitch of W.
  • the numerous nozzle holes 56a and 66a of the first cleaning liquid nozzle 56 and the second cleaning liquid nozzle 66 described above are arranged so that the cleaning liquid can be discharged between the wafers W held by the holding member 20. ing.
  • the base portion 24 of the holding member 20 is not shown in FIG.
  • the ultrasonic generator 30 is connected to the vibrator 38 attached to the bottom outer surface of the cleaning tank 12, the high-frequency drive power source 32 for driving the vibrator 38, and the high-frequency drive power source 32. And an ultrasonic oscillator 34.
  • a plurality of vibrators 38 are provided, and each vibrator 38 is arranged so as to partially occupy the outer surface of the bottom of the cleaning tank 12.
  • the ultrasonic generator 30 further includes an ultrasonic oscillator 34 and a drive switching mechanism 36 connected to each transducer 38.
  • the drive switching mechanism 36 drives the plurality of vibrators 38 as a whole, and individually drives one or two or more vibrators 38. Both are possible.
  • the ultrasonic wave propagates to the cleaning liquid stored in the cleaning tank 12 through the bottom of the cleaning tank 12, whereby the ultrasonic wave is applied to the cleaning liquid in the cleaning tank 12.
  • the ultrasonic generator 30 is connected to the control device 18, and the control device 18 controls the application of ultrasonic waves to the cleaning liquid.
  • control device 18 As described above, the control device 18 is connected to each component of the substrate cleaning device 10 and controls the operation of each component.
  • the control device 18 includes a computer, and when the computer executes a program stored in the recording medium 19 in advance, cleaning of the wafer W to be processed using the substrate cleaning device 10 is performed. Come on! /
  • pure water is supplied from the cleaning liquid source 72 to the third supply pipe 70 as a cleaning liquid.
  • the cleaning liquid flowing through the third supply pipe 70 is degassed by the degassing device 75, and a third cleaning liquid having a dissolved gas concentration of 0% is generated by rounding off after the decimal point. Thereafter, a part of the third cleaning liquid having a dissolved gas concentration of Oppm flows into the first supply pipe 50 via the branch pipe 43 and the rest flows into the second supply pipe 60.
  • the third cleaning liquid flowing into the first supply pipe 50 can dissolve nitrogen as a gas that is difficult to dissolve, by the first dissolving device 55. In this way, the first cleaning liquid in which nitrogen is dissolved at a predetermined concentration is obtained from the third cleaning liquid.
  • the amount of nitrogen dissolved in the first cleaning solution is determined in consideration of the flow rate of the second cleaning solution flowing into
  • the supply amount of the first cleaning liquid is determined by the control device 18 adjusting the opening of the flow meter 52 according to a preset program.
  • the control device 18 controls the temperature adjustment device 58 according to a preset program.
  • the first cleaning liquid having a predetermined temperature is supplied to the cleaning tank 12 at a predetermined concentration (ppm) and a supply amount (1 / min).
  • the third cleaning liquid flowing into the second supply pipe 60 is dissolved by the second dissolving device 65.
  • Carbon dioxide as a soot gas can be dissolved.
  • a second cleaning liquid in which carbon dioxide is dissolved at a predetermined concentration is obtained from the third cleaning liquid.
  • the flow rate of the first cleaning liquid flowing from the first supply pipe 50 to the cleaning tank 12 and the cleaning tank from the second supply pipe 60 so that the dissolved carbon dioxide concentration of the cleaning liquid in the cleaning tank 12 is 330 ppm.
  • the amount of carbon dioxide dissolved in the second cleaning liquid is determined in consideration of the flow rate of the second cleaning liquid flowing to 12.
  • the supply amount of the second cleaning liquid is determined by the controller 18 adjusting the opening of the flow meter 62 according to a preset program. Further, the control device 18 controls the temperature adjustment device 68 according to a preset program. As a result, the second cleaning liquid having a predetermined temperature is supplied to the cleaning tank 12 at a predetermined concentration (ppm) and a supply amount (1 / min).
  • the cleaning liquid in which nitrogen and carbon dioxide are dissolved at a predetermined dissolved gas concentration is stored in the cleaning tank 12.
  • the holding member 20 holding a predetermined number (for example, 50) of wafers W to be processed is lowered and the wafer W to be processed is immersed in the cleaning liquid in the cleaning tank 12.
  • control device 18 operates the ultrasonic generator 30 to generate ultrasonic waves in the cleaning liquid in the cleaning tank 12.
  • the wafer W immersed in the cleaning tank 12 is subjected to ultrasonic cleaning (megasonic processing).
  • the particulate matter (dirt etc.) adhering to the surface of the wafer W is removed.
  • the first cleaning liquid is supplied from the first supply pipe 50 into the cleaning tank 12, and the second cleaning liquid is supplied from the second supply pipe 60 into the cleaning tank 12.
  • the first cleaning liquid is discharged obliquely upward between the two wafers W held by the holding member 20.
  • the second cleaning liquid is also discharged obliquely upward between the two wafers W held by the holding member 20. Therefore, by discharging the first cleaning liquid and the second cleaning liquid, particles removed from the wafer W are promoted to float up to the liquid level of the cleaning liquid in the cleaning tank 12, and are further removed from the cleaning tank 12. Promoted to overflow into tank 15.
  • the particles once removed from the wafer W can be prevented from reattaching to other portions of the wafer W.
  • the supply time may be limited, or the cleaning liquid may not be supplied at all.
  • the cleaning liquid in the cleaning tank 12 includes a gas that is not easily dissolved in the cleaning liquid (nitrogen) and a gas that is easily dissolved in the cleaning liquid (carbon dioxide). Is dissolved.
  • the damage of the wiring pattern formed on the wafer W is greatly suppressed by the action of the gas that is difficult to dissolve in the cleaning liquid and the action of the gas! On the other hand, particles can be removed from the wafer W with high removal efficiency.
  • the ultrasonic cleaning step for generating ultrasonic waves in the cleaning liquid in the cleaning tank 12 as described above continues, for example, for about 5 minutes. After that, the ultrasonic irradiation by the ultrasonic generator 30 stops.
  • the ultrasonic cleaning process ends.
  • the holding member 20 is raised, and the internal force of the cleaning tank 12 is also carried out of the wafer. As described above, a series of cleaning steps for the wafer W to be processed is completed.
  • the cleaning tank when ultrasonic waves are generated in the cleaning liquid in the cleaning tank 12, the cleaning tank easily dissolves in the cleaning liquid! /, And the gas and the gas difficult to dissolve in the cleaning liquid. It is dissolved in the cleaning solution in 12. Easily soluble gas that dissolves in the cleaning solution actively generates cavity. By this calibration, particles can be removed from the wafer W with high removal efficiency.
  • the easily dissolved gas dissolved in the cleaning liquid is difficult to generate a cavity and thus is less likely to be bubbled. The easily dissolved gas absorbs the shock wave propagating due to the cavity while being dissolved in the cleaning liquid. Therefore, damage to the pattern formed on the wafer W can be prevented.
  • a chemical liquid such as SC1 (ammonia overwater: NH 4 OH / H 2 O / H 2 O) may be used as the cleaning liquid, and the wafer W to be processed may be ultrasonically cleaned.
  • SC1 ammonia overwater: NH 4 OH / H 2 O / H 2 O
  • a rinsing cleaning process using pure water is required after the cleaning process with the chemical solution.
  • the above-described substrate cleaning method using pure water can also be employed.
  • the present invention is not limited thereto.
  • a mixed supply pipe 80 connected to the first supply pipe 50 and the second supply pipe 60 is further provided, and the first cleaning liquid and the second cleaning liquid are mixed and supplied to the cleaning tank 12. You can make it! /
  • the first supply pipe 50 and the second supply pipe 60 are connected to the mixing supply pipe 80 via the mixing valve 82.
  • the temperature adjustment mechanism 88 is provided in the mixing supply pipe 80, and the temperature adjustment mechanism is not provided in the first supply pipe 50 and the second supply pipe 60. The temperature control mechanism 88 adjusts the temperature of the cleaning liquid supplied from the mixing supply pipe 80 into the cleaning tank 12.
  • FIG. 5 The modified example shown in Fig. 5 is further provided with a mixing supply pipe 80 and a mixing valve 82, and only the arrangement position of the temperature control mechanism is different. Others are shown in Figs. 1 to 4 The form is substantially the same. In FIG. 5, the same components as those in the embodiment shown in FIGS. 1 to 4 are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the first supply pipe 50 and the second supply pipe 60 may be connected in series.
  • the first cleaning liquid flows from the first supply pipe 50 into the second supply pipe 60, and after the gas that is easily dissolved in the cleaning liquid is dissolved, the gas that is easily dissolved and the gas that is difficult to dissolve are mixed.
  • the cleaning liquid in which both are dissolved may be supplied to the cleaning tank 12, or the second cleaning liquid flows from the second supply pipe 60 to the first supply pipe 50 and is not easily dissolved in this cleaning liquid. After the gas has been dissolved, the solution is dissolved! Do it like that.
  • the dissolved gas concentration of each cleaning liquid is merely an example, and various changes can be made.
  • the substrate cleaning apparatus 10 includes the control device 18 including a computer.
  • the control device 18 operates each component of the substrate cleaning device 10 so that the wafer W to be processed is cleaned.
  • the program executed by the computer of the control device 18 in order to perform the cleaning of the wafer W using the substrate cleaning device 10 is also the subject of this case.
  • the computer-readable recording medium 19 that records the program is also the subject of this case.
  • the recording medium 19 includes those that can be recognized as a single unit such as a floppy disk (flexible disk) and a hard disk drive.
  • the present invention is not limited, and it can be applied to cleaning processing of LCD substrates and CD substrates.
  • a cleaning solution in which nitrogen was dissolved at different dissolved gas concentrations was stored in a cleaning tank, and a test wafer was immersed in the cleaning liquid in the cleaning tank to generate ultrasonic waves in the cleaning liquid.
  • the cleaning solution used in this experiment was degassed until the dissolved gas concentration reached Oppm, and then nitrogen was dissolved in the cleaning solution at a different dissolved gas concentration. In other words, only nitrogen as a gas is dissolved in the cleaning liquid in the cleaning tank.
  • the experiment was conducted with five concentrations of dissolved nitrogen: 8 ppm, 10 ppm, 12 ppm, 14 ppm, and 16 ppm.
  • Conditions other than the dissolved gas concentration were the general conditions used for ultrasonic cleaning of the wafer.
  • the time for generating ultrasonic waves was 10 minutes.
  • 4000 particles were uniformly deposited in advance.
  • FIGS. 1 and 2 multiple wafers can be accommodated and the lower side is washed.
  • a washing tank provided with a washing nozzle for supplying the clean solution was used in this experiment.
  • Figure 7 shows the results of wafer observations when the dissolved nitrogen concentration is 14 ppm and when it is 16 ppm.
  • the shaded area is the area where particles are visually recognized as being removed with high removal efficiency.
  • the layout of the test wafers on the paper in Fig. 7 corresponds to the layout of the test wafers in the cleaning tank.
  • the lower portion of the test wafer on the paper surface of FIG. 7 is the portion that was disposed on the lower side of the cleaning tank (the vibrator side of the ultrasonic generator) during ultrasonic cleaning.
  • the dissolved gas concentration of nitrogen is 14 ppm and the dissolved gas concentration of carbon dioxide is different! /
  • the cleaning solution is stored in the cleaning bath, and the test wafer is immersed in the cleaning solution in the cleaning bath. Ultrasonic waves were generated.
  • the cleaning solution used in this experiment was degassed until the dissolved gas concentration was SOppm, and then the dissolved gas concentration of nitrogen was adjusted to 14ppm and the dissolved gas concentration of carbon dioxide was adjusted. In other words, only nitrogen and carbon dioxide are dissolved in the cleaning liquid in the cleaning tank.
  • the experiment was conducted with the dissolved concentration of carbon dioxide set to Oppm (comparative example) and 330 ppm (example). Ultrasonic cleaning was performed for 4 minutes. Pure water was used as the cleaning liquid. The ultrasonic output was 96W.
  • the test wafer had 4000 particles uniformly adhered in advance, and was further provided with approximately 100 billion protrusions for damage evaluation. Using.
  • the particle removal efficiency was substantially the same when the dissolved gas concentration of carbon dioxide was Oppm and when it was 33 Oppm. In other words, when carbon dioxide is dissolved at a dissolved gas concentration of 330 ppm, it has the same particle removal effect as when carbon dioxide is not dissolved, and it is greatly damaged compared to when carbon dioxide is not dissolved. Can be reduced.
  • the results in Table 2 are the results when the temperature of the cleaning liquid in the cleaning tank was 28 ° C.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Cleaning Or Drying Semiconductors (AREA)
  • Liquid Crystal (AREA)

Abstract

Provided is a substrate cleaning method for removing particles at a high removing efficiency from a substrate to be treated, while remarkably suppressing damages of a wiring pattern. In the substrate cleaning method, the particles (dirt and the like) attached on the substrate (W) to be treated are removed by immersing the substrate in a cleaning solution and generating ultrasonic waves in the cleaning solution. The substrate cleaning method is provided with a step of immersing the substrate in the cleaning solution in a cleaning tank (12), and a step of generating the ultrasonic waves in the cleaning solution in the cleaning tank. In the step of generating the ultrasonic waves, a gas easily dissolved in the cleaning solution and a gas not easily dissolved in the cleaning solution are dissolved in the cleaning solution in the cleaning tank.

Description

明 細 書  Specification
基板洗浄装置、基板洗浄方法、プログラム、および記録媒体  Substrate cleaning apparatus, substrate cleaning method, program, and recording medium
技術分野  Technical field
[0001] 本発明は、被処理基板を洗浄液に浸漬するとともに洗浄液に超音波を発生させて The present invention immerses a substrate to be processed in a cleaning liquid and generates ultrasonic waves in the cleaning liquid.
、被処理基板に付着したパーティクル (汚れ等)を除去する基板洗浄方法および基 板洗浄装置に係り、とりわけ、配線パターンのダメージを大幅に抑制しながら被処理 基板からパーティクルを高い除去効率で除去することができる基板洗浄方法および 基板洗浄装置に関する。 In particular, the present invention relates to a substrate cleaning method and a substrate cleaning apparatus that remove particles (dirt, etc.) adhering to a substrate to be processed, and in particular, removes particles from a substrate to be processed with high removal efficiency while greatly suppressing damage to wiring patterns. The present invention relates to a substrate cleaning method and a substrate cleaning apparatus.
また、本発明は、被処理基板を洗浄液に浸漬するとともに洗浄液に超音波を発生さ せて、被処理基板に付着したパーティクル (汚れ等)を除去する基板の洗浄方法であ つて、とりわけ、配線パターンのダメージを大幅に抑制しながら被処理基板からパー ティクルを高い除去効率で除去することができる基板の洗浄方法を実行するための プログラム、並びに、当該プログラムを記憶したプログラム記録媒体に関する。  The present invention also relates to a substrate cleaning method for immersing a substrate to be processed in a cleaning liquid and generating ultrasonic waves in the cleaning liquid to remove particles (dirt etc.) adhering to the substrate to be processed. The present invention relates to a program for executing a substrate cleaning method capable of removing a particle from a substrate to be processed with high removal efficiency while greatly suppressing pattern damage, and a program recording medium storing the program.
背景技術  Background art
[0002] 保持部材に保持させた状態で被処理基板を洗浄液に浸漬させるとともに洗浄液に 超音波を発生させて被処理基板を洗浄する方法、 V、わゆる超音波洗浄 (メガソニック 処理とも呼ぶ) 1S 例えば特開昭 64— 4285号公報から既知である。  [0002] A method in which a substrate to be processed is immersed in a cleaning solution while being held by a holding member and ultrasonic waves are generated in the cleaning solution to clean the substrate to be processed. V, so-called ultrasonic cleaning (also called megasonic processing) 1S For example, it is known from JP-A 64-4285.
[0003] 超音波洗浄においては、主として、洗浄液中にキヤビテーシヨンを生じさせることに より、被処理基板力 パーティクルを除去する。その一方で、強烈なキヤビテーシヨン 力 S生じると、キヤビテーシヨンに伴った衝撃波により、被処理基板の表面に形成され た配線パターンを損傷してしまうという不具合も生じる。そして、特開昭 64— 4285号 公報では、洗浄液中に気泡を発生させることにより、配線パターンのダメージを抑制 しつつ被処理基板を洗浄することが提案されてレ、る。  [0003] In ultrasonic cleaning, the target substrate force particles are removed mainly by generating a cavity in the cleaning liquid. On the other hand, when a strong cavity force S is generated, there is a problem that the wiring pattern formed on the surface of the substrate to be processed is damaged by a shock wave accompanying the cavity. Japanese Laid-Open Patent Publication No. 64-4285 proposes cleaning the substrate to be processed while suppressing damage to the wiring pattern by generating bubbles in the cleaning liquid.
[0004] しかしながら、本件発明者らが鋭意研究を重ねたところ、洗浄液に気泡を発生させ ると、パーティクルの除去効率が低下してしまう、ことが見出された。また、近年におい ては、配線パターンがさらに微細化する傾向にあり、微細化した配線パターンは衝撃 波によってダメージを受けやすい。したがって、これまで以上に効果的な配線パター ンのダメージ防止策が求められている。 [0004] However, as a result of extensive research by the present inventors, it has been found that if bubbles are generated in the cleaning liquid, the particle removal efficiency decreases. In recent years, the wiring pattern tends to be further miniaturized, and the miniaturized wiring pattern is easily damaged by a shock wave. Therefore, more effective wiring pattern than ever Is needed.
発明の開示  Disclosure of the invention
[0005] 本発明はこのような点を考慮してなされたものであり、被処理基板を洗浄液に浸漬 するとともに洗浄液に超音波を発生させて、被処理基板に付着したパーティクル (汚 れ等)を除去する基板洗浄方法および基板洗浄装置であって、とりわけ、配線パター ンのダメージを大幅に抑制しながら被処理基板からパーティクルを高い除去効率で 除去することができる基板洗浄方法および基板洗浄装置を提供することを目的とする  [0005] The present invention has been made in consideration of such points, and the particles (dirt etc.) adhered to the substrate to be processed by immersing the substrate to be processed in the cleaning solution and generating ultrasonic waves in the cleaning solution. In particular, a substrate cleaning method and a substrate cleaning apparatus capable of removing particles from a substrate to be processed with high removal efficiency while greatly suppressing damage to a wiring pattern are provided. Intended to provide
[0006] また、本発明は、被処理基板を洗浄液に浸漬するとともに洗浄液に超音波を発生さ せて、被処理基板に付着したパーティクル (汚れ等)を除去する基板の洗浄方法であ つて、とりわけ、配線パターンのダメージを大幅に抑制しながら被処理基板からパー ティクルを高い除去効率で除去することができる基板の洗浄方法を実行するための プログラム、並びに、当該プログラムを記憶したプログラム記録媒体を提供することを 目白勺とする。 [0006] Further, the present invention is a substrate cleaning method for removing particles (dirt or the like) adhering to a substrate to be processed by immersing the substrate to be processed in a cleaning solution and generating ultrasonic waves in the cleaning solution. In particular, there is provided a program for executing a substrate cleaning method capable of removing particles from a substrate to be processed with high removal efficiency while greatly suppressing damage to a wiring pattern, and a program recording medium storing the program. I will make it available.
[0007] 本件発明者らが種々の実験を行ったところ、(1)大量の気泡の発生がパーティクル 除去効率の向上を阻害する、(2)洗浄液中に溶存したガスが配線パターンのダメー ジ防止に有効である、という実験結果が得られた。本発明はこのような実験結果に基 づきなされたものである。  [0007] The inventors of the present invention conducted various experiments. (1) Generation of a large amount of bubbles hinders improvement in particle removal efficiency. (2) Gas dissolved in cleaning solution prevents damage to wiring pattern. The experimental results were found to be effective. The present invention has been made based on such experimental results.
[0008] 本発明による基板洗浄装置は、洗浄液を貯留する洗浄槽と、前記洗浄槽内の洗浄 液に超音波を発生させる超音波発生装置と、洗浄液に溶解しにくいガスが溶解した 洗浄液を供給する第 1供給管と、洗浄液に溶解しやすいガスが溶解した洗浄液を供 給する第 2供給管と、を備えることを特徴とする。  [0008] A substrate cleaning apparatus according to the present invention supplies a cleaning tank that stores a cleaning liquid, an ultrasonic generator that generates ultrasonic waves in the cleaning liquid in the cleaning tank, and a cleaning liquid in which a gas that is difficult to dissolve in the cleaning liquid is dissolved. And a second supply pipe for supplying a cleaning liquid in which a gas easily dissolved in the cleaning liquid is dissolved.
[0009] 本発明による基板洗浄装置にお!/、て、前記第 1供給管は、前記洗浄槽に接続され 、洗浄液に溶解しにくいガスが溶解した洗浄液を前記洗浄槽内に供給し、前記第 2 供給管は、前記洗浄槽に接続され、洗浄液に溶解しやす!/、ガスが溶解した洗浄液を 前記洗浄槽内に供給するようにしてもよい。あるいは、本発明による基板洗浄装置が 、前記第 1供給管および前記第 2供給管と接続されるとともに前記洗浄槽に接続され 、前記第 1供給管から供給される洗浄液と前記第 2供給管から供給される洗浄液とを 混合して前記洗浄槽内へ供給し得る混合供給管を、さらに備えるようにしてもよい。 あるいは、本発明による基板洗浄装置において、前記第 1供給管および前記第 2供 給管は直列に接続されて!/、るようにしてもよ!/、。 [0009] In the substrate cleaning apparatus according to the present invention, the first supply pipe is connected to the cleaning tank, and supplies the cleaning liquid in which the gas difficult to dissolve in the cleaning liquid is dissolved into the cleaning tank, The second supply pipe may be connected to the cleaning tank so that the second supply pipe is easily dissolved in the cleaning liquid and / or the cleaning liquid in which the gas is dissolved is supplied into the cleaning tank. Alternatively, the substrate cleaning apparatus according to the present invention is connected to the first supply pipe and the second supply pipe and is connected to the cleaning tank, and the cleaning liquid supplied from the first supply pipe and the second supply pipe The supplied cleaning solution You may make it further provide the mixing supply pipe | tube which can mix and supply in the said washing tank. Alternatively, in the substrate cleaning apparatus according to the present invention, the first supply pipe and the second supply pipe may be connected in series! /.
[0010] また、本発明による基板洗浄装置が、前記第 1供給管および前記第 2供給管に接 続され、脱気された洗浄液を前記第 1供給管および前記第 2供給管に供給する第 3 供給管と、前記第 1供給管に取り付けられ、前記第 1供給管内を流れる洗浄液に前 記溶解しにくいガスを溶解させる第 1溶解装置と、前記第 2供給管に取り付けられ、 前記第 2供給管内を流れる洗浄液に前記溶解しやすいガスを溶解させる第 2溶解装 置と、をさらに備えるようにしてもよい。このような本発明による基板洗浄装置において 、前記第 3供給管から前記第 1供給管および前記第 2供給管に供給される脱気され た洗浄液の溶存ガス濃度は、小数点以下を四捨五入すると 0%であるようにしてもよ い。 [0010] Further, a substrate cleaning apparatus according to the present invention is connected to the first supply pipe and the second supply pipe, and supplies a degassed cleaning liquid to the first supply pipe and the second supply pipe. 3 a supply pipe, a first dissolution apparatus attached to the first supply pipe and dissolving the gas difficult to dissolve in the cleaning liquid flowing in the first supply pipe, and attached to the second supply pipe, A second dissolving device that dissolves the easily soluble gas in the cleaning liquid flowing in the supply pipe may be further provided. In such a substrate cleaning apparatus according to the present invention, the dissolved gas concentration of the degassed cleaning liquid supplied from the third supply pipe to the first supply pipe and the second supply pipe is 0% when rounded off to the nearest decimal place. You may make it.
[0011] さらに、本発明による基板洗浄装置において、前記溶解しにくいガスは、窒素、水 素、酸素、不活性ガス、および、これらの組み合わせのうちのいずれか一つであるよう にしてもよい。  [0011] Further, in the substrate cleaning apparatus according to the present invention, the gas that is hardly dissolved may be any one of nitrogen, hydrogen, oxygen, an inert gas, and a combination thereof. .
[0012] さらに、本発明による基板洗浄装置において、前記溶解しにくいガスは窒素であり、 前記第 1供給管から供給される洗浄液中における前記窒素の溶存ガス濃度は、小数 点以下を四捨五入すると 14%であるようにしてもよい。  Furthermore, in the substrate cleaning apparatus according to the present invention, the hard-to-dissolve gas is nitrogen, and the dissolved gas concentration of the nitrogen in the cleaning liquid supplied from the first supply pipe is rounded off to the nearest decimal place. You may make it%.
[0013] さらに、本発明による基板洗浄装置において、前記溶解しやすいガスは二酸化炭 素であるようにしてもよい。  [0013] Further, in the substrate cleaning apparatus according to the present invention, the gas that is easily dissolved may be carbon dioxide.
[0014] さらに、本発明による基板洗浄装置において、洗浄中における前記洗浄槽内の洗 浄液の温度が 28°C以下に保持されるようになっていてもよい。  [0014] Further, in the substrate cleaning apparatus according to the present invention, the temperature of the cleaning liquid in the cleaning tank during cleaning may be maintained at 28 ° C or lower.
[0015] 本発明による基板洗浄方法は、洗浄槽内で被処理基板を洗浄液に浸漬する工程 と、前記洗浄槽内の洗浄液に超音波を発生させる工程と、を備え、前記超音波を発 生させる工程にお!/、て、洗浄液に溶解しやす!/、ガスと洗浄液に溶解しにくいガスとが 、前記洗浄槽内の前記洗浄液に溶解して!/、ることを特徴とする。  A substrate cleaning method according to the present invention includes a step of immersing a substrate to be processed in a cleaning liquid in a cleaning tank, and a step of generating ultrasonic waves in the cleaning liquid in the cleaning tank, and generates the ultrasonic waves. In this process, the gas is easily dissolved in the cleaning liquid! /, And the gas and the gas that is difficult to dissolve in the cleaning liquid are dissolved in the cleaning liquid in the cleaning tank.
[0016] 本発明による基板洗浄方法の前記超音波を発生させる工程にお!/、て、前記洗浄 液に溶解しやす!/、ガスと前記洗浄液に溶解しにくいガスとのみカ、前記洗浄槽内の 前記洗浄液に溶解して!/、るようにしてもょレ、。 [0016] In the step of generating the ultrasonic wave of the substrate cleaning method according to the present invention! /, Easily dissolved in the cleaning liquid! /, Only gas and gas difficult to dissolve in the cleaning liquid, and the cleaning tank Inside Dissolve in the cleaning solution!
[0017] また、本発明による基板洗浄方法において、前記溶解しにくいガスは、窒素、水素 、酸素、不活性ガス、および、これらの組み合わせのうちのいずれか一つであるように してもよい。 [0017] In the substrate cleaning method according to the present invention, the gas that is difficult to dissolve may be any one of nitrogen, hydrogen, oxygen, an inert gas, and a combination thereof. .
[0018] さらに、本発明による基板洗浄方法において、前記溶解しにくいガスは窒素であり、 前記洗浄液中における前記窒素の溶存ガス濃度は、小数点以下を四捨五入すると 1 4%であるようにしてもよい。  [0018] Further, in the substrate cleaning method according to the present invention, the hard-to-dissolve gas may be nitrogen, and the dissolved gas concentration of the nitrogen in the cleaning liquid may be 14% by rounding off the decimals. .
[0019] さらに、本発明による基板洗浄方法において、前記溶解しやすいガスは二酸化炭 素であるようにしてもよい。  [0019] Further, in the substrate cleaning method according to the present invention, the gas that is easily dissolved may be carbon dioxide.
[0020] さらに、本発明による基板洗浄方法の前記超音波を発生させる工程において、前 記洗浄槽内の前記洗浄液の温度は 28°C以下であるようにしてもよい。  [0020] Further, in the step of generating the ultrasonic wave in the substrate cleaning method according to the present invention, the temperature of the cleaning liquid in the cleaning tank may be 28 ° C or lower.
[0021] 本発明によるプログラムは、基板洗浄装置を制御するコンピュータによって実行さ れるプログラムであって、前記コンピュータによって実行されることにより、洗浄槽内で 被処理基板を洗浄液に浸漬する工程と、前記洗浄槽内の洗浄液に超音波を発生さ せる工程と、を備え、前記超音波を発生させる工程において、洗浄液に溶解しやす V、ガスと洗浄液に溶解しにくいガスとが、前記洗浄槽内の前記洗浄液に溶解して!/、 る、被処理基板の洗浄方法を基板洗浄装置に実施させることを特徴とする。  [0021] A program according to the present invention is a program executed by a computer that controls a substrate cleaning apparatus, and is executed by the computer to immerse a substrate to be processed in a cleaning liquid in a cleaning tank; A step of generating an ultrasonic wave in the cleaning liquid in the cleaning tank, and in the step of generating the ultrasonic wave, V, which is easily dissolved in the cleaning liquid, and a gas which is difficult to dissolve in the cleaning liquid are contained in the cleaning tank. The substrate cleaning apparatus is caused to perform a method for cleaning a substrate to be processed, which is dissolved in the cleaning solution.
[0022] 本発明によるプログラム記録媒体は、基板洗浄装置を制御するコンピュータによつ て実行されるプログラムが記録されたコンピュータ読み取り可能な記録媒体であって 、前記プログラムが前記コンピュータによって実行されることにより、洗浄槽内で被処 理基板を洗浄液に浸漬する工程と、前記洗浄槽内の洗浄液に超音波を発生させる 工程と、を備え、前記超音波を発生させる工程において、洗浄液に溶解しやすいガ スと洗浄液に溶解しにくいガスとが、前記洗浄槽内の前記洗浄液に溶解して!/、る、被 処理基板の洗浄方法を基板洗浄装置に実施させることを特徴とする。  [0022] A program recording medium according to the present invention is a computer-readable recording medium in which a program executed by a computer controlling a substrate cleaning apparatus is recorded, and the program is executed by the computer. The step of immersing the substrate to be cleaned in the cleaning tank in the cleaning tank and the step of generating ultrasonic waves in the cleaning liquid in the cleaning tank are easy to dissolve in the cleaning liquid in the step of generating ultrasonic waves. The substrate cleaning apparatus is caused to perform a method for cleaning a substrate to be processed, in which a gas and a gas difficult to dissolve in the cleaning solution are dissolved in the cleaning solution in the cleaning tank.
[0023] 本発明によれば、洗浄液中に溶存した溶解しにくいガスにより、キヤビテーシヨンを 活発に発生させることができる。その一方で、洗浄液中に溶存した溶解しやすいガス により、キヤビテーシヨンに起因して洗浄液中を伝播する衝撃波を吸収することができ る。これらにより、被処理基板に形成された配線パターンのダメージを大幅に抑制し ながら、被処理基板からパーティクルを高!/、除去効率で除去することができる。 [0023] According to the present invention, the cavity can be actively generated by the hardly dissolved gas dissolved in the cleaning liquid. On the other hand, the easily dissolved gas dissolved in the cleaning liquid can absorb the shock wave propagating in the cleaning liquid due to the cavity. These greatly reduce the damage to the wiring pattern formed on the substrate to be processed. However, it is possible to remove particles from the substrate to be processed with high efficiency and removal efficiency.
図面の簡単な説明  Brief Description of Drawings
[0024] [図 1]図 1は、本発明による基板洗浄装置の一実施の形態の構成を概略的に示す図 である。  FIG. 1 is a diagram schematically showing a configuration of an embodiment of a substrate cleaning apparatus according to the present invention.
[図 2]図 2は、基板洗浄装置の処理槽を示す上面図である。  FIG. 2 is a top view showing a processing tank of the substrate cleaning apparatus.
[図 3]図 3は、洗浄槽内に大量の気泡が発生した場合における、洗浄液中における超 音波の伝播作用を説明するための図である。  [FIG. 3] FIG. 3 is a diagram for explaining the propagation action of ultrasonic waves in the cleaning liquid when a large amount of bubbles are generated in the cleaning tank.
[図 4]図 4は、洗浄槽内に少量の気泡が発生した場合における、洗浄液中における超 音波の伝播作用を説明するための図である。  [FIG. 4] FIG. 4 is a diagram for explaining the propagation action of ultrasonic waves in the cleaning liquid when a small amount of bubbles is generated in the cleaning tank.
[図 5]図 5は、図 1に対応する図であって、図 1に示す基板洗浄装置の変形例の構成 を概略的に示す図である。  FIG. 5 is a view corresponding to FIG. 1 and schematically showing a configuration of a modified example of the substrate cleaning apparatus shown in FIG. 1.
[図 6]図 6は、溶存ガス濃度とパーティクル除去効率との関係を説明するための図で ある。  FIG. 6 is a diagram for explaining the relationship between dissolved gas concentration and particle removal efficiency.
[図 7]図 7は、溶存ガス濃度と、ウェハ中のパーティクル除去効率が高くなる領域との 関係を説明するための図である。  FIG. 7 is a diagram for explaining the relationship between the dissolved gas concentration and the region in the wafer where the particle removal efficiency is high.
発明を実施するための形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0025] 以下、図面を参照して本発明の一実施の形態について説明する。なお、以下の実 施の形態においては、本発明による基板洗浄装置を半導体ウェハの洗浄装置に適 用した例を説明する。ただし、本発明による基板洗浄装置は、半導体ウェハの洗浄 への適用に限られるものではなぐ広く基板の洗浄に適用することができる。 Hereinafter, an embodiment of the present invention will be described with reference to the drawings. In the following embodiments, an example in which the substrate cleaning apparatus according to the present invention is applied to a semiconductor wafer cleaning apparatus will be described. However, the substrate cleaning apparatus according to the present invention is not limited to the application to the cleaning of semiconductor wafers, but can be applied to the cleaning of substrates widely.
[0026] 図 1乃至図 4は本発明による基板洗浄方法、基板洗浄装置、プログラム、および記 録媒体の一実施の形態を説明するための図である。 1 to 4 are diagrams for explaining an embodiment of a substrate cleaning method, a substrate cleaning apparatus, a program, and a recording medium according to the present invention.
[0027] このうち図 1は基板洗浄装置の構成を概略的に示す図であり、図 2は基板洗浄装置 の処理槽を示す上面図であり、図 3および図 4は洗浄液中における超音波の伝播作 用を説明するための図である。 [0027] Of these, FIG. 1 is a diagram schematically showing the configuration of the substrate cleaning apparatus, FIG. 2 is a top view showing a processing tank of the substrate cleaning apparatus, and FIGS. 3 and 4 are diagrams of ultrasonic waves in the cleaning liquid. It is a figure for demonstrating a propagation action.
[0028] 図 1に示すように、本実施の形態における基板洗浄装置 10は、洗浄槽 (DIP槽) 12 と、洗浄槽 12内に洗浄液を供給する洗浄液供給設備 40と、被処理ウェハ(被処理 基板) Wを保持する保持部材(ウェハボートとも呼ぶ) 20と、洗浄槽 12内の洗浄液に 超音波を発生させる超音波発生装置 30と、洗浄液供給設備 40に接続された制御装 置 18と、を備えている。このような基板洗浄装置 10は、洗浄槽 12内に貯留された洗 浄液に被処理ウェハ Wを浸漬した状態で洗浄液に超音波を発生させることにより、 被処理ウェハ Wを超音波洗浄する装置である。 As shown in FIG. 1, the substrate cleaning apparatus 10 according to the present embodiment includes a cleaning tank (DIP tank) 12, a cleaning liquid supply facility 40 that supplies a cleaning liquid into the cleaning tank 12, and a wafer to be processed (subject to be processed). Processing substrate) Holding member (also called wafer boat) 20 for holding W and cleaning liquid in cleaning tank 12 An ultrasonic generator 30 for generating ultrasonic waves and a control device 18 connected to the cleaning liquid supply equipment 40 are provided. Such a substrate cleaning apparatus 10 is an apparatus for ultrasonically cleaning the wafer W to be processed by generating ultrasonic waves in the cleaning liquid while the wafer W to be processed is immersed in the cleaning liquid stored in the cleaning tank 12. It is.
[0029] まず、洗浄液供給設備 40について詳述する。図 1に示すように洗浄液供給設備 40 は、洗浄槽 12に接続され、第 1洗浄液を洗浄槽 12内に供給する第 1供給管 50と、洗 浄槽 12に接続され、第 2洗浄液を洗浄槽 12内に供給する第 2供給管 60と、第 1供給 管 50および第 2供給管 60に接続されるとともに脱気された洗浄液 (第 3洗浄液)を第 1供給管 50および第 2供給管 60に供給する第 3供給管 70と、第 3供給管 70に洗浄 液を供給する洗浄液源 72と、を備えている。なお、本実施の形態において、洗浄液 源 72からは、純水(DIW)が洗浄液として第 3供給管 70に供給されるようになってい [0029] First, the cleaning liquid supply facility 40 will be described in detail. As shown in FIG. 1, the cleaning liquid supply facility 40 is connected to the cleaning tank 12, and is connected to the first supply pipe 50 that supplies the first cleaning liquid into the cleaning tank 12, and the cleaning tank 12, and cleans the second cleaning liquid. The second supply pipe 60 that supplies the tank 12 and the first supply pipe 50 and the second supply pipe are connected to the first supply pipe 50 and the second supply pipe 60 and the deaerated cleaning liquid (third cleaning liquid) is supplied to the first supply pipe 50 and the second supply pipe. A third supply pipe 70 that supplies the cleaning liquid to the 60; and a cleaning liquid source 72 that supplies the cleaning liquid to the third supply pipe 70. In the present embodiment, pure water (DIW) is supplied from the cleaning liquid source 72 to the third supply pipe 70 as a cleaning liquid.
[0030] ここで第 1洗浄液とは、洗浄液である純水に溶解 (溶存)しにくいガスを、所定の溶 存濃度で第 3洗浄液に溶解してなるものである。この中で「溶解しにくいガス」とは、純 水に溶解された状態で安定しにくいガスを指す。したがって、これらのガスが純水に 溶存している場合、純水に超音波を照射すると、これらのガスに起因したキヤビテー シヨンが活発に生じる。また、キヤビテーシヨンが生じると、溶存していたこれらのガス が気泡化しやすくなる。このような「溶解しにくいガス」として、例えば、窒素、水素、酸 素、不活性ガス(ヘリウム、ネオン、アルゴン、キセノン等)、および、これらの組み合わ せのうちの!/、ずれか一つを用いることができる。 [0030] Here, the first cleaning liquid is obtained by dissolving a gas that is difficult to dissolve (dissolve) in pure water as the cleaning liquid in the third cleaning liquid at a predetermined dissolved concentration. Among these, “a gas that is difficult to dissolve” refers to a gas that is difficult to stabilize when dissolved in pure water. Therefore, when these gases are dissolved in pure water, cavitation caused by these gases is actively generated when the pure water is irradiated with ultrasonic waves. Further, when the cavity is generated, these dissolved gases are easily bubbled. Examples of such “dissolvable gases” include nitrogen, hydrogen, oxygen, inert gases (helium, neon, argon, xenon, etc.), and combinations of these! / Can be used.
[0031] 一方、ここで第 2洗浄液とは、洗浄液である純水に溶解 (溶存)しゃす!/、ガスを、所 定の溶存濃度で第 2洗浄液に溶解してなるものである。この中で「溶解しやすいガス」 とは、純水に溶解された状態で安定しやすいガスを指す。したがって、これらのガス が純水に溶存している場合、純水に超音波を照射しても、これらのガスに起因したキ ャビテーシヨンは生じにくい。また、キヤビテーシヨンも生じにくいので、溶存していた これらのガスは気泡化しにくい。このような「溶解しやすいガス」として、例えば、二酸 化炭素を用いることができる。  [0031] On the other hand, the second cleaning liquid herein is a solution obtained by dissolving (dissolving) in a pure water as a cleaning liquid! /, And dissolving a gas in the second cleaning liquid at a predetermined dissolved concentration. Among them, “easily soluble gas” refers to a gas that is easily stabilized in a state dissolved in pure water. Therefore, when these gases are dissolved in pure water, cavitation due to these gases is unlikely to occur even when ultrasonic waves are applied to the pure water. In addition, since it is difficult to generate cavity, these dissolved gases are less likely to be bubbled. As such a “dissolvable gas”, for example, carbon dioxide can be used.
[0032] 図 1に示すように、洗浄液源 72に第 3供給管 70の上流側の端部が接続されている 。一方、第 3供給管の下流側の端部は、分岐管 43を介して、第 1供給管 50の上流側 の端部および第 2供給管 60の上流側の端部に接続されている。また、第 3供給管 70 には、第 3供給管 70内を流れる洗浄液を脱気する脱気装置 75が設けられている。こ のような構成により、洗浄液源 72から第 3供給管 70に送り込まれた洗浄液 (純水)が 脱気装置 75によって脱気され、脱気された洗浄液(第 3洗浄液)が生成される。生成 された第 3洗浄液は、分岐管 43を介し、第 1供給管 50および第 2供給管 60に供給さ れる。 As shown in FIG. 1, the upstream end of the third supply pipe 70 is connected to the cleaning liquid source 72. . On the other hand, the downstream end of the third supply pipe is connected to the upstream end of the first supply pipe 50 and the upstream end of the second supply pipe 60 via the branch pipe 43. Further, the third supply pipe 70 is provided with a deaeration device 75 for degassing the cleaning liquid flowing in the third supply pipe 70. With such a configuration, the cleaning liquid (pure water) sent from the cleaning liquid source 72 to the third supply pipe 70 is degassed by the degassing device 75, and the degassed cleaning liquid (third cleaning liquid) is generated. The generated third cleaning liquid is supplied to the first supply pipe 50 and the second supply pipe 60 via the branch pipe 43.
[0033] ここで、脱気装置 75としては、膜脱気や真空脱気等の原理を用いた種々の公知の 脱気装置を採用することができる。そして、脱気装置 75の出力と、各出力で洗浄液か ら脱気させることができるガスの量の程度(つまり、各出力における溶存濃度の低下 量)と、の関係を予め把握しておき、当該把握された関係に基づき目標とする脱気量 に応じて脱気装置 75の出力を決定し、当該出力で脱気装置 75を稼働させることによ り、脱気された洗浄液(第 3洗浄液)を得ることができる。この脱気装置 75は制御装置 18に接続され、制御装置 18によってその動作が制御されるようになっている。  Here, as the degassing device 75, various known degassing devices using principles such as membrane degassing and vacuum degassing can be employed. The relationship between the output of the degassing device 75 and the degree of gas that can be degassed from the cleaning liquid at each output (that is, the amount of decrease in dissolved concentration at each output) is grasped in advance. Based on the grasped relationship, the output of the degassing device 75 is determined according to the target degassing amount, and the degassing device 75 is operated with the output, thereby removing the degassed cleaning liquid (third cleaning liquid). ) Can be obtained. This deaeration device 75 is connected to the control device 18, and its operation is controlled by the control device 18.
[0034] なお、本実施の形態にお!/、て、第 3洗浄液の溶存ガス濃度は Oppmに設定されて いる。このような場合には、前記把握された関係に基づいて決定される出力よりも多 少高めに脱気装置の出力を設定しておくことにより、比較的に容易かつ安定して、第 3洗浄液の溶存ガス濃度を予定された溶存ガス濃度(Oppm)に設定することができる  [0034] In the present embodiment, the dissolved gas concentration of the third cleaning liquid is set to Oppm. In such a case, by setting the output of the deaerator slightly higher than the output determined based on the grasped relationship, the third cleaning liquid is relatively easily and stably set. The dissolved gas concentration of can be set to the planned dissolved gas concentration (Oppm)
[0035] ところで、本願で用いる溶存ガス濃度は「ppm」を単位として少数点以下を四捨五 入した値で判断することとする。例えば、本願で用いる「Oppm」とは、小数点以下第 1 位を四捨五入すると Oppmとなる溶存ガス濃度、すなわち、 0. 5ppm未満の溶存ガス 濃度を含むものとする。 [0035] By the way, the dissolved gas concentration used in the present application is judged by a value obtained by rounding off the decimal point in units of "ppm". For example, “Oppm” as used in this application shall include dissolved gas concentrations that are Oppm when rounded to one decimal place, that is, less than 0.5 ppm.
[0036] 次に、洗浄液供給設備 40の分岐管 43以降における構成について詳述する。 Next, the configuration of the cleaning liquid supply facility 40 after the branch pipe 43 will be described in detail.
[0037] 図 1に示すように、第 1供給管 50および第 2供給管 60には、各供給管 50, 60を開 閉する開閉弁 54, 64と、各供給管 50, 60中を流れる洗浄液の流量を調節し得るフ ローメータ 52, 62と、が設けられている。各フローメータ 52, 62は制御装置 18に接 続されている。そして、第 1供給管 50内を流れる洗浄液の流量および第 2供給管 60 内を流れる洗浄液の流量は、各フローメータ 52, 62を介し、制御装置 18によって制 御され得る。 [0037] As shown in FIG. 1, the first supply pipe 50 and the second supply pipe 60 flow through the supply pipes 50 and 60 and the on-off valves 54 and 64 that open and close the supply pipes 50 and 60, respectively. And flow meters 52 and 62 capable of adjusting the flow rate of the cleaning liquid. Each flow meter 52, 62 is connected to the control device 18. The flow rate of the cleaning liquid flowing in the first supply pipe 50 and the second supply pipe 60 The flow rate of the cleaning liquid flowing in the inside can be controlled by the control device 18 through the flow meters 52 and 62.
[0038] また、第 1供給管 50には、第 1供給管 50内を流れる洗浄液に溶解しにくいガスを溶 解させる第 1溶解装置 55が取り付けられている。第 1溶解装置 55には、溶解しにくい ガスを供給する第 1ガス源 55aが接続されている。本実施の形態においては、溶解し にくいガスとして窒素力 第 1ガス源 55aから第 1溶解装置 55へ供給されるようになつ ている。このような構成により、第 3供給管 70から第 1供給管 50に送り込まれた第 3洗 浄液に第 1溶解装置 55を用いて窒素が溶解させられ、脱気された洗浄液(第 3洗浄 液)から第 1洗浄液が生成される。  In addition, the first supply pipe 50 is provided with a first dissolving device 55 for dissolving a gas that is difficult to dissolve in the cleaning liquid flowing in the first supply pipe 50. The first melting device 55 is connected to a first gas source 55a that supplies a gas that is difficult to dissolve. In the present embodiment, the nitrogen power first gas source 55a is supplied to the first dissolving device 55 as a gas that is difficult to dissolve. With such a configuration, nitrogen is dissolved in the third cleaning liquid sent from the third supply pipe 70 to the first supply pipe 50 by using the first dissolving device 55 and the degassed cleaning liquid (third cleaning liquid). The first cleaning liquid is generated from the liquid.
[0039] 同様に、第 2供給管 60には、第 2供給管 60内を流れる洗浄液に溶解しやすいガス を溶解させる第 2溶解装置 65が取り付けられている。第 2溶解装置 65には、溶解し やすいガスを供給する第 2ガス源 65aが接続されている。本実施の形態においては、 溶解しやすいガスとして二酸化炭素力、第 2ガス源 65aから第 2溶解装置 65へ供給さ れるようになっている。このような構成により、第 3供給管 70から第 2供給管 60に送り 込まれた第 3洗浄液に第 2溶解装置 65を用いて二酸化炭素が溶解させられ、脱気さ れた洗浄液(第 3洗浄液)から第 2洗浄液が生成される。  Similarly, the second supply pipe 60 is provided with a second dissolving device 65 for dissolving a gas that is easily dissolved in the cleaning liquid flowing in the second supply pipe 60. The second melting device 65 is connected to a second gas source 65a that supplies a gas that is easily dissolved. In the present embodiment, carbon dioxide power is supplied to the second melting device 65 from the second gas source 65a as a gas that is easily dissolved. With this configuration, carbon dioxide is dissolved in the third cleaning liquid sent from the third supply pipe 70 to the second supply pipe 60 using the second dissolving device 65, and the degassed cleaning liquid (third The second cleaning liquid is generated from the cleaning liquid).
[0040] ここで、第 1および第 2溶解装置 55, 65としては、上述した脱気装置 75と同様に、 種々の公知の溶解装置を用いることができる。そして、溶解装置 55, 65の出力と、各 出力で洗浄液が溶解させることができるガス量の程度(つまり、各出力における溶存 濃度の上昇量)と、の関係を予め把握しておき、当該把握された関係に基づき溶解 装置 55, 65の出力を決定し、当該出力で溶解装置 55, 65を稼働させることにより、 所望の溶存ガス濃度でガスが溶解した第 1および第 2洗浄液を得ることができる。な お、第 1溶解装置 55および第 2溶解装置 65はそれぞれ制御装置 18に接続され、制 御装置 18によってその動作がそれぞれ制御されるようになっている。  [0040] Here, as the first and second dissolving devices 55 and 65, various known dissolving devices can be used in the same manner as the deaeration device 75 described above. The relationship between the output of the dissolving devices 55 and 65 and the amount of gas that can be dissolved by the cleaning solution at each output (that is, the amount of increase in dissolved concentration at each output) is grasped in advance. The first and second cleaning liquids in which the gas is dissolved at the desired dissolved gas concentration can be obtained by determining the outputs of the dissolution apparatuses 55 and 65 based on the relationship and operating the dissolution apparatuses 55 and 65 with the output. it can. The first melting device 55 and the second melting device 65 are each connected to a control device 18, and their operations are controlled by the control device 18, respectively.
[0041] また、図 1に示すように、第 1供給管 50および第 2供給管 60には温調機構 58, 68 が設けられている。この温調機構 58, 68によって、第 1供給管 50内を流れる第 1洗 浄液の温度および第 2供給管 60内を流れる第 2洗浄液の温度がそれぞれ所望の温 度範囲内に調節される。なお、後述する理由から洗浄槽 12内における気泡の発生を 抑制することを目的として、洗浄液の温度は低い方が有利であり、後述の実施例での 実績に基づレ、て 28°C以下とすることが好まし!/、。 Further, as shown in FIG. 1, the first supply pipe 50 and the second supply pipe 60 are provided with temperature control mechanisms 58 and 68. By these temperature control mechanisms 58 and 68, the temperature of the first cleaning liquid flowing in the first supply pipe 50 and the temperature of the second cleaning liquid flowing in the second supply pipe 60 are adjusted within the desired temperature ranges, respectively. . For the reasons described later, the generation of bubbles in the cleaning tank 12 For the purpose of suppression, it is advantageous that the temperature of the cleaning solution is low, and it is preferable that the temperature is 28 ° C. or lower based on the results in the examples described later!
[0042] さらに、図 1および図 2に示すように、第 1供給管 50の洗浄槽 12側の下流側の端部 には、 2つの第 1洗浄用ノズル 56が洗浄槽 12の対向する壁面に沿って設けられてい る。同様に、第 2供給管 60の洗浄槽 12側の下流側の端部には、 2つの第 2洗浄用ノ ズル 66が洗浄槽 12の対向する壁面に沿って設けられている。なお、図 2には第 1洗 浄液用ノズル 56のみが図示されているが、第 2洗浄液用ノズル 66も、図示された第 1 洗浄液用ノズル 56と同様の構成となっている。  Further, as shown in FIGS. 1 and 2, at the downstream end of the first supply pipe 50 on the cleaning tank 12 side, two first cleaning nozzles 56 are opposed to the wall surface of the cleaning tank 12. It is provided along. Similarly, two second cleaning nozzles 66 are provided along the opposing wall surfaces of the cleaning tank 12 at the downstream end of the second supply pipe 60 on the cleaning tank 12 side. In FIG. 2, only the first cleaning liquid nozzle 56 is shown, but the second cleaning liquid nozzle 66 has the same configuration as the illustrated first cleaning liquid nozzle 56.
[0043] 第 1洗浄用ノズル 56および第 2洗浄用ノズル 66は洗浄槽 12の壁面に沿って細長 状に延びる筒状の部材からなつている。そして、この筒状部材には、その長手方向に 沿い一定の間隔を空けて配置された多数のノズル孔 56a, 66aが設けられている。ノ ズノレ孔 56a, 66aの配置位置は、後述するように、保持部材 20によって保持された被 処理ウェハ Wの配置位置に基づき、決定されている。図 1に示すように、本実施の形 態において、第 1洗浄用ノズル 56は第 2洗浄用ノズル 66の上方に配置されている。 ただし、これに限られず、第 2洗浄用ノズル 66が第 1洗浄用ノズル 56の上方に配置さ れていてもよいし、あるいは、後に変形例として説明するよう、第 1洗浄液と第 2洗浄 液とを混合した後、同一のノズルによって洗浄槽 12内に供給するようにしてもよい。  [0043] The first cleaning nozzle 56 and the second cleaning nozzle 66 are formed of a cylindrical member extending in an elongated shape along the wall surface of the cleaning tank 12. The cylindrical member is provided with a large number of nozzle holes 56a and 66a arranged at regular intervals along the longitudinal direction thereof. The arrangement positions of the nozzle holes 56a and 66a are determined based on the arrangement position of the processing target wafer W held by the holding member 20, as will be described later. As shown in FIG. 1, in the present embodiment, the first cleaning nozzle 56 is disposed above the second cleaning nozzle 66. However, the present invention is not limited to this, and the second cleaning nozzle 66 may be disposed above the first cleaning nozzle 56, or the first cleaning liquid and the second cleaning liquid may be described later as modified examples. May be supplied to the cleaning tank 12 by the same nozzle.
[0044] 次に、洗浄液供給設備 40から第 1洗浄液および第 2洗浄液を受ける洗浄槽 12に ついて説明する。洗浄槽 12は、図 1および図 2に示すように略直方体の輪郭を有し ている。洗浄槽 12には、後述するようにウェハ Wを出し入れするための上方開口が 形成されている。また、洗浄槽 12の底面には、貯留した洗浄液を排出するための排 出管 13が設けられている。  Next, the cleaning tank 12 that receives the first cleaning liquid and the second cleaning liquid from the cleaning liquid supply facility 40 will be described. The washing tank 12 has a substantially rectangular parallelepiped outline as shown in FIGS. The cleaning tank 12 has an upper opening for taking in and out the wafer W as will be described later. In addition, an exhaust pipe 13 for discharging the stored cleaning liquid is provided on the bottom surface of the cleaning tank 12.
[0045] また、図 1に示すように、洗浄槽 12の上方開口を取り囲むようにして、外槽 15が設 けられている。この外槽 15は、洗浄槽 12の上方開口からあふれ出た洗浄液を回収 するようになつている。洗浄槽 12と同様に、外槽 15にも回収した洗浄液を排出するた めの排出管 16が設けられている。  Further, as shown in FIG. 1, an outer tank 15 is provided so as to surround the upper opening of the cleaning tank 12. The outer tank 15 collects the cleaning liquid overflowing from the upper opening of the cleaning tank 12. Similar to the cleaning tank 12, the outer tank 15 is also provided with a discharge pipe 16 for discharging the recovered cleaning liquid.
[0046] このような洗浄槽 12および外槽 15は、例えば、耐薬品性に富んだ石英等を用いて 形成される。また、洗浄槽 12および外槽 15の排出管 13, 16から排出された洗浄液 は、そのまま廃棄されてもよいし、循環再利用されるようにしてもよい。 [0046] The cleaning tank 12 and the outer tank 15 are formed using, for example, quartz having high chemical resistance. In addition, the cleaning liquid discharged from the discharge pipes 13 and 16 of the cleaning tank 12 and the outer tank 15 May be discarded as it is, or may be recycled.
[0047] 次に、ウェハ Wを保持する保持部材 20について説明する。図 1および図 2に示すよ うに、保持部材 20は、略水平方向に延びる 4本の棒状部材 22と、 4本の棒状部材 22 を片側から片持支持する基部 24と、を有している。棒状保持部材 22は、一度に洗浄 処理される複数のウェハ W、例えば 50枚のウェハ Wを下方から支持するようになつ ている。このため、各棒状部材 22には、その長手方向に沿い一定間隔を空けて配列 された溝(図示せず)が形成されている。ウェハ 20は、この溝に係合し、各ウェハ W の板面が棒状部材の延びる方向と略直交するようにして、すなわち、各ウェハ Wの板 面が垂直方向に沿うようにして、保持部材 20によって保持されるようになる(図 1参照 )。 Next, the holding member 20 that holds the wafer W will be described. As shown in FIGS. 1 and 2, the holding member 20 has four rod-shaped members 22 extending in a substantially horizontal direction, and a base 24 that cantilever-supports the four rod-shaped members 22 from one side. . The rod-shaped holding member 22 is configured to support a plurality of wafers W, for example, 50 wafers W, to be cleaned at a time from below. For this reason, each rod-like member 22 is formed with grooves (not shown) arranged at regular intervals along the longitudinal direction thereof. The wafer 20 is engaged with the groove, and the holding member is formed so that the plate surface of each wafer W is substantially orthogonal to the extending direction of the rod-like member, that is, the plate surface of each wafer W is along the vertical direction. 20 (see Fig. 1).
[0048] ところで、図 2から理解できるように、上述した第 1洗浄液用ノズル 56および第 2洗 浄液用ノズル 66のノズル孔 56a, 66aの配置ピッチは、保持部材 20に保持されたゥ ェハ Wの配置ピッチと略同一となっている。また、上述した第 1洗浄液用ノズル 56お よび第 2洗浄液用ノズル 66の多数のノズル孔 56a, 66aは、保持部材 20に保持され たウェハ W間に洗浄液を吐出することができるよう、配列されている。  Incidentally, as can be understood from FIG. 2, the arrangement pitch of the nozzle holes 56 a and 66 a of the first cleaning liquid nozzle 56 and the second cleaning liquid nozzle 66 described above is held by the holding member 20. C It is almost the same as the pitch of W. Further, the numerous nozzle holes 56a and 66a of the first cleaning liquid nozzle 56 and the second cleaning liquid nozzle 66 described above are arranged so that the cleaning liquid can be discharged between the wafers W held by the holding member 20. ing.
[0049] 一方、保持部材 20の基部 24は、図示しな!/、昇降機構に連結されて!/、る。この昇降 機構によってウェハ Wを保持した保持部材 20を降下させることにより、洗浄槽 12に 貯留された洗浄液中にウェハ Wを浸漬することができる。なお、昇降機構は制御装 置 18に接続されており、制御装置 18によって洗浄液へのウェハ Wの浸漬が制御さ れるようになっている。  On the other hand, the base portion 24 of the holding member 20 is not shown in FIG. By lowering the holding member 20 holding the wafer W by this lifting mechanism, the wafer W can be immersed in the cleaning liquid stored in the cleaning tank 12. The elevating mechanism is connected to the control device 18, and the control device 18 controls the immersion of the wafer W in the cleaning liquid.
[0050] 次に、超音波発生装置 30について説明する。図 1に示すように、超音波発生装置 30は、洗浄槽 12の底部外面に取り付けられた振動子 38と、振動子 38を駆動するた めの高周波駆動電源 32と、高周波駆動電源 32に接続された超音波発振器 34と、を 有している。本実施の形態においては、複数の振動子 38が設けられており、各振動 子 38が洗浄槽 12の底部外面を部分的に占めるよう配列されている。また、図 1に示 すように、超音波発生装置 30は超音波発振器 34および各振動子 38に接続された 駆動切換機構 36をさらに有している。この駆動切換機構 36によって、複数の振動子 38を全体駆動することと、一つまたは二以上の振動子 38を個別的に駆動することと 、のいずれもが可能となっている。 [0050] Next, the ultrasonic generator 30 will be described. As shown in FIG. 1, the ultrasonic generator 30 is connected to the vibrator 38 attached to the bottom outer surface of the cleaning tank 12, the high-frequency drive power source 32 for driving the vibrator 38, and the high-frequency drive power source 32. And an ultrasonic oscillator 34. In the present embodiment, a plurality of vibrators 38 are provided, and each vibrator 38 is arranged so as to partially occupy the outer surface of the bottom of the cleaning tank 12. As shown in FIG. 1, the ultrasonic generator 30 further includes an ultrasonic oscillator 34 and a drive switching mechanism 36 connected to each transducer 38. The drive switching mechanism 36 drives the plurality of vibrators 38 as a whole, and individually drives one or two or more vibrators 38. Both are possible.
[0051] 振動子 38が駆動されて振動すると、洗浄槽 12の底部を介し、洗浄槽 12内に貯留 された洗浄液に超音波が伝播し、これにより、洗浄槽 12内の洗浄液に超音波が発生 させられる。なお、超音波発生装置 30は制御装置 18に接続されており、制御装置 1 8によって洗浄液への超音波の付与が制御されるようになっている。  [0051] When the vibrator 38 is driven to vibrate, the ultrasonic wave propagates to the cleaning liquid stored in the cleaning tank 12 through the bottom of the cleaning tank 12, whereby the ultrasonic wave is applied to the cleaning liquid in the cleaning tank 12. Generated. Note that the ultrasonic generator 30 is connected to the control device 18, and the control device 18 controls the application of ultrasonic waves to the cleaning liquid.
[0052] 次に、制御装置 18について説明する。上述したように、制御装置 18は、基板洗浄 装置 10の各構成要素に接続され、各構成要素の動作を制御するようになっている。 本実施の形態において、制御装置 18はコンピュータを含み、このコンピュータが記録 媒体 19に予め記憶されたプログラムを実行することによって、基板洗浄装置 10を用 V、た被処理ウェハ Wの洗浄が実行されるようになって!/、る。  [0052] Next, the control device 18 will be described. As described above, the control device 18 is connected to each component of the substrate cleaning device 10 and controls the operation of each component. In the present embodiment, the control device 18 includes a computer, and when the computer executes a program stored in the recording medium 19 in advance, cleaning of the wafer W to be processed using the substrate cleaning device 10 is performed. Come on! /
[0053] 次に、このような構成からなる基板洗浄装置 10を用いたウェハ Wの洗浄方法の一 例について説明する。  Next, an example of a wafer W cleaning method using the substrate cleaning apparatus 10 having such a configuration will be described.
[0054] まず、洗浄液源 72から第 3供給管 70に純水が洗浄液として供給される。第 3供給 管 70を流れる洗浄液は脱気装置 75によって脱気され、小数点以下を四捨五入する と溶存ガス濃度が 0%である第 3洗浄液が生成される。その後、溶存ガス濃度が Opp mである第 3洗浄液は、分岐管 43を介し、一部が第 1供給管 50に流れ込み、残りは 第 2供給管 60に流れ込む。  First, pure water is supplied from the cleaning liquid source 72 to the third supply pipe 70 as a cleaning liquid. The cleaning liquid flowing through the third supply pipe 70 is degassed by the degassing device 75, and a third cleaning liquid having a dissolved gas concentration of 0% is generated by rounding off after the decimal point. Thereafter, a part of the third cleaning liquid having a dissolved gas concentration of Oppm flows into the first supply pipe 50 via the branch pipe 43 and the rest flows into the second supply pipe 60.
[0055] 第 1供給管 50に流れ込む第 3洗浄液は、第 1溶解装置 55によって、溶解しにくい ガスとしての窒素を溶解させられる。このようにして、第 3洗浄液から、所定の濃度で 窒素が溶解した第 1洗浄液が得られる。本実施の形態においては、洗浄槽 12内に おける洗浄液の溶存窒素濃度が 14ppmとなるよう、第 1供給管 50から洗浄槽 12へ 流れる第 1洗浄液の流量および第 2供給管 60から洗浄槽 12へ流れる第 2洗浄液の 流量を考慮し、第 1洗浄液への窒素の溶解量が決定される。第 1洗浄液の供給量は 、制御装置 18が予め設定されたプログラムに従ってフローメータ 52の開度を調節す ることにより、決定される。また、制御装置 18は、予め設定されたプログラムに従って 温調装置 58を制御する。この結果、洗浄槽 12には、所定の温度を有する第 1洗浄液 が所定の濃度(ppm)および供給量 (1/min)で供給されるようになる。  [0055] The third cleaning liquid flowing into the first supply pipe 50 can dissolve nitrogen as a gas that is difficult to dissolve, by the first dissolving device 55. In this way, the first cleaning liquid in which nitrogen is dissolved at a predetermined concentration is obtained from the third cleaning liquid. In the present embodiment, the flow rate of the first cleaning liquid flowing from the first supply pipe 50 to the cleaning tank 12 and the second supply pipe 60 to the cleaning tank 12 so that the dissolved nitrogen concentration of the cleaning liquid in the cleaning tank 12 is 14 ppm. The amount of nitrogen dissolved in the first cleaning solution is determined in consideration of the flow rate of the second cleaning solution flowing into The supply amount of the first cleaning liquid is determined by the control device 18 adjusting the opening of the flow meter 52 according to a preset program. The control device 18 controls the temperature adjustment device 58 according to a preset program. As a result, the first cleaning liquid having a predetermined temperature is supplied to the cleaning tank 12 at a predetermined concentration (ppm) and a supply amount (1 / min).
[0056] 同様に、第 2供給管 60に流れ込む第 3洗浄液は、第 2溶解装置 65によって、溶解 しゃすいガスとしての二酸化炭素を溶解させられる。このようにして、第 3洗浄液から 、所定の濃度で二酸化炭素が溶解した第 2洗浄液が得られる。本実施の形態におい ては、洗浄槽 12内における洗浄液の溶存二酸化炭素濃度が 330ppmとなるよう、第 1供給管 50から洗浄槽 12へ流れる第 1洗浄液の流量および第 2供給管 60から洗浄 槽 12へ流れる第 2洗浄液の流量を考慮し、第 2洗浄液への二酸化炭素の溶解量が 決定される。第 2洗浄液の供給量は、制御装置 18が予め設定されたプログラムに従 つてフローメータ 62の開度を調節することにより、決定される。また、制御装置 18は、 予め設定されたプログラムに従って温調装置 68を制御する。この結果、洗浄槽 12に は、所定の温度を有する第 2洗浄液が所定の濃度(ppm)および供給量 (1/min)で 供給されるようになる。 [0056] Similarly, the third cleaning liquid flowing into the second supply pipe 60 is dissolved by the second dissolving device 65. Carbon dioxide as a soot gas can be dissolved. In this way, a second cleaning liquid in which carbon dioxide is dissolved at a predetermined concentration is obtained from the third cleaning liquid. In the present embodiment, the flow rate of the first cleaning liquid flowing from the first supply pipe 50 to the cleaning tank 12 and the cleaning tank from the second supply pipe 60 so that the dissolved carbon dioxide concentration of the cleaning liquid in the cleaning tank 12 is 330 ppm. The amount of carbon dioxide dissolved in the second cleaning liquid is determined in consideration of the flow rate of the second cleaning liquid flowing to 12. The supply amount of the second cleaning liquid is determined by the controller 18 adjusting the opening of the flow meter 62 according to a preset program. Further, the control device 18 controls the temperature adjustment device 68 according to a preset program. As a result, the second cleaning liquid having a predetermined temperature is supplied to the cleaning tank 12 at a predetermined concentration (ppm) and a supply amount (1 / min).
[0057] 以上のようにして、洗浄槽 12内に、窒素と二酸化炭素とがそれぞれ所定の溶存ガ ス濃度で溶存してレ、る洗浄液が貯留される。  As described above, the cleaning liquid in which nitrogen and carbon dioxide are dissolved at a predetermined dissolved gas concentration is stored in the cleaning tank 12.
[0058] 次に、所定枚(例えば 50枚)の被処理ウェハ Wを保持した保持部材 20が降下して 、洗浄槽 12内の洗浄液中に被処理ウェハ Wが浸漬される。  Next, the holding member 20 holding a predetermined number (for example, 50) of wafers W to be processed is lowered and the wafer W to be processed is immersed in the cleaning liquid in the cleaning tank 12.
[0059] その後、制御装置 18は、超音波発生装置 30を作動させ、洗浄槽 12内の洗浄液に 超音波を発生させる。これにより、洗浄槽 12内に浸漬しているウェハ Wは超音波洗 浄 (メガソニック処理)されることになる。この結果、ウェハ Wの表面に付着しているパ 一テイクノレ (汚れ等)が除去される。  Thereafter, the control device 18 operates the ultrasonic generator 30 to generate ultrasonic waves in the cleaning liquid in the cleaning tank 12. As a result, the wafer W immersed in the cleaning tank 12 is subjected to ultrasonic cleaning (megasonic processing). As a result, the particulate matter (dirt etc.) adhering to the surface of the wafer W is removed.
[0060] 本実施の形態においては、この工程中、第 1供給管 50から洗浄槽 12内へ第 1洗浄 液が供給され、第 2供給管 60から洗浄槽 12内へ第 2洗浄液が供給され続けている。 図 1および図 2に示すように、第 1洗浄液は、保持部材 20に保持された 2枚のウェハ Wの間に向け斜め上方に吐出される。同様に、第 2洗浄液も、保持部材 20に保持さ れた 2枚のウェハ Wの間に向け斜め上方に吐出される。したがって、このような第 1洗 浄液および第 2洗浄液の吐出により、ウェハ Wから除去されたパーティクルは洗浄槽 12内の洗浄液の液面まで浮かび上がるように促進され、さらに、洗浄槽 12から外槽 15にあふれ出るように促進される。これにより、いったんウェハ Wから除去されたパー ティクルがウェハ Wの他の部分に再付着してしまうことを防止することができる。ただ し、この工程中に、洗浄槽 12内へ洗浄液を供給し続けることは必須ではなぐ洗浄液 の供給時間を制限してもよいし、また、洗浄液をまったく供給しないようにしてもよい。 In the present embodiment, during this step, the first cleaning liquid is supplied from the first supply pipe 50 into the cleaning tank 12, and the second cleaning liquid is supplied from the second supply pipe 60 into the cleaning tank 12. continuing. As shown in FIGS. 1 and 2, the first cleaning liquid is discharged obliquely upward between the two wafers W held by the holding member 20. Similarly, the second cleaning liquid is also discharged obliquely upward between the two wafers W held by the holding member 20. Therefore, by discharging the first cleaning liquid and the second cleaning liquid, particles removed from the wafer W are promoted to float up to the liquid level of the cleaning liquid in the cleaning tank 12, and are further removed from the cleaning tank 12. Promoted to overflow into tank 15. As a result, the particles once removed from the wafer W can be prevented from reattaching to other portions of the wafer W. However, it is not essential to continue supplying the cleaning liquid into the cleaning tank 12 during this process. The supply time may be limited, or the cleaning liquid may not be supplied at all.
[0061] このような本実施の形態によれば、後述の実施例からも明らかになるように、高い除 去効率でパーティクルを除去することができるとともに、配線パターンへのダメージを 大幅に抑制することができる。このような現象が生じるメカニズムは明らかではないが 、主に図 3および図 4を用い、その一要因と考えられ得るメカニズムについて説明する 。ただし、本件発明は以下のメカニズムの限定されるものではない。 [0061] According to the present embodiment as described above, particles can be removed with high removal efficiency and damage to the wiring pattern can be greatly suppressed, as will be apparent from examples described later. be able to. The mechanism by which this phenomenon occurs is not clear, but we will mainly explain the mechanism that can be considered as one of the causes by using Fig. 3 and Fig. 4. However, the present invention is not limited to the following mechanism.
[0062] 本件発明者らが鋭意研究を重ねたところ、後述する実験結果が示すように (実施例 参照)、(1)大量の気泡の発生はパーティクルの除去を妨げ、(2)洗浄液中に溶存し たガスが配線パターンへのダメージを効果的に抑制する、ことが見出された。そして、 本実施の形態においては、超音波洗浄工程において、洗浄液には、洗浄液に溶解 しにくいガス(窒素)と、洗浄液に溶解しやすいガス(二酸化炭素)とが、洗浄槽 12内 の洗浄液に溶解している。 [0062] As a result of experiments conducted by the inventors, the results of experiments described later (see Examples) show that (1) the generation of a large amount of bubbles hinders the removal of particles, and (2) It was found that the dissolved gas effectively suppresses damage to the wiring pattern. In the present embodiment, in the ultrasonic cleaning process, the cleaning liquid in the cleaning tank 12 includes a gas that is not easily dissolved in the cleaning liquid (nitrogen) and a gas that is easily dissolved in the cleaning liquid (carbon dioxide). Is dissolved.
[0063] 超音波が洗浄液に照射されて洗浄液中の圧力が変動すると、洗浄液に溶解しにく いガス(洗浄液中における安定性の欠けるガス)の分子が急激に状態変化し、キヤビ テーシヨンが引き起こされる。そして、このキヤビテーシヨンがウェハ Wに付着したパー ティクルをウェハから引き剥がす(除去する)主要因の一つであると考えられている。 したがって、洗浄液に溶解しにくいガスは、パーティクルの除去効率の向上に貢献す [0063] When the pressure in the cleaning liquid fluctuates when the cleaning liquid is irradiated with ultrasonic waves, molecules of a gas that is difficult to dissolve in the cleaning liquid (a gas that lacks stability in the cleaning liquid) changes state abruptly, causing a cavity treatment. It is. This cavity is considered to be one of the main factors that peel (remove) the particles adhering to the wafer W from the wafer. Therefore, the gas that is difficult to dissolve in the cleaning solution contributes to the improvement of particle removal efficiency.
[0064] なお、キヤビテーシヨンが生じると、急激な圧力変化にともなって洗浄液中に溶存し ていたガスは気泡化しやすくなる。上述したように、大量の気泡の発生はパーテイク ルの除去を妨げる。これは、図 3に示すように、発生した気泡が、洗浄液中における 超音波の伝播を妨げ、超音波がウェハ Wの板面上に行き渡らなくなる、力もであると 推定される。つまり、溶解しにくいガスを洗浄液中に溶解させ過ぎると、ウェハ中にお いてパーティクルが除去される領域が片寄るとともに、除去効率を低下させてしまう虞 力 sある。 [0064] When the cavity is generated, the gas dissolved in the cleaning liquid is easily bubbled with a rapid pressure change. As described above, the generation of a large amount of bubbles hinders the removal of the particles. As shown in FIG. 3, it is presumed that the generated bubbles hinder the propagation of the ultrasonic wave in the cleaning liquid and the ultrasonic wave does not spread on the plate surface of the wafer W. That is, if difficult to dissolve gas too is dissolved in the washing liquid, together with the biased area where the particles and have contact during wafer is removed, there possibly force s would reduce the removal efficiency.
[0065] その一方で、超音波が洗浄液に照射されて洗浄液中の圧力が変動しても、洗浄液 に溶解しやすレ、ガス(洗浄液中にぉレ、て安定性したガス)の分子は状態変化しな!/、。 すなわち、溶解しやすいガスは、キヤビテーシヨンを引き起こすことがなぐこれにとも なって、気泡化する可能性も少なくなる。したがって、洗浄液中に溶存している溶解 しゃすいガスは超音波の減衰の原因とはならず、図 4に示すように、超音波は洗浄槽 12内に広がり渡る。ところで、上述したように、洗浄液中に溶存したガスは配線バタ ーンへのダメージを効果的に抑制する。これは、洗浄液中に溶存したガスが、キヤビ テーシヨンによって生ずる衝撃波を吸収し、この結果、衝撃波に起因した配線パター ンのダメージを防止することができる、力、らであると推定される。すなわち、溶解しやす いガスは、気泡化して超音波の伝播を妨げることなぐ配線パターンのダメージを効 果的に抑制することができる。 [0065] On the other hand, even if the ultrasonic wave is irradiated to the cleaning liquid and the pressure in the cleaning liquid fluctuates, the molecules of the gas (which is stable in the cleaning liquid) are easily dissolved in the cleaning liquid. It will not change! In other words, easily dissolved gases do not cause cavitation. As a result, the possibility of bubbles is reduced. Therefore, the dissolved gas which is dissolved in the cleaning liquid does not cause the attenuation of the ultrasonic wave, and the ultrasonic wave spreads in the cleaning tank 12 as shown in FIG. By the way, as described above, the gas dissolved in the cleaning solution effectively suppresses damage to the wiring pattern. It is estimated that this is because the gas dissolved in the cleaning solution absorbs the shock wave generated by the cavity, and as a result, damage to the wiring pattern due to the shock wave can be prevented. That is, the gas that is easily dissolved can effectively suppress damage to the wiring pattern that is bubbled and does not hinder the propagation of ultrasonic waves.
[0066] このような洗浄液に溶解しにくいガスの作用および洗浄液に溶解しやす!/、ガスの作 用により、本実施の形態においては、ウェハ Wに形成された配線パターンのダメージ を大幅に抑制しながら、ウェハ Wからパーティクルを高!/、除去効率で除去することが できる。 [0066] In this embodiment, the damage of the wiring pattern formed on the wafer W is greatly suppressed by the action of the gas that is difficult to dissolve in the cleaning liquid and the action of the gas! On the other hand, particles can be removed from the wafer W with high removal efficiency.
[0067] 以上のような洗浄槽 12内の洗浄液に超音波を発生させる超音波洗浄工程は、例 えば 5分程度、継続する。その後、超音波発生装置 30による超音波の照射が停止し [0067] The ultrasonic cleaning step for generating ultrasonic waves in the cleaning liquid in the cleaning tank 12 as described above continues, for example, for about 5 minutes. After that, the ultrasonic irradiation by the ultrasonic generator 30 stops.
、超音波洗浄工程が終了する。 The ultrasonic cleaning process ends.
[0068] ウェハ Wに対する超音波洗浄が終了すると、保持部材 20部材が上昇し、ウェハが 洗浄槽 12内力も搬出される。以上のようにして被処理ウェハ Wに対する一連の洗浄 工程が終了する。 When the ultrasonic cleaning for the wafer W is completed, the holding member 20 is raised, and the internal force of the cleaning tank 12 is also carried out of the wafer. As described above, a series of cleaning steps for the wafer W to be processed is completed.
[0069] 以上のような本実施の形態によれば、洗浄槽 12内の洗浄液に超音波を発生させる 際に、洗浄液に溶解しやす!/、ガスと洗浄液に溶解しにくいガスとが洗浄槽 12内の洗 浄液に溶解している。洗浄液中に溶存する溶解しやすいガスは、キヤビテーシヨンを 活発に生じさせる。このキヤビテーシヨンにより、パーティクルをウェハ Wから高い除去 効率で除去することができる。その一方で、洗浄液中に溶存する溶解しやすいガス は、キヤビテーシヨンを発生させにくぐこれにともない気泡化しにくい。そして、溶解し やすいガスは、洗浄液中に溶存したまま、キヤビテーシヨンに起因して伝播する衝撃 波を吸収する。したがって、ウェハ Wに形成されたパターンの損傷を防止することが できる。これらにより、ウェハ Wの配線パターンのダメージを大幅に抑制しながら、ゥ ェハ Wからパーティクルを高い除去効率で除去することができる。 [0070] 上述した実施の形態に関し、本発明の要旨の範囲内で種々の変更が可能である。 以下、変形例の一例について説明する。 [0069] According to the present embodiment as described above, when ultrasonic waves are generated in the cleaning liquid in the cleaning tank 12, the cleaning tank easily dissolves in the cleaning liquid! /, And the gas and the gas difficult to dissolve in the cleaning liquid. It is dissolved in the cleaning solution in 12. Easily soluble gas that dissolves in the cleaning solution actively generates cavity. By this calibration, particles can be removed from the wafer W with high removal efficiency. On the other hand, the easily dissolved gas dissolved in the cleaning liquid is difficult to generate a cavity and thus is less likely to be bubbled. The easily dissolved gas absorbs the shock wave propagating due to the cavity while being dissolved in the cleaning liquid. Therefore, damage to the pattern formed on the wafer W can be prevented. As a result, it is possible to remove particles from the wafer W with high removal efficiency while greatly suppressing damage to the wiring pattern of the wafer W. [0070] Various modifications can be made to the above-described embodiment within the scope of the present invention. Hereinafter, an example of a modification will be described.
[0071] 上述した実施の形態において、洗浄液として純水を用い、被処理ウェハ Wを超音 波洗浄する例を示したが、これに限られない。洗浄液として薬液、例えば SC1 (アン モニァ過水: NH OH/H O /H O)を用い、被処理ウェハ Wを超音波洗浄するよう にしてもよい。また、薬液を用いて洗浄する場合、薬液による洗浄処理後に、純水を 用いた濯ぎ洗浄処理が必要となる。この純水を用いた濯ぎ洗浄処理として、上述の 純水を用いた基板洗浄方法を採用することもできる。  In the embodiment described above, an example in which pure water is used as the cleaning liquid and the wafer W to be processed is ultrasonically cleaned has been described, but the present invention is not limited to this. A chemical liquid such as SC1 (ammonia overwater: NH 4 OH / H 2 O / H 2 O) may be used as the cleaning liquid, and the wafer W to be processed may be ultrasonically cleaned. In the case of cleaning with a chemical solution, a rinsing cleaning process using pure water is required after the cleaning process with the chemical solution. As the rinse cleaning process using pure water, the above-described substrate cleaning method using pure water can also be employed.
[0072] また、上述した実施の形態において、第 1洗浄液と第 2洗浄液とが別個の供給管 50 , 60を介して、洗浄槽 12内に供給される例を示したがこれに限られない。例えば、図 5に示すように、第 1供給管 50と第 2供給管 60とに接続された混合供給管 80をさらに 設け、第 1洗浄液と第 2洗浄液とを混合して洗浄槽 12に供給し得るようにしてもよ!/、。 図 5に示す例においては、第 1供給管 50および第 2供給管 60は、ミキシングバルブ 8 2を介し、混合供給管 80に連結されている。また、図示する例においては、混合供給 管 80に温調機構 88が設けられており、第 1供給管 50および第 2供給管 60には温調 機構が設けられていない。この温調機構 88によって、混合供給管 80から洗浄槽 12 内へ供給される洗浄液の温度が調節される。  [0072] In the above-described embodiment, the example in which the first cleaning liquid and the second cleaning liquid are supplied into the cleaning tank 12 via the separate supply pipes 50 and 60 has been described, but the present invention is not limited thereto. . For example, as shown in FIG. 5, a mixed supply pipe 80 connected to the first supply pipe 50 and the second supply pipe 60 is further provided, and the first cleaning liquid and the second cleaning liquid are mixed and supplied to the cleaning tank 12. You can make it! / In the example shown in FIG. 5, the first supply pipe 50 and the second supply pipe 60 are connected to the mixing supply pipe 80 via the mixing valve 82. In the example shown in the figure, the temperature adjustment mechanism 88 is provided in the mixing supply pipe 80, and the temperature adjustment mechanism is not provided in the first supply pipe 50 and the second supply pipe 60. The temperature control mechanism 88 adjusts the temperature of the cleaning liquid supplied from the mixing supply pipe 80 into the cleaning tank 12.
[0073] なお、図 5に示す変形例は混合供給管 80およびミキシングバルブ 82をさらに設け たこと、並びに、温調機構の配置位置が異なるのみであり、他は図 1乃至図 4に示す 実施の形態と略同一である。図 5において、図 1乃至図 4に示す実施の形態と同一部 分には同一符号を付すとともに、重複する詳細な説明は省略する。  [0073] The modified example shown in Fig. 5 is further provided with a mixing supply pipe 80 and a mixing valve 82, and only the arrangement position of the temperature control mechanism is different. Others are shown in Figs. 1 to 4 The form is substantially the same. In FIG. 5, the same components as those in the embodiment shown in FIGS. 1 to 4 are denoted by the same reference numerals, and detailed description thereof is omitted.
[0074] あるいは、図 1に二点鎖線で示すように、第 1供給管 50および第 2供給管 60は直列 に接続されているようにしてもよい。言い換えると、第 1供給管 50から第 2供給管 60 へ第 1洗浄液が流れ込み、そして、この洗浄液に溶解しやすいガスが溶解させられ た後、溶解しやすレ、ガスと溶解しにくいガスとの両方が溶解した洗浄液が洗浄槽 12 に供給されるようにしてもよいし、あるいは、第 2供給管 60から第 1供給管 50へ第 2洗 浄液が流れ込み、そして、この洗浄液に溶解しにくいガスが溶解させられた後、溶解 しゃす!/、ガスと溶解しにくいガスとの両方が溶解した洗浄液が洗浄槽 12に供給され るようにしてあよレヽ。 Alternatively, as indicated by a two-dot chain line in FIG. 1, the first supply pipe 50 and the second supply pipe 60 may be connected in series. In other words, the first cleaning liquid flows from the first supply pipe 50 into the second supply pipe 60, and after the gas that is easily dissolved in the cleaning liquid is dissolved, the gas that is easily dissolved and the gas that is difficult to dissolve are mixed. The cleaning liquid in which both are dissolved may be supplied to the cleaning tank 12, or the second cleaning liquid flows from the second supply pipe 60 to the first supply pipe 50 and is not easily dissolved in this cleaning liquid. After the gas has been dissolved, the solution is dissolved! Do it like that.
さらに、上述した実施の形態において、各洗浄液の溶存ガス濃度は例示に過ぎず 、種々変更することが可能である。  Furthermore, in the above-described embodiment, the dissolved gas concentration of each cleaning liquid is merely an example, and various changes can be made.
[0075] ところで、上述のように、基板洗浄装置 10はコンピュータを含む制御装置 18を備え ている。この制御装置 18により、基板洗浄装置 10の各構成要素が動作させられ、被 処理ウェハ Wの洗浄が実行されるようになっている。そして、基板洗浄装置 10を用い たウェハ Wの洗浄を実施するために、制御装置 18のコンピュータによって実行される プログラムも本件の対象である。また、当該プログラムを記録したコンピュータ読み取 り可能な記録媒体 19も、本件の対象である。ここで、記録媒体 19とは、フロッピーデ イスク (フレキシブルディスク)やハードディスクドライブ等の単体として認識することが できるものも含む。 Incidentally, as described above, the substrate cleaning apparatus 10 includes the control device 18 including a computer. The control device 18 operates each component of the substrate cleaning device 10 so that the wafer W to be processed is cleaned. The program executed by the computer of the control device 18 in order to perform the cleaning of the wafer W using the substrate cleaning device 10 is also the subject of this case. The computer-readable recording medium 19 that records the program is also the subject of this case. Here, the recording medium 19 includes those that can be recognized as a single unit such as a floppy disk (flexible disk) and a hard disk drive.
[0076] なお、以上の説明におレ、ては、本発明による基板洗浄方法、基板洗浄装置、プロ グラム、および記録媒体を、ウェハ Wの洗浄処理に適用した例を示している力 これ に限られず、 LCD基板や CD基板等の洗浄処理に適用することも可能である。  It should be noted that in the above description, the force indicating the example in which the substrate cleaning method, the substrate cleaning apparatus, the program, and the recording medium according to the present invention are applied to the wafer W cleaning process. The present invention is not limited, and it can be applied to cleaning processing of LCD substrates and CD substrates.
実施例  Example
[0077] 実施例により本発明をさらに詳しく説明するため、以下に説明する二つの実験を行 つた。  [0077] In order to describe the present invention in more detail by way of examples, the following two experiments were conducted.
[0078] 〔実験 1〕 [Experiment 1]
異なる溶存ガス濃度で窒素が溶解した洗浄液を洗浄槽に貯留し、洗浄槽内の洗浄 液中に試験用ウェハを浸漬して洗浄液に超音波を発生させた。本実験に用いられる 洗浄液は、溶存ガス濃度が Oppmとなるまで脱気し、その後、異なる溶存ガス濃度で 窒素を当該洗浄液中に溶解させた。つまり、洗浄槽内の洗浄液には、ガスとして窒素 のみが溶存している。実験は、窒素の溶存濃度を 8ppm、 10ppm、 12ppm、 14ppm 、および 16ppmの五つに設定して、行われた。  A cleaning solution in which nitrogen was dissolved at different dissolved gas concentrations was stored in a cleaning tank, and a test wafer was immersed in the cleaning liquid in the cleaning tank to generate ultrasonic waves in the cleaning liquid. The cleaning solution used in this experiment was degassed until the dissolved gas concentration reached Oppm, and then nitrogen was dissolved in the cleaning solution at a different dissolved gas concentration. In other words, only nitrogen as a gas is dissolved in the cleaning liquid in the cleaning tank. The experiment was conducted with five concentrations of dissolved nitrogen: 8 ppm, 10 ppm, 12 ppm, 14 ppm, and 16 ppm.
[0079] 溶存ガス濃度以外の条件は、ウェハの超音波洗浄に用いられている一般的な条件 とした。例えば、超音波を発生させている時間は 10分とした。実験で用いられた試験 用ウェハには、 4000個のパーティクルを予めむらなく均一に付着させておいた。ま た、図 1および図 2に示されているように、複数のウェハを収容し得り、下方側部に洗 浄液を供給するための洗浄用ノズルが設けられた洗浄槽を、本実験にぉレ、て用いた[0079] Conditions other than the dissolved gas concentration were the general conditions used for ultrasonic cleaning of the wafer. For example, the time for generating ultrasonic waves was 10 minutes. On the test wafer used in the experiment, 4000 particles were uniformly deposited in advance. Also, as shown in FIGS. 1 and 2, multiple wafers can be accommodated and the lower side is washed. A washing tank provided with a washing nozzle for supplying the clean solution was used in this experiment.
Yes
[0080] 実験結果を表 1、図 6、および図 7に示す。表 1および図 6は、溶存ガス濃度と、各溶 存ガス濃度でのパーティクル除去効率(= (1 (超音波洗浄後に試験用ウェハに残 存していたパーティクルの数)/ 4000) X 100 (%) )と、の関係を示している。また、 超音波洗浄後の試験用ウェハを観察し、試験用ウェハ中のパーティクルが高い除去 効率で除去されていた領域を調査した。図 7には、溶存窒素濃度が 14ppmの場合と 、 16ppmの場合と、におけるウェハの観察結果が示されている。図 7において、斜線 部分が、高い除去効率でパーティクルが除去されていると視認された領域である。ま た、図 7の斜線部における斜線の密度は、視認された当該部分での除去効率に略比 例している。なお、図 7の紙面における試験用ウェハの配置は、洗浄槽内での試験 用ウェハの配置に対応している。つまり、図 7の紙面における試験用ウェハの下側部 分は、超音波洗浄中に洗浄槽内の下側 (超音波発生装置の振動子側)に配置され ていた部分となっている。  [0080] The experimental results are shown in Table 1, Fig. 6, and Fig. 7. Table 1 and Fig. 6 show the dissolved gas concentration and the particle removal efficiency at each dissolved gas concentration (= (1 (number of particles remaining on the test wafer after ultrasonic cleaning) / 4000) X 100 ( %))). In addition, the test wafer after ultrasonic cleaning was observed, and the area where particles in the test wafer were removed with high removal efficiency was investigated. Figure 7 shows the results of wafer observations when the dissolved nitrogen concentration is 14 ppm and when it is 16 ppm. In FIG. 7, the shaded area is the area where particles are visually recognized as being removed with high removal efficiency. In addition, the density of the shaded area in the shaded area in FIG. 7 is approximately proportional to the removal efficiency in the visually recognized area. Note that the layout of the test wafers on the paper in Fig. 7 corresponds to the layout of the test wafers in the cleaning tank. In other words, the lower portion of the test wafer on the paper surface of FIG. 7 is the portion that was disposed on the lower side of the cleaning tank (the vibrator side of the ultrasonic generator) during ultrasonic cleaning.
[表 1] 表 1 麵 1の難結果
Figure imgf000019_0001
表 1および図 6から理解できるように、溶存ガス濃度が 14ppmの場合に、パーテイク ルを最も高い除去効率で除去することができた。また、溶存ガス濃度力 ppmから 14 ppmまで上昇するにつれて、パーティクル除去効率も向上(上昇)していった。
[Table 1] Difficult results of Table 1 麵 1
Figure imgf000019_0001
As can be seen from Table 1 and Fig. 6, when the dissolved gas concentration was 14 ppm, the particles could be removed with the highest removal efficiency. In addition, the particle removal efficiency improved (increased) as the concentration of dissolved gas increased from ppm to 14 ppm.
[0081] また、洗浄槽内における気泡の発生を観察したところ、溶存ガス濃度が上昇するに つれて、洗浄槽内における気泡の発生量が上昇していった。特に、溶存ガス濃度が 14ppmの場合および 16ppmの場合に、気泡の発生が活発であった。図 7に示すよう に、溶存ガス濃度が 14ppmの場合および 16ppmの場合、試験用ウェハの上側にお V、てパーティクルの除去効率が低下してレ、た。パーティクルの除去効率が低下して いる領域(図 7における無地の領域)は、溶存ガス濃度が 14ppmの場合よりも 16ppm の場合の方が、広くなつていた。その一方で、高い除去効率でパーティクルが除去さ れていると視認された領域同士を比較すると、溶存ガス濃度が 14ppmの場合よりも 1 6ppmの場合の方が高!/、除去効率でパーティクルが除去されて!/、た。 [0081] Further, when the generation of bubbles in the cleaning tank was observed, the amount of bubbles generated in the cleaning tank increased as the dissolved gas concentration increased. In particular, bubbles were actively generated when the dissolved gas concentration was 14 ppm and 16 ppm. As shown in Fig. 7, when the dissolved gas concentration was 14 ppm and 16 ppm, V and particle removal efficiency decreased on the upper side of the test wafer. The area where the particle removal efficiency is low (the plain area in Fig. 7) was wider when the dissolved gas concentration was 16 ppm than when the dissolved gas concentration was 14 ppm. On the other hand, particles are removed with high removal efficiency. Comparing the areas that were seen as being, it was higher when the dissolved gas concentration was 16 ppm than when the dissolved gas concentration was 14 ppm, and particles were removed with higher removal efficiency!
[0082] これらの結果から、気泡が洗浄液中での超音波の伝播を吸収し、この結果、大量の 気泡の発生はパーティクル除去効率の向上を阻害する、と推察される。  [0082] From these results, it is surmised that the bubbles absorb the propagation of the ultrasonic wave in the cleaning liquid, and as a result, the generation of a large amount of bubbles hinders the improvement of the particle removal efficiency.
[0083] 〔実験 2〕  [0083] [Experiment 2]
窒素の溶存ガス濃度が 14ppmであるとともに二酸化炭素の溶存ガス濃度が異なる 値となって!/、る洗浄液を洗浄槽に貯留し、洗浄槽内の洗浄液中に試験用ウェハを浸 漬して洗浄液に超音波を発生させた。本実験に用いられる洗浄液は、溶存ガス濃度 力 SOppmとなるまで脱気し、その後、窒素の溶存ガス濃度を 14ppmに調整するととも に二酸化炭素の溶存ガス濃度を調整した。つまり、洗浄槽内の洗浄液には、ガスとし て窒素と二酸化炭素のみが溶存している。実験は、二酸化炭素の溶存濃度を Oppm (比較例)、 330ppm (実施例)に設定して、行われた。超音波洗浄は 4分間行った。 洗浄液として純水を用いた。超音波の出力は 96Wとした。また、試験用ウェハは、実 験 1と同様に、 4000個のパーティクルを予めむらなく均一に付着させられたものであ つて、さらにダメージ評価用の突部が略 1000億個形成されたものを用いた。  The dissolved gas concentration of nitrogen is 14 ppm and the dissolved gas concentration of carbon dioxide is different! /, The cleaning solution is stored in the cleaning bath, and the test wafer is immersed in the cleaning solution in the cleaning bath. Ultrasonic waves were generated. The cleaning solution used in this experiment was degassed until the dissolved gas concentration was SOppm, and then the dissolved gas concentration of nitrogen was adjusted to 14ppm and the dissolved gas concentration of carbon dioxide was adjusted. In other words, only nitrogen and carbon dioxide are dissolved in the cleaning liquid in the cleaning tank. The experiment was conducted with the dissolved concentration of carbon dioxide set to Oppm (comparative example) and 330 ppm (example). Ultrasonic cleaning was performed for 4 minutes. Pure water was used as the cleaning liquid. The ultrasonic output was 96W. Also, as in Experiment 1, the test wafer had 4000 particles uniformly adhered in advance, and was further provided with approximately 100 billion protrusions for damage evaluation. Using.
[0084] 実験結果を表 2に示す。表 2は、二酸化炭素の溶存ガス濃度と、各溶存ガス濃度で のパーティクル除去効率(= (1 (超音波洗浄後に試験用ウェハに残存していたパ 一テイクノレの数)/ 4000) X 100 (%) )と、の関係を示している。また、表 2は、二酸 化炭素の溶存ガス濃度と、各溶存ガス濃度での配線パターンのダメージ数量(= (超 音波洗浄後に倒れていた試験用ウェハの突部の数量))と、の関係を示している。 [0084] The experimental results are shown in Table 2. Table 2 shows the dissolved gas concentration of carbon dioxide and the particle removal efficiency at each dissolved gas concentration (= (1 (number of particulates remaining on the test wafer after ultrasonic cleaning) / 4000) X 100 ( %))). Table 2 also shows the dissolved gas concentration of carbon dioxide and the number of wiring pattern damage at each dissolved gas concentration (= (number of test wafer protrusions that fell after ultrasonic cleaning)). Showing the relationship.
[表 2] 難 2の難結果  [Table 2] Difficult 2 results
Figure imgf000020_0001
酸化炭素が洗浄液に溶解してレ、る場合、配線パターンのダメ [0085] また、パーティクル除去効率は、二酸化炭素の溶存ガス濃度が Oppmの場合と、 33 Oppmの場合とでは、略同一であった。つまり、二酸化炭素を溶存ガス濃度 330ppm で溶解した場合、二酸化炭素が溶解していない場合と同程度のパーティクル除去作 用を有するとともに、二酸化炭素が溶解していない場合に比べて飛躍的にダメージ 数量を低下させることができる。
Figure imgf000020_0001
If carbon oxide is dissolved in the cleaning solution, the wiring pattern is damaged. [0085] The particle removal efficiency was substantially the same when the dissolved gas concentration of carbon dioxide was Oppm and when it was 33 Oppm. In other words, when carbon dioxide is dissolved at a dissolved gas concentration of 330 ppm, it has the same particle removal effect as when carbon dioxide is not dissolved, and it is greatly damaged compared to when carbon dioxide is not dissolved. Can be reduced.
[0086] 洗浄槽内における気泡の発生を観察したところ、二酸化炭素の溶存ガス濃度が Op pm場合と、 330ppmの場合とでは、同程度であった。  [0086] When the generation of bubbles in the cleaning tank was observed, it was almost the same when the dissolved gas concentration of carbon dioxide was Op pm and 330 ppm.
[0087] なお、表 2の結果は、洗浄槽内の洗浄液の温度を 28°Cとした場合の結果である。  [0087] The results in Table 2 are the results when the temperature of the cleaning liquid in the cleaning tank was 28 ° C.
洗浄槽内の温度を 40°Cにした場合、気泡の発生が著しぐまた、パーティクル除去 効率も低下した。  When the temperature in the washing tank was set to 40 ° C, bubbles were significantly generated and the particle removal efficiency was reduced.

Claims

請求の範囲 The scope of the claims
[1] 洗浄液を貯留する洗浄槽と、  [1] a cleaning tank for storing cleaning liquid;
前記洗浄槽内の洗浄液に超音波を発生させる超音波発生装置と、  An ultrasonic generator for generating ultrasonic waves in the cleaning liquid in the cleaning tank;
洗浄液に溶解しにく V、ガスが溶解した洗浄液を供給する第 1供給管と、 洗浄液に溶解しやす!/、ガスが溶解した洗浄液を供給する第 2供給管と、を備える ことを特徴とする基板洗浄装置。  V, which is difficult to dissolve in the cleaning liquid V, a first supply pipe that supplies the cleaning liquid in which the gas is dissolved, and a second supply pipe that supplies the cleaning liquid in which the gas is dissolved easily! Substrate cleaning device.
[2] 前記第 1供給管は、前記洗浄槽に接続され、洗浄液に溶解しにくいガスが溶解した 洗浄液を前記洗浄槽内に供給し、 [2] The first supply pipe is connected to the cleaning tank, and supplies the cleaning liquid in which the gas difficult to dissolve in the cleaning liquid is dissolved into the cleaning tank,
前記第 2供給管は、前記洗浄槽に接続され、洗浄液に溶解しやすいガスが溶解し た洗浄液を前記洗浄槽内に供給する  The second supply pipe is connected to the cleaning tank and supplies the cleaning liquid in which the gas that is easily dissolved in the cleaning liquid is dissolved into the cleaning tank.
ことを特徴とする請求項 1に記載の基板洗浄装置。  The substrate cleaning apparatus according to claim 1, wherein:
[3] 前記第 1供給管および前記第 2供給管と接続されるとともに前記洗浄槽に接続され[3] The first supply pipe and the second supply pipe are connected to the cleaning tank.
、前記第 1供給管から供給される洗浄液と前記第 2供給管から供給される洗浄液とを 混合して前記洗浄槽内へ供給し得る混合供給管を、さらに備える And a mixing supply pipe capable of mixing the cleaning liquid supplied from the first supply pipe and the cleaning liquid supplied from the second supply pipe and supplying the mixed liquid into the cleaning tank.
ことを特徴とする請求項 1に記載の基板洗浄装置。  The substrate cleaning apparatus according to claim 1, wherein:
[4] 前記第 1供給管および前記第 2供給管は直列に接続されている [4] The first supply pipe and the second supply pipe are connected in series.
ことを特徴とする請求項 1に記載の基板洗浄装置。  The substrate cleaning apparatus according to claim 1, wherein:
[5] 前記第 1供給管および前記第 2供給管に接続され、脱気された洗浄液を前記第 1 供給管および前記第 2供給管に供給する第 3供給管と、 [5] a third supply pipe connected to the first supply pipe and the second supply pipe and supplying degassed cleaning liquid to the first supply pipe and the second supply pipe;
前記第 1供給管に取り付けられ、前記第 1供給管内を流れる洗浄液に前記溶解し にくいガスを溶解させる第 1溶解装置と、  A first dissolving device attached to the first supply pipe and dissolving the hard-to-dissolve gas in a cleaning liquid flowing in the first supply pipe;
前記第 2供給管に取り付けられ、前記第 2供給管内を流れる洗浄液に前記溶解し やす!/、ガスを溶解させる第 2溶解装置と、をさらに備える  A second dissolving device that is attached to the second supply pipe and is easily dissolved in the cleaning liquid flowing in the second supply pipe!
ことを特徴とする請求項 1に記載の基板洗浄装置。  The substrate cleaning apparatus according to claim 1, wherein:
[6] 前記第 3供給管から前記第 1供給管および前記第 2供給管に供給される脱気され た洗浄液の溶存ガス濃度は、小数点以下を四捨五入すると 0 %である [6] The dissolved gas concentration of the degassed cleaning liquid supplied from the third supply pipe to the first supply pipe and the second supply pipe is 0% after rounding off after the decimal point.
ことを特徴とする請求項 4に記載の基板洗浄装置。  The substrate cleaning apparatus according to claim 4, wherein:
[7] 前記溶解しにくいガスは、窒素、水素、酸素、不活性ガス、および、これらの組み合 わせのうちの!/、ずれか一つである [7] The gas that is difficult to dissolve includes nitrogen, hydrogen, oxygen, an inert gas, and a combination thereof. One of them! /, One of them
ことを特徴とする請求項 1に記載の基板洗浄装置。  The substrate cleaning apparatus according to claim 1, wherein:
[8] 前記溶解しにくいガスは窒素であり、前記第 1供給管から供給される洗浄液中にお ける前記窒素の溶存ガス濃度は、小数点以下を四捨五入すると 14%である ことを特徴とする請求項 1に記載の基板洗浄装置。 [8] The gas that is difficult to dissolve is nitrogen, and the dissolved gas concentration of the nitrogen in the cleaning liquid supplied from the first supply pipe is 14% when rounded off to the nearest decimal point. Item 4. The substrate cleaning apparatus according to Item 1.
[9] 前記溶解しやすいガスは二酸化炭素である [9] The easily dissolved gas is carbon dioxide.
ことを特徴とする請求項 1に記載の基板洗浄装置。  The substrate cleaning apparatus according to claim 1, wherein:
[10] 洗浄中における前記洗浄槽内の洗浄液の温度が 28°C以下に保持されるようにな つている [10] The temperature of the cleaning liquid in the cleaning tank is maintained at 28 ° C or lower during cleaning.
ことを特徴とする請求項 1に記載の基板洗浄装置。  The substrate cleaning apparatus according to claim 1, wherein:
[11] 洗浄槽内で被処理基板を洗浄液に浸漬する工程と、 [11] immersing the substrate to be processed in a cleaning solution in a cleaning tank;
前記洗浄槽内の洗浄液に超音波を発生させる工程と、を備え、  Generating ultrasonic waves in the cleaning liquid in the cleaning tank, and
前記超音波を発生させる工程にお!/、て、洗浄液に溶解しやす!/、ガスと洗浄液に溶 解しにくいガスとが、前記洗浄槽内の前記洗浄液に溶解してレ、る  In the step of generating the ultrasonic wave! /, Easily dissolved in the cleaning liquid! /, The gas and the gas difficult to dissolve in the cleaning liquid are dissolved in the cleaning liquid in the cleaning tank.
ことを特徴とする基板洗浄方法。  And a substrate cleaning method.
[12] 前記超音波を発生させる工程にお!/、て、前記洗浄液に溶解しやす!/、ガスと前記洗 浄液に溶解しにくいガスとのみが、前記洗浄槽内の前記洗浄液に溶解してレ、る ことを特徴とする請求項 11に記載の基板洗浄方法。 [12] In the step of generating the ultrasonic wave! /, Easily dissolved in the cleaning liquid! /, Only the gas and the gas difficult to dissolve in the cleaning liquid are dissolved in the cleaning liquid in the cleaning tank. The substrate cleaning method according to claim 11, wherein:
[13] 前記溶解しにくいガスは、窒素、水素、酸素、不活性ガス、および、これらの組み合 わせのうちの!/、ずれか一つである [13] The gas that is difficult to dissolve is nitrogen, hydrogen, oxygen, an inert gas, or one of combinations of these,! /
ことを特徴とする請求項 11に記載の基板洗浄方法。  The substrate cleaning method according to claim 11, wherein:
[14] 前記溶解しにくいガスは窒素であり、前記洗浄液中における前記窒素の溶存ガス 濃度は、小数点以下を四捨五入すると 14%である [14] The hard-to-dissolve gas is nitrogen, and the concentration of the dissolved gas of nitrogen in the cleaning solution is 14% when rounded off to the nearest whole number.
ことを特徴とする請求項 11に記載の基板洗浄方法。  The substrate cleaning method according to claim 11, wherein:
[15] 前記溶解しやすいガスは二酸化炭素である [15] The easily dissolved gas is carbon dioxide.
ことを特徴とする請求項 11に記載の基板洗浄方法。  The substrate cleaning method according to claim 11, wherein:
[16] 前記超音波を発生させる工程において、前記洗浄槽内の前記洗浄液の温度は 28[16] In the step of generating the ultrasonic wave, the temperature of the cleaning liquid in the cleaning tank is 28
°C以下である ことを特徴とする請求項 11に記載の基板洗浄方法。 ° C or less The substrate cleaning method according to claim 11, wherein:
[17] 基板洗浄装置を制御するコンピュータによって実行されるプログラムであって、 前記コンピュータによって実行されることにより、 [17] A program executed by a computer that controls the substrate cleaning apparatus, and is executed by the computer,
洗浄槽内で被処理基板を洗浄液に浸漬する工程と、  A step of immersing the substrate to be processed in the cleaning tank in the cleaning tank;
前記洗浄槽内の洗浄液に超音波を発生させる工程と、を備え、  Generating ultrasonic waves in the cleaning liquid in the cleaning tank, and
前記超音波を発生させる工程にお!/、て、洗浄液に溶解しやす!/、ガスと洗浄液に溶 解しにくいガスとが、前記洗浄槽内の前記洗浄液に溶解している、被処理基板の洗 浄方法を  In the step of generating the ultrasonic wave! /, Easily dissolved in the cleaning liquid! /, A gas and a gas that is difficult to dissolve in the cleaning liquid are dissolved in the cleaning liquid in the cleaning tank. How to clean
基板洗浄装置に実施させることを特徴とするプログラム。  A program that is executed by a substrate cleaning apparatus.
[18] 基板洗浄装置を制御するコンピュータによって実行されるプログラムが記録された コンピュータ読み取り可能な記録媒体であって、 [18] A computer-readable recording medium having recorded thereon a program executed by a computer for controlling the substrate cleaning apparatus,
前記プログラムが前記コンピュータによって実行されることにより、  By executing the program by the computer,
洗浄槽内で被処理基板を洗浄液に浸漬する工程と、  A step of immersing the substrate to be processed in the cleaning tank in the cleaning tank;
前記洗浄槽内の洗浄液に超音波を発生させる工程と、を備え、  Generating ultrasonic waves in the cleaning liquid in the cleaning tank, and
前記超音波を発生させる工程にお!/、て、洗浄液に溶解しやす!/、ガスと洗浄液に溶 解しにくいガスとが、前記洗浄槽内の前記洗浄液に溶解している、被処理基板の洗 浄方法を  In the step of generating the ultrasonic wave! /, Easily dissolved in the cleaning liquid! /, A gas and a gas that is difficult to dissolve in the cleaning liquid are dissolved in the cleaning liquid in the cleaning tank. How to clean
基板洗浄装置に実施させることを特徴とする記録媒体。  A recording medium which is caused to be carried out by a substrate cleaning apparatus.
PCT/JP2007/070811 2006-10-27 2007-10-25 Substrate cleaning apparatus, substrate cleaning method, program and recording medium WO2008050832A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008541020A JPWO2008050832A1 (en) 2006-10-27 2007-10-25 Substrate cleaning apparatus, substrate cleaning method, program, and recording medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-292348 2006-10-27
JP2006292348 2006-10-27

Publications (1)

Publication Number Publication Date
WO2008050832A1 true WO2008050832A1 (en) 2008-05-02

Family

ID=39324617

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/070811 WO2008050832A1 (en) 2006-10-27 2007-10-25 Substrate cleaning apparatus, substrate cleaning method, program and recording medium

Country Status (3)

Country Link
JP (1) JPWO2008050832A1 (en)
TW (1) TW200830391A (en)
WO (1) WO2008050832A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013135037A (en) * 2011-12-26 2013-07-08 Siltronic Ag Ultrasonic cleaning method
JP2013136024A (en) * 2011-12-28 2013-07-11 Shibaura Mechatronics Corp Device and method for generating processing liquid, and apparatus and method for processing substrate
JP2016076588A (en) * 2014-10-06 2016-05-12 オルガノ株式会社 System and method for supplying carbon dioxide dissolved water, and ion exchange device
CN106140722A (en) * 2016-08-12 2016-11-23 嘉兴百盛光电有限公司 A kind of water supplying unit of Multifunctional ultrasonic cleaning machine

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10242107A (en) * 1997-02-18 1998-09-11 Internatl Business Mach Corp <Ibm> Improved method of cleaning microelectronics circuit board
JP2003234320A (en) * 2002-02-06 2003-08-22 Nec Electronics Corp Method, chemical liquid, and device for cleaning substrate, and semiconductor device
JP2004281894A (en) * 2003-03-18 2004-10-07 Matsushita Electric Ind Co Ltd Cleaning water for electronic material, manufacturing method thereof, and cleaning method of electronic material
JP2005296868A (en) * 2004-04-14 2005-10-27 Tokyo Electron Ltd Ultrasonic cleaning method and its apparatus
JP2006179765A (en) * 2004-12-24 2006-07-06 Dainippon Screen Mfg Co Ltd Substrate processing apparatus and particle removing method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000098321A (en) * 1998-09-25 2000-04-07 Toshiba Corp Method for washing and washer
EP1631396A4 (en) * 2003-06-11 2013-08-14 Akrion Technologies Inc Megasonic cleaning using supersaturated cleaning solution

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10242107A (en) * 1997-02-18 1998-09-11 Internatl Business Mach Corp <Ibm> Improved method of cleaning microelectronics circuit board
JP2003234320A (en) * 2002-02-06 2003-08-22 Nec Electronics Corp Method, chemical liquid, and device for cleaning substrate, and semiconductor device
JP2004281894A (en) * 2003-03-18 2004-10-07 Matsushita Electric Ind Co Ltd Cleaning water for electronic material, manufacturing method thereof, and cleaning method of electronic material
JP2005296868A (en) * 2004-04-14 2005-10-27 Tokyo Electron Ltd Ultrasonic cleaning method and its apparatus
JP2006179765A (en) * 2004-12-24 2006-07-06 Dainippon Screen Mfg Co Ltd Substrate processing apparatus and particle removing method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013135037A (en) * 2011-12-26 2013-07-08 Siltronic Ag Ultrasonic cleaning method
JP2013136024A (en) * 2011-12-28 2013-07-11 Shibaura Mechatronics Corp Device and method for generating processing liquid, and apparatus and method for processing substrate
JP2016076588A (en) * 2014-10-06 2016-05-12 オルガノ株式会社 System and method for supplying carbon dioxide dissolved water, and ion exchange device
CN106140722A (en) * 2016-08-12 2016-11-23 嘉兴百盛光电有限公司 A kind of water supplying unit of Multifunctional ultrasonic cleaning machine

Also Published As

Publication number Publication date
JPWO2008050832A1 (en) 2010-02-25
TWI362066B (en) 2012-04-11
TW200830391A (en) 2008-07-16

Similar Documents

Publication Publication Date Title
JP4999338B2 (en) Substrate cleaning method, substrate cleaning apparatus, program, and recording medium
JP4705517B2 (en) Substrate cleaning method, substrate cleaning apparatus, program, and recording medium
KR101062255B1 (en) Method, apparatus for cleaning substrate and program recording medium
JP2003234320A (en) Method, chemical liquid, and device for cleaning substrate, and semiconductor device
JP5015717B2 (en) Substrate cleaning device
WO2008050832A1 (en) Substrate cleaning apparatus, substrate cleaning method, program and recording medium
JP2007173677A (en) Substrate processing apparatus
JP2007059868A (en) Substrate processing equipment
JP2002261062A (en) Method and device for removing particle on semiconductor wafer
JP2009054919A (en) Substrate processing device
US8083857B2 (en) Substrate cleaning method and substrate cleaning apparatus
JPH1022246A (en) Cleaning method
JP4623706B2 (en) Ultrasonic cleaning equipment
JP5222059B2 (en) Apparatus for manufacturing a supply liquid for ultrasonic processing apparatus, method for manufacturing a supply liquid for ultrasonic processing apparatus, and ultrasonic processing system
JP5015763B2 (en) Substrate cleaning method, substrate cleaning apparatus, program, and program recording medium
JP2008166426A (en) Cleaning method and cleaning device
JP2008091546A (en) Apparatus and method for cleaning substrate
JP5353730B2 (en) Ultrasonic cleaning method, ultrasonic cleaning apparatus, and method for producing propagation water used for ultrasonic cleaning

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07830545

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008541020

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07830545

Country of ref document: EP

Kind code of ref document: A1