WO2008050798A1 - Infrared lamp heating type casting apparatus and method of casting - Google Patents

Infrared lamp heating type casting apparatus and method of casting Download PDF

Info

Publication number
WO2008050798A1
WO2008050798A1 PCT/JP2007/070724 JP2007070724W WO2008050798A1 WO 2008050798 A1 WO2008050798 A1 WO 2008050798A1 JP 2007070724 W JP2007070724 W JP 2007070724W WO 2008050798 A1 WO2008050798 A1 WO 2008050798A1
Authority
WO
WIPO (PCT)
Prior art keywords
crucible
infrared lamp
forging
melting
molten metal
Prior art date
Application number
PCT/JP2007/070724
Other languages
French (fr)
Japanese (ja)
Inventor
Nobuo Yasuda
Masuhito Yasui
Toshiaki Ikeda
Original Assignee
Kabushiki Kaisha Shofu
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kabushiki Kaisha Shofu filed Critical Kabushiki Kaisha Shofu
Priority to JP2008541009A priority Critical patent/JP5091151B2/en
Publication of WO2008050798A1 publication Critical patent/WO2008050798A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C13/00Dental prostheses; Making same
    • A61C13/20Methods or devices for soldering, casting, moulding or melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/02Sand moulds or like moulds for shaped castings
    • B22C9/04Use of lost patterns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D13/00Centrifugal casting; Casting by using centrifugal force
    • B22D13/02Centrifugal casting; Casting by using centrifugal force of elongated solid or hollow bodies, e.g. pipes, in moulds rotating around their longitudinal axis
    • B22D13/023Centrifugal casting; Casting by using centrifugal force of elongated solid or hollow bodies, e.g. pipes, in moulds rotating around their longitudinal axis the longitudinal axis being horizontal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D13/00Centrifugal casting; Casting by using centrifugal force
    • B22D13/06Centrifugal casting; Casting by using centrifugal force of solid or hollow bodies in moulds rotating around an axis arranged outside the mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D23/00Casting processes not provided for in groups B22D1/00 - B22D21/00
    • B22D23/06Melting-down metal, e.g. metal particles, in the mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D27/00Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting
    • B22D27/09Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting by using pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B14/00Crucible or pot furnaces
    • F27B14/02Crucible or pot furnaces with tilting or rocking arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B14/00Crucible or pot furnaces
    • F27B14/04Crucible or pot furnaces adapted for treating the charge in vacuum or special atmosphere
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B14/00Crucible or pot furnaces
    • F27B14/06Crucible or pot furnaces heated electrically, e.g. induction crucible furnaces with or without any other source of heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D99/00Subject matter not provided for in other groups of this subclass
    • F27D99/0001Heating elements or systems
    • F27D99/0006Electric heating elements or system

Definitions

  • the present invention relates to a forging apparatus and a forging method in the field of dental technology and jewelry processing.
  • Main forging devices used in dental technicians are roughly classified according to the type of heat source for melting, and there are a single heating method, a resistance heating method, a high frequency induction heating method, an arc heating method, and the like.
  • an alloy is melted by using a flame of a burner capable of combusting a combustible gas such as acetylene or city gas, air and oxygen.
  • a combustible gas such as acetylene or city gas, air and oxygen.
  • a heating furnace is configured by combining a vertical bottomed cylindrical heat-resistant ceramic component and an electric heater disposed so as to surround the cylindrical portion and the bottom portion. Furthermore, a bottomed cylindrical heat-resistant ceramic or graphite-manufactured Tamman tube is inserted into the cylinder of the heat-resistant ceramic part and used as a replaceable crucible. Then, after putting the alloy inside the tamman tube, the electric heater is energized to heat the furnace body and the tanman tube to melt the alloy.
  • a ceramic crucible is provided in the center of a high-frequency induction coil made of a water-cooled copper tube, an alloy is placed in the ceramic crucible, and high-frequency current is passed through the coil to induce electromagnetic induction. Is used to melt the alloy using the principle of self-heating by the eddy current excited inside the alloy.
  • an industrial TIG arc welding power source is applied, and a non-conductive crucible with a through-hole electrode on the outside from the inner bottom of the crucible connected to the positive electrode side, or an electrode is included ! /, N! /, Place the alloy in a graphite processed product or copper conductive crucible, and use the radiant heat of the arc discharge generated between the negative electrode and the discharge electrode on the top of the crucible To melt the alloy.
  • Centrifugal forging is a method in which an iron placed on a crucible adjacent to the insertion port is fixed to the end of the rotary arm with a vertical shape with the insertion port facing the center of rotation. In this method, the rotating arm is started immediately after the melting is completed, and the molten metal is transferred into a bowl using centrifugal force.
  • the whole pressure forging method is a method in which an alloy is melted by a resistance heating method, a high frequency induction heating method or an arc heating method in a sealing device, and the entire sealing device is inclined or reversed by 80 to 200 degrees, or the sealing device Tilt only the crucible inside without tilting or flipping or open the bottom of the split crucible.
  • the pressure increase directly applied to the m inlet is faster than the pressure increase penetrating the inside of the mold due to the air permeability of the mold, so that the molten metal at the inlet is injected into the details of the vertical cavity. Then, after the molten metal is solidified, the pressure in the container is released to the outside and the forging is performed. After fabrication, the mold is taken out from the sealed device, the mold is cooled, the mold is broken, and the structure is taken out.
  • the suction pressure forging method is a method that is generally similar to the whole pressure forging method. After the molten metal is transferred, compressed air or inert gas is introduced into the void around the saddle type including the insertion port. At the same time as injecting abruptly, the bottom surface of the sealed bowl is decompressed or sucked to adjust the ventilation direction inside the bowl to improve the forging performance. In addition, after forging, the saddle type forged product is taken out in the same manner as described above.
  • the forged product thus fabricated and taken out from the mold is polished and cleaned on the surface of the site necessary for tooth reproduction, and then the included mouth and runner are cut and removed. Then, the prosthesis is completed by polishing the cut surface.
  • the alloys used in dental forging devices include silver alloy alloys having a melting point of approximately 600 ° C, noble metal alloys having a melting point of approximately 1000 ° C, and a melting point of approximately 1400 ° C.
  • the dental forging device is required to have a performance capable of melting any alloy.
  • the melting amount is specific gravity 1 Taking a noble metal alloy of about 6 as an example, it is possible to obtain a good molten state without an oxide film as much as possible within a range of at least 5 g to 150 g in weight conversion, and the state of the alloy during melting can be visually observed Therefore, there is a demand for the ability to complete melting in a short time within several tens of seconds to several minutes.
  • the prior art document information related to the forging device of the present invention includes the following.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2001-355970 (Release Date: 2001 / 12.26)
  • Patent Document 2 Japanese Utility Model Publication No. 52-039053 (Publication Date: September 05, 1977)
  • Patent Document 3 Japanese Utility Model Publication No. 63-032511 (Publication date: 1988.03.02)
  • Patent Document 4 Japanese Patent Laid-Open No. 6-126422 (Publication Date: May 10, 1994)
  • Patent Document 5 Japanese Utility Model Publication No. 7-22710 (Publication date: April 25, 1995)
  • Patent Document 6 Japanese Patent Laid-Open No. 7-132364 (Publication Date: May 23, 1995)
  • Patent Document 7 Japanese Patent Application Laid-Open No. 2000-176629 (Release Date: 2000.06.27)
  • Patent Document 1 discloses a metal that is a forging raw material as a raw material melting apparatus that appropriately melts a necessary amount of raw material in accordance with a forging cycle and supplies the material to a forging machine in a forging apparatus such as a cold chamber type die casting machine.
  • a raw material melting apparatus characterized by comprising: a melting tank that contains a melting tank; an infrared lamp disposed around the melting tank; and a reflection mirror disposed behind the infrared lamp! / RU
  • Patent Literature 2 to Reference Literature 7 describe dental forging devices using resistance heating type pressure forging methods. These devices have a crucible disposed in the heating furnace and a forging chamber in which a bowl is disposed so that the gate is opposed to the upper surface opening of the crucible, and the structure can be rotated 180 °. Is made. Specifically, first, the alloy is housed in the crucible with the upper surface opening of the crucible facing upward, and the alloy is melted by heating the crucible in a heating furnace equipped with an electric heater surrounding the crucible. Next, a cup-shaped spout heated to a high temperature of about 800 to 900 ° C.
  • the forging chamber is depressurized by a vacuum pump.
  • the inside of the bowl-shaped cavity is also decompressed.
  • the forging room is turned 180 ° so that the crucible opening faces downwards at a predetermined timing.
  • the molten metal in the crucible is poured into the bowl-shaped gate and collected.
  • the inside of the cavity is kept at a low pressure.
  • the molten metal fills the cavity through the runner due to the differential pressure. In this way, the pressure forging is achieved.
  • the amount of molten metal to be replenished is sufficiently ensured compared to the amount of alloy introduced at the time of forging, and the amount of alloy used in the runner is less limited. If there is a sufficient amount of hot water, foreign substances such as oxides tend to float on the surface of the molten metal. For this reason, when pouring the molten metal into the bowl, the floating surface of the molten metal in the ladle from which the molten metal has been drawn is divided so as not to be poured into the bowl, or a large gate is provided to remove oxides etc. There is a way to avoid getting caught in the cage by floating it.
  • the volume ratio that actually becomes a forged product is larger than the amount of molten metal supplemented when handling precious metal alloys is overwhelmingly. As obtained, the volume occupied by the runner tends to be extremely saved. Therefore, in dental fabrication, it is necessary to avoid as much as possible oxides that are suspended in the alloy melting stage. Therefore, it is necessary to melt the alloy in a short time in order to suppress the generation of oxides. Under atmospheric conditions, the alloy is heated in a short period of time with a gas burner with high thermal power that uses a mixture of city gas and oxygen, or a combination of city gas and compressed air.
  • the forging work is done with care not to spread the oxide on the surface of the molten metal, for example, by sprinkling the molten metal on the edge of the crucible.
  • the high-frequency induction heating method and arc heating method are used in an inert gas atmosphere to melt the alloy in a short time and to suppress the generation of oxides.
  • the melting tank is a cylinder using light-transmitting ceramic or quartz glass so that infrared rays are sufficiently irradiated from the surroundings to the inner molten material. It needs to be formed into a shape.
  • quartz glass undergoes thermal deformation due to load when used in an atmosphere of 900 ° C or higher, so it is intended for melting alloys with a melting point of about 700 ° C or lower, such as aluminum alloy die casting.
  • High carat gold alloy with melting point of 1000 ⁇ ; 1100 ° C, melting point power 100 ⁇ ; low carat gold alloy or palladium alloy with 1260 ° C, melting point around 1400 ° C Cannot be used for other cobalt-chromium alloys.
  • the heat source is a burner heating system in the forgery apparatus of Patent Documents 2 to 7, a combustible gas such as acetylene or city gas is used.
  • a combustible gas such as acetylene or city gas.
  • disasters such as poisoning and gas explosions.
  • working with a dedicated burner or torch but because of the direct flame, unpleasant noise associated with gas mixture combustion occurs during the melting operation.
  • the time force S required to heat the entire crucible by the heating furnace of the electric heater and melt the alloy in the crucible S approximately 10 to 20 Minutes (10-20 times compared to high frequency induction heating and arc heating methods) are required.
  • the alloy is heated in an air atmosphere for a long period of 10 to 20 minutes, it is significantly oxidized by air.
  • the saddle is arranged so that the pouring gate faces the opening on the upper surface of the crucible disposed in the heating furnace, the saddle mold covers the opening of the crucible, and the process of melting the alloy inside the crucible is observed.
  • the heat source is a high-frequency induction heating method
  • a magnetic field line along the central axis of the coil generated by the energized high-frequency induction coil is blocked by the conductor, which is an alloy in the crucible, to excite eddy currents inside the conductor.
  • the principle is that the conductor melts due to self-heating due to the electric resistance loss of eddy current. Therefore, when a small amount of alloy is melted, the volume of the alloy is small compared to the inner diameter of the coil, so that the area that blocks the magnetic field lines is reduced, and the generation of eddy currents is reduced. It becomes very difficult to heat and melt.
  • the alloy shape is a thin piece of about 1 mm in thickness and about 1 cm in length and 1 cm in width
  • several pieces of thin plate should be placed horizontally to increase the area that blocks the magnetic field lines. Even if it is placed, the thin plate pieces are aligned in the same vertical direction as the direction of the magnetic field lines generated along the coil central axis simultaneously with energization.
  • the small pieces generate gaps with each other due to the magnetic repulsive force, there is a problem that the magnetic lines of force can hardly be blocked and a state in which dissolution is impossible is caused.
  • the heat source is an arc heating system
  • C a force widely used for electric welding Melting point power It is too high as a heat source for melting dental forging silver alloys of about 00 ° C to 700 ° C, and is not suitable for melting.
  • ⁇ device internally by Ekigu metal vapor and gas such as by overheat bets are problems force s of easily such contaminated.
  • the present invention has been made in view of conventional problems, and an object of the present invention is to provide a forging device that has a simple structure and can improve workability and operability.
  • an infrared lamp heating forging device of the present invention includes an infrared lamp that outputs infrared light, a reflecting mirror that collects infrared light from the infrared lamp, and a collecting mirror that collects the infrared light. It is configured to include a crucible in which the irradiated infrared light is irradiated and the metal disposed therein is melted, and a saddle type in which the molten metal melted in the crucible is inserted.
  • the metal is directly heated by the infrared energy from the infrared lamp, and there is no need for a structure that needs to be heated around the crucible.
  • the metal can be melted efficiently without any problems.
  • an inert gas is used for the purpose of preventing the oxidation of the molten metal during the melting period, the gas consumption can be drastically reduced.
  • the bowl does not cover the crucible opening, the metal inside the crucible melts. At any time, you can visually check important information on the surface of the melt just before pouring, such as observation of the process, whether it is completely melted, and whether foreign matter is mixed in the melt surface.
  • the melting point used in dental fabrication is 1000 ⁇ ; high carat gold alloy of about 1100 ° C, melting point of 1100 ⁇ ; low carat gold alloy or palladium alloy of about 1300 ° C, and melting point 1 Applicable to cobalt 'chromium alloys at around 400 ° C.
  • the forging device used in general industry has a structure in which the melting furnace and the forging device are separated in order to obtain a large amount of molten metal, but the present invention provides a small-size forging that can be placed in the oral cavity. What is necessary is just the amount of molten metal suitable for manufacturing a thing. Therefore, since the amount of molten metal is smaller than that in the industrial case, the heat source for melting the metal and the crucible part are housed in the same apparatus, and further, the means for moving the molten metal into a vertical shape, and An integrated forging apparatus having a structure such as a pressure forging method or a suction pressure forging method can be realized.
  • the reflecting surface of the reflecting mirror has a high reflectance of infrared light, and the shape of the reflecting surface is a spheroid that covers the infrared lamp in a shade shape. In this way, the condensing efficiency of the reflecting mirror can be increased, so that the metal melting performance can be improved.
  • This forging device has an airtight mechanism that can replace the inside of an airtight container containing a crucible and a bowl with a gas other than air or pressurize it with air or another gas.
  • a gas other than air or pressurize it with air or another gas.
  • there is an exhaust hole and a pressurization hole and the air is extracted from the exhaust hole, and gas is injected from the pressurization hole to replace the gas.
  • the crucible is constituted by a divided crucible obtained by dividing the crucible in the horizontal direction, and these are arranged so that the saddle mold is located below the divided crucible.
  • An airtight container capable of being sealed inside, an inclining means for inclining one of the divided crucibles in the airtight container at a predetermined angle, and a pressurizing means for pressurizing the inside of the airtight container;
  • the molten metal is poured into the mold.
  • the shortest distance is the shortest so that it falls from the crucible to the bowl. Since the molten metal can be transferred over time, the temperature drop of the molten metal can be minimized.
  • a hermetic container that can be hermetically disposed inside the crucible so that the saddle mold is located under the crucible, and a crucible in the hermetic container are inclined at a predetermined angle.
  • the process of the transition of the molten metal from the crucible to the saddle shape has a tilting effect such that the pouring is gently performed by the handle.
  • the risk of bubbles or the like being mixed into the molten metal can be reduced, and the probability of occurrence of flaws can be reduced.
  • a hermetically sealed airtight container in which the crucible and the bowl are disposed so that the gates are adjacent to each other in the lateral direction, and the bowl is located at the lower part of the crucible.
  • tilting means for tilting the hermetic container at a predetermined angle
  • pressurizing means for caulking the inside of the hermetic container, and the molten metal melted in the crucible is sealed by the tilting means.
  • the crucible molten metal is poured into a bowl-shaped gate by inclining and the molten metal is poured into the bowl by pressurizing the inside of the hermetic container with the pressurizing means.
  • these forging devices are further provided with a decompression means for decompressing the inside of the mold.
  • the airtight container is provided with an irradiation window having pressure resistance and heat resistance that transmits infrared light on a surface facing the infrared lamp.
  • the light of the infrared lamp can be introduced into the inside in a state where the atmosphere in the hermetic container is shut off from the outside. Therefore, the internal atmosphere can be decompressed and maintained in an inert gas atmosphere, and the oxidation of the molten metal by air can be prevented.
  • the hermetic container includes a viewing window having a pressure resistance and a light attenuation property for confirming a molten state of the metal in the crucible.
  • a viewing window having a pressure resistance and a light attenuation property for confirming a molten state of the metal in the crucible.
  • an arm that can be rotated by a driving means is provided, and the crucible is arranged with respect to the arm so that the gate is located radially outward of the rotation locus.
  • the mold is arranged on the outside so that the pouring gate faces the pouring gate of the crucible, and the molten metal melted in the crucible is spouted from the pouring gate by centrifugal force so as to be inserted into the pouring mold. It may be.
  • the forging method using the first to third forging apparatuses includes: (a) a sealing step of sealing the crucible and the metal mold in which the metal is disposed in an airtight container; and (b) the inside of the airtight container.
  • An exhaust process for exhausting the gas (c) a gas supply process for supplying the gas so that the inside of the hermetic container has a pressure higher than atmospheric pressure, and (d) an infrared lamp is output from the infrared lamp, (E) a gas flow step of exhausting excess gas in the hermetic container while further supplying gas into the hermetic container; and (f) ) A depressurization step of exhausting the inside of the hermetic container to depressurize it to a pressure lower than atmospheric pressure, and (g) maintaining the depressurized state in the hermetic container and pouring molten metal melted in the crucible into a bowl. (H) supplying gas into the airtight container and pressurizing to a pressure higher than atmospheric pressure.
  • a pressurizing step (i) a step of naturally venting the inside of the hermetic container to bring it into an atmospheric pressure state; and (j) a hermetic release step of releasing the hermetically sealed state of the hermetic container, (k) The melting step by the infrared lamp is stopped at the step of! / Or the opening step from the decompression step.
  • the hermetic container can maintain the internal atmosphere in either a depressurized state or a pressurized state. Therefore, if an inert gas is introduced through the exhaust process, oxidation of the molten metal during melting can be prevented, and there is an advantage that a pressure forging method can be adopted in the forging process.
  • a pressure forging method can be adopted in the forging process.
  • the forging device so as to include a series of steps from the sealing step to the sealing release step including the extinguishing step, it is possible to produce a high-quality forged product with few forging defects. Monkey.
  • a suction hole is provided in the airtight container as a gas path leading to the outside so that the bottom of the bowl-shaped bottom can be sucked or depressurized. Furthermore, in synchronization with the pressurization process, Add a process to start suction or decompression and end suction or decompression in synchronization with the pressure release process. In this way, since excellent suction and pressure fabrication can be realized, it is possible to produce a good quality and fabrication with fewer fabrication defects.
  • the temperature detecting means is disposed in the vicinity of the infrared lamp, in the vicinity of the focal point on the crucible in the airtight container, or in the crucible itself. Furthermore, if the observed temperature is displayed on the operation panel of the forgery device and compared with the set temperature that was previously input to the controller of the forgery device, the set temperature and the observed temperature will approach or match. The system is configured to notify the user. Then, it is configured so that the plunge operation is automatically performed based on the fact that the set temperature and the observed temperature match. In this way, if the skilled craftsman inputs the set temperature in advance, the brewing temperature of the brewing temperature that occurs when multiple or inexperienced craftsmen visually determine the filling time. Variations can be minimized and forging defects due to excessive or insufficient melting temperatures can be avoided.
  • the metal is directly heated by the infrared energy from the infrared lamp, and no structure requiring heating is required around the crucible, so there is no loss of heat energy. Metal can be efficiently melted. As a result, even if an inert gas is used to prevent oxidation of the molten metal during the melting period, gas consumption can be dramatically reduced.
  • the bowl does not cover the opening of the crucible, the process of observing the process of melting the metal inside the crucible, the force of complete melting, and whether foreign matter is mixed in the surface of the melt Important information on the surface of the molten metal just before pouring can be checked at any time. Furthermore, it is not necessary to use a light-transmissive heat-resistant material such as quartz glass, and an opaque ceramic crucible that can be used in a higher temperature range than quartz glass can be used. Therefore, it can be applied to high melting point alloys used in dental fabrication.
  • the high frequency induction heating type forging device unlike the high frequency induction heating type forging device, even if the amount of metal to be melted decreases, it is not necessary to increase the input power of the infrared lamp, and the melting time is not prolonged.
  • the metal when the metal is in the form of thin pieces, the horizontally placed pieces are aligned in the vertical direction due to the influence of the magnetic lines of force, and a plurality of small pieces form a gap between them due to the magnetic repulsion. It is impossible to melt, but there is no such problem.
  • the heat source temperature is lower, so it can be used as a heat source for melting dental forging silver alloys with a melting point of about 600 ° C to 700 ° C.
  • the forging device is not contaminated by steam or gas.
  • FIG. 1 is a cross-sectional view showing a forging device according to a first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of the forging device of FIG. 1 as seen from another angle.
  • FIG. 3 is a cross-sectional view showing a modification of the first embodiment.
  • FIG. 4 is a cross-sectional view showing a forging device according to a second embodiment.
  • FIG. 5 is a cross-sectional view showing a forging device according to a third embodiment.
  • FIG. 6 (A) and (B) are cross-sectional views showing the operation of the forging device of the third embodiment.
  • FIG. 7 is a front view showing a forging device according to a fourth embodiment.
  • FIG. 8 shows a forging device according to a fourth embodiment, wherein (A) is a plan view and (B) is a right side view. Explanation of symbols
  • FIG. 1 shows a dental forging apparatus according to the first embodiment of the present invention, and a metal for forging already.
  • This forging apparatus includes a near-infrared lamp 1, a reflector 2, a melting chamber 3, a crucible 4, a chimney window 5, a vertical chamber 6, and a vertical shape 7.
  • the melting chamber 3 and the vertical chamber 6 serve as an airtight container 12 that can be opened.
  • the forging device of the present embodiment collects the heat rays (infrared light) generated by the near-infrared lamp 1 with the reflecting mirror 2, irradiates the crucible 4, and is placed on the crucible 4.
  • the alloy is heated and melted and placed in the mold 7 installed in the mold chamber 6.
  • the near-infrared lamp 1 is in an airtight container in a state of being disposed inside the reflecting mirror 2.
  • the near-infrared lamp 1 a lamp that emits light of about 2000 to 2800 ° C, such as a halogen lamp or a xenon lamp, can be applied.
  • the peak wavelength of this near-infrared lamp 1 is approximately ⁇ (0.001 mm), and is distributed in the range of about 0.5 to 3 m.
  • a lamp with a rated voltage of AC90V and 1800W is applicable.
  • Commercial power is limited to a maximum of 1500W at 100V, so power is supplied from a power supply facility of 200V or higher via the lamp voltage control circuit.
  • the reflecting mirror 2 has a reflecting surface 2a having a spheroid shape formed therein.
  • a near-infrared lamp 1 is mounted on the upper top of the reflecting surface 2a of the reflector 2 and electrically A connecting portion 2b to be connected is provided.
  • the near-infrared lamp 1 is mounted in a state of being covered in a shade shape by the reflecting surface 2a.
  • the reflective surface 2a is gold-plated to maintain high reflectivity and corrosion resistance.
  • the reflecting surface 2a has a reflectivity of about 47% in general, but is configured to have a high reflectivity of 90% or more in the infrared region.
  • the reflection mirror 2 is fixed to a frame (not shown) without providing a member surrounding the reflection mirror 2 with the near infrared lamp 1 attached thereto.
  • the reflecting surface 2a of the reflecting mirror 2 has an optical axis that is an extension line that linearly connects the center of the filament of the near-infrared lamp 1 and the center of the crucible 4 of the melting chamber 3 to be described later. Construct a spheroid mirror with the position as the first focus. Then, the light beam output from the near-infrared lamp 1 passes through the upper irradiation window 9 which is the opposite surface of the melting chamber 3, and forms the second focal point at the center upper surface of the divided crucible 4 inside the melting chamber 3.
  • the focal length is 50 to 150 millimeters, preferably around 90 millimeters.
  • the near-infrared lamp 1 and the reflecting mirror 2 of the present embodiment are configured so that abnormal temperature rise can be prevented by water cooling.
  • a cooling water tank 16 is provided, and water at the bottom of the tank 16 is supplied to the reflector 2 and the near infrared ray by a water supply pump 17 through a water supply pipe. Supply to lamp 1.
  • the water that has absorbed heat from the reflecting mirror 2 and the near-infrared lamp 1 by passing through a flow path (not shown) in the reflecting mirror 2 forms a circulating structure that returns to the cooling water tank 16.
  • the return pipe from the reflecting mirror 2 to the cooling water tank 16 is provided with a flow rate sensor 18 for monitoring the flow of the cooling water.
  • a radiator 20 is interposed in the return water pipe to suppress a temperature rise in the cooling water tank 16, and a forced cooling fan 19 is disposed so as to blow air to the heat radiator 20.
  • the hermetic container 12 includes a melting portion 3a that constitutes the melting chamber 3, a saddle portion 6a that constitutes the saddle chamber 6, and a top plate 9a that closes the upper end opening of the melting portion 3a.
  • the airtight container 12 can be hermetically sealed by being disposed so as to be movable upward in the outer cylinder 15 at the upper end opening.
  • the melting part 3a is supported by guide rails 3b on both sides, and can be moved in parallel in the horizontal direction, and a crucible 4 is disposed at the center thereof.
  • the saddle-shaped part 6a is a guide rail 6b It is supported on the guide rail 6b via the outer cylinder 15 supported on both sides thereof, and can be moved in parallel with the outer cylinder 15 in the horizontal direction.
  • the top plate 9a is fixed to the upper frame 22, and a thick illumination window 9 is fitted therein.
  • the irradiation window 9 is preferably made of transparent glass, specifically transparent heat-resistant glass or quartz glass. Note that the top plate 9a may also be configured so that both sides are supported by guide rails and can be translated in the horizontal direction in the same manner as the melting portion 3a and the bowl portion 6a.
  • the hermetic container 12 configured as described above has an irradiation window on the optical axis of the light beam condensed by the reflecting mirror 2 in a manufacturable state positioned at the lower part of the reflecting mirror 2, as shown in the figure.
  • the center line of 9 and the center line of melting chamber 3 are aligned with the center line of vertical chamber 6.
  • the melting part 3a is moved with respect to the top plate 9a to expose the crucible 4 in the melting part 3a, and the metal before processing (hereinafter referred to as “dental forging alloy 8”) in the crucible 4 Can be easily arranged.
  • the mold 7 can be easily attached to and detached from the mold part 6a by moving the mold part 6a with respect to the melting part 3a.
  • crucibles 4 (4a, 4b) that coincide with the optical axis of the reflecting mirror 2 and that can be opened and closed by positioning jigs 4c, 4d. It is arranged.
  • This crucible 4 has a box shape with an upper end opening in a closed state.
  • This crucible 4 has high heat retention and does not release the temperature of the molten metal (molten metal)! /, Low thermal conductivity, suitable material (with heat retention effect), mullite and high porosity, ceramic Sintered products and ceramic fiber molded products are suitable.
  • the positioning jigs 4c and 4d are preferably provided with fixing means so that the crucibles 4a and 4b are disposed so that they do not easily fall off.
  • a side window 5 is provided on the side surface of the melting chamber 3, so that the external force of the melting chamber 3, the dental forging alloy 8 placed in the center of the crucible 4 can be observed.
  • the viewing window 5 includes a thick transparent pressure-resistant glass 5a having heat resistance and pressure resistance, and a dark-color neutralizing filter 5b incorporated in a cylindrical body. It is desirable to use heat-resistant glass or quartz glass as the material of the pressure-resistant glass 5a.
  • the neutral density filter 5b has a color tone from dark green to dark blue, and it is desirable to use a heat-resistant resin plate that attenuates light, and more suitable to use a light shielding glass for welding work or a light shielding filter for liquid crystals. .
  • This viewing window 5 allows the inside of the melting chamber 3 to It can withstand air pressure and gas pressure, and can observe the melting state of alloy 8 exposed to intense light while the near-infrared lamp 1 is lit!
  • the mold chamber 6 formed in the mold section 6a is in airtight communication with the melting chamber 3 in the melting section 3a by the O-ring during the forging process to constitute one hermetic container 12.
  • the saddle-shaped portion 6a constituting the saddle-shaped chamber 6 has a bottomed cylindrical shape and is combined with the outer cylinder 15 through an O-ring so as to be slidable.
  • a saddle 7 is detachably disposed in the saddle chamber 6 via a heat insulating member 13 made of a container having an upper end opening.
  • the mold is buried and heated in a heating furnace to 700 ° C or more to melt and incinerate the mold and provide a cavity 7a to be a forged product.
  • the saddle 7 is placed so that it is positioned directly below the crucible 4 with the spout 7b, which is the opening of the cavity 7a, facing upward and close enough not to interfere with the crucible 4.
  • the outer cylinder 15 is connected to a pressure increasing means for introducing compressed air or high-pressure inert gas to the joint 15b leading to the inner cylinder space 15a via the lifting solenoid valve 35, and the cylinder space 15a
  • the volume can be increased. Since the downward movement of the outer cylinder 15 is restricted by the base frame 21, when the compressed air or inert gas is introduced, the vertical chamber 6 rises and pushes the melting chamber 3 through the O-ring. .
  • the melting part 3a constituting the melting chamber 3 is pushed up, the top plate 9a and the irradiation window 9 are pushed up through the O-ring, and the irradiation window 9 comes into contact with the upper frame 22 through the O-ring, so that the irradiation window 9
  • the top plate 9a, the vertical chamber 6 and the melting chamber 3 become one airtight container 12.
  • the upward movement of the melting portion 3a and the top plate 9a is about the play between the guide rails 3b and 6b that support them so as to be movable, the melting portion 3a, and the saddle portion 6a.
  • a pressure reducing means is connected to the joint 15b of the outer cylinder 15 via the lifting solenoid valve 35, the vertical chamber 6 is lowered, and the melting chamber 3, the top plate 9a, and the irradiation window 9 are sequentially connected. Configure to be able to lower and release the airtight state!
  • a mechanism capable of making the inside of the melting chamber 3 and the saddle chamber 6 airtight shown in FIG. 1 is an example of an airtight mechanism.
  • the saddle chamber 6 is raised and lowered by a mechanical method. It may be lowered.
  • the melting part 3a and the forging part 6a are materials that can withstand airtightness, and the internal gas and the external gas are not mixed from each other through the gap. Of course, in the present invention, decompression or pressurization may be performed. Therefore, the melting part 3a and the forging part 6a have pressure resistance.
  • This hermetic container 12 replaces the atmosphere in the melting chamber 3 with an inert gas in order to prevent oxidation of the molten metal, and the atmosphere in the melting chamber 3 is evacuated in order to prevent entrainment of bubbles during fabrication. Or a mechanism such as introducing an inert gas for pressure fabrication.
  • the melting chamber 3 is provided with an exhaust hole 10 for exhausting internal air and gas, and a pressurizing hole 11 for supplying an inert gas therein.
  • the exhaust hole 10 may be provided in the vertical chamber 6.
  • the piping path connected to the exhaust hole 10 is branched to the exhaust solenoid valve 40 and the vacuum solenoid valve 39 via a dust filter 41 on the way.
  • the outlet of the exhaust solenoid valve 40 is opened outside the forging device.
  • the vacuum solenoid valve 39 is connected to a vacuum pump 36 outside the forging apparatus.
  • a vacuum tank 37 is provided between the vacuum solenoid valve 39 and the vacuum pump 36 in order to increase the pressure reduction speed.
  • An air release valve 38 is provided to return the inside of the vacuum tank 37 to atmospheric pressure when the forging device of the present embodiment is not in operation.
  • the vacuum pump 36 is connected to the joint 15b of the external cylinder 15 via the vacuum tank 37 and the lifting solenoid valve 35, and the airtight state of the hermetic container 12 is released by exhausting the gas in the cylinder space 15a.
  • the decompression means for this is also comprised.
  • the volume of the vacuum tank 37 is desirably designed to be greater than the volume of the hermetic container 12.
  • the piping path connected to the pressurizing hole 11 is branched to a large-diameter pressurizing solenoid valve 34 and a small-diameter gas flow solenoid valve 33.
  • the pressurizing solenoid valve 34 is connected to an air supply unit 30 which is a pressurizing means for supplying an inert gas or compressed air outside the forging apparatus.
  • the gas flow solenoid valve 33 is supplied with a small flow rate gas from the air supply unit 30 via the throttle valve 33a.
  • a pressurization tank 31 is connected to the air supply unit 30 in order to increase the pressurization speed.
  • the pressurizing solenoid valve 34 is connected to these intermediate positions.
  • the air supply unit 30 is connected to the joint 15b of the outer cylinder 15 and supplies gas to the cylinder space 15a, thereby increasing the melting chamber 3 and the vertical chamber 6 constituting the hermetic container 12 2 in an airtight state.
  • a pressure means is also configured.
  • a safety valve 32 is connected between the air supply unit 30 and the pressurized tank 31 to prevent supply exceeding the specified pressure from the air supply unit 30.
  • the airtight container 12 has an internal atmosphere that is in a reduced pressure state or a pressurized state. You can keep power S. Then, by introducing the inert gas through the vacuum process by the air supply unit 30, it is possible to prevent oxidation of the molten metal at the time of melting, and to realize a pressure forging method in the forging process.
  • a mechanism that can replace the inside of the airtight container 12 with an inert gas by the air supply unit 30 and the vacuum pump 36 is an example of the gas replacement mechanism.
  • the operation switch of this forging device is provided on the operation panel 46.
  • the control device 45 continues from the sealing process to the gas flow process described later as a melting stage. Automatically executed by.
  • the operator arranges the dental forging alloy 8 as a raw material in the crucible 4 in the melting chamber 3 and arranges the mold 7 in the mold chamber 6.
  • the irradiation window 9, the melting chamber 3 and the vertical chamber 6 are moved relative to the near-infrared lamp 1 so as to be positioned linearly in the vertical direction.
  • the automatic control by the control device 45 is started by operating the operation start switch.
  • the elevating solenoid valve 35 is opened to the pressurized tank 31 side, and compressed air or high-pressure inert gas is introduced into the cylinder space 15a through the joint 15b.
  • the vertical chamber 6 rises and comes into contact with the upper frame 22 in a state where the melting chamber 3 and the irradiation window 9 are in pressure contact with each other.
  • the m-type chamber 6 and the melting chamber 3 are sealed (airtight), and the state is maintained.
  • the vacuum solenoid valve 39 is opened, and the gas (air or gas) in the airtight container 12 having the vertical chamber 6 and the melting chamber 3 is forcibly exhausted from the exhaust hole 10 to the outside of the apparatus by the vacuum pump 36.
  • the vacuum tank 37 is previously evacuated by the vacuum pump 36 to shorten the time required to reach the vacuum in the hermetic container 12.
  • the vacuum solenoid valve 39 is closed and the forced exhaust from the exhaust hole 10 is stopped. Thereafter, the gas flow solenoid valve 33 is opened, and a small amount of inert gas is continuously supplied into the airtight container 12 from the pressurizing hole 11. Thereby, the insides of the vertical chamber 6 and the melting chamber 3 are replaced with an inert gas atmosphere having a pressure higher than the atmospheric pressure. In order to improve the gas replacement accuracy, this gas replacement It is desirable to perform the process multiple times.
  • the near infrared lamp 1 is turned on.
  • the output near-infrared light is collected by the reflecting surface 2a of the reflecting mirror 2, and the dental forging alloy 8 on the crucible 4 is melted by the heat of the near-infrared light transmitted through the irradiation window 9.
  • the heating temperature of the near-infrared lamp 1 is controlled by the control device 45 via the temperature control circuit 47. Note that PID control is desirable for temperature control of heating with the near-infrared lamp 1 because particularly fast response is required.
  • the near-infrared lamp 1 starts energizing at a voltage as low as about 10% of the rated voltage to extend the life of the filament, and the self-heating increases the applied voltage up to the rated voltage as the filament resistance increases. Is gradually raised and held in a steady lighting state. In this case, it takes about 5 to 10 seconds from the start of lighting to the steady state, but there is no effect on the dental forging alloy 8 at all. Furthermore, in this melting process, the inert gas supply performed in the gas supply process is continued! /.
  • the exhaust solenoid valve 40 is opened, and a new inert gas is supplied to the inside of the hermetic container 12 through the gas flow solenoid valve 33 continuously from the gas supply process, while excess excess in the hermetic container 12 is not supplied.
  • the active gas is naturally exhausted from the exhaust hole 10. This suppresses the oxidation of the dental forging alloy 8 in an inert gas atmosphere.
  • the forging switch on the operation panel 46 is operated. Then, the forging device causes the control device 45 to automatically execute a series of steps from a decompression step, which will be described later, to a turn-off step, as a forging stage.
  • Step 1 the gas flow solenoid valve 33 is closed and the supply of the inert gas from the pressurizing hole 11 is stopped.
  • the exhaust solenoid valve 40 is closed and the natural exhaust from the exhaust hole 10 is stopped.
  • a predetermined time lag is provided, the vacuum solenoid valve 39 is opened, and the inside of the airtight container 12 is forcibly exhausted from the exhaust hole 10 toward the vacuum tank 37. Thereby, the inside of the airtight container 12 is depressurized to the atmospheric pressure or less in a very short time.
  • a predetermined time lag is provided, the vacuum solenoid valve 39 is closed, and forced exhaust from the exhaust hole 10 is stopped. Thereafter, the molten alloy in the melting chamber 3 is poured from the crucible 4 into the vertical mold 7 under reduced pressure.
  • the molten metal penetration mechanism will be described in detail later.
  • a predetermined time lag is provided, the pressurization solenoid valve 34 is opened, and a high-pressure inert gas is supplied from the pressurization hole 11.
  • the pressure of the inert gas is preferably in the range of 2 to 7 MPa.
  • the molten metal is solidified by being naturally cooled below the melting temperature after being filled in the cavity 7a inside the mold 7. Note that the molten metal is filled in the cavity 7a of the vertical mold 7 because the inside of the hermetic container 12 is filled with a high-pressure inert gas, so This is to push down the surface of the molten metal.
  • This action is also caused by the surface tension between the molten metal and the mold 7, so that the time during which the molten metal is poured is shorter than the time when the gas enters the cavity 7 a of the mold 7. For this reason, it is considered possible to make a mistake.
  • the pressurization solenoid valve 34 is closed, and the supply of the inert gas from the pressurization hole 11 is stopped. After that, the gas generated during the production of the inert gas filled in the hermetic container 12 is exhausted from the exhaust solenoid valve 40 through the exhaust hole 10 and the dust filter 41, and the inside of the hermetic container 12 returns to the atmospheric pressure state. .
  • the lifting / lowering solenoid valve 35 is opened (switched) to the vacuum pump 36 side, the cylinder space 15a is depressurized via the joint 15b, and the pressure contact state between the vertical chamber 6 and the melting chamber 3 is released. This As a result, the sealed state of the airtight container 12 is released.
  • this extinguishing process is not limited to the execution of the filling process, but can be performed from the decompression process to the sealing release process!
  • the operator moves the saddle portion 6a together with the outer cylinder 15 along the guide rail 6b horizontally from directly below the melting chamber 3, and then opens the saddle shape from within the open saddle chamber 6. Take out 7. At this time, the mold 7 can be taken out without any trouble without interfering with the melting chamber 3 and other parts. Further, the control device 45 detects the position of the vertical chamber 7 to complete a series of forging operations. Further, the operator cools the removed mold 7 until the temperature reaches about room temperature, and then breaks the mold 7 to remove the fabricated product.
  • the vertical chamber 6 is provided with a suction hole (not shown) as a gas path leading to the outside so that the bottom of the vertical mold 7 can be sucked or depressurized (suction and pressure forging method). it can.
  • gas pressure is applied to the surface of the molten metal dripped on the spout 7b on the upper surface of the mold 7 and from the bottom of the mold 7 in synchronization with the pressurization process. Start aspiration or decompression. Thereafter, the pressure reduction is terminated in synchronization with the pressure release process. By doing so, the internal gas generated in the mold 7 during the filling is discharged from the bottom of the mold 7. Thereby, the generation
  • a temperature detecting means 48 comprising a thermocouple or a platinum temperature sensor is disposed in the vicinity of the near infrared lamp 1 covered with the reflecting mirror 2, and the detected temperature is set on the operation panel.
  • the configuration shown in 46 is used.
  • the preset temperature is input to the control device 45 in advance, and the control means 45 is configured to compare and calculate the detected temperature and the preset temperature. When the set temperature matches the detected temperature, the user is notified by sound or light, and the stage is automatically shifted from the melting stage to the forging stage.
  • the temperature detecting means 48 is not limited to the vicinity of the near-infrared lamp 1, but the vicinity or side surface of the crucible 4 disposed in the melting chamber 3 or the positioning jigs 4c, 4d. You may arrange
  • the mirrors are applied by applying substantially mirror-shaped Norebos 4a and 4b that are divided into two at the center in the horizontal direction. These norebos 4a and 4bi are mounted on the positioning jigs 4c and 4d in a replaceable state.
  • One of the jigs 4 c is connected to a rocking rod 24 that penetrates the outer side surface of the melting chamber 3.
  • the swing rod 24 is connected to an output shaft of a motor 23 that is a driving means.
  • the rocking rod 24 is hermetically sealed at a portion that penetrates the melting chamber 3. These motor 23 and swing rod 24 force constitute the means for tilting the crucible 4a.
  • the alloy 8 is placed on the divided crucibles 4a and 4b in the closed state.
  • the bottom surface formed by the pair of crucibles 4a and 4b is stationary in a posture that maintains a horizontal state without causing a gap between the divided surfaces.
  • the inclination angle of the crucible 4a by the motor 23 constituting the inclination means is 10 to 180 degrees, and it is preferable to adjust the inclination based on the fluidity of the molten metal.
  • the airtight container 12 can maintain the internal atmosphere in either a reduced pressure state or a pressurized state. Therefore, by introducing an inert gas through the exhaust process, oxidation of the molten metal at the time of melting can be prevented, and a pressure forging method can be adopted in the forging process.
  • a pressure forging method can be adopted in the forging process.
  • controlling the forging device so as to include a series of steps from the sealing step to the sealing release step including the extinguishing step, a product with few forging defects. It is possible to produce a high quality forged product.
  • the dental forging alloy 8 is directly heated by the infrared energy from the near-infrared lamp 1, and a structure requiring heating is not required around the crucible 4. Therefore, the dental forging alloy 8 can be efficiently melted with no loss of heat energy.
  • the reflecting mirror 2 having the reflecting surface 2a with the shape having a high infrared reflectivity and a spheroidal surface can increase the light collection efficiency, so that the melting performance of the dental forging alloy 8 can be increased. Can be improved. As a result, even if an inert gas is used to prevent oxidation of the molten metal in the melting process, the gas consumption can be dramatically reduced.
  • the saddle type 7 does not cover the opening of the crucible 4.
  • the airtight container 12 is provided with a viewing window 5 for observing the inside. Therefore, observation of the melting process of the dental forging alloy 8 inside the crucible 4 and the completely melted force, whether or not foreign matter is mixed into the surface of the molten metal! It is possible to visually check important information at any time.
  • the crucible 4 does not require the use of a light transmissive heat-resistant material such as quartz glass, and an opaque ceramic crucible that can be used in a higher temperature range than that of Sekiei glass can be used. Therefore, the melting point used in dental fabrication is 1000 ⁇ ; high carat gold alloy of about 1100 ° C, melting point of 1100 ⁇ ; low carat gold alloy or palladium alloy of about 1300 ° C, and melting point 1 It can be reliably applied to cobalt 'chromium alloys at around 400 ° C.
  • cobalt′chromium alloy liquid phase point 1350 ° C.
  • a temperature suitable for fabrication (1400 to 1450 ° C.).
  • the heating time required to do this is within 3 minutes.
  • a precious metal alloy with a low melting point can be melted more quickly.
  • the forging device used in general industry has a structure in which the melting furnace and the forging device are separated in order to obtain a large amount of molten metal.
  • the present invention provides a small-size forging that can be placed in the oral cavity. What is necessary is just the amount of molten metal suitable for manufacturing a thing. Therefore, since the amount of molten metal is smaller than that in the industrial case, the near-infrared lamp 1 and the crucible 4 that are the heat sources for melting the dental forging alloy 8 are housed in the same apparatus, and further the molten metal. Moved to type 7 It is possible to realize an integrated forging apparatus having a structure such as a pressing means and a structure such as a pressure forging method or a suction pressure forging method.
  • one of the divided crucibles 4a is inclined at a predetermined angle and poured so as to drop into the vertical mold 7 positioned below, so that the shortest distance and the shortest time are possible. Molten metal can be transferred. Therefore, the temperature drop of the molten metal can be minimized.
  • the forging device to which the near-infrared lamp 1 is applied as a heating source does not use a combustible gas such as acetylene or city gas as compared with the forging device using the burner heating method.
  • a combustible gas such as acetylene or city gas
  • the metal can be heated intensively without the unpleasant noise associated with gas combustion during the melting operation, reducing the radiant heat from the surrounding parts of the red crucible and causing a burn accident. Can significantly reduce the dangers such as, and can improve safety in the working environment.
  • the metal melting time can be shortened to an extremely short time of 1/10 to 1/20 compared to a resistance heating type manufacturing apparatus.
  • the heat source temperature is lower, so it can be used as a heat source for melting silver alloy for dental fabrication with a melting point of about 600 ° C to 700 ° C.
  • the forging device is not contaminated by gas or the like.
  • FIG. 3 shows a modification of the forging device of the first embodiment.
  • This modification is different in that both the crucibles 4a and 4b divided by the positioning jigs 4c and 4d are inclined in the opposite direction so as to be separated from each other by the motor 23 and the swing rod 24. is doing. In this way, it is possible to further improve the efficiency of pouring molten metal into the lower mold 7 located on the lower side.
  • the crucibles 4a and 4b can be opened and closed at the same time by either opening them at the same time, or by opening one of them and then opening the other (both) by providing a predetermined time difference. Which method is used can be selected by selecting a mechanism that makes molten metal fall gently. desirable.
  • FIG. 4 shows a forging device (inclined downflow type vacuum pressurization type) according to the second embodiment.
  • the second embodiment is different from the first embodiment in that a single crucible 4 that is not divided is applied and the entire crucible 4 is inclined via positioning jigs 4c and 4d.
  • the integral crucible 4 is placed in a replaceable manner on the positioning jigs 4c and 4d.
  • the jigs 4c and 4d are connected to the motor 23 via a swing rod 24 that constitutes a tilting means, as in the first embodiment.
  • the entire crucible 4 can be tilted in the range of 10 degrees to 180 degrees via the jigs 4c and 4d.
  • the forging device of the second embodiment configured as described above can obtain the same functions and effects as those of the first embodiment.
  • the transition of the molten metal from the crucible 4 to the lower saddle mold 7 brings about a tilting effect that gently pours by the handle.
  • the risk of bubbles and the like being mixed into the molten metal can be reduced, and the probability of the occurrence of flaws can be reduced.
  • FIG. 5 and FIG. 6 (A) and (B) show a forging device (tilted vacuum pressurization type) according to a third embodiment.
  • this forging apparatus includes a near-infrared lamp 1, a reflecting mirror 2, a melting portion 100a that constitutes the melting chamber 100, a saddle portion 109a that constitutes the saddle chamber 109, and an irradiation window 1 15 It has.
  • the saddle portion 109a is rotatably arranged with respect to the melting portion 100a, and the melting portion 100a and the saddle portion 109a can be integrally rotated with respect to the near infrared lamp 1. This is a significant difference from the first embodiment.
  • Near-infrared lamp 1 and reflecting mirror 2 have the same configuration as in the first embodiment, and are fixed to a frame (not shown) so that infrared light can be irradiated at an inclination angle of about 45 degrees.
  • the reflecting mirror 2 is preferably provided with a circulating water cooling mechanism similar to that of the first embodiment (FIG. 2).
  • Melting portion 100a includes a first opening portion 100b that opens to extend in a direction orthogonal to the irradiation angle on a surface facing near-infrared lamp 1, and a second opening portion that extends to extend in the vertical direction. 100c, and the melting chamber 100 is formed so as to communicate between them.
  • the melting part 100a is provided with a crucible disposing part 101 so as to be located at the focal point condensed by the reflecting mirror 2, and the crucible 102 is detachably disposed on the crucible disposing part 101.
  • This crucible 102 has a round dish shape with an upper end opening similar to that of the first embodiment.
  • a mouth 103 is provided in the cutout. That is, the crucible 102 of the third embodiment is provided so that the opening of the gate 103 is located on the side surface.
  • the rotating shaft 104 is fixedly penetrated and fixed to the melting portion 100a of the present embodiment, and the range of 90 degrees shown in FIGS. 6 (A) and 6 (B) is driven by the drive motor (not shown). It is configured to be rotatable.
  • the melting part 100a is provided with a hinge connection part 105 so as to be positioned below the second opening part 100c extending in the vertical direction, and the locked part 106 so as to be positioned above the second opening part 100c. Is provided.
  • an exhaust hole 107 and a pressurizing hole 108 communicating with the internal melting chamber 100 are provided as in the first embodiment.
  • the saddle-shaped portion 109a is rotatably attached to the melting portion 100a, has a bottomed cylindrical shape with an upper end opening, and its internal space constitutes the saddle-shaped chamber 109.
  • the saddle portion 109a is provided with a connecting portion 110 that is pivotally attached to the hinge connecting portion 105 of the melting portion 100a at the open end of the saddle chamber 109, and a lock member 111 is rotated on the opposite side of the connecting portion 110. It is possible to arrange.
  • the saddle-shaped portion 109a is provided with an operation lever 112 for rotating with respect to the melting portion 100a.
  • the saddle-shaped portion 109a configured as described above is rotated about 90 degrees counterclockwise with respect to the melting portion 100a, thereby continuously connecting the melting chamber 100 and the vertical chamber 109 in the melting portion 100a.
  • One sealed airtight container 116 is formed.
  • the second opening 100c of the melting part 100a and the opening of the saddle part 109a are hermetically sealed by an O-ring.
  • a saddle 114 is detachably disposed in the saddle chamber 109 via a heat insulating member 113. Similar to the first embodiment, this saddle mold 114 is provided with a cavity 114a corresponding to the shape of the fabricated product.
  • the spout 114b which is the opening of the cavity 114a, is adjacent to the spout 103 of the crucible 102 in the lateral direction in a state in which the bowl 109a is rotated with respect to the melting portion 100a to form an airtight container 116. Placed in.
  • the first opening 100b facing the near-infrared lamp 1 is transparent glass having heat resistance and pressure resistance in a state where the periphery is hermetically sealed by an O-ring.
  • An irradiation window 115 is provided. This irradiation window 115 is airtightly fixed to the melting part 100a by a fixed frame 115a. This irradiation window 115 is It can also be used as a window for checking the melting state of the dental forging alloy 8 in the crucible 102 placed in the dismantling chamber 100. However, for accurate observation, it is preferable to provide a dedicated viewing window as in the first embodiment.
  • the piping path connected to the exhaust hole 107 is the same as in the first embodiment.
  • the dust filter 41, the exhaust solenoid valve 40, the vacuum solenoid valve 39, the atmosphere release valve 38, the vacuum tank 37, and the vacuum pump 36 are used.
  • the only difference is that the pressure reducing means of the outer cylinder 15 is not configured.
  • the piping path connected to the pressurizing hole 108 includes a pressurizing solenoid valve 34, a gas flow solenoid valve 33, a throttle valve 33a, a safety valve 32, a pressurized tank 31, and an air supply unit 30.
  • a pressurizing solenoid valve 34 a gas flow solenoid valve 33, a throttle valve 33a, a safety valve 32, a pressurized tank 31, and an air supply unit 30.
  • the only difference is that it does not constitute the pressure boosting means of the external cylinder 15.
  • the opening of the bowl chamber 109 extends in the horizontal direction, and the melting chamber 100 has a first opening. 2 Open the opening 100c. Then, the crucible 102 and the dental forging alloy 8 are disposed in the crucible disposition portion 101, and the heat insulating member 113 and the collar 114 are disposed in the saddle chamber 109.
  • the operation lever 112 is rotated counterclockwise, and the vertical portion 109a is rotated toward the melting portion 100a, so that the melting chamber 100 and the vertical chamber 109 are rotated. Communicate with.
  • the lock member 111 is rotated and locked to the locked portion 106, thereby forming one airtight container 116 in which the melting chamber 100 and the vertical chamber 109 are communicated in a sealed state.
  • the spout 114b of the bowl 114 is positioned so as to be adjacent to the spout 103 of the crucible 102 in the lateral direction.
  • the vacuum solenoid valve 39 is closed to stop forced exhaust, and the inside of the airtight container 116 is maintained in a reduced pressure (vacuum) state as shown in FIG. 6 (B).
  • the drive motor is operated to rotate the entire airtight container 116 90 degrees clockwise around the rotation shaft 104.
  • the hook 114 is positioned below the crucible 102, and the gates 103, 114b are positioned vertically.
  • the molten metal melted in the crucible 102 becomes a spout 114b.
  • the airtight container 116 may be configured to be manually rotated about the rotation shaft 104.
  • the pressurizing step (h) is executed in the same manner as in the first embodiment, and when the molten metal is solidified in the vertical mold 114, in the opening step (i), the hermetic container 116 is moved around the rotating shaft 104. By rotating counterclockwise, the irradiation window 9 shown in FIG. 6 (A) is returned to the position facing the near infrared lamp 1. Then, the gas filled in the hermetic container 116 is exhausted, and the inside of the hermetic container 116 is returned to the atmospheric pressure state. In addition, the extinguishing process (k) for stopping the melting process in any one of the opening process from the decompression process is executed.
  • the seal member 111 and the locked portion 106 are unlocked, and the operation lever 112 is rotated clockwise, so that The mold part 10 9a is rotated to release the sealing (communication) between the melting chamber 100 and the vertical chamber 109.
  • the operator takes out the mold 114 from the open bowl chamber 109, cools the bowl 114 to about room temperature, and then breaks the bowl 114 to remove the forgery. Take out.
  • the forging device of the third embodiment configured as described above can obtain the same operation and results as those of the first embodiment.
  • FIGS. 7 and 8 (A) and (B) show a forging apparatus (centrifugal forging method) of the fourth embodiment.
  • This forging apparatus includes a near-infrared lamp 1 and a reflecting mirror 2 similar to those of the embodiments, but without any melting chambers 3, 100 and vertical chambers 6, 109, the crucible 160 uses centrifugal force. Therefore, the present embodiment is greatly different from each embodiment in that molten metal is poured into the mold 163.
  • the forging device of the fourth embodiment includes an arm 150 that integrally fixes the crucible 160 and the saddle type 163 together.
  • the arm 150 is rotatably supported by a rotating shaft 151, and the rotating shaft 151 is held by a housing 153 via a bearing 152 in a rotatable state.
  • a driving motor 154 that is a rotating means is coupled to the end of the rotating shaft 151 that passes through the housing 153.
  • the arm 150 is provided with a crucible placement portion 155 having a positioning hole for positioning the crucible 160 through the arm 150 so as to be positioned on the right side in FIG.
  • a saddle type arrangement portion 156 is provided which extends so as to protrude further outward than the crucible arrangement portion 155 and which positions and fixes the vertical shape 163 at the outer end thereof.
  • This vertical arrangement 1 A support plate 157 is provided at the outer end portion of 56 so that the arranged saddle 163 is not detached by centrifugal force.
  • a support rod 158 is provided on the opposite side of the crucible arrangement portion 155 and the saddle type arrangement portion 156, and the total weight of the crucible 160, the dental forging alloy 8 and the die shape 163 is provided on the support rod 158.
  • a suitable balance weight 159 is installed.
  • the support rod 158 is male threaded, and the balance weight 159 is female threaded. Then, by rotating the balance weight 159 with respect to the support rod 158, the balance weight 159 can be moved to the left and right with respect to the support rod 158 to be positioned at a predetermined position. Accordingly, the balance weight 159 is configured to adjust the weight difference depending on the size of the mold 163 and the amount of the dental forging alloy 8, and avoid vibration caused by weight unbalance during rotation. .
  • the above rotating mechanism is the same as a conventional centrifugal forging type forging apparatus.
  • the near-infrared lamp 1 and the reflecting mirror 2 similar to those in the first embodiment are positioned so that the focal point is located at the center bottom of the crucible 160 disposed in the crucible arrangement portion 155. However, it is fixed to a frame (not shown) so that infrared light can be irradiated vertically downward.
  • the reflecting mirror 2 is provided with a circulating water cooling mechanism having a cooling water tank 16, a water supply pump 17, a flow rate sensor 18, a forced cooling fan 19, and a radiator 20. Note that the near-infrared lamp 1 including the reflecting mirror 2 may be disposed so as to irradiate obliquely downward as in the third embodiment.
  • the crucible 160 of the fourth embodiment has an inverted conical shape with a shallow bottom, and is provided with a flange portion 161 placed on the crucible arrangement portion 155 and positioned at the upper end thereof. Similar to the third embodiment, the crucible 160 is provided with a gate 162 cut out on one side thereof and an opening on the side surface. The pouring gate 162 is positioned on the crucible disposing portion 155 of the arm 150 so as to be positioned radially outward of the rotation trajectory of the arm 150.
  • the saddle mold 163 is provided with a cavity 163a corresponding to the shape of the fabricated product, as in the embodiments.
  • the saddle shape 163 is positioned on the saddle shape disposition portion 156 of the arm 150 so as to be positioned on the outer side in the radial direction of the rotation locus of the arm 150 with respect to the crucible 160.
  • the bowl-shaped 163 is arranged so as to face the gate 162 of the gate 163b force Norebo 160 which is the opening of the air 163a.
  • the saddle-shaped 163 is arranged in the saddle-shaped disposing portion 156 so that the upper end surface thereof is located below the lower end of the reflecting mirror 2 so that the reflecting mirror 2 can be rotated even if the arm 150 is rotated. It is configured so that it doesn't interfere with anything!
  • the crucible 160 is disposed in the crucible disposing portion 155 with respect to the arm 150, and the crucible 160 is provided with a dental portion.
  • the forging alloy 8 is arranged, and the mold 163 is arranged in the mold arranging section 156.
  • the near-infrared lamp 1 is turned on and the melting process of the dental forging alloy 8 is started.
  • the melting state of the dental forging alloy 8 can be easily visually confirmed from above the opened crucible 160. I can confirm.
  • the insertion switch on the operation panel 46 is operated.
  • the arm 150 rotates at a high speed via the rotating shaft 151.
  • the molten metal in the crucible 160 rises from the bottom of the crucible 160 due to the centrifugal force generated by the rotation of the arm 150, swings out (jumps out) from the sprue 162 of the crucible 160, and reaches the spout 163b of the bowl 163.
  • the molten metal is poured into the cavity 163a of the bowl 163 by centrifugal force.
  • the arm 150 is rotated for a predetermined period, and when it is determined that the molten metal inside the saddle mold 163 has solidified, the worker stops. Thereafter, the worker removes the saddle mold 163 from the arm 150, cools the saddle mold 163 to approximately room temperature, and then breaks the saddle mold 163 to take out the fabricated product.
  • an inert gas be blown onto crucible 160 from the direction of reflecting mirror 2.
  • the rotary shaft 151 is constituted by a hollow pipe, and a rotary joint for fluid is disposed at one end of the rotary shaft 151. Then, a nozzle facing the inside of the crucible 160 is mounted on the arm 150 through another fluid coupling from the other end of the rotating shaft 151. In this way, since the gas can be blown into the crucible 160 from an inert gas supply source fixed outside the forging apparatus, oxidation of the alloy during heating and melting can be suppressed.
  • the forging device configured as described above, the same operation as in each of the above embodiments is performed. And you can power S to get the effect.
  • the structure can be simplified because complex devices such as a high frequency coil lifting device and electrical connection structure are not required. Therefore, it is possible to reduce costs.
  • the near-infrared lamp 1 is installed on the frame, but the focal position can be easily changed by changing the flatness of the reflecting surface 2a constituting the reflecting mirror 2. It is possible to reliably realize a configuration that does not interfere with the operation.
  • the near infrared lamp 1 and the reflecting mirror 2 are used as means for heating the dental forging alloy 8.
  • the near-infrared lamp 1 force and the focal length of the reflector 2 are adjusted appropriately.
  • a simple connection structure is not required.
  • the constraint requirements for constructing the forging apparatus are reduced, and the degree of freedom in design can be improved, and it can be applied to various forging methods such as the centrifugal forging method, the whole pressure forging method and the suction pressure forging method.
  • the present invention is not limited to forging in the field of dental technology, but can be similarly applied to fields in which forged objects such as the jewelry processing field are small, in other words, in fields where the amount of metal to be melted is small.

Abstract

A casting apparatus of simple structure that realizes enhancements of workability and operability. The casting apparatus comprises infrared lamp (1) for emitting of infrared rays; reflecting mirror (2) for focusing the infrared rays from the infrared lamp (1); crucible (4) irradiated with the infrared rays focused by the reflecting mirror (2) so that the metal placed thereinside is melted; and casting mold (7) into which the metal melted in the crucible (4) is cast.

Description

明 細 書  Specification
赤外線ランプ加熱式踌造装置および踌造方法  Infrared lamp heating type forging apparatus and method
技術分野  Technical field
[0001] 本発明は、歯科技工分野や宝飾加工分野における铸造装置およびその铸造方法 に関するものである。  [0001] The present invention relates to a forging apparatus and a forging method in the field of dental technology and jewelry processing.
背景技術  Background art
[0002] 歯科技工に用いられている主な铸造装置を融解熱源の種類で大別すると、パーナ 一加熱方式、抵抗加熱方式、高周波誘導加熱方式、アーク加熱方式等がある。  [0002] Main forging devices used in dental technicians are roughly classified according to the type of heat source for melting, and there are a single heating method, a resistance heating method, a high frequency induction heating method, an arc heating method, and the like.
[0003] バーナー加熱方式では、アセチレンや都市ガス等の可燃ガスと空気および酸素を 混合燃焼できるバーナーの火炎を利用して合金を融解する。  [0003] In the burner heating method, an alloy is melted by using a flame of a burner capable of combusting a combustible gas such as acetylene or city gas, air and oxygen.
[0004] 抵抗加熱方式では、垂直な有底円筒状の耐熱性セラミック製部品と、その円筒部と 底部を囲繞するように配設された電熱ヒーターとを組み合わせて加熱炉を構成する。 さらに、この耐熱性セラミック製部品の円筒の中には、有底円筒状の耐熱性セラミック または黒鉛加工品のタンマン管が挿入され、交換可能なルツボとして使用する。そし て、タンマン管内部に合金を入れた後に、前記電熱ヒーターに通電し、炉体とタンマ ン管を加熱し、合金を融解する。  In the resistance heating method, a heating furnace is configured by combining a vertical bottomed cylindrical heat-resistant ceramic component and an electric heater disposed so as to surround the cylindrical portion and the bottom portion. Furthermore, a bottomed cylindrical heat-resistant ceramic or graphite-manufactured Tamman tube is inserted into the cylinder of the heat-resistant ceramic part and used as a replaceable crucible. Then, after putting the alloy inside the tamman tube, the electric heater is energized to heat the furnace body and the tanman tube to melt the alloy.
[0005] 高周波誘導加熱方式では、水冷式銅管でできた高周波誘導コイルの中央にセラミ ック製ルツボを設け、このセラミック製ルツボの中に合金を入れ、コイルに高周波電流 を流して電磁誘導を作用させて、合金内部に励起した渦電流で自己発熱する原理を 利用して合金を融解する。  [0005] In the high-frequency induction heating method, a ceramic crucible is provided in the center of a high-frequency induction coil made of a water-cooled copper tube, an alloy is placed in the ceramic crucible, and high-frequency current is passed through the coil to induce electromagnetic induction. Is used to melt the alloy using the principle of self-heating by the eddy current excited inside the alloy.
[0006] アーク加熱方式では、工業用の TIGアーク溶接電源等を応用し、プラス極側に接 続されたルツボの内面底部から外部に貫通電極を持つ非導電性ルツボ、または、電 極は付属して!/、な!/、黒鉛加工品や銅製の導電性ルツボに合金を置き、ルツボの上 方に設けたマイナス極の放電電極と合金の間に発生させたアーク放電の輻射熱を利 用して合金を融解する。  [0006] In the arc heating method, an industrial TIG arc welding power source is applied, and a non-conductive crucible with a through-hole electrode on the outside from the inner bottom of the crucible connected to the positive electrode side, or an electrode is included ! /, N! /, Place the alloy in a graphite processed product or copper conductive crucible, and use the radiant heat of the arc discharge generated between the negative electrode and the discharge electrode on the top of the crucible To melt the alloy.
[0007] また、铸造方式としては、遠心铸造方式、全体加圧铸造方式、吸引加圧铸造方式 等が実用化されている。 [0008] 遠心铸造方式とは、铸込み口を回転の中心方向に向けた铸型を回転アームの端 に固定して、铸込み口に隣接したルツボの上に載置した合金をバーナー加熱方式 で融解し、融解完了直後に回転アームを始動させ、遠心力を利用して溶湯を铸型に 移行させて铸込む方式である。なお、バーナーの火炎を熱源とする代わりに高周波 誘導加熱方式を導入した装置もある。铸造後は铸型を回転アームから取り外し、 m 型を室温近くまで冷却させてから、铸型を慎重に割って铸造物を取り出す。 [0007] Further, as the forging method, a centrifugal forging method, an overall pressure forging method, a suction pressure forging method, and the like have been put into practical use. [0008] Centrifugal forging is a method in which an iron placed on a crucible adjacent to the insertion port is fixed to the end of the rotary arm with a vertical shape with the insertion port facing the center of rotation. In this method, the rotating arm is started immediately after the melting is completed, and the molten metal is transferred into a bowl using centrifugal force. There are also devices that use high-frequency induction heating instead of using the burner flame as a heat source. After fabrication, remove the mold from the rotating arm, let the m mold cool down to near room temperature, then carefully break the mold and take out the fabricated article.
[0009] 全体加圧铸造方式とは、密閉装置内で抵抗加熱方式または高周波誘導加熱方式 またはアーク加熱方式で合金を融解し、密閉装置全体を 80〜200度傾斜または反 転させたり、密閉装置を傾斜または反転させずに内部のルツボだけを傾けたり、分割 式ルツボの底を開ける。これにより、高温に保たれた铸型の铸込み口に溶湯を移行さ せた後、铸込み口を含む铸型周囲の空隙に圧縮空気または不活性ガスを急激に注 入させる。このとき、铸型材の通気性により铸型内部に浸透する圧力上昇よりも、 m 込み口に直接加わる圧力上昇が早!/、ため、铸込み口の溶湯が铸型空洞細部に铸 込まれる。そして、溶湯凝固後に容器内の圧力を外部に放出して铸造する方式であ る。なお、铸造後は密閉装置内から铸型を取り出し、铸型を冷却させ铸型を割って铸 造物を取り出す。  [0009] The whole pressure forging method is a method in which an alloy is melted by a resistance heating method, a high frequency induction heating method or an arc heating method in a sealing device, and the entire sealing device is inclined or reversed by 80 to 200 degrees, or the sealing device Tilt only the crucible inside without tilting or flipping or open the bottom of the split crucible. As a result, after the molten metal is transferred to the bowl-shaped inlet maintained at a high temperature, compressed air or inert gas is rapidly injected into the void around the bowl including the inlet. At this time, the pressure increase directly applied to the m inlet is faster than the pressure increase penetrating the inside of the mold due to the air permeability of the mold, so that the molten metal at the inlet is injected into the details of the vertical cavity. Then, after the molten metal is solidified, the pressure in the container is released to the outside and the forging is performed. After fabrication, the mold is taken out from the sealed device, the mold is cooled, the mold is broken, and the structure is taken out.
[0010] 吸引加圧铸造方式とは、概ね全体加圧铸造方式と類似した方式であり、溶湯を移 行させた後、铸込み口を含む铸型周囲の空隙に圧縮空気または不活性ガスを急激 に注入させると同時に、シールされた铸型の底面を減圧または吸引して、铸型内部 の通気方向を一方向に整えることで铸造性能を向上させようとする方式である。なお 、铸造後は、前記と同様に、铸型力 铸造物を取り出す。  [0010] The suction pressure forging method is a method that is generally similar to the whole pressure forging method. After the molten metal is transferred, compressed air or inert gas is introduced into the void around the saddle type including the insertion port. At the same time as injecting abruptly, the bottom surface of the sealed bowl is decompressed or sucked to adjust the ventilation direction inside the bowl to improve the forging performance. In addition, after forging, the saddle type forged product is taken out in the same manner as described above.
[0011] このようにして鍀造され、铸型から取り出された铸造物は、歯牙再現に必要な部位 の表面を研磨および清掃した後、付属している铸込み口や湯道を切断および除去し 、切断面を研磨仕上げして補綴物が完成する。  [0011] The forged product thus fabricated and taken out from the mold is polished and cleaned on the surface of the site necessary for tooth reproduction, and then the included mouth and runner are cut and removed. Then, the prosthesis is completed by polishing the cut surface.
[0012] 一方、歯科用の铸造装置に使用される合金には、融点が 600°C程度の銀合金系 合金から、融点が 1000°C前後の貴金属系合金、更に融点が 1400°C程度のコバル ト 'クロム系合金に至るまで広範な種類の歯科铸造用合金がある。そのため、歯科用 铸造装置には、何れの合金でも融解できる性能が求められる。また、融解量も比重 1 6程度の貴金属合金を例にした場合は、重量換算で最低 5g〜; 150gを超える範囲で 極力酸化膜を伴わない良好な融解状態が得られることや、融解中の合金の状態が 目視観察可能で、し力、も数十秒から数分以内の短時間で融解完了できる性能が求 められている。 [0012] On the other hand, the alloys used in dental forging devices include silver alloy alloys having a melting point of approximately 600 ° C, noble metal alloys having a melting point of approximately 1000 ° C, and a melting point of approximately 1400 ° C. There are a wide variety of dental forging alloys ranging from cobalt to chromium alloys. Therefore, the dental forging device is required to have a performance capable of melting any alloy. Also, the melting amount is specific gravity 1 Taking a noble metal alloy of about 6 as an example, it is possible to obtain a good molten state without an oxide film as much as possible within a range of at least 5 g to 150 g in weight conversion, and the state of the alloy during melting can be visually observed Therefore, there is a demand for the ability to complete melting in a short time within several tens of seconds to several minutes.
[0013] そして、本発明の铸造装置に関連する先行技術文献情報としては次のものがある。  [0013] The prior art document information related to the forging device of the present invention includes the following.
[0014] 特許文献 1 :特開 2001— 355970号公報 (公開日: 2001· 12.26)  Patent Document 1: Japanese Patent Application Laid-Open No. 2001-355970 (Release Date: 2001 / 12.26)
特許文献 2:実公昭 52— 039053号公報 (公告日: 1977.09.05)  Patent Document 2: Japanese Utility Model Publication No. 52-039053 (Publication Date: September 05, 1977)
特許文献 3 :実開昭 63— 032511号公報 (公開日: 1988.03.02)  Patent Document 3: Japanese Utility Model Publication No. 63-032511 (Publication date: 1988.03.02)
特許文献 4:特開平 6— 126422号公報 (公開日: 1994.05.10)  Patent Document 4: Japanese Patent Laid-Open No. 6-126422 (Publication Date: May 10, 1994)
特許文献 5:実開平 7— 22710号公報 (公開日: 1995.04.25)  Patent Document 5: Japanese Utility Model Publication No. 7-22710 (Publication date: April 25, 1995)
特許文献 6:特開平 7— 132364号公報 (公開日: 1995.05.23)  Patent Document 6: Japanese Patent Laid-Open No. 7-132364 (Publication Date: May 23, 1995)
特許文献 7 :特開 2000— 176629号公報 (公開日:2000.06.27)  Patent Document 7: Japanese Patent Application Laid-Open No. 2000-176629 (Release Date: 2000.06.27)
[0015] 特許文献 1には、コールドチャンバ一型ダイカストマシンなどの铸造装置において、 铸造サイクルに合わせて必要量の原料を適宜溶融して铸造機へ供給する原料融解 装置として、铸造原料である金属を収容する溶融槽と、この溶融槽の周囲に配置さ れた赤外線ランプと、この赤外線ランプの背後に配置された反射ミラーとを備えたこと を特徴とする原料溶融装置が記載されて!/、る。  [0015] Patent Document 1 discloses a metal that is a forging raw material as a raw material melting apparatus that appropriately melts a necessary amount of raw material in accordance with a forging cycle and supplies the material to a forging machine in a forging apparatus such as a cold chamber type die casting machine. A raw material melting apparatus characterized by comprising: a melting tank that contains a melting tank; an infrared lamp disposed around the melting tank; and a reflection mirror disposed behind the infrared lamp! / RU
[0016] また、引用文献 2乃至引用文献 7には、抵抗加熱式の加圧铸造法を利用した歯科 用铸造装置が記載されている。これらの装置は、加熱炉に配設されたルツボと、その ルツボの上面開口部に湯口が対向するように铸型を配設した铸造室を有し、この铸 造室を 180° 回転できる構造を成している。具体的には、まず、ルツボの上面開口が 上方を向く状態でルツボ内に合金を収納し、ルツボを取り囲む電熱ヒーターを備えた 加熱炉でルツボを加熱して合金を融解させる。ついで、このルツボ上方に 800〜90 0°C程度の高温に加熱した铸型の湯口をルツボの開口に面して配設し、铸造室内を 真空ポンプで減圧する。これにより铸型の空洞内部も減圧される。その後、所定のタ イミングでルツボの開口が下を向くように铸造室を 180° 反転させる。すると、ルツボ 内の融解金属は、铸型の湯口に注ぎ込まれて溜まる。このとき、湯道が塞がれるので 空洞内部は低い圧力に保たれる。その後に真空状態を解除して、圧搾空気または不 活性ガス等を铸造室に供給して加圧を行うと、差圧により湯道を通して空洞内部に融 解金属が満たされる。このようにして加圧铸造が達成される構成としてレ、る。 [0016] Also, Patent Literature 2 to Reference Literature 7 describe dental forging devices using resistance heating type pressure forging methods. These devices have a crucible disposed in the heating furnace and a forging chamber in which a bowl is disposed so that the gate is opposed to the upper surface opening of the crucible, and the structure can be rotated 180 °. Is made. Specifically, first, the alloy is housed in the crucible with the upper surface opening of the crucible facing upward, and the alloy is melted by heating the crucible in a heating furnace equipped with an electric heater surrounding the crucible. Next, a cup-shaped spout heated to a high temperature of about 800 to 900 ° C. is disposed above the crucible so as to face the opening of the crucible, and the forging chamber is depressurized by a vacuum pump. As a result, the inside of the bowl-shaped cavity is also decompressed. After that, the forging room is turned 180 ° so that the crucible opening faces downwards at a predetermined timing. Then, the molten metal in the crucible is poured into the bowl-shaped gate and collected. At this time, since the runner is blocked, the inside of the cavity is kept at a low pressure. After that, release the vacuum state and use compressed air or When pressurized by supplying active gas or the like to the forging room, the molten metal fills the cavity through the runner due to the differential pressure. In this way, the pressure forging is achieved.
[0017] なお、一般工業会での铸造は、铸造時に铸込まれる合金量に比べて補給される溶 湯の量は充分確保されており、湯道に使われる合金量にも制限は少なぐ十分な湯 量が有れば酸化物などの異物は溶湯の表面に浮遊する傾向がある。そのため、溶 湯を铸型に注ぎ込む際に、溶湯を汲んだ取り鍋内の溶湯表面の浮遊物を铸型に注 がないように漉し分けたり、大き目の湯口を設けて酸化物などを溶湯表面に浮かせた りすることで、铸物に巻込むことを避ける方法がある。  [0017] It should be noted that in the forging at the general industrial association, the amount of molten metal to be replenished is sufficiently ensured compared to the amount of alloy introduced at the time of forging, and the amount of alloy used in the runner is less limited. If there is a sufficient amount of hot water, foreign substances such as oxides tend to float on the surface of the molten metal. For this reason, when pouring the molten metal into the bowl, the floating surface of the molten metal in the ladle from which the molten metal has been drawn is divided so as not to be poured into the bowl, or a large gate is provided to remove oxides etc. There is a way to avoid getting caught in the cage by floating it.
[0018] 一方、歯科技工における铸造は、貴金属合金を扱う場合が圧倒的に多ぐ溶湯補 給量に比べて実際に铸造物となる体積比が大きぐ所謂少量の湯量で最大の铸造 物を得られるように、湯道部が占める体積を極端に節約する傾向がある。従って、歯 科铸造では、合金溶融段階で発生する浮遊物である酸化物は極力避ける必要があ る。このため合金融解の時間は、酸化物の発生を抑制するため短時間で溶融する必 要がある。大気雰囲気下では、都市ガスと酸素の混合気体や都市ガスと圧搾空気を 併用する火力の強いガスバーナーで合金を加熱して短時間に溶融させる方法や、こ の間に発生した酸化物はフラックスを溶湯に振り掛けてルツボの辺縁に分散させるな ど、溶湯表面に酸化物を広がらせないような注意をして铸造作業をしている。更に不 活性ガス雰囲気下で高周波誘導加熱方式やアーク加熱方式により、合金を短時間 で融解させて酸化物の発生を抑制する工夫をしている。  [0018] On the other hand, forging in dental technicians, the volume ratio that actually becomes a forged product is larger than the amount of molten metal supplemented when handling precious metal alloys is overwhelmingly. As obtained, the volume occupied by the runner tends to be extremely saved. Therefore, in dental fabrication, it is necessary to avoid as much as possible oxides that are suspended in the alloy melting stage. Therefore, it is necessary to melt the alloy in a short time in order to suppress the generation of oxides. Under atmospheric conditions, the alloy is heated in a short period of time with a gas burner with high thermal power that uses a mixture of city gas and oxygen, or a combination of city gas and compressed air. The forging work is done with care not to spread the oxide on the surface of the molten metal, for example, by sprinkling the molten metal on the edge of the crucible. In addition, the high-frequency induction heating method and arc heating method are used in an inert gas atmosphere to melt the alloy in a short time and to suppress the generation of oxides.
[0019] しかしながら、特許文献 1に記載の原料溶融装置では、溶融槽は、内部の溶融材 料に周りから赤外線が充分に照射されるように、光透過性のセラミックや石英ガラスを 使用した円筒形状に形成する必要が有る。また、石英ガラスは 900°C以上の雰囲気 で使用すると荷重による熱変形が生じるので、アルミ合金ダイカスト等のように融点が 700°C程度以下の合金の溶融が対象になつているため、歯科用铸造で用いられるよ うな、融点が 1000〜; 1100°C程度の高カラットの金合金や、融点力 100〜; 1260°C 程度の低カラットの金合金やパラジウム合金、更に融点が 1400°C程度のコバルト'ク ロム系合金には使用できない。仮に、铸型に铸造できる機構を設けたとしても、金属 面の面荒れがひどぐ歯科铸造のように微細な構造を有する铸造には用いることがで きない。さらに、気泡の巻き込み等も発生し、铸造金属として利用することは難しい。 しかも、溶融槽に直接溶融金属が接触しているため、溶融槽の機械的強度が劣化し てひび割れを発生し、破損した場合には、溶融金属が溶融槽の外部に流出して重 大な事故を誘発する可能性があり、非常に危険な事態の発生が予見される。 However, in the raw material melting apparatus described in Patent Document 1, the melting tank is a cylinder using light-transmitting ceramic or quartz glass so that infrared rays are sufficiently irradiated from the surroundings to the inner molten material. It needs to be formed into a shape. In addition, quartz glass undergoes thermal deformation due to load when used in an atmosphere of 900 ° C or higher, so it is intended for melting alloys with a melting point of about 700 ° C or lower, such as aluminum alloy die casting. High carat gold alloy with melting point of 1000 ~; 1100 ° C, melting point power 100 ~; low carat gold alloy or palladium alloy with 1260 ° C, melting point around 1400 ° C Cannot be used for other cobalt-chromium alloys. Even if a mechanism is provided that can be molded into a saddle shape, it can be used for forging with a fine structure such as dental fabrication where the metal surface is severely rough. I can't. Furthermore, entrainment of bubbles and the like occur, making it difficult to use as a forged metal. In addition, since the molten metal is in direct contact with the melting tank, the mechanical strength of the melting tank deteriorates and cracks occur. If the molten metal breaks, the molten metal flows out of the melting tank and becomes serious. A very dangerous situation can be foreseen that could cause an accident.
[0020] また、特許文献 2乃至特許文献 7の铸造装置にお!/、て、熱源がバーナー加熱方式 の場合、アセチレンや都市ガスなどの可燃ガスを使用しているので、管理を誤るとガ ス中毒やガス爆発などの惨事を招く虞がある。また、専用バーナーやトーチを使用し て作業するが、直接火炎を极うため、溶融作業中に混合ガス燃焼に伴う不快な騒音 が発生する。しかも、加熱開始時点から融解が完了するまで溶融状態を凝視する必 要がある。そのため、赤熱した合金やルツボからの輻射熱を防御したり、遮光眼鏡を 着用したりすることが必須である。さらに、不注意による火傷事故などの危険を伴うこ となど、労働環境上の安全に配慮する必要がある。  [0020] In addition, when the heat source is a burner heating system in the forgery apparatus of Patent Documents 2 to 7, a combustible gas such as acetylene or city gas is used. There is a risk of disasters such as poisoning and gas explosions. In addition, working with a dedicated burner or torch, but because of the direct flame, unpleasant noise associated with gas mixture combustion occurs during the melting operation. Moreover, it is necessary to stare at the molten state from the start of heating until the melting is completed. Therefore, it is essential to protect against radiant heat from red-hot alloys and crucibles and to wear light-shielding glasses. In addition, it is necessary to consider the safety in the work environment, including the risk of inadvertent burns.
[0021] 熱源が抵抗加熱式の加圧铸造法を利用した場合、電熱ヒーターの加熱炉によりノレ ッボ全体を加熱してルツボ内の合金を溶融させるまでの所要時間力 S、およそ 10〜20 分間(高周波誘導加熱方式やアーク加熱方式の場合と比較して 10〜20倍)を要す る。そして、 10〜20分間もの長期間にわたり、合金を大気雰囲気下で加熱すると著 しく空気酸化される。また、この間を不活性ガス雰囲気下に保つには、不活性ガスを 铸造時間中である 10〜20分間流し続けなければならず、多量のガスが必要となり非 常に不経済である。さらに、加熱炉に配設されたルツボの上面開口部に湯口が対向 するように铸型を配するため、铸型がルツボの開口部を覆い、ルツボ内部の合金が 融けていく過程の観察や、完全に溶融したかどうか、また異物が溶湯表面に混入し て!/、な!/、かどうか等、注ぎ込む直前の溶湯表面の重要な情報を目視確認できなレ、と いう決定的な不便さがある。  [0021] When a resistance heating type pressure forging method is used as the heat source, the time force S required to heat the entire crucible by the heating furnace of the electric heater and melt the alloy in the crucible S, approximately 10 to 20 Minutes (10-20 times compared to high frequency induction heating and arc heating methods) are required. When the alloy is heated in an air atmosphere for a long period of 10 to 20 minutes, it is significantly oxidized by air. In order to maintain an inert gas atmosphere during this period, it is necessary to keep the inert gas flowing for 10 to 20 minutes during the production time, and a large amount of gas is required, which is very uneconomical. Furthermore, since the saddle is arranged so that the pouring gate faces the opening on the upper surface of the crucible disposed in the heating furnace, the saddle mold covers the opening of the crucible, and the process of melting the alloy inside the crucible is observed. The critical inconvenience of not being able to visually check important information on the surface of the molten metal just before pouring, such as whether it has completely melted and foreign matter has entered the molten metal surface! There is.
[0022] 熱源が高周波誘導加熱方式の場合、通電された高周波誘導コイルで生じたコイル の中心軸に沿う磁力線を、ルツボ内の合金である導体が遮ることで導体内部に渦電 流が励起され、導体が渦電流の電気抵抗損失により自己発熱して融解する原理であ る。そのため、少量の合金を融解する場合には、コイルの内径に比べて合金の体積 が小さいので、磁力線を遮る面積が少ない状態となり、渦電流の発生も減り、結果的 に非常に加熱および融解し難い状態となる。即ち、合金量が減るほど、高周波コイル の入力パワーが必要となるば力、りでなぐ融解時間も極端に延びるという不都合があ る。さらに、合金形状が厚み 1ミリ程度で縦 1センチ横 1センチ程度の薄板小片状の 場合には、高周波コイルに通電する前に、磁力線を遮る面積を増やす目的で複数の 薄板小片を水平に載置していても、通電と同時にコイル中心軸方向に沿って発生し た磁力線の方向と同じ垂直方向に薄板小片が向きを揃える。しかも、小片が相互に 磁性反発力でそれぞれに隙間を生じるので、殆ど磁力線を遮ることができずに溶解 不可能な状態を招くという問題がある。 [0022] When the heat source is a high-frequency induction heating method, a magnetic field line along the central axis of the coil generated by the energized high-frequency induction coil is blocked by the conductor, which is an alloy in the crucible, to excite eddy currents inside the conductor. The principle is that the conductor melts due to self-heating due to the electric resistance loss of eddy current. Therefore, when a small amount of alloy is melted, the volume of the alloy is small compared to the inner diameter of the coil, so that the area that blocks the magnetic field lines is reduced, and the generation of eddy currents is reduced. It becomes very difficult to heat and melt. In other words, as the alloy amount decreases, there is a disadvantage that the power and the melting time required for the high frequency coil are extremely prolonged if the input power of the high frequency coil is required. In addition, if the alloy shape is a thin piece of about 1 mm in thickness and about 1 cm in length and 1 cm in width, before turning on the high-frequency coil, several pieces of thin plate should be placed horizontally to increase the area that blocks the magnetic field lines. Even if it is placed, the thin plate pieces are aligned in the same vertical direction as the direction of the magnetic field lines generated along the coil central axis simultaneously with energization. Moreover, since the small pieces generate gaps with each other due to the magnetic repulsive force, there is a problem that the magnetic lines of force can hardly be blocked and a state in which dissolution is impossible is caused.
[0023] 熱源がアーク加熱方式の場合、電気アークが数千。 Cから数万。 Cあるとされ、広く電 気溶接に利用されている力 融点力 00°Cから 700°C程度の歯科铸造用銀合金を 融解する熱源としてはあまりに高温すぎて不適当であり、融解時に合金をオーバーヒ ートさせ易ぐ金属蒸気およびガス等により铸造装置内部が汚染され易い等の問題 力 sある。 [0023] When the heat source is an arc heating system, there are thousands of electric arcs. C to tens of thousands. C, a force widely used for electric welding Melting point power It is too high as a heat source for melting dental forging silver alloys of about 00 ° C to 700 ° C, and is not suitable for melting.铸造device internally by Ekigu metal vapor and gas such as by overheat bets are problems force s of easily such contaminated.
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0024] 本発明は、従来の問題に鑑みてなされたもので、構造が簡単で作業性および操作 性を向上させることができる铸造装置を提供することを課題とするものである。 The present invention has been made in view of conventional problems, and an object of the present invention is to provide a forging device that has a simple structure and can improve workability and operability.
課題を解決するための手段  Means for solving the problem
[0025] 前記課題を解決するため、本発明の赤外線ランプ加熱式铸造装置は、赤外線光を 出力する赤外線ランプと、前記赤外線ランプからの赤外線光を集光させる反射鏡と、 前記反射鏡によって集光した赤外線光が照射され、内部に配設した金属が融解され るルツボと、前記ルツボ内で融解された溶融金属が铸込まれる铸型と、を備える構成 としている。 In order to solve the above problems, an infrared lamp heating forging device of the present invention includes an infrared lamp that outputs infrared light, a reflecting mirror that collects infrared light from the infrared lamp, and a collecting mirror that collects the infrared light. It is configured to include a crucible in which the irradiated infrared light is irradiated and the metal disposed therein is melted, and a saddle type in which the molten metal melted in the crucible is inserted.
[0026] このように構成した铸造装置は、金属が赤外線ランプからの赤外線エネルギーで直 接加熱され、ルツボの周囲には加熱を必要とする構造物が不要であるため、熱エネ ルギ一の損失が無ぐ効率的に金属を融解できる。その結果、融解期間に溶融金属 の酸化を防止する目的で不活性ガスを使用しても、ガスの消費量を飛躍的に削減で きる。また、铸型がルツボの開口部を覆わないので、ルツボ内部の金属が融けていく 過程の観察や、完全に溶融した力、どうか、また異物が溶湯表面に混入していないか どうか等の注ぎ込む直前の溶湯表面の重要な情報を随時目視確認できる。 [0026] In the forging apparatus configured as described above, the metal is directly heated by the infrared energy from the infrared lamp, and there is no need for a structure that needs to be heated around the crucible. The metal can be melted efficiently without any problems. As a result, even if an inert gas is used for the purpose of preventing the oxidation of the molten metal during the melting period, the gas consumption can be drastically reduced. Also, since the bowl does not cover the crucible opening, the metal inside the crucible melts. At any time, you can visually check important information on the surface of the melt just before pouring, such as observation of the process, whether it is completely melted, and whether foreign matter is mixed in the melt surface.
[0027] さらに、ルツボは、石英ガラスなどの光透過性耐熱材料を使用する必要が無ぐ石 英ガラスよりも高温域で使用可能な不透明なセラミック製ルツボを使用できる。そのた め、歯科铸造で用いられている融点が 1000〜; 1100°C程度の高カラットの金合金や 、融点が 1100〜; 1300°C程度の低カラットの金合金やパラジウム合金、更に融点が 1 400°C程度のコバルト 'クロム系合金に適用できる。  [0027] Furthermore, as the crucible, an opaque ceramic crucible that can be used in a higher temperature range than Sekiei glass, which does not require the use of a light-transmissive heat-resistant material such as quartz glass, can be used. Therefore, the melting point used in dental fabrication is 1000 ~; high carat gold alloy of about 1100 ° C, melting point of 1100 ~; low carat gold alloy or palladium alloy of about 1300 ° C, and melting point 1 Applicable to cobalt 'chromium alloys at around 400 ° C.
[0028] そして、一般工業で使用する铸造装置においては、大量の溶融金属を得るために 溶融炉と铸造装置とを分離した構成であるが、本発明は、 口腔内に納める小さいサイ ズの铸造物を製作するに適した溶融金属量であれば良い。そのため、工業的な場合 と比較して小規模な量の溶融金属量であるため、金属を融解する熱源とルツボ部分 とを同一装置内に収め、更に溶融金属を铸型に移行させる手段、および、加圧铸造 方式または吸引加圧铸造方式などの構造を備えた一体型铸造装置が実現できる。  [0028] The forging device used in general industry has a structure in which the melting furnace and the forging device are separated in order to obtain a large amount of molten metal, but the present invention provides a small-size forging that can be placed in the oral cavity. What is necessary is just the amount of molten metal suitable for manufacturing a thing. Therefore, since the amount of molten metal is smaller than that in the industrial case, the heat source for melting the metal and the crucible part are housed in the same apparatus, and further, the means for moving the molten metal into a vertical shape, and An integrated forging apparatus having a structure such as a pressure forging method or a suction pressure forging method can be realized.
[0029] この铸造装置では、前記反射鏡の反射面は赤外線光の反射率が高ぐその形状は 前記赤外線ランプを笠状に覆う回転楕円面であることが好ましい。このようにすれば、 反射鏡による集光効率を上げることができるため、金属の融解性能を向上できる。  [0029] In this forging device, it is preferable that the reflecting surface of the reflecting mirror has a high reflectance of infrared light, and the shape of the reflecting surface is a spheroid that covers the infrared lamp in a shade shape. In this way, the condensing efficiency of the reflecting mirror can be increased, so that the metal melting performance can be improved.
[0030] この铸造装置は、ルツボと铸型を収容した気密容器内を空気以外のガスに置換し たり、空気または他のガスで加圧したりできる気密機構を有する。例えば排気孔と加 圧孔があり、排気孔から中の空気を抜取り、加圧孔からガスを注入してガス置換する 機構である。  [0030] This forging device has an airtight mechanism that can replace the inside of an airtight container containing a crucible and a bowl with a gas other than air or pressurize it with air or another gas. For example, there is an exhaust hole and a pressurization hole, and the air is extracted from the exhaust hole, and gas is injected from the pressurization hole to replace the gas.
[0031] 具体的には、第 1の铸造装置としては、前記ルツボを横方向に分割した分割式ルツ ボで構成する一方、前記分割式ルツボの下部に前記铸型が位置するようにこれらを 内部に配設する密閉可能な気密容器と、前記気密容器内の分割式ルツボの一方を 所定角度で傾斜させる傾斜手段と、前記気密容器の内部を加圧する加圧手段とを 設け、前記分割式ルツボ内で融解させた溶融金属を、前記傾斜手段により一方の分 割式ルツボを傾斜させることにより溶融金属を前記铸型の湯口に注ぎ、前記加圧手 段により気密容器内を昇圧させることにより溶融金属を铸型内に铸込むようにするこ とが好ましい。このようにすれば、ルツボから铸型へ落下するように、最短距離で最短 時間に溶融金属を移行できるため、溶融金属の温度低下を最小限に抑えることがで きる。 [0031] Specifically, as the first forging apparatus, the crucible is constituted by a divided crucible obtained by dividing the crucible in the horizontal direction, and these are arranged so that the saddle mold is located below the divided crucible. An airtight container capable of being sealed inside, an inclining means for inclining one of the divided crucibles in the airtight container at a predetermined angle, and a pressurizing means for pressurizing the inside of the airtight container; By pouring the molten metal melted in the crucible into the vertical pouring gate by tilting one of the split crucibles by the tilting means, and pressurizing the inside of the airtight container by the pressurizing means. It is preferable that the molten metal is poured into the mold. In this way, the shortest distance is the shortest so that it falls from the crucible to the bowl. Since the molten metal can be transferred over time, the temperature drop of the molten metal can be minimized.
[0032] 第 2の铸造装置としては、前記ルツボの下部に前記铸型が位置するようにこれらを 内部に配設する密閉可能な気密容器と、前記気密容器内のルツボを所定角度で傾 斜させる傾斜手段と、前記気密容器の内部を加圧する加圧手段とを設け、前記ルツ ボ内で融解させた溶融金属を、前記傾斜手段によりルツボを傾斜させることにより溶 融金属を前記铸型の湯口に注ぎ、前記加圧手段により気密容器内を昇圧させること により溶融金属を铸型内に铸込むようにすることが好ましい。このようにすれば、ルツ ボから铸型への溶融金属の移行の経過が、柄杓によって穏やかに注ぐような傾注効 果をもたらす。そのため、溶融金属に気泡などが混入するリスクを減少でき、铸巣ゃ 铸造欠陥の発生確率を減少させることができる。  [0032] As the second forging apparatus, a hermetic container that can be hermetically disposed inside the crucible so that the saddle mold is located under the crucible, and a crucible in the hermetic container are inclined at a predetermined angle. And a pressure means for pressurizing the inside of the hermetic container, and the molten metal melted in the crucible is tilted by the tilt means to cause the molten metal to be of the saddle shape. It is preferable that the molten metal is poured into the vertical mold by pouring into the gate and increasing the pressure in the hermetic container by the pressurizing means. In this way, the process of the transition of the molten metal from the crucible to the saddle shape has a tilting effect such that the pouring is gently performed by the handle. As a result, the risk of bubbles or the like being mixed into the molten metal can be reduced, and the probability of occurrence of flaws can be reduced.
[0033] 第 3の铸造装置としては、互いの湯口が横方向に隣接するように前記ルツボと铸型 とを内部に配設する密閉可能な気密容器と、前記ルツボの下部に铸型が位置するよ うに前記気密容器を所定角度で傾斜させる傾斜手段と、前記気密容器の内部をカロ 圧する加圧手段とを設け、前記ルツボ内で融解させた溶融金属を、前記傾斜手段に より気密容器を傾斜させることにより前記ルツボカ 溶融金属を铸型の湯口に注ぎ、 前記加圧手段により気密容器内を昇圧させることにより溶融金属を铸型内に铸込む ようにすることが好ましい。  [0033] As the third forging apparatus, a hermetically sealed airtight container in which the crucible and the bowl are disposed so that the gates are adjacent to each other in the lateral direction, and the bowl is located at the lower part of the crucible. Thus, there are provided tilting means for tilting the hermetic container at a predetermined angle, and pressurizing means for caulking the inside of the hermetic container, and the molten metal melted in the crucible is sealed by the tilting means. It is preferable that the crucible molten metal is poured into a bowl-shaped gate by inclining and the molten metal is poured into the bowl by pressurizing the inside of the hermetic container with the pressurizing means.
[0034] これらの铸造装置は、前記铸型内を減圧する減圧手段を更に設けことが好ましい。  [0034] Preferably, these forging devices are further provided with a decompression means for decompressing the inside of the mold.
このようにすれば、铸込み中に铸型で発生する内部ガスが铸型から排出される。その ため、铸巣などの铸造欠陥の発生要因を抑制できる。  In this way, the internal gas generated in the saddle shape during the filling is discharged from the saddle shape. Therefore, it is possible to suppress the cause of forging defects such as a nest.
[0035] また、前記気密容器は、前記赤外線ランプに対向する面に、赤外線光を透過する 耐圧性および耐熱性を有する照射窓を備えることが好ましい。このようにすれば、気 密容器内の雰囲気を外部と遮断した状態で赤外線ランプの光線を内部に導入でき る。そのため、内部雰囲気を減圧させ、不活性ガスの雰囲気に保つことができ、空気 による溶融金属の酸化の防止を図ることができる。  [0035] Further, it is preferable that the airtight container is provided with an irradiation window having pressure resistance and heat resistance that transmits infrared light on a surface facing the infrared lamp. In this way, the light of the infrared lamp can be introduced into the inside in a state where the atmosphere in the hermetic container is shut off from the outside. Therefore, the internal atmosphere can be decompressed and maintained in an inert gas atmosphere, and the oxidation of the molten metal by air can be prevented.
[0036] さらに、前記気密容器は、前記ルツボ内の金属の溶融状態を確認する耐圧性およ び減光性を有する司見き窓を備えることが好ましい。このようにすれば、気密容器の内 部雰囲気が減圧状態および加圧状態の何れの場合にも、照射窓以外の方向から司見 き窓を通して内部を観察できる。そのため、金属の融解状態の推移を監視し、最適な 融解時期の目視判断ゃ铸造工程の監視を行うことができる。 [0036] Further, it is preferable that the hermetic container includes a viewing window having a pressure resistance and a light attenuation property for confirming a molten state of the metal in the crucible. In this way, the inside of the airtight container The interior can be observed through the viewing window from a direction other than the irradiation window, regardless of whether the part atmosphere is in a reduced pressure state or a pressurized state. Therefore, it is possible to monitor the transition of the melting state of the metal and to monitor the forging process by visual judgment of the optimal melting time.
[0037] 一方、第 4の铸造装置として、駆動手段により回転可能としたアームを設け、該ァー ムに対して、前記ルツボを湯口が回転軌跡の径方向外向きに位置するように配設す るとともに、前記铸型を湯口が前記ルツボの湯口と対向するように外側に配設し、前 記ルツボ内で融解させた溶融金属を遠心力で湯口から振り出し、前記铸型に铸込む ようにしてもよい。 [0037] On the other hand, as a fourth forging device, an arm that can be rotated by a driving means is provided, and the crucible is arranged with respect to the arm so that the gate is located radially outward of the rotation locus. At the same time, the mold is arranged on the outside so that the pouring gate faces the pouring gate of the crucible, and the molten metal melted in the crucible is spouted from the pouring gate by centrifugal force so as to be inserted into the pouring mold. It may be.
[0038] また、第 1から第 3の铸造装置による铸造方法は、(a)金属を配置したルツボと铸型 とを、気密容器内に密閉する密閉工程と、(b)前記気密容器内の気体を排気する排 気工程と、(c)前記気密容器内が大気圧より高い圧力になるようにガスを供給するガ ス供給工程と、(d)赤外線ランプから赤外線光を出力させ、反射鏡により集光させて 前記ルツボ内の金属を融解させる融解工程と、 (e)前記気密容器内にガスを更に供 給しながら、該気密容器内の余剰ガスを排気するガスフロー工程と、(f)前記気密容 器内を排気して大気圧より低い圧力に減圧させる減圧工程と、(g)気密容器内の減 圧状態を維持し、前記ルツボ内で融解した溶融金属を铸型に流し込む铸込み工程と 、 (h)前記気密容器内にガスを供給し、大気圧より高い圧力に加圧する加圧工程と、 (i)前記気密容器内を自然排気し、大気圧状態にする開放工程と、(j)前記気密容 器の密閉状態を解除する密閉解除工程と、を備え、(k)前記減圧工程から開放工程 の!/、ずれかの工程で、前記赤外線ランプによる融解工程を停止するものである。  [0038] In addition, the forging method using the first to third forging apparatuses includes: (a) a sealing step of sealing the crucible and the metal mold in which the metal is disposed in an airtight container; and (b) the inside of the airtight container. An exhaust process for exhausting the gas, (c) a gas supply process for supplying the gas so that the inside of the hermetic container has a pressure higher than atmospheric pressure, and (d) an infrared lamp is output from the infrared lamp, (E) a gas flow step of exhausting excess gas in the hermetic container while further supplying gas into the hermetic container; and (f) ) A depressurization step of exhausting the inside of the hermetic container to depressurize it to a pressure lower than atmospheric pressure, and (g) maintaining the depressurized state in the hermetic container and pouring molten metal melted in the crucible into a bowl. (H) supplying gas into the airtight container and pressurizing to a pressure higher than atmospheric pressure. A pressurizing step; (i) a step of naturally venting the inside of the hermetic container to bring it into an atmospheric pressure state; and (j) a hermetic release step of releasing the hermetically sealed state of the hermetic container, (k) The melting step by the infrared lamp is stopped at the step of! / Or the opening step from the decompression step.
[0039] このように、気密容器は、内部雰囲気を減圧状態や加圧状態の何れの状態にも保 つこと力 Sできる。そのため、排気工程を経て不活性ガスを導入すれば融解時の溶融 金属の酸化を防止でき、铸造工程において加圧铸造方式を採用できる利点が有る。 また、前記铸造装置を、前記密閉工程から消灯工程を含む密閉解除工程に到る一 連の工程を含むように制御することで、铸造欠陥の少ない品質の良い铸造物を製作 すること力 Sでさる。  [0039] As described above, the hermetic container can maintain the internal atmosphere in either a depressurized state or a pressurized state. Therefore, if an inert gas is introduced through the exhaust process, oxidation of the molten metal during melting can be prevented, and there is an advantage that a pressure forging method can be adopted in the forging process. In addition, by controlling the forging device so as to include a series of steps from the sealing step to the sealing release step including the extinguishing step, it is possible to produce a high-quality forged product with few forging defects. Monkey.
[0040] 好ましくは、外部に通じるガス経路として吸引孔を気密容器に設けておき、铸型の 底部を吸引または減圧できる構造とする。更に加圧工程と同期して、铸型の底部の 吸引または減圧を開始させ、加圧開放工程と同期して吸引または減圧を終了させる 工程を追加する。このようにすれば、優れた吸引加圧铸造を実現できるため、更に铸 造欠陥の少ない品質の良レ、铸造物を製作することができる。 [0040] Preferably, a suction hole is provided in the airtight container as a gas path leading to the outside so that the bottom of the bowl-shaped bottom can be sucked or depressurized. Furthermore, in synchronization with the pressurization process, Add a process to start suction or decompression and end suction or decompression in synchronization with the pressure release process. In this way, since excellent suction and pressure fabrication can be realized, it is possible to produce a good quality and fabrication with fewer fabrication defects.
[0041] 更に好ましくは、赤外線ランプの近傍、または、気密容器内におけるルツボ上の焦 点近傍、または、ルツボ自体に温度検出手段を配設する。更に本铸造装置の操作パ ネル上にその観測温度を表示し、事前に铸造装置の制御装置に入力していた設定 温度と比較演算させて、設定温度と観測温度が接近したり一致したりすると、使用者 に報知する構成とする。そして、設定温度と観測温度が一致したことに基づいて自動 的に铸込み操作を行うように構成する。このようにすれば、熟練した铸造作業担当者 が事前に設定温度を入力しておけば、複数または経験不足の铸造作業担当者が目 視で铸込み時期を判定する場合に生じる铸込み温度のばらつきを最小限に抑えるこ とができ、融解温度の過不足による铸造欠陥を回避できる。 [0041] More preferably, the temperature detecting means is disposed in the vicinity of the infrared lamp, in the vicinity of the focal point on the crucible in the airtight container, or in the crucible itself. Furthermore, if the observed temperature is displayed on the operation panel of the forgery device and compared with the set temperature that was previously input to the controller of the forgery device, the set temperature and the observed temperature will approach or match. The system is configured to notify the user. Then, it is configured so that the plunge operation is automatically performed based on the fact that the set temperature and the observed temperature match. In this way, if the skilled craftsman inputs the set temperature in advance, the brewing temperature of the brewing temperature that occurs when multiple or inexperienced craftsmen visually determine the filling time. Variations can be minimized and forging defects due to excessive or insufficient melting temperatures can be avoided.
発明の効果  The invention's effect
[0042] 本発明の铸造装置では、金属が赤外線ランプからの赤外線エネルギーで直接加 熱され、ルツボの周囲には加熱を必要とする構造物が不要であるため、熱エネルギ 一の損失が無ぐ効率的に金属を融解できる。その結果、融解期間に溶融金属の酸 化を防止する目的で不活性ガスを使用しても、ガスの消費量を飛躍的に削減できる  [0042] In the forging apparatus of the present invention, the metal is directly heated by the infrared energy from the infrared lamp, and no structure requiring heating is required around the crucible, so there is no loss of heat energy. Metal can be efficiently melted. As a result, even if an inert gas is used to prevent oxidation of the molten metal during the melting period, gas consumption can be dramatically reduced.
[0043] また、铸型がルツボの開口部を覆わないので、ルツボ内部の金属が融けていく過 程の観察や、完全に溶融した力、どうか、また異物が溶湯表面に混入していないかどう か等の注ぎ込む直前の溶湯表面の重要な情報を随時目視確認できる。さらに、石英 ガラスなどの光透過性耐熱材料を使用する必要が無く、石英ガラスよりも高温域で使 用可能な不透明なセラミック製ルツボを使用できる。そのため、歯科铸造で用いられ ている高融点の合金に適用できる。 [0043] Further, since the bowl does not cover the opening of the crucible, the process of observing the process of melting the metal inside the crucible, the force of complete melting, and whether foreign matter is mixed in the surface of the melt Important information on the surface of the molten metal just before pouring can be checked at any time. Furthermore, it is not necessary to use a light-transmissive heat-resistant material such as quartz glass, and an opaque ceramic crucible that can be used in a higher temperature range than quartz glass can be used. Therefore, it can be applied to high melting point alloys used in dental fabrication.
[0044] しかも、バーナー加熱方式を利用した铸造装置と比べると、アセチレンや都市ガス などの可燃ガスを使用しないので、ガス中毒やガス爆発などの危険が無い。また、直 接火炎を极わないため、溶融作業中にガス燃焼に伴なう不快な騒音が無ぐ集中的 に金属を加熱できるので、赤熱したルツボ周辺部材からの輻射熱が減少し、火傷事 故などの危険性を著しく軽減でき、労働環境上の安全性を向上できる。 また、抵抗加熱式の铸造装置と比べると、金属の融解時間を 1/10から 1/20の 極めて短時間に短縮できる。 [0044] Moreover, compared to a forging device using a burner heating method, there is no danger of gas poisoning or gas explosion because flammable gas such as acetylene or city gas is not used. Also, since there is no direct flame, the metal can be heated intensively without the unpleasant noise associated with gas combustion during the melting operation, reducing the radiant heat from the red-hot crucible peripheral members and causing burns. The dangers such as lateness can be remarkably reduced, and safety in the working environment can be improved. In addition, the metal melting time can be shortened to an extremely short time of 1/10 to 1/20 compared to resistance heating type forging devices.
また、高周波誘導加熱方式の铸造装置のように、融解する金属量が減っても赤外 線ランプの入力パワーを増やす必要が無ぐ融解時間が延長することも無い。さらに 、金属を薄板小片状とした場合には、水平に載置していた小片が磁力線の影響で垂 直方向に向きを揃え、複数小片が磁性反発力でそれぞれの間に隙間を生じて融解 不可能となってレ、たが、このような問題が生じることも無レ、。  Also, unlike the high frequency induction heating type forging device, even if the amount of metal to be melted decreases, it is not necessary to increase the input power of the infrared lamp, and the melting time is not prolonged. In addition, when the metal is in the form of thin pieces, the horizontally placed pieces are aligned in the vertical direction due to the influence of the magnetic lines of force, and a plurality of small pieces form a gap between them due to the magnetic repulsion. It is impossible to melt, but there is no such problem.
また、アーク加熱方式と比べると、熱源温度が低いので、融点が 600°Cから 700°C 程度の歯科铸造用銀合金を融解する熱源として使用でき、融解時に合金をオーバ 一ヒートさせたり、金属蒸気およびガス等により铸造装置を汚染させたりすることがな い。  Compared with the arc heating method, the heat source temperature is lower, so it can be used as a heat source for melting dental forging silver alloys with a melting point of about 600 ° C to 700 ° C. The forging device is not contaminated by steam or gas.
図面の簡単な説明  Brief Description of Drawings
[0045] [図 1]本発明に係る第 1実施形態の铸造装置を示す断面図である。  FIG. 1 is a cross-sectional view showing a forging device according to a first embodiment of the present invention.
[図 2]図 1の铸造装置を他の角度から見た断面図である。  FIG. 2 is a cross-sectional view of the forging device of FIG. 1 as seen from another angle.
[図 3]第 1実施形態の変形例を示す断面図である。  FIG. 3 is a cross-sectional view showing a modification of the first embodiment.
[図 4]第 2実施形態の铸造装置を示す断面図である。  FIG. 4 is a cross-sectional view showing a forging device according to a second embodiment.
[図 5]第 3実施形態の铸造装置を示す断面図である。  FIG. 5 is a cross-sectional view showing a forging device according to a third embodiment.
[図 6] (A) , (B)は第 3実施形態の铸造装置の動作を示す断面図である。  [FIG. 6] (A) and (B) are cross-sectional views showing the operation of the forging device of the third embodiment.
[図 7]第 4実施形態の铸造装置を示す正面図である。  FIG. 7 is a front view showing a forging device according to a fourth embodiment.
[図 8]第 4実施形態の铸造装置を示し、(A)は平面図、(B)は右側面図である。 符号の説明  FIG. 8 shows a forging device according to a fourth embodiment, wherein (A) is a plan view and (B) is a right side view. Explanation of symbols
[0046] 1 · · ·近赤外線ランプ [0046] 1 · · · Near-infrared lamp
2· 反射鏡  2. Reflector
2a…反射面  2a ... Reflection surface
3…融解室  3 Melting room
3a…融解部  3a Melting zone
4, 4a, 4b'—ノレッボ ···司見き窓 4, 4a, 4b'—Norebo ...
…铸型室... A vertical room
a…铸型部a… Shape part
···铸型...
···歯科用鎵造用合金···照射窓··· Dental dental alloy ··· Irradiation window
a…天板a ... top plate
0…排気孔0 ... Exhaust hole
1···加圧孔1 ... Pressure hole
2…気密容器2 ... Airtight container
5···外部シリンダー3···モータ (傾斜手段)4···揺動ロッド (傾斜手段)0···給気部5 · · · External cylinder 3 · · · Motor (tilting means) 4 · · · Oscillating rod (tilting means) 0 · · · Air supply section
6···真空ポンプ6 ... Vacuum pump
5·· '制御装置5 · 'Control device
00…融解室00 ... melting room
00a…融解部00a… melting part
02···ノレ、クボ02 ... Nore, Kubo
03…湯口03 ... Yuguchi
07…排気孔07 ... Exhaust hole
8···カロ圧?し 8 ··· Calo pressure? Shi
9…铸型室 9… Round type room
9a…铸型部 9a… Shape part
14…铸型14 ... Saddle type
14b…湯口14b ...
15…照射窓15: Irradiation window
15a…固定枠 116…気密容器 15a ... Fixed frame 116… Airtight container
150· · ·アーム  150 ... arm
151…回転車由  151 ... Revolving wheel
154· · ·駆動モータ  154
159· · ·バランスウェイト  159
160· · ·ノレッボ  160 · · · Norebo
162…湯口  162 ...
163· · ·铸型  163
163b…湯 P  163b ... P
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0047] 以下、本発明の実施の形態を図面に従って説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0048] 図 1は本発明の第 1実施形態に係る歯科用の铸造装置であり、既に铸造用の金属  FIG. 1 shows a dental forging apparatus according to the first embodiment of the present invention, and a metal for forging already.
8と铸型 7とが所定の位置に収納され铸造運転を開始できるスタンバイ状態を示す。 この铸造装置は、近赤外線ランプ 1、反射鏡 2、融解室 3、ルツボ 4、司見き窓 5、铸型室 6および铸型 7を備えている。前記融解室 3および铸型室 6は、開放可能な気密容器 12となる。  8 shows a standby state in which the mold 8 and the mold 7 are stored at predetermined positions and the forging operation can be started. This forging apparatus includes a near-infrared lamp 1, a reflector 2, a melting chamber 3, a crucible 4, a chimney window 5, a vertical chamber 6, and a vertical shape 7. The melting chamber 3 and the vertical chamber 6 serve as an airtight container 12 that can be opened.
[0049] そして、本実施形態の铸造装置は、近赤外線ランプ 1が発生した熱線 (赤外線光) を反射鏡 2で集光してルツボ 4上に照射させ、該ルツボ 4上に載置される合金を加熱 融解し、铸型室 6に設置される铸型 7に铸込むようにしたものである。  [0049] Then, the forging device of the present embodiment collects the heat rays (infrared light) generated by the near-infrared lamp 1 with the reflecting mirror 2, irradiates the crucible 4, and is placed on the crucible 4. The alloy is heated and melted and placed in the mold 7 installed in the mold chamber 6.
[0050] 具体的には、近赤外線ランプ 1は、反射鏡 2の内部に配設された状態で、気密容器  [0050] Specifically, the near-infrared lamp 1 is in an airtight container in a state of being disposed inside the reflecting mirror 2.
12の上部に配設されている。この近赤外線ランプ 1は、ハロゲンランプやキセノンラン プ等、 2000〜2800°C程度の光を放射するものが適用可能である。この近赤外線ラ ンプ 1のピーク波長は約 Ι πι (0.001mm)であり、 0. 5〜3 m程度の範囲に分布す る。例えば、定格電圧 AC90V、 1800W程度のランプが適用可能である。商用電源 は、 100Vでは最大 1500Wが限界であるため、 200V以上の電源設備からランプ電 圧制御回路を経由して給電する。  Arranged at the top of 12. As the near-infrared lamp 1, a lamp that emits light of about 2000 to 2800 ° C, such as a halogen lamp or a xenon lamp, can be applied. The peak wavelength of this near-infrared lamp 1 is approximately Ιπι (0.001 mm), and is distributed in the range of about 0.5 to 3 m. For example, a lamp with a rated voltage of AC90V and 1800W is applicable. Commercial power is limited to a maximum of 1500W at 100V, so power is supplied from a power supply facility of 200V or higher via the lamp voltage control circuit.
[0051] 反射鏡 2は、内部に回転楕円形状をなす反射面 2aを形成したものである。この反 射鏡 2の反射面 2aの上側頂部には、近赤外線ランプ 1を装着するとともに電気的に 接続する接続部 2bが設けられている。これにより、近赤外線ランプ 1は、反射面 2aに より笠状に覆われた状態で装着される。この反射面 2aには、高反射率と耐食性を維 持するため、金メッキ処理が施されている。これにより反射面 2aは、通常では 47%程 度の反射率であるが、赤外線領域では 90%以上の高い反射率が得られるように構 成している。 [0051] The reflecting mirror 2 has a reflecting surface 2a having a spheroid shape formed therein. A near-infrared lamp 1 is mounted on the upper top of the reflecting surface 2a of the reflector 2 and electrically A connecting portion 2b to be connected is provided. Thus, the near-infrared lamp 1 is mounted in a state of being covered in a shade shape by the reflecting surface 2a. The reflective surface 2a is gold-plated to maintain high reflectivity and corrosion resistance. As a result, the reflecting surface 2a has a reflectivity of about 47% in general, but is configured to have a high reflectivity of 90% or more in the infrared region.
[0052] 前記反射鏡 2は、近赤外線ランプ 1を装着した状態で、特にこれらを囲むような部材 を配設することなぐ図示しない枠体に固定される。そして、本実施形態では、反射鏡 2の反射面 2aは、近赤外線ランプ 1のフィラメント中央と、後述する融解室 3のルツボ 4の中央を直線的に結ぶ延長線を光軸とし、フィラメント中央の位置を第 1焦点とする 回転楕円鏡を構成する。そして、近赤外線ランプ 1から出力された光線は、融解室 3 の対向する面である上部の照射窓 9を透過して、融解室 3の内部の分割ルツボ 4の 中央上面で第 2焦点を結ぶように反射鏡 2の光学系を構成している。なお、焦点距離 は 50〜 150ミリメートノレ、好ましくは 90ミリメートノレ前後とする。  [0052] The reflection mirror 2 is fixed to a frame (not shown) without providing a member surrounding the reflection mirror 2 with the near infrared lamp 1 attached thereto. In this embodiment, the reflecting surface 2a of the reflecting mirror 2 has an optical axis that is an extension line that linearly connects the center of the filament of the near-infrared lamp 1 and the center of the crucible 4 of the melting chamber 3 to be described later. Construct a spheroid mirror with the position as the first focus. Then, the light beam output from the near-infrared lamp 1 passes through the upper irradiation window 9 which is the opposite surface of the melting chamber 3, and forms the second focal point at the center upper surface of the divided crucible 4 inside the melting chamber 3. Thus, the optical system of the reflecting mirror 2 is configured. The focal length is 50 to 150 millimeters, preferably around 90 millimeters.
[0053] また、本実施形態の近赤外線ランプ 1と反射鏡 2とは、水冷により異常昇温を防止 できるように構成している。具体的には、図 2に示すように、この水冷構造は、冷却水 タンク 16を配設し、該タンク 16の底部の水を送水管を介して送水ポンプ 17により反 射鏡 2および近赤外線ランプ 1に供給する。そして、反射鏡 2内の図示しない流路を 通過することにより、反射鏡 2および近赤外線ランプ 1の熱を吸熱した水は、冷却水タ ンク 16に戻る循環式構造をなす。また、反射鏡 2から冷却水タンク 16への還水管に は、冷却水の流れを監視する流量センサー 18が設けられている。さらに、還水管に は、冷却水タンク 16内の温度上昇を抑制させるために放熱器 20が介設され、該放 熱器 20に送風するように強制冷却ファン 19が配設されている。  Further, the near-infrared lamp 1 and the reflecting mirror 2 of the present embodiment are configured so that abnormal temperature rise can be prevented by water cooling. Specifically, as shown in FIG. 2, in this water cooling structure, a cooling water tank 16 is provided, and water at the bottom of the tank 16 is supplied to the reflector 2 and the near infrared ray by a water supply pump 17 through a water supply pipe. Supply to lamp 1. The water that has absorbed heat from the reflecting mirror 2 and the near-infrared lamp 1 by passing through a flow path (not shown) in the reflecting mirror 2 forms a circulating structure that returns to the cooling water tank 16. The return pipe from the reflecting mirror 2 to the cooling water tank 16 is provided with a flow rate sensor 18 for monitoring the flow of the cooling water. Further, a radiator 20 is interposed in the return water pipe to suppress a temperature rise in the cooling water tank 16, and a forced cooling fan 19 is disposed so as to blow air to the heat radiator 20.
[0054] 気密容器 12は、融解室 3を構成する融解部 3aと、铸型室 6を構成する铸型部 6aと 、融解部 3aの上端開口を閉塞する天板 9aとを備えている。そして、この気密容器 12 は、上端開口の外部シリンダー 15の内部に上向きに移動可能に配設されることによ り、内部を気密にできる。  [0054] The hermetic container 12 includes a melting portion 3a that constitutes the melting chamber 3, a saddle portion 6a that constitutes the saddle chamber 6, and a top plate 9a that closes the upper end opening of the melting portion 3a. The airtight container 12 can be hermetically sealed by being disposed so as to be movable upward in the outer cylinder 15 at the upper end opening.
[0055] 融解部 3aは、その両側がガイドレール 3bに支持され、水平方向に平行移動可能と したもので、その中央にはルツボ 4が配設されている。铸型部 6aは、ガイドレール 6b に両側が支持された外部シリンダー 15を介してガイドレール 6bに支持され、外部シリ ンダー 15とともに水平方向に平行移動可能としたもので、その内部には铸型 7が配 設されている。天板 9aは、アッパーフレーム 22に固定され、その内部には厚手の照 射窓 9が嵌め込まれて配設されている。この照射窓 9は透明ガラス製、具体的には透 明な耐熱ガラスや石英ガラスが望ましい。なお、天板 9aも融解部 3aおよび铸型部 6a と同様に、両側がガイドレールで支持し、水平方向に平行移動可能に構成してもよい[0055] The melting part 3a is supported by guide rails 3b on both sides, and can be moved in parallel in the horizontal direction, and a crucible 4 is disposed at the center thereof. The saddle-shaped part 6a is a guide rail 6b It is supported on the guide rail 6b via the outer cylinder 15 supported on both sides thereof, and can be moved in parallel with the outer cylinder 15 in the horizontal direction. The top plate 9a is fixed to the upper frame 22, and a thick illumination window 9 is fitted therein. The irradiation window 9 is preferably made of transparent glass, specifically transparent heat-resistant glass or quartz glass. Note that the top plate 9a may also be configured so that both sides are supported by guide rails and can be translated in the horizontal direction in the same manner as the melting portion 3a and the bowl portion 6a.
Yes
[0056] このように構成した気密容器 12は、図示のように、反射鏡 2の下部に位置させた铸 造可能状態で、反射鏡 2によって集光させた光線の光軸上に、照射窓 9の中心線と、 融解室 3の中心線と、铸型室 6の中心線とがー致した状態をなす。そして、天板 9aに 対して融解部 3aを移動させることにより、融解部 3a内のルツボ 4を露出させ、該ルツ ボ 4内に加工前の金属(以下「歯科铸造用合金 8」と称する)を容易に配置できる。ま た、融解部 3aに対して铸型部 6aを移動させることにより、铸型部 6a内に铸型 7を容 易に着脱できる。  [0056] The hermetic container 12 configured as described above has an irradiation window on the optical axis of the light beam condensed by the reflecting mirror 2 in a manufacturable state positioned at the lower part of the reflecting mirror 2, as shown in the figure. The center line of 9 and the center line of melting chamber 3 are aligned with the center line of vertical chamber 6. Then, the melting part 3a is moved with respect to the top plate 9a to expose the crucible 4 in the melting part 3a, and the metal before processing (hereinafter referred to as “dental forging alloy 8”) in the crucible 4 Can be easily arranged. Further, the mold 7 can be easily attached to and detached from the mold part 6a by moving the mold part 6a with respect to the melting part 3a.
[0057] 融解部 3a内に形成される融解室 3には、反射鏡 2の光軸と一致し、位置決めジグ 4 c , 4dにより開閉できる構造をなす分割式のルツボ 4 (4a, 4b)が配設されている。こ のルツボ 4は、閉じられた状態で上端開口の箱形状をなすものである。このルツボ 4 は、保温性が高く溶融金属 (溶湯)の温度を逃さな!/、熱伝導率の低レ、 (保温効果を有 する)素材が適し、ムライト質で気孔率の高レ、セラミック焼成品やセラミックファイバー 成形品が適している。なお、位置決めジグ 4c , 4dには、ルツボ 4a, 4bを配設した状 態で、これらが容易に脱落しないように固着手段を設けることが好ましい。  [0057] In the melting chamber 3 formed in the melting part 3a, there are divided crucibles 4 (4a, 4b) that coincide with the optical axis of the reflecting mirror 2 and that can be opened and closed by positioning jigs 4c, 4d. It is arranged. This crucible 4 has a box shape with an upper end opening in a closed state. This crucible 4 has high heat retention and does not release the temperature of the molten metal (molten metal)! /, Low thermal conductivity, suitable material (with heat retention effect), mullite and high porosity, ceramic Sintered products and ceramic fiber molded products are suitable. The positioning jigs 4c and 4d are preferably provided with fixing means so that the crucibles 4a and 4b are disposed so that they do not easily fall off.
[0058] また、融解室 3の側面には司見き窓 5が設けられ、融解室 3の外部力、らルツボ 4の中央 に配置した歯科铸造用合金 8を観察可能としている。この司見き窓 5は、筒体の内部に 、耐熱性および耐圧性を有する厚手の透明な耐圧ガラス 5aと、濃色の減光フィルタ 一 5bとが組み込まれている。耐圧ガラス 5aの材質としては、耐熱ガラスや石英ガラス を用いることが望ましい。減光フィルター 5bは濃緑系から濃青系の色調であり、光を 減光する耐熱性の樹脂板、更に適するのは、溶接作業用の遮光ガラスまたは液晶応 用の遮光フィルターを用いることが望ましい。この司見き窓 5により、融解室 3内部の真 空圧やガス圧に耐えることができ、近赤外線ランプ 1の点灯中に強烈な光線に曝され た合金 8の融解状況を観察可能として!/、る。 [0058] Further, a side window 5 is provided on the side surface of the melting chamber 3, so that the external force of the melting chamber 3, the dental forging alloy 8 placed in the center of the crucible 4 can be observed. The viewing window 5 includes a thick transparent pressure-resistant glass 5a having heat resistance and pressure resistance, and a dark-color neutralizing filter 5b incorporated in a cylindrical body. It is desirable to use heat-resistant glass or quartz glass as the material of the pressure-resistant glass 5a. The neutral density filter 5b has a color tone from dark green to dark blue, and it is desirable to use a heat-resistant resin plate that attenuates light, and more suitable to use a light shielding glass for welding work or a light shielding filter for liquid crystals. . This viewing window 5 allows the inside of the melting chamber 3 to It can withstand air pressure and gas pressure, and can observe the melting state of alloy 8 exposed to intense light while the near-infrared lamp 1 is lit!
[0059] 铸型部 6a内に形成される铸型室 6は、铸造加工時には融解部 3a内の融解室 3と O リングによって気密に連通することにより、 1つの気密容器 12を構成する。この铸型室 6を構成する铸型部 6aは有底筒状であり、 Oリングを介して外部シリンダー 15と摺動 可能な気密状態に組み合わされている。この铸型室 6には、上端開口の容器からな る断熱部材 13を介して铸型 7が着脱可能に配設される。この铸型 7は、内部に蠟型 を埋没し、加熱炉で 700°C以上に加熱して蠟型を溶融および焼却させ、铸造物とな るべき空洞 7aを設けたものである。この铸型 7は、空洞 7aの開口である湯口 7bを上 方に向け、ルツボ 4と干渉しない程度に接近させた状態で、ルツボ 4の直下に位置す るように酉己置される。 [0059] The mold chamber 6 formed in the mold section 6a is in airtight communication with the melting chamber 3 in the melting section 3a by the O-ring during the forging process to constitute one hermetic container 12. The saddle-shaped portion 6a constituting the saddle-shaped chamber 6 has a bottomed cylindrical shape and is combined with the outer cylinder 15 through an O-ring so as to be slidable. A saddle 7 is detachably disposed in the saddle chamber 6 via a heat insulating member 13 made of a container having an upper end opening. In this mold 7, the mold is buried and heated in a heating furnace to 700 ° C or more to melt and incinerate the mold and provide a cavity 7a to be a forged product. The saddle 7 is placed so that it is positioned directly below the crucible 4 with the spout 7b, which is the opening of the cavity 7a, facing upward and close enough not to interfere with the crucible 4.
[0060] 外部シリンダー 15は、内部のシリンダー空間 15aに通じる継手 15bに、昇降用電磁 弁 35を経由して圧縮空気または高圧の不活性ガスを導入する増圧手段に接続し、 シリンダー空間 15aの容積を増加できるように構成している。なお、外部シリンダー 15 の下方への移動は、ベースフレーム 21で制限されているため、圧縮空気または不活 性ガスを導入すると铸型室 6が上昇し、 Oリングを介して融解室 3を押し上げる。融解 室 3を構成する融解部 3aが押し上げられると、 Oリングを介して天板 9aと照射窓 9を 押し上げ、照射窓 9が Oリングを介してアッパーフレーム 22に当接することで、照射窓 9と天板 9aと铸型室 6と融解室 3とは 1つの気密容器 12となる。これら溶解部 3aおよ び天板 9aの上方への移動は、これらを移動可能に支持するガイドレール 3b, 6bと溶 解部 3aおよび铸型部 6aとの遊び程度である。また、外部シリンダー 15の継手 15bに は、昇降用電磁弁 35を経由して減圧手段を接続し、铸型室 6を下降させて、順次融 解室 3と天板 9aと照射窓 9とを下降させ気密状態を解除できるように構成して!/、る。  [0060] The outer cylinder 15 is connected to a pressure increasing means for introducing compressed air or high-pressure inert gas to the joint 15b leading to the inner cylinder space 15a via the lifting solenoid valve 35, and the cylinder space 15a The volume can be increased. Since the downward movement of the outer cylinder 15 is restricted by the base frame 21, when the compressed air or inert gas is introduced, the vertical chamber 6 rises and pushes the melting chamber 3 through the O-ring. . When the melting part 3a constituting the melting chamber 3 is pushed up, the top plate 9a and the irradiation window 9 are pushed up through the O-ring, and the irradiation window 9 comes into contact with the upper frame 22 through the O-ring, so that the irradiation window 9 The top plate 9a, the vertical chamber 6 and the melting chamber 3 become one airtight container 12. The upward movement of the melting portion 3a and the top plate 9a is about the play between the guide rails 3b and 6b that support them so as to be movable, the melting portion 3a, and the saddle portion 6a. Further, a pressure reducing means is connected to the joint 15b of the outer cylinder 15 via the lifting solenoid valve 35, the vertical chamber 6 is lowered, and the melting chamber 3, the top plate 9a, and the irradiation window 9 are sequentially connected. Configure to be able to lower and release the airtight state!
[0061] この図 1に示す融解室 3と铸型室 6の内部を気密にできる機構が気密機構の一例 であり、外部シリンダー 15の代替手段として機械的な方法で铸型室 6を上昇および 下降させてもよい。  [0061] A mechanism capable of making the inside of the melting chamber 3 and the saddle chamber 6 airtight shown in FIG. 1 is an example of an airtight mechanism. As an alternative to the external cylinder 15, the saddle chamber 6 is raised and lowered by a mechanical method. It may be lowered.
[0062] 融解部 3aと铸造部 6aは、気密に耐えられる素材であり、その隙間から内部の気体 と外部の気体が混合しない構成である。勿論、本発明では、減圧や加圧をすることが 多いため、融解部 3aと铸造部 6aは耐圧性を有する。そして、この気密容器 12は、溶 融金属の酸化を防ぐために、融解室 3中の雰囲気を不活性ガスに置換したり、铸造 時の気泡の巻き込みを防ぐために、融解室 3中の雰囲気を真空としたり、加圧铸造の ために不活性ガスを導入するなどの機構が設けられている。 [0062] The melting part 3a and the forging part 6a are materials that can withstand airtightness, and the internal gas and the external gas are not mixed from each other through the gap. Of course, in the present invention, decompression or pressurization may be performed. Therefore, the melting part 3a and the forging part 6a have pressure resistance. This hermetic container 12 replaces the atmosphere in the melting chamber 3 with an inert gas in order to prevent oxidation of the molten metal, and the atmosphere in the melting chamber 3 is evacuated in order to prevent entrainment of bubbles during fabrication. Or a mechanism such as introducing an inert gas for pressure fabrication.
[0063] 具体的に説明すると、融解室 3には、内部の空気やガスを排出するための排気孔 1 0と、内部に不活性ガスを供給する加圧孔 11が設けられている。なお、排気孔 10は 铸型室 6に設けてもよい。  Specifically, the melting chamber 3 is provided with an exhaust hole 10 for exhausting internal air and gas, and a pressurizing hole 11 for supplying an inert gas therein. The exhaust hole 10 may be provided in the vertical chamber 6.
[0064] 排気孔 10に接続する配管経路は、途中のダストフィルター 41を経由して排気電磁 弁 40と真空電磁弁 39に分岐配管されている。排気電磁弁 40の出口は、铸造装置 外部に開放される。真空電磁弁 39は、铸造装置外部の真空ポンプ 36に接続されて いる。真空電磁弁 39と真空ポンプ 36の中間には、減圧速度を高めるために真空タン ク 37が設けられている。本実施形態の铸造装置の非稼動時には、真空タンク 37の 内部を大気圧に戻すために大気開放弁 38が設けられている。また、真空ポンプ 36 は、真空タンク 37および昇降用電磁弁 35を介して外部シリンダー 15の継手 15bに 接続され、シリンダー空間 15a内の気体を排気することにより、気密容器 12の気密状 態を解除するための減圧手段も構成する。さらに、真空タンク 37の容積は、気密容 器 12の容積以上に設計することが望ましい。  [0064] The piping path connected to the exhaust hole 10 is branched to the exhaust solenoid valve 40 and the vacuum solenoid valve 39 via a dust filter 41 on the way. The outlet of the exhaust solenoid valve 40 is opened outside the forging device. The vacuum solenoid valve 39 is connected to a vacuum pump 36 outside the forging apparatus. A vacuum tank 37 is provided between the vacuum solenoid valve 39 and the vacuum pump 36 in order to increase the pressure reduction speed. An air release valve 38 is provided to return the inside of the vacuum tank 37 to atmospheric pressure when the forging device of the present embodiment is not in operation. The vacuum pump 36 is connected to the joint 15b of the external cylinder 15 via the vacuum tank 37 and the lifting solenoid valve 35, and the airtight state of the hermetic container 12 is released by exhausting the gas in the cylinder space 15a. The decompression means for this is also comprised. Furthermore, the volume of the vacuum tank 37 is desirably designed to be greater than the volume of the hermetic container 12.
[0065] 加圧孔 11に接続する配管経路は、大口径の加圧電磁弁 34と小口径のガスフロー 電磁弁 33に分岐配管されている。加圧電磁弁 34は、铸造装置外部の不活性ガスま たは圧縮空気を供給する加圧手段である給気部 30に接続される。ガスフロー電磁弁 33には、給気部 30から絞り弁 33aを経て小流量のガスが供給される。給気部 30には 、加圧速度を高めるために与圧タンク 31が接続されている。そして、これらの中間位 置に、前記加圧電磁弁 34が接続されている。なお、給気部 30は、外部シリンダー 15 の継手 15bに接続され、シリンダー空間 15aに気体を供給することにより、気密容器 1 2を構成する融解室 3および铸型室 6を気密状態とする増圧手段も構成する。また、 給気部 30と与圧タンク 31との間には、給気部 30からの規定圧力を超える供給を防 止するための安全弁 32が接続されている。  The piping path connected to the pressurizing hole 11 is branched to a large-diameter pressurizing solenoid valve 34 and a small-diameter gas flow solenoid valve 33. The pressurizing solenoid valve 34 is connected to an air supply unit 30 which is a pressurizing means for supplying an inert gas or compressed air outside the forging apparatus. The gas flow solenoid valve 33 is supplied with a small flow rate gas from the air supply unit 30 via the throttle valve 33a. A pressurization tank 31 is connected to the air supply unit 30 in order to increase the pressurization speed. The pressurizing solenoid valve 34 is connected to these intermediate positions. The air supply unit 30 is connected to the joint 15b of the outer cylinder 15 and supplies gas to the cylinder space 15a, thereby increasing the melting chamber 3 and the vertical chamber 6 constituting the hermetic container 12 2 in an airtight state. A pressure means is also configured. In addition, a safety valve 32 is connected between the air supply unit 30 and the pressurized tank 31 to prevent supply exceeding the specified pressure from the air supply unit 30.
[0066] このように、気密容器 12は、内部雰囲気を減圧状態や加圧状態の何れの状態にも 保つこと力 Sできる。そして、給気部 30により、真空工程を経て不活性ガスを導入する ことで、融解時の溶融金属の酸化を防止でき、铸造工程において加圧铸造方式を実 現できる。なお、これら給気部 30および真空ポンプ 36により気密容器 12内を不活性 なガスに置換できる機構がガス置換機構の一例である。 [0066] In this manner, the airtight container 12 has an internal atmosphere that is in a reduced pressure state or a pressurized state. You can keep power S. Then, by introducing the inert gas through the vacuum process by the air supply unit 30, it is possible to prevent oxidation of the molten metal at the time of melting, and to realize a pressure forging method in the forging process. A mechanism that can replace the inside of the airtight container 12 with an inert gas by the air supply unit 30 and the vacuum pump 36 is an example of the gas replacement mechanism.
[0067] 次に、図 1に示す铸造装置による铸造方法を説明する。なお、この铸造装置の操作 スィッチは操作パネル 46に設けられており、運転開始スィッチを操作した後、融解ス テージとして後述の密閉工程からガスフロー工程に至る一連の工程までは、制御装 置 45によって自動的に実行される。  Next, a forging method using the forging device shown in FIG. 1 will be described. The operation switch of this forging device is provided on the operation panel 46. After operating the operation start switch, the control device 45 continues from the sealing process to the gas flow process described later as a melting stage. Automatically executed by.
[0068] まず、前工程として、作業者 (操作者)は、融解室 3内のルツボ 4に原料となる歯科 铸造用合金 8を配置するとともに、铸型室 6内に铸型 7を配置し、近赤外線ランプ 1に 対して、照射窓 9、融解室 3および铸型室 6が垂直方向に直線的に位置するように移 動させる。この状態で、運転開始スィッチを操作することにより、制御装置 45による自 動制御が開始される。  [0068] First, as a pre-process, the operator (operator) arranges the dental forging alloy 8 as a raw material in the crucible 4 in the melting chamber 3 and arranges the mold 7 in the mold chamber 6. The irradiation window 9, the melting chamber 3 and the vertical chamber 6 are moved relative to the near-infrared lamp 1 so as to be positioned linearly in the vertical direction. In this state, the automatic control by the control device 45 is started by operating the operation start switch.
[0069] a.密閉工程  [0069] a. Sealing process
昇降用電磁弁 35を与圧タンク 31の側に開き、継手 15bを介してシリンダー空間 15 aに圧縮空気または高圧の不活性ガスを導入する。これにより、铸型室 6が上昇して 融解室 3と照射窓 9が圧接した状態でアッパーフレーム 22に当接する。その結果、 m 型室 6と融解室 3とが密閉(気密)状態になり、その状態を維持する。  The elevating solenoid valve 35 is opened to the pressurized tank 31 side, and compressed air or high-pressure inert gas is introduced into the cylinder space 15a through the joint 15b. As a result, the vertical chamber 6 rises and comes into contact with the upper frame 22 in a state where the melting chamber 3 and the irradiation window 9 are in pressure contact with each other. As a result, the m-type chamber 6 and the melting chamber 3 are sealed (airtight), and the state is maintained.
[0070] b.排気工程  [0070] b. Exhaust process
次に、真空電磁弁 39を開き、铸型室 6と融解室 3を有する気密容器 12内の気体( 空気やガス)を排気孔 10から真空ポンプ 36により装置外部に強制的に排気する。こ の際、予め真空ポンプ 36により真空タンク 37内を真空状態としておくことにより、気密 容器 12内の真空到達時間の短縮を図る。  Next, the vacuum solenoid valve 39 is opened, and the gas (air or gas) in the airtight container 12 having the vertical chamber 6 and the melting chamber 3 is forcibly exhausted from the exhaust hole 10 to the outside of the apparatus by the vacuum pump 36. At this time, the vacuum tank 37 is previously evacuated by the vacuum pump 36 to shorten the time required to reach the vacuum in the hermetic container 12.
[0071] cガス供給工程  [0071] c Gas supply process
次に、真空電磁弁 39を閉じ、排気孔 10からの強制的排気を停止する。その後、ガ スフロー電磁弁 33を開き、加圧孔 1 1から少流量の不活性ガスを気密容器 12の内部 に供給し続ける。これにより、铸型室 6と融解室 3の内部は、大気圧より高い圧力の不 活性ガス雰囲気に置換される。なお、ガス置換精度を向上させるには、このガス置換 工程を複数回行うことが望ましレヽ。 Next, the vacuum solenoid valve 39 is closed and the forced exhaust from the exhaust hole 10 is stopped. Thereafter, the gas flow solenoid valve 33 is opened, and a small amount of inert gas is continuously supplied into the airtight container 12 from the pressurizing hole 11. Thereby, the insides of the vertical chamber 6 and the melting chamber 3 are replaced with an inert gas atmosphere having a pressure higher than the atmospheric pressure. In order to improve the gas replacement accuracy, this gas replacement It is desirable to perform the process multiple times.
[0072] d.融解工程  [0072] d. Melting process
次に、近赤外線ランプ 1を点灯する。これにより、反射鏡 2の反射面 2aにより、出力 された近赤外線光が集光され、照射窓 9を透過した近赤外線光の熱でルツボ 4上の 歯科铸造用合金 8が融解する。この際、近赤外線ランプ 1は、温度制御回路 47を介 して制御装置 45によって加熱温度が制御される。なお、近赤外線ランプ 1による加熱 の温度制御には、特に速い応答性が求められるため PID制御が望ましい。また、近 赤外線ランプ 1は、フィラメントの寿命を延ばすため、定格電圧に対して 10%程度の 低い電圧で通電を開始し、自己加熱でフィラメントの抵抗値の増大にあわせ定格電 圧まで、印加電圧を次第に上昇させて定常の点灯状態で保持させる。この場合、点 灯開始から定常状態まで 5〜; 10秒程度の時間を要するが、歯科铸造用合金 8に対 する影響は全くない。さらに、この融解工程では、ガス供給工程にて実行された不活 性ガスの供給は継続されて!/、る。  Next, the near infrared lamp 1 is turned on. As a result, the output near-infrared light is collected by the reflecting surface 2a of the reflecting mirror 2, and the dental forging alloy 8 on the crucible 4 is melted by the heat of the near-infrared light transmitted through the irradiation window 9. At this time, the heating temperature of the near-infrared lamp 1 is controlled by the control device 45 via the temperature control circuit 47. Note that PID control is desirable for temperature control of heating with the near-infrared lamp 1 because particularly fast response is required. The near-infrared lamp 1 starts energizing at a voltage as low as about 10% of the rated voltage to extend the life of the filament, and the self-heating increases the applied voltage up to the rated voltage as the filament resistance increases. Is gradually raised and held in a steady lighting state. In this case, it takes about 5 to 10 seconds from the start of lighting to the steady state, but there is no effect on the dental forging alloy 8 at all. Furthermore, in this melting process, the inert gas supply performed in the gas supply process is continued! /.
[0073] e.ガスフロー工程  [0073] e. Gas flow process
次に、排気電磁弁 40を開き、ガス供給工程から継続してガスフロー電磁弁 33を介 して気密容器 12の内部に新たな不活性ガスを供給しながら、気密容器 12内の余剰 の不活性ガスを排気孔 10から自然排気する。これにより不活性ガス雰囲気中で歯科 铸造用合金 8の酸化が抑制される。  Next, the exhaust solenoid valve 40 is opened, and a new inert gas is supplied to the inside of the hermetic container 12 through the gas flow solenoid valve 33 continuously from the gas supply process, while excess excess in the hermetic container 12 is not supplied. The active gas is naturally exhausted from the exhaust hole 10. This suppresses the oxidation of the dental forging alloy 8 in an inert gas atmosphere.
[0074] 以上の工程までは、制御装置 45により自動的に行われる。そして、このガスフロー 工程が終了した状態では、ルツボ 4の歯科铸造用合金 8は完全には融解していない 。そのため、近赤外線ランプ 1は点灯し続けられている。また、ガスフロー電磁弁 33 および排気電磁弁 40も開状態が維持され、少流量の不活性ガスが供給し続けられ ている。  The processes up to the above are automatically performed by the control device 45. In the state where this gas flow process is completed, the dental forging alloy 8 of the crucible 4 is not completely melted. For this reason, the near-infrared lamp 1 continues to be lit. In addition, the gas flow solenoid valve 33 and the exhaust solenoid valve 40 are also kept open, and a small amount of inert gas continues to be supplied.
[0075] この状態で、作業者が司見き窓 5から歯科铸造用合金 8が完全に融解したのを確認 すると、操作パネル 46の铸造スィッチを操作する。そうすると、铸造装置は、铸造ステ ージとして後述する減圧工程から消灯工程に至る一連の工程を、制御装置 45によつ て自動的に実行させる。  [0075] In this state, when the operator confirms that the dental forging alloy 8 has completely melted from the viewing window 5, the forging switch on the operation panel 46 is operated. Then, the forging device causes the control device 45 to automatically execute a series of steps from a decompression step, which will be described later, to a turn-off step, as a forging stage.
[0076] f.減圧工程 まず、ガスフロー電磁弁 33を閉じ、加圧孔 11からの不活性ガスの供給を停止する と同時に、排気電磁弁 40を閉じ、排気孔 10からの自然排気を停止する。その後、所 定のタイムラグを設けて、真空電磁弁 39を開き、排気孔 10から真空タンク 37に向け て気密容器 12内を強制的に排気する。これにより、気密容器 12内はごく短期間に大 気圧以下に減圧される。 [0076] f. Depressurization Step First, the gas flow solenoid valve 33 is closed and the supply of the inert gas from the pressurizing hole 11 is stopped. At the same time, the exhaust solenoid valve 40 is closed and the natural exhaust from the exhaust hole 10 is stopped. Thereafter, a predetermined time lag is provided, the vacuum solenoid valve 39 is opened, and the inside of the airtight container 12 is forcibly exhausted from the exhaust hole 10 toward the vacuum tank 37. Thereby, the inside of the airtight container 12 is depressurized to the atmospheric pressure or less in a very short time.
[0077] g.铸込み工程 [0077] g. Pouring process
次に、所定のタイムラグを設けて、真空電磁弁 39を閉じ、排気孔 10からの強制排 気を停止する。その後、減圧状態で融解室 3の融解状態の合金をルツボ 4から铸型 7 に流し込む。なお、この溶融金属の铸込み機構については、後で詳細に説明する。  Next, a predetermined time lag is provided, the vacuum solenoid valve 39 is closed, and forced exhaust from the exhaust hole 10 is stopped. Thereafter, the molten alloy in the melting chamber 3 is poured from the crucible 4 into the vertical mold 7 under reduced pressure. The molten metal penetration mechanism will be described in detail later.
[0078] h.加圧工程 [0078] h. Pressurization process
次に、所定のタイムラグを設けて、加圧電磁弁 34を開き、加圧孔 11から高圧の不 活性ガスを供給する。不活性ガスの圧力は 2〜7MPaの範囲が好ましい。これにより 、気密容器 12内は、所定期間大気圧以上の圧力状態に保持される。そして、溶融金 属は、铸型 7内部の空洞 7aに充満された後、溶融温度以下に自然冷却して凝固す る。なお、溶融金属が铸型 7の空洞 7aに充満される作用は、気密容器 12の内部が高 圧の不活性ガスで満たされるため、ガスの圧力で铸型 7の湯口 7bに溜まっている溶 融金属の表面を押し下げるためである。そして、この作用は、溶融金属と铸型 7との 間の表面張力も作用することにより、铸型 7の空洞 7aにガスが浸入する時間より、溶 融金属が铸込まれる時間の方が短いため、铸込みが可能になっていると考えられて いる。  Next, a predetermined time lag is provided, the pressurization solenoid valve 34 is opened, and a high-pressure inert gas is supplied from the pressurization hole 11. The pressure of the inert gas is preferably in the range of 2 to 7 MPa. Thereby, the inside of the airtight container 12 is maintained in a pressure state equal to or higher than the atmospheric pressure for a predetermined period. The molten metal is solidified by being naturally cooled below the melting temperature after being filled in the cavity 7a inside the mold 7. Note that the molten metal is filled in the cavity 7a of the vertical mold 7 because the inside of the hermetic container 12 is filled with a high-pressure inert gas, so This is to push down the surface of the molten metal. This action is also caused by the surface tension between the molten metal and the mold 7, so that the time during which the molten metal is poured is shorter than the time when the gas enters the cavity 7 a of the mold 7. For this reason, it is considered possible to make a mistake.
[0079] i.開放工程  [0079] i. Opening process
次に、加圧電磁弁 34を閉じ、加圧孔 11からの不活性ガスの供給を停止する。その 後、気密容器 12内に充満した不活性ガスゃ铸造時に発生したガスが、排気孔 10と ダストフィルター 41を経て、排気電磁弁 40から排気され、気密容器 12内が大気圧状 態に戻る。  Next, the pressurization solenoid valve 34 is closed, and the supply of the inert gas from the pressurization hole 11 is stopped. After that, the gas generated during the production of the inert gas filled in the hermetic container 12 is exhausted from the exhaust solenoid valve 40 through the exhaust hole 10 and the dust filter 41, and the inside of the hermetic container 12 returns to the atmospheric pressure state. .
[0080] j .密閉解除工程 [0080] j .Sealing release process
次に、昇降用電磁弁 35を真空ポンプ 36の側に開き(切り換え)、継手 15bを介して シリンダー空間 15aを減圧し、铸型室 6と融解室 3との圧接状態を解除する。これによ り、気密容器 12の密閉状態が解除される。 Next, the lifting / lowering solenoid valve 35 is opened (switched) to the vacuum pump 36 side, the cylinder space 15a is depressurized via the joint 15b, and the pressure contact state between the vertical chamber 6 and the melting chamber 3 is released. This As a result, the sealed state of the airtight container 12 is released.
[0081] k.消灯工程  [0081] k. Light-off process
前記铸込み工程の実行中に、近赤外線ランプ 1を消灯し、融解工程を停止する。な お、この消灯工程は、铸込み工程の実行中に限られず、減圧工程から密閉解除ェ 程の!/、ずれかの工程で行えばよ!/、。  During the filling process, the near infrared lamp 1 is turned off and the melting process is stopped. Note that this extinguishing process is not limited to the execution of the filling process, but can be performed from the decompression process to the sealing release process!
[0082] 全ての工程が終了すると、作業者は、外部シリンダー 15とともに铸型部 6aをガイド レール 6bに沿って融解室 3の直下から水平に移動させ、開放した铸型室 6内から铸 型 7を取り出す。この際、铸型 7は、融解室 3やその他の部品に干渉することなぐ支 障無く取り出すことができる。また、制御装置 45は、铸型室 7の位置を検知することに より、一連の铸造運転を完了する。さらに、作業者は、取り出した铸型 7が略室温にな るまで冷却してから、铸型 7を割って铸造物を取り出す。  [0082] When all the processes are completed, the operator moves the saddle portion 6a together with the outer cylinder 15 along the guide rail 6b horizontally from directly below the melting chamber 3, and then opens the saddle shape from within the open saddle chamber 6. Take out 7. At this time, the mold 7 can be taken out without any trouble without interfering with the melting chamber 3 and other parts. Further, the control device 45 detects the position of the vertical chamber 7 to complete a series of forging operations. Further, the operator cools the removed mold 7 until the temperature reaches about room temperature, and then breaks the mold 7 to remove the fabricated product.
[0083] なお、铸型室 6には、外部に通じるガス経路として吸引孔(図示せず)を設け、铸型 7の底部を吸引または減圧できる構造(吸引加圧铸造方式)とすることができる。この 場合、加圧工程において、铸型 7の上面の湯口 7bに滴下した溶融金属の表面にガ スの加圧力が作用している状態で、加圧工程と同期して铸型 7の底部から吸引また は減圧を開始させる。その後、加圧開放工程と同期して減圧を終了させる。このよう にすることで、铸込み中に铸型 7で発生する内部ガスが铸型 7の底部から排出される 。これにより、铸巣などの铸造欠陥の発生要因を抑制できる。その結果、これらのェ 程を経ない铸造方法より、優れた品質の良い铸造物を製作することができる。  Note that the vertical chamber 6 is provided with a suction hole (not shown) as a gas path leading to the outside so that the bottom of the vertical mold 7 can be sucked or depressurized (suction and pressure forging method). it can. In this case, in the pressurization process, gas pressure is applied to the surface of the molten metal dripped on the spout 7b on the upper surface of the mold 7 and from the bottom of the mold 7 in synchronization with the pressurization process. Start aspiration or decompression. Thereafter, the pressure reduction is terminated in synchronization with the pressure release process. By doing so, the internal gas generated in the mold 7 during the filling is discharged from the bottom of the mold 7. Thereby, the generation | occurrence | production factor of forge defects, such as a nest, can be suppressed. As a result, it is possible to produce a forged product of superior quality than a forging method that does not go through these processes.
[0084] また、密閉工程 (a)から、消灯工程 (k)を含む密閉解除工程 (j)までの全ての工程 を、制御装置 45によって自動的に実行させることも可能である。この場合、図 1に示 すように、反射鏡 2で覆われた近赤外線ランプ 1の近傍に、熱電対または白金温度セ ンサ一からなる温度検出手段 48を配設し、検出温度を操作パネル 46に表示する構 成とする。さらに、事前に設定温度を制御装置 45に入力し、該制御手段 45で検出温 度と設定温度とを比較演算させる構成とする。そして、設定温度と検出温度と一致す ると、音または光で使用者に報知し、融解ステージから铸造ステージに自動的に移 行する構成とする。なお、温度検出手段 48は、近赤外線ランプ 1の近傍に限られず、 融解室 3の内部に配設されたルツボ 4の近傍や側面、または、位置決めジグ 4c, 4d に接触するように配設してもよい。このようにすれば、熟練した铸造作業担当者が事 前に設定温度を入力しておけば、複数または経験不足の铸造作業担当者が目視で 铸込み時期を判定する場合に生じる铸込み温度のばらつきを最小限に抑えることが でき、融解温度の過不足による铸造欠陥を回避できる。 [0084] It is also possible to automatically execute all steps from the sealing step (a) to the sealing release step (j) including the extinguishing step (k) by the control device 45. In this case, as shown in FIG. 1, a temperature detecting means 48 comprising a thermocouple or a platinum temperature sensor is disposed in the vicinity of the near infrared lamp 1 covered with the reflecting mirror 2, and the detected temperature is set on the operation panel. The configuration shown in 46 is used. Further, the preset temperature is input to the control device 45 in advance, and the control means 45 is configured to compare and calculate the detected temperature and the preset temperature. When the set temperature matches the detected temperature, the user is notified by sound or light, and the stage is automatically shifted from the melting stage to the forging stage. The temperature detecting means 48 is not limited to the vicinity of the near-infrared lamp 1, but the vicinity or side surface of the crucible 4 disposed in the melting chamber 3 or the positioning jigs 4c, 4d. You may arrange | position so that it may contact. In this way, if a skilled craftsman inputs a preset temperature in advance, a plurality of or inexperienced craftsmen can visually check the brewing temperature when the brewing time is judged visually. Variations can be minimized and forging defects due to excessive or insufficient melting temperatures can be avoided.
[0085] 次に、铸込み工程において、融解室 3で融解した溶融金属をルツボ 4から铸型 7に 流し込む第 1実施形態の機構について、具体的に説明する。  Next, the mechanism of the first embodiment in which the molten metal melted in the melting chamber 3 is poured from the crucible 4 into the saddle mold 7 in the filling step will be specifically described.
[0086] 図 1および図 2に示すように、第 1実施形態では、中央で横方向に 2分割した略鏡 像形のノレッボ 4a, 4bを適用してレヽる。これらノレッボ 4a, 4biま、位置決めジグ 4c, 4d の上に交換可能な状態で載置されている。そのうち、一方のジグ 4cは、融解室 3の外 側面を貫通した揺動ロッド 24に連結されている。この揺動ロッド 24は、駆動手段であ るモータ 23の出力軸に連結されている。揺動ロッド 24は、融解室 3を貫通する部分 で気密シールされている。これらモータ 23および揺動ロッド 24力 ルツボ 4aの傾斜 手段を構成する。  [0086] As shown in FIGS. 1 and 2, in the first embodiment, the mirrors are applied by applying substantially mirror-shaped Norebos 4a and 4b that are divided into two at the center in the horizontal direction. These norebos 4a and 4bi are mounted on the positioning jigs 4c and 4d in a replaceable state. One of the jigs 4 c is connected to a rocking rod 24 that penetrates the outer side surface of the melting chamber 3. The swing rod 24 is connected to an output shaft of a motor 23 that is a driving means. The rocking rod 24 is hermetically sealed at a portion that penetrates the melting chamber 3. These motor 23 and swing rod 24 force constitute the means for tilting the crucible 4a.
[0087] そして、密閉工程(a)では、閉じた状態の分割式ルツボ 4a, 4b上に合金 8を載置す る。このルツボ 4a, 4bを閉じた状態では、これらの分割面に隙間を生じることなく一対 のルツボ 4a, 4bからなる底面は水平状態を保持した姿勢で静止して!/、る。  [0087] In the sealing step (a), the alloy 8 is placed on the divided crucibles 4a and 4b in the closed state. When the crucibles 4a and 4b are closed, the bottom surface formed by the pair of crucibles 4a and 4b is stationary in a posture that maintains a horizontal state without causing a gap between the divided surfaces.
[0088] その後、排気工程 (b)およびガス供給工程 (c)を経て融解工程 (d)によって融解し た後、铸込み工程 (g)では、分割式ルツボ 4aが載置されている位置決めジグ 4cと連 結している揺動ロッド 24を揺動させる。これにより、一方のルツボ 4aが所定角度で傾 斜され、分割式ルツボ 4a, 4bが開く。その結果、溶融金属が融解室 3の下方に位置 する铸型室 6に収容された铸型 7の湯口 7bに注ぎ込まれる。なお、傾斜手段を構成 するモータ 23によるルツボ 4aの傾斜角度は 10度〜 180度であり、溶融金属の流動 性に基づレ、て調節することが好ましレ、。  [0088] Then, after melting through the evacuation step (b) and the gas supply step (c) and the melting step (d), in the swallowing step (g), the positioning jig on which the split crucible 4a is placed. Swing the rocking rod 24 connected to 4c. As a result, one of the crucibles 4a is tilted at a predetermined angle, and the split crucibles 4a and 4b are opened. As a result, the molten metal is poured into the spout 7b of the vertical mold 7 accommodated in the vertical chamber 6 positioned below the melting chamber 3. Note that the inclination angle of the crucible 4a by the motor 23 constituting the inclination means is 10 to 180 degrees, and it is preferable to adjust the inclination based on the fluidity of the molten metal.
[0089] このように、本発明の铸造方法では、気密容器 12は、内部雰囲気を減圧状態や加 圧状態の何れの状態にも保つことができる。そのため、排気工程を経て不活性ガスを 導入することにより、融解時の溶融金属の酸化を防止でき、铸造工程において加圧 铸造方式を採用できる。また、前記铸造装置を、前記密閉工程から消灯工程を含む 密閉解除工程に到る一連の工程を含むように制御することで、铸造欠陥の少ない品 質の良い铸造物を製作することができる。 [0089] Thus, in the forging method of the present invention, the airtight container 12 can maintain the internal atmosphere in either a reduced pressure state or a pressurized state. Therefore, by introducing an inert gas through the exhaust process, oxidation of the molten metal at the time of melting can be prevented, and a pressure forging method can be adopted in the forging process. In addition, by controlling the forging device so as to include a series of steps from the sealing step to the sealing release step including the extinguishing step, a product with few forging defects. It is possible to produce a high quality forged product.
[0090] また、本実施形態の铸造装置は、歯科铸造合金 8が近赤外線ランプ 1からの赤外 線エネルギーで直接加熱され、ルツボ 4の周囲には加熱を必要とする構造物が不要 であるため、熱エネルギーの損失が無ぐ効率的に歯科铸造合金 8を融解できる。し かも、本実施形態では、赤外線の反射率が高ぐその形状を回転楕円面とした反射 面 2aを有する反射鏡 2により、集光効率を上げることができるため、歯科铸造合金 8 の融解性能を向上できる。その結果、融解工程にて溶融金属の酸化を防止する目 的で不活性ガスを使用しても、ガスの消費量を飛躍的に削減できる。  Further, in the forging apparatus of the present embodiment, the dental forging alloy 8 is directly heated by the infrared energy from the near-infrared lamp 1, and a structure requiring heating is not required around the crucible 4. Therefore, the dental forging alloy 8 can be efficiently melted with no loss of heat energy. In addition, in the present embodiment, the reflecting mirror 2 having the reflecting surface 2a with the shape having a high infrared reflectivity and a spheroidal surface can increase the light collection efficiency, so that the melting performance of the dental forging alloy 8 can be increased. Can be improved. As a result, even if an inert gas is used to prevent oxidation of the molten metal in the melting process, the gas consumption can be dramatically reduced.
[0091] また、铸型 7がルツボ 4の開口部を覆っていない。しかも、本実施形態では、気密容 器 12に内部を観察するための司見き窓 5を配設している。そのため、ルツボ 4内部の歯 科铸造合金 8が融けていく過程の観察や、完全に溶融した力、どうか、また異物が溶湯 表面に混入して!/、な!/、かどうか等の注ぎ込む直前の重要な情報を随時目視確認で きる。  Further, the saddle type 7 does not cover the opening of the crucible 4. In addition, in this embodiment, the airtight container 12 is provided with a viewing window 5 for observing the inside. Therefore, observation of the melting process of the dental forging alloy 8 inside the crucible 4 and the completely melted force, whether or not foreign matter is mixed into the surface of the molten metal! It is possible to visually check important information at any time.
[0092] また、ルツボ 4は、石英ガラスなどの光透過性耐熱材料を使用する必要が無く、石 英ガラスよりも高温域で使用可能な不透明なセラミック製ルツボを使用できる。そのた め、歯科铸造で用いられている融点が 1000〜; 1100°C程度の高カラットの金合金や 、融点が 1100〜; 1300°C程度の低カラットの金合金やパラジウム合金、更に融点が 1 400°C程度のコバルト 'クロム系合金に確実に適用できる。なお、本実施形態の場合 、高融点金属の代表例として挙げられるコバルト 'クロム系合金(液相点 1350°C) 10 Og程度を、铸造に適した温度(1400〜; 1450°C)まで加熱するのに要する加熱時間 は、 3分間以内である。融点の低い貴金属合金は、更に早く融解させることができる 力 近赤外線ランプ 1の点灯電圧を加減することで、オーバーヒートを避けたスムーズ な加熱を実現できる。  In addition, the crucible 4 does not require the use of a light transmissive heat-resistant material such as quartz glass, and an opaque ceramic crucible that can be used in a higher temperature range than that of Sekiei glass can be used. Therefore, the melting point used in dental fabrication is 1000 ~; high carat gold alloy of about 1100 ° C, melting point of 1100 ~; low carat gold alloy or palladium alloy of about 1300 ° C, and melting point 1 It can be reliably applied to cobalt 'chromium alloys at around 400 ° C. In the case of this embodiment, about 10 Og of cobalt′chromium alloy (liquid phase point 1350 ° C.), which is a typical example of a refractory metal, is heated to a temperature suitable for fabrication (1400 to 1450 ° C.). The heating time required to do this is within 3 minutes. A precious metal alloy with a low melting point can be melted more quickly. By controlling the lighting voltage of the near infrared lamp 1, smooth heating without overheating can be realized.
[0093] そして、一般工業で使用する铸造装置においては、大量の溶融金属を得るために 溶融炉と铸造装置とを分離した構成であるが、本発明は、 口腔内に納める小さいサイ ズの铸造物を製作するに適した溶融金属量であれば良い。そのため、工業的な場合 と比較して小規模な量の溶融金属量であるため、歯科铸造合金 8を融解する熱源で ある近赤外線ランプ 1とルツボ 4とを同一装置内に収め、更に溶融金属を铸型 7に移 行させる手段、および、加圧铸造方式または吸引加圧铸造方式などの構造を備えた 一体型铸造装置を実現できる。 [0093] The forging device used in general industry has a structure in which the melting furnace and the forging device are separated in order to obtain a large amount of molten metal. However, the present invention provides a small-size forging that can be placed in the oral cavity. What is necessary is just the amount of molten metal suitable for manufacturing a thing. Therefore, since the amount of molten metal is smaller than that in the industrial case, the near-infrared lamp 1 and the crucible 4 that are the heat sources for melting the dental forging alloy 8 are housed in the same apparatus, and further the molten metal. Moved to type 7 It is possible to realize an integrated forging apparatus having a structure such as a pressing means and a structure such as a pressure forging method or a suction pressure forging method.
[0094] さらに、本実施形態では、分割式とした一方のルツボ 4aを所定角度で傾斜させ、下 方に位置する铸型 7へ落下するように注ぐ構成としているため、最短距離で最短時間 に溶融金属を移行できる。よって、溶融金属の温度低下を最小限に抑えることができ [0094] Further, in the present embodiment, one of the divided crucibles 4a is inclined at a predetermined angle and poured so as to drop into the vertical mold 7 positioned below, so that the shortest distance and the shortest time are possible. Molten metal can be transferred. Therefore, the temperature drop of the molten metal can be minimized.
[0095] そして、本発明のように、加熱源として近赤外線ランプ 1を適用した铸造装置は、バ ーナー加熱方式を利用した铸造装置と比べると、アセチレンや都市ガスなどの可燃 ガスを使用しないので、ガス中毒やガス爆発などの危険が無い。また、直接火炎を极 わないため、溶融作業中にガス燃焼に伴なう不快な騒音が無ぐ集中的に金属を加 熱できるので、赤熱したルツボ周辺部材からの輻射熱が減少し、火傷事故などの危 険性を著しく軽減でき、労働環境上の安全性を向上できる。また、抵抗加熱式の铸 造装置に比べると、金属の融解時間を 1/10から 1/20の極めて短時間に短縮でき る。また、高周波誘導加熱方式の铸造装置のように、融解する金属量が減っても近 赤外線ランプ 1の入力パワーを増やす必要は無ぐ融解時間が延長することも無い。 さらに、金属を薄板小片状とした場合には、水平に載置していた小片が磁力線の影 響で垂直方向に向きを揃え、複数小片が磁性反発力でそれぞれの間に隙間を生じ て融解不可能となっていた力 このような問題が生じることも無い。また、アーク加熱 方式と比べると、熱源温度が低いので、融点が 600°Cから 700°C程度の歯科铸造用 銀合金を融解する熱源として使用でき、融解時に合金をオーバーヒートさせたり、金 属蒸気およびガス等により铸造装置を汚染させたりすることが無い。 [0095] And, as in the present invention, the forging device to which the near-infrared lamp 1 is applied as a heating source does not use a combustible gas such as acetylene or city gas as compared with the forging device using the burner heating method. There is no danger of gas poisoning or gas explosion. In addition, since there is no direct flame, the metal can be heated intensively without the unpleasant noise associated with gas combustion during the melting operation, reducing the radiant heat from the surrounding parts of the red crucible and causing a burn accident. Can significantly reduce the dangers such as, and can improve safety in the working environment. In addition, the metal melting time can be shortened to an extremely short time of 1/10 to 1/20 compared to a resistance heating type manufacturing apparatus. In addition, unlike the high frequency induction heating type forging apparatus, even if the amount of metal to be melted decreases, it is not necessary to increase the input power of the near infrared lamp 1, and the melting time is not prolonged. Furthermore, when the metal is in the form of thin pieces, the horizontally placed pieces are aligned in the vertical direction due to the influence of the magnetic lines of force, and a plurality of small pieces form a gap between them due to the magnetic repulsion. Force that could not be melted. In addition, compared with the arc heating method, the heat source temperature is lower, so it can be used as a heat source for melting silver alloy for dental fabrication with a melting point of about 600 ° C to 700 ° C. In addition, the forging device is not contaminated by gas or the like.
[0096] なお、図 3は第 1実施形態の铸造装置の変形例を示す。この変形例では、モータ 2 3および揺動ロッド 24によって、位置決めジグ 4c, 4dを介して分割した両方のルツボ 4a, 4bを、互いに離間するように逆向きに傾斜させるようにした点で、相違している。 このようにすれば、溶融金属を下側に位置する铸型 7に铸込む効率を更に向上する こと力 Sできる。なお、これらルツボ 4a, 4bの開閉方法には、両方を同時に開く構成と、 一方が開いた後、所定の時間差を設けて他方 (両方)が開く構成とがある。そして、い ずれの方法を採用するかは、溶融金属の落下が穏やかになる機構を選択する事が 望ましい。 [0096] FIG. 3 shows a modification of the forging device of the first embodiment. This modification is different in that both the crucibles 4a and 4b divided by the positioning jigs 4c and 4d are inclined in the opposite direction so as to be separated from each other by the motor 23 and the swing rod 24. is doing. In this way, it is possible to further improve the efficiency of pouring molten metal into the lower mold 7 located on the lower side. The crucibles 4a and 4b can be opened and closed at the same time by either opening them at the same time, or by opening one of them and then opening the other (both) by providing a predetermined time difference. Which method is used can be selected by selecting a mechanism that makes molten metal fall gently. desirable.
[0097] 図 4は、第 2実施形態の铸造装置 (傾注流下型真空加圧式)を示す。この第 2実施 形態では、分割していない一体型のルツボ 4を適用し、位置決めジグ 4c, 4dを介して ルツボ 4全体を傾斜させる構成とした点で、第 1実施形態と相違している。具体的に は、一体式のルツボ 4は、位置決めジグ 4c, 4dに交換可能な状態で載置されている 。このジグ 4c, 4dは、第 1実施形態と同様に、傾斜手段を構成する揺動ロッド 24を介 してモータ 23と連結されている。そして、モータ 23を駆動させることにより、ジグ 4c, 4 dを介してルツボ 4全体を 10度〜 180度の範囲で傾斜できるように構成している。  FIG. 4 shows a forging device (inclined downflow type vacuum pressurization type) according to the second embodiment. The second embodiment is different from the first embodiment in that a single crucible 4 that is not divided is applied and the entire crucible 4 is inclined via positioning jigs 4c and 4d. Specifically, the integral crucible 4 is placed in a replaceable manner on the positioning jigs 4c and 4d. The jigs 4c and 4d are connected to the motor 23 via a swing rod 24 that constitutes a tilting means, as in the first embodiment. By driving the motor 23, the entire crucible 4 can be tilted in the range of 10 degrees to 180 degrees via the jigs 4c and 4d.
[0098] このように構成した第 2実施形態の铸造装置は、第 1実施形態と同様の作用および 効果を得ること力できる。しかも、ルツボ 4から下部の铸型 7への溶融金属の移行の経 過が、柄杓によって穏やかに注ぐような傾注効果をもたらす。そのため、溶融金属に 気泡などが混入するリスクを減少でき、铸巣ゃ铸造欠陥の発生確率を減少させること ができる。  [0098] The forging device of the second embodiment configured as described above can obtain the same functions and effects as those of the first embodiment. In addition, the transition of the molten metal from the crucible 4 to the lower saddle mold 7 brings about a tilting effect that gently pours by the handle. As a result, the risk of bubbles and the like being mixed into the molten metal can be reduced, and the probability of the occurrence of flaws can be reduced.
[0099] 図 5および図 6 (A) , (B)は、第 3実施形態の铸造装置 (傾倒型真空加圧式)を示す 。この铸造装置は、第 1実施形態と同様に、近赤外線ランプ 1、反射鏡 2、融解室 100 を構成する融解部 100a、铸型室 109を構成する铸型部 109a、および、照射窓 1 15 を備えている。そして、本実施形態では、融解部 100aに対して铸型部 109aを回動 可能に配設するとともに、これら融解部 100aおよび铸型部 109aを近赤外線ランプ 1 に対して一体的に回動可能とした点で、第 1実施形態と大きく相違している。  FIG. 5 and FIG. 6 (A) and (B) show a forging device (tilted vacuum pressurization type) according to a third embodiment. As in the first embodiment, this forging apparatus includes a near-infrared lamp 1, a reflecting mirror 2, a melting portion 100a that constitutes the melting chamber 100, a saddle portion 109a that constitutes the saddle chamber 109, and an irradiation window 1 15 It has. In this embodiment, the saddle portion 109a is rotatably arranged with respect to the melting portion 100a, and the melting portion 100a and the saddle portion 109a can be integrally rotated with respect to the near infrared lamp 1. This is a significant difference from the first embodiment.
[0100] 近赤外線ランプ 1および反射鏡 2は、第 1実施形態と同様の構成であり、約 45度の 傾斜角度で赤外線光を照射できるように、図示しない枠体に固定されている。反射 鏡 2には、第 1実施形態(図 2)と同様の循環水冷機構を設けることが好ましい。  [0100] Near-infrared lamp 1 and reflecting mirror 2 have the same configuration as in the first embodiment, and are fixed to a frame (not shown) so that infrared light can be irradiated at an inclination angle of about 45 degrees. The reflecting mirror 2 is preferably provided with a circulating water cooling mechanism similar to that of the first embodiment (FIG. 2).
[0101] 融解部 100aは、近赤外線ランプ 1と対向する面に照射角度に対して直交方向に延 びるように開口する第 1開口部 100bと、垂直方向に延びるように開口する第 2開口部 100cとを備え、これらの間を連通させるように融解室 100を形成したものである。この 融解部 100aには、反射鏡 2によって集光させた焦点に位置するようにルツボ配設部 101が設けられ、このルツボ配設部 101にルツボ 102が着脱可能に配置される。この ルツボ 102は、第 1実施形態と同様の上端開口の丸皿形状であり、その一側には湯 口 103が切り欠いて設けられている。即ち、第 3実施形態のルツボ 102は、側面に湯 口 103の開口部が位置するように設けられている。 [0101] Melting portion 100a includes a first opening portion 100b that opens to extend in a direction orthogonal to the irradiation angle on a surface facing near-infrared lamp 1, and a second opening portion that extends to extend in the vertical direction. 100c, and the melting chamber 100 is formed so as to communicate between them. The melting part 100a is provided with a crucible disposing part 101 so as to be located at the focal point condensed by the reflecting mirror 2, and the crucible 102 is detachably disposed on the crucible disposing part 101. This crucible 102 has a round dish shape with an upper end opening similar to that of the first embodiment. A mouth 103 is provided in the cutout. That is, the crucible 102 of the third embodiment is provided so that the opening of the gate 103 is located on the side surface.
[0102] また、本実施形態の融解部 100aには、回転軸 104が貫通して固着され、図示しな い駆動モータの駆動により、図 6 (A) , (B)に示す 90度の範囲で回動可能に構成さ れている。さらに、融解部 100aには、垂直方向に延びる第 2開口部 100cの下部に 位置するようにヒンジ接続部 105が設けられるとともに、第 2開口部 100cの上部に位 置するように被ロック部 106が設けられている。そして、融解部 100aには、内部の融 解室 100に連通する排気孔 107と加圧孔 108とが、第 1実施形態と同様に設けられ ている。 [0102] In addition, the rotating shaft 104 is fixedly penetrated and fixed to the melting portion 100a of the present embodiment, and the range of 90 degrees shown in FIGS. 6 (A) and 6 (B) is driven by the drive motor (not shown). It is configured to be rotatable. Further, the melting part 100a is provided with a hinge connection part 105 so as to be positioned below the second opening part 100c extending in the vertical direction, and the locked part 106 so as to be positioned above the second opening part 100c. Is provided. In the melting section 100a, an exhaust hole 107 and a pressurizing hole 108 communicating with the internal melting chamber 100 are provided as in the first embodiment.
[0103] 铸型部 109aは、融解部 100aに対して回動可能に装着されるもので、上端開口の 有底円筒形状であり、その内部空間は铸型室 109を構成する。この铸型部 109aに は、铸型室 109の開口端に融解部 100aのヒンジ接続部 105に軸着する接続部 110 が設けられるとともに、該接続部 110の反対側にロック部材 111が回動可能に配設さ れている。また、铸型部 109aには、融解部 100aに対して回動させるための操作レバ 一 112が設けられている。  [0103] The saddle-shaped portion 109a is rotatably attached to the melting portion 100a, has a bottomed cylindrical shape with an upper end opening, and its internal space constitutes the saddle-shaped chamber 109. The saddle portion 109a is provided with a connecting portion 110 that is pivotally attached to the hinge connecting portion 105 of the melting portion 100a at the open end of the saddle chamber 109, and a lock member 111 is rotated on the opposite side of the connecting portion 110. It is possible to arrange. The saddle-shaped portion 109a is provided with an operation lever 112 for rotating with respect to the melting portion 100a.
[0104] このように構成した铸型部 109aは、融解部 100aに対して反時計回りに約 90度回 動させることにより、該融解部 100a内の融解室 100と铸型室 109とを連続させた 1つ の気密容器 116を構成する。なお、融解部 100aの第 2開口部 100cと铸型部 109a の開口部とは、 Oリングによって気密にシールされる。また、铸型室 109の内部には、 断熱部材 113を介して铸型 114が着脱可能に配設される。この铸型 114は、第 1実 施形態と同様に、铸造物の形状に対応する空洞 114aを設けたものである。この空洞 114aの開口部である湯口 114bは、融解部 100aに対して铸型部 109aを回動させて 気密容器 116を形成した状態で、ルツボ 102の湯口 103に対して横方向に隣接する ように配置される。  [0104] The saddle-shaped portion 109a configured as described above is rotated about 90 degrees counterclockwise with respect to the melting portion 100a, thereby continuously connecting the melting chamber 100 and the vertical chamber 109 in the melting portion 100a. One sealed airtight container 116 is formed. The second opening 100c of the melting part 100a and the opening of the saddle part 109a are hermetically sealed by an O-ring. In addition, a saddle 114 is detachably disposed in the saddle chamber 109 via a heat insulating member 113. Similar to the first embodiment, this saddle mold 114 is provided with a cavity 114a corresponding to the shape of the fabricated product. The spout 114b, which is the opening of the cavity 114a, is adjacent to the spout 103 of the crucible 102 in the lateral direction in a state in which the bowl 109a is rotated with respect to the melting portion 100a to form an airtight container 116. Placed in.
[0105] 一方、前記融解部 100aにおいて、近赤外線ランプ 1と対向する第 1開口部 100bに は、 Oリングによって周囲が気密にシールされた状態で、耐熱性および耐圧性を有 する透明なガラスからなる照射窓 115が配設されている。この照射窓 115は、固定枠 115aによって融解部 100aに対して気密に固定されている。この照射窓 115は、融 解室 100に配置したルツボ 102内の歯科铸造用合金 8の溶融状態を確認する司見き 窓として兼用できる。但し、正確に観察するには、第 1実施形態と同様に専用の司見き 窓を設けることが好ましい。 [0105] On the other hand, in the melting part 100a, the first opening 100b facing the near-infrared lamp 1 is transparent glass having heat resistance and pressure resistance in a state where the periphery is hermetically sealed by an O-ring. An irradiation window 115 is provided. This irradiation window 115 is airtightly fixed to the melting part 100a by a fixed frame 115a. This irradiation window 115 is It can also be used as a window for checking the melting state of the dental forging alloy 8 in the crucible 102 placed in the dismantling chamber 100. However, for accurate observation, it is preferable to provide a dedicated viewing window as in the first embodiment.
[0106] なお、排気孔 107に接続する配管経路は、第 1実施形態と同様に、ダストフィルタ 一 41、排気電磁弁 40、真空電磁弁 39、大気開放弁 38、真空タンク 37および真空 ポンプ 36を備えたものであり、外部シリンダー 15の減圧手段を構成しない点でのみ 相違する。 [0106] The piping path connected to the exhaust hole 107 is the same as in the first embodiment. The dust filter 41, the exhaust solenoid valve 40, the vacuum solenoid valve 39, the atmosphere release valve 38, the vacuum tank 37, and the vacuum pump 36 are used. The only difference is that the pressure reducing means of the outer cylinder 15 is not configured.
[0107] また、加圧孔 108に接続する配管経路は、加圧電磁弁 34、ガスフロー電磁弁 33、 絞り弁 33a、安全弁 32、与圧タンク 31および給気部 30を備えたものであり、外部シリ ンダー 15の増圧手段を構成しない点でのみ相違する。  [0107] The piping path connected to the pressurizing hole 108 includes a pressurizing solenoid valve 34, a gas flow solenoid valve 33, a throttle valve 33a, a safety valve 32, a pressurized tank 31, and an air supply unit 30. However, the only difference is that it does not constitute the pressure boosting means of the external cylinder 15.
[0108] この第 3実施形態の铸造装置を使用して铸造作業を行う場合には、まず、図 5に示 すように、铸型室 109の開口が水平方向に延び、融解室 100の第 2開口部 100cを 開放した状態とする。そして、ルツボ配設部 101にルツボ 102および歯科铸造用合 金 8を配置するとともに、铸型室 109に断熱部材 113および铸型 114を配置する。  [0108] When performing a forging operation using the forging apparatus of the third embodiment, first, as shown in FIG. 5, the opening of the bowl chamber 109 extends in the horizontal direction, and the melting chamber 100 has a first opening. 2 Open the opening 100c. Then, the crucible 102 and the dental forging alloy 8 are disposed in the crucible disposition portion 101, and the heat insulating member 113 and the collar 114 are disposed in the saddle chamber 109.
[0109] その後、図 6 (A)に示すように、操作レバー 112を反時計回りに回転させ、铸型部 1 09aを融解部 100aに向けて回動させ、融解室 100と铸型室 109とを連通させる。そ して、ロック部材 111を回動させて被ロック部 106にロックさせることにより、融解室 10 0と铸型室 109とを密閉状態で連通させた 1つの気密容器 116を形成する。なお、こ の状態では、ルツボ 102の湯口 103に対して横方向に隣接するように铸型 114の湯 口 114bが位置する。  [0109] After that, as shown in FIG. 6A, the operation lever 112 is rotated counterclockwise, and the vertical portion 109a is rotated toward the melting portion 100a, so that the melting chamber 100 and the vertical chamber 109 are rotated. Communicate with. Then, the lock member 111 is rotated and locked to the locked portion 106, thereby forming one airtight container 116 in which the melting chamber 100 and the vertical chamber 109 are communicated in a sealed state. In this state, the spout 114b of the bowl 114 is positioned so as to be adjacent to the spout 103 of the crucible 102 in the lateral direction.
[0110] この前工程が終了すると、図示しない操作パネルの運転開始スィッチを操作するこ とにより、密閉工程 (a)、排気工程 (b)、ガス供給工程 (c)、融解工程 (d)、ガスフロー 工程 (e)および減圧工程 (f )を実行する。  [0110] When this pre-process is completed, by operating an operation start switch on an operation panel (not shown), a sealing process (a), an exhaust process (b), a gas supply process (c), a melting process (d), The gas flow step (e) and the pressure reduction step (f) are performed.
[0111] 次に、铸込み工程 (g)では、真空電磁弁 39を閉じて強制排気を停止し、気密容器 116内を減圧 (真空)状態に維持したまま、図 6 (B)に示すように、駆動モータを動作 させて回転軸 104を中心として気密容器 116全体を時計回りに 90度回動させる。こ れにより、ルツボ 102の下部に铸型 114が位置し、これらの湯口 103, 1 14bが上下 に位置する。その結果、ルツボ 102内で融解した溶融金属が铸型 114の湯口 114b に注がれる。なお、気密容器 116は、回転軸 104を中心として手動により回動させる 構成としてあよい。 [0111] Next, in the filling step (g), the vacuum solenoid valve 39 is closed to stop forced exhaust, and the inside of the airtight container 116 is maintained in a reduced pressure (vacuum) state as shown in FIG. 6 (B). Then, the drive motor is operated to rotate the entire airtight container 116 90 degrees clockwise around the rotation shaft 104. As a result, the hook 114 is positioned below the crucible 102, and the gates 103, 114b are positioned vertically. As a result, the molten metal melted in the crucible 102 becomes a spout 114b. Poured into. The airtight container 116 may be configured to be manually rotated about the rotation shaft 104.
[0112] その後、第 1実施形態と同様に加圧工程 (h)を実行し、铸型 114内で融解金属が 凝固すると、開放工程 (i)では、回転軸 104を中心として気密容器 116を反時計回り に回動させ、図 6 (A)に示す照射窓 9が近赤外線ランプ 1と対向した位置に復帰させ る。そして、気密容器 116内に充満したガスを排気し、気密容器 116内を大気圧状 態に戻す。なお、減圧工程からこの開放工程のいずれかの工程で融解工程を停止 する消灯工程 (k)を実行する。  [0112] After that, the pressurizing step (h) is executed in the same manner as in the first embodiment, and when the molten metal is solidified in the vertical mold 114, in the opening step (i), the hermetic container 116 is moved around the rotating shaft 104. By rotating counterclockwise, the irradiation window 9 shown in FIG. 6 (A) is returned to the position facing the near infrared lamp 1. Then, the gas filled in the hermetic container 116 is exhausted, and the inside of the hermetic container 116 is returned to the atmospheric pressure state. In addition, the extinguishing process (k) for stopping the melting process in any one of the opening process from the decompression process is executed.
[0113] 次に、密閉解除工程 (j)で、ロック部材 111と被ロック部 106とのロックを解除し、操 作レバー 112を時計回りに回転操作することにより、融解部 100aに対して铸型部 10 9aを回動させ、融解室 100と铸型室 109との密閉(連通)を解除する。  [0113] Next, in the sealing release step (j), the lock member 111 and the locked portion 106 are unlocked, and the operation lever 112 is rotated clockwise, so that The mold part 10 9a is rotated to release the sealing (communication) between the melting chamber 100 and the vertical chamber 109.
[0114] 全ての工程が終了すると、作業者は、開放した铸型室 109から铸型 114を取り出し 、铸型 114が略室温になるまで冷却してから、铸型 114を割って铸造物を取り出す。  [0114] After all the processes are completed, the operator takes out the mold 114 from the open bowl chamber 109, cools the bowl 114 to about room temperature, and then breaks the bowl 114 to remove the forgery. Take out.
[0115] このように構成した第 3実施形態の铸造装置は、第 1実施形態と同様の作用および ¾]果を得ること力できる。  [0115] The forging device of the third embodiment configured as described above can obtain the same operation and results as those of the first embodiment.
[0116] 図 7および図 8 (A) , (B)は第 4実施形態の铸造装置 (遠心铸造方式)を示す。この 铸造装置は、各実施形態と同様の近赤外線ランプ 1および反射鏡 2を備えるが、融 解室 3, 100や铸型室 6, 109は何ら設けずに、遠心力を利用してルツボ 160から铸 型 163に溶融金属を铸込むようにした点で、各実施形態と大きく相違している。  FIGS. 7 and 8 (A) and (B) show a forging apparatus (centrifugal forging method) of the fourth embodiment. This forging apparatus includes a near-infrared lamp 1 and a reflecting mirror 2 similar to those of the embodiments, but without any melting chambers 3, 100 and vertical chambers 6, 109, the crucible 160 uses centrifugal force. Therefore, the present embodiment is greatly different from each embodiment in that molten metal is poured into the mold 163.
[0117] 具体的には、第 4実施形態の铸造装置は、ルツボ 160および铸型 163を一体的に 固定するアーム 150を備えている。このアーム 150は回転軸 151で回転可能に支持 され、この回転軸 151が軸受け 152を介して筐体 153に回動可能な状態で保持され ている。そして、筐体 153を貫通した回転軸 151の端部には、回転手段である駆動モ ータ 154が連結されている。  [0117] Specifically, the forging device of the fourth embodiment includes an arm 150 that integrally fixes the crucible 160 and the saddle type 163 together. The arm 150 is rotatably supported by a rotating shaft 151, and the rotating shaft 151 is held by a housing 153 via a bearing 152 in a rotatable state. A driving motor 154 that is a rotating means is coupled to the end of the rotating shaft 151 that passes through the housing 153.
[0118] アーム 150には、図 7中右側に位置するように、ルツボ 160を貫通させて位置決め する位置決め孔を有するルツボ配設部 155が設けられている。このルツボ配設部 15 5の下部には、ルツボ配設部 155より更に外向きに突出するように延び、その外端に 铸型 163を位置決め固定する铸型配設部 156が設けられている。この铸型配設部 1 56の外端部には、配置した铸型 163が遠心力により離脱しないように支持板 157が 設けられている。 [0118] The arm 150 is provided with a crucible placement portion 155 having a positioning hole for positioning the crucible 160 through the arm 150 so as to be positioned on the right side in FIG. At the lower part of the crucible arrangement portion 155, a saddle type arrangement portion 156 is provided which extends so as to protrude further outward than the crucible arrangement portion 155 and which positions and fixes the vertical shape 163 at the outer end thereof. . This vertical arrangement 1 A support plate 157 is provided at the outer end portion of 56 so that the arranged saddle 163 is not detached by centrifugal force.
[0119] ルツボ配設部 155および铸型配設部 156の逆側には、支持棹 158が設けられ、こ の支持棹 158にルツボ 160、歯科铸造用合金 8および铸型 163の合計重量に見合う 重量のバランスウェイト 159が装着されている。この支持棹 158には雄ネジ加工が施 されるとともに、バランスウェイト 159には雌ネジカロェが施されている。そして、支持棹 158に対してバランスウェイト 159を回転させることにより、該バランスウェイト 159を 支持棹 158に対して左右に移動させて所定位置に位置決めできるように構成してい る。これにより、バランスウェイト 159は、铸型 163の大きさや歯科铸造用合金 8の量 による重量差を調整し、回転中の重量アンバランスに起因する振動を未然に回避で さるように構成している。  [0119] A support rod 158 is provided on the opposite side of the crucible arrangement portion 155 and the saddle type arrangement portion 156, and the total weight of the crucible 160, the dental forging alloy 8 and the die shape 163 is provided on the support rod 158. A suitable balance weight 159 is installed. The support rod 158 is male threaded, and the balance weight 159 is female threaded. Then, by rotating the balance weight 159 with respect to the support rod 158, the balance weight 159 can be moved to the left and right with respect to the support rod 158 to be positioned at a predetermined position. Accordingly, the balance weight 159 is configured to adjust the weight difference depending on the size of the mold 163 and the amount of the dental forging alloy 8, and avoid vibration caused by weight unbalance during rotation. .
[0120] なお、以上の回転機構は、従来の遠心铸造方式の铸造装置と同様である。そして、 本実施形態では、前記アーム 150において、ルツボ配設部 155に配設するルツボ 1 60の中央底部に焦点を位置させるように、第 1実施形態と同様の近赤外線ランプ 1 および反射鏡 2が、垂直下向きに赤外線光を照射できるように、図示しない枠体に固 定されている。反射鏡 2には、第 1実施形態と同様に、冷却水タンク 16、送水ポンプ 1 7、流量センサー 18、強制冷却ファン 19および放熱器 20を有する循環水冷機構が 設けられている。なお、反射鏡 2を含む近赤外線ランプ 1は、第 3実施形態のように斜 め下向きに照射するように配設してもよい。  [0120] The above rotating mechanism is the same as a conventional centrifugal forging type forging apparatus. In the present embodiment, in the arm 150, the near-infrared lamp 1 and the reflecting mirror 2 similar to those in the first embodiment are positioned so that the focal point is located at the center bottom of the crucible 160 disposed in the crucible arrangement portion 155. However, it is fixed to a frame (not shown) so that infrared light can be irradiated vertically downward. As in the first embodiment, the reflecting mirror 2 is provided with a circulating water cooling mechanism having a cooling water tank 16, a water supply pump 17, a flow rate sensor 18, a forced cooling fan 19, and a radiator 20. Note that the near-infrared lamp 1 including the reflecting mirror 2 may be disposed so as to irradiate obliquely downward as in the third embodiment.
[0121] 第 4実施形態のルツボ 160は、底が浅い逆円錐形状であり、その上端にルツボ配 設部 155上に載置して位置決めするフランジ部 161を設けたものである。このルツボ 160には、第 3実施形態と同様に、その一側に湯口 162が切り欠いて設けられ、側面 に開口部を有するように構成されている。そして、この湯口 162は、アーム 150の回 転軌跡の径方向外向きに位置するように、アーム 150のルツボ配設部 155に位置決 めされる。  [0121] The crucible 160 of the fourth embodiment has an inverted conical shape with a shallow bottom, and is provided with a flange portion 161 placed on the crucible arrangement portion 155 and positioned at the upper end thereof. Similar to the third embodiment, the crucible 160 is provided with a gate 162 cut out on one side thereof and an opening on the side surface. The pouring gate 162 is positioned on the crucible disposing portion 155 of the arm 150 so as to be positioned radially outward of the rotation trajectory of the arm 150.
[0122] また、铸型 163は、各実施形態と同様に铸造物の形状に対応する空洞 163aを設 けたものである。この鍀型 163は、ルツボ 160に対してアーム 150の回転軌跡の径方 向外側に位置するように、アーム 150の铸型配設部 156に位置決めされる。かつ、こ の錄型 163は、空?同 163aの開口である湯口 163b力 ノレッボ 160の湯口 162と対向 するように配置される。また、この铸型 163は、铸型配設部 156に配設した状態で、そ の上端面が反射鏡 2の下端より下側に位置する構成とし、アーム 150を回転させても 反射鏡 2に何ら干渉しなレ、ように構成して!/、る。 [0122] Further, the saddle mold 163 is provided with a cavity 163a corresponding to the shape of the fabricated product, as in the embodiments. The saddle shape 163 is positioned on the saddle shape disposition portion 156 of the arm 150 so as to be positioned on the outer side in the radial direction of the rotation locus of the arm 150 with respect to the crucible 160. And this The bowl-shaped 163 is arranged so as to face the gate 162 of the gate 163b force Norebo 160 which is the opening of the air 163a. In addition, the saddle-shaped 163 is arranged in the saddle-shaped disposing portion 156 so that the upper end surface thereof is located below the lower end of the reflecting mirror 2 so that the reflecting mirror 2 can be rotated even if the arm 150 is rotated. It is configured so that it doesn't interfere with anything!
[0123] この第 4実施形態の铸造装置を使用して铸造作業を行う場合には、まず、アーム 1 50に対して、ルツボ配設部 155にルツボ 160を配設し、該ルツボ 160に歯科铸造用 合金 8を配置するとともに、铸型配設部 156に铸型 163を配設する。  When performing the forging operation using the forging device of the fourth embodiment, first, the crucible 160 is disposed in the crucible disposing portion 155 with respect to the arm 150, and the crucible 160 is provided with a dental portion. The forging alloy 8 is arranged, and the mold 163 is arranged in the mold arranging section 156.
[0124] この前工程が終了すると、近赤外線ランプ 1を点灯させて歯科铸造用合金 8の融解 工程を開始する。この際、本実施形態では、ルツボ 160の周囲に気密容器を構成す る壁が何ら設けられていないため、開口したルツボ 160の上方から、歯科铸造用合 金 8の融解状況を目視により簡単に確認できる。  [0124] When this pre-process is completed, the near-infrared lamp 1 is turned on and the melting process of the dental forging alloy 8 is started. At this time, in this embodiment, since no wall constituting an airtight container is provided around the crucible 160, the melting state of the dental forging alloy 8 can be easily visually confirmed from above the opened crucible 160. I can confirm.
[0125] そして、作業者が完全に融解したと判断すると、操作パネル 46の铸込みスィッチを 操作する。これにより、駆動モータ 154が回転を開始することにより、回転軸 151を介 してアーム 150が高速で回転する。そうすると、ルツボ 160内の融解金属は、アーム 1 50の回転により生じる遠心力でルツボ 160の底からせり上がり、ルツボ 160の湯口 1 62から振り出し (飛び出し)て、铸型 163の湯口 163bに到達する。その後、溶融金属 は、铸型 163の空洞 163aの中に遠心力で铸込まれる。  [0125] When it is determined that the worker has completely melted, the insertion switch on the operation panel 46 is operated. As a result, when the drive motor 154 starts rotating, the arm 150 rotates at a high speed via the rotating shaft 151. Then, the molten metal in the crucible 160 rises from the bottom of the crucible 160 due to the centrifugal force generated by the rotation of the arm 150, swings out (jumps out) from the sprue 162 of the crucible 160, and reaches the spout 163b of the bowl 163. . Thereafter, the molten metal is poured into the cavity 163a of the bowl 163 by centrifugal force.
[0126] この铸込み工程は、アーム 150を所定期間回転させ、铸型 163の内部の溶融金属 が凝固したと判断すると、作業者が停止させる。その後、作業者は、アーム 150から 铸型 163を取り外し、铸型 163が略室温になるまで冷却してから、铸型 163を割って 铸造物を取り出す。  [0126] In this swaging process, the arm 150 is rotated for a predetermined period, and when it is determined that the molten metal inside the saddle mold 163 has solidified, the worker stops. Thereafter, the worker removes the saddle mold 163 from the arm 150, cools the saddle mold 163 to approximately room temperature, and then breaks the saddle mold 163 to take out the fabricated product.
[0127] なお、ルツボ 160には反射鏡 2の方向から不活性ガスを吹きつけることが好ましい。  [0127] It is preferable that an inert gas be blown onto crucible 160 from the direction of reflecting mirror 2.
更に好ましくは、回転軸 151を中空パイプで構成し、該回転軸 151の一端に流体用 回転継手を配設する。そして、回転軸 151の他端から別の流体継手を介してアーム 1 50の上にルツボ 160の内部に向けたノズルを装着する。このようにすれば、铸造装 置の外部に固定した不活性ガス供給源から、ルツボ 160内にガスを吹き付けることが できるため、加熱および融解中の合金の酸化を抑制することができる。  More preferably, the rotary shaft 151 is constituted by a hollow pipe, and a rotary joint for fluid is disposed at one end of the rotary shaft 151. Then, a nozzle facing the inside of the crucible 160 is mounted on the arm 150 through another fluid coupling from the other end of the rotating shaft 151. In this way, since the gas can be blown into the crucible 160 from an inert gas supply source fixed outside the forging apparatus, oxidation of the alloy during heating and melting can be suppressed.
[0128] このように構成した第 4実施形態の铸造装置では、前記各実施形態と同様の作用 および効果を得ること力 Sできる。しかも、加熱源として高周波誘導加熱方式を採用し た遠心铸造方式の铸造装置と比較すると、高周波コイル昇降装置や電気的な接続 構造のような複雑な装置が不要であるため、構造を簡略化でき、コストダウンを図るこ と力 sできる。また、近赤外線ランプ 1は枠体に対して据え付ける構成であるが、反射鏡 2を構成する反射面 2aの扁平率を変更することにより、容易に焦点位置を変更できる ため、回転する铸型 163に干渉しない構成を確実に実現できる。 [0128] In the forging device according to the fourth embodiment configured as described above, the same operation as in each of the above embodiments is performed. And you can power S to get the effect. In addition, compared to centrifugal forging devices that employ high frequency induction heating as the heating source, the structure can be simplified because complex devices such as a high frequency coil lifting device and electrical connection structure are not required. Therefore, it is possible to reduce costs. The near-infrared lamp 1 is installed on the frame, but the focal position can be easily changed by changing the flatness of the reflecting surface 2a constituting the reflecting mirror 2. It is possible to reliably realize a configuration that does not interfere with the operation.
[0129] 以上の各実施形態から明らかなように、本発明では、歯科铸造用合金 8を加熱する 手段として、近赤外線ランプ 1と反射鏡 2とを使用している。そして、近赤外線ランプ 1 力、らの反射鏡 2の焦点距離を適切に設定することにより、熱源となる近赤外線ランプ 1 とルツボ 4との間には、直接的な機械的連結構造および電気的な接続構造を必要と しない。その結果、铸造装置を構成する制約要件が減り設計の自由度を向上でき、 遠心铸造方式、全体加圧铸造方式および吸引加圧铸造方式等、種々の铸造方式 に適用できる。 As is clear from the above embodiments, in the present invention, the near infrared lamp 1 and the reflecting mirror 2 are used as means for heating the dental forging alloy 8. By setting the near-infrared lamp 1 force and the focal length of the reflector 2 appropriately, a direct mechanical connection structure and electrical connection between the near-infrared lamp 1 serving as a heat source and the crucible 4 are established. A simple connection structure is not required. As a result, the constraint requirements for constructing the forging apparatus are reduced, and the degree of freedom in design can be improved, and it can be applied to various forging methods such as the centrifugal forging method, the whole pressure forging method and the suction pressure forging method.
産業上の利用可能性  Industrial applicability
[0130] 本発明は、歯科技工分野の铸造に限られず、宝飾加工分野などの铸造物が小さい 分野、言い換えれば、融解させる金属が少量の分野であれば、同様に適用可能であ [0130] The present invention is not limited to forging in the field of dental technology, but can be similarly applied to fields in which forged objects such as the jewelry processing field are small, in other words, in fields where the amount of metal to be melted is small.

Claims

請求の範囲 The scope of the claims
[1] 赤外線光を出力する赤外線ランプと、 [1] An infrared lamp that outputs infrared light;
前記赤外線ランプからの赤外線光を集光させる反射鏡と、  A reflecting mirror for condensing infrared light from the infrared lamp;
前記反射鏡によって集光した赤外線光が照射され、内部に配置した金属が融解さ れるルツボと、  A crucible in which infrared light collected by the reflecting mirror is irradiated and a metal disposed inside is melted;
前記ルツボ内で融解された溶融金属が铸込まれる铸型と、  A bowl in which molten metal melted in the crucible is filled;
を備えることを特徴とする赤外線ランプ加熱式铸造装置  An infrared lamp heating forging device characterized by comprising:
[2] 前記反射鏡の反射面は赤外線光の反射率が高ぐその形状は前記赤外線ランプ を笠状に覆う回転楕円面であることを特徴とする第 1項記載の赤外線ランプ加熱式 铸造装置。  [2] The infrared lamp heating type forging device as set forth in [1], wherein the reflecting surface of the reflecting mirror has a high reflectance of infrared light, and the shape thereof is a spheroidal surface covering the infrared lamp in a shade shape. .
[3] 前記ルツボを横方向に分割した分割式ルツボで構成する一方、  [3] While the crucible is constituted by a divided crucible obtained by dividing the crucible in the lateral direction,
前記分割式ルツボの下部に前記铸型が位置するようにこれらを内部に配設する密 閉可能な気密容器と、前記気密容器内の分割式ルツボの一方を所定角度で傾斜さ せる傾斜手段と、前記気密容器の内部を加圧する加圧手段とを設け、  An airtight container that can be closed and disposed inside the split crucible so that the saddle is positioned under the split crucible, and an inclination means that inclines one of the split crucibles in the airtight container at a predetermined angle. And a pressurizing means for pressurizing the inside of the airtight container,
前記分割式ルツボ内で融解させた溶融金属を、前記傾斜手段により一方の分割式 ルツボを傾斜させることにより溶融金属を前記铸型の湯口に注ぎ、前記加圧手段に より気密容器内を昇圧させることにより溶融金属を铸型内に铸込むようにしたことを特 徴とする請求項 1または請求項 2記載の赤外線ランプ加熱式铸造装置。  The molten metal melted in the split crucible is poured into the vertical pouring gate by tilting one split crucible by the tilting means, and the inside of the airtight container is pressurized by the pressurizing means. 3. The infrared lamp heating type forging apparatus according to claim 1, wherein the molten metal is poured into the mold.
[4] 前記ルツボの下部に前記铸型が位置するようにこれらを内部に配設する密閉可能 な気密容器と、前記気密容器内のルツボを所定角度で傾斜させる傾斜手段と、前記 気密容器の内部を加圧する加圧手段とを設け、  [4] A hermetic container that can be hermetically disposed inside the crucible so that the saddle is positioned below the crucible, an inclination unit that inclines the crucible in the hermetic container at a predetermined angle, A pressurizing means for pressurizing the inside,
前記ルツボ内で融解させた溶融金属を、前記傾斜手段によりルツボを傾斜させるこ とにより溶融金属を前記铸型の湯口に注ぎ、前記加圧手段により気密容器内を昇圧 させることにより溶融金属を铸型内に铸込むようにしたことを特徴とする請求項 1また は請求項 2記載の赤外線ランプ加熱式铸造装置。  The molten metal melted in the crucible is poured into the cup-shaped pouring gate by tilting the crucible with the tilting means, and the molten metal is melted by pressurizing the inside of the airtight container with the pressurizing means. 3. The infrared lamp heating type forging apparatus according to claim 1, wherein the apparatus is inserted into a mold.
[5] 互いの湯口が横方向に隣接するように前記ルツボと铸型とを内部に配設する密閉 可能な気密容器と、前記ルツボの下部に铸型が位置するように前記気密容器を所定 角度で傾斜させる傾斜手段と、前記気密容器の内部を加圧する加圧手段とを設け、 前記ルツボ内で融解させた溶融金属を、前記傾斜手段により気密容器を傾斜させ ることにより前記ルツボカ 溶融金属を铸型の湯口に注ぎ、前記加圧手段により気密 容器内を昇圧させることにより溶融金属を铸型内に铸込むようにしたことを特徴とする 請求項 1または請求項 2記載の赤外線ランプ加熱式铸造装置。 [5] A sealable airtight container in which the crucible and the bowl shape are disposed so that the gates are adjacent to each other in the lateral direction, and the airtight container is predetermined so that the bowl shape is located below the crucible. Inclining means for inclining at an angle and a pressurizing means for pressurizing the inside of the airtight container are provided, The molten metal melted in the crucible is poured by pouring the crucible molten metal into a bowl-shaped pouring gate by tilting the airtight container by the tilting means, and the molten metal is pressurized by pressurizing the inside of the airtight container by the pressurizing means. The infrared lamp heating type forging apparatus according to claim 1 or 2, wherein the lamp is inserted into a mold.
[6] 前記铸型内を減圧する減圧手段を更に設けたことを特徴とする請求項 3乃至請求 項 5のいずれか 1項に記載の赤外線ランプ加熱式铸造装置。 6. The infrared lamp heating forging device according to any one of claims 3 to 5, further comprising pressure reducing means for reducing the pressure in the saddle mold.
[7] 前記気密容器は、前記赤外線ランプに対向する面に、赤外線光を透過する耐圧性 および耐熱性を有する照射窓を備えることを特徴とする請求項 3乃至請求項 6のいず れか 1項に記載の赤外線ランプ加熱式铸造装置。 [7] The airtight container according to any one of claims 3 to 6, wherein an irradiation window having pressure resistance and heat resistance that transmits infrared light is provided on a surface facing the infrared lamp. The infrared lamp heating type forging device according to item 1.
[8] 前記気密容器は、前記ルツボ内の金属の溶融状態を確認する耐圧性および減光 性を有する司見き窓を備えることを特徴とする請求項 3乃至請求項 7のいずれか 1項に 記載の赤外線ランプ加熱式铸造装置。 [8] The airtight container according to any one of claims 3 to 7, wherein the airtight container is provided with a viewing window having a pressure resistance and a light attenuation property for confirming a molten state of the metal in the crucible. An infrared lamp heating type forging device as described in 1.
[9] 駆動手段により回転可能としたアームを設け、該アームに対して、前記ルツボを湯 口が回転軌跡の径方向外向きに位置するように配設するとともに、前記铸型を湯口 が前記ルツボの湯口と対向するように外側に配設し、 [9] An arm that can be rotated by a driving means is provided, and the crucible is disposed with respect to the arm so that the gate is located radially outward of the rotation trajectory. Arranged on the outside to face the crucible gate,
前記ルツボ内で融解させた溶融金属を遠心力で湯口から振り出し、前記铸型に铸 込むようにしたことを特徴とする請求項 1または請求項 2記載の赤外線ランプ加熱式 铸造装置。  3. The infrared lamp heating type forging apparatus according to claim 1, wherein the molten metal melted in the crucible is spouted from the gate by centrifugal force and inserted into the bowl.
[10] a.金属を配置したルツボと铸型とを、気密容器内に密閉する密閉工程と、  [10] a. A sealing step for sealing the crucible and the metal mold in a metal-tight container,
b.前記気密容器内の気体を排気する排気工程と、  b. an exhaust process for exhausting the gas in the hermetic container;
c前記気密容器内が大気圧より高い圧力になるようにガスを供給するガス供給工程 と、  c a gas supply step for supplying gas so that the inside of the hermetic container has a pressure higher than atmospheric pressure;
d.赤外線ランプから赤外線光を出力させ、反射鏡により集光させて前記ルツボ内の 金属を融解させる融解工程と、  d. a melting process in which infrared light is output from an infrared lamp and condensed by a reflecting mirror to melt the metal in the crucible;
e .前記気密容器内にガスを更に供給しながら、該気密容器内の余剰ガスを排気す るガスフロー工程と、  e. a gas flow step of exhausting excess gas in the hermetic container while further supplying gas into the hermetic container;
f.前記気密容器内を排気して大気圧より低い圧力に減圧させる減圧工程と、 g.気密容器内の減圧状態を維持し、前記ルツボ内で融解した溶融金属を铸型に流 し込む铸込み工程と、 f. a depressurization step of evacuating the inside of the hermetic container to depressurize it to a pressure lower than atmospheric pressure, and g. The swallowing process,
h.前記気密容器内にガスを供給し、大気圧より高い圧力に加圧する加圧工程と、 i.前記気密容器内を自然排気し、大気圧状態にする開放工程と、 h. a pressurizing step of supplying a gas into the hermetic container and pressurizing to a pressure higher than atmospheric pressure; i. a step of naturally venting the inside of the hermetic container to bring it into an atmospheric pressure state;
] .前記気密容器の密閉状態を解除する密閉解除工程と、 A sealing release process for releasing the sealed state of the airtight container;
を備え、  With
k.前記減圧工程から開放工程のいずれかの工程で、前記赤外線ランプによる融解 工程を停止するようにしたことを特徴とする铸造方法。 k. A forging method characterized in that the melting step by the infrared lamp is stopped in any of the decompression step and the release step.
PCT/JP2007/070724 2006-10-25 2007-10-24 Infrared lamp heating type casting apparatus and method of casting WO2008050798A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008541009A JP5091151B2 (en) 2006-10-25 2007-10-24 Infrared lamp heating casting apparatus and casting method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-289768 2006-10-25
JP2006289768 2006-10-25

Publications (1)

Publication Number Publication Date
WO2008050798A1 true WO2008050798A1 (en) 2008-05-02

Family

ID=39324592

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/070724 WO2008050798A1 (en) 2006-10-25 2007-10-24 Infrared lamp heating type casting apparatus and method of casting

Country Status (2)

Country Link
JP (1) JP5091151B2 (en)
WO (1) WO2008050798A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013042780A1 (en) * 2011-09-22 2013-03-28 旭硝子株式会社 Production method for positive electrode material for secondary battery
CN105170952A (en) * 2012-05-24 2015-12-23 安井贸易株式会社 Pressure casting method and device
JP2018059661A (en) * 2016-10-05 2018-04-12 助川電気工業株式会社 Melting holding furnace

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101427026B1 (en) 2013-01-08 2014-08-05 포항공과대학교 산학협력단 Deformation method of radial or hoop severe plastic for tube materials and processing apparatus thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001355970A (en) * 2000-06-13 2001-12-26 Toshiba Mach Co Ltd Stock melting apparatus
JP2002103023A (en) * 2000-10-02 2002-04-09 Toshiba Mach Co Ltd Method for controlling molten metal feed temperature in casting machine
JP2005243667A (en) * 2004-02-24 2005-09-08 National Institute Of Advanced Industrial & Technology Heat treatment equipment
JP2006275344A (en) * 2005-03-28 2006-10-12 Kyocera Corp Method of manufacturing semiconductor closure body

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001355970A (en) * 2000-06-13 2001-12-26 Toshiba Mach Co Ltd Stock melting apparatus
JP2002103023A (en) * 2000-10-02 2002-04-09 Toshiba Mach Co Ltd Method for controlling molten metal feed temperature in casting machine
JP2005243667A (en) * 2004-02-24 2005-09-08 National Institute Of Advanced Industrial & Technology Heat treatment equipment
JP2006275344A (en) * 2005-03-28 2006-10-12 Kyocera Corp Method of manufacturing semiconductor closure body

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013042780A1 (en) * 2011-09-22 2013-03-28 旭硝子株式会社 Production method for positive electrode material for secondary battery
CN105170952A (en) * 2012-05-24 2015-12-23 安井贸易株式会社 Pressure casting method and device
JP2018059661A (en) * 2016-10-05 2018-04-12 助川電気工業株式会社 Melting holding furnace

Also Published As

Publication number Publication date
JP5091151B2 (en) 2012-12-05
JPWO2008050798A1 (en) 2010-02-25

Similar Documents

Publication Publication Date Title
JP5398074B2 (en) Method and apparatus for producing quartz glass crucible
WO2008050798A1 (en) Infrared lamp heating type casting apparatus and method of casting
JP4927027B2 (en) Apparatus and method for producing high melting point glass material or high melting point glass ceramic material
CA2197135A1 (en) Process and device for melting and casting of metals in mould
US7926548B2 (en) Method and apparatus for sealing an ingot at initial startup
US20130149186A1 (en) Device and method for sintering sinter products
JP4707989B2 (en) Manufacturing apparatus and manufacturing method of high-melting glass material or high-melting glass ceramic material
RU2476797C2 (en) Melting furnace
US4575608A (en) Method and apparatus for spot heating a body, particularly for brazing hard solder gold alloys
JP3785788B2 (en) Vacuum degassing equipment for molten glass
WO2020235579A1 (en) Melting furnace
TW201801821A (en) Nickel-titanium alloy fabrication method by using high vacuum crucible-free floating melting process in which a titanium material is heated in a floating condition with an induction coil and a nickel material is added into the titanium material when the titanium material is in a partly melted condition
JP2004024375A (en) Casting apparatus for dental technician
DK2744613T3 (en) Sintering
EP0651220B1 (en) Kiln for firing and/or casting prosthodontic products
KR101669135B1 (en) Hybrid smelting furnace
JP2001205427A (en) Vacuum melting and casting device allowing secondary cooling
EP0649477B1 (en) Electric furnace for melting scrap iron
JP2009101392A (en) Casting apparatus
JP5928780B2 (en) Syringe melting device
KR101902073B1 (en) Vacuum melting apparatus and its method for casting process
RU2291758C2 (en) Melting-pouring plant for producing small-size castings
JP2005211927A (en) Bottom part molten metal discharging type casting apparatus
JP3948601B2 (en) Secondary meltable vacuum melting casting equipment
JP2008307567A (en) Lost wax casting device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07830458

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008541009

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07830458

Country of ref document: EP

Kind code of ref document: A1