WO2008050784A1 - Optical filter, polarizing plate, illumination device, and liquid crystal display device - Google Patents

Optical filter, polarizing plate, illumination device, and liquid crystal display device Download PDF

Info

Publication number
WO2008050784A1
WO2008050784A1 PCT/JP2007/070687 JP2007070687W WO2008050784A1 WO 2008050784 A1 WO2008050784 A1 WO 2008050784A1 JP 2007070687 W JP2007070687 W JP 2007070687W WO 2008050784 A1 WO2008050784 A1 WO 2008050784A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
incident
wavelength
polarizing plate
crystal cell
Prior art date
Application number
PCT/JP2007/070687
Other languages
French (fr)
Japanese (ja)
Inventor
Shuhei Okude
Manabu Haraguchi
Kohei Arakawa
Original Assignee
Zeon Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zeon Corporation filed Critical Zeon Corporation
Publication of WO2008050784A1 publication Critical patent/WO2008050784A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3016Polarising elements involving passive liquid crystal elements

Definitions

  • Optical filter Optical filter, polarizing plate, illumination device, and liquid crystal display device
  • the present invention relates to an optical filter, a polarizing plate, an illumination device, and a liquid crystal display device. Specifically, the present invention is similar to the optical filter, polarizing plate, illumination device, and front and oblique force observation used for displaying an image having the same color balance in front and oblique observation.
  • the present invention relates to a liquid crystal display device that can display a color-balanced image and has a small viewing angle dependency of contrast.
  • a liquid crystal display device includes a light source, two dichroic polarizers, and a liquid crystal cell disposed between the dichroic polarizers.
  • Light from cold-cathode tubes, hot-cathode tubes, LEDs (light emitting diodes), EL (electroluminescence) and other light sources are blue light (wavelength 410 to 470 nm), green light (wavelength 520 to 580 nm), and red light.
  • Light (wavelength 600-660nm) is balanced and emits white light. The light is converted into linearly polarized light by the first dichroic polarizer.
  • the linearly polarized light is converted into linearly polarized light with the phase unchanged or inverted depending on the difference in voltage application or no voltage application in the liquid crystal cell.
  • the polarization transmission axis of the first dichroic polarizer is perpendicular to the polarization transmission axis of the second dichroic polarizer (also referred to as an analyzer)
  • the linearly polarized light whose phase is inverted by the liquid crystal cell Is configured such that linearly polarized light that passes through the second dichroic polarizer and remains in phase cannot pass through the second dichroic polarizer!
  • a liquid crystal cell can invert the phase with respect to light incident at a polar angle of 0 degrees (that is, the phase is delayed by a half wavelength).
  • the phase delay cannot be completely reversed and distortion may occur.
  • the degree of distortion varies depending on the wavelength.
  • the color image when viewed from the front differs from the color image when viewed from an oblique direction.
  • VA mode vertical alignment mode
  • the color coordinates (x, y) when white light is transmitted diagonally are polar 0 Color coordinates (X
  • the VA mode LCD panel emits light diagonally. When transmitted, the color shifts to reddish yellow.
  • Patent Document 1 discloses that a cholesteric liquid crystal layer having a selective reflection band at a wavelength range ( ⁇ ⁇ ) with respect to vertically incident light.
  • the collimator described in Document 1 has the function of aligning light traveling at various angles with only light traveling in the normal direction. Therefore, light rays incident from an oblique direction are reflected by this collimator and are not transmitted.
  • Patent Document 1 JP 2002-169026 A (US Publication 2002/0036735)
  • Patent Document 2 has a transmission characteristic for incident light in the visible region in the normal direction, has a reflection wavelength band in the infrared region, and has a large angle (polar angle) with respect to the normal direction. It has been proposed that an infrared reflecting layer ( ⁇ ) whose reflection wavelength band changes to the short wavelength side is arranged in the lighting device. Patent Document 2 discloses an infrared reflective layer ( ⁇ ) having a transmittance of light of 10% or less at a wavelength of 710 nm, 640 nm, or 610 nm at a polar angle of 45 degrees. Therefore, the red light incident obliquely is almost completely reflected or absorbed by the infrared reflection layer (B).
  • Patent Document 2 JP 2004-309618 A
  • Liquid crystal display devices are classified into various display modes depending on the driving method of the liquid crystal in the liquid crystal cell. Among them, VA mode liquid crystal display devices and in-plane switching mode (hereinafter referred to as “IPS mode”) liquid crystal display devices are currently mainstream for large display applications. For large displays, the difference between the color image of the color image when viewed from the front and the color image of the color image when observed from an oblique angle! / Is particularly required.
  • An object of the present invention is to provide an optical filter, an illuminating device, and a similar color balance used for displaying an image having the same color balance in front and oblique observations. A clear image can be displayed and the viewing angle depends on the contrast. It is an object of the present invention to provide a liquid crystal display device having a low potential.
  • the present inventors have blue light from the front direction between a light source and a liquid crystal panel, each having a wavelength exhibiting a peak of emission intensity in each wavelength region of blue light, green light, and red light. Slight selective reflection or selective absorption only for the peak wavelength of blue, front direction force, blue peak wavelength of red light and no selective reflection or selective absorption for the peak wavelength of green light and red light.
  • an optical filter that does not exhibit selective reflection or selective absorption with respect to the light peak wavelength, the green light peak wavelength, and the red light peak wavelength, an image with the same color balance in front and oblique observations can be obtained. I found that it can be displayed.
  • the inventors of the present invention provide blue light from the front direction between a liquid crystal panel and a light source having a wavelength exhibiting a peak of light emission intensity in each wavelength region of blue light, green light, and red light. Does not exhibit selective reflection or selective absorption for the peak wavelength of colored light, the peak wavelength of green light, and the peak wavelength of red light, and selectively reflects or reflects the peak wavelength of green light and the peak wavelength of red light. It has been found that an image with a similar color balance can be displayed for observation from the front and at an angle by providing an optical filter that exhibits some selective absorption.
  • the present invention includes the following forms.
  • the above optical filter having at least one selective reflection band or selective absorption band in a wavelength range of 450 nm to 700 nm in a polar angle direction of 60 degrees.
  • a lighting device comprising the optical filter and a light source.
  • a liquid crystal display device comprising the illumination device and a liquid crystal panel.
  • An exit side polarizing plate comprising an exit side polarizer and a protective film laminated on both sides of the exit side polarizer
  • An incident-side polarizing plate comprising an incident-side polarizer and a protective film laminated on both surfaces of the incident-side polarizer, and
  • a liquid crystal display device comprising light sources in this order,
  • one or two biaxial optical anisotropic plates are provided between the exit-side polarizer and the liquid crystal cell and / or between the incident-side polarizer and the liquid crystal cell,
  • the optical filter is provided between the incident-side polarizer and the light source, and the biaxial optical anisotropic plate has a relationship of n> n> n (where n is an in-plane slow axis direction) N is the refractive index in the direction perpendicular to the slow axis in the plane, and n is the refractive index in the thickness direction).
  • the biaxial optical anisotropic plate is a laminated body
  • the laminated body force, letter R when a light having a wavelength of 550 nm is incident at an incident angle of 0 degree, and a wavelength of 5
  • An exit side polarizing plate comprising an exit side polarizer and a protective film laminated on both surfaces of the exit side polarizer
  • An incident-side polarizing plate comprising an incident-side polarizer and a protective film laminated on both surfaces of the incident-side polarizer, and
  • a liquid crystal display device comprising light sources in this order,
  • one or two biaxial optical anisotropic plates are provided between the exit side polarizer and the liquid crystal cell and / or between the entrance side polarizer and the liquid crystal cell,
  • the optical filter is provided between the incident-side polarizer and the light source, and the biaxial optical anisotropic plate has a relationship of n> n and n> n (where n is an in-plane slow phase)
  • n is an in-plane slow phase
  • the refractive index in the axial direction, n is the refractive index in the direction perpendicular to the slow axis in the plane, and n is the refractive index in the thickness direction).
  • the biaxial optical anisotropic plate is a laminated body
  • the laminated body force, letter R when a light having a wavelength of 550 nm is incident at an incident angle of 0 degree, and a wavelength of 5
  • Liquid crystal display device Liquid crystal display device.
  • An output-side polarizing plate comprising an output-side polarizer and a protective film laminated on both surfaces of the output-side polarizer
  • An incident-side polarizing plate comprising an incident-side polarizer and a protective film laminated on both surfaces of the incident-side polarizer, and
  • a liquid crystal display device comprising light sources in this order,
  • an optical anisotropic member is provided between the exit side polarizer and the liquid crystal cell or between the entrance side polarizer and the liquid crystal cell,
  • the optical filter is provided between the incident-side polarizer and the light source,
  • the optically anisotropic member includes one first optically anisotropic plate that satisfies a relationship of n ⁇ n> n, and
  • the member is a laminated body
  • the laminated body receives the letter R when the light having a wavelength of 550 ⁇ m is incident at an incident angle of 0 ° and the light having a wavelength of 550 nm.
  • Liquid crystal display device Liquid crystal display device.
  • Transmittance T P in the front direction at a wavelength of 440 nm Transmittance at a polar angle of 60 degrees in a wavelength of 440 nm
  • a polarizing plate having a reflection band or a selective absorption band having a reflection band or a selective absorption band.
  • (11) It is composed of a polarizer and protective films laminated on both sides of the polarizer, and when used with a light source, the protective film force on the side of the protective film closer to the light source is the optical filter. ,Polarizer.
  • a polarizer and a protective film laminated on both surfaces of the polarizer, and when used with a light source, the protective film on the side close to the light source of the protective film is an optical film and the above-described protective film.
  • a liquid crystal panel comprising the polarizing plate.
  • a liquid crystal display device comprising the liquid crystal panel.
  • An output-side polarizing plate comprising an output-side polarizer and a protective film laminated on both surfaces of the output-side polarizer
  • Incident side polarizing plate comprising the polarizing plate
  • n> n> n between the exit side polarizer and the liquid crystal cell and / or between the entrance side polarizer and the liquid crystal cell (where n is the refractive index in the in-plane slow axis direction, n Is equipped with one or two biaxial optical anisotropic plates that satisfy the refractive index in the direction perpendicular to the slow axis in the plane, and n is the refractive index in the thickness direction)
  • the biaxial optical anisotropic plate is a laminated body
  • the laminated body force, letter R when a light having a wavelength of 550 nm is incident at an incident angle of 0 degree, and a wavelength of 5
  • Liquid crystal display device Liquid crystal display device.
  • An output side polarizing plate comprising an output side polarizer and a protective film laminated on both surfaces of the output side polarizer
  • Incident side polarizing plate comprising the polarizing plate
  • n> n and n> n between the exit-side polarizer and the liquid crystal cell and / or between the entrance-side polarizer and the liquid crystal cell (where n is an in-plane slow axis)
  • n is an in-plane slow axis
  • the biaxial optical anisotropic plate is a laminated body
  • the laminated body force, letter R when a light having a wavelength of 550 nm is incident at an incident angle of 0 degree, and a wavelength of 5
  • Liquid crystal display device Liquid crystal display device.
  • An output-side polarizing plate comprising an output-side polarizer and a protective film laminated on both surfaces of the output-side polarizer
  • Incident side polarizing plate comprising the polarizing plate
  • the member is a laminated body
  • the laminated body receives the letter R when the light having a wavelength of 550 ⁇ m is incident at an incident angle of 0 ° and the light having a wavelength of 550 nm.
  • Liquid crystal display device Liquid crystal display device.
  • blue light is relatively less easily transmitted than green light and red light at a polar angle of 0 degrees (also referred to as a front direction or a normal direction). And in an oblique direction (for example, polar angle 60 degrees), blue light, green light and red light are almost the same. It is designed to be transparent to the extent.
  • the optical filter and polarizing plate of the present invention transmit blue light, green light, and red light at approximately the same angle at a polar angle of 0 degrees (also referred to as a front direction or a normal direction), and in an oblique direction (for example, a polar angle of 60 Degree), green light and red light are relatively difficult to transmit compared to blue light.
  • the optical filter and polarizing plate of the present invention having such transmission characteristics can transmit white light at a polar angle of 0 degree with any of the color coordinates (x, y) when white light is transmitted obliquely. It becomes smaller than the color coordinates (X, y) at the time of making it.
  • the color coordinate shift due to the viewing angle cancels out, so the blue, green, and red color balance when viewed from an oblique angle is the blue color when viewed from the front. It can be adjusted to the same balance as green and red. As a result, when observed from an oblique direction, it is not yellowish or bluish, and the color reproduction range can be widened.
  • the color balance of blue, green, and red when the display screen is observed obliquely is the same balance as the balance of blue, green, and red when observed from the front.
  • the oblique force is also observed, it does not appear reddish or bluish, and the display image has a wide color reproduction range.
  • the viewing angle dependence of contrast is small.
  • FIG. 1 shows an example of an emission spectrum of a light source (four-wavelength cold cathode tube) used in the present invention.
  • FIG. 2 is a diagram showing an example of an emission spectrum of another light source (RGB light emitting diode) used in the present invention.
  • FIG. 3 is a diagram showing an example of a wavelength distribution of transmittance of the optical filter according to the first embodiment of the present invention.
  • FIG. 4 is a diagram showing chromaticity coordinates (x, y) of light transmitted through an isotropic film and a liquid crystal panel of Comparative Example 1.
  • FIG. 5 is a diagram showing a distribution of a linear distance ⁇ xy between the front direction chromaticity coordinates and the oblique direction chromaticity coordinates of light transmitted through the isotropic film and the liquid crystal panel of Comparative Example 1.
  • FIG. 6 is a diagram showing chromaticity coordinates (X, y) of light transmitted through the optical filter and the liquid crystal panel of Example 1 according to the present invention.
  • FIG. 7 is a diagram showing a distribution of a linear distance A xy between the front direction chromaticity coordinates and the oblique direction chromaticity coordinates of light transmitted through the optical filter and the liquid crystal panel of Example 1 according to the present invention.
  • FIG. 8 is a diagram showing chromaticity coordinates (X, y) of light transmitted through the optical filter and the liquid crystal panel of Example 2 according to the present invention.
  • FIG. 9 is a diagram showing a distribution of a linear distance A xy between the front direction chromaticity coordinates and the oblique direction chromaticity coordinates of light transmitted through the optical filter and the liquid crystal panel of Example 2 according to the present invention.
  • FIG. 10 is a diagram for explaining a method for measuring letter decision R according to the present invention.
  • FIG. 11 is a diagram showing a configuration of a liquid crystal display device of Example 3 according to the present invention.
  • FIG. 12 is a diagram showing a configuration of a liquid crystal display device of Example 4 according to the present invention.
  • FIG. 13 is a diagram showing a configuration of a liquid crystal display device of Comparative Example 2.
  • FIG. 14 is a diagram showing a configuration of a liquid crystal display device of Example 5 according to the present invention.
  • FIG. 15 is a diagram showing a configuration of a liquid crystal display device of Example 6 according to the present invention.
  • FIG. 16 is a diagram showing a configuration of a liquid crystal display device of Comparative Example 3.
  • FIG. 17 is a diagram showing a configuration of a liquid crystal display device of Example 7 according to the present invention.
  • N Wavelength distribution of transmittance in the front direction
  • A Wavelength distribution of transmittance in oblique direction
  • VAC VA mode liquid crystal cell
  • IPSC IPS mode LCD cell
  • the optical filter of the present invention has a transmittance T F in the front direction (polar angle 0 degree) with a wavelength of 440 nm, a wave
  • the selective reflection band or the selective absorption band is a wavelength band in which the transmittance is smaller than other wavelength bands. More specifically, the selective reflection band or the selective absorption band has a transmittance lower than that of other wavelength bands due to the internal structure of the optical filter in addition to the decrease in transmittance due to interface reflection on the surface of the optical filter. It is a wavelength band that has characteristics that are less than%.
  • the optical filter is placed in a liquid medium close to the average refractive index of the optical filter, and a measurement light beam is incident thereon to perform spectroscopy. Measure the transmitted light intensity (intensity P), measure the spectral transmission intensity (intensity Q) of the medium alone, and divide intensity P by intensity Q. Monkey.
  • the solid line N in Fig. 3 shows the wavelength dependence of the transmittance at a polar angle of 0 degrees (front direction).
  • the selective reflection band or selective absorption band is the part where the transmittance is smaller than the other part in the specific wavelength range (the valley part of the solid line N).
  • the selective reflection band or the selective absorption band may form a gentle valley-like force such as a parabola, a rectangular or trapezoidal valley.
  • the wavelength range of the selective reflection band or the selective absorption band varies depending on the polar angle.
  • the broken line A in Fig. 3 is the transmittance when observed from an oblique direction. Oblique direction force Observed from the front direction Selective reflection band or selective absorption band on the short wavelength side compared to frontal observation
  • the optical filter of the present invention uses this phenomenon to change the transmittance in the front direction and the oblique direction for each wavelength as described above.
  • the optical filter of the present invention only needs to have a selective reflection band or a selective absorption band that satisfies Equation [1]. (T F / T F ) and (T F / T F ) are almost equal.
  • blue light is relatively less transmitted at a polar angle of 0 degrees (front direction) than green light and red light, and blue light, green light, and red light at a polar angle of 60 degrees.
  • blue light, green light and red light are transmitted almost at the same angle at a polar angle of 0 degrees (front direction). At 60 degrees, green light and red light are relatively difficult to transmit compared to blue light.
  • blue light is relatively less transmitted at a polar angle of 0 degrees (front direction) than green light and red light, and blue light and green light are transmitted at a polar angle of 60 degrees.
  • the red light is transmitted through almost the same degree.
  • the optical filter of the first embodiment has a selective reflection band or a selective absorption band in the wavelength range of blue light when observed from the front direction, and this selective reflection band or selective absorption band is observed at a polar angle of 60 degrees.
  • the wavelength band shifts to the short wavelength side, and the transmittance of blue light becomes substantially the same as the transmittance of green light and red light.
  • the light source used in the liquid crystal display device or the like has a wavelength range of 410 to 470 for blue light, a wavelength range of 520 to 580 for green light, and 600 to 660 for red light. Each has a peak of emission intensity in the wavelength range.
  • Figure 1 shows the emission spectrum of a 4-wavelength CCFL (cold cathode tube)
  • Figure 2 shows the emission spectrum of an RGB light-emitting diode (LED). This indicates
  • the optical filter of the first embodiment preferably has a selective reflection band or a selective absorption band in the entire wavelength range of 350 to 500 nm, more preferably 410 to 470 nm, when viewed from the front.
  • the selective reflection band or the selective absorption band may be provided only in a part of the wavelength range.
  • the wavelength indicating the peak of the emission intensity of the light source is included in the selective reflection band or the selective absorption band.
  • the optical filter of the first embodiment has a transmittance T F in the front direction at a wavelength of 440 nm, usually 5
  • Transmittance T F which is usually 80% or more, and the transmittance in the 60 ° polar angle direction at a wavelength of 530 nm
  • Average value T F 1 Normally 80% or more, frontal transmittance T F 1 at a wavelength of 620 nm
  • the optical filter of the second embodiment transmits blue light, green light, and red light at approximately the same degree at a polar angle of 0 degrees (front direction), and green light and red light at a polar angle of 60 degrees compared to blue light. It is relatively difficult to penetrate.
  • the optical filter of the second embodiment has a selective reflection band or a selective absorption band in the wavelength range of green light and red light, respectively, when observed from a direction with a polar angle of 60 degrees.
  • the band is observed at a polar angle of 0 degree, the wavelength band shifts to the longer wavelength side, and the transmittance of green light and red light becomes almost the same as the transmittance of blue light.
  • the optical filter of the second embodiment has a selective reflection band or a selective absorption over the entire wavelength range of green light to red light (wavelength 450 to 700 nm) in observing the directional force at a polar angle of 60 degrees. Although it may have an absorption band, it has a selective reflection band or a selective absorption band in the wavelength band corresponding to the wavelength showing the peak of the emission intensity in each of the green light wavelength range and the red light wavelength range. I prefer this! In the front direction, it is preferable to have a selective reflection band or a selective absorption band in the wavelength ranges of 520 nm to 600 nm and 620 nm to 900 nm, respectively.
  • the optical filter of the second embodiment has a transmittance T F in the front direction at a wavelength of 440 nm, usually 8
  • the average value of transmittance in the direction of 60 degrees polar angle at a wavelength of 440 nm, T F usually 80%
  • the average value of transmittance in the direction of 60 degrees polar angle of 530 nm long T F force Normally 50% or more and 80% or less
  • the transmittance is 60% or more and 70% or less, and the transmittance in the front direction at a wavelength of 620 nm TF force
  • the optical filter of the present invention is not limited by its structure as long as the transmittance characteristics change according to the polar angle as described above.
  • Examples of the optical filter of the present invention include an optical filter that utilizes interference of light.
  • a multilayer thin film in which inorganic oxides with different refractive indexes are alternately deposited for example, a cold filter
  • a multilayer film of resins with different refractive indexes is biaxially stretched Obtained film
  • dielectric multilayer film film obtained by uniaxially stretching two types of resin films with different refractive indices, and laminated with them orthogonally; including a resin layer with cholesteric regularity
  • Circularly polarized light reflectors Laminated right-handed and left-handed products of the above circularly-polarized light reflectors; Two circularly-polarized light reflectors containing a resin layer having cholesteric regularity in the same twist direction are passed through
  • a circularly polarizing reflector including a resin layer having cholesteric regularity (hereinafter sometimes referred to as a cholesteric resin layer) has a relatively easy selective reflection band adjustment. Therefore, the optical filter of the present invention will be specifically described by exemplifying an optical filter using a circularly polarized light reflection plate including a resin layer having cholesteric regularity.
  • the circularly polarized light reflecting plate can be obtained by forming an alignment film on a sheet-like transparent substrate and further forming a resin layer having cholesteric regularity thereon.
  • the transparent substrate is not particularly limited as long as it is an optically transparent substrate.
  • a transparent substrate and Examples thereof include a transparent resin film and a glass substrate. From the viewpoint of production efficiency, a long transparent resin film is preferred as the transparent substrate.
  • the transparent resin film may be a single-layer film or a multilayer film (laminate), but preferably has a total light transmittance of 0% or more at a thickness of 1 mm! /.
  • Examples of the resin material for the transparent resin film include alicyclic structure-containing polymer resins, chain olefin polymers such as polyethylene and polypropylene, triacetyl cellulose, polybutyl alcohol, polyimide, polyarylate, polyester, polycarbonate, and polyester resin. , Polyethersulfone, amorphous polyolefin, modified acrylic polymer, epoxy resin and the like. These can be used alone or in combination of two or more.
  • the alicyclic structure-containing polymer resin is more preferable. preferable.
  • the alicyclic structure-containing polymer resin includes (1) norbornene-based polymer, (2) monocyclic cyclic olefin-based polymer, (3) cyclic conjugation-based polymer, and (4) bur alicyclic ring.
  • norbornene polymers are preferred from the viewpoint of transparency and moldability!
  • Examples of norbornene-based polymers include ring-opening polymers of norbornene-based monomers, ring-opening copolymers of norbornene-based monomers and other monomers capable of ring-opening copolymerization, and hydrogenated products thereof. Addition polymers of norbornene monomers, addition copolymers with other monomers copolymerizable with norbornene monomers, and hydrogenated products thereof. Among these, from the viewpoint of transparency, a ring-opening polymer hydrogenated product of a norbornene monomer is most preferable.
  • the polymer having the alicyclic structure is selected from known polymers disclosed in, for example, JP-A-2002-321302.
  • the resin material of the transparent resin film suitable for the present invention has a glass transition temperature of preferably 80 ° C or higher, more preferably in the range of 100 to 250 ° C.
  • a transparent resin film made of a resin material having a glass transition temperature in such a range is excellent in durability without being deformed or stressed when used at a high temperature.
  • the molecular weight of the resin material of the transparent resin film suitable for the present invention is as follows. Standard polyisoprene conversion as measured by gel (permeation) chromatography using sun (toluene if polymer resin does not dissolve) (hereinafter abbreviated as “GPC”) (when solvent is toluene)
  • GPC gel (permeation) chromatography using sun (toluene if polymer resin does not dissolve)
  • Mw weight average molecular weight in terms of polystyrene is usually 10,000—100,000, preferably ⁇ is 25,000-80,000, and more preferably ⁇ 25,000—50,000. When the weight average molecular weight is in such a range, the mechanical strength and forming processability of the film are highly balanced and suitable.
  • the molecular weight distribution (weight average molecular weight (Mw) / number average molecular weight (Mn)) of the resin material of the transparent resin film suitable for the present invention is not particularly limited, but is usually 1.0 to 10.0, preferably The range is 1.0 to 4.0, more preferably 1.2 to 3.5.
  • the resin material of the transparent resin film suitable for the present invention has a resin component (that is, an oligomer component) having a molecular weight of 2,000 or less, preferably 5% by weight or less, more preferably 3% by weight or less. More preferably, it is 2% by weight or less.
  • a resin component that is, an oligomer component
  • the amount of the oligomer component is large, fine convex portions are generated on the surface or thickness unevenness occurs, resulting in poor surface accuracy.
  • the selection of polymerization catalyst and hydrogenation catalyst conditions such as polymerization reaction and hydrogenation reaction, temperature conditions in the process of pelletizing resin as a molding material, etc. are optimized. do it.
  • the amount of the oligomer component can be measured by GPC using cyclohexane (toluene if the resin material does not dissolve).
  • the thickness of the transparent substrate used in the present invention is not particularly limited, but the thickness is usually:! To 1000 ⁇ m, preferably 5 to 300. ⁇ m, more preferably (between 30 and 100 m).
  • the transparent substrate used in the present invention is preferably subjected to surface treatment in advance.
  • the adhesion between the transparent substrate and the alignment film described later can be enhanced.
  • the surface treatment include glow discharge treatment, corona discharge treatment, ultraviolet (UV) treatment, and flame treatment. It is also preferable to provide an adhesive layer (undercoat layer) on the transparent substrate in order to improve the adhesion between the transparent substrate and the alignment film.
  • the alignment film is formed on the surface of the transparent substrate in order to regulate the orientation of the resin layer having cholesteric regularity in one direction in the plane.
  • the alignment film is, for example, polyimide, polybular alcohol. It contains polymers such as rubber, polyester, polyarylate, polyamideimide, polyetherimide and the like.
  • An alignment film can be obtained by laminating a solution (composition for alignment film) containing such a polymer into a film, drying, and rubbing in one direction.
  • Examples of the method of laminating in a film form include spin coating, roll coating, flow coating, printing, dip coating, casting film forming, bar coating, die coating, and gravure printing. Can be mentioned.
  • the rubbing method is not particularly limited! /, For example, a method of rubbing the membrane surface in a certain direction with a roll made of a synthetic fiber such as nylon or a natural fiber such as cotton or a felt wrapped around it. .
  • a method of rubbing the membrane surface in a certain direction with a roll made of a synthetic fiber such as nylon or a natural fiber such as cotton or a felt wrapped around it.
  • the method of irradiating the surface of the alignment film with polarized ultraviolet rays also has a function of regulating the alignment of the resin layer having cholesteric regularity in the alignment film in one direction in the plane. You can have it.
  • the thickness of the alignment film is preferably 0.01 to 5 ⁇ 111, and more preferably 0.05 to l ⁇ m.
  • the cholesteric regularity means that the molecular axis is aligned in a certain direction on one plane, the direction of the molecular axis is slightly shifted on the next plane, and the angle is further shifted on the next plane.
  • the angles of the molecular axes are successively shifted (twisted) in the normal direction of the plane.
  • Such a structure in which the direction of the molecular axis is twisted is called a chiral structure.
  • the normal line (chiral axis) of the plane is preferably substantially parallel to the thickness direction of the cholesteric resin layer.
  • the thickness of the cholesteric resin layer is preferably from 0.1 to 111 to 10 to 111, and more preferably from 0.5 to 111 to 5 to 111.
  • a liquid crystal polymer As a material for forming the cholesteric resin layer, first, a liquid crystal polymer is exemplified. [0055] As the liquid crystal polymer, there is a polymer having a mesogenic structure. Mesogen is a conjugated linear atomic group that imparts liquid crystal alignment.
  • Examples of the polymer having a mesogenic structure include a mesogenic group composed of a para-substituted cyclic compound or the like directly or via a spacer that imparts flexibility to a polymer main chain such as polyester, polyamide, polycarbonate, and polyesterimide.
  • Examples thereof include those having a structure in which a low molecular crystal compound (mesogen part) composed of a compound or the like is bonded.
  • Examples of the spacer part include a polymethylene chain and a polyoxymethylene chain.
  • the number of carbons contained in the structural unit forming part of the spacer is appropriately determined depending on the chemical structure of the mesogenic part. Generally, in the case of a polymethylene chain, the number of carbon atoms is;! To 20, preferably 2 to 12; in the case of a polyoxymethylene chain, the number of carbon atoms is;! To 10, preferably; ⁇ 3.
  • liquid crystal polymer examples include a nematic liquid crystal polymer containing a low molecular chiral agent; a liquid crystal polymer having a chiral component introduced therein; a mixture of a nematic liquid crystal polymer and a cholesteric liquid crystal polymer.
  • a liquid crystal polymer having a chiral component introduced therein is a liquid crystal polymer that itself functions as a chiral agent.
  • the mixture of the nematic liquid crystal polymer and the cholesteric liquid crystal polymer can adjust the pitch of the chiral structure of the nematic liquid crystal polymer by changing the mixing ratio thereof.
  • the cholesteric rule is determined by a method of introducing an appropriate chiral component or a low-molecular chiral agent composed of a compound having an asymmetric carbon into a compound having a para-substituted cyclic compound imparting nematic orientation composed of xyl units and the like. Examples thereof include polymers imparted with a property (see JP 55 21479 A, US Pat. No. 5,332,522, etc.).
  • examples of the terminal substituent at the para position in the para-substituted cyclic compound include a cyano group, an alkyl group, and an alkoxyl group.
  • the chiral agent to be introduced or contained in the liquid crystal polymer a conventionally known one can be used. Examples include chiral monomers described in JP-A-6-281814, chiral agents described in JP-A-8-209127, photoreactive chiral compounds described in JP-A-2003-131187, and the like. It is done.
  • P represents the pitch length of the chiral structure
  • c represents the concentration of the chiral agent.
  • the pitch length of the chiral structure is the distance in the chiral axis direction until the angle of the molecular axis gradually shifts in the chiral structure as it advances along the plane and then returns to the original molecular axis direction again. .
  • Suitable materials for forming the cholesteric resin layer include a polymerizable composition containing a polymerizable liquid crystal compound, preferably a polymerizable composition containing a polymerizable liquid crystal compound, a polymerization initiator, and a chiral agent.
  • a polymerizable liquid crystal compound, a polymerization initiator and a chiral agent, and a surfactant, an alignment regulator and the like were dissolved in a solvent as necessary.
  • There is a method of obtaining a coating liquid (polymerizable composition) laminating it on a substrate in a film form, drying it, and polymerizing the dried film.
  • a rod-like liquid crystal compound is preferably used.
  • rod-like liquid crystal compound examples include a compound represented by the chemical formula [6].
  • a 1 and A 2 in the chemical formula [6] are a single spacer, as will be described later. However, this spacer is omitted and B 1 and B 3 or B 4 and B are directly used. 2 may be bonded.
  • R 1 and R 2 represent a polymerizable group.
  • B 3 and B 4 each independently represents a single bond or a divalent linking group.
  • at least one of B 3 and B 4 is preferably —O—CO—O—.
  • a 1 and A 2 represent a spacer group having from 20 to 20 carbon atoms.
  • the spacer group include a polymethylene group and a polyoxymethylene group.
  • M represents a mesogenic group. The material for forming the mesogenic group M is not particularly limited!
  • the polymerization initiator includes a thermal polymerization initiator and a photopolymerization initiator, and a photopolymerization initiator is preferred because of its fast polymerization reaction.
  • polynuclear quinone compounds US Pat. Nos. 3046127 and 2951758
  • oxadiazole compounds US Pat. No. 4212970
  • ⁇ -carbonyl compounds US Pat. Nos. 2367661 and 2367670
  • Publication acyloin ether (U.S. Pat. No. 2448828), a hydrocarbon-substituted aromatic acyloin compound (U.S. Pat. No. 2722512), combination of triarylimidazole dimer and p-aminophenyl ketone (U.S. Pat. No. 3,549,367)
  • Atalidine and phenazine compounds Japanese Patent Laid-Open No. 60-105667, US Pat. No. 4,239,850.
  • the chiral agent to be contained in the polymerizable composition those described in JP-A-2003-66214, JP-A-2003-313187, US Pat. No. 6,468,444, WO98 / 00428 and the like are appropriately used. Although it can be used, one having a large HTP, which is an index representing the efficiency of twisting the liquid crystal compound, is preferable from the viewpoint of economy. Further, in order to avoid unintended changes in the phase transition temperature due to the addition of the chiral agent, it is preferable to use a compound that exhibits liquid crystallinity.
  • a surfactant can be used to adjust the surface tension of the coating solution and the film of the coating solution before polymerization.
  • a nonionic surfactant made of an oligomer having a molecular weight of about several thousand is preferred, and a nonionic surfactant is more preferred.
  • examples of such a surfactant include KH-40 manufactured by Seimi Chemical Co., Ltd.
  • the alignment modifier is for controlling the alignment state of the air-side surface of the cholesteric resin layer formed on the substrate, and may also serve as the surfactant.
  • Resins are used depending on the state. Examples of such resins include polybulu alcohol. Nore, polybutyral, or modified products thereof are used, but not limited to this
  • an organic solvent is preferably used as the solvent used for the preparation of the coating solution.
  • the organic solvent include ketones, alkyl halides, amides, sulfoxides, heterocyclic compounds, hydrocarbons, esters, and ethers.
  • ketones are preferred in consideration of environmental impact.
  • Two or more organic solvents may be used in combination.
  • a known method such as an extrusion coating method, a direct gravure coating method, a reverse gravure coating method, and a die coating method can be performed.
  • the cholesteric resin layer used in the present invention is preferably a non-liquid crystalline resin layer. This is because the non-liquid crystalline material does not change the cholesteric regularity due to the ambient temperature or electric field.
  • a non-liquid crystalline cholesteric resin layer can be obtained by selecting a polymerizable composition containing a polymerizable liquid crystal compound having two or more polymerizable groups and polymerizing it.
  • a polymerizable liquid crystal compound having two or more polymerizable groups introduces a relatively rigid cross-linked structure into the cholesteric resin, thereby obtaining a resin that does not produce liquid crystallinity.
  • White light incident at a polar angle ⁇ on the cholesteric resin layer of the circularly polarizing reflector is cholesteric.
  • the cholesteric resin layer is refracted at the surface of the resin layer and passes through the cholesteric resin layer at a refraction angle of ⁇ .
  • the light is refracted at the surface and emitted at an exit angle ⁇ . Refraction follows Snell's law
  • n the refractive index in the minor axis direction of the rod-shaped liquid crystal compound
  • n the refractive index in the major axis direction of the rod-shaped liquid crystal compound
  • the center wavelength ⁇ of the selective reflection band depends on the pitch length ⁇ ⁇ of the chiral structure in the cholesteric resin layer.
  • the selected wavelength band can be changed.
  • a layer having a pitch length of preferably 200 360 nm, more preferably 220 330 nm is provided.
  • a layer having a pitch strength of preferably (also 260 500 nm, more preferably 280 470 nm) is provided.
  • a layer having a pitch length of preferably 300 430 nm, more preferably 320 400 nm is provided.
  • a layer having a pitch strength of preferably 360 640 nm, more preferably 380 600 nm is provided.
  • the reflectance increases with the number of stacked chiral structures.
  • the number of layers of the chiral structure that is, the thickness is adjusted. Since the width of the selective reflection band depends on the difference between n and n and the pitch length distribution, an appropriate liquid crystal compound that is easy to manufacture is selected.
  • the polarizing plate of the present invention comprises a polarizer and protective films laminated on both sides of the polarizer,
  • Transmittance T P in the front direction at a wavelength of 440 nm Transmittance at a polar angle of 60 degrees in a wavelength of 440 nm
  • the polarizing plate of the present invention only needs to have a selective reflection band or a selective absorption band satisfying the formula [2]. ( ⁇ ⁇ / ⁇ ) and ( ⁇ ⁇ / ⁇ ⁇ ) must be almost equal
  • R'N ⁇ , 60 ⁇ , ⁇ needs to be larger than the value of ( ⁇ ⁇ / ⁇ ⁇ ). Specifically, ( ⁇ ⁇ / ⁇ ⁇ )
  • it is larger than 20%.
  • blue light is relatively less transmitted at a polar angle of 0 degrees (front direction) than green light and red light, and blue light, green light, and red light at a polar angle of 60 degrees.
  • blue light, green light and red light are transmitted almost at the same angle at a polar angle of 0 degrees (front direction). At 60 degrees, green light and red light are relatively difficult to transmit compared to blue light.
  • blue light is relatively difficult to transmit compared to green light and red light at a polar angle of 0 degrees (front direction), and blue light, green light and light are transmitted at a polar angle of 60 degrees. And red light is transmitted through almost the same degree.
  • the polarizing plate of the first embodiment has a selective reflection band or a selective absorption band in the blue light wavelength region when observed from the front direction, and this selective reflection band or selective absorption band is observed at a polar angle of 60 degrees.
  • the wavelength range shifts to the short wavelength side, and the transmittance of blue light becomes substantially the same as the transmittance of green light and red light.
  • the polarizing plate of the first embodiment preferably has a selective reflection band or a selection in the entire range of wavelengths from 350 nm to 500 nm, more preferably from 410 to 470 nm, when observed from the front direction.
  • An absorption band may be provided, or a selective reflection band or a selective absorption band may be provided only in a part of the wavelength range.
  • the wavelength indicating the peak of the emission intensity of the light source is included in the selective reflection band or the selective absorption band.
  • the polarizing plate of the second embodiment transmits blue light, green light, and red light at approximately the same degree at a polar angle of 0 degrees (front direction), and the green light and red light are relatively compared to blue light at a polar angle of 60 degrees. It is difficult to penetrate.
  • the polarizing plate of the second embodiment has a selective reflection band or a selective absorption band in the wavelength range of green light and red light, respectively, when observed from a direction with a polar angle of 60 degrees, and this selective reflection band or selective absorption.
  • the band is observed at a polar angle of 0 °, the wavelength band shifts to the longer wavelength side, and the transmittance of green light and red light becomes almost the same as the transmittance of blue light.
  • the polarizing plate of the second embodiment has a selective reflection band or a selective absorption band over the entire wavelength range of green light to red light (wavelength 450 to 700 nm) in observation from a direction with a polar angle of 60 degrees.
  • a selective reflection band or a selective absorption band in the wavelength band corresponding to the wavelength showing the emission intensity peak in each of the green light wavelength range and the red light wavelength range is preferable to have a selective reflection band or a selective absorption band in the wavelength band corresponding to the wavelength showing the emission intensity peak in each of the green light wavelength range and the red light wavelength range.
  • a selective reflection band or a selective absorption band in the wavelength ranges of 520 nm to 600 nm and 620 nm to 900 nm, respectively.
  • the polarizing plate of the present invention is not limited by its structure as long as the transmittance characteristics change according to the polar angle as described above.
  • a protective film comprising a polarizer and a protective film laminated on both surfaces of the polarizer, the protective film laminated on the side close to the light source among the protective films is the optical filter. The thing which is is mentioned.
  • the polarizer constituting the polarizing plate of the present invention transmits one of two linearly polarized light intersecting at right angles.
  • dichroic substances such as iodine and dichroic dyes on hydrophilic polymer films such as polybulualcohol film and ethylene acetate butter saponification film
  • Polyene such as uniaxially stretched by adsorbing, hydrophilic polymer film uniaxially stretched to adsorb dichroic substances, polybulualcohol dehydrated or polychlorinated bull dehydrochlorinated An oriented film etc. are mentioned.
  • polarizers having a function of separating polarized light into reflected light and transmitted light such as a grid polarizer and a multilayer polarizer.
  • a polarizer containing polybulal alcohol is preferred.
  • the degree of polarization of the polarizer used in the present invention is not particularly limited, but is preferably 98% or more, more preferably 99% or more.
  • the average thickness of the linear polarizer is preferably 5 H m to 80 11 m.
  • the protective film laminated on the side close to the light source among the protective films used for the polarizing plate is the optical filter, and the remaining protective films are conventionally used for protecting the polarizing plate. It is an optical film.
  • a thermoplastic resin film is usually used as a conventional optical film for protecting a polarizing plate.
  • the thermoplastic resin include alicyclic structure-containing polymer resins, chained olefin polymers such as polyethylene and polypropylene, triacetinoresenorelose, polyvinylenolenoconole, polyimide, polyarylate, polyesterol, polyester.
  • Examples include carbonate, polysulfone, polyethersulfone, amorphous polyolefin, modified acrylic polymer, epoxy resin, and methacrylic resin.
  • the protective film includes a polarizer and a protective film laminated on both surfaces of the polarizer, and the protective film is laminated on the side close to the light source.
  • Film force An example is a laminate comprising an optical film and the optical filter.
  • the protective film laminated on the side close to the light source among the protective films used for the polarizing plate is The remaining protective film, which is a laminate, is an optical film conventionally used for protecting polarizing plates.
  • the optical film used for the laminate and the conventional optical film for protecting a polarizing plate those exemplified as the optical film of Structural Example 1 can be used.
  • a polarizing plate As a polarizing plate according to a preferred embodiment of the present invention, mention may be made of one in which at least one of the protective films has optical anisotropy.
  • the film having optical anisotropy is not particularly limited as long as at least one of the main refractive indexes n, n, and n is different.
  • n n are mentioned.
  • the illuminating device of the present invention includes the optical filter of the present invention and a light source such as a cold cathode tube, a hot cathode tube, a light emitting diode, and an electoric luminescence.
  • the light source preferably has a light emission intensity peak in the wavelength range of 620 ⁇ m to 680 nm.
  • a light diffusing element, a condensing element, a brightness enhancement film, or the like may be interposed between the light source and the optical finorator, and a light reflecting element may be disposed behind the light source.
  • the light emitted from the light source is transmitted through the optical filter of the present invention with a light transmittance that satisfies the relationship of the formula [1].
  • the light reflecting element is an element capable of reflecting light.
  • a reflecting plate provided with a reflective metal film or a white film can be used.
  • the light diffusing element is an element that scatters light into diffused light to eliminate the in-plane distribution of luminance.
  • a light diffusing material such as silicone beads dispersed in a transparent substrate (sometimes referred to as a light diffusing plate), or a light diffusing material applied to the surface of a transparent substrate (referred to as a light diffusing sheet).
  • a light diffusing material such as silicone beads dispersed in a transparent substrate (sometimes referred to as a light diffusing plate), or a light diffusing material applied to the surface of a transparent substrate (referred to as a light diffusing sheet).
  • the condensing element include a prism sheet and a microlens.
  • the liquid crystal display device of the first embodiment of the present invention comprises the illumination device of the present invention and a liquid crystal panel.
  • the optical filter is preferably disposed between the light source and the liquid crystal panel.
  • the liquid crystal panel comprises an incident side polarizer, a liquid crystal cell, and an output side polarizer (analyzer).
  • the above-described polarizer can be used for the incident side or output side polarizer.
  • Polarizer performance may change due to moisture absorption.
  • a protective film is usually bonded to both sides of the incident side polarizer or analyzer.
  • the protective film bonded to the analyzer may be provided with an antireflection layer, an antifouling layer, an antiglare layer, and the like.
  • the liquid crystal cell has a liquid crystal material filled between two glass substrates provided with transparent electrodes facing each other with a gap of several [Im], and a voltage is applied to this electrode to change the alignment state of the liquid crystal. It controls the amount of light passing through here.
  • the liquid crystal cell is separated by a method (operation mode) that changes the alignment state of the liquid crystal material.
  • TN Transmission Nematic
  • STN Super Twisted Nematic
  • HAN Hybrid Alignment Nematic
  • IPS In Plane Switching g
  • VA Vertical Alignment
  • MVA Multi-domain Vertical Alignment
  • OCB Optical Compensated Bend
  • the liquid crystal display device includes an output side polarizing plate, a vertical alignment mode liquid crystal cell, an incident side polarizing plate, and a light source in this order.
  • the output-side polarizing plate includes an output-side polarizer and a protective film laminated on both surfaces of the output-side polarizer.
  • the incident side polarizing plate includes an incident side polarizer and a protective film laminated on both surfaces of the incident side polarizer.
  • n> n> n between the output-side polarizer and the liquid crystal cell and / or between the incident-side polarizer and the liquid crystal cell
  • n is the refractive index in the in-plane slow axis direction
  • n is the refractive index in the direction perpendicular to the slow axis in the plane
  • n is the refractive index in the thickness direction.
  • the biaxial optical anisotropic plate may be arranged in such a manner that only one is disposed between the output side polarizer and the liquid crystal cell, and only one between the incident side polarizer and the liquid crystal cell.
  • One plate arrangement, one arrangement between the output side polarizer and the liquid crystal cell, and one arrangement between the incident side polarizer and the liquid crystal cell, and two arrangements only between the output side polarizer and the liquid crystal cell In this mode, two sheets are disposed only between the incident side polarizer and the liquid crystal cell, and two sheets are disposed between the output side polarizer and the liquid crystal cell and between the incident side polarizer and the liquid crystal cell.
  • a mode a mode in which one sheet is disposed between the output side polarizer and the liquid crystal cell, and a second mode is disposed between the incident side polarizer and the liquid crystal cell, and two sheets between the output side polarizer and the liquid crystal cell.
  • a mode in which one sheet is disposed between the incident-side polarizer and the liquid crystal cell is included.
  • the biaxial optical anisotropic plate used in the liquid crystal display device of the second embodiment is a transparent film.
  • the transparent film can be used without particular limitation as long as the total light transmittance is 80% or more when the film is 1 mm thick.
  • thermoplastic resin examples include polycarbonate resin, polyether sulfone resin, polyethylene terephthalate resin, polyimide resin, polymethyl methacrylate resin, polysulfone resin, polyarylate resin, polyethylene resin, polychlorinated butyl resin, diacetyl cellulose, and triacetyl.
  • thermoplastic resins include polycarbonate resin, polyether sulfone resin, polyethylene terephthalate resin, polyimide resin, polymethyl methacrylate resin, polysulfone resin, polyarylate resin, polyethylene resin, polychlorinated butyl resin, diacetyl cellulose, and triacetyl.
  • examples thereof include cellulose, polystyrene resin, polyacrylic resin, and olefin polymer having an alicyclic structure.
  • the olefin polymer having an alicyclic structure can make the display image of the liquid crystal display device of the present invention have the same color balance in front and oblique observation. It can be suitably
  • Examples of olefin polymers having an alicyclic structure include norbornene resins, monocyclic cyclic olefin resins, cyclic conjugated gen resins, bull alicyclic hydrocarbon resins, and hydrides thereof. Etc. Among these, norbornene-based resins can be suitably used because of their excellent transparency and moldability.
  • the norbornene-based resin includes a ring-opening polymer of a monomer having a norbornene structure, a ring-opening copolymer of a monomer having a norbornene structure and another monomer, a hydride thereof, or a norbornene structure.
  • An addition polymer of a monomer having a structure, an addition copolymer of a monomer having a norbornene structure and another monomer, a hydride thereof, or the like can be cited by force S.
  • the film made of the thermoplastic resin it is possible to use a film obtained by a known molding method. For example, it is possible to cite those obtained by a hot melt molding method or a solution casting method. From the viewpoint of reducing volatile components in the film, it is preferable to use the one obtained by the hot melt molding method.
  • the heat melt molding method can be further classified into a melt extrusion molding method, a press molding method, an inflation method, an injection molding method, a blow molding method, a stretch molding method, and the like.
  • the melt extrusion molding method is preferable from the viewpoint of obtaining a biaxial optical anisotropic plate excellent in mechanical strength and surface accuracy.
  • the biaxial optical anisotropic plate used in the liquid crystal display device of the second embodiment is preferably obtained by stretching a film made of the thermoplastic resin.
  • a method of stretching the film made of the thermoplastic resin include a method of uniaxially stretching in the transverse direction using a tenter.
  • Uniaxial stretching method using the simultaneous biaxial stretching method in which the interval between the clips to be fixed is widened and the guide rail is spread at the same time as the longitudinal direction, and the difference in the peripheral speed between the rolls Biaxial stretching method such as sequential biaxial stretching method in which both ends are stretched in the machine direction and then clipped at both ends and stretched in the transverse direction using a tenter; feed force or tensile force at different speeds in the lateral or longitudinal direction
  • a tenter stretching machine that can add a take-up force, or a feed force, a pulling force, or a take-up force at the same horizontal speed in the horizontal or vertical direction can be added so that the moving distance is the same and the draw angle ⁇
  • a method of obliquely stretching using a tenter stretching machine that can fix the distance or the distance of movement is different.
  • the stretching temperature is generally in the range of Tg to Tg + 20 ° C, where the glass transition temperature of the thermoplastic resin is Tg. Is usually adjusted in the range of 1.;! To 6.0 times to obtain the desired optical characteristics.
  • the main refractive index in the in-plane direction of the biaxial optical anisotropic plate is n, n
  • the contrast viewing angle is z
  • the hue of the color image when the liquid crystal display device of the second embodiment is observed from the front and the hue of the color image when observed from an oblique direction may be greatly different.
  • the in-plane direction letter retardation of the biaxial optical anisotropic plate is Re
  • the display image of the liquid crystal display device of the present invention is made to have a similar color balance for front and oblique observations! be able to.
  • the liquid crystal display device is configured to have one biaxial optical anisotropic plate! (I) Biaxiality is provided between the output-side polarizer and the liquid crystal cell. With one optical anisotropic plate and ( ⁇ ) There are two types, one having a biaxial optical anisotropic plate between the incident side polarizer and the liquid crystal cell.
  • the slow axis in the plane of the biaxial optical anisotropic plate and the one arranged in the vicinity of the biaxial optical anisotropic plate It is preferable that the polarization transmission axis of the polarizer is in a substantially parallel positional relationship.
  • substantially parallel means that the angle formed by the two axes is 0 to 3 degrees, more preferably 0 to;! Degrees.
  • the liquid crystal display device has the following three modes (III) to (V):! / And two forms of the biaxial optical anisotropic plate.
  • III A mode in which one biaxial optical anisotropic plate is provided between the exit side polarizer and the liquid crystal cell, and one biaxial optical anisotropic plate is provided between the entrance side polarizer and the liquid crystal cell.
  • IV A configuration in which two biaxial optical anisotropic plates are provided between the output-side polarizer and the liquid crystal cell.
  • V A mode in which two biaxial optical anisotropic plates are provided between the incident-side polarizer and the liquid crystal cell.
  • the form (III) is preferable.
  • the slow axis in the plane of the biaxial optical anisotropic plate disposed between the output side polarizer and the liquid crystal cell, and the output side polarizer Of the biaxial optical anisotropic plate disposed between the incident side polarizer and the liquid crystal cell, and the incident side polarized light It is preferable that the polarization transmission axis of the child is in a substantially parallel positional relationship.
  • the protective film on the side near the liquid crystal cell of the output-side polarizing plate which is disposed between the input-side polarizer and the output-side polarizer,
  • the liquid crystal cell of the incident side polarizing plate is close! /
  • the protective film on the side, and all the biaxial optical anisotropic plates are temporarily made into a laminated body or multilayer body, Letter strength R when the laminated body or multilayer body force is incident with light having a wavelength of 550 nm at an incident angle of 0 °, and letter retardation R when light having a wavelength of 550 nm is incident at an incident angle of 40 °
  • the letter decision R is a position of ⁇ (see above) as shown in FIG.
  • R is the direction of the slow axis (X axis) in the plane of the biaxial optical anisotropic plate, as shown in Fig. 10.
  • the liquid crystal display device of the second embodiment further includes the optical filter of the present invention between the incident side polarizer and the light source.
  • the light emitted from the light source is transmitted through the optical filter of the present invention with a light transmittance satisfying the relationship of the formula [1].
  • the incident-side polarizing plate and the optical filter are integrated together! By being integrated, there is no space between the incident-side polarizing plate and the optical filter.
  • the method of uniting is not particularly limited. For example, a method of bonding them using an adhesive or a pressure-sensitive adhesive, a method of bringing plasma into contact with these surfaces, and then press-bonding them are exemplified.
  • the adhesive or pressure-sensitive adhesive is preferably transparent to visible light, and preferably does not generate unnecessary phase difference.
  • the optical filter also functions as a protective film for the incident-side polarizer, so the protective film on the light source side of the incident-side polarizing plate is omitted. be able to.
  • the polarization transmission axis of the exit-side polarizer and the polarization transmission axis of the entrance-side polarizer are generally arranged at substantially right angles.
  • substantially perpendicular means that the angle formed by the two axes is 87 to 90 degrees, more preferably 89 to 90 degrees.
  • the liquid crystal display device includes an output side polarizing plate, an in-plane switching mode liquid crystal cell, an incident side polarizing plate, and a light source in this order.
  • the exit-side polarizing plate includes an exit-side polarizer and a protective film laminated on both sides of the exit-side polarizer.
  • the incident-side polarizing plate includes an incident-side polarizer and a protective film laminated on both surfaces of the incident-side polarizer.
  • the distance between the output-side polarizer and the liquid crystal cell is further increased.
  • N / n and n> n (where n is the refractive index in the in-plane slow axis direction and n is in-plane orthogonal to the slow axis)
  • the biaxial optical anisotropic plate may be arranged in a mode in which only one is disposed between the output-side polarizer and the liquid crystal cell, and only in between the incident-side polarizer and the liquid crystal cell.
  • One plate arrangement, one arrangement between the output side polarizer and the liquid crystal cell, and one arrangement between the incident side polarizer and the liquid crystal cell, and two arrangements only between the output side polarizer and the liquid crystal cell In this mode, two sheets are disposed only between the incident side polarizer and the liquid crystal cell, and two sheets are disposed between the output side polarizer and the liquid crystal cell and between the incident side polarizer and the liquid crystal cell.
  • a mode a mode in which one sheet is disposed between the output side polarizer and the liquid crystal cell, and a second mode is disposed between the incident side polarizer and the liquid crystal cell, and two sheets between the output side polarizer and the liquid crystal cell.
  • a mode in which one sheet is disposed between the incident-side polarizer and the liquid crystal cell is included.
  • the biaxial optical anisotropic plate used in the third embodiment is a transparent film. Any transparent finoleum can be used as long as it has a total light transmittance of 80% or more.
  • the material for forming the biaxial optical anisotropic plate is not particularly limited, and examples thereof include materials such as resins and liquid crystals.
  • the biaxial optical anisotropic plate used in the third embodiment includes (i) a resin having a negative intrinsic birefringence value, (ii) a discotic liquid crystal, (iii) a lyo-mouth pick liquid crystal, or (iv) a photo-anisotropy. It is preferable to consist of a layer containing a material that is not a chemical substance!
  • a resin having a negative intrinsic birefringence value means that when light is incident on a layer in which molecules are aligned in a uniaxial order, the refractive index of light in the direction perpendicular to the alignment direction is the refractive index of light in the direction of alignment. What is smaller!
  • Examples of the resin having a negative intrinsic birefringence value include butyl aromatic polymer resins such as polystyrene, acrylic resins such as polyacrylonitrile polymethyl methacrylate, polycarbonate resins such as polycarbonate, and triacetyl cellulose. And cellulose acetate resins such as, and multi-component copolymers of monomers that are the raw materials for these resins.
  • These resins having a negative intrinsic birefringence value can be used alone or in combination of two or more.
  • a bull aromatic polymer resin and an acrylic resin can be preferably used, and a bull aromatic polymer resin can be particularly preferably used because of its high birefringence.
  • Examples of the butyl aromatic polymer resin include styrene, ⁇ -methylstyrene, ⁇ -methylstyrene, ⁇ -methylstyrene, ⁇ -chlorostyrene, ⁇ -nitrostyrene, ⁇ -aminostyrene, ⁇ - Homopolymers of butyl aromatic monomers such as carboxystyrene and ⁇ -phenylstyrene, and these butyl aromatic monomers, ethylene, propylene, butadiene, isoprene, (meth) acrylonitrile, ⁇ Examples thereof include copolymers with other monomers such as acrylonitrile, methyl (meth) acrylate, ethyl (meth) acrylate, (meth) acrylic acid, maleic anhydride and vinyl acetate. Of these, a homopolymer of polystyrene or a copolymer of styrene and maleic anhydride
  • an antioxidant for the resin having a negative intrinsic birefringence value, an antioxidant, a heat stabilizer, a light stabilizer, an ultraviolet absorber, an antistatic agent, a dispersant, a chlorine scavenger, a flame retardant, if necessary.
  • resins and known additives such as a thermoplastic elastomer may be contained as long as the effects of the invention are not impaired.
  • the layer containing a resin having a negative intrinsic birefringence value may contain a resin having a positive intrinsic birefringence value. Furthermore, it is preferable that the layer has a negative birefringence value which is preferably a laminate in which a layer made of a resin having a positive intrinsic birefringence value is laminated on at least one side of a layer made of a resin having a negative intrinsic birefringence value. Particularly preferred is a laminate in which layers made of a resin having a positive intrinsic birefringence value are laminated on both sides of a layer made of a resin.
  • a layer made of a resin having a positive intrinsic birefringence value is provided on at least one side of the layer made of a resin having a negative intrinsic birefringence value and the layer made of a resin having a negative intrinsic birefringence value.
  • the method for producing the laminated body is not particularly limited, and examples thereof include conventionally known methods such as a solution casting method, an injection molding method, and a melt extrusion method.
  • the layer made of a resin having a negative intrinsic birefringence value is preferably oriented.
  • the intrinsic birefringence value is negative from the viewpoints of excellent processing performance, the ability to form a biaxial optical anisotropic plate efficiently and easily, and a stable and homogeneous phase difference over a long period of time.
  • Particularly preferred is a laminate in which layers made of a resin having a positive intrinsic birefringence value are laminated.
  • the layer made of a resin having a positive intrinsic birefringence value is substantially non-oriented from the viewpoint of efficiently using the phase difference of the layer made of a resin having a negative intrinsic birefringence value. Is preferred.
  • At least one side of the oriented layer made of a resin having a negative intrinsic birefringence value and the oriented layer made of a resin having a negative intrinsic birefringence value is made of a resin having a positive intrinsic birefringence value.
  • a layer made of a resin having a negative intrinsic birefringence value As a method of manufacturing a laminate in which layers are laminated, from the viewpoint of uniformly and efficiently controlling the refractive index in the thickness direction of a biaxial optical anisotropic body, a layer made of a resin having a negative intrinsic birefringence value, A method of stretching a laminate in which a layer made of a resin having a positive intrinsic birefringence value is laminated on at least one side of a layer made of a resin having a negative intrinsic birefringence value is preferable.
  • the glass transition temperature of a resin having a negative intrinsic birefringence value is Tg (° C), and the intrinsic birefringence value is positive.
  • Tg (° C) Tg (° C) + 20 (° C)
  • a substantially non-oriented layer made of a resin having a positive intrinsic birefringence value is laminated on at least one of the oriented layers made of a resin having a negative intrinsic birefringence value.
  • a laminate can be obtained efficiently.
  • a method of further laminating another stretched film on the stretched layer made of a resin having a negative intrinsic birefringence value is also preferable.
  • a layer made of a resin having a negative intrinsic birefringence value has a structure in which a layer made of a resin having a positive intrinsic birefringence value is laminated on both sides via an adhesive resin layer. Let's go out.
  • discotic liquid crystals examples include benzene derivatives described in C. Desrade et al., Mol. Crysr. Liq. Cryst., Vol. 71, page 111 (1981), and research reports by B. Kohne et al. , Angew. Chem., 96, 70 (1984), J. MLehn et al., J. Chem. Commun., 1794 (1985), J. Other examples include the azacrown and phenylacetylene macrocycles described in Zhang et al., J. Am. Chem. Soc, 116, 2655 (1994).
  • a discotic liquid crystal generally has a structure in which a linear alkyl group, an alkoxy group, a substituted benzoyl group and the like are radially substituted as a straight chain with these as the molecular center.
  • examples of the discotic liquid crystal include a compound represented by the chemical formula [1] and a compound represented by the chemical formula [2].
  • the method of laminating the liquid crystal on the base material is preferred, and the method of laminating the discotic liquid crystal by aligning it substantially perpendicularly to the base material surface is particularly preferred.
  • a biaxial optical anisotropic plate satisfying the relations n> n and n> n can be efficiently formed.
  • the base material to be used include a plate-like material made of glass, synthetic resin, or the like.
  • a method for aligning the discotic liquid crystal substantially vertically for example, a discotic liquid crystal or a coating liquid containing a discotic liquid crystal and other additives, a polymerization initiator, and the like was applied onto a substrate.
  • a method of applying and fixing on a vertical alignment film a method of applying the coating solution on the vertical alignment film and fixing, then peeling off the vertical alignment film and laminating on the substrate. it can.
  • the vertical alignment film is a film having a low surface energy that can align liquid crystal molecules vertically, and is usually composed of a polymer.
  • a polymer in which a fluorine atom or a hydrocarbon group having 10 or more carbon atoms is introduced into the side chain can be suitably used.
  • the hydrocarbon group either an aliphatic group or an aromatic group can be used.
  • the main chain of the polymer preferably has a polyimide structure or a polybulal alcohol structure.
  • the degree of polymerization of the positive mer is preferably 200 to 5,000, more preferably 300 to 3,000.
  • the molecular weight of the polymer is preferably 9,000 to 200,000, more preferably 13,000 to 130,000.
  • the present invention in the formation of the vertical alignment film, it is preferable to perform a rubbing treatment in which the surface of the film containing the polymer is rubbed several times in a certain direction with cloth, paper, or the like.
  • Water or an organic solvent can be used for the preparation of the coating solution.
  • the organic solvent include amides such as N, N-dimethylformamide; sulfoxides such as dimethyl sulfoxide; heterocyclic compounds such as pyridine; hydrocarbons such as benzene and hexane; And the like; esters such as methyl acetate and butyl acetate; ketones such as acetone and methyl ethyl ketone; ethers such as tetrahydrofuran and 1,2-dimethoxyethane;
  • the coating method of the coating solution includes an extrusion coating method, a direct gravure coating method, a reverse dull via coating method, and a die coating method.
  • the vertically aligned discotic liquid crystal is preferably fixed while maintaining the alignment state.
  • the immobilization method include a thermal polymerization reaction method using a thermal polymerization initiator and a photopolymerization reaction method using a photopolymerization initiator. Of these, the photopolymerization reaction method is particularly preferred.
  • photopolymerization initiator examples include ⁇ -carbonyl compounds, acyloin ethers, ⁇ -hydrocarbon-substituted aromatic acyloin compounds, polynuclear quinone compounds, combinations of triarylimidazole dimers and ⁇ -aminophenyl ketones, atalidine and Mention may be made of phenazine compounds and oxadiazole compounds.
  • the liquid crystal molecules are vertically aligned using the vertical alignment film, the liquid crystal molecules are fixed in the aligned state to form an optical anisotropic layer, and only the optical anisotropic layer is formed on the transparent polymer film. Can be transferred to.
  • the liquid crystal molecules fixed in the vertical alignment state can maintain the alignment state even without the vertical alignment film.
  • the direction in which the in-plane refractive index of the layer containing the discotic liquid crystal becomes maximum due to the orientation of the discotic liquid crystal is substantially parallel to the disc surface of the discotic liquid crystal molecules.
  • a lyotopic liquid crystal is a molecule that exhibits liquid crystallinity when dissolved in a specific solvent in a specific concentration range.
  • the lyophobic liquid crystal include polymer lyotropic liquid crystal molecules in which main chains such as cellulose derivatives, polypeptides, and nucleic acids have a rod-like skeleton dissolved therein; amphiphilic low molecular weight compounds.
  • an amphiphilic lyotropic liquid crystal molecule composed of a concentrated aqueous solution
  • a chromonic molecule composed of a solution of a low-molecular compound having a water-soluble aromatic ring;
  • the liquid crystal molecular plane is aligned substantially perpendicular to the substrate surface, in which it is preferable to align the lyotropic liquid crystal in a specific direction by shearing.
  • substantially perpendicularly aligned means that the plane of liquid crystal molecules is aligned in the range of 60 to 90 degrees with respect to the substrate surface.
  • Examples of the base material on which the lyotopically picked liquid crystal is laminated include glass and synthetic resin. And the like. By stacking the lyotopically picked liquid crystal on the surface of the polarizer used in the present invention, the optical filter of the present invention, etc., the liquid crystal display device can be made lighter and thinner and the manufacturing efficiency can be increased.
  • the Riot-Pick liquid crystal does not substantially absorb light in the visible light region.
  • Examples of such lyotopic liquid crystals include compounds represented by chemical formula [3] and chemical formula [4].
  • a method of aligning the lyo-mouth pick liquid crystal substantially perpendicularly to the substrate surface by shearing is preferable.
  • the refractive index in the thickness direction of the biaxial optical anisotropic plate can be efficiently controlled by aligning the lyotropic liquid crystal vertically to the substrate surface.
  • Examples of the method of vertically aligning the lyo-mouth pick liquid crystal include a method of applying a solution of the lyo-mouth pick liquid crystal or a solution containing the lyo-mouth pick liquid crystal and an additive to a substrate and fixing it. it can.
  • the alignment film is formed for reasons such as excellent manufacturing efficiency, achieving weight reduction and thinning, preventing damage to the base material, and applying a uniform thickness. It is preferable not to use it.
  • Water or an organic solvent is used as a solvent for preparing the solution of the lyo-mouth pick liquid crystal.
  • organic solvents include amides such as N, N-dimethylformamide; sulfoxides such as dimethyl sulfoxide; heterocyclic compounds such as pyridine; hydrocarbons such as benzene and hexane; Halides such as methylene; esters such as methyl acetate and butyl acetate; ketones such as acetone and methylethylketone; and ethers such as tetrahydrofuran and 1,2-dimethoxyethane; .
  • the concentration of the lyo-mouth pick liquid crystal solution is not particularly limited as long as the solution exhibits liquid crystallinity, but the lyo-mouth pick liquid crystal is preferably from 0.0001 to 100 parts by weight with respect to 100 parts by weight of the solvent. 1.00;! To 1 part by weight is more preferred.
  • the method of applying the solution of the liquid crystal pick-up port and examples thereof include an extrusion coating method, a direct gravure coating method, a reverse gravure coating method and a die coating method.
  • the Riot-Pick pick liquid crystal aligned by shearing is fixed while maintaining the alignment state.
  • the immobilization method include a solvent removal method by drying, a thermal polymerization reaction method using a thermal polymerization initiator, and a photopolymerization reaction method using a photopolymerization initiator.
  • the direction in which the in-plane refractive index of the layer containing the lyo-mouth pick liquid crystal is maximized by the orientation of the lyo-mouth pick liquid crystal is substantially parallel to or substantially perpendicular to the molecular plane of the lyo-mouth pick liquid crystal. .
  • the photoisomerizable substance is a substance that causes stereoisomerization or structural isomerization by light, and among them, a substance that causes reverse isomerization by light of different wavelengths or heat can be preferably used.
  • Such materials include photochromic compounds with structural isomerization and color change in the visible range. Specific examples thereof include azobenzene compounds, benzaldoxime compounds, azomethine compounds, stilbene compounds, Examples include spiropyran compounds, spiroxazine compounds, fulgide compounds, diarylmethene compounds, cinnamate compounds, retinal compounds, hemithioindigo compounds, and the like.
  • the photoisomerization substance either a low molecular compound or a polymer can be used.
  • the photoisomerization group may be present in either the main chain or the side chain.
  • the polymer may be either a homopolymer or a coholomer. Coholomers can appropriately select comonomer and copolymerization ratio in order to adjust photoisomerization ability, glass transition temperature, and the like.
  • the photodifferentiating substance having a functional group capable of photoisomerization is simultaneously a liquid crystal compound, that is, a compound having a functional group capable of photoisomerizing a liquid crystal compound.
  • Examples of the photoisomerization substance include an acrylate polymer represented by the chemical formula [5].
  • a solution containing a photoisomerized substance is coated on a substrate to form a film-like surface, followed by a drying step, and linearly polarized light.
  • the method of irradiating can be mentioned.
  • the linearly polarized light is preferably irradiated from a direction perpendicular to the film surface.
  • Irradiation with linearly polarized light can be performed from the time when the coating layer is substantially dried. “Approximately dry” can be defined as 30% by weight or less of the residual solvent in the coating layer.
  • the temperature at which the linearly polarized light is irradiated can be appropriately selected according to the amount of the residual solvent. However, when the glass transition temperature of the photoisomerization material is Tg (° C), the Tg-50 (° C) force , Tg + 30 (° C) is preferable.
  • linearly polarized light sources There are no particular restrictions on linearly polarized light sources. For example, mercury lamps and halogen lamps can be listed. By irradiating with linearly polarized light, the direction in which the in-plane refractive index of the layer containing the photoisomerizable substance is maximized becomes a direction substantially orthogonal to the polarization axis of the irradiated light. By such a method, the force S can efficiently form a biaxial optical anisotropic plate satisfying the relations n> n and n> n.
  • the substrate on which the solution containing the photoisomerization substance is applied include force such as glass and synthetic resin, and the like.
  • the solvent used for the preparation of the solution containing the photoisomerization substance is not particularly limited, and examples thereof include methanol, methylene chloride, acetone, and methyl ethyl ketone.
  • the concentration of the solution is not particularly limited, and can be appropriately selected so as to achieve a viscosity suitable for coating.
  • the photoisomerizable substance is 1 to 100 parts by weight with respect to 100 parts by weight of the solvent. It is preferable.
  • There are no particular restrictions on the method of applying the solution For example, it can be applied using a bar coater, a roll coater or the like.
  • the main refractive index in the in-plane direction of the biaxial optical anisotropic plate is n, n
  • the liquid crystal display device is configured to include one biaxial optical anisotropic plate! (I) The biaxial property is provided between the output-side polarizer and the liquid crystal cell. There are two forms: a form with one optical anisotropic plate and (i) a form with one biaxial optical anisotropic plate between the incident-side polarizer and the liquid crystal cell.
  • the slow axis in the plane of the biaxial optical anisotropic plate and the one arranged in the vicinity of the biaxial optical anisotropic plate is in a substantially parallel or substantially perpendicular positional relationship.
  • the two biaxial optical anisotropic plates there are the following three modes (III) to (V) as the two biaxial optical anisotropic plates.
  • One biaxial optical anisotropic plate is provided between the output-side polarizer and the liquid crystal cell, and one biaxial optical anisotropic plate is provided between the incident-side polarizer and the liquid crystal cell of the liquid crystal display device.
  • (IV) A configuration in which two biaxial optical anisotropic plates are provided between the output-side polarizer and the liquid crystal cell.
  • (V) A configuration in which two biaxial optical anisotropic plates are provided between the incident-side polarizer and the liquid crystal cell. Among these, the form (III) is preferable.
  • the slow axis in the plane of the biaxial optical anisotropic plate disposed between the exit side polarizer and the liquid crystal cell, and the polarization absorption axis of the exit side polarizer Are in a substantially parallel positional relationship
  • the slow axis in the plane of the biaxial optical anisotropic plate disposed between the incident side polarizer and the liquid crystal cell, and the polarization absorption of the incident side polarizer It is preferable that the axis is in a substantially parallel positional relationship.
  • the polarization absorption axis of the exit-side polarizer or the polarization absorption axis of the entrance-side polarizer, and the slow axis of the liquid crystal cell in the state where no voltage is applied is preferably substantially parallel or substantially perpendicular.
  • the liquid crystal display device of the third embodiment further includes the optical filter described above between the incident-side polarizer and the light source.
  • the light emitted from the light source is transmitted through the optical filter of the present invention with a light transmittance that satisfies the relationship of the formula [1].
  • the incident-side polarizing plate and the optical filter are integrated together! By being integrated, there is no space between the incident-side polarizing plate and the optical filter.
  • the method of uniting is not particularly limited. For example, a method of bonding them together using an adhesive or a pressure sensitive adhesive, or bringing plasma into contact with these surfaces Next, a method of crimping these may be mentioned.
  • the adhesive or pressure-sensitive adhesive is preferably transparent to visible light, and preferably does not generate unnecessary phase difference.
  • the optical filter also functions as a protective film for the incident-side polarizer, so the protective film on the light source side of the incident-side polarizing plate is omitted. can do.
  • the liquid crystal display device includes an output side polarizing plate, an in-plane switching mode liquid crystal cell, an incident side polarizing plate, and a light source in this order.
  • the output-side polarizing plate includes an output-side polarizer and a protective film laminated on both surfaces of the output-side polarizer.
  • the incident side polarizing plate includes an incident side polarizer and a protective film laminated on both surfaces of the incident side polarizer.
  • a single sheet satisfying the relationship of n ⁇ n> n between the output-side polarizer and the liquid crystal cell or between the input-side polarizer and the liquid crystal cell.
  • the first optical anisotropic plate and one second optical anisotropic plate satisfying the relationship of n> n ⁇ n are provided in a multilayer or stacked manner.
  • the first optical anisotropic plate satisfying the relationship of n ⁇ n> n is selected from the biaxial optical anisotropic plates satisfying the relationship of n> n and n> n used in the liquid crystal display device of the third embodiment. can do.
  • the second optical anisotropic plate satisfying the relationship of n> n ⁇ n is the same as the biaxial optical anisotropic plate used in the liquid crystal display device of the second embodiment (that satisfies the relationship of n> n> n).
  • the slow axis of the first optical anisotropic plate satisfying the relationship n ⁇ n> n and the polarization absorption axis of the incident-side polarizer are arranged substantially at right angles! /.
  • the slow axis of the second optical anisotropic plate satisfying the relationship of n> n ⁇ n and the polarization absorption axis of the incident-side polarizer be arranged substantially at right angles! /.
  • the protective film close to the liquid crystal cell of the exit side polarizing plate which is interposed between the entrance side polarizer and the exit side polarizer, is applied with no voltage.
  • In-plane switching mode liquid crystal cell in state, protection on the side near the liquid crystal cell of the polarizing plate on the incident side When a film and all optical anisotropic plates are made into a laminated body or multilayer body, the laminated body or multilayer body force S, and letter letter R when a light with a wavelength of 550 nm is incident at an incident angle of 0 degree R Letter letter R when light with a wavelength of 550 nm is incident at an incident angle of 40 degrees.
  • the liquid crystal display device of the fourth embodiment further includes the optical filter of the present invention between the incident-side polarizer and the light source.
  • the optical filter of the present invention light emitted from the light source is transmitted with a light transmittance that satisfies the relationship of the formula [1].
  • the incident-side polarizing plate and the optical filter are integrated together! By being integrated, there is no space between the incident-side polarizing plate and the optical filter.
  • the method of uniting is not particularly limited. For example, a method of bonding them using an adhesive or a pressure-sensitive adhesive, a method of bringing plasma into contact with these surfaces, and then press-bonding them are exemplified.
  • the adhesive or pressure-sensitive adhesive is preferably transparent to visible light, and preferably does not generate unnecessary phase difference.
  • the optical filter also functions as a protective film for the incident-side polarizer, so the protective film on the light source side of the incident-side polarizing plate is omitted. can do.
  • a liquid crystal display device includes a liquid crystal panel including the polarizing plate of the present invention.
  • the polarizing plate of the present invention is disposed between the light source and the liquid crystal cell, and the light emitted from the light source satisfies the relationship of the formula [2] in the polarizing plate of the present invention. Be transparent at rate.
  • the liquid crystal display device includes an output side polarizing plate, a vertical alignment mode liquid crystal cell, an incident side polarizing plate, and a light source in this order.
  • the output-side polarizing plate includes an output-side polarizer and a protective film laminated on both surfaces of the output-side polarizer.
  • the incident side polarizing plate comprises the polarizing plate of the present invention.
  • N / n> n (where n is the refractive index in the in-plane slow axis direction and n is in the direction perpendicular to the slow axis in the plane) It has one or two biaxial optical anisotropic plates that satisfy the refractive index (where n is the refractive index in the thickness direction).
  • the biaxial optical anisotropic plate may be arranged in a mode in which only one is disposed between the output-side polarizer and the liquid crystal cell, and only one between the incident-side polarizer and the liquid crystal cell.
  • One plate arrangement, one arrangement between the output side polarizer and the liquid crystal cell, and one arrangement between the incident side polarizer and the liquid crystal cell, and two arrangements only between the output side polarizer and the liquid crystal cell In this mode, two sheets are disposed only between the incident side polarizer and the liquid crystal cell, and two sheets are disposed between the output side polarizer and the liquid crystal cell and between the incident side polarizer and the liquid crystal cell.
  • a mode a mode in which one sheet is disposed between the output side polarizer and the liquid crystal cell, and a second mode is disposed between the incident side polarizer and the liquid crystal cell, and two sheets between the output side polarizer and the liquid crystal cell.
  • a mode in which one sheet is disposed between the incident-side polarizer and the liquid crystal cell is included.
  • the biaxial optical anisotropic plate used in the sixth embodiment is the same as that exemplified as the biaxial optical anisotropic plate used in the second embodiment.
  • the arrangement direction of the biaxial optical anisotropic plate can be the same as that shown in the second embodiment.
  • the in-plane direction letter retardation of the biaxial optical anisotropic plate is Re
  • the protective film on the side, and all the biaxial optical anisotropic plates are temporarily made into a laminated body or multilayer body,
  • the layered or multilayered body force, letter R when light with a wavelength of 550 nm is incident at an incident angle of 0 °, and letter R when light with a wavelength of 550 nm is incident at an incident angle of 40 ° are IR — Satisfies the relationship of RI ⁇ 35nm.
  • the light emitted from the light source is incident on the incident-side polarizing plate comprising the polarizing plate of the present invention, and the light transmittance satisfying the relationship of the formula [2] It has become transparent.
  • the liquid crystal display device includes an output-side polarizing plate, an in-plane switching mode liquid crystal cell, an incident-side polarizing plate, and a light source in this order.
  • the exit-side polarizing plate includes an exit-side polarizer and a protective film laminated on both sides of the exit-side polarizer.
  • the incident side polarizing plate is the polarizing plate of the present invention.
  • Biaxial optical anisotropic plate satisfying the relationship (where n is the refractive index in the in-plane slow axis direction, n is the refractive index in the direction perpendicular to the slow axis in the plane, and n is the refractive index in the thickness direction) One or two of them.
  • the biaxial optical anisotropic plate may be arranged in a mode in which only one is disposed between the output-side polarizer and the liquid crystal cell, and only in between the incident-side polarizer and the liquid crystal cell.
  • One plate arrangement, one arrangement between the output side polarizer and the liquid crystal cell, and one arrangement between the incident side polarizer and the liquid crystal cell, and two arrangements only between the output side polarizer and the liquid crystal cell In this mode, two sheets are disposed only between the incident side polarizer and the liquid crystal cell, and two sheets are disposed between the output side polarizer and the liquid crystal cell and between the incident side polarizer and the liquid crystal cell.
  • a mode a mode in which one sheet is disposed between the output side polarizer and the liquid crystal cell, and a second mode is disposed between the incident side polarizer and the liquid crystal cell, and two sheets between the output side polarizer and the liquid crystal cell.
  • a mode in which one sheet is disposed between the incident-side polarizer and the liquid crystal cell is included.
  • the biaxial optical anisotropic plate used in the seventh embodiment is the same as that exemplified as the biaxial optical anisotropic plate used in the third embodiment.
  • the arrangement direction of the biaxial optical anisotropic plate can be the same as that shown in the third embodiment.
  • the in-plane direction retardation of the biaxial optical anisotropic plate when light having a wavelength of 450 nm and a wavelength of 550 nm is incident at an incident angle of 0 degrees is represented by Re , And Re, all the forces of the biaxial optical anisotropic plate 0.9 ⁇ Re / R It is preferable to satisfy the relationship of e ⁇ 1.1. Biaxial optical anisotropic plate force S, with these characteristics
  • the display image of the liquid crystal display device according to the seventh embodiment can have the same color balance when viewed from the front and oblique directions.
  • the light emitted from the light source is incident on the incident side polarizing plate made of the polarizing plate of the present invention, and the light transmittance satisfying the relationship of the formula [2] It has become transparent.
  • the liquid crystal display device of the eighth embodiment includes an output side polarizing plate, an in-plane switching mode liquid crystal cell, an incident side polarizing plate, and a light source in this order.
  • the exit-side polarizing plate includes an exit-side polarizer and a protective film laminated on both sides of the exit-side polarizer.
  • the incident side polarizing plate is the polarizing plate of the present invention.
  • one sheet satisfying the relationship of n ⁇ n> n is further provided between the exit side polarizer and the liquid crystal cell or between the entrance side polarizer and the liquid crystal cell.
  • the first optical anisotropic plate and one second optical anisotropic plate satisfying the relationship of n> n ⁇ n are provided in a multilayer or stacked manner.
  • the first optical anisotropic plate satisfying the relationship of n ⁇ n> n is selected from the biaxial optical anisotropic plates satisfying the relationship of n> n and n> n used in the liquid crystal display device of the third embodiment. can do.
  • the slow axis of the first optical anisotropic plate satisfying the relationship n ⁇ n> n and the polarization absorption axis of the incident side polarizer at substantially right angles! /.
  • the slow axis of the second optical anisotropic plate satisfying the relationship of n> n ⁇ n and the polarization absorption axis of the incident side polarizer at substantially right angles! /.
  • the first optical anisotropic plate and the second optical anisotropic plate are laminated or multilayered.
  • the laminated body or the multilayer body has a retardation R when light having a wavelength of 550 nm is incident at an incident angle of 0 degrees, and a letter pattern when light having a wavelength of 550 nm is incident at an incident angle of 40 degrees.
  • the light emitted from the light source is incident on the incident-side polarizing plate comprising the polarizing plate of the present invention, and the light transmittance satisfying the relationship of the formula [2] It has become transparent.
  • the liquid crystal display device of the present invention includes other films or layers in addition to the exit side polarizer, the liquid crystal cell, the entrance side polarizer, the light source, the optical anisotropic plate, and the optical filter.
  • the exit side polarizer the liquid crystal cell
  • the entrance side polarizer the light source
  • the optical anisotropic plate the optical filter
  • one or two or more prism array sheets, lens array sheets, light diffusion plates, light guide plates, diffusion sheets, brightness enhancement films, etc. can be placed at appropriate positions. Monkey.
  • the white light emitted from the light source passes through the optical filter of the present invention or the polarizing plate of the present invention, and then passes through the liquid crystal cell so that an image can be visually recognized. ing.
  • the chromaticity coordinates of the transmitted light in the oblique direction are converted into light having a relatively blue or green color compared to the chromaticity coordinates of the transmitted light in the front direction.
  • the optical filter of the present invention or the When the light that has passed through the polarizing plate passes through the liquid crystal cell, it becomes white light that balances blue, green, and red in both the front and diagonal directions.
  • An optically isotropic film made of norbornene-based polymer with a thickness of 100 m (product name “Zeonor Film ZF14”, manufactured by Optes Co., Ltd.) has a transmittance of 440 nm in the front direction, TF force S91%, wavelength 440nm polar angle 60% direction transmittance average straight T F force 3%, wavelength 53
  • the isotropic film and the VA mode liquid crystal panel are overlapped, and white light having an emission spectrum shown in Fig. 1 is incident from the isotropic film side, the liquid crystal panel is in a white display state, and the color of the transmitted light
  • the chromaticity coordinates were measured based on the color system (JIS-Z-8701) established by CIE (International Lighting Commission) 1931, and the distribution according to the observation angle was determined.
  • the results are shown in Figs.
  • Figure 4 shows the chromaticity coordinates (x, y).
  • the white circles in Fig. 4 are chromaticity coordinates with a polar angle of 0 degrees. It can be seen that as the observation angle increases, the chromaticity is distributed in the upper right direction.
  • Figure 5 shows the linear distance between the chromaticity coordinates (X, y) in the front direction and the chromaticity coordinates (X, y) in the diagonal direction (
  • An optically isotropic film made of norbornene-based polymer and having a thickness of 100 m (trade name “Zeonor Film ZF14”, manufactured by Optes Co., Ltd.) was used as a transparent substrate. Both surfaces of this transparent substrate were plasma-treated so that the wetting index was 56 dyne / cm.
  • a solution consisting of 5 parts by weight of polybulal alcohol and 95 parts by weight of water was applied to one side of a transparent substrate and dried to form a film. Next, the film was rubbed with a felt roll in a direction parallel to the longitudinal direction of the transparent substrate to obtain an alignment film having an average thickness of 0.1 m.
  • Nematic liquid crystal compound (BASF, trade name “LC242”) 100 parts by weight, chiral agent (BASF, trade name “LC756”) 6.05 parts by weight, photopolymerization initiator (Ciba Ii. Chemicals, trade name “Irgacure907”) 3. 28 parts by weight and surfactant (Chemi Chemicals, trade name “KH-40”) 0.2 parts by weight of methyl ethyl ketone 164 times
  • a coating solution was prepared by dissolving in an amount and filtering using a polyfluoroethylene CD / X syringe filter having a pore size of 2 m.
  • the coating solution was applied to a dry thickness of 1 ⁇ m and dried at 100 ° C for 5 minutes. Subsequently, ultraviolet rays were irradiated at 500 mj / cm 2 to form a cholesteric resin layer, and a circularly polarized light reflecting plate (optical filter B) was obtained.
  • the collimated white light having the emission spectrum shown in FIG. 1 is incident on this optical filter B at polar angles of 0 ° and 60 °, and the light transmittance is measured by a spectroscope (trade name “S-2600” manufactured by Soma Optical Co., Ltd.). )).
  • Frontal transmittance T F of wavelength 440nm is 62%, polar angle of wavelength 440nm is 60 °
  • Average straight transmittance T F is 83%, front-side transmittance T F of wavelength 530nm is 88%, wave
  • the transmittance T F in the direction is 89%, and the average value of the transmittance T F in the polar angle 60 ° direction at a wavelength of 620 nm T F
  • R, N R, was 85%.
  • the central wavelength of the selective reflection band in the front direction is 430 nm, the polar angle is 60 degrees
  • the central wavelength of the selective reflection band in the direction was 360 nm.
  • Nematic liquid crystal compound (BASF, trade name “LC242”) 100 parts by weight, chiral agent (BASF, trade name “LC756”) 3. 46 parts by weight, photopolymerization initiator (Ciba Special Ii. Chemicals, trade name “Irgacure907”) 3. 21 parts by weight and surfactant (Semi Chemicals, trade name “ ⁇ -40”) 0.1 1 parts by weight of methyl ethyl ketone 160
  • a coating solution was prepared by dissolving in a weight part and filtering using a CD / X syringe filter made of polyfluoroethylene having a pore diameter of 2 m.
  • An optically isotropic film made of norbornene-based polymer and having a thickness of 100 m (trade name “Zeonor Film ZF14”, manufactured by Optes Inc.) was used as a transparent substrate. Both surfaces of this transparent substrate were plasma-treated so that the wetting index was 56 dyne / cm.
  • a solution consisting of 5 parts by weight of polybulal alcohol and 95 parts by weight of water was applied to one side of a transparent substrate and dried to form a film. Next, the film was rubbed with a felt roll in a direction parallel to the longitudinal direction of the transparent substrate to obtain an alignment film having an average thickness of 0.1 m.
  • the coating solution was applied to a dry thickness of 1.88 ⁇ m, and dried at 100 ° C for 5 minutes. Subsequently, ultraviolet rays were irradiated at 150 mj / cm 2 to form a cholesteric resin layer, and a circularly polarized light reflector (optical filter R) was obtained.
  • This optical filter R has a transmittance in the front direction at a wavelength of 440 nm, T F force of 3%, and a wavelength of 440 ⁇ .
  • G'N G.60 frontal transmittance at wavelength 620nm TF power 5%, polar angle 60% direction at wavelength 620nm
  • the average transmittance of Tf force was 75%.
  • the center wavelength of the selective reflection band in the front direction is
  • the central wavelength of the selective reflection band in the direction of 760 nm and polar angle 60 degrees was 640 nm.
  • Optical filter R and VA mode liquid crystal panel are overlapped, white light with emission spectrum shown in Fig. 1 is incident from optical filter R side, liquid crystal panel is in white display state, and chromaticity of transmitted light is measured CIE (International Commission on Illumination) Chromaticity coordinates were obtained based on the color system (JIS-Z-8701) established in 1931, and the distribution according to the observation angle was obtained.
  • CIE International Commission on Illumination
  • Figure 8 shows the chromaticity coordinates (x, y).
  • the white circle is the chromaticity when the polar angle is 0 degree.
  • the distribution is small and small with little shift in chromaticity coordinates depending on the observation angle.
  • Figure 9 shows the chromaticity coordinates (X
  • a high-speed spectroscopic ellipsometer JA Wooolam, M-2000U
  • An optically isotropic film (product name “Zeonor Film ZF14”, manufactured by Optes, Inc.) made of norbornene-based polymer with a thickness of 100 m is stretched at a stretching temperature of 134 ° C using a tenter stretching machine.
  • a biaxial optical anisotropic plate 2B having a thickness of 50 11 m was obtained in the same manner as the production of the biaxial optical anisotropic plate 2A except that the stretching temperature was set to 138 ° C.
  • a polycarbonate film with a heat-shrinkable film bonded to both sides via an adhesive layer is uniaxially stretched at a stretching temperature of 152 ° C and a stretching ratio of 1.3 times using a tenter stretching machine to a thickness of 100 m.
  • the biaxial optical anisotropic plate 2C was obtained.
  • the Re / Re of anisotropic plate 2C was 1 ⁇ 06.
  • An unstretched laminate having the structure of m) was obtained by coextrusion molding.
  • the obtained unstretched laminate was uniaxially stretched using a tenter stretching machine at a stretching temperature of 135 ° C and a stretch ratio of 1.5 times, and one side of the film was corona-treated (one side of the film) Using a high-frequency oscillator (high-frequency power supply AGI-024 manufactured by Kasuga Denki Co., Ltd.), corona discharge treatment was performed at an output of 0.8 kW, and the surface tension of the film was adjusted to 0.072 N / m).
  • a 98 m biaxial optical anisotropic plate 2D was obtained.
  • the Re / Re of the biaxial optical anisotropic plate 2D was 1 ⁇ 04.
  • An optically isotropic film ⁇ ⁇ (product name “Zeonor Film ZF14”, manufactured by Optes Co., Ltd.) made of a norbornene polymer and having a thickness of 140 ° C. is used with a tenter stretching machine. The draw ratio was 1.41, and a biaxial optical anisotropic plate 2F having a thickness of 71 m was obtained.
  • biaxial optical anisotropic plate 2F was subjected to corona discharge treatment at a power of 0.8 kW using a high frequency oscillator (high frequency power supply AGI-024 manufactured by Kasuga Electric Co., Ltd.), and the surface tension of the film was adjusted to 0.072N. / m
  • Styrene Maleic anhydride copolymer (glass transition temperature 130 ° C) a layer, Norbornene ring-opening polymer hydride (glass transition temperature 105 ° C) b layer, and modified ethylene-butyl acetate copolymer C layer composed of coalescence [Vicat softening point 80 ° C], b layer (33 m)-c layer (8 m)-a layer (65 ⁇ m)-c layer (8 ⁇ m) b layer (33 An unstretched laminate having a structure of ⁇ m) was obtained by coextrusion molding.
  • the obtained unstretched laminate was stretched using a longitudinal uniaxial stretching machine at a stretching temperature of 135 ° C and a stretching ratio of 1.5 times to obtain a uniaxial optical anisotropic plate 2G having a thickness of 118 ⁇ 111. It was.
  • this uniaxial optical anisotropic plate 2G was subjected to corona discharge treatment at an output of 0.8 kW using a high-frequency oscillator (high-frequency power supply AGI-024 manufactured by Kasuga Denki Co., Ltd.) to reduce the surface tension of the film to 0 072N / m
  • Tri ⁇ cetyl cellulose film piece surface of (Konica force Minolta Co., Ltd., trade name "KC8UX2M”) on one surface of the saponified (the film 1.5 defines isopropyl alcohol solution of potassium hydroxide 25 ml / m 2 coating Then, after drying at 25 ° C. for 5 seconds, washing with running water for 10 seconds, and then blowing air at 25 ° C.), a triacetyl cellulose film F was obtained.
  • IR —R of the resulting optical laminate 3 is 22 nm
  • a triacetyl cellulose film F was bonded to both surfaces of the polarizer (outgoing side polarizer 3a) using a polybutyl alcohol adhesive to produce an outgoing side polarizing plate 3A. At this time, the saponification surface of the triacetyl cellulose film F was set to face the polarizer side.
  • polarizer 3b Incident side polarizer 3b
  • optical filter B is bonded to one side of it
  • biaxial optical anisotropic plate 2A is bonded to the other side
  • incident side polarized light is bonded.
  • Plate 3B was made.
  • the transparent substrate side of the optical filter B was directed to the polarizer
  • the corona-treated surface of the biaxial optical anisotropic plate 2A was directed to the polarizer.
  • Front direction of transmittance at a wavelength of 440nm T P is 26%
  • the wavelength 440nm polar angle direction of 60 degrees of Average straight transmittance T P is 27%
  • frontal transmittance at wavelength 530nm ⁇ is 42%
  • Transmittance in the direction T P is 43%, and the average value of the transmittance in the polar angle 60 degree direction with a wavelength of 620 nm ⁇ ⁇
  • R, N R, was 31%.
  • the central wavelength of the selective reflection band in the front direction is 430 nm, the polar angle is 60 degrees
  • the central wavelength of the selective reflection band in the direction was 360 nm.
  • the arrows in FIG. 11 represent V for the polarizer, the polarization absorption axis, and the biaxial optical anisotropic plate! /, And the slow axis.
  • the biaxial optical anisotropic plate 2 mm of the incident side polarizing plate 3 mm was arranged so as to face the liquid crystal cell side.
  • the polarization absorption axis of the exit side polarizer 3a and the polarization absorption axis of the entrance side polarizer 3b were set to be perpendicular to each other.
  • the slow axis in the plane of the biaxial optical anisotropic plate 2A and the polarization absorption axis of the incident side polarizer 3b were set to be perpendicular to each other.
  • the display image of the liquid crystal display device 3 showed almost no chromaticity change in the range of 0 to 80 degrees on the left and right of the display screen. It was.
  • the slow axis of the biaxial optical anisotropic plate 2bl and the slow axis of the biaxial optical anisotropic plate 2b2 were arranged at right angles. I R — R of optical laminate 4 obtained
  • Triacetyl cellulose film F is already applied to one side of the polarizer (exit-side polarizer 4a).
  • a biaxial optical anisotropic plate 2bl was bonded to one surface to produce an output-side polarizing plate 4A.
  • the saponification-treated surface of the triacetyl cellulose film F was directed to the polarizer, and the corona-treated surface of the biaxial optical anisotropic plate 2M was oriented to the polarizer.
  • Front direction of transmittance at a wavelength of 440nm T P is 26%, the wavelength 440nm polar angle direction of 60 degrees of
  • the average direct transmittance ⁇ is 27%
  • the transmittance in the front direction at a wavelength of 530 nm ⁇ is 42%
  • Transmittance in the direction T P is 43%, and the average value of the transmittance in the polar angle 60 degree direction with a wavelength of 620 nm ⁇ ⁇
  • R, N R, was 31%.
  • the central wavelength of the selective reflection band in the front direction is 430 nm, the polar angle is 60 degrees
  • the central wavelength of the selective reflection band in the direction was 360 nm.
  • the incident side polarizing plate 4B, the VA mode liquid crystal cell, and the outgoing side polarizing plate 4A are laminated in this order, and the liquid crystal having the configuration shown in FIG. Display device 4 was produced.
  • the arrows in FIG. 12 represent the polarization absorption axis for the polarizer and the slow axis for the biaxial optical anisotropic plate.
  • the display image of the liquid crystal display device 4 showed almost no chromaticity change in the range of 0 to 80 degrees on the left and right of the display screen. It was.
  • An incident side polarizing plate 3 C was obtained using a triacetyl cellulose film F instead of the optical filter B, and the structure shown in FIG. 13 was obtained in the same manner as in Example 3 except that it was replaced with the incident side polarizing plate 3 B.
  • a liquid crystal display device C was prepared, and the chromaticity change depending on the observation angle was visually evaluated. When the obtained liquid crystal display device C was observed from a direction tilted at least 60 degrees to the left and right of the display screen, the entire image was light red.
  • collimated white light having an emission spectrum shown in Fig. 1 is incident at polar angles of 0 degrees and 60 degrees, and the light transmittance is measured by a spectroscope. (Trade name “S-2600” manufactured by Soma Optical Co., Ltd.).
  • Front direction of transmittance at a wavelength of 440nm T P is 39%, the wavelength 440nm polar angle direction of 60 degrees of
  • the average straight-T [rho 28% transmission, 42% is [rho front direction of the transmittance of the wavelength 530 nm T, waves
  • Transmittance in the direction T P is 43%, and the average value of the transmittance in the polar angle 60 degree direction with a wavelength of 620 nm ⁇ ⁇
  • An isotropic film Z was bonded to both sides of a polarizer (referred to as an exit-side polarizer 5a) to produce an exit-side polarizing plate 5A.
  • Isotropic film Z is bonded to one side of the polarizer (referred to as incident-side polarizer 5b), optical filter B is bonded to the other side, and biaxial optical anisotropy is applied to the isotropic film Z.
  • the plate 2C was bonded to produce the incident side polarizing plate 5B.
  • Front direction of transmittance at a wavelength of 440nm T P is 26%, the wavelength 440nm polar angle direction of 60 degrees of
  • the average direct transmittance ⁇ is 27%
  • the transmittance in the front direction at a wavelength of 530 nm ⁇ is 42%
  • Transmittance in the direction T P is 43%, and the average value of the transmittance in the polar angle 60 degree direction with a wavelength of 620 nm ⁇ ⁇
  • R, N R, was 31%.
  • the central wavelength of the selective reflection band in the front direction is 430 nm, the polar angle is 60 degrees
  • the central wavelength of the selective reflection band in the direction was 360 nm.
  • the incident side polarizing plate 5B, the IPS mode liquid crystal cell, and the outgoing side polarizing plate 5A are laminated in this order, and the liquid crystal having the configuration shown in FIG. Display device 5 was produced.
  • the arrow in the figure indicates that the polarization absorption axis is connected to the biaxial optical anisotropic plate for the polarizer.
  • V represents the slow axis and the liquid crystal cell represents the slow axis when no voltage is applied.
  • the polarization absorption axis of the exit-side polarizer 5a and the polarization absorption axis of the entrance-side polarizer 5b were set to be perpendicular.
  • the slow axis when no voltage was applied to the liquid crystal cell and the polarization absorption axis of the incident-side polarizer 5b were set to be perpendicular to each other.
  • the slow axis in the plane of the biaxial optical anisotropic plate 2C and the polarization absorption axis of the incident side polarizer 5b were set to be perpendicular to each other.
  • the display image of the liquid crystal display device 5 showed almost no chromaticity change in the range of 0 to 80 degrees on the left and right of the display screen. I was strong. Further, when the display screen of the liquid crystal display device 5 was displayed in black and the screen was observed from an oblique direction, no light leakage was observed, and the display was homogeneous black.
  • the slow axis of the biaxial optical anisotropic plate 2D and the slow axis of the biaxial optical anisotropic plate 2E were arranged at right angles.
  • the output side polarizing plate 6A was prepared by laminating the triacetyl cellulose film F on one side of the polarizer (referred to as the output side polarizer 4a) and the biaxial optical anisotropic plate 2D on the other side. At this time, the saponification-treated surface of the triacetyl cellulose film F was directed to the polarizer, and the corona-treated surface of the biaxial optical anisotropic plate 2D was oriented to the polarizer.
  • an optical filter B is bonded to one surface of a polarizer (referred to as an incident side polarizer 6b), and a biaxial optical anisotropic plate 2E is bonded to the other surface to form an incident side polarizing plate. 6B was produced.
  • Front direction of transmittance at a wavelength of 440nm T P is 26%, the wavelength 440nm polar angle direction of 60 degrees of
  • the average direct transmittance ⁇ is 27%
  • the transmittance in the front direction at a wavelength of 530 nm ⁇ is 42%
  • Transmittance in the direction T P is 43%, and the average value of the transmittance in the polar angle 60 degree direction with a wavelength of 620 nm ⁇ ⁇
  • R, N R, was 31%.
  • the central wavelength of the selective reflection band in the front direction is 430 nm, the polar angle is 60 degrees
  • the central wavelength of the selective reflection band in the direction was 360 nm.
  • the incident side polarizing plate 6B, the IPS mode liquid crystal cell, and the outgoing side polarizing plate 6A are laminated in this order, and the liquid crystal having the configuration shown in FIG. Display device 6 was produced.
  • the biaxial optical anisotropic plate 2D of the exit side polarizing plate 6A is directed to the liquid crystal cell, and
  • the biaxial optical anisotropic plate 2E of the incident side polarizing plate 6B was disposed so as to face the liquid crystal cell.
  • the polarization absorption axis of the exit side polarizer 6a and the polarization absorption axis of the entrance side polarizer 6b were set to be perpendicular to each other.
  • the slow axis when no voltage was applied to the liquid crystal cell and the polarization absorption axis of the incident side polarizer 6b were set to be perpendicular to each other.
  • Biaxial optical anisotropic plate 2D In-plane slow axis and exit side polarizer 6a's polarization absorption axis are parallel, and biaxial optical anisotropic plate 2E in-plane slow axis and incident side polarizer The polarization absorption axis of 6b was made parallel.
  • An isotropic film Z is used in place of the optical filter B to obtain the incident side polarizing plate 5C, and the structure shown in FIG. 16 is obtained in the same manner as in Example 5 except that it is replaced with the incident side polarizing plate 5B.
  • a liquid crystal display device F was produced.
  • the image on the display screen of the liquid crystal display device F was observed when viewed from a direction inclined at least 60 degrees to the left and right of the screen. It was light red.
  • the display screen of the liquid crystal display device F was displayed in black and the screen was observed for an oblique force, no light leakage was observed.
  • collimated white light having an emission spectrum shown in Fig. 1 is incident at polar angles of 0 degrees and 60 degrees, and the light transmittance is increased. Measured with a spectroscope (trade name “S-2600” manufactured by Soma Optical Co., Ltd.).
  • Front direction of transmittance at a wavelength of 440nm T P is 39%, the wavelength 440nm polar angle direction of 60 degrees of
  • the average straight-T [rho 28% transmission, 42% is [rho front direction of the transmittance of the wavelength 530 nm T, waves
  • Transmittance in the direction T P is 43%, and the average value of the transmittance in the polar angle 60 degree direction with a wavelength of 620 nm ⁇ ⁇
  • the optically anisotropic plate 2 G and the biaxial optically anisotropic plate 2F were laminated in this order to produce an optical laminated plate 7.
  • the slow axes of the liquid crystal cell, the uniaxial optical anisotropic plate 2G, and the biaxial optical anisotropic plate 2F when no voltage was applied were all arranged in parallel.
  • An isotropic film Z was bonded to both sides of a polarizer (referred to as an exit-side polarizer 7a) to produce an exit-side polarizing plate 7A.
  • the biaxial optical anisotropic plate 2F and the uniaxial optical anisotropic plate 2G are bonded so that their slow axes are parallel to obtain a laminated plate.
  • Adhere optical polarizer B on one side of the polarizer referred to as incident side polarizer 7b
  • the incident side polarizing plate 7B was produced.
  • Front direction of transmittance at a wavelength of 440nm T P is 26%, the wavelength 440nm polar angle direction of 60 degrees of
  • the average direct transmittance ⁇ is 27%
  • the transmittance in the front direction at a wavelength of 530 nm ⁇ is 42%
  • Transmittance in the direction T P is 43%, and the average value of the transmittance in the polar angle 60 degree direction with a wavelength of 620 nm ⁇ ⁇
  • R, N R, was 31%.
  • the central wavelength of the selective reflection band in the front direction is 430 nm, the polar angle is 60 degrees
  • the central wavelength of the selective reflection band in the direction was 360 nm.
  • the polarization absorption axis of the exit-side polarizer 7a and the polarization absorption axis of the entrance-side polarizer 7b were set to be perpendicular.
  • the slow axis when no voltage was applied to the liquid crystal cell and the polarization absorption axis of the incident side polarizer 7b were set to be perpendicular to each other.
  • Biaxial optical anisotropic plate 2F in-plane slow axis and incident-side polarizer 7b polarization absorption axis are perpendicular to each other, and uniaxial optical anisotropic plate 2G in-plane slow axis and incident-side polarization
  • the polarization absorption axis of the child 7b was set at a right angle.
  • the display image of the liquid crystal display device 7 showed almost no chromaticity change in the range of 0 to 80 degrees on the left and right of the display screen. I was strong. Moreover, when the display screen of the liquid crystal display device 7 was displayed in black and the screen was observed from an oblique direction, no light leakage was observed, and a uniform black display was obtained.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)
  • Optical Filters (AREA)

Abstract

Provided is an optical filter having a selected reflection band or a selected absorption band which satisfies Expression (1). (TFB,60/TFB,N) > (TFG,60/TFG,N) almost equal to (TFR,60/TFR,N) [1] wherein TFB,N is a transmittance in the front surface direction of wavelength 440 nm; TFB,60 is an average value of the transmittance in the direction of polar angle 60 degrees of wavelength 440 nm; TFG,N is a transmittance in the front surface direction of wavelength 530 nm; TFG,60 is an average value of transmittance in the direction of polar angle 60 degrees of wavelength 530 nm; TFR,N is a transmittance in the front surface direction of wavelength 620 nm; and TFR,60 is an average value of the transmittance in the direction of polar angle 60 degrees of wavelength 620 nm.

Description

明 細 書  Specification
光学フィルタ、偏光板、照明装置、および液晶表示装置  Optical filter, polarizing plate, illumination device, and liquid crystal display device
技術分野  Technical field
[0001] 本発明は、光学フィルタ、偏光板、照明装置、および液晶表示装置に関する。具体 的には、本発明は、正面及び斜めからの観察において同様の色バランスがとれた画 像を表示するために用いる光学フィルタ、偏光板、照明装置、および正面及び斜め 力もの観察において同様の色バランスがとれた画像を表示でき、コントラストの視野 角依存性が小さい液晶表示装置に関する。  The present invention relates to an optical filter, a polarizing plate, an illumination device, and a liquid crystal display device. Specifically, the present invention is similar to the optical filter, polarizing plate, illumination device, and front and oblique force observation used for displaying an image having the same color balance in front and oblique observation. The present invention relates to a liquid crystal display device that can display a color-balanced image and has a small viewing angle dependency of contrast.
背景技術  Background art
[0002] 液晶表示装置は、光源と、二枚の二色性偏光子と、この二色性偏光子に挟まれて 配置された液晶セルとを含むものである。冷陰極管、熱陰極管、 LED (発光ダイォー ド)、 EL (エレクトロルミネセンス)などの光源からの光は、青色光(波長 410〜470n m)、緑色光(波長 520〜580nm)、及び赤色光(波長 600〜660nm)等がバランス され白色発光する。該光は一枚目の二色性偏光子で直線偏光に変換される。該直 線偏光は、液晶セルにおける電圧印加又は電圧無印加の違いによって、位相がそ のまま又は反転された直線偏光に変換される。一枚目の二色性偏光子の偏光透過 軸と二枚目の二色性偏光子(検光子ともいう。)の偏光透過軸が直角の場合、液晶セ ルで位相が反転された直線偏光は、二枚目の二色性偏光子を透過し、位相がその ままの直線偏光は二枚目の二色性偏光子を通過できな!/、構成となる。  [0002] A liquid crystal display device includes a light source, two dichroic polarizers, and a liquid crystal cell disposed between the dichroic polarizers. Light from cold-cathode tubes, hot-cathode tubes, LEDs (light emitting diodes), EL (electroluminescence) and other light sources are blue light (wavelength 410 to 470 nm), green light (wavelength 520 to 580 nm), and red light. Light (wavelength 600-660nm) is balanced and emits white light. The light is converted into linearly polarized light by the first dichroic polarizer. The linearly polarized light is converted into linearly polarized light with the phase unchanged or inverted depending on the difference in voltage application or no voltage application in the liquid crystal cell. When the polarization transmission axis of the first dichroic polarizer is perpendicular to the polarization transmission axis of the second dichroic polarizer (also referred to as an analyzer), the linearly polarized light whose phase is inverted by the liquid crystal cell Is configured such that linearly polarized light that passes through the second dichroic polarizer and remains in phase cannot pass through the second dichroic polarizer!
[0003] 一般に液晶セルは、極角 0度で入射する光に対して位相を反転できる(すなわち、 位相を二分の一波長遅らせる)ものであっても、斜めから入射する光に対しては、位 相の遅延を完全に反転できず、歪みを生じることがある。この歪みの度合いは波長に よって異なる。その結果、正面から観察したときのカラー画像の色合いと、斜めから観 察したときのカラー画像の色合いが異なるようになる。例えば、ヴアーティカルァラィメ ントモード(以下、「VAモード」ということがある)の液晶パネルでは、白色光を斜めに 透過させたときの色座標(x、 y)が、白色光を極角 0度で透過させたときの色座標(X  In general, a liquid crystal cell can invert the phase with respect to light incident at a polar angle of 0 degrees (that is, the phase is delayed by a half wavelength). The phase delay cannot be completely reversed and distortion may occur. The degree of distortion varies depending on the wavelength. As a result, the color image when viewed from the front differs from the color image when viewed from an oblique direction. For example, in a vertical alignment mode (hereinafter sometimes referred to as “VA mode”) liquid crystal panel, the color coordinates (x, y) when white light is transmitted diagonally are polar 0 Color coordinates (X
N  N
, y )に比べ、共に大きくなる。すなわち、 VAモードの液晶パネルでは、斜めに光が 透過すると赤みを帯びた黄色にカラーシフトする。 , y) are both larger. In other words, the VA mode LCD panel emits light diagonally. When transmitted, the color shifts to reddish yellow.
[0004] この観察角度による色合いの相違を解消するために、特許文献 1では、垂直入射 光に対して波長え 〜え ( λ < λ )に選択反射帯域を有するコレステリック液晶層か [0004] In order to eliminate the difference in hue depending on the observation angle, Patent Document 1 discloses that a cholesteric liquid crystal layer having a selective reflection band at a wavelength range (λ <λ) with respect to vertically incident light.
1 2 1 2  1 2 1 2
らなり、組み合されて使用される光源の発光スペクトルの極大波長え に対して λ <  Λ <for the maximum wavelength of the emission spectrum of the light source used in combination
0 0 λ を満たすコリメータをバックライトシステムに配置することが提案されている。特許 It has been proposed to place a collimator that satisfies 0 0 λ in the backlight system. Patent
1 1
文献 1に記載されたコリメータは、様々な角度で進む光を、法線方向に進む光だけに 揃える機能を有するものである。従って、斜めから入射する光線はこのコリメータによ つて反射され透過しない。  The collimator described in Document 1 has the function of aligning light traveling at various angles with only light traveling in the normal direction. Therefore, light rays incident from an oblique direction are reflected by this collimator and are not transmitted.
特許文献 1:特開 2002— 169026号公報(米国公開公報 2002/0036735)  Patent Document 1: JP 2002-169026 A (US Publication 2002/0036735)
[0005] また特許文献 2では、法線方向の可視光領域の入射光に対しては透過特性を有し 、赤外域に反射波長帯域を有し、法線方向に対する角度(極角)が大きくなるにした 力^、、反射波長帯域が短波長側に変化する赤外反射層(Β)を照明装置に配置する ことが提案されている。特許文献 2には赤外反射層(Β)として、極角 45度の波長 710 nm、 640nm又は 610nmの光の透過率が 10%以下となるものが開示されている。 従って、斜めから入射する赤色光は赤外反射層(B)によってほぼ完全に反射又は吸 収されてしまう。 [0005] In addition, Patent Document 2 has a transmission characteristic for incident light in the visible region in the normal direction, has a reflection wavelength band in the infrared region, and has a large angle (polar angle) with respect to the normal direction. It has been proposed that an infrared reflecting layer (Β) whose reflection wavelength band changes to the short wavelength side is arranged in the lighting device. Patent Document 2 discloses an infrared reflective layer (Β) having a transmittance of light of 10% or less at a wavelength of 710 nm, 640 nm, or 610 nm at a polar angle of 45 degrees. Therefore, the red light incident obliquely is almost completely reflected or absorbed by the infrared reflection layer (B).
特許文献 2 :特開 2004— 309618号公報  Patent Document 2: JP 2004-309618 A
[0006] 液晶表示装置は、その液晶セル中の液晶の駆動方式の違いによって種々の表示 モードに分別される。中でも、 VAモードの液晶表示装置及びインプレーンスィッチン グモード(以下、「IPSモード」ということがある。)の液晶表示装置は、大型ディスプレ ィ用途で現在主流となっている。大型ディスプレイでは、正面から観察したときのカラ 一画像の色合レ、と、斜めから観察したときのカラー画像の色合!/、との差が小さ!/、こと が特に求められる。 [0006] Liquid crystal display devices are classified into various display modes depending on the driving method of the liquid crystal in the liquid crystal cell. Among them, VA mode liquid crystal display devices and in-plane switching mode (hereinafter referred to as “IPS mode”) liquid crystal display devices are currently mainstream for large display applications. For large displays, the difference between the color image of the color image when viewed from the front and the color image of the color image when observed from an oblique angle! / Is particularly required.
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0007] 本発明の目的は、正面及び斜めからの観察において同様の色バランスがとれた画 像を表示するために用いる光学フィルタ、照明装置、および正面及び斜めからの観 察において同様の色バランスがとれた画像を表示でき、且つコントラストの視野角依 存性が小さい液晶表示装置を提供することにある。 [0007] An object of the present invention is to provide an optical filter, an illuminating device, and a similar color balance used for displaying an image having the same color balance in front and oblique observations. A clear image can be displayed and the viewing angle depends on the contrast. It is an object of the present invention to provide a liquid crystal display device having a low potential.
課題を解決するための手段  Means for solving the problem
[0008] 本発明者らは、上記特許文献に開示されている液晶表示装置を正面から観察した 場合には、青色、緑色及び赤色が良くバランスした画像が得られる力 斜めから観察 した場合には、青緑色を帯びた画像になってしまうことに気付いた。  [0008] When the liquid crystal display device disclosed in the above-mentioned patent document is observed from the front, the present inventors can obtain an image in which blue, green, and red are well balanced. , I noticed that the image becomes turquoise.
[0009] そこで、本発明者らは、青色光、緑色光、および赤色光の各波長領域にそれぞれ 発光強度のピークを示す波長を有する光源と液晶パネルとの間に、正面方向からの 青色光のピーク波長に対してだけ選択反射若しくは選択吸収を若干示し、正面方向 力、らの緑色光のピーク波長及び赤色光のピーク波長に対して選択反射若しくは選択 吸収を示さず、斜め方向からの青色光ピーク波長、緑色光のピーク波長及び赤色光 のピーク波長に対して選択反射若しくは選択吸収を示さない光学フィルタを備えるこ とによって、正面及び斜めからの観察において同様の色バランスがとれた画像を表 示できることを見出した。  [0009] Therefore, the present inventors have blue light from the front direction between a light source and a liquid crystal panel, each having a wavelength exhibiting a peak of emission intensity in each wavelength region of blue light, green light, and red light. Slight selective reflection or selective absorption only for the peak wavelength of blue, front direction force, blue peak wavelength of red light and no selective reflection or selective absorption for the peak wavelength of green light and red light. By providing an optical filter that does not exhibit selective reflection or selective absorption with respect to the light peak wavelength, the green light peak wavelength, and the red light peak wavelength, an image with the same color balance in front and oblique observations can be obtained. I found that it can be displayed.
[0010] また、本発明者らは、青色光、緑色光、および赤色光の各波長領域にそれぞれ発 光強度のピークを示す波長を有する光源と液晶パネルとの間に、正面方向からの青 色光のピーク波長、緑色光のピーク波長及び赤色光のピーク波長に対して選択反射 若しくは選択吸収を示さず、斜め方向からの緑色光のピーク波長及び赤色光のピー ク波長に対して選択反射若しくは選択吸収を若干示す光学フィルタを備えることによ つて、正面及び斜めからの観察にお!/、て同様の色バランスがとれた画像を表示でき ることを見出した。  [0010] Further, the inventors of the present invention provide blue light from the front direction between a liquid crystal panel and a light source having a wavelength exhibiting a peak of light emission intensity in each wavelength region of blue light, green light, and red light. Does not exhibit selective reflection or selective absorption for the peak wavelength of colored light, the peak wavelength of green light, and the peak wavelength of red light, and selectively reflects or reflects the peak wavelength of green light and the peak wavelength of red light. It has been found that an image with a similar color balance can be displayed for observation from the front and at an angle by providing an optical filter that exhibits some selective absorption.
これらの知見に基づいて、本発明者らはさらに検討を加え、本発明を完成するに至 つた。  Based on these findings, the present inventors have further studied and have completed the present invention.
[0011] 力べして本発明は、以下の形態を含む。  [0011] Forcibly, the present invention includes the following forms.
(1) 波長 440nmの正面方向の透過率 T 、波長 440nmの極角 60度方向の透過  (1) Transmittance T in the front direction at a wavelength of 440 nm, transmission at a polar angle of 60 degrees in a wavelength of 440 nm
Β,Ν  Β, Ν
率の平均直 TF 、波長 530nmの正面方向の透過率 TF 、波長 530nmの極角 60 The average straight-T F rate, the transmittance T F in the front direction of the wavelength 530nm, polar angle 60 of wavelength 530nm
B,60 G,N  B, 60 G, N
度方向の透過率の平均値 TF 、波長 620nmの正面方向の透過率 TF 、及び波長 The average value of the degrees direction transmittance T F, the front direction of the transmittance at a wavelength of 620 nm T F, and the wavelength
G,60 R'N  G, 60 R'N
620nmの極角 60度方向の透過率の平均値 TF が式〔1〕の関係を満たす、選択反 620nm polar angle 60% direction average transmittance T F satisfies the relationship of formula [1].
R.60  R.60
射帯域もしくは選択吸収帯域を有する、光学フィルタ。 (TF /TF ) > (TF /TF ) = (TF /TF ) 式〔1〕 An optical filter having an emission band or a selective absorption band. ( TF / TF )> ( TF / TF ) = ( TF / TF ) Equation (1)
B,60 B,N G,60 G,N R,60 R,N  B, 60 B, N G, 60 G, N R, 60 R, N
(2) 正面方向において、波長 350nm〜500nmの範囲に選択反射帯域もしくは選 択吸収帯域を有する、前記の光学フィルタ。  (2) The above optical filter having a selective reflection band or a selective absorption band in a wavelength range of 350 nm to 500 nm in the front direction.
(3) 極角 60度方向において、波長 450nm〜700nmの範囲に少なくとも 1つの選 択反射帯域もしくは選択吸収帯域を有する、前記の光学フィルタ。  (3) The above optical filter having at least one selective reflection band or selective absorption band in a wavelength range of 450 nm to 700 nm in a polar angle direction of 60 degrees.
(4) 前記の光学フィルタと、光源とを備える、照明装置。  (4) A lighting device comprising the optical filter and a light source.
(5) 前記光源が、波長 620nm〜680nmの範囲に発光強度のピークを有する、前 記の照明装置。  (5) The illumination device as described above, wherein the light source has a peak of emission intensity in a wavelength range of 620 nm to 680 nm.
(6) 前記の照明装置と液晶パネルとを備える、液晶表示装置。  (6) A liquid crystal display device comprising the illumination device and a liquid crystal panel.
(7) 出射側偏光子と該出射側偏光子の両面に積層された保護フィルムとを含んで なる出射側偏光板、  (7) An exit side polarizing plate comprising an exit side polarizer and a protective film laminated on both sides of the exit side polarizer,
ヴアーティカルァライメントモードの液晶セル、  Vertical alignment mode LCD cell,
入射側偏光子と該入射側偏光子の両面に積層された保護フィルムとを含んでなる 入射側偏光板、及び  An incident-side polarizing plate comprising an incident-side polarizer and a protective film laminated on both surfaces of the incident-side polarizer, and
光源をこの順に備える液晶表示装置であって、  A liquid crystal display device comprising light sources in this order,
さらに、前記出射側偏光子と前記液晶セルとの間および/または前記入射側偏光 子と前記液晶セルとの間に 1枚または 2枚の二軸性光学異方板を備え、  In addition, one or two biaxial optical anisotropic plates are provided between the exit-side polarizer and the liquid crystal cell and / or between the incident-side polarizer and the liquid crystal cell,
さらに、前記入射側偏光子と前記光源との間に、前記の光学フィルタを備え、 前記二軸性光学異方板は、 n >n >nの関係(ただし、 nは面内遅相軸方向の屈 折率、 nは遅相軸に面内で直交する方向の屈折率、 nは厚さ方向の屈折率)を満た し、  Further, the optical filter is provided between the incident-side polarizer and the light source, and the biaxial optical anisotropic plate has a relationship of n> n> n (where n is an in-plane slow axis direction) N is the refractive index in the direction perpendicular to the slow axis in the plane, and n is the refractive index in the thickness direction).
前記出射側偏光板における前記液晶セルに近!/、側の保護フィルム、電圧無印加 状態の前記液晶セル、前記入射側偏光板における前記液晶セルに近い側の保護フ イルム、及びすベての前記二軸性光学異方板を仮に積層体にしたときに、該積層体 力、波長 550nmの光を入射角 0度で入射させたときのレターデーシヨン Rと、波長 5  Close to the liquid crystal cell on the output side polarizing plate, a protective film on the side, the liquid crystal cell in a state in which no voltage is applied, a protective film on the side close to the liquid crystal cell in the incident side polarizing plate, and all When the biaxial optical anisotropic plate is a laminated body, the laminated body force, letter R when a light having a wavelength of 550 nm is incident at an incident angle of 0 degree, and a wavelength of 5
0  0
50nmの光を入射角 40度で入射させたときのレターデーシヨン R とが、 | R —R |  Letter decision R when 50nm light is incident at an incident angle of 40 degrees | R —R |
40 40 0 40 40 0
≤ 35nmの関係を満たす、 ≤ 35nm satisfying relationship,
液晶表示装置。 [0013] (8) 出射側偏光子と該出射側偏光子の両面に積層された保護フィルムとを含んで なる出射側偏光板、 Liquid crystal display device. (8) An exit side polarizing plate comprising an exit side polarizer and a protective film laminated on both surfaces of the exit side polarizer,
インプレーンスイッチングモードの液晶セル、  In-plane switching mode liquid crystal cell,
入射側偏光子と該入射側偏光子の両面に積層された保護フィルムとを含んでなる 入射側偏光板、及び  An incident-side polarizing plate comprising an incident-side polarizer and a protective film laminated on both surfaces of the incident-side polarizer, and
光源をこの順に備える液晶表示装置であって、  A liquid crystal display device comprising light sources in this order,
さらに、前記出射側偏光子と前記液晶セルとの間および/または前記入射側偏光 子と前記液晶セルとの間に 1枚または 2枚の二軸性光学異方板を備え、  In addition, one or two biaxial optical anisotropic plates are provided between the exit side polarizer and the liquid crystal cell and / or between the entrance side polarizer and the liquid crystal cell,
さらに、前記入射側偏光子と前記光源との間に、前記の光学フィルタを備え、 前記二軸性光学異方板は、 n >n及び n >nの関係(ただし、 nは面内遅相軸方 向の屈折率、 nは遅相軸に面内で直交する方向の屈折率、 nは厚さ方向の屈折率) を満たし、  Further, the optical filter is provided between the incident-side polarizer and the light source, and the biaxial optical anisotropic plate has a relationship of n> n and n> n (where n is an in-plane slow phase) The refractive index in the axial direction, n is the refractive index in the direction perpendicular to the slow axis in the plane, and n is the refractive index in the thickness direction).
前記出射側偏光板における前記液晶セルに近!/、側の保護フィルム、電圧無印加 状態の前記液晶セル、前記入射側偏光板における前記液晶セルに近い側の保護フ イルム、及びすベての前記二軸性光学異方板を仮に積層体にしたときに、該積層体 力、波長 550nmの光を入射角 0度で入射させたときのレターデーシヨン Rと、波長 5  Close to the liquid crystal cell on the output side polarizing plate, a protective film on the side, the liquid crystal cell in a state in which no voltage is applied, a protective film on the side close to the liquid crystal cell in the incident side polarizing plate, and all When the biaxial optical anisotropic plate is a laminated body, the laminated body force, letter R when a light having a wavelength of 550 nm is incident at an incident angle of 0 degree, and a wavelength of 5
0  0
50nmの光を入射角 40度で入射させたときのレターデーシヨン R とが、 | R —R |  Letter decision R when 50nm light is incident at an incident angle of 40 degrees | R —R |
40 40 0 40 40 0
≤ 35nmの関係を満たす、 ≤ 35nm satisfying relationship,
液晶表示装置。  Liquid crystal display device.
[0014] (9) 出射側偏光子と該出射側偏光子の両面に積層された保護フィルムとを含んで なる出射側偏光板、  (9) An output-side polarizing plate comprising an output-side polarizer and a protective film laminated on both surfaces of the output-side polarizer,
インプレーンスイッチングモードの液晶セル、  In-plane switching mode liquid crystal cell,
入射側偏光子と該入射側偏光子の両面に積層された保護フィルムとを含んでなる 入射側偏光板、及び  An incident-side polarizing plate comprising an incident-side polarizer and a protective film laminated on both surfaces of the incident-side polarizer, and
光源をこの順に備える液晶表示装置であって、  A liquid crystal display device comprising light sources in this order,
さらに、前記出射側偏光子と前記液晶セルとの間または前記入射側偏光子と前記 液晶セルとの間に光学異方部材を備え、  Furthermore, an optical anisotropic member is provided between the exit side polarizer and the liquid crystal cell or between the entrance side polarizer and the liquid crystal cell,
さらに、前記入射側偏光子と前記光源との間に、前記の光学フィルタを備え、 前記光学異方部材は、 n≥n >nの関係を満たす 1枚の第 1光学異方板、およびFurthermore, the optical filter is provided between the incident-side polarizer and the light source, The optically anisotropic member includes one first optically anisotropic plate that satisfies a relationship of n≥n> n, and
, n >n≥nの関係を満たす 1枚の第 2光学異方板からなり、 , n> n≥n and one second optical anisotropic plate satisfying the relationship
前記出射側偏光板における前記液晶セルに近!/、側の保護フィルム、電圧無印加 状態の前記液晶セル、前記入射側偏光板における前記液晶セルに近い側の保護フ イルム、及び前記光学異方部材を仮に積層体にしたときに、該積層体が、波長 550η mの光を入射角 0度で入射させたときのレターデーシヨン Rと、波長 550nmの光を入  Close to the liquid crystal cell on the exit side polarizing plate, a protective film on the side, the liquid crystal cell in a state where no voltage is applied, a protective film on the side close to the liquid crystal cell in the incident side polarizing plate, and the optical anisotropic If the member is a laminated body, the laminated body receives the letter R when the light having a wavelength of 550 ηm is incident at an incident angle of 0 ° and the light having a wavelength of 550 nm.
0  0
射角 40度で入射させたときのレターデーシヨン R とが、  Letter Decision R when the incident angle is 40 degrees,
40 I R —R  40 I R —R
40 0 I ≤35nmの関係 を満たす、  40 0 I ≤35nm
液晶表示装置。  Liquid crystal display device.
[0015] (10) 偏光子と、該偏光子の両面に積層された保護フィルムとからなり、  [0015] (10) A polarizer and a protective film laminated on both sides of the polarizer,
波長 440nmの正面方向の透過率 TP 、波長 440nmの極角 60度方向の透過率 Transmittance T P in the front direction at a wavelength of 440 nm, Transmittance at a polar angle of 60 degrees in a wavelength of 440 nm
Β,Ν  Β, Ν
の平均直 ΤΡ 、波長 530nmの正面方向の透過率 ΤΡ 、波長 530nmの極角 60度 The average straight-T [rho, the transmittance in the front direction of the wavelength 530nm T [rho, polar angle 60 ° Wavelength 530nm of
B,60 G,N  B, 60 G, N
方向の透過率の平均値 TP 、波長 620nmの正面方向の透過率 ΤΡ 、及び波長 62 Direction average transmittance T P , frontal transmittance at wavelength 620 nm Τ Ρ , and wavelength 62
G,60 R,N  G, 60 R, N
Onmの極角 60度方向の透過率の平均値 TP 、式〔2〕の関係を満たす、選択反 Onm polar angle The average value of transmittance in the direction of 60 degrees T P , which satisfies the relationship of equation [2]
R.60  R.60
射帯域もしくは選択吸収帯域を有する、偏光板。  A polarizing plate having a reflection band or a selective absorption band.
ΡΡ ) > (ΤΡΡ ) = (ΤΡΡ ) 式〔2〕 Ρ / Τ Ρ )> (Τ Ρ / Τ Ρ ) = (Τ Ρ / Τ Ρ ) Equation (2)
Β,60 Β,Ν G,60 G,N R,60 R.N  Β, 60 Β, Ν G, 60 G, N R, 60 R.N
(11 ) 偏光子と、該偏光子の両面に積層された保護フィルムとからなり、光源とともに 用いられた際に、前記保護フィルムのうち光源に近い側の保護フィルム力 前記の光 学フィルタである、偏光板。  (11) It is composed of a polarizer and protective films laminated on both sides of the polarizer, and when used with a light source, the protective film force on the side of the protective film closer to the light source is the optical filter. ,Polarizer.
(12) 偏光子と、該偏光子の両面に積層された保護フィルムとからなり、光源とともに 用いられた際に、前記保護フィルムのうち光源に近い側の保護フィルムが、光学フィ ルムと前記の光学フィルタとの積層体である、偏光板。  (12) A polarizer and a protective film laminated on both surfaces of the polarizer, and when used with a light source, the protective film on the side close to the light source of the protective film is an optical film and the above-described protective film. A polarizing plate, which is a laminate with an optical filter.
(13) 前記保護フィルムの少なくとも一方が光学的異方性を有する前記の偏光板。 (13) The polarizing plate, wherein at least one of the protective films has optical anisotropy.
(14) 前記の偏光板を備えた液晶パネル。 (14) A liquid crystal panel comprising the polarizing plate.
(15) 前記の液晶パネルを備えた液晶表示装置。  (15) A liquid crystal display device comprising the liquid crystal panel.
[0016] (16) 出射側偏光子と該出射側偏光子の両面に積層された保護フィルムとを含んで なる出射側偏光板、  (16) An output-side polarizing plate comprising an output-side polarizer and a protective film laminated on both surfaces of the output-side polarizer,
ヴアーティカルァライメントモードの液晶セル、 前記の偏光板からなる入射側偏光板、 Vertical alignment mode LCD cell, Incident side polarizing plate comprising the polarizing plate,
及び光源をこの順に備える液晶表示装置であって、  And a light source comprising a light source in this order,
さらに、出射側偏光子と液晶セルとの間および/または入射側偏光子と液晶セルと の間に、 n >n >nの関係(ただし、 nは面内遅相軸方向の屈折率、 nは遅相軸に 面内で直交する方向の屈折率、 nは厚さ方向の屈折率)を満たす二軸性光学異方 板を 1枚または 2枚備え、  Further, a relationship of n> n> n between the exit side polarizer and the liquid crystal cell and / or between the entrance side polarizer and the liquid crystal cell (where n is the refractive index in the in-plane slow axis direction, n Is equipped with one or two biaxial optical anisotropic plates that satisfy the refractive index in the direction perpendicular to the slow axis in the plane, and n is the refractive index in the thickness direction)
前記出射側偏光板における前記液晶セルに近!/、側の保護フィルム、電圧無印加 状態の前記液晶セル、前記入射側偏光板における前記液晶セルに近い側の保護フ イルム、及びすベての前記二軸性光学異方板を仮に積層体にしたときに、該積層体 力、波長 550nmの光を入射角 0度で入射させたときのレターデーシヨン Rと、波長 5  Close to the liquid crystal cell on the output side polarizing plate, a protective film on the side, the liquid crystal cell in a state in which no voltage is applied, a protective film on the side close to the liquid crystal cell in the incident side polarizing plate, and all When the biaxial optical anisotropic plate is a laminated body, the laminated body force, letter R when a light having a wavelength of 550 nm is incident at an incident angle of 0 degree, and a wavelength of 5
0  0
50nmの光を入射角 40度で入射させたときのレターデーシヨン R とが、 | R —R |  Letter decision R when 50nm light is incident at an incident angle of 40 degrees | R —R |
40 40 0 40 40 0
≤ 35nmの関係を満たす、 ≤ 35nm satisfying relationship,
液晶表示装置。  Liquid crystal display device.
(17) 出射側偏光子と該出射側偏光子の両面に積層された保護フィルムとを含んで なる出射側偏光板、  (17) An output side polarizing plate comprising an output side polarizer and a protective film laminated on both surfaces of the output side polarizer,
インプレーンスイッチングモードの液晶セル、  In-plane switching mode liquid crystal cell,
前記の偏光板からなる入射側偏光板、  Incident side polarizing plate comprising the polarizing plate,
及び光源をこの順に備える液晶表示装置であって、  And a light source comprising a light source in this order,
さらに、前記出射側偏光子と前記液晶セルとの間および/または前記入射側偏光 子と前記液晶セルとの間に、 n >n及び n >nの関係(ただし、 nは面内遅相軸方 向の屈折率、 nは遅相軸に面内で直交する方向の屈折率、 nは厚さ方向の屈折率) を満たす二軸性光学異方板を 1枚または 2枚備え、  Further, a relationship of n> n and n> n between the exit-side polarizer and the liquid crystal cell and / or between the entrance-side polarizer and the liquid crystal cell (where n is an in-plane slow axis) One or two biaxial optical anisotropic plates satisfying the refractive index in the direction, n is the refractive index in the direction perpendicular to the slow axis in the plane, and n is the refractive index in the thickness direction)
前記出射側偏光板における前記液晶セルに近!/、側の保護フィルム、電圧無印加 状態の前記液晶セル、前記入射側偏光板における前記液晶セルに近い側の保護フ イルム、及びすベての前記二軸性光学異方板を仮に積層体にしたときに、該積層体 力、波長 550nmの光を入射角 0度で入射させたときのレターデーシヨン Rと、波長 5  Close to the liquid crystal cell on the output side polarizing plate, a protective film on the side, the liquid crystal cell in a state in which no voltage is applied, a protective film on the side close to the liquid crystal cell in the incident side polarizing plate, and all When the biaxial optical anisotropic plate is a laminated body, the laminated body force, letter R when a light having a wavelength of 550 nm is incident at an incident angle of 0 degree, and a wavelength of 5
0  0
50nmの光を入射角 40度で入射させたときのレターデーシヨン R とが、 | R —R |  Letter decision R when 50nm light is incident at an incident angle of 40 degrees | R —R |
40 40 0 40 40 0
≤ 35nmの関係を満たす、 液晶表示装置。 ≤ 35nm satisfying relationship, Liquid crystal display device.
[0018] (18) 出射側偏光子と該出射側偏光子の両面に積層された保護フィルムとを含んで なる出射側偏光板、  [18] (18) An output-side polarizing plate comprising an output-side polarizer and a protective film laminated on both surfaces of the output-side polarizer,
インプレーンスイッチングモードの液晶セル、  In-plane switching mode liquid crystal cell,
前記の偏光板からなる入射側偏光板、  Incident side polarizing plate comprising the polarizing plate,
及び光源をこの順に備える液晶表示装置であって、  And a light source comprising a light source in this order,
さらに、前記出射側偏光子と前記液晶セルとの間または前記入射側偏光子と前記 液晶セルとの間に、 n≥n >nの関係を満たす 1枚の第 1光学異方板と、 n >n≥n z x y x y z の関係を満たす 1枚の第 2光学異方板とを重層または積層して備え、  A first optical anisotropic plate satisfying a relationship of n≥n> n between the exit-side polarizer and the liquid crystal cell or between the incident-side polarizer and the liquid crystal cell; and n > a second optical anisotropic plate satisfying the relationship> n≥nzxyxyz
前記出射側偏光板における前記液晶セルに近!/、側の保護フィルム、電圧無印加 状態の前記液晶セル、前記入射側偏光板における前記液晶セルに近い側の保護フ イルム、及び前記光学異方部材を仮に積層体にしたときに、該積層体が、波長 550η mの光を入射角 0度で入射させたときのレターデーシヨン Rと、波長 550nmの光を入  Close to the liquid crystal cell on the exit side polarizing plate, a protective film on the side, the liquid crystal cell in a state where no voltage is applied, a protective film on the side close to the liquid crystal cell in the incident side polarizing plate, and the optical anisotropic If the member is a laminated body, the laminated body receives the letter R when the light having a wavelength of 550 ηm is incident at an incident angle of 0 ° and the light having a wavelength of 550 nm.
0  0
射角 40度で入射させたときのレターデーシヨン R とが、 R  Letter decision R when the incident angle is 40 degrees is R
40 I R —  40 I R —
40 0 I ≤35nmの関係 を満たす、  40 0 I ≤35nm
液晶表示装置。  Liquid crystal display device.
発明の効果  The invention's effect
[0019] 従来の液晶表示装置では、斜めから観察したときに、黄色みを帯びることが多かつ た。それは、正面から観察したときの青色、緑色及び赤色の光量バランスに対して、 斜めから観察したときの赤色及び緑色の光量が青色の光量に比べ相対的に高くなる 力、らである。一方、特許文献 1及び 2のように斜めから入射する波長 710nm、 640η m又は 610nmの光の透過率を 10%以下にしてしまうと、正面から観察したときの青 色、緑色及び赤色の光量バランスに対して、斜めから観察したときの赤色の光量が 青色及び緑色の光量に比べ相対的に低くなりすぎてしまう。その結果、斜めから液晶 表示装置を観察したときに、青緑色を帯びたり、暗くなつたりする傾向にあった。  [0019] Conventional liquid crystal display devices are often yellowish when observed obliquely. That is, the light intensity of red, green, and green when viewed from the front is relatively higher than the light intensity of blue, when compared with the light intensity of blue, green, and red when viewed from the front. On the other hand, if the transmittance of light with an incident wavelength of 710 nm, 640 ηm, or 610 nm is set to 10% or less as in Patent Documents 1 and 2, the light intensity balance of blue, green, and red when observed from the front On the other hand, the amount of red light when observed from an oblique direction is relatively low compared to the amounts of blue and green light. As a result, when the liquid crystal display device was observed obliquely, it tended to be blue-green or dark.
[0020] 本発明の光学フィルタ及び偏光板は、極角 0度(正面方向または法線方向とも言う) において青色光が緑色光及び赤色光に比べて相対的に透過し難くなつている。そし て、斜め方向(例えば極角 60度)においては、青色光、緑色光及び赤色光がほぼ同 程度に透過するようになっている。また、本発明の光学フィルタ及び偏光板は、極角 0度(正面方向または法線方向とも言う)において青色光、緑色光及び赤色光がほぼ 同程度に透過し、斜め方向(例えば極角 60度)においては緑色光及び赤色光が青 色光に比べ相対的に透過し難くなつている。このような透過特性を持つ本発明の光 学フィルタ及び偏光板は、白色光を斜めに透過させたときの色座標(x、 y)のいずれ 力、が、白色光を極角 0度で透過させたときの色座標(X , y )に比べ、小さくなる。この [0020] In the optical filter and the polarizing plate of the present invention, blue light is relatively less easily transmitted than green light and red light at a polar angle of 0 degrees (also referred to as a front direction or a normal direction). And in an oblique direction (for example, polar angle 60 degrees), blue light, green light and red light are almost the same. It is designed to be transparent to the extent. In addition, the optical filter and polarizing plate of the present invention transmit blue light, green light, and red light at approximately the same angle at a polar angle of 0 degrees (also referred to as a front direction or a normal direction), and in an oblique direction (for example, a polar angle of 60 Degree), green light and red light are relatively difficult to transmit compared to blue light. The optical filter and polarizing plate of the present invention having such transmission characteristics can transmit white light at a polar angle of 0 degree with any of the color coordinates (x, y) when white light is transmitted obliquely. It becomes smaller than the color coordinates (X, y) at the time of making it. this
N N  N N
光学フィルタまたは偏光板と、液晶セルとを組み合わせると、観察角度による色座標 のシフトが打ち消しあうので、斜めから観察したときの青色、緑色及び赤色の色バラ ンスが、正面から観察したときの青色、緑色及び赤色のバランスと同様のバランスに 調整できる。その結果、斜めから観察したときに、黄色みを帯びたり、青みを帯びたり することがなくなり、色再現範囲を広くできる。  When an optical filter or polarizing plate is combined with a liquid crystal cell, the color coordinate shift due to the viewing angle cancels out, so the blue, green, and red color balance when viewed from an oblique angle is the blue color when viewed from the front. It can be adjusted to the same balance as green and red. As a result, when observed from an oblique direction, it is not yellowish or bluish, and the color reproduction range can be widened.
[0021] 本発明の液晶表示装置は、その表示画面を斜めから観察したときの青色、緑色、 及び赤色の色バランスが、正面から観察したときの青色、緑色、及び赤色のバランス と同様のバランスになり、斜め力も観察したときに、赤みを帯びたり、青みを帯びたり することがなくなり、表示画像の色再現範囲が広い。また、コントラストの視野角依存 性が小さい。 In the liquid crystal display device of the present invention, the color balance of blue, green, and red when the display screen is observed obliquely is the same balance as the balance of blue, green, and red when observed from the front. When the oblique force is also observed, it does not appear reddish or bluish, and the display image has a wide color reproduction range. In addition, the viewing angle dependence of contrast is small.
図面の簡単な説明  Brief Description of Drawings
[0022] [図 1]本発明に用いる光源(四波長冷陰極管)の発光スペクトルの一例を示す図。  FIG. 1 shows an example of an emission spectrum of a light source (four-wavelength cold cathode tube) used in the present invention.
[図 2]本発明に用いる別の光源 (RGB発光ダイオード)の発光スペクトルの一例を示 す図。  FIG. 2 is a diagram showing an example of an emission spectrum of another light source (RGB light emitting diode) used in the present invention.
[図 3]本発明に係る第 1実施形態の光学フィルタの透過率の波長分布の一例を示す 図。  FIG. 3 is a diagram showing an example of a wavelength distribution of transmittance of the optical filter according to the first embodiment of the present invention.
[図 4]比較例 1の等方性フィルムと液晶パネルを透過した光の色度座標 (x、 y)を示す 図である。  FIG. 4 is a diagram showing chromaticity coordinates (x, y) of light transmitted through an isotropic film and a liquid crystal panel of Comparative Example 1.
[図 5]比較例 1の等方性フィルムと液晶パネルを透過した光の正面方向色度座標と斜 め方向色度座標との間の直線距離 Δ xyの分布を示す図である。  FIG. 5 is a diagram showing a distribution of a linear distance Δxy between the front direction chromaticity coordinates and the oblique direction chromaticity coordinates of light transmitted through the isotropic film and the liquid crystal panel of Comparative Example 1.
[図 6]本発明に係る実施例 1の光学フィルタと液晶パネルを透過した光の色度座標 (X 、y)を示す図である。 [図 7]本発明に係る実施例 1の光学フィルタと液晶パネルを透過した光の正面方向色 度座標と斜め方向色度座標との間の直線距離 A xyの分布を示す図である。 FIG. 6 is a diagram showing chromaticity coordinates (X, y) of light transmitted through the optical filter and the liquid crystal panel of Example 1 according to the present invention. FIG. 7 is a diagram showing a distribution of a linear distance A xy between the front direction chromaticity coordinates and the oblique direction chromaticity coordinates of light transmitted through the optical filter and the liquid crystal panel of Example 1 according to the present invention.
[図 8]本発明に係る実施例 2の光学フィルタと液晶パネルを透過した光の色度座標 (X 、y)を示す図である。 FIG. 8 is a diagram showing chromaticity coordinates (X, y) of light transmitted through the optical filter and the liquid crystal panel of Example 2 according to the present invention.
[図 9]本発明に係る実施例 2の光学フィルタと液晶パネルを透過した光の正面方向色 度座標と斜め方向色度座標との間の直線距離 A xyの分布を示す図である。  FIG. 9 is a diagram showing a distribution of a linear distance A xy between the front direction chromaticity coordinates and the oblique direction chromaticity coordinates of light transmitted through the optical filter and the liquid crystal panel of Example 2 according to the present invention.
[図 10]本発明に係るレターデーシヨン R の測定方法を説明するための図である。 FIG. 10 is a diagram for explaining a method for measuring letter decision R according to the present invention.
40  40
[図 11]本発明に係る実施例 3の液晶表示装置の構成を示す図である。  FIG. 11 is a diagram showing a configuration of a liquid crystal display device of Example 3 according to the present invention.
[図 12]本発明に係る実施例 4の液晶表示装置の構成を示す図である。  FIG. 12 is a diagram showing a configuration of a liquid crystal display device of Example 4 according to the present invention.
[図 13]比較例 2の液晶表示装置の構成を示す図である。  FIG. 13 is a diagram showing a configuration of a liquid crystal display device of Comparative Example 2.
[図 14]本発明に係る実施例 5の液晶表示装置の構成を示す図である。  FIG. 14 is a diagram showing a configuration of a liquid crystal display device of Example 5 according to the present invention.
[図 15]本発明に係る実施例 6の液晶表示装置の構成を示す図である。  FIG. 15 is a diagram showing a configuration of a liquid crystal display device of Example 6 according to the present invention.
[図 16]比較例 3の液晶表示装置の構成を示す図である。  FIG. 16 is a diagram showing a configuration of a liquid crystal display device of Comparative Example 3.
[図 17]本発明に係る実施例 7の液晶表示装置の構成を示す図である。  FIG. 17 is a diagram showing a configuration of a liquid crystal display device of Example 7 according to the present invention.
符号の説明 Explanation of symbols
N :正面方向の透過率の波長分布  N: Wavelength distribution of transmittance in the front direction
A:斜め方向の透過率の波長分布  A: Wavelength distribution of transmittance in oblique direction
F:トリァセチノレセノレロースフイノレム  F: Triacetino Resenorelose Finolem
3a、 4a、 5a、 6a、 7a :出射側偏光子  3a, 4a, 5a, 6a, 7a: Output side polarizer
3b、 4b、 5b、 6b、 7b :入射側偏光子  3b, 4b, 5b, 6b, 7b: Incident side polarizer
3A, 4A、 5A、 6A、 7A :出射側偏光板  3A, 4A, 5A, 6A, 7A: Output side polarizing plate
3B、 4B、 3C、 5B、 6B、 5C、 7B :入射側偏光板  3B, 4B, 3C, 5B, 6B, 5C, 7B: Incident side polarizing plate
2A、 2B、 2bl、 2b2、 2C、 2D、 2E、 2F :二軸性光学異方板  2A, 2B, 2bl, 2b2, 2C, 2D, 2E, 2F: Biaxial optical anisotropic plate
2G :—軸性光学異方板  2G: —Axial optical anisotropic plate
3、 4、 5、 6、 7 :光学積層板  3, 4, 5, 6, 7: Optical laminate
B :光学フィルタ B  B: Optical filter B
L :光源  L: Light source
VAC: VAモード液晶セル IPSC: IPSモード液晶セル VAC: VA mode liquid crystal cell IPSC: IPS mode LCD cell
Z :等方性のフィルム  Z: Isotropic film
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0024] 〔光学フィルタ〕  [Optical filter]
本発明の光学フィルタは、波長 440nmの正面方向(極角 0度)の透過率 TF 、波 The optical filter of the present invention has a transmittance T F in the front direction (polar angle 0 degree) with a wavelength of 440 nm, a wave
Β,Ν 長 440nmの極角 60度方向の透過率の平均直 TF 、波長 530nmの正面方向の透 Β, Ν Length 440nm polar angle average straight transmittance of 60 degrees direction T F , wavelength 530nm front direction transmission
B.60  B.60
過率 TF 、波長 530nmの極角 60度方向の透過率の平均直 TF 、波長 620nmのExcess T F , wavelength 530 nm polar angle average straight transmittance of 60 degrees direction T F , wavelength 620 nm
G,N G,60 正面方向の透過率 TF 、及び波長 620nmの極角 60度方向の透過率の平均直 TF G, NG, 60 Frontal transmittance T F , and average straight T F of transmittance at 60 ° polar angle at 620 nm wavelength
R,N R,6 R, N R, 6
、の関係が式〔1〕を満たす、選択反射帯域もしくは選択吸収帯域を有する。 Have a selective reflection band or selective absorption band satisfying the expression [1].
0  0
(TF /TF ) > (TF /TF ) = (TF /TF ) 式〔1〕 ( TF / TF )> ( TF / TF ) = ( TF / TF ) Equation (1)
B,60 B,N G,60 G,N R,60 R,N  B, 60 B, N G, 60 G, N R, 60 R, N
[0025] 選択反射帯域若しくは選択吸収帯域は、透過率が他の波長帯域よりも小さくなつて いる波長帯域である。より詳細には、選択反射帯域若しくは選択吸収帯域は、光学フ ィルタ表面の界面反射による透過率低下の他に、光学フィルタの内部構造により、さ らにその透過率が他の波長帯域よりも 5%以上下回る特性を有する波長帯域のこと である。界面反射を除いて、選択反射特性もしくは選択吸収特性を測定するには、 例えば、光学フィルタの平均屈折率に近い液体媒質中に、当該光学フィルタを配置 して測定用光ビームを入射させて分光透過光強度(強度 Pとする)を測定し、さらに、 同様にして媒質のみでの分光透過強度(強度 Qとする)を測定し、強度 Pを強度 Qで 除することで求めること力 Sでさる。  [0025] The selective reflection band or the selective absorption band is a wavelength band in which the transmittance is smaller than other wavelength bands. More specifically, the selective reflection band or the selective absorption band has a transmittance lower than that of other wavelength bands due to the internal structure of the optical filter in addition to the decrease in transmittance due to interface reflection on the surface of the optical filter. It is a wavelength band that has characteristics that are less than%. In order to measure selective reflection characteristics or selective absorption characteristics excluding interface reflection, for example, the optical filter is placed in a liquid medium close to the average refractive index of the optical filter, and a measurement light beam is incident thereon to perform spectroscopy. Measure the transmitted light intensity (intensity P), measure the spectral transmission intensity (intensity Q) of the medium alone, and divide intensity P by intensity Q. Monkey.
[0026] 図 3の実線 Nは極角 0度(正面方向)における透過率の波長依存性を示すものであ る。選択反射帯域若しくは選択吸収帯域は、特定波長域において透過率が他の部 分よりも小さくなつている部分 (実線 Nの谷部分)である。図 3では選択反射帯域若し くは選択吸収帯域は放物線のような緩やかな谷を成していている力、矩形又は台形 の谷を成していてもよい。  [0026] The solid line N in Fig. 3 shows the wavelength dependence of the transmittance at a polar angle of 0 degrees (front direction). The selective reflection band or selective absorption band is the part where the transmittance is smaller than the other part in the specific wavelength range (the valley part of the solid line N). In FIG. 3, the selective reflection band or the selective absorption band may form a gentle valley-like force such as a parabola, a rectangular or trapezoidal valley.
この選択反射帯域若しくは選択吸収帯域は、極角によって、波長範囲が変化する。 図 3の破線 Aは斜め方向から観察したときの透過率である。斜め方向力 観察すると 正面方向から観察したときにくらべて短波長側に選択反射帯域若しくは選択吸収帯 本発明の光学フィルタは、この現象を利用して、正面方向と斜め方向の透過率を前 記のように波長ごとに変えたものである。 The wavelength range of the selective reflection band or the selective absorption band varies depending on the polar angle. The broken line A in Fig. 3 is the transmittance when observed from an oblique direction. Oblique direction force Observed from the front direction Selective reflection band or selective absorption band on the short wavelength side compared to frontal observation The optical filter of the present invention uses this phenomenon to change the transmittance in the front direction and the oblique direction for each wavelength as described above.
[0027] 本発明の光学フィルタは、式〔1〕を満たす選択反射帯域又は選択吸収帯域を有す るものであればよい。 (TF /TF )の値と (TF /TF )の値はほぼ等しい値となる [0027] The optical filter of the present invention only needs to have a selective reflection band or a selective absorption band that satisfies Equation [1]. (T F / T F ) and (T F / T F ) are almost equal.
G,60 G,N R,60 R.N  G, 60 G, N R, 60 R.N
必要がある。具体的には、(TF /TF )の値を基準にして、(TF /TF )の値と( There is a need. Specifically, with reference to the value of (T F / T F), and the value of (T F / T F) (
G,60 G,N G,60 G.N  G, 60 G, N G, 60 G.N
TF /TF )の値との差力 S、通常 5%以内、好ましくは 3%以内である。 (TF /TF Differential force S from the value of T F / T F ), usually within 5%, preferably within 3%. (T F / T F
R,60 R,N B,60 Β,ΝR, 60 R, N B, 60 Β, Ν
)の値は (TF /TF )の値よりも大きいことが必要である。具体的には、(TF /TF ) Must be greater than (T F / T F ). Specifically, (T F / T F
G,60 G,N G,60 G, 60 G, N G, 60
)の値または (TF /TF )の値を基準にして、(TF /TF )の値が、通常 10%) Or (T F / T F ) as a reference, (T F / T F ) is usually 10%
G,N R,60 R,N B.60 Β,Ν G, N R, 60 R, N B.60 Β, Ν
以上、好ましくは 20%以上大きくなつている。  More than this, preferably 20% or more.
[0028] このような選択反射帯域又は選択吸収帯域を有するものとして少なくとも二つの実 施形態が挙げられる。第 1の実施形態は、極角 0度(正面方向)において青色光が緑 色光及び赤色光に比べて相対的に透過し難くなつており、極角 60度において青色 光、緑色光及び赤色光がほぼ同程度に透過するようになっているものであり、第 2の 実施形態は、極角 0度(正面方向)において青色光、緑色光及び赤色光がほぼ同程 度に透過し、極角 60度において緑色光及び赤色光が青色光に比べ相対的に透過 し難くなつているものである。  [0028] There are at least two embodiments that have such a selective reflection band or selective absorption band. In the first embodiment, blue light is relatively less transmitted at a polar angle of 0 degrees (front direction) than green light and red light, and blue light, green light, and red light at a polar angle of 60 degrees. In the second embodiment, blue light, green light and red light are transmitted almost at the same angle at a polar angle of 0 degrees (front direction). At 60 degrees, green light and red light are relatively difficult to transmit compared to blue light.
[0029] (光学フィルタの第 1実施形態)  [0029] (First embodiment of optical filter)
第 1実施形態の光学フィルタは、極角 0度(正面方向)において青色光が緑色光及 び赤色光に比べて相対的に透過し難くなつており、極角 60度において青色光、緑色 光及び赤色光がほぼ同程度に透過するようになっているものである。  In the optical filter of the first embodiment, blue light is relatively less transmitted at a polar angle of 0 degrees (front direction) than green light and red light, and blue light and green light are transmitted at a polar angle of 60 degrees. In addition, the red light is transmitted through almost the same degree.
すなわち、第 1実施形態の光学フィルタは、正面方向から観察したときに青色光の 波長域に選択反射帯域又は選択吸収帯域を有し、この選択反射帯域又は選択吸収 帯域が極角 60度で観察したときに波長域が短波長側にシフトして青色光の透過率 が緑色光及び赤色光の透過率とほぼ同じになるものである。  That is, the optical filter of the first embodiment has a selective reflection band or a selective absorption band in the wavelength range of blue light when observed from the front direction, and this selective reflection band or selective absorption band is observed at a polar angle of 60 degrees. When this occurs, the wavelength band shifts to the short wavelength side, and the transmittance of blue light becomes substantially the same as the transmittance of green light and red light.
[0030] なお、液晶表示装置等に使用される光源は図 1又は図 2に示すように青色光 410 〜470腹の波長範囲、緑色光 520〜580應の波長範囲、赤色光 600〜660應の 波長範囲にそれぞれ発光強度のピークを有する。図 1は 4波長 CCFL (冷陰極管)の 発光スペクトルを示すものであり、図 2は RGB発光ダイオード(LED)の発光スぺタト ルを示すものである。 As shown in FIG. 1 or FIG. 2, the light source used in the liquid crystal display device or the like has a wavelength range of 410 to 470 for blue light, a wavelength range of 520 to 580 for green light, and 600 to 660 for red light. Each has a peak of emission intensity in the wavelength range. Figure 1 shows the emission spectrum of a 4-wavelength CCFL (cold cathode tube), and Figure 2 shows the emission spectrum of an RGB light-emitting diode (LED). This indicates
[0031] 第 1実施形態の光学フィルタは、正面方向からの観察において、好ましくは波長 35 0nm〜500nm、より好ましくは波長 410〜470nmの範囲全体に選択反射帯域又は 選択吸収帯域を有するようにしてもよいし、上記波長範囲の一部の範囲だけに選択 反射帯域又は選択吸収帯域を有するようにしてもよい。  [0031] The optical filter of the first embodiment preferably has a selective reflection band or a selective absorption band in the entire wavelength range of 350 to 500 nm, more preferably 410 to 470 nm, when viewed from the front. Alternatively, the selective reflection band or the selective absorption band may be provided only in a part of the wavelength range.
この際、光源の発光強度のピークを示す波長が選択反射帯域又は選択吸収帯域 に含まれることが好ましい。  At this time, it is preferable that the wavelength indicating the peak of the emission intensity of the light source is included in the selective reflection band or the selective absorption band.
[0032] 第 1実施形態の光学フィルタは、波長 440nmの正面方向の透過率 TF 、通常 5 [0032] The optical filter of the first embodiment has a transmittance T F in the front direction at a wavelength of 440 nm, usually 5
Β,Ν  Β, Ν
0%以上 80%以下、好ましくは 60%以上 70%以下であり、波長 440nmの極角 60度 方向の透過率の平均値 TF 、通常 80%以上であり、波長 530nmの正面方向の 0% or more and 80% or less, preferably 60% or more and 70% or less, the average value T F of the transmittance in the polar angle 60 degree direction at a wavelength of 440 nm, usually 80% or more, and in the front direction at a wavelength of 530 nm
B.60  B.60
透過率 TF 、通常 80%以上であり、波長 530nmの極角 60度方向の透過率の平 Transmittance T F , which is usually 80% or more, and the transmittance in the 60 ° polar angle direction at a wavelength of 530 nm
G,N  G, N
均値 TF 1 通常 80%以上であり、波長 620nmの正面方向の透過率 TF 1 通Average value T F 1 Normally 80% or more, frontal transmittance T F 1 at a wavelength of 620 nm
G,60 R'N 常 80%以上であり、波長 620nmの極角 60度方向の透過率の平均値 TF 通常 G, 60 R'N Normally 80% or more, average value of transmittance in the direction of 60 ° polar angle at a wavelength of 620 nm TF Normal
R.60 R.60
80%以上である。 More than 80%.
[0033] (光学フィルタの第 2実施形態) (Second Embodiment of Optical Filter)
第 2実施形態の光学フィルタは、極角 0度(正面方向)において青色光、緑色光及 び赤色光がほぼ同程度に透過し、極角 60度において緑色光及び赤色光が青色光 に比べ相対的に透過し難くなつているものである。  The optical filter of the second embodiment transmits blue light, green light, and red light at approximately the same degree at a polar angle of 0 degrees (front direction), and green light and red light at a polar angle of 60 degrees compared to blue light. It is relatively difficult to penetrate.
すなわち、第 2実施形態の光学フィルタは、極角 60度の方向から観察したときに緑 色光及び赤色光の波長域にそれぞれ選択反射帯域又は選択吸収帯域を有し、この 選択反射帯域又は選択吸収帯域が極角 0度で観察したときに波長域が長波長側に シフトして緑色光及び赤色光の透過率が青色光の透過率とほぼ同じになるものであ  That is, the optical filter of the second embodiment has a selective reflection band or a selective absorption band in the wavelength range of green light and red light, respectively, when observed from a direction with a polar angle of 60 degrees. When the band is observed at a polar angle of 0 degree, the wavelength band shifts to the longer wavelength side, and the transmittance of green light and red light becomes almost the same as the transmittance of blue light.
[0034] 第 2実施形態の光学フィルタは、極角 60度の方向力、らの観察において、緑色光〜 赤色光の波長域の全体(波長 450〜700nm)にわたつて選択反射帯域又は選択吸 収帯域を有するようにしてもよいが、緑色光波長域及び赤色光波長域それぞれの発 光強度のピークを示す波長に対応した波長域にそれぞれ選択反射帯域又は選択吸 収帯域を有するようにする方が好まし!/、。 また正面方向において、波長 520nm〜600nmおよび波長 620nm〜900nmの 範囲にそれぞれ選択反射帯域もしくは選択吸収帯域を有するものであることが好まし い。 [0034] The optical filter of the second embodiment has a selective reflection band or a selective absorption over the entire wavelength range of green light to red light (wavelength 450 to 700 nm) in observing the directional force at a polar angle of 60 degrees. Although it may have an absorption band, it has a selective reflection band or a selective absorption band in the wavelength band corresponding to the wavelength showing the peak of the emission intensity in each of the green light wavelength range and the red light wavelength range. I prefer this! In the front direction, it is preferable to have a selective reflection band or a selective absorption band in the wavelength ranges of 520 nm to 600 nm and 620 nm to 900 nm, respectively.
[0035] 第 2実施形態の光学フィルタは、波長 440nmの正面方向の透過率 TF 、通常 8 [0035] The optical filter of the second embodiment has a transmittance T F in the front direction at a wavelength of 440 nm, usually 8
Β,Ν  Β, Ν
0%以上であり、波長 440nmの極角 60度方向の透過率の平均値 TF 、通常 80 The average value of transmittance in the direction of 60 degrees polar angle at a wavelength of 440 nm, T F , usually 80%
B.60  B.60
%以上であり、波長 530nmの正面方向の透過率 TF 1 通常 80%以上であり、波 The transmittance in the front direction at a wavelength of 530 nm T F 1
G'N  G'N
長 530nmの極角 60度方向の透過率の平均値 TF 力 通常 50%以上 80%以下、 The average value of transmittance in the direction of 60 degrees polar angle of 530 nm long T F force Normally 50% or more and 80% or less,
G.60  G.60
好ましくは 60%以上 70%以下であり、波長 620nmの正面方向の透過率 TF 力 通 Preferably, the transmittance is 60% or more and 70% or less, and the transmittance in the front direction at a wavelength of 620 nm TF force
R'N 常 80%以上であり、波長 620nmの極角 60度方向の透過率の平均値 TF 通常 R'N Normally 80% or more, average value of transmittance in 60 degree polar angle direction at wavelength 620nm TF Normal
R.60 R.60
50 %以上 80 %以下、好ましくは 60 %以上 70 %以下である。 50% or more and 80% or less, preferably 60% or more and 70% or less.
[0036] 本発明の光学フィルタは、前記のように極角の角度に応じて透過率の特性が変化 するものであれば、その構造によって制限されない。本発明の光学フィルタとしては 光の干渉を利用したものが挙げられる。例えば、屈折率の異なる無機酸化物を交互 に蒸着した多層薄膜 (例えば、コールドフィルターなど);屈折率の異なる樹脂の薄膜 を積層した薄膜;屈折率の異なる樹脂の多層膜を 2軸延伸して得られるフィルム;誘 電体多層膜;屈折率の異なる 2種の樹脂膜を 1軸延伸して得られるフィルム、またさら にそれを直交させて積層したもの;コレステリック規則性を持つ樹脂層を含む円偏光 反射板;前記円偏光反射板の右捻れ品と左捻れ品を積層したもの;同一捻れ方向の コレステリック規則性を持つ樹脂層を含む円偏光反射板 2枚を 1/2波長板を介して 積層したもの;グリッド偏光子などが挙げられる。 [0036] The optical filter of the present invention is not limited by its structure as long as the transmittance characteristics change according to the polar angle as described above. Examples of the optical filter of the present invention include an optical filter that utilizes interference of light. For example, a multilayer thin film in which inorganic oxides with different refractive indexes are alternately deposited (for example, a cold filter); a thin film in which resin thin films with different refractive indexes are laminated; a multilayer film of resins with different refractive indexes is biaxially stretched Obtained film; dielectric multilayer film; film obtained by uniaxially stretching two types of resin films with different refractive indices, and laminated with them orthogonally; including a resin layer with cholesteric regularity Circularly polarized light reflectors: Laminated right-handed and left-handed products of the above circularly-polarized light reflectors; Two circularly-polarized light reflectors containing a resin layer having cholesteric regularity in the same twist direction are passed through a half-wave plate And laminated; grid polarizers and the like.
[0037] これらのうち、コレステリック規則性を持つ樹脂層(以後、コレステリック樹脂層という ことがある。 )を含む円偏光反射板は、選択反射帯域の調整が比較的容易である。そ こで、コレステリック規則性を持つ樹脂層を含む円偏光反射板を用いた光学フィルタ を例示して本発明の光学フィルタを具体的に説明する。 [0037] Of these, a circularly polarizing reflector including a resin layer having cholesteric regularity (hereinafter sometimes referred to as a cholesteric resin layer) has a relatively easy selective reflection band adjustment. Therefore, the optical filter of the present invention will be specifically described by exemplifying an optical filter using a circularly polarized light reflection plate including a resin layer having cholesteric regularity.
[0038] 前記の円偏光反射板は、シート状の透明基材に、配向膜を形成し、さらにその上に コレステリック規則性を持つ樹脂層を形成することによって得ることができる。 [0038] The circularly polarized light reflecting plate can be obtained by forming an alignment film on a sheet-like transparent substrate and further forming a resin layer having cholesteric regularity thereon.
[0039] (透明基材)  [0039] (Transparent substrate)
透明基材は、光学的に透明な基材であれば特に限定されない。かかる透明基材と しては、透明樹脂フィルム、ガラス基板等が挙げられる。製造効率の観点から、長尺 の透明樹脂フィルムが透明基材として好ましい。透明樹脂フィルムは、単層のフィノレ ムであっても、多層フィルム(積層体)であってもよいが、 1mm厚での全光線透過率 力 0%以上のものが好まし!/、。 The transparent substrate is not particularly limited as long as it is an optically transparent substrate. Such a transparent substrate and Examples thereof include a transparent resin film and a glass substrate. From the viewpoint of production efficiency, a long transparent resin film is preferred as the transparent substrate. The transparent resin film may be a single-layer film or a multilayer film (laminate), but preferably has a total light transmittance of 0% or more at a thickness of 1 mm! /.
[0040] 透明樹脂フィルムの樹脂材料としては、脂環式構造含有重合体樹脂、ポリエチレン やポリプロピレン等の鎖状ォレフィン重合体、トリァセチルセルロース、ポリビュルアル コーノレ、ポリイミド、ポリアリレート、ポリエステノレ、ポリカーボネート、ポリスノレホン、ポリ エーテルスルホン、アモルファスポリオレフイン、変性アクリルポリマー、エポキシ樹脂 等が挙げられる。これらは 1種単独で、あるいは 2種以上を組み合わせて用いることが できる。これらの中でも、脂環式構造含有重合体樹脂又は鎖状ォレフィン重合体が 好ましぐ透明性、低吸湿性、寸法安定性、軽量性等の観点から、脂環式構造含有 重合体樹脂がより好ましい。  [0040] Examples of the resin material for the transparent resin film include alicyclic structure-containing polymer resins, chain olefin polymers such as polyethylene and polypropylene, triacetyl cellulose, polybutyl alcohol, polyimide, polyarylate, polyester, polycarbonate, and polyester resin. , Polyethersulfone, amorphous polyolefin, modified acrylic polymer, epoxy resin and the like. These can be used alone or in combination of two or more. Among these, from the viewpoints of transparency, low hygroscopicity, dimensional stability, light weight, etc., which are preferable for the alicyclic structure-containing polymer resin or the chain olefin polymer, the alicyclic structure-containing polymer resin is more preferable. preferable.
[0041] 脂環式構造含有重合体樹脂としては、(1)ノルボルネン系重合体、(2)単環の環状 ォレフィン系重合体、(3)環状共役ジェン系重合体、(4)ビュル脂環式炭化水素重 合体、及びこれらの水素添加物などが挙げられる。これらの中でも、透明性や成形性 の観点から、ノルボルネン系重合体が好まし!/、。  [0041] The alicyclic structure-containing polymer resin includes (1) norbornene-based polymer, (2) monocyclic cyclic olefin-based polymer, (3) cyclic conjugation-based polymer, and (4) bur alicyclic ring. Formula hydrocarbon polymers, and hydrogenated products thereof. Of these, norbornene polymers are preferred from the viewpoint of transparency and moldability!
[0042] ノルボルネン系重合体としては、例えば、ノルボルネン系モノマーの開環重合体、ノ ルボルネン系モノマーと開環共重合可能なその他のモノマーとの開環共重合体、及 びそれらの水素添加物;ノルボルネン系モノマーの付加重合体、ノルボルネン系モノ マーと共重合可能なその他のモノマーとの付加共重合体、及びそれらの水素添加物 などが挙げられる。これらの中でも、透明性の観点から、ノルボルネン系モノマーの開 環重合体水素添加物が最も好ましい。上記の脂環式構造を有する重合体は、例え ば特開 2002— 321302号公報等に開示されている公知の重合体から選ばれる。  [0042] Examples of norbornene-based polymers include ring-opening polymers of norbornene-based monomers, ring-opening copolymers of norbornene-based monomers and other monomers capable of ring-opening copolymerization, and hydrogenated products thereof. Addition polymers of norbornene monomers, addition copolymers with other monomers copolymerizable with norbornene monomers, and hydrogenated products thereof. Among these, from the viewpoint of transparency, a ring-opening polymer hydrogenated product of a norbornene monomer is most preferable. The polymer having the alicyclic structure is selected from known polymers disclosed in, for example, JP-A-2002-321302.
[0043] 本発明に好適な透明樹脂フィルムの樹脂材料は、そのガラス転移温度が、好ましく は 80°C以上、より好ましくは 100〜250°Cの範囲である。ガラス転移温度がこのような 範囲にある樹脂材料からなる透明樹脂フィルムは、高温下での使用における変形や 応力が生じることがなく耐久性に優れる。  [0043] The resin material of the transparent resin film suitable for the present invention has a glass transition temperature of preferably 80 ° C or higher, more preferably in the range of 100 to 250 ° C. A transparent resin film made of a resin material having a glass transition temperature in such a range is excellent in durability without being deformed or stressed when used at a high temperature.
[0044] 本発明に好適な透明樹脂フィルムの樹脂材料の分子量は、溶媒としてシクロへキ サン (重合体樹脂が溶解しない場合にはトルエン)を用いたゲル'パーミエーシヨン'ク 口マトグラフィー(以下、「GPC」と略す。)で測定した標準ポリイソプレン換算 (溶媒が トルエンのときは、ポリスチレン換算)の重量平均分子量(Mw)で、通常 10, 000—1 00, 000、好まし <は 25, 000—80, 000、より好まし <は 25, 000—50, 000である 。重量平均分子量がこのような範囲にあるときに、フィルムの機械的強度及び成形加 ェ性が高度にバランスされ好適である。 [0044] The molecular weight of the resin material of the transparent resin film suitable for the present invention is as follows. Standard polyisoprene conversion as measured by gel (permeation) chromatography using sun (toluene if polymer resin does not dissolve) (hereinafter abbreviated as “GPC”) (when solvent is toluene) The weight average molecular weight (Mw) in terms of polystyrene is usually 10,000—100,000, preferably <is 25,000-80,000, and more preferably <25,000—50,000. When the weight average molecular weight is in such a range, the mechanical strength and forming processability of the film are highly balanced and suitable.
[0045] 本発明に好適な透明樹脂フィルムの樹脂材料の分子量分布(重量平均分子量 (M w) /数平均分子量 (Mn) )は特に制限されないが、通常 1. 0〜10. 0、好ましくは 1 . 0〜4. 0、より好ましくは 1. 2〜3. 5の範囲である。  [0045] The molecular weight distribution (weight average molecular weight (Mw) / number average molecular weight (Mn)) of the resin material of the transparent resin film suitable for the present invention is not particularly limited, but is usually 1.0 to 10.0, preferably The range is 1.0 to 4.0, more preferably 1.2 to 3.5.
[0046] 本発明に好適な透明樹脂フィルムの樹脂材料は、その分子量 2, 000以下の樹脂 成分 (すなわち、オリゴマー成分)の含有量が、好ましくは 5重量%以下、より好ましく は 3重量%以下、さらに好ましくは 2重量%以下である。オリゴマー成分の量が多いと 、表面に微細な凸部が発生したり、厚さムラを生じたりして面精度が悪くなる。オリゴ マー成分の量を低減するためには、重合触媒や水素化触媒の選択、重合反応や水 素化反応等の条件、樹脂を成形用材料としてペレット化する工程における温度条件 、等を最適化すればよい。オリゴマーの成分量は、シクロへキサン (樹脂材料が溶解 しない場合はトルエン)を用いる GPCによって測定することができる。  [0046] The resin material of the transparent resin film suitable for the present invention has a resin component (that is, an oligomer component) having a molecular weight of 2,000 or less, preferably 5% by weight or less, more preferably 3% by weight or less. More preferably, it is 2% by weight or less. When the amount of the oligomer component is large, fine convex portions are generated on the surface or thickness unevenness occurs, resulting in poor surface accuracy. In order to reduce the amount of oligomer components, the selection of polymerization catalyst and hydrogenation catalyst, conditions such as polymerization reaction and hydrogenation reaction, temperature conditions in the process of pelletizing resin as a molding material, etc. are optimized. do it. The amount of the oligomer component can be measured by GPC using cyclohexane (toluene if the resin material does not dissolve).
[0047] 本発明に用いる透明基材の厚さは特に制限されないが、材料コストや薄型'軽量化 の観点力、ら、その厚さは、通常;!〜 1000 μ m、好ましくは 5〜300 μ m、より好ましく (ま 30〜; 100〃 mである。  [0047] The thickness of the transparent substrate used in the present invention is not particularly limited, but the thickness is usually:! To 1000 μm, preferably 5 to 300. μm, more preferably (between 30 and 100 m).
[0048] また、本発明に用いる透明基材は予め表面処理されているものが好ましい。表面処 理を施すことにより、透明基材と後述の配向膜との密着性を高めることができる。表面 処理の手段としては、グロ一放電処理、コロナ放電処理、紫外線 (UV)処理、火炎処 理等が挙げられる。また、透明基材の上に、接着層(下塗り層)を設けることも、透明 基材と配向膜との密着性を高める上で好ましレ、。  [0048] The transparent substrate used in the present invention is preferably subjected to surface treatment in advance. By performing the surface treatment, the adhesion between the transparent substrate and the alignment film described later can be enhanced. Examples of the surface treatment include glow discharge treatment, corona discharge treatment, ultraviolet (UV) treatment, and flame treatment. It is also preferable to provide an adhesive layer (undercoat layer) on the transparent substrate in order to improve the adhesion between the transparent substrate and the alignment film.
[0049] (配向膜)  [0049] (Alignment film)
配向膜は、コレステリック規則性を持つ樹脂層を面内で一方向に配向規制するた めに透明基材の表面に形成される。配向膜は、例えば、ポリイミド、ポリビュルアルコ ール、ポリエステル、ポリアリレート、ポリアミドイミド、ポリエーテルイミドなどのポリマー を含有するものである。配向膜は、このようなポリマーを含有する溶液 (配向膜用組成 物)を膜状に積層し、乾燥させ、そして一方向にラビング等することで、得ること力 Sでき The alignment film is formed on the surface of the transparent substrate in order to regulate the orientation of the resin layer having cholesteric regularity in one direction in the plane. The alignment film is, for example, polyimide, polybular alcohol. It contains polymers such as rubber, polyester, polyarylate, polyamideimide, polyetherimide and the like. An alignment film can be obtained by laminating a solution (composition for alignment film) containing such a polymer into a film, drying, and rubbing in one direction.
[0050] 膜状に積層する方法としては、スピンコート法、ロールコート法、フローコート法、プ リント法、ディップコート法、流延製膜法、バーコート法、ダイコート法、グラビア印刷法 などが挙げられる。 [0050] Examples of the method of laminating in a film form include spin coating, roll coating, flow coating, printing, dip coating, casting film forming, bar coating, die coating, and gravure printing. Can be mentioned.
[0051] ラビングの方法は、特に制限されな!/、が、例えばナイロンなどの合成繊維、木綿な どの天然繊維からなる布やフェルトを巻き付けたロールで一定方向に膜表面を擦る 方法が挙げられる。ラビングした時に発生する微粉末(異物)を除去して配向膜の表 面を清浄な状態とするために、形成された配向膜をイソプロピルアルコールなどによ つて洗净することが好ましレヽ。  [0051] The rubbing method is not particularly limited! /, For example, a method of rubbing the membrane surface in a certain direction with a roll made of a synthetic fiber such as nylon or a natural fiber such as cotton or a felt wrapped around it. . In order to remove the fine powder (foreign matter) generated during rubbing and to clean the surface of the alignment film, it is preferable to wash the formed alignment film with isopropyl alcohol or the like.
[0052] また、ラビングする方法以外に、配向膜の表面に偏光紫外線を照射する方法によつ ても、配向膜にコレステリック規則性を持つ樹脂層を面内で一方向に配向規制する 機能を持たせることができる。  [0052] In addition to the rubbing method, the method of irradiating the surface of the alignment film with polarized ultraviolet rays also has a function of regulating the alignment of the resin layer having cholesteric regularity in the alignment film in one direction in the plane. You can have it.
配向膜の厚さは 0. 01〜5〃111でぁることカ 子ましく、0. 05〜l〃mであることがさら に好ましい。  The thickness of the alignment film is preferably 0.01 to 5〃111, and more preferably 0.05 to l〃m.
[0053] (コレステリック規則性を有する樹脂層)  [Resin layer having cholesteric regularity]
コレステリック規則性は、一平面上では分子軸が一定の方向に並んでいる力 S、次の 平面では分子軸の方向が少し角度をなしてずれ、さらに次の平面ではさらに角度が ずれるという具合に、該平面の法線方向に分子軸の角度が次々にずれて(ねじれて) いく構造である。このように分子軸の方向がねじれてゆく構造はカイラルな構造と呼 ばれる。該平面の法線 (カイラル軸)はコレステリック樹脂層の厚さ方向に略平行にな つていることが好ましい。  The cholesteric regularity means that the molecular axis is aligned in a certain direction on one plane, the direction of the molecular axis is slightly shifted on the next plane, and the angle is further shifted on the next plane. In this structure, the angles of the molecular axes are successively shifted (twisted) in the normal direction of the plane. Such a structure in which the direction of the molecular axis is twisted is called a chiral structure. The normal line (chiral axis) of the plane is preferably substantially parallel to the thickness direction of the cholesteric resin layer.
コレステリック樹脂層の厚さは、 0. 1〃111〜10〃111カ 子ましく、0. 5〃111〜5〃111が 特に好ましい。  The thickness of the cholesteric resin layer is preferably from 0.1 to 111 to 10 to 111, and more preferably from 0.5 to 111 to 5 to 111.
[0054] <コレステリック樹脂層を形成する材料(1):液晶ポリマー〉  <Material for forming cholesteric resin layer (1): liquid crystal polymer>
コレステリック樹脂層を形成する材料としては、先ず、液晶ポリマーが挙げられる。 [0055] この液晶ポリマーとしては、メソゲン構造を有するポリマーがある。メソゲンは、液晶 配向性を付与する共役性の直線状原子団である。 As a material for forming the cholesteric resin layer, first, a liquid crystal polymer is exemplified. [0055] As the liquid crystal polymer, there is a polymer having a mesogenic structure. Mesogen is a conjugated linear atomic group that imparts liquid crystal alignment.
メソゲン構造を有するポリマーとしては、ポリエステル、ポリアミド、ポリカーボネート、 及びポリエステルイミド等のポリマー主鎖に、直接に又は屈曲性を付与するスぺーサ 一部を介して、パラ置換環状化合物等からなるメソゲン基を結合した構造を有するも の;ポリアタリレート、ポリメタタリレート、ポリシロキサン、ポリマロネート等をポリマー主 鎖に、直接に又は共役性の原子団からなるスぺーサ一部を介して、パラ置換環状化 合物等からなる低分子結晶化合物 (メソゲン部)を結合した構造を有するものが挙げ られる。  Examples of the polymer having a mesogenic structure include a mesogenic group composed of a para-substituted cyclic compound or the like directly or via a spacer that imparts flexibility to a polymer main chain such as polyester, polyamide, polycarbonate, and polyesterimide. A poly-substituted aryl group, polymetatalylate, polysiloxane, polymalonate, etc., in the polymer main chain, directly or via part of a spacer consisting of a conjugated atomic group. Examples thereof include those having a structure in which a low molecular crystal compound (mesogen part) composed of a compound or the like is bonded.
[0056] 前記スぺーサ一部としては、ポリメチレン鎖やポリオキシメチレン鎖等が挙げられる 。スぺーサ一部を形成する構造単位に含まれる炭素数は、メソゲン部の化学構造等 により適宜に決定される。一般にポリメチレン鎖の場合には、該炭素原子数が;!〜 20 、好ましくは 2〜; 12であり、ポリオキシメチレン鎖の場合には、該炭素原子数が;!〜 10 、好ましくは;!〜 3である。  [0056] Examples of the spacer part include a polymethylene chain and a polyoxymethylene chain. The number of carbons contained in the structural unit forming part of the spacer is appropriately determined depending on the chemical structure of the mesogenic part. Generally, in the case of a polymethylene chain, the number of carbon atoms is;! To 20, preferably 2 to 12; in the case of a polyoxymethylene chain, the number of carbon atoms is;! To 10, preferably; ~ 3.
[0057] また、前記液晶ポリマーの他の例としては、低分子カイラル剤含有のネマチック液 晶ポリマー;カイラル成分導入の液晶ポリマー;ネマチック液晶ポリマーとコレステリッ ク液晶ポリマーの混合物等が挙げられる。カイラル成分導入の液晶ポリマーとは、そ れ自体がカイラル剤の機能を果たす液晶ポリマーである。ネマチック液晶ポリマーと コレステリック液晶ポリマーの混合物は、それらの混合比率を変えることによって、ネ マチック液晶ポリマーのカイラル構造のピッチを調整することができるものである。  Other examples of the liquid crystal polymer include a nematic liquid crystal polymer containing a low molecular chiral agent; a liquid crystal polymer having a chiral component introduced therein; a mixture of a nematic liquid crystal polymer and a cholesteric liquid crystal polymer. A liquid crystal polymer having a chiral component introduced therein is a liquid crystal polymer that itself functions as a chiral agent. The mixture of the nematic liquid crystal polymer and the cholesteric liquid crystal polymer can adjust the pitch of the chiral structure of the nematic liquid crystal polymer by changing the mixing ratio thereof.
[0058] さらに、ァゾメチン形、ァゾ形、ァゾキシ形、エステル形、ビフエ二ル形、フエ二ルシク 口へキサン形、及びビシクロへキサン形のようなパラ置換芳香族単位やパラ置換シク 口へキシル単位等からなるネマチック配向性を付与するパラ置換環状化合物を有す るものに、不斉炭素を有する化合物等からなる適宜なカイラル成分や低分子カイラル 剤等を導入する方法等により、コレステリック規則性が付与されたポリマー(特開昭 55 21479号公報、米国特許第 5332522号等を参照)を挙げることができる。なお、 パラ置換環状化合物におけるパラ位の末端置換基としては、シァノ基、アルキル基、 アルコキシル基等が挙げられる。 [0059] 液晶ポリマーに導入または含有させるカイラル剤としては、従来公知のものを使用 すること力 Sできる。例えば、特開平 6— 281814号公報に記載されたカイラルモノマー 、特開平 8— 209127号公報に記載されたカイラル剤、特開 2003— 131 187号公報 に記載された光反応型カイラル化合物等が挙げられる。 [0058] Further, to para-substituted aromatic units such as azomethine form, azo form, azoxy form, ester form, biphenyl form, phenyl oral hexane form, and bicyclohexane form The cholesteric rule is determined by a method of introducing an appropriate chiral component or a low-molecular chiral agent composed of a compound having an asymmetric carbon into a compound having a para-substituted cyclic compound imparting nematic orientation composed of xyl units and the like. Examples thereof include polymers imparted with a property (see JP 55 21479 A, US Pat. No. 5,332,522, etc.). In addition, examples of the terminal substituent at the para position in the para-substituted cyclic compound include a cyano group, an alkyl group, and an alkoxyl group. [0059] As the chiral agent to be introduced or contained in the liquid crystal polymer, a conventionally known one can be used. Examples include chiral monomers described in JP-A-6-281814, chiral agents described in JP-A-8-209127, photoreactive chiral compounds described in JP-A-2003-131187, and the like. It is done.
[0060] また、カイラル剤としては、カイラル剤の添加による意図しない相転移温度の変化を 避けるために、カイラル剤自身が液晶性を示すものが好ましい。さらに、経済性の観 点からは、液晶ポリマーを捩じる効率を表す指標でぁる^1丁?(= 1 /? )の大きぃも のが好ましい。ここで、 Pはカイラル構造のピッチ長を表し、 cはカイラル剤の濃度を表 す。カイラル構造のピッチ長とは、カイラル構造において分子軸の方向が平面を進む に従って少しずつ角度がずれていき、そして再びもとの分子軸方向に戻るまでのカイ ラル軸方向の距離のことである。  [0060] Further, as the chiral agent, in order to avoid an unintended change of the phase transition temperature due to the addition of the chiral agent, the chiral agent itself exhibits liquid crystallinity. Furthermore, from an economic point of view, it is an index that represents the efficiency of twisting liquid crystal polymers. (= 1 /?) Is preferred. Here, P represents the pitch length of the chiral structure, and c represents the concentration of the chiral agent. The pitch length of the chiral structure is the distance in the chiral axis direction until the angle of the molecular axis gradually shifts in the chiral structure as it advances along the plane and then returns to the original molecular axis direction again. .
[0061] <コレステリック樹脂層を形成する材料(2):重合性組成物〉  <Material for forming cholesteric resin layer (2): polymerizable composition>
コレステリック樹脂層を形成する好適な材料として、重合性液晶化合物を含有する 重合性組成物、好ましくは重合性液晶化合物、重合開始剤、及びカイラル剤を含有 する重合性組成物が挙げられる。この材料(2)を用いてコレステリック樹脂層を形成 する方法としては、重合性液晶化合物、重合開始剤及びカイラル剤、さらに必要に応 じて界面活性剤、配向調整剤等を溶剤に溶解させた塗布液 (重合性組成物)を得、 これを基材に膜状に積層し、乾燥させ、その乾燥させた膜を重合させる方法がある。  Suitable materials for forming the cholesteric resin layer include a polymerizable composition containing a polymerizable liquid crystal compound, preferably a polymerizable composition containing a polymerizable liquid crystal compound, a polymerization initiator, and a chiral agent. As a method for forming a cholesteric resin layer using this material (2), a polymerizable liquid crystal compound, a polymerization initiator and a chiral agent, and a surfactant, an alignment regulator and the like were dissolved in a solvent as necessary. There is a method of obtaining a coating liquid (polymerizable composition), laminating it on a substrate in a film form, drying it, and polymerizing the dried film.
[0062] 重合性液晶化合物としては、棒状液晶化合物が好ましく用いられる。  [0062] As the polymerizable liquid crystal compound, a rod-like liquid crystal compound is preferably used.
棒状液晶化合物としては、化学式〔6〕で表される化合物を挙げることができる。 Examples of the rod-like liquid crystal compound include a compound represented by the chemical formula [6].
R' - B' -A' - B' - M - B'-A' - B' - R2 式〔6〕 R '-B' -A '-B'-M-B'-A '-B'-R Formula 2 (6)
なお、化学式〔6〕中の A1及び A2は、後述するようにスぺーサ一基であるが、このス ぺーサ一基を省いて、直接に B1と B3又は B4と B2が結合していてもよい。化学式〔6〕中 、 R1及び R2は重合性基を表す。 In addition, A 1 and A 2 in the chemical formula [6] are a single spacer, as will be described later. However, this spacer is omitted and B 1 and B 3 or B 4 and B are directly used. 2 may be bonded. In the chemical formula [6], R 1 and R 2 represent a polymerizable group.
[0063] B3及び B4は、それぞれ独立して単結合又は二価の連結基を表す。また、 B 3及び B4の少なくとも一方は、ー〇ー CO— O—であるのが好ましい。 [0063] B 3 and B 4 each independently represents a single bond or a divalent linking group. In addition, at least one of B 3 and B 4 is preferably —O—CO—O—.
A1及び A2は炭素原子数;!〜 20のスぺーサ一基を表す。スぺーサ一基としては、例 えば、ポリメチレン基やポリオキシメチレン基等が挙げられる。 [0064] Mはメソゲン基を表す。メソゲン基 Mの形成材料は、特に制限されな!/、が、ァゾメチ ン類、ァゾキシ類、シァノビフエニル類、シァノフエニルエステル類、安息香酸エステ ノレ類、シクロへキサンカルボン酸フエニルエステル類、シァノフエニルシクロへキサン 類、シァノ置換フエニルピリミジン類、アルコキシ置換フエニルピリミジン類、フエ二ノレ ジォキサン類、トラン類及びアルケニルシクロへキシルベンゾニトリル類が好ましく用 いられる。 A 1 and A 2 represent a spacer group having from 20 to 20 carbon atoms. Examples of the spacer group include a polymethylene group and a polyoxymethylene group. [0064] M represents a mesogenic group. The material for forming the mesogenic group M is not particularly limited! /, But azomethines, azoxys, cyanobiphenyls, cyanophenyl esters, benzoic ester, cyclohexanecarboxylic acid phenyl esters, cyan Nophenylcyclohexanes, cyano-substituted phenylpyrimidines, alkoxy-substituted phenylpyrimidines, phenylresinoxanes, tolanes and alkenylcyclohexylbenzonitriles are preferably used.
[0065] 前記重合開始剤には、熱重合開始剤と光重合開始剤とがあるが、重合反応が速い ことから光重合開始剤が好ましレ、。  [0065] The polymerization initiator includes a thermal polymerization initiator and a photopolymerization initiator, and a photopolymerization initiator is preferred because of its fast polymerization reaction.
光重合開始剤としては、多核キノン化合物(米国特許 3046127号公報、同 29517 58号公報)、ォキサジァゾール化合物(米国特許 4212970号公報)、 α—カルボ二 ル化合物(米国特許 2367661号公報、同 2367670号公報)、ァシロインエーテル( 米国特許 2448828号公報)、 a 炭化水素置換芳香族ァシロイン化合物 (米国特 許 2722512号公報)、トリアリールイミダゾールダイマーと p ァミノフエ二ルケトンとの 組み合わせ (米国特許 3549367号公報)、アタリジンおよびフエナジン化合物(特開 昭 60 - 105667号公報、米国特許 4239850号公報)などが挙げられる。  As photopolymerization initiators, polynuclear quinone compounds (US Pat. Nos. 3046127 and 2951758), oxadiazole compounds (US Pat. No. 4212970), α-carbonyl compounds (US Pat. Nos. 2367661 and 2367670). Publication), acyloin ether (U.S. Pat. No. 2448828), a hydrocarbon-substituted aromatic acyloin compound (U.S. Pat. No. 2722512), combination of triarylimidazole dimer and p-aminophenyl ketone (U.S. Pat. No. 3,549,367) ), Atalidine and phenazine compounds (Japanese Patent Laid-Open No. 60-105667, US Pat. No. 4,239,850).
[0066] 前記重合性組成物に含有させるカイラル剤としては、特開 2003— 66214号公報、 特開 2003— 313187号公報、米国特許第 6468444号公報、 WO98/00428等 に掲載されるものを適宜使用することが出来るが、液晶化合物を捩じる効率を表す指 標である HTPの大きいものが経済性の観点から好ましい。また、カイラル剤の添カロに よる意図しない相転移温度の変化を避けるために、カイラル剤自身が液晶性を示す ものを用いることが好ましい。  [0066] As the chiral agent to be contained in the polymerizable composition, those described in JP-A-2003-66214, JP-A-2003-313187, US Pat. No. 6,468,444, WO98 / 00428 and the like are appropriately used. Although it can be used, one having a large HTP, which is an index representing the efficiency of twisting the liquid crystal compound, is preferable from the viewpoint of economy. Further, in order to avoid unintended changes in the phase transition temperature due to the addition of the chiral agent, it is preferable to use a compound that exhibits liquid crystallinity.
[0067] 前記塗布液および重合前の前記塗布液の膜の表面張力を調整するために界面活 性剤を使用し得る。該界面活性剤としてはノニオン系界面活性剤が好ましぐ分子量 が数千程度のオリゴマーからなるノニオン系界面活性剤がより好ましレ、。このような界 面活性剤としては、セイミケミカル社製 KH— 40等が挙げられる。  [0067] A surfactant can be used to adjust the surface tension of the coating solution and the film of the coating solution before polymerization. As the surfactant, a nonionic surfactant made of an oligomer having a molecular weight of about several thousand is preferred, and a nonionic surfactant is more preferred. Examples of such a surfactant include KH-40 manufactured by Seimi Chemical Co., Ltd.
[0068] 前記配向調整剤は、基材上に形成されたコレステリック樹脂層の空気側表面の配 向状態を制御するためのものであり、前記界面活性剤を兼ねる場合もあるが、 目的の 配向状態によって樹脂類が用いられる。このような樹脂としては、ポリビュルアルコー ノレ、ポリビュルブチラール、あるいはこれらの変性物が用いられるがこの限りではない [0068] The alignment modifier is for controlling the alignment state of the air-side surface of the cholesteric resin layer formed on the substrate, and may also serve as the surfactant. Resins are used depending on the state. Examples of such resins include polybulu alcohol. Nore, polybutyral, or modified products thereof are used, but not limited to this
[0069] 塗布液の調製に使用する溶媒としては、有機溶媒が好ましく用いられる。有機溶媒 の例には、ケトン類、アルキルノヽライド類、アミド類、スルホキシド類、ヘテロ環化合物 、炭化水素類、エステル類、及びエーテル類が含まれる。特に環境への負荷を考慮 した場合にはケトン類が好ましい。二種類以上の有機溶媒を併用してもよい。 [0069] As the solvent used for the preparation of the coating solution, an organic solvent is preferably used. Examples of the organic solvent include ketones, alkyl halides, amides, sulfoxides, heterocyclic compounds, hydrocarbons, esters, and ethers. In particular, ketones are preferred in consideration of environmental impact. Two or more organic solvents may be used in combination.
[0070] 塗布液を膜状に積層するには、公知の方法、例えば、押し出しコーティング法、ダ ィレクトグラビアコーティング法、リバースグラビアコーティング法、及びダイコーティン グ法等を実施できる。  [0070] In order to laminate the coating liquid into a film, a known method such as an extrusion coating method, a direct gravure coating method, a reverse gravure coating method, and a die coating method can be performed.
[0071] 本発明に用いるコレステリック樹脂層は非液晶性の樹脂層であることが好ましい。非 液晶性のものであると、周囲の温度や電界などによってコレステリック規則性が変化 しないからである。非液晶性のコレステリック樹脂層は、前記重合性組成物として、重 合性基を 2以上有する重合性液晶化合物を含有したものを選択し、それを重合する ことによって得ること力 Sできる。重合性基を 2以上有する重合性液晶化合物によって、 コレステリック樹脂に比較的剛直な架橋構造が導入され、液晶性を生じない樹脂が 得られるようになる。  [0071] The cholesteric resin layer used in the present invention is preferably a non-liquid crystalline resin layer. This is because the non-liquid crystalline material does not change the cholesteric regularity due to the ambient temperature or electric field. A non-liquid crystalline cholesteric resin layer can be obtained by selecting a polymerizable composition containing a polymerizable liquid crystal compound having two or more polymerizable groups and polymerizing it. A polymerizable liquid crystal compound having two or more polymerizable groups introduces a relatively rigid cross-linked structure into the cholesteric resin, thereby obtaining a resin that does not produce liquid crystallinity.
[0072] コレステリック規則性を持つ樹脂層に、光が入射すると、特定波長領域の左回り又 は右回りの何れかの円偏光のみが反射される。反射された円偏光以外の光は透過 する。この円偏光が反射される特定波長領域を選択反射帯域という。  [0072] When light is incident on a resin layer having cholesteric regularity, only the left-handed or right-handed circularly polarized light in the specific wavelength region is reflected. Light other than the reflected circularly polarized light is transmitted. The specific wavelength region where the circularly polarized light is reflected is called a selective reflection band.
円偏光反射板のコレステリック樹脂層に極角 Θ で入射した白色光は、コレステリッ  White light incident at a polar angle Θ on the cholesteric resin layer of the circularly polarizing reflector is cholesteric.
1  1
ク樹脂層表面で屈折して屈折角 Θ でコレステリック樹脂層内を通過し、波長えに対 応したピッチ長 Pを持つコレステリック樹脂層で一方の円偏光が反射角 Θ で反射し、 コレステリック樹脂層表面で屈折して出射角 Θ で出射する。屈折はスネルの法則に  The cholesteric resin layer is refracted at the surface of the resin layer and passes through the cholesteric resin layer at a refraction angle of Θ. The light is refracted at the surface and emitted at an exit angle Θ. Refraction follows Snell's law
1  1
従って行われる。  Therefore, it is done.
[0073] カイラル構造において分子軸が捩れる時の回転軸を表す螺旋軸と、コレステリック 樹脂層の法線とが平行である場合、カイラル構造のピッチ長 Pと反射される円偏光の 波長 λとは式〔3〕及び式〔4〕の関係を有する。  [0073] When the helical axis representing the rotation axis when the molecular axis is twisted in the chiral structure and the normal line of the cholesteric resin layer are parallel, the pitch length P of the chiral structure and the wavelength λ of the circularly polarized light reflected Has the relationship of Formula [3] and Formula [4].
λ =n X P X cos Θ 式〔3〕 n X P X cos θ λ≤n X P X cos θ 2 式〔4〕 λ = n XPX cos Θ Equation (3) n XPX cos θ λ≤n XPX cos θ Formula 2 (4)
式中、 nは棒状液晶化合物の短軸方向の屈折率を表し、 nは棒状液晶化合物の 長軸方向の屈折率を表し、 n= (n +n ) /2 Pはカイラル構造のピッチ長を表す。  In the formula, n represents the refractive index in the minor axis direction of the rod-shaped liquid crystal compound, n represents the refractive index in the major axis direction of the rod-shaped liquid crystal compound, and n = (n + n) / 2 P represents the pitch length of the chiral structure. To express.
[0074] すなわち、選択反射帯域の中心波長 λ は、コレステリック樹脂層におけるカイラル 構造のピッチ長 Ρに依存する。このカイラル構造のピッチ長を変えることによって、選 択波長帯域を変えることができる。  That is, the center wavelength λ of the selective reflection band depends on the pitch length カ イ of the chiral structure in the cholesteric resin layer. By changing the pitch length of this chiral structure, the selected wavelength band can be changed.
正面方向力も観察したときの選択反射帯域を波長 350 500nmに設けるために、 ピッチ長力 好ましくは 200 360nm、より好ましく 220 330nmである層を設ける  In order to provide a selective reflection band at a wavelength of 350 500 nm when the frontal direction force is also observed, a layer having a pitch length of preferably 200 360 nm, more preferably 220 330 nm is provided.
[0075] 極角 60度の方向力、ら観察したときの選択反射帯域を波長 450 700nmに設ける ために、ピッチ長力 好ましく (ま 260 500nm、より好ましく 280 470nmである層 を設ける。 [0075] In order to provide a selective reflection band when observing a polar angle of 60 degrees at a wavelength of 450 700 nm, a layer having a pitch strength of preferably (also 260 500 nm, more preferably 280 470 nm) is provided.
正面方向力も観察したときの選択反射帯域を波長 520 600nmに設けるために、 ピッチ長力 好ましくは 300 430nm、より好ましく 320 400nmである層を設ける 正面方向力も観察したときの選択反射帯域を波長 620 900nmに設けるために、 ピッチ長力 好ましくは 360 640nm、より好ましく 380 600nmである層を設ける これらの層を適宜組み合わせて積層することによって、上記のような選択特性を示 すものが得られる。  In order to provide a selective reflection band at a wavelength of 520 600 nm when the frontal force is also observed, a layer having a pitch length of preferably 300 430 nm, more preferably 320 400 nm is provided. A layer having a pitch strength of preferably 360 640 nm, more preferably 380 600 nm is provided. By stacking these layers in an appropriate combination, a layer exhibiting the above selection characteristics can be obtained.
[0076] また、反射率はカイラル構造の積層数に応じて高くなる。反射率を調整するために カイラル構造の層数、すなわち厚さを調整する。選択反射帯域の幅は nと nの差お よびピッチ長の分布に依存するので、製造しやすい適切な液晶化合物を選択する。  In addition, the reflectance increases with the number of stacked chiral structures. In order to adjust the reflectance, the number of layers of the chiral structure, that is, the thickness is adjusted. Since the width of the selective reflection band depends on the difference between n and n and the pitch length distribution, an appropriate liquid crystal compound that is easy to manufacture is selected.
[0077] 〔偏光板〕 [0077] [Polarizing plate]
本発明の偏光板は、偏光子と、該偏光子の両面に積層された保護フィルムとからな り、  The polarizing plate of the present invention comprises a polarizer and protective films laminated on both sides of the polarizer,
波長 440nmの正面方向の透過率 TP 、波長 440nmの極角 60度方向の透過率 Transmittance T P in the front direction at a wavelength of 440 nm, Transmittance at a polar angle of 60 degrees in a wavelength of 440 nm
Β,Ν  Β, Ν
の平均直 ΤΡ 、波長 530nmの正面方向の透過率 ΤΡ 、波長 530nmの極角 60度 方向の透過率の平均値 TP 、波長 620nmの正面方向の透過率 ΤΡ 、及び波長 62 The average straight-T [rho, the transmittance in the front direction of the wavelength 530nm T [rho, polar angle 60 ° Wavelength 530nm of Direction average transmittance T P , frontal transmittance at wavelength 620 nm Τ Ρ , and wavelength 62
G,60 R,N  G, 60 R, N
Onmの極角 60度方向の透過率の平均値 TP 、の関係が式〔2〕を満たす、選択反 Onm polar angle 60% direction average transmittance T P , satisfying equation [2]
R.60  R.60
射帯域もしくは選択吸収帯域を有する c  C or a selective absorption band
ΡΡ ) > (ΤΡΡ ) = (ΤΡΡ ) 式〔2〕 Ρ / Τ Ρ )> (Τ Ρ / Τ Ρ ) = (Τ Ρ / Τ Ρ ) Equation (2)
Β,60 Β,Ν G,60 G,N R,60 R,N  Β, 60 Β, Ν G, 60 G, N R, 60 R, N
[0078] 本発明の偏光板は、式〔2〕を満たす選択反射帯域又は選択吸収帯域を有するもの であればよい。 (ΤΡ /Τ )の値と (ΤΡΡ )の値はほぼ等しい値となる必要 [0078] The polarizing plate of the present invention only needs to have a selective reflection band or a selective absorption band satisfying the formula [2]. (Τ Ρ / Τ) and (Τ Ρ / Τ Ρ ) must be almost equal
G,60 G,N R,60 R.N  G, 60 G, N R, 60 R.N
力 る。具体的には、(τρρ )の値を基準にして、(τρρ )の値と (τρ Power. Specifically, with reference to the value of (τ ρ / τ ρ), values and (tau [rho of (τ ρ / τ ρ)
G,60 G,N G,60 G,N R,60 G, 60 G, NG, 60 G, NR, 60
/TP )の値との差力 通常 5%以内、好ましくは 3%以内である。 (TP /TP )のDifferential force with the value of / T P ) Usually within 5%, preferably within 3%. (T P / T P )
R'N Β,60 Β,Ν 値は (τρρ )の値よりも大きいことが必要である。具体的には、(τρρ )The value of R'N Β, 60 Ν, Ν needs to be larger than the value of (τ ρ / τ ρ ). Specifically, (τ ρ / τ ρ )
G,60 G,N G,60 G,N の値または (TF /TF )の値を基準にして、(TP /TP )の値力 S、通常 10%以上 Based on G, 60 G, NG, 60 G, N or (T F / T F ) value, (T P / T P ) value force S, usually 10% or more
R,60 R,N B.60 Β,Ν  R, 60 R, N B.60 Β, Ν
、好ましくは 20%以上大きくなつている。  Preferably, it is larger than 20%.
[0079] このような選択反射帯域又は選択吸収帯域を有するものとして少なくとも二つの実 施形態が挙げられる。第 1の実施形態は、極角 0度(正面方向)において青色光が緑 色光及び赤色光に比べて相対的に透過し難くなつており、極角 60度において青色 光、緑色光及び赤色光がほぼ同程度に透過するようになっているものであり、第 2の 実施形態は、極角 0度(正面方向)において青色光、緑色光及び赤色光がほぼ同程 度に透過し、極角 60度において緑色光及び赤色光が青色光に比べ相対的に透過 し難くなつているものである。  [0079] There are at least two embodiments having such a selective reflection band or selective absorption band. In the first embodiment, blue light is relatively less transmitted at a polar angle of 0 degrees (front direction) than green light and red light, and blue light, green light, and red light at a polar angle of 60 degrees. In the second embodiment, blue light, green light and red light are transmitted almost at the same angle at a polar angle of 0 degrees (front direction). At 60 degrees, green light and red light are relatively difficult to transmit compared to blue light.
[0080] (偏光板の第 1実施形態)  [0080] (First embodiment of polarizing plate)
第 1実施形態の偏光板は、極角 0度(正面方向)において青色光が緑色光及び赤 色光に比べて相対的に透過し難くなつており、極角 60度において青色光、緑色光及 び赤色光がほぼ同程度に透過するようになっているものである。  In the polarizing plate of the first embodiment, blue light is relatively difficult to transmit compared to green light and red light at a polar angle of 0 degrees (front direction), and blue light, green light and light are transmitted at a polar angle of 60 degrees. And red light is transmitted through almost the same degree.
すなわち、第 1実施形態の偏光板は、正面方向から観察したときに青色光の波長 域に選択反射帯域又は選択吸収帯域を有し、この選択反射帯域又は選択吸収帯域 が極角 60度で観察したときに波長域が短波長側にシフトして青色光の透過率が緑 色光及び赤色光の透過率とほぼ同じになるものである。  That is, the polarizing plate of the first embodiment has a selective reflection band or a selective absorption band in the blue light wavelength region when observed from the front direction, and this selective reflection band or selective absorption band is observed at a polar angle of 60 degrees. When this occurs, the wavelength range shifts to the short wavelength side, and the transmittance of blue light becomes substantially the same as the transmittance of green light and red light.
[0081] 第 1実施形態の偏光板は、正面方向からの観察において、好ましくは波長 350nm 〜500nm、より好ましくは波長 410〜470nmの範囲全体に選択反射帯域又は選択 吸収帯域を有するようにしてもよいし、上記波長範囲の一部の範囲だけに選択反射 帯域又は選択吸収帯域を有するようにしてもよい。 [0081] The polarizing plate of the first embodiment preferably has a selective reflection band or a selection in the entire range of wavelengths from 350 nm to 500 nm, more preferably from 410 to 470 nm, when observed from the front direction. An absorption band may be provided, or a selective reflection band or a selective absorption band may be provided only in a part of the wavelength range.
この際、光源の発光強度のピークを示す波長が選択反射帯域又は選択吸収帯域 に含まれることが好ましい。  At this time, it is preferable that the wavelength indicating the peak of the emission intensity of the light source is included in the selective reflection band or the selective absorption band.
[0082] (偏光板の第 2実施形態) [0082] (Second embodiment of polarizing plate)
第 2実施形態の偏光板は、極角 0度(正面方向)において青色光、緑色光及び赤色 光がほぼ同程度に透過し、極角 60度において緑色光及び赤色光が青色光に比べ 相対的に透過し難くなつているものである。  The polarizing plate of the second embodiment transmits blue light, green light, and red light at approximately the same degree at a polar angle of 0 degrees (front direction), and the green light and red light are relatively compared to blue light at a polar angle of 60 degrees. It is difficult to penetrate.
すなわち、第 2実施形態の偏光板は、極角 60度の方向から観察したときに緑色光 及び赤色光の波長域にそれぞれ選択反射帯域又は選択吸収帯域を有し、この選択 反射帯域又は選択吸収帯域が極角 0度で観察したときに波長域が長波長側にシフト して緑色光及び赤色光の透過率が青色光の透過率とほぼ同じになるものである。  That is, the polarizing plate of the second embodiment has a selective reflection band or a selective absorption band in the wavelength range of green light and red light, respectively, when observed from a direction with a polar angle of 60 degrees, and this selective reflection band or selective absorption. When the band is observed at a polar angle of 0 °, the wavelength band shifts to the longer wavelength side, and the transmittance of green light and red light becomes almost the same as the transmittance of blue light.
[0083] 第 2実施形態の偏光板は、極角 60度の方向からの観察において、緑色光〜赤色 光の波長域の全体(波長 450〜700nm)にわたつて選択反射帯域又は選択吸収帯 域を有するようにしてもよいが、緑色光波長域及び赤色光波長域それぞれの発光強 度のピークを示す波長に対応した波長域にそれぞれ選択反射帯域又は選択吸収帯 域を有するようにする方が好まし!/、。 [0083] The polarizing plate of the second embodiment has a selective reflection band or a selective absorption band over the entire wavelength range of green light to red light (wavelength 450 to 700 nm) in observation from a direction with a polar angle of 60 degrees. However, it is preferable to have a selective reflection band or a selective absorption band in the wavelength band corresponding to the wavelength showing the emission intensity peak in each of the green light wavelength range and the red light wavelength range. I like it!
また正面方向において、波長 520nm〜600nmおよび波長 620nm〜900nmの 範囲にそれぞれ選択反射帯域もしくは選択吸収帯域を有するものであることが好まし い。  In the front direction, it is preferable to have a selective reflection band or a selective absorption band in the wavelength ranges of 520 nm to 600 nm and 620 nm to 900 nm, respectively.
[0084] 本発明の偏光板は、前記のように極角の角度に応じて透過率の特性が変化するも のであれば、その構造によって制限されない。  [0084] The polarizing plate of the present invention is not limited by its structure as long as the transmittance characteristics change according to the polar angle as described above.
本発明偏光板の構成例 1として、偏光子と、該偏光子の両面に積層された保護フィ ルムとからなり、前記保護フィルムのうち光源に近い側に積層される保護フィルムが 前記の光学フィルタであるものが挙げられる。  As Configuration Example 1 of the polarizing plate of the present invention, a protective film comprising a polarizer and a protective film laminated on both surfaces of the polarizer, the protective film laminated on the side close to the light source among the protective films is the optical filter. The thing which is is mentioned.
[0085] 本発明の偏光板を構成する偏光子は、直角に交わる二つの直線偏光の一方を透 過するものである。例えば、ポリビュルアルコールフィルムやエチレン酢酸ビュル部分 ケン化フィルム等の親水性高分子フィルムにヨウ素や二色性染料などの二色性物質 を吸着させて一軸延伸させたもの、前記親水性高分子フィルムを一軸延伸して二色 性物質を吸着させたもの、ポリビュルアルコールの脱水処理物やポリ塩化ビュルの 脱塩酸処理物等のポリェン配向フィルムなどが挙げられる。その他に、グリッド偏光子 、多層偏光子などの偏光を反射光と透過光に分離する機能を有する偏光子が挙げ られる。これらのうちポリビュルアルコールを含有する偏光子が好ましい。本発明に用 いる偏光子の偏光度は特に限定されないが、好ましくは 98%以上、より好ましくは 99 %以上である。直線偏光子の平均厚さは好ましくは 5 H m〜80 11 mである。 [0085] The polarizer constituting the polarizing plate of the present invention transmits one of two linearly polarized light intersecting at right angles. For example, dichroic substances such as iodine and dichroic dyes on hydrophilic polymer films such as polybulualcohol film and ethylene acetate butter saponification film Polyene such as uniaxially stretched by adsorbing, hydrophilic polymer film uniaxially stretched to adsorb dichroic substances, polybulualcohol dehydrated or polychlorinated bull dehydrochlorinated An oriented film etc. are mentioned. Other examples include a polarizer having a function of separating polarized light into reflected light and transmitted light, such as a grid polarizer and a multilayer polarizer. Of these, a polarizer containing polybulal alcohol is preferred. The degree of polarization of the polarizer used in the present invention is not particularly limited, but is preferably 98% or more, more preferably 99% or more. The average thickness of the linear polarizer is preferably 5 H m to 80 11 m.
[0086] 該構成例 1では、偏光板に用いられる保護フィルムのうち光源に近い側に積層され る保護フィルムが前記の光学フィルタであり、残りの保護フィルムは、従来から偏光板 の保護に用いられている光学フィルムである。従来の偏光板保護用の光学フィルムと して、熱可塑性樹脂フィルムが通常使用される。該熱可塑性樹脂としては、脂環式構 造含有重合体樹脂、ポリエチレンやポリプロピレン等の鎖状ォレフィン重合体、トリア セチノレセノレロース、ポリビニノレアノレコーノレ、ポリイミド、ポリアリレート、ポリエステノレ、ポ リカーボネート、ポリスルホン、ポリエーテルスルホン、アモルファスポリオレフイン、変 性アクリルポリマー、エポキシ樹脂、メタクリル樹脂等が挙げられる。  [0086] In the configuration example 1, the protective film laminated on the side close to the light source among the protective films used for the polarizing plate is the optical filter, and the remaining protective films are conventionally used for protecting the polarizing plate. It is an optical film. A thermoplastic resin film is usually used as a conventional optical film for protecting a polarizing plate. Examples of the thermoplastic resin include alicyclic structure-containing polymer resins, chained olefin polymers such as polyethylene and polypropylene, triacetinoresenorelose, polyvinylenolenoconole, polyimide, polyarylate, polyesterol, polyester. Examples include carbonate, polysulfone, polyethersulfone, amorphous polyolefin, modified acrylic polymer, epoxy resin, and methacrylic resin.
[0087] また、本発明偏光板の他の構成例 2として、偏光子と、該偏光子の両面に積層され た保護フィルムとからなり、前記保護フィルムのうち光源に近い側に積層される保護フ イルム力 光学フィルムと前記の光学フィルタとからなる積層体であるものが挙げられ 該構成例 2では、該偏光板に用いられる保護フィルムのうち光源に近い側に積層さ れる保護フィルムが前記の積層体であり、残りの保護フィルムは、従来から偏光板の 保護に用いられている光学フィルムである。積層体に用いられる光学フィルム及び従 来の偏光板保護用の光学フィルムとしては、前記構成例 1の光学フィルムとして例示 したものを用いること力できる。  [0087] Further, as another configuration example 2 of the polarizing plate of the present invention, the protective film includes a polarizer and a protective film laminated on both surfaces of the polarizer, and the protective film is laminated on the side close to the light source. Film force An example is a laminate comprising an optical film and the optical filter. In Structural Example 2, the protective film laminated on the side close to the light source among the protective films used for the polarizing plate is The remaining protective film, which is a laminate, is an optical film conventionally used for protecting polarizing plates. As the optical film used for the laminate and the conventional optical film for protecting a polarizing plate, those exemplified as the optical film of Structural Example 1 can be used.
[0088] 本発明の好適な形態の偏光板として、前記保護フィルムの少なくとも一方が光学的 異方性を有するものを挙げること力できる。光学異方性を有するフィルムは、主屈折 率 n、 n、及び nの少なくとも一つが異なるものであれば特に制限されない。たとえば s n π π s n π =n s n π π s η =η π s η π π s η =η n、 n >n =nなどの関係を満たすものが挙げられる。 [0088] As a polarizing plate according to a preferred embodiment of the present invention, mention may be made of one in which at least one of the protective films has optical anisotropy. The film having optical anisotropy is not particularly limited as long as at least one of the main refractive indexes n, n, and n is different. For example, sn π π s n π = n s n π π s η = η π s η π π s η = η Those satisfying the relationship such as n and n> n = n are mentioned.
[0089] 〔照明装置〕  [Lighting device]
本発明の照明装置は、本発明の光学フィルタと、冷陰極管、熱陰極管、発光ダイォ ード、エレクト口ルミネッセンスなどの光源とを備えるものである。光源は、波長 620η m〜680nmの範囲に発光強度のピークを有するものが好ましい。光源と光学フィノレ タとの間には、光拡散素子、集光素子、輝度向上フィルムなどが介在されていてもよ いし、光源の背後には光反射素子が配置されていてもよい。本発明の照明装置では 光源から発した光が、本発明光学フィルタにおいて、式〔1〕の関係を満たす光線透 過率で透過するようにする。  The illuminating device of the present invention includes the optical filter of the present invention and a light source such as a cold cathode tube, a hot cathode tube, a light emitting diode, and an electoric luminescence. The light source preferably has a light emission intensity peak in the wavelength range of 620 ηm to 680 nm. A light diffusing element, a condensing element, a brightness enhancement film, or the like may be interposed between the light source and the optical finorator, and a light reflecting element may be disposed behind the light source. In the illuminating device of the present invention, the light emitted from the light source is transmitted through the optical filter of the present invention with a light transmittance that satisfies the relationship of the formula [1].
[0090] なお、前記光反射素子は、光を反射することができる素子である。具体的には、反 射性金属膜や白色膜を備えた反射板が挙げられる。前記光拡散素子は輝度の面内 分布をなくすために光を散乱し拡散光とする素子である。具体的には透明基材中に シリコーンビーズなどの光拡散材を分散させたもの(光拡散板と称することもある)、透 明基材表面に光拡散材を塗布したもの(光拡散シートと称することもある)などが挙げ られる。集光素子としては、プリズムシート、マイクロレンズなどが挙げられる。 Note that the light reflecting element is an element capable of reflecting light. Specifically, a reflecting plate provided with a reflective metal film or a white film can be used. The light diffusing element is an element that scatters light into diffused light to eliminate the in-plane distribution of luminance. Specifically, a light diffusing material such as silicone beads dispersed in a transparent substrate (sometimes referred to as a light diffusing plate), or a light diffusing material applied to the surface of a transparent substrate (referred to as a light diffusing sheet). Sometimes). Examples of the condensing element include a prism sheet and a microlens.
[0091] 〔液晶表示装置〕  [Liquid crystal display device]
(液晶表示装置の第 1実施形態)  (First embodiment of liquid crystal display device)
本発明の第 1実施形態の液晶表示装置は、本発明の照明装置と液晶パネルとを備 えるものである。光学フィルタは光源と液晶パネルとの間に配置されることが好ましい 。液晶パネルは、入射側偏光子と液晶セルと出射側偏光子(検光子)とからなるもの である。入射側又は出射側偏光子には、前述した偏光子を用いることができる。偏光 子は吸湿によって偏光性能が変化することがある。これを防ぐために保護フィルムが 入射側偏光子または検光子の両面に通常貼り合わせてある。検光子に貼り合わされ る保護フィルムには、反射防止層、防汚層、防眩層などが備わっていてもよい。  The liquid crystal display device of the first embodiment of the present invention comprises the illumination device of the present invention and a liquid crystal panel. The optical filter is preferably disposed between the light source and the liquid crystal panel. The liquid crystal panel comprises an incident side polarizer, a liquid crystal cell, and an output side polarizer (analyzer). The above-described polarizer can be used for the incident side or output side polarizer. Polarizer performance may change due to moisture absorption. In order to prevent this, a protective film is usually bonded to both sides of the incident side polarizer or analyzer. The protective film bonded to the analyzer may be provided with an antireflection layer, an antifouling layer, an antiglare layer, and the like.
[0092] 液晶セルは、数 [I mのギャップを隔てて対向する透明電極を設けた 2枚のガラス基 板の間に液晶物質を充填し、この電極に電圧を掛けて液晶の配向状態を変化させ てここを通過する光の量を制御するものである。  [0092] The liquid crystal cell has a liquid crystal material filled between two glass substrates provided with transparent electrodes facing each other with a gap of several [Im], and a voltage is applied to this electrode to change the alignment state of the liquid crystal. It controls the amount of light passing through here.
液晶物質の配向状態を変化させる方式 (動作モード)などによって、液晶セルは分 類され、例えば、 TN (Twisted Nematic)型液晶セル、 STN (Super Twisted Nematic) 型液晶セノレ、 HAN (Hybrid Alignment Nematic)型液晶セノレ、 IPS (In Plane Switchin g)型液晶セノレ、 VA (Vertical Alignment)型液晶セノレ、 MVA (Multi—domain Vertical Alignment)型液晶セル、 OCB (Optical Compensated Bend)型液晶セルなどが挙げ られる。 The liquid crystal cell is separated by a method (operation mode) that changes the alignment state of the liquid crystal material. For example, TN (Twisted Nematic) type liquid crystal cell, STN (Super Twisted Nematic) type liquid crystal senore, HAN (Hybrid Alignment Nematic) type liquid crystal senore, IPS (In Plane Switching g) type liquid crystal senore, VA (Vertical Alignment) Type liquid crystal senor, MVA (Multi-domain Vertical Alignment) type liquid crystal cell, OCB (Optical Compensated Bend) type liquid crystal cell.
[0093] (液晶表示装置の第 2実施形態)  (Second Embodiment of Liquid Crystal Display Device)
本発明の第 2実施形態の液晶表示装置は、出射側偏光板、ヴアーティカルァラィメ ントモードの液晶セル、入射側偏光板、及び光源をこの順に備えるものである。  The liquid crystal display device according to the second embodiment of the present invention includes an output side polarizing plate, a vertical alignment mode liquid crystal cell, an incident side polarizing plate, and a light source in this order.
前記出射側偏光板は、出射側偏光子と該出射側偏光子の両面に積層された保護 フィルムとを含んでなるものである。前記入射側偏光板は、入射側偏光子と該入射側 偏光子の両面に積層された保護フィルムとを含んでなるものである。  The output-side polarizing plate includes an output-side polarizer and a protective film laminated on both surfaces of the output-side polarizer. The incident side polarizing plate includes an incident side polarizer and a protective film laminated on both surfaces of the incident side polarizer.
[0094] 第 2実施形態の液晶表示装置では、さらに、出射側偏光子と液晶セルとの間およ び/または入射側偏光子と液晶セルとの間に、 n >n >nの関係(ただし、 nは面内 遅相軸方向の屈折率、 nは遅相軸に面内で直交する方向の屈折率、 nは厚さ方向 の屈折率)を満たす二軸性光学異方板を 1枚または 2枚備えて!/、る。 [0094] In the liquid crystal display device of the second embodiment, a relationship of n> n> n (between the output-side polarizer and the liquid crystal cell and / or between the incident-side polarizer and the liquid crystal cell ( Where n is the refractive index in the in-plane slow axis direction, n is the refractive index in the direction perpendicular to the slow axis in the plane, and n is the refractive index in the thickness direction. One or two!
[0095] 該ニ軸性光学異方板を配置する態様としては、出射側偏光子と液晶セルとの間だ けに 1枚配する態様、入射側偏光子と液晶セルとの間だけに 1枚配置する態様、出 射側偏光子と液晶セルとの間および入射側偏光子と液晶セルとの間それぞれに 1枚 配置する態様、出射側偏光子と液晶セルとの間だけに 2枚配する態様、入射側偏光 子と液晶セルとの間だけに 2枚配置する態様、出射側偏光子と液晶セルとの間およ び入射側偏光子と液晶セルとの間それぞれに 2枚配置する態様、出射側偏光子と液 晶セルとの間に 1枚配置し且つ入射側偏光子と液晶セルとの間に 2枚配置する態様 、および出射側偏光子と液晶セルとの間に 2枚配置し且つ入射側偏光子と液晶セル との間に 1枚配置する態様が含まれる。 [0095] The biaxial optical anisotropic plate may be arranged in such a manner that only one is disposed between the output side polarizer and the liquid crystal cell, and only one between the incident side polarizer and the liquid crystal cell. One plate arrangement, one arrangement between the output side polarizer and the liquid crystal cell, and one arrangement between the incident side polarizer and the liquid crystal cell, and two arrangements only between the output side polarizer and the liquid crystal cell In this mode, two sheets are disposed only between the incident side polarizer and the liquid crystal cell, and two sheets are disposed between the output side polarizer and the liquid crystal cell and between the incident side polarizer and the liquid crystal cell. A mode, a mode in which one sheet is disposed between the output side polarizer and the liquid crystal cell, and a second mode is disposed between the incident side polarizer and the liquid crystal cell, and two sheets between the output side polarizer and the liquid crystal cell. A mode in which one sheet is disposed between the incident-side polarizer and the liquid crystal cell is included.
[0096] 第 2実施形態の液晶表示装置に用いられる二軸性光学異方板は、透明なフィルム である。透明なフィルムとしては、 1mm厚のフィルムにしたときの全光線透過率が 80 %以上のものであれば特に制限なく使用することができる。 [0096] The biaxial optical anisotropic plate used in the liquid crystal display device of the second embodiment is a transparent film. The transparent film can be used without particular limitation as long as the total light transmittance is 80% or more when the film is 1 mm thick.
二軸性光学異方板を形成する材料は特に制限はないが、熱可塑性樹脂が好まし い。熱可塑性樹脂としては、ポリカーボネート樹脂、ポリエーテルスルフォン樹脂、ポ リエチレンテレフタレート樹脂、ポリイミド樹脂、ポリメチルメタタリレート樹脂、ポリスル ホン樹脂、ポリアリレート樹脂、ポリエチレン樹脂、ポリ塩化ビュル樹脂、ジァセチルセ ノレロース、トリァセチルセルロース、ポリスチレン樹脂、ポリアクリル樹脂、脂環構造を 有するォレフィンポリマーなどが挙げられる。これらの中で、脂環構造を有するォレフ インポリマーは、本発明の液晶表示装置の表示画像を、正面及び斜めからの観察に おいて同様の色バランスがとれたものにすることができるため、好適に用いることがで きる。 The material forming the biaxial optical anisotropic plate is not particularly limited, but a thermoplastic resin is preferred. Yes. Examples of thermoplastic resins include polycarbonate resin, polyether sulfone resin, polyethylene terephthalate resin, polyimide resin, polymethyl methacrylate resin, polysulfone resin, polyarylate resin, polyethylene resin, polychlorinated butyl resin, diacetyl cellulose, and triacetyl. Examples thereof include cellulose, polystyrene resin, polyacrylic resin, and olefin polymer having an alicyclic structure. Among these, the olefin polymer having an alicyclic structure can make the display image of the liquid crystal display device of the present invention have the same color balance in front and oblique observation. It can be suitably used.
[0097] 脂環構造を有するォレフィンポリマーとしては、ノルボルネン系樹脂、単環の環状ォ レフイン系樹脂、環状共役ジェン系樹脂、ビュル脂環式炭化水素系樹脂、および、こ れらの水素化物等を挙げることができる。これらの中で、ノルボルネン系樹脂は、透 明性と成形性が良好なため、好適に用いることができる。  [0097] Examples of olefin polymers having an alicyclic structure include norbornene resins, monocyclic cyclic olefin resins, cyclic conjugated gen resins, bull alicyclic hydrocarbon resins, and hydrides thereof. Etc. Among these, norbornene-based resins can be suitably used because of their excellent transparency and moldability.
ノルボルネン系樹脂としては、ノルボルネン構造を有する単量体の開環重合体若し くはノルボルネン構造を有する単量体と他の単量体との開環共重合体またはそれら の水素化物、ノルボルネン構造を有する単量体の付加重合体若しくはノルボルネン 構造を有する単量体と他の単量体との付加共重合体またはそれらの水素化物等を 挙げること力 Sでさる。  The norbornene-based resin includes a ring-opening polymer of a monomer having a norbornene structure, a ring-opening copolymer of a monomer having a norbornene structure and another monomer, a hydride thereof, or a norbornene structure. An addition polymer of a monomer having a structure, an addition copolymer of a monomer having a norbornene structure and another monomer, a hydride thereof, or the like can be cited by force S.
[0098] 前記熱可塑性樹脂からなるフィルムとしては、公知の成形方法で得られたものを採 用すること力 Sできる。例えば、加熱溶融成形法、溶液流延法により得られたものなどを 挙げること力 Sできる。フィルム中の揮発性成分を低減させる観点から、加熱溶融成形 法により得られたものを用いることが好ましレ、。  [0098] As the film made of the thermoplastic resin, it is possible to use a film obtained by a known molding method. For example, it is possible to cite those obtained by a hot melt molding method or a solution casting method. From the viewpoint of reducing volatile components in the film, it is preferable to use the one obtained by the hot melt molding method.
[0099] 加熱溶融成形法は、さらに詳細には、溶融押し出し成形法、プレス成形法、インフ レーシヨン法、射出成形法、ブロー成形法、延伸成形法などに分類できる。これらの 中で、機械的強度および表面精度などに優れる二軸性光学異方板が得られる観点 から、溶融押し出し成形法が好ましい。  [0099] The heat melt molding method can be further classified into a melt extrusion molding method, a press molding method, an inflation method, an injection molding method, a blow molding method, a stretch molding method, and the like. Among these, the melt extrusion molding method is preferable from the viewpoint of obtaining a biaxial optical anisotropic plate excellent in mechanical strength and surface accuracy.
[0100] 第 2実施形態の液晶表示装置に用いられる二軸性光学異方板は、前記熱可塑性 樹脂からなるフィルムを延伸して得られるものが好ましい。前記熱可塑性樹脂からな るフィルムを延伸する方法としては、テンターを用いて横方向に一軸延伸する方法等 の一軸延伸法;固定するクリップの間隔が開かれて縦方向の延伸と同時にガイドレー ルの広がり角度により横方向に延伸する同時二軸延伸法や、ロール間の周速の差を 利用して縦方向に延伸した後にその両端部をクリップ把持してテンターを用いて横方 向に延伸する逐次二軸延伸法などの二軸延伸法;横又は縦方向に左右異なる速度 の送り力若しくは引張り力又は引取り力を付加できるようにしたテンター延伸機や、横 又は縦方向に左右等速度の送り力若しくは引張り力又は引取り力を付加できるように して、移動する距離が同じで延伸角度 Θを固定できるようにした若しくは移動する距 離が異なるようにしたテンター延伸機を用いて斜め延伸する方法:が挙げられる。 [0100] The biaxial optical anisotropic plate used in the liquid crystal display device of the second embodiment is preferably obtained by stretching a film made of the thermoplastic resin. Examples of a method of stretching the film made of the thermoplastic resin include a method of uniaxially stretching in the transverse direction using a tenter. Uniaxial stretching method; using the simultaneous biaxial stretching method in which the interval between the clips to be fixed is widened and the guide rail is spread at the same time as the longitudinal direction, and the difference in the peripheral speed between the rolls Biaxial stretching method such as sequential biaxial stretching method in which both ends are stretched in the machine direction and then clipped at both ends and stretched in the transverse direction using a tenter; feed force or tensile force at different speeds in the lateral or longitudinal direction Alternatively, a tenter stretching machine that can add a take-up force, or a feed force, a pulling force, or a take-up force at the same horizontal speed in the horizontal or vertical direction can be added so that the moving distance is the same and the draw angle Θ And a method of obliquely stretching using a tenter stretching machine that can fix the distance or the distance of movement is different.
[0101] 前記熱可塑性樹脂からなるフィルムを延伸する条件として、例えば、延伸温度は、 熱可塑性樹脂のガラス転移温度を Tgとすると、通常 Tg〜Tg + 20°Cの範囲に、総延 伸倍率は、通常 1.;!〜 6. 0倍の範囲に、所望の光学特性を得るために調整する。  [0101] As a condition for stretching the film made of the thermoplastic resin, for example, the stretching temperature is generally in the range of Tg to Tg + 20 ° C, where the glass transition temperature of the thermoplastic resin is Tg. Is usually adjusted in the range of 1.;! To 6.0 times to obtain the desired optical characteristics.
[0102] 第 2実施形態においては、前記二軸性光学異方板の面内方向の主屈折率を n、 n  [0102] In the second embodiment, the main refractive index in the in-plane direction of the biaxial optical anisotropic plate is n, n
x y x y
、及び厚さ方向の主屈折率を nとしたとき、前記二軸性光学異方板の全てが、 n >n And when the main refractive index in the thickness direction is n, all of the biaxial optical anisotropic plates have n> n
z x y z x y
>nを満たす。二軸性光学異方板が、このような特性でないと、コントラスト視野角が z > n is satisfied. If the biaxial optical anisotropic plate does not have such characteristics, the contrast viewing angle is z
悪化したり、第 2実施形態の液晶表示装置を、正面から観察したときのカラー画像の 色合いと、斜めから観察したときのカラー画像の色合いとが、大きく異なるおそれがあ  The hue of the color image when the liquid crystal display device of the second embodiment is observed from the front and the hue of the color image when observed from an oblique direction may be greatly different.
[0103] 第 2実施形態においては、波長 450nm、及び波長 550nmの光が入射角 0度で入 射したときの、前記二軸性光学異方板の面内方向のレターデーシヨンを Re 、及び [0103] In the second embodiment, when the light having a wavelength of 450 nm and the wavelength of 550 nm is incident at an incident angle of 0 degree, the in-plane direction letter retardation of the biaxial optical anisotropic plate is Re, and
450  450
Re としたとき、前記二軸性光学異方板の全て力 S、 0. 9≤Re /Re ≤1. 05の関 When Re, all the forces of the biaxial optical anisotropic plate S, 0.9 ≤ Re / Re ≤ 1.05
550 450 550 係を満たすことが好ましい。二軸性光学異方板が、このような特性であると、本発明の 液晶表示装置の表示画像を、正面及び斜めからの観察にお!/、て同様の色バランス がとれたものにすることができる。 It is preferable to satisfy 550 450 550. When the biaxial optical anisotropic plate has such a characteristic, the display image of the liquid crystal display device of the present invention is made to have a similar color balance for front and oblique observations! be able to.
レターデーシヨン Re 、及び Re は、高速分光エリプソメーター [J. A. Woolam社  Letter Decision Re and Re are high-speed spectroscopic ellipsometers [J. A. Woolam
450 550  450 550
、 M— 2000U〕を用いて、波長 450nm、及び波長 550nmの光を入射させて測定し たィ直である。  , M-2000U], and measured with light of 450 nm and 550 nm incident.
[0104] 第 2実施形態の液晶表示装置にお!/、て、前記二軸性光学異方板を 1枚備える形態 としては、 (I)出射側偏光子と液晶セルの間に二軸性光学異方板を 1枚備える形態と 、 (π)入射側偏光子と液晶セルの間に二軸性光学異方板を 1枚備える形態との二通 りがある。 [0104] The liquid crystal display device according to the second embodiment is configured to have one biaxial optical anisotropic plate! (I) Biaxiality is provided between the output-side polarizer and the liquid crystal cell. With one optical anisotropic plate and (Π) There are two types, one having a biaxial optical anisotropic plate between the incident side polarizer and the liquid crystal cell.
[0105] 上記 (I)または (II)の形態においては、二軸性光学異方板の面内の遅相軸と、二 軸性光学異方板の近傍に配置されてレ、る方の偏光子の偏光透過軸とが、略平行の 位置関係にあることが好ましい。本明細書において、略平行とは、二つの軸のなす角 度が 0〜3度、より好ましくは 0〜;!度であることを意味する。  [0105] In the form of (I) or (II), the slow axis in the plane of the biaxial optical anisotropic plate and the one arranged in the vicinity of the biaxial optical anisotropic plate It is preferable that the polarization transmission axis of the polarizer is in a substantially parallel positional relationship. In the present specification, “substantially parallel” means that the angle formed by the two axes is 0 to 3 degrees, more preferably 0 to;! Degrees.
[0106] 第 2実施形態の液晶表示装置にお!/、て、前記二軸性光学異方板を 2枚備える形態 としては、以下の(III)〜 (V)の 3通りがある。 (III)出射側偏光子と液晶セルの間に二 軸性光学異方板を 1枚備え、且つ、入射側偏光子と液晶セルの間に二軸性光学異 方板を 1枚備える形態。 (IV)出射側偏光子と液晶セルの間に二軸性光学異方板を 2 枚備える形態。 (V)入射側偏光子と液晶セルの間に二軸性光学異方板を 2枚備える 形態。これらの中でも、(III)の形態が好ましい。  [0106] The liquid crystal display device according to the second embodiment has the following three modes (III) to (V):! / And two forms of the biaxial optical anisotropic plate. (III) A mode in which one biaxial optical anisotropic plate is provided between the exit side polarizer and the liquid crystal cell, and one biaxial optical anisotropic plate is provided between the entrance side polarizer and the liquid crystal cell. (IV) A configuration in which two biaxial optical anisotropic plates are provided between the output-side polarizer and the liquid crystal cell. (V) A mode in which two biaxial optical anisotropic plates are provided between the incident-side polarizer and the liquid crystal cell. Among these, the form (III) is preferable.
[0107] 上記 (III)の形態にぉレ、ては、出射側偏光子と液晶セルとの間に配置された二軸 性光学異方板の面内の遅相軸と、出射側偏光子の偏光透過軸とが、略平行の位置 関係にあり、且つ、入射側偏光子と液晶セルとの間に配置された二軸性光学異方板 の面内の遅相軸と、入射側偏光子の偏光透過軸とが、略平行の位置関係にあること が好ましい。  In the form of (III) above, the slow axis in the plane of the biaxial optical anisotropic plate disposed between the output side polarizer and the liquid crystal cell, and the output side polarizer Of the biaxial optical anisotropic plate disposed between the incident side polarizer and the liquid crystal cell, and the incident side polarized light. It is preferable that the polarization transmission axis of the child is in a substantially parallel positional relationship.
[0108] 第 2実施形態の液晶表示装置では、入射側偏光子と出射側偏光子との間に配され る、出射側偏光板の液晶セルに近い側の保護フィルム、電圧無印加状態のヴァーテ イカルァライメントモードの液晶セル、入射側偏光板の液晶セルに近!/、側の保護フィ ルム、及びすベての二軸性光学異方板を仮に積層体または重層体にしたときに、該 積層体または重層体力、波長 550nmの光を入射角 0度で入射させたときのレターデ ーシヨン Rと、波長 550nmの光を入射角 40度で入射させたときのレターデーシヨン R  [0108] In the liquid crystal display device of the second embodiment, the protective film on the side near the liquid crystal cell of the output-side polarizing plate, which is disposed between the input-side polarizer and the output-side polarizer, When the liquid crystal cell in the Iqual alignment mode, the liquid crystal cell of the incident side polarizing plate is close! /, The protective film on the side, and all the biaxial optical anisotropic plates are temporarily made into a laminated body or multilayer body, Letter strength R when the laminated body or multilayer body force is incident with light having a wavelength of 550 nm at an incident angle of 0 °, and letter retardation R when light having a wavelength of 550 nm is incident at an incident angle of 40 °
0  0
とが、 I R — R ≤35nmの関係を満たす。  Satisfies the relationship of I R — R ≤35 nm.
40 40 0 I  40 40 0 I
[0109] なお、本発明においてレターデーシヨン Rは、図 10に示すように、 αの位置(前記  [0109] In the present invention, the letter decision R is a position of α (see above) as shown in FIG.
0  0
光学積層板面の法線方向)から波長 550nmの光を入射したときのレターデーシヨン である。 R は、図 10に示すように、二軸性光学異方板の面内の遅相軸 (X軸)の方向  This is the letter retardation when light with a wavelength of 550 nm is incident from the normal direction of the optical laminate surface. R is the direction of the slow axis (X axis) in the plane of the biaxial optical anisotropic plate, as shown in Fig. 10.
40  40
力、ら面内で 45度傾いた方向(すなわち、面内の進相軸(y軸)の方向からも 45度傾い た方向)で、且つ前記法線力 40度傾いた方向である 0の位置力 波長 550nmの 光を入射したときのレターデーシヨンである。 Force, tilted 45 degrees in the plane (ie, tilted 45 degrees from the in-plane fast axis (y-axis) direction And a normal force of 40 °, which is a direction inclined by 40 °, and a letter force when a light having a position force wavelength of 550 nm is incident.
レターデーシヨン R、及び R は、高速分光エリプソメーター [J. A. Woolam社、 M  Letter Decision R and R are high-speed spectroscopic ellipsometers [J. A. Woolam, M
0 40  0 40
2000U〕を用いて、波長 550nmの光を、 αおよび /3の位置から入射させて測定し たィ直である。  2000U], and measured with light at a wavelength of 550 nm incident from the α and / 3 positions.
[0110] また、第 2実施形態の液晶表示装置では、さらに、入射側偏光子と光源との間に、 本発明の光学フィルタを備えている。光源から発した光が、本発明光学フィルタにお Vヽて、式〔1〕の関係を満たす光線透過率で透過するようなって!/、る。  In addition, the liquid crystal display device of the second embodiment further includes the optical filter of the present invention between the incident side polarizer and the light source. The light emitted from the light source is transmitted through the optical filter of the present invention with a light transmittance satisfying the relationship of the formula [1].
[0111] 第 2実施形態の液晶表示装置においては、前記入射側偏光板と前記光学フィルタ とが一体となってレ、ることが好まし!/、。一体になることで該入射側偏光板と該光学フィ ルタとの間に空間が無くなる。一体にする方法は、特に制限されない。例えば、接着 剤や粘着剤を用いてこれらを貼りあわせる方法、これらの表面にプラズマを接触させ 次いでこれらを圧着する方法などが挙げられる。接着剤や粘着剤は、可視光に対し て透明であることが好ましぐまた無用な位相差を発生させないものであることが好ま しい。該入射側偏光板と該光学フィルタとを一体にした場合には、該光学フィルタは 入射側偏光子の保護フィルムとしても機能するので、該入射側偏光板の光源側の保 護フィルムを省略することができる。  [0111] In the liquid crystal display device of the second embodiment, it is preferable that the incident-side polarizing plate and the optical filter are integrated together! By being integrated, there is no space between the incident-side polarizing plate and the optical filter. The method of uniting is not particularly limited. For example, a method of bonding them using an adhesive or a pressure-sensitive adhesive, a method of bringing plasma into contact with these surfaces, and then press-bonding them are exemplified. The adhesive or pressure-sensitive adhesive is preferably transparent to visible light, and preferably does not generate unnecessary phase difference. When the incident-side polarizing plate and the optical filter are integrated, the optical filter also functions as a protective film for the incident-side polarizer, so the protective film on the light source side of the incident-side polarizing plate is omitted. be able to.
[0112] 第 2実施形態の液晶表示装置では、通常、前記出射側偏光子の偏光透過軸と前 記入射側偏光子の偏光透過軸とは略直角に配置される。本明細書において、略直 角とは、二つの軸のなす角度が 87〜90度、より好ましくは 89〜90度であることを意 味する。  [0112] In the liquid crystal display device of the second embodiment, the polarization transmission axis of the exit-side polarizer and the polarization transmission axis of the entrance-side polarizer are generally arranged at substantially right angles. In the present specification, the term “substantially perpendicular” means that the angle formed by the two axes is 87 to 90 degrees, more preferably 89 to 90 degrees.
[0113] (液晶表示装置の第 3実施形態)  [0113] (Third embodiment of liquid crystal display device)
本発明の第 3実施形態の液晶表示装置は、出射側偏光板、インプレーンスィッチン グモードの液晶セル、入射側偏光板及び光源をこの順に備えてなるものである。 前記出射側偏光板は出射側偏光子と該出射側偏光子の両面に積層された保護フ イルムとを含有してなるものである。前記入射側偏光板は入射側偏光子と該入射側 偏光子の両面に積層された保護フィルムとを含有してなるものである。  The liquid crystal display device according to the third embodiment of the present invention includes an output side polarizing plate, an in-plane switching mode liquid crystal cell, an incident side polarizing plate, and a light source in this order. The exit-side polarizing plate includes an exit-side polarizer and a protective film laminated on both sides of the exit-side polarizer. The incident-side polarizing plate includes an incident-side polarizer and a protective film laminated on both surfaces of the incident-side polarizer.
[0114] 第 3実施形態の液晶表示装置では、さらに、出射側偏光子と液晶セルとの間およ び/または入射側偏光子と液晶セルとの間に、 n〉n及び n >nの関係(ただし、 n は面内遅相軸方向の屈折率、 nは遅相軸に面内で直交する方向の屈折率、 nは厚 さ方向の屈折率)を満たす二軸性光学異方板を 1枚または 2枚備えている。 [0114] In the liquid crystal display device of the third embodiment, the distance between the output-side polarizer and the liquid crystal cell is further increased. N / n and n> n (where n is the refractive index in the in-plane slow axis direction and n is in-plane orthogonal to the slow axis) One or two biaxial optical anisotropic plates satisfying the refractive index in the direction (n is the refractive index in the thickness direction).
[0115] 該ニ軸性光学異方板を配置する態様としては、出射側偏光子と液晶セルとの間だ けに 1枚配する態様、入射側偏光子と液晶セルとの間だけに 1枚配置する態様、出 射側偏光子と液晶セルとの間および入射側偏光子と液晶セルとの間それぞれに 1枚 配置する態様、出射側偏光子と液晶セルとの間だけに 2枚配する態様、入射側偏光 子と液晶セルとの間だけに 2枚配置する態様、出射側偏光子と液晶セルとの間およ び入射側偏光子と液晶セルとの間それぞれに 2枚配置する態様、出射側偏光子と液 晶セルとの間に 1枚配置し且つ入射側偏光子と液晶セルとの間に 2枚配置する態様 、および出射側偏光子と液晶セルとの間に 2枚配置し且つ入射側偏光子と液晶セル との間に 1枚配置する態様が含まれる。 [0115] The biaxial optical anisotropic plate may be arranged in a mode in which only one is disposed between the output-side polarizer and the liquid crystal cell, and only in between the incident-side polarizer and the liquid crystal cell. One plate arrangement, one arrangement between the output side polarizer and the liquid crystal cell, and one arrangement between the incident side polarizer and the liquid crystal cell, and two arrangements only between the output side polarizer and the liquid crystal cell In this mode, two sheets are disposed only between the incident side polarizer and the liquid crystal cell, and two sheets are disposed between the output side polarizer and the liquid crystal cell and between the incident side polarizer and the liquid crystal cell. A mode, a mode in which one sheet is disposed between the output side polarizer and the liquid crystal cell, and a second mode is disposed between the incident side polarizer and the liquid crystal cell, and two sheets between the output side polarizer and the liquid crystal cell. A mode in which one sheet is disposed between the incident-side polarizer and the liquid crystal cell is included.
[0116] 第 3実施形態に用いる二軸性光学異方板は、透明なフィルムである。透明なフィノレ ムとしては、全光線透過率が 80%以上のものであれば特に制限なく使用することが できる。 [0116] The biaxial optical anisotropic plate used in the third embodiment is a transparent film. Any transparent finoleum can be used as long as it has a total light transmittance of 80% or more.
[0117] 二軸性光学異方板を形成する材料としては特に制限はなく、樹脂や液晶などの材 料が挙げられる。第 3実施形態に用いる二軸性光学異方板は、(i)固有複屈折値が 負である樹脂、(ii)ディスコティック液晶、(iii)ライオト口ピック液晶、または (iv)光異 性化物質のレ、ずれかの材料を含む層からなることが好まし!/、。  [0117] The material for forming the biaxial optical anisotropic plate is not particularly limited, and examples thereof include materials such as resins and liquid crystals. The biaxial optical anisotropic plate used in the third embodiment includes (i) a resin having a negative intrinsic birefringence value, (ii) a discotic liquid crystal, (iii) a lyo-mouth pick liquid crystal, or (iv) a photo-anisotropy. It is preferable to consist of a layer containing a material that is not a chemical substance!
[0118] (i)固有複屈折値が負である樹脂を含む層  [0118] (i) A layer containing a resin having a negative intrinsic birefringence value
固有複屈折値が負である樹脂とは、一軸性の秩序をもって分子が配向した層に光 が入射したとき、その配向方向の光の屈折率がその配向方向に直交する方向の光 の屈折率より小さくなるものを!/、う。  A resin having a negative intrinsic birefringence value means that when light is incident on a layer in which molecules are aligned in a uniaxial order, the refractive index of light in the direction perpendicular to the alignment direction is the refractive index of light in the direction of alignment. What is smaller!
[0119] 固有複屈折値が負である樹脂としては、ポリスチレンなどのビュル芳香族系重合体 樹脂、ポリアクリロニトリルゃポリメタクリル酸メチルのようなアクリル樹脂、ポリカーボネ ートなどのポリカーボネート樹脂、トリァセチルセルロースなどの酢酸セルロース樹脂 、および、これらの樹脂の原料となるモノマーの多元共重合体などを挙げることができ これらの固有複屈折値が負である樹脂は、 1種を単独で用いることができ、あるいは 、 2種以上を組み合わせて用いることもできる。これらの中で、ビュル芳香族系重合体 樹脂、アクリル樹脂を好適に用いることができ、ビュル芳香族系重合体樹脂は、複屈 折発現性が高いので特に好適に用いることができる。 [0119] Examples of the resin having a negative intrinsic birefringence value include butyl aromatic polymer resins such as polystyrene, acrylic resins such as polyacrylonitrile polymethyl methacrylate, polycarbonate resins such as polycarbonate, and triacetyl cellulose. And cellulose acetate resins such as, and multi-component copolymers of monomers that are the raw materials for these resins. These resins having a negative intrinsic birefringence value can be used alone or in combination of two or more. Among these, a bull aromatic polymer resin and an acrylic resin can be preferably used, and a bull aromatic polymer resin can be particularly preferably used because of its high birefringence.
[0120] ビュル芳香族系重合体樹脂としては、例えば、スチレン、 α—メチルスチレン、 ο— メチルスチレン、 ρ—メチルスチレン、 ρ—クロロスチレン、 ρ—二トロスチレン、 ρ—ァミノ スチレン、 ρ—カルボキシスチレン、及び ρ—フエニルスチレンなどのビュル芳香族単 量体の単独重合体、並びにこれらのビュル芳香族単量体と、エチレン、プロピレン、 ブタジエン、イソプレン、 (メタ)アクリロニトリル、 α —クロ口アクリロニトリル、 (メタ)ァク リル酸メチル、 (メタ)アクリル酸ェチル、 (メタ)アクリル酸、無水マレイン酸、酢酸ビニ ルなどのその他の単量体との共重合体などを挙げることができる。これらの中で、ポリ スチレンの単独重合体又はスチレンと無水マレイン酸との共重合体を好適に用いるこ と力 Sできる。 [0120] Examples of the butyl aromatic polymer resin include styrene, α-methylstyrene, ο-methylstyrene, ρ-methylstyrene, ρ-chlorostyrene, ρ-nitrostyrene, ρ-aminostyrene, ρ- Homopolymers of butyl aromatic monomers such as carboxystyrene and ρ-phenylstyrene, and these butyl aromatic monomers, ethylene, propylene, butadiene, isoprene, (meth) acrylonitrile, α Examples thereof include copolymers with other monomers such as acrylonitrile, methyl (meth) acrylate, ethyl (meth) acrylate, (meth) acrylic acid, maleic anhydride and vinyl acetate. Of these, a homopolymer of polystyrene or a copolymer of styrene and maleic anhydride can be suitably used.
[0121] 前記固有複屈折値が負である樹脂には、必要に応じて、酸化防止剤、熱安定剤、 光安定剤、紫外線吸収剤、帯電防止剤、分散剤、塩素捕捉剤、難燃剤、結晶化核 剤、ブロッキング防止剤、防曇剤、離型剤、顔料、有機又は無機の充填材、中和剤、 滑剤、分解剤、金属不活性化剤、汚染防止剤、抗菌剤やその他の樹脂、及び、熱可 塑性エラストマ一などの公知の添加剤が発明の効果が損なわれない範囲で含有して いてもよい。  [0121] For the resin having a negative intrinsic birefringence value, an antioxidant, a heat stabilizer, a light stabilizer, an ultraviolet absorber, an antistatic agent, a dispersant, a chlorine scavenger, a flame retardant, if necessary. , Crystallization nucleating agent, antiblocking agent, antifogging agent, mold release agent, pigment, organic or inorganic filler, neutralizing agent, lubricant, decomposition agent, metal deactivator, antifouling agent, antibacterial agent and others These resins and known additives such as a thermoplastic elastomer may be contained as long as the effects of the invention are not impaired.
[0122] 固有複屈折値が負である樹脂を含む層は、固有複屈折値が正である樹脂を含ん でいてもよい。さらに、固有複屈折値が負である樹脂からなる層の少なくとも片面に、 固有複屈折値が正である樹脂からなる層を積層した積層体であることが好ましぐ固 有複屈折値が負である樹脂からなる層の両面に固有複屈折値が正である樹脂から なる層を積層した積層体であることが特に好ましい。  [0122] The layer containing a resin having a negative intrinsic birefringence value may contain a resin having a positive intrinsic birefringence value. Furthermore, it is preferable that the layer has a negative birefringence value which is preferably a laminate in which a layer made of a resin having a positive intrinsic birefringence value is laminated on at least one side of a layer made of a resin having a negative intrinsic birefringence value. Particularly preferred is a laminate in which layers made of a resin having a positive intrinsic birefringence value are laminated on both sides of a layer made of a resin.
[0123] 前記固有複屈折値が負である樹脂からなる層、及び、固有複屈折値が負である樹 脂からなる層の少なくとも片面に、固有複屈折値が正である樹脂からなる層を積層し た積層体を製造する方法としては、特に制限はなぐ例えば、溶液流延法ゃ射出成 形法や溶融押出法などの従来公知の方法が挙げられる。 [0124] 固有複屈折値が負である樹脂からなる層は配向していることが好ましい。さらに、加 ェ性能に優れ、二軸性光学異方板を効率良く容易に形成できる観点及び長期に渡 つて安定で均質な位相差を有することができる観点から、固有複屈折値が負である 樹脂からなる配向した層の少なくとも片面に固有複屈折値が正である樹脂からなる層 を積層した積層体であることが好ましぐ固有複屈折値が負である樹脂からなる配向 した層の両面に固有複屈折値が正である樹脂からなる層を積層した積層体であるこ とが特に好ましい。この場合、固有複屈折値が正である樹脂からなる層は、固有複屈 折値が負である樹脂からなる層の位相差を効率的に利用する観点から、実質的に無 配向であることが好ましい。 [0123] A layer made of a resin having a positive intrinsic birefringence value is provided on at least one side of the layer made of a resin having a negative intrinsic birefringence value and the layer made of a resin having a negative intrinsic birefringence value. The method for producing the laminated body is not particularly limited, and examples thereof include conventionally known methods such as a solution casting method, an injection molding method, and a melt extrusion method. [0124] The layer made of a resin having a negative intrinsic birefringence value is preferably oriented. Furthermore, the intrinsic birefringence value is negative from the viewpoints of excellent processing performance, the ability to form a biaxial optical anisotropic plate efficiently and easily, and a stable and homogeneous phase difference over a long period of time. A laminated body in which a layer made of a resin having a positive intrinsic birefringence value is laminated on at least one side of the oriented layer made of a resin. Both surfaces of the oriented layer made of a resin having a negative intrinsic birefringence value are preferred. Particularly preferred is a laminate in which layers made of a resin having a positive intrinsic birefringence value are laminated. In this case, the layer made of a resin having a positive intrinsic birefringence value is substantially non-oriented from the viewpoint of efficiently using the phase difference of the layer made of a resin having a negative intrinsic birefringence value. Is preferred.
[0125] 前記固有複屈折値が負である樹脂からなる配向した層、及び、固有複屈折値が負 である樹脂からなる配向した層の少なくとも片面に固有複屈折値が正である樹脂から なる層を積層した積層体を製造する方法としては、二軸性光学異方体の厚さ方向の 屈折率を均一に効率良く制御する観点から、固有複屈折値が負である樹脂からなる 層や、固有複屈折値が負である樹脂からなる層の少なくとも片面に固有複屈折値が 正である樹脂からなる層を積層した積層体を、延伸する方法が好ましい。この場合、 固有複屈折値が負である樹脂のガラス転移温度を Tg (°C)とし、固有複屈折値が正  [0125] At least one side of the oriented layer made of a resin having a negative intrinsic birefringence value and the oriented layer made of a resin having a negative intrinsic birefringence value is made of a resin having a positive intrinsic birefringence value. As a method of manufacturing a laminate in which layers are laminated, from the viewpoint of uniformly and efficiently controlling the refractive index in the thickness direction of a biaxial optical anisotropic body, a layer made of a resin having a negative intrinsic birefringence value, A method of stretching a laminate in which a layer made of a resin having a positive intrinsic birefringence value is laminated on at least one side of a layer made of a resin having a negative intrinsic birefringence value is preferable. In this case, the glass transition temperature of a resin having a negative intrinsic birefringence value is Tg (° C), and the intrinsic birefringence value is positive.
A  A
である樹脂のガラス転移温度を Tg (°C)としたとき、 Tg (°C)〉Tg (°C) + 20 (°C)の  When the glass transition temperature of the resin is Tg (° C), Tg (° C)> Tg (° C) + 20 (° C)
B A B  B A B
関係を満たすようにすれば、固有複屈折値が負である樹脂からなる配向した層の少 なくとも片面に固有複屈折値が正である樹脂からなる実質的に無配向の層を積層し た、積層体を効率的に得ることができる。  If the relationship is satisfied, a substantially non-oriented layer made of a resin having a positive intrinsic birefringence value is laminated on at least one of the oriented layers made of a resin having a negative intrinsic birefringence value. A laminate can be obtained efficiently.
[0126] また、二軸性光学異方体の面内屈折率を制御する観点から、前記延伸した固有複 屈折値が負である樹脂からなる層に他の延伸フィルムをさらに積層する方法も好まし い。さらに、固有複屈折値が負である樹脂からなる層は、その両側に、接着性樹脂層 を介して、固有複屈折値が正である樹脂からなる層を積層した積層体とする構成とす ることあでさる。 [0126] Further, from the viewpoint of controlling the in-plane refractive index of the biaxial optical anisotropic body, a method of further laminating another stretched film on the stretched layer made of a resin having a negative intrinsic birefringence value is also preferable. Good. Furthermore, a layer made of a resin having a negative intrinsic birefringence value has a structure in which a layer made of a resin having a positive intrinsic birefringence value is laminated on both sides via an adhesive resin layer. Let's go out.
[0127] 上記のように、固有複屈折値が負である樹脂からなる層を延伸することにより、或い は、固有複屈折値が負である樹脂からなる層の少なくとも片面に、固有複屈折値が 正である樹脂からなる層を積層した積層体を延伸することにより、これらの層の延伸 方向に直交する方向の屈折率が大きくなり、延伸方向の屈折率が小さくなり、 n > n[0127] As described above, by stretching a layer made of a resin having a negative intrinsic birefringence value, or on at least one surface of a layer made of a resin having a negative intrinsic birefringence value, the intrinsic birefringence is obtained. Stretching these layers by stretching a laminate of layers of resin with positive values The refractive index in the direction perpendicular to the direction increases, the refractive index in the stretching direction decreases, and n> n
、及び n > nの関係を満たす二軸性光学異方板を効率的に好ましく形成することが できる。 And a biaxial optical anisotropic plate satisfying the relationship of n> n can be efficiently and preferably formed.
[0128] (ii)ディスコティック液晶を含む層  [Ii] Layer containing discotic liquid crystal
ディスコティック液晶としては、例えば、 C. Desrade et al., Mol. Crysr. Liq. Cryst., vol.71, page 111(1981年)に記載されているベンゼン誘導体や、 B. Kohneらの研究報 告、 Angew. Chem., 96巻, 70頁 (1984)に記載されているシクロへキサン誘導体や、 J. MLehnらの研究報告、 J. Chem. Commun. , 1794頁 (1985年)、 J. Zhangらの研究報告、 J. Am. Chem. Soc , 116巻, 2655頁 (1994年)などに記載されているァザクラウン系や フエニルアセチレン系マクロサイクルなどが挙げられる。ディスコティック液晶は一般 的にこれらを分子中心として、直鎖のアルキル基やアルコキシ基、置換べンゾィルォ キシ基などがその直鎖として放射状に置換された構造を持っている。  Examples of discotic liquid crystals include benzene derivatives described in C. Desrade et al., Mol. Crysr. Liq. Cryst., Vol. 71, page 111 (1981), and research reports by B. Kohne et al. , Angew. Chem., 96, 70 (1984), J. MLehn et al., J. Chem. Commun., 1794 (1985), J. Other examples include the azacrown and phenylacetylene macrocycles described in Zhang et al., J. Am. Chem. Soc, 116, 2655 (1994). A discotic liquid crystal generally has a structure in which a linear alkyl group, an alkoxy group, a substituted benzoyl group and the like are radially substituted as a straight chain with these as the molecular center.
[0129] さらに、ディスコティック液晶としては、例えば、化学式〔1〕で表される化合物、およ び化学式〔2〕で表される化合物を挙げることができる。  Furthermore, examples of the discotic liquid crystal include a compound represented by the chemical formula [1] and a compound represented by the chemical formula [2].
[0130] [化 1] [0130] [Chemical 1]
oo
Figure imgf000038_0001
Figure imgf000038_0001
は. Is.
Figure imgf000038_0002
Figure imgf000038_0002
(m*4,5,- "10)  (m * 4,5,-"10"
2 1 ディスコティック液晶を含む層を形成する方法に特に制限はなレ、が、  2 1 There are no particular restrictions on the method of forming the layer containing the discotic liquid crystal,
ク液晶を基材に積層する方法が好ましぐディスコティック液晶を基材面に対して実 質的に垂直に配向させて積層する方法が特に好ましい。ディスコティック液晶を基材 面に対して実質的に垂直に配向させることにより、 n > n、及び n >nの関係を満た す二軸性光学異方板を効率的に形成することができる。 する基材としては、例えば、ガラス、合成樹脂などからなる板状物などを挙げることが できる。ディスコティック液晶を、本発明に用いる偏光子、本発明光学フィルタなどの 表面に積層することにより、液晶表示装置を軽量化、薄型化し、製造効率を高めるこ と力 Sできる。なお、実質的に垂直に配向させるとは、液晶分子の平面が、基材面に対 して 60〜90度の範囲で配向させることを言う。 The method of laminating the liquid crystal on the base material is preferred, and the method of laminating the discotic liquid crystal by aligning it substantially perpendicularly to the base material surface is particularly preferred. By orienting the discotic liquid crystal substantially perpendicularly to the substrate surface, a biaxial optical anisotropic plate satisfying the relations n> n and n> n can be efficiently formed. Examples of the base material to be used include a plate-like material made of glass, synthetic resin, or the like. By laminating the discotic liquid crystal on the surface of the polarizer used in the present invention, the optical filter of the present invention, etc., it is possible to reduce the weight and thickness of the liquid crystal display device and increase the production efficiency. In addition, aligning substantially perpendicularly means that the plane of liquid crystal molecules is aligned in the range of 60 to 90 degrees with respect to the substrate surface.
[0132] ディスコティック液晶を実質的に垂直に配向させる方法としては、例えば、ディスコ ティック液晶またはディスコティック液晶と他の添加剤、重合開始剤などを含む塗布 液を、基材上に塗布された垂直配向膜上に塗布して固定化する方法、該塗布液を 垂直配向膜上に塗布して固定化したのち、垂直配向膜から剥離して、基材上に積層 する方法などを挙げることができる。  [0132] As a method for aligning the discotic liquid crystal substantially vertically, for example, a discotic liquid crystal or a coating liquid containing a discotic liquid crystal and other additives, a polymerization initiator, and the like was applied onto a substrate. Examples include a method of applying and fixing on a vertical alignment film, a method of applying the coating solution on the vertical alignment film and fixing, then peeling off the vertical alignment film and laminating on the substrate. it can.
[0133] 垂直配向膜とは、液晶分子を垂直に配向させることができる表面エネルギーが低い 膜であり、通常はポリマーから構成される。垂直配向膜を構成するポリマーとして、側 鎖にフッ素原子または炭素数 10以上の炭化水素基を導入したポリマーを好適に用 いることができる。炭化水素基は、脂肪族基、芳香族基のいずれをも用いることがで きる。ポリマーの主鎖は、ポリイミド構造またはポリビュルアルコール構造を有すること カ好ましい。ポジマーの重合度は、 200-5, 000であること力《好ましく、 300〜3, 00 0であることカより好ましい。ポリマーの分子量は、 9, 000—200, 000であることカ好 ましく、 13, 000—130, 000であることカより好ましい。  [0133] The vertical alignment film is a film having a low surface energy that can align liquid crystal molecules vertically, and is usually composed of a polymer. As the polymer constituting the vertical alignment film, a polymer in which a fluorine atom or a hydrocarbon group having 10 or more carbon atoms is introduced into the side chain can be suitably used. As the hydrocarbon group, either an aliphatic group or an aromatic group can be used. The main chain of the polymer preferably has a polyimide structure or a polybulal alcohol structure. The degree of polymerization of the positive mer is preferably 200 to 5,000, more preferably 300 to 3,000. The molecular weight of the polymer is preferably 9,000 to 200,000, more preferably 13,000 to 130,000.
[0134] 本発明においては、垂直配向膜の形成において、ポリマーを含む膜の表面を、布 、紙などで一定方向に数回擦るラビング処理を施すことが好ましい。  [0134] In the present invention, in the formation of the vertical alignment film, it is preferable to perform a rubbing treatment in which the surface of the film containing the polymer is rubbed several times in a certain direction with cloth, paper, or the like.
[0135] 塗布液の調製には、水や有機溶媒を使用することができる。有機溶媒としては、例 えば、 N, N—ジメチルホルムアミドなどのアミド類;ジメチルスルホキシドなどのスルホ キシド;ピリジンなどのへテロ環化合物;ベンゼン、へキサンなどの炭化水素類;クロ口 ホノレム、塩化メチレンなどのハロゲン化物;酢酸メチル、酢酸ブチルなどのエステル 類;アセトン、メチルェチルケトンなどのケトン類;テトラヒドロフラン、 1 , 2—ジメトキシ ェタンなどのエーテル類;などを挙げること力 Sできる。塗布液の塗布方法に特に制限 はなぐ例えば、押出コーティング法、ダイレクトグラビアコーティング法、リバースダラ ビアコーティング法、ダイコーティング法などを挙げることができる。 [0136] 垂直配向させたディスコティック液晶は、配向状態を維持して固定化することが好ま しい。固定化する方法としては、例えば、熱重合開始剤を用いる熱重合反応法、光 重合開始剤を用いる光重合反応法などを挙げることができる。これらの中で、光重合 反応法が特に好ましい。光重合開始剤としては、例えば、 α —カルボニル化合物、ァ シロインエーテル、 α —炭化水素置換芳香族ァシロイン化合物、多核キノン化合物、 トリアリールイミダゾールダイマーと ρ—ァミノフエ二ルケトンとの組み合わせ、アタリジ ンおよびフエナジン化合物、及びォキサジァゾール化合物などを挙げることができる[0135] Water or an organic solvent can be used for the preparation of the coating solution. Examples of the organic solvent include amides such as N, N-dimethylformamide; sulfoxides such as dimethyl sulfoxide; heterocyclic compounds such as pyridine; hydrocarbons such as benzene and hexane; And the like; esters such as methyl acetate and butyl acetate; ketones such as acetone and methyl ethyl ketone; ethers such as tetrahydrofuran and 1,2-dimethoxyethane; There are no particular restrictions on the coating method of the coating solution, and examples thereof include an extrusion coating method, a direct gravure coating method, a reverse dull via coating method, and a die coating method. [0136] The vertically aligned discotic liquid crystal is preferably fixed while maintaining the alignment state. Examples of the immobilization method include a thermal polymerization reaction method using a thermal polymerization initiator and a photopolymerization reaction method using a photopolymerization initiator. Of these, the photopolymerization reaction method is particularly preferred. Examples of the photopolymerization initiator include α-carbonyl compounds, acyloin ethers, α -hydrocarbon-substituted aromatic acyloin compounds, polynuclear quinone compounds, combinations of triarylimidazole dimers and ρ-aminophenyl ketones, atalidine and Mention may be made of phenazine compounds and oxadiazole compounds.
Yes
[0137] 垂直配向膜を用いて液晶分子を垂直に配向させたのち、その配向状態のまま液晶 分子を固定して光学異方体層を形成し、光学異方体層のみを透明ポリマーフィルム 上に転写することができる。垂直配向状態で固定された液晶分子は、垂直配向膜が なくても配向状態を維持することができる。ディスコティック液晶の配向により、デイス コティック液晶を含む層の面内屈折率が最大となる方向は、ディスコティック液晶分子 の円盤面と実質的に平行な方向になる。  [0137] After the liquid crystal molecules are vertically aligned using the vertical alignment film, the liquid crystal molecules are fixed in the aligned state to form an optical anisotropic layer, and only the optical anisotropic layer is formed on the transparent polymer film. Can be transferred to. The liquid crystal molecules fixed in the vertical alignment state can maintain the alignment state even without the vertical alignment film. The direction in which the in-plane refractive index of the layer containing the discotic liquid crystal becomes maximum due to the orientation of the discotic liquid crystal is substantially parallel to the disc surface of the discotic liquid crystal molecules.
[0138] (iii)ライオト口ピック液晶を含む層  [0138] (iii) Layer containing Riot-Pick liquid crystal
ライオト口ピック液晶は、特定の溶媒に、特定の濃度範囲で溶解したとき、液晶性を 示す分子である。ライオト口ピック液晶としては、例えば、セルロース誘導体、ポリぺプ チド、及び核酸などの主鎖が棒状骨格を有する高分子を溶解してなる高分子ライオト 口ピック液晶分子;両親媒性低分子化合物の濃厚水溶液からなる両親媒性ライオト口 ピック液晶分子;並びに水溶性が付与された芳香環を有する低分子化合物の溶液か らなるクロモニック ί夜晶分子;などを挙げること力 Sできる。  A lyotopic liquid crystal is a molecule that exhibits liquid crystallinity when dissolved in a specific solvent in a specific concentration range. Examples of the lyophobic liquid crystal include polymer lyotropic liquid crystal molecules in which main chains such as cellulose derivatives, polypeptides, and nucleic acids have a rod-like skeleton dissolved therein; amphiphilic low molecular weight compounds. For example, an amphiphilic lyotropic liquid crystal molecule composed of a concentrated aqueous solution; and a chromonic molecule composed of a solution of a low-molecular compound having a water-soluble aromatic ring;
[0139] 本発明においては、ライオト口ピック液晶を剪断により特定の方向に配向することが 好ましぐ液晶分子平面が基材面に対して実質的に垂直に配向することが特に好ま しい。ここで「実質的に垂直に配向」とは、液晶分子の平面が、基材面に対して 60〜 90度の範囲で配向していることを言う。液晶分子平面が基材面に対して実質的に垂 直に配向することにより、二軸性光学異方板の厚さ方向の屈折率を制御し、 η >η 、 及び n >nの関係を満たす二軸性光学異方板を効率的に形成することができる。  In the present invention, it is particularly preferable that the liquid crystal molecular plane is aligned substantially perpendicular to the substrate surface, in which it is preferable to align the lyotropic liquid crystal in a specific direction by shearing. Here, “substantially perpendicularly aligned” means that the plane of liquid crystal molecules is aligned in the range of 60 to 90 degrees with respect to the substrate surface. By aligning the liquid crystal molecular plane substantially perpendicularly to the substrate surface, the refractive index in the thickness direction of the biaxial optical anisotropic plate is controlled, and the relations η> η and n> n are A satisfying biaxial optical anisotropic plate can be efficiently formed.
[0140] ライオト口ピック液晶を積層する基材としては、例えば、ガラス、合成樹脂などからな る板状物などを挙げることができる。ライオト口ピック液晶を、本発明に用いる偏光子、 本発明の光学フィルタなどの表面に積層することにより、液晶表示装置を軽量化、薄 型化し、製造効率を高めることができる。 [0140] Examples of the base material on which the lyotopically picked liquid crystal is laminated include glass and synthetic resin. And the like. By stacking the lyotopically picked liquid crystal on the surface of the polarizer used in the present invention, the optical filter of the present invention, etc., the liquid crystal display device can be made lighter and thinner and the manufacturing efficiency can be increased.
[0141] ライオト口ピック液晶は、可視光領域において実質的に光の吸収がないことが好ま しい。このようなライオト口ピック液晶としては、例えば、化学式〔3〕、化学式〔4〕で表さ れる化合物などを挙げることができる。 [0141] Preferably, the Riot-Pick liquid crystal does not substantially absorb light in the visible light region. Examples of such lyotopic liquid crystals include compounds represented by chemical formula [3] and chemical formula [4].
[0142] [化 2] [0142] [Chemical 2]
Figure imgf000041_0001
Figure imgf000041_0001
Figure imgf000041_0002
Figure imgf000041_0002
[0143] ライオト口ピック液晶を含む層を形成する方法に特に制限はないが、剪断によりライ オト口ピック液晶を基材面に対して実質的に垂直配向させる方法が好ましい。ライオト 口ピック液晶を基材面に対して垂直配向させることにより、二軸性光学異方板の厚さ 方向の屈折率を効率よく制御することができる。ライオト口ピック液晶を垂直配向させ る方法としては、例えば、ライオト口ピック液晶の溶液またはライオト口ピック液晶と添 加剤を含む溶液を基材上に塗布して、固定化する方法を挙げることができる。この配 向処理に際しては、製造効率に優れ、軽量化、薄型化を達成することができ、基材 への損傷を防ぎ、均一な厚さで塗布することができるなどの理由により、配向膜を使 用しないことが好ましい。 [0143] Although there is no particular limitation on the method for forming the layer containing the lyo-mouth pick liquid crystal, a method of aligning the lyo-mouth pick liquid crystal substantially perpendicularly to the substrate surface by shearing is preferable. The refractive index in the thickness direction of the biaxial optical anisotropic plate can be efficiently controlled by aligning the lyotropic liquid crystal vertically to the substrate surface. Examples of the method of vertically aligning the lyo-mouth pick liquid crystal include a method of applying a solution of the lyo-mouth pick liquid crystal or a solution containing the lyo-mouth pick liquid crystal and an additive to a substrate and fixing it. it can. In this alignment treatment, the alignment film is formed for reasons such as excellent manufacturing efficiency, achieving weight reduction and thinning, preventing damage to the base material, and applying a uniform thickness. It is preferable not to use it.
[0144] ライオト口ピック液晶の溶液の調製に用いる溶媒としては、水や有機溶媒を使用す ること力 Sできる。有機溶媒としては、例えば、 N, N—ジメチルホルムアミドなどのアミド 類;ジメチルスルホキシドなどのスルホキシド;ピリジンなどのへテロ環化合物;ベンゼ ン、及びへキサンなどの炭化水素類;クロ口ホルム、及び塩化メチレンなどのハロゲン 化物;酢酸メチル、及び酢酸ブチルなどのエステル類;アセトン、及びメチルェチルケ トンなどのケトン類;並びにテトラヒドロフラン、及び 1 , 2—ジメトキシェタンなどのエー テル類;などを挙げることができる。ライオト口ピック液晶の溶液の濃度は、溶液が液 晶性を示す限り特に制限はないが、溶媒 100重量部に対してライオト口ピック液晶 0. 0001〜; 100重量部であることが好ましぐ 0. 00;!〜 1重量部であることがより好まし い。ライオト口ピック液晶の溶液の塗布方法に特に制限はなぐ例えば、押出コーティ ング法、ダイレクトグラビアコーティング法、リバースグラビアコーティング法、ダイコー ティング法などを挙げることができる。 [0144] Water or an organic solvent is used as a solvent for preparing the solution of the lyo-mouth pick liquid crystal. Ability to do S. Examples of organic solvents include amides such as N, N-dimethylformamide; sulfoxides such as dimethyl sulfoxide; heterocyclic compounds such as pyridine; hydrocarbons such as benzene and hexane; Halides such as methylene; esters such as methyl acetate and butyl acetate; ketones such as acetone and methylethylketone; and ethers such as tetrahydrofuran and 1,2-dimethoxyethane; . The concentration of the lyo-mouth pick liquid crystal solution is not particularly limited as long as the solution exhibits liquid crystallinity, but the lyo-mouth pick liquid crystal is preferably from 0.0001 to 100 parts by weight with respect to 100 parts by weight of the solvent. 1.00;! To 1 part by weight is more preferred. There are no particular restrictions on the method of applying the solution of the liquid crystal pick-up port, and examples thereof include an extrusion coating method, a direct gravure coating method, a reverse gravure coating method and a die coating method.
[0145] 剪断により配向させたライオト口ピック液晶は、配向状態を維持したまま固定化する ことが好ましい。固定化する方法としては、例えば、乾燥による溶媒除去法、熱重合 開始剤を用いる熱重合反応法、及び光重合開始剤を用いる光重合反応法などを挙 げること力 Sできる。ライオト口ピック液晶の配向により、ライオト口ピック液晶を含む層の 面内屈折率が最大となる方向は、ライオト口ピック液晶の分子平面と実質的に平行な 方向または実質的に垂直な方向になる。  [0145] It is preferable that the Riot-Pick pick liquid crystal aligned by shearing is fixed while maintaining the alignment state. Examples of the immobilization method include a solvent removal method by drying, a thermal polymerization reaction method using a thermal polymerization initiator, and a photopolymerization reaction method using a photopolymerization initiator. The direction in which the in-plane refractive index of the layer containing the lyo-mouth pick liquid crystal is maximized by the orientation of the lyo-mouth pick liquid crystal is substantially parallel to or substantially perpendicular to the molecular plane of the lyo-mouth pick liquid crystal. .
[0146] (iv)光異性化物質を含む層  [Iv] (iv) Layer containing photoisomerization substance
光異性化物質は、光により立体異性化または構造異性化を起こす物質であり、中 でも、異なる波長の光または熱によって逆異性化を起こす物質を好適に用いることが できる。そのような物質には、構造異性化とともに可視域での色調変化を伴うフォトク 口ミック化合物が含まれ、その具体例としては、ァゾベンゼン系化合物、ベンズアルド キシム系化合物、ァゾメチン系化合物、スチルベン系化合物、スピロピラン系化合物 、スピロォキサジン系化合物、フルギド系化合物、ジァリールェテン系化合物、ケィ皮 酸系化合物、レチナール系化合物、へミチオインジゴ系化合物などを挙げることがで きる。  The photoisomerizable substance is a substance that causes stereoisomerization or structural isomerization by light, and among them, a substance that causes reverse isomerization by light of different wavelengths or heat can be preferably used. Such materials include photochromic compounds with structural isomerization and color change in the visible range. Specific examples thereof include azobenzene compounds, benzaldoxime compounds, azomethine compounds, stilbene compounds, Examples include spiropyran compounds, spiroxazine compounds, fulgide compounds, diarylmethene compounds, cinnamate compounds, retinal compounds, hemithioindigo compounds, and the like.
[0147] 光異性化物質としては、低分子化合物またはポリマーのいずれをも用いることがで きる。ポリマーの場合、光異性化基は、主鎖または側鎖のいずれに存在してもよい。 ホリマーは、ホモホリマー、又はコホリマーのいずれであってもよい。コホリマーは、光 異性化能、ガラス転移温度などを調節するために、コモノマーおよび共重合比を適 宜選択することができる。本発明においては、光異性化し得る官能基を有する光異 性化物質が同時に液晶化合物である、すなわち、液晶化合物を光異性化し得る官 能基を有する化合物とすることもできる。 [0147] As the photoisomerization substance, either a low molecular compound or a polymer can be used. In the case of a polymer, the photoisomerization group may be present in either the main chain or the side chain. The polymer may be either a homopolymer or a coholomer. Coholomers can appropriately select comonomer and copolymerization ratio in order to adjust photoisomerization ability, glass transition temperature, and the like. In the present invention, the photodifferentiating substance having a functional group capable of photoisomerization is simultaneously a liquid crystal compound, that is, a compound having a functional group capable of photoisomerizing a liquid crystal compound.
[0148] 光異性化物質としては、例えば、化学式〔5〕で表されるアクリル酸エステル系ポリマ 一などを挙げること力 Sできる。  [0148] Examples of the photoisomerization substance include an acrylate polymer represented by the chemical formula [5].
[0149] [化 3]  [0149] [Chemical 3]
Figure imgf000043_0001
Figure imgf000043_0001
… 「5 j  … "5 j
[0150] 光異性化物質を含む層を形成する方法に特に制限はなぐ例えば、光異性化物質 を含む溶液を基材上に塗布して膜状面を形成し、乾燥工程を経て、直線偏光を照射 する方法などを挙げること力できる。直線偏光は、膜状面に垂直な方向から照射する ことが好ましい。 [0150] There is no particular limitation on the method for forming a layer containing a photoisomerized substance. For example, a solution containing a photoisomerized substance is coated on a substrate to form a film-like surface, followed by a drying step, and linearly polarized light. The method of irradiating can be mentioned. The linearly polarized light is preferably irradiated from a direction perpendicular to the film surface.
直線偏光の照射は、塗布層が概ね乾燥した時点から行うことができる。「概ね乾燥」 とは、塗布層中の残留溶媒 30重量%以下を目安とすることができる。直線偏光を照 射する温度は、残留溶媒の量に応じて適宜選択することができるが、光異性化物質 のガラス転移温度を Tg (°C)としたとき、 Tg— 50 (°C)力、ら Tg + 30 (°C)の範囲である ことが好ましい。  Irradiation with linearly polarized light can be performed from the time when the coating layer is substantially dried. “Approximately dry” can be defined as 30% by weight or less of the residual solvent in the coating layer. The temperature at which the linearly polarized light is irradiated can be appropriately selected according to the amount of the residual solvent. However, when the glass transition temperature of the photoisomerization material is Tg (° C), the Tg-50 (° C) force , Tg + 30 (° C) is preferable.
[0151] 直線偏光の光源に特に制限はなぐ例えば、水銀ランプ、ハロゲンランプなどを挙 げること力 Sできる。直線偏光を照射することにより、光異性化物質を含む層の面内屈 折率が最大となる方向が、照射光の偏光軸と実質的に直交する方向になる。このよう な方法により、 n >n、及び n >nの関係を満たす二軸性光学異方板を効率的に形 成すること力 Sでさる。 [0152] 光異性化物質を含む溶液を塗布する基材としては、例えば、ガラス、合成樹脂など 力、らなる板状物などを挙げること力できる。光異性化物質を、本発明に用いる偏光子 、本発明の光学フィルタなどの表面に積層することにより、液晶表示装置を軽量化、 薄型化し、製造効率を高めることができる。 [0151] There are no particular restrictions on linearly polarized light sources. For example, mercury lamps and halogen lamps can be listed. By irradiating with linearly polarized light, the direction in which the in-plane refractive index of the layer containing the photoisomerizable substance is maximized becomes a direction substantially orthogonal to the polarization axis of the irradiated light. By such a method, the force S can efficiently form a biaxial optical anisotropic plate satisfying the relations n> n and n> n. [0152] Examples of the substrate on which the solution containing the photoisomerization substance is applied include force such as glass and synthetic resin, and the like. By laminating the photoisomerized substance on the surface of the polarizer used in the present invention or the optical filter of the present invention, the liquid crystal display device can be reduced in weight and thickness, and the production efficiency can be increased.
[0153] 光異性化物質を含む溶液の調製に用いる溶媒に特に制限はなぐ例えば、メタノー ノレ、塩化メチレン、アセトン、メチルェチルケトンなどを挙げることができる。溶液の濃 度に特に制限はなぐ塗布に好適な粘度となるように適宜選択することができるが、 通常は、溶媒 100重量部に対して、光異性化物質が 1〜; 100重量部であることが好 ましい。溶液の塗布方法に特に制限はなぐ例えば、バーコ一ター、ロールコーター などを用いて塗布することができる。  [0153] The solvent used for the preparation of the solution containing the photoisomerization substance is not particularly limited, and examples thereof include methanol, methylene chloride, acetone, and methyl ethyl ketone. The concentration of the solution is not particularly limited, and can be appropriately selected so as to achieve a viscosity suitable for coating. Usually, the photoisomerizable substance is 1 to 100 parts by weight with respect to 100 parts by weight of the solvent. It is preferable. There are no particular restrictions on the method of applying the solution. For example, it can be applied using a bar coater, a roll coater or the like.
[0154] 第 3実施形態においては、前記二軸性光学異方板の面内方向の主屈折率を n 、 n [0154] In the third embodiment, the main refractive index in the in-plane direction of the biaxial optical anisotropic plate is n, n
、及び厚さ方向の主屈折率を nとしたとき、前記二軸性光学異方板の全てが、 n >nAnd when the main refractive index in the thickness direction is n, all of the biaxial optical anisotropic plates have n> n
、及び n >nを満たす。二軸性光学異方板が、このような特性であると、コントラスト視 野角が良ぐ本発明の液晶表示装置の表示画像を、正面及び斜めからの観察にお いて同様の色バランスがとれたものにすることができる。 And n> n. When the biaxial optical anisotropic plate has such characteristics, the same color balance can be obtained when the display image of the liquid crystal display device of the present invention having a good contrast viewing angle is observed from the front and oblique directions. Can be a thing.
[0155] 第 3実施形態の液晶表示装置にお!/、ては、波長 450nm、及び波長 550nmの光が 入射角 0度で入射したときの、前記二軸性光学異方板の面内方向のレターデーショ ンを Re 、及び Re としたとき、前記二軸性光学異方板の全て力 0. 9≤Re /R e ≤1. 1の関係を満たすことが好ましい。二軸性光学異方板力 S、このような特性で あると、第 3実施形態の液晶表示装置の表示画像を、正面及び斜めからの観察にお いて同様の色バランスがとれたものにすることができる。 [0155] In the liquid crystal display device according to the third embodiment, the in-plane direction of the biaxial optical anisotropic plate when light having a wavelength of 450 nm and a wavelength of 550 nm is incident at an incident angle of 0 degree. It is preferable that all the biaxial optical anisotropic plates satisfy the relationship of 0.9≤Re / Re≤1.1, where Re and Re are the letterings. Biaxial optical anisotropic plate force S. With such a characteristic, the display image of the liquid crystal display device of the third embodiment has the same color balance in front and oblique observations. be able to.
[0156] 第 3実施形態の液晶表示装置にお!/、て、前記二軸性光学異方板を 1枚備える形態 としては、 (I)出射側偏光子と液晶セルの間に二軸性光学異方板を 1枚備える形態と 、 (Π)入射側偏光子と液晶セルの間に二軸性光学異方板を 1枚備える形態との 2通 りがある。 [0156] The liquid crystal display device according to the third embodiment is configured to include one biaxial optical anisotropic plate! (I) The biaxial property is provided between the output-side polarizer and the liquid crystal cell. There are two forms: a form with one optical anisotropic plate and (i) a form with one biaxial optical anisotropic plate between the incident-side polarizer and the liquid crystal cell.
[0157] 上記 (I)または (II)の形態においては、二軸性光学異方板の面内の遅相軸と、二 軸性光学異方板の近傍に配置されてレ、る方の偏光子の偏光吸収軸とが、略平行ま たは略直角の位置関係にあることが好ましい。 [0158] 本発明の液晶表示装置において、前記二軸性光学異方板を 2枚備える形態として は、以下の(III)〜 (V)の 3通りがある。 (III)出射側偏光子と液晶セルの間に二軸性 光学異方板を 1枚備え、且つ、液晶表示装置の入射側偏光子と液晶セルの間に二 軸性光学異方板を 1枚備える形態。 (IV)出射側偏光子と液晶セルの間に二軸性光 学異方板を 2枚備える形態。 (V)入射側偏光子と液晶セルの間に二軸性光学異方 板を 2枚備える形態。これらの中でも、(III)の形態が好ましい。 [0157] In the form of (I) or (II), the slow axis in the plane of the biaxial optical anisotropic plate and the one arranged in the vicinity of the biaxial optical anisotropic plate It is preferable that the polarization absorption axis of the polarizer is in a substantially parallel or substantially perpendicular positional relationship. [0158] In the liquid crystal display device of the present invention, there are the following three modes (III) to (V) as the two biaxial optical anisotropic plates. (III) One biaxial optical anisotropic plate is provided between the output-side polarizer and the liquid crystal cell, and one biaxial optical anisotropic plate is provided between the incident-side polarizer and the liquid crystal cell of the liquid crystal display device. A form with sheets. (IV) A configuration in which two biaxial optical anisotropic plates are provided between the output-side polarizer and the liquid crystal cell. (V) A configuration in which two biaxial optical anisotropic plates are provided between the incident-side polarizer and the liquid crystal cell. Among these, the form (III) is preferable.
[0159] 上記 (III)の形態においては、出射側偏光子と液晶セルとの間に配置された二軸 性光学異方板の面内の遅相軸と、出射側偏光子の偏光吸収軸とが、略平行の位置 関係にあり、且つ、入射側偏光子と液晶セルとの間に配置された二軸性光学異方板 の面内の遅相軸と、入射側偏光子の偏光吸収軸とが、略平行の位置関係にあること が好ましい。  [0159] In the form of (III) above, the slow axis in the plane of the biaxial optical anisotropic plate disposed between the exit side polarizer and the liquid crystal cell, and the polarization absorption axis of the exit side polarizer Are in a substantially parallel positional relationship, and the slow axis in the plane of the biaxial optical anisotropic plate disposed between the incident side polarizer and the liquid crystal cell, and the polarization absorption of the incident side polarizer It is preferable that the axis is in a substantially parallel positional relationship.
[0160] 第 3実施形態の液晶表示装置におレ、ては、出射側偏光子の偏光吸収軸または入 射側偏光子の偏光吸収軸と、電圧無印加状態の液晶セルの遅相軸とが、略平行ま たは略直角であることが好ましい。  [0160] In the liquid crystal display device according to the third embodiment, the polarization absorption axis of the exit-side polarizer or the polarization absorption axis of the entrance-side polarizer, and the slow axis of the liquid crystal cell in the state where no voltage is applied. However, it is preferably substantially parallel or substantially perpendicular.
[0161] 第 3実施形態の液晶表示装置では、入射側偏光子と出射側偏光子との間に配され る、出射側偏光板の液晶セルに近い側の保護フィルム、電圧無印加状態のインプレ ーンスイッチングモードの液晶セル、入射側偏光板の液晶セルに近!/、側の保護フィ ルム、及びすベての二軸性光学異方板を仮に積層体または重層体にしたときに、該 積層体または重層体力、波長 550nmの光を入射角 0度で入射させたときのレターデ ーシヨン Rと、波長 550nmの光を入射角 40度で入射させたときのレターデーシヨン R  [0161] In the liquid crystal display device according to the third embodiment, the protective film on the side close to the liquid crystal cell of the output-side polarizing plate disposed between the input-side polarizer and the output-side polarizer, Near the switching cell mode liquid crystal cell, the incident side polarizing plate liquid crystal cell! /, When the protective film on the side and all biaxial optical anisotropic plates are temporarily laminated or multilayered, Letter strength R when the laminated body or multilayer body force is incident with light having a wavelength of 550 nm at an incident angle of 0 °, and letter retardation R when light having a wavelength of 550 nm is incident at an incident angle of 40 °
0  0
とが、 I R — R I ≤35nmの関係を満たす。  Satisfies the relationship I R — R I ≤35 nm.
40 40 0  40 40 0
[0162] また、第 3実施形態の液晶表示装置では、さらに、入射側偏光子と光源との間に、 前記の光学フィルタを備えている。光源から発した光が、本発明光学フィルタにおい て、式〔1〕の関係を満たす光線透過率で透過するようなっている。  [0162] Further, the liquid crystal display device of the third embodiment further includes the optical filter described above between the incident-side polarizer and the light source. The light emitted from the light source is transmitted through the optical filter of the present invention with a light transmittance that satisfies the relationship of the formula [1].
[0163] 第 3実施形態の液晶表示装置においては、前記入射側偏光板と前記光学フィルタ とが一体となってレ、ることが好まし!/、。一体になることで該入射側偏光板と該光学フィ ルタとの間に空間が無くなる。一体にする方法は、特に制限されない。例えば、接着 剤や粘着剤を用いてこれらを貼りあわせる方法、これらの表面にプラズマを接触させ 次いでこれらを圧着する方法などが挙げられる。接着剤や粘着剤は、可視光に対し て透明であることが好ましぐまた無用な位相差を発生させないものであることが好ま しい。該入射側偏光板と該光学フィルタとを一体にした場合には、該光学フィルタは 入射側偏光子の保護フィルムとしても機能するので、該入射側偏光板の、前記光源 側の保護フィルムを省略することができる。 [0163] In the liquid crystal display device of the third embodiment, it is preferable that the incident-side polarizing plate and the optical filter are integrated together! By being integrated, there is no space between the incident-side polarizing plate and the optical filter. The method of uniting is not particularly limited. For example, a method of bonding them together using an adhesive or a pressure sensitive adhesive, or bringing plasma into contact with these surfaces Next, a method of crimping these may be mentioned. The adhesive or pressure-sensitive adhesive is preferably transparent to visible light, and preferably does not generate unnecessary phase difference. When the incident-side polarizing plate and the optical filter are integrated, the optical filter also functions as a protective film for the incident-side polarizer, so the protective film on the light source side of the incident-side polarizing plate is omitted. can do.
[0164] (液晶表示装置の第 4実施形態)  [0164] (Fourth embodiment of liquid crystal display device)
本発明の第 4実施形態の液晶表示装置は、出射側偏光板、インプレーンスィッチン グモードの液晶セル、入射側偏光板、及び光源をこの順に備えるものである。  The liquid crystal display device according to the fourth embodiment of the present invention includes an output side polarizing plate, an in-plane switching mode liquid crystal cell, an incident side polarizing plate, and a light source in this order.
前記出射側偏光板は、出射側偏光子と該出射側偏光子の両面に積層された保護 フィルムとを含んでなるものである。前記入射側偏光板は、入射側偏光子と該入射側 偏光子の両面に積層された保護フィルムとを含んでなるものである。  The output-side polarizing plate includes an output-side polarizer and a protective film laminated on both surfaces of the output-side polarizer. The incident side polarizing plate includes an incident side polarizer and a protective film laminated on both surfaces of the incident side polarizer.
[0165] 第 4実施形態の液晶表示装置では、さらに、出射側偏光子と液晶セルとの間または 入射側偏光子と液晶セルとの間に、 n≥n >nの関係を満たす 1枚の第 1光学異方 板と、 n〉n≥nの関係を満たす 1枚の第 2光学異方板とを重層または積層して備え ている。  [0165] In the liquid crystal display device of the fourth embodiment, a single sheet satisfying the relationship of n≥n> n between the output-side polarizer and the liquid crystal cell or between the input-side polarizer and the liquid crystal cell. The first optical anisotropic plate and one second optical anisotropic plate satisfying the relationship of n> n≥n are provided in a multilayer or stacked manner.
n≥n >nの関係を満たす第 1光学異方板は、第 3実施形態の液晶表示装置に用 いた n〉n及び n >nの関係を満たす二軸性光学異方板の中から選択することがで きる。  The first optical anisotropic plate satisfying the relationship of n≥n> n is selected from the biaxial optical anisotropic plates satisfying the relationship of n> n and n> n used in the liquid crystal display device of the third embodiment. can do.
n >n≥nの関係を満たす第 2光学異方板は、第 2実施形態の液晶表示装置に用 いた二軸性光学異方板と同じもの(n >n〉nの関係を満たすもの)を用いてもよい し、 n >n =nの関係を満たすものを用いてもよい。  The second optical anisotropic plate satisfying the relationship of n> n≥n is the same as the biaxial optical anisotropic plate used in the liquid crystal display device of the second embodiment (that satisfies the relationship of n> n> n). Alternatively, a material satisfying the relationship of n> n = n may be used.
n≥n >nの関係を満たす第 1光学異方板の遅相軸と、入射側偏光子の偏光吸収 軸とが略直角に配置することが好まし!/、。  It is preferable that the slow axis of the first optical anisotropic plate satisfying the relationship n≥n> n and the polarization absorption axis of the incident-side polarizer are arranged substantially at right angles! /.
n >n≥nの関係を満たす第 2光学異方板の遅相軸と、入射側偏光子の偏光吸収 軸とが略直角に配置することが好まし!/、。  It is preferable that the slow axis of the second optical anisotropic plate satisfying the relationship of n> n≥n and the polarization absorption axis of the incident-side polarizer be arranged substantially at right angles! /.
[0166] また、第 4実施形態の液晶表示装置では、入射側偏光子と出射側偏光子との間に 酉己される、出射側偏光板の液晶セルに近い側の保護フィルム、電圧無印加状態のィ ンプレーンスイッチングモード液晶セル、入射側偏光板の液晶セルに近い側の保護 フィルム、及びすベての光学異方板を仮に積層体または重層体にしたときに、該積 層体または重層体力 S、波長 550nmの光を入射角 0度で入射させたときのレターデー シヨン Rと、波長 550nmの光を入射角 40度で入射させたときのレターデーシヨン R[0166] Further, in the liquid crystal display device of the fourth embodiment, the protective film close to the liquid crystal cell of the exit side polarizing plate, which is interposed between the entrance side polarizer and the exit side polarizer, is applied with no voltage. In-plane switching mode liquid crystal cell in state, protection on the side near the liquid crystal cell of the polarizing plate on the incident side When a film and all optical anisotropic plates are made into a laminated body or multilayer body, the laminated body or multilayer body force S, and letter letter R when a light with a wavelength of 550 nm is incident at an incident angle of 0 degree R Letter letter R when light with a wavelength of 550 nm is incident at an incident angle of 40 degrees.
0 40 とが、 I R — R I ≤35nmの関係を満たす。 0 40 satisfies the relationship I R — R I ≤35 nm.
40 0  40 0
[0167] 第 4実施形態の液晶表示装置では、さらに、入射側偏光子と光源との間に、本発明 の光学フィルタを備えている。光源から発した光が、本発明光学フィルタにおいて、 式〔1〕の関係を満たす光線透過率で透過するようなっている。  [0167] The liquid crystal display device of the fourth embodiment further includes the optical filter of the present invention between the incident-side polarizer and the light source. In the optical filter of the present invention, light emitted from the light source is transmitted with a light transmittance that satisfies the relationship of the formula [1].
[0168] 第 4実施形態の液晶表示装置においては、前記入射側偏光板と前記光学フィルタ とが一体となってレ、ることが好まし!/、。一体になることで該入射側偏光板と該光学フィ ルタとの間に空間が無くなる。一体にする方法は、特に制限されない。例えば、接着 剤や粘着剤を用いてこれらを貼りあわせる方法、これらの表面にプラズマを接触させ 次いでこれらを圧着する方法などが挙げられる。接着剤や粘着剤は、可視光に対し て透明であることが好ましぐまた無用な位相差を発生させないものであることが好ま しい。該入射側偏光板と該光学フィルタとを一体にした場合には、該光学フィルタは 入射側偏光子の保護フィルムとしても機能するので、該入射側偏光板の、前記光源 側の保護フィルムを省略することができる。  [0168] In the liquid crystal display device of the fourth embodiment, it is preferable that the incident-side polarizing plate and the optical filter are integrated together! By being integrated, there is no space between the incident-side polarizing plate and the optical filter. The method of uniting is not particularly limited. For example, a method of bonding them using an adhesive or a pressure-sensitive adhesive, a method of bringing plasma into contact with these surfaces, and then press-bonding them are exemplified. The adhesive or pressure-sensitive adhesive is preferably transparent to visible light, and preferably does not generate unnecessary phase difference. When the incident-side polarizing plate and the optical filter are integrated, the optical filter also functions as a protective film for the incident-side polarizer, so the protective film on the light source side of the incident-side polarizing plate is omitted. can do.
[0169] (液晶表示装置の第 5実施形態)  [0169] (Fifth embodiment of liquid crystal display device)
本発明の第 5実施形態の液晶表示装置は、前記本発明の偏光板を備えた液晶パ ネルを備えたものである。第 5実施形態の液晶表示装置では前記本発明の偏光板を 、光源と液晶セルとの間に配置し、光源から発した光が本発明偏光板において、式〔 2〕の関係を満たす光線透過率で透過するようにする。  A liquid crystal display device according to a fifth embodiment of the present invention includes a liquid crystal panel including the polarizing plate of the present invention. In the liquid crystal display device of the fifth embodiment, the polarizing plate of the present invention is disposed between the light source and the liquid crystal cell, and the light emitted from the light source satisfies the relationship of the formula [2] in the polarizing plate of the present invention. Be transparent at rate.
[0170] (液晶表示装置の第 6実施形態)  [0170] (Sixth embodiment of liquid crystal display device)
本発明の第 6実施形態の液晶表示装置は、出射側偏光板、ヴアーティカルァラィメ ントモードの液晶セル、入射側偏光板、及び光源をこの順に備えるものである。  The liquid crystal display device according to the sixth embodiment of the present invention includes an output side polarizing plate, a vertical alignment mode liquid crystal cell, an incident side polarizing plate, and a light source in this order.
前記出射側偏光板は、出射側偏光子と該出射側偏光子の両面に積層された保護 フィルムとを含んでなるものである。前記入射側偏光板は、前記本発明の偏光板から なる。  The output-side polarizing plate includes an output-side polarizer and a protective film laminated on both surfaces of the output-side polarizer. The incident side polarizing plate comprises the polarizing plate of the present invention.
[0171] 第 6実施形態の液晶表示装置では、さらに、出射側偏光子と液晶セルとの間およ び/または入射側偏光子と液晶セルとの間に、 n >n >nの関係(ただし、 nは面内 遅相軸方向の屈折率、 nは遅相軸に面内で直交する方向の屈折率、 nは厚さ方向 の屈折率)を満たす二軸性光学異方板を 1枚または 2枚備えて!/、る。 [0171] In the liquid crystal display device of the sixth embodiment, further, between the exit-side polarizer and the liquid crystal cell. N / n> n (where n is the refractive index in the in-plane slow axis direction and n is in the direction perpendicular to the slow axis in the plane) It has one or two biaxial optical anisotropic plates that satisfy the refractive index (where n is the refractive index in the thickness direction).
[0172] 該ニ軸性光学異方板を配置する態様としては、出射側偏光子と液晶セルとの間だ けに 1枚配する態様、入射側偏光子と液晶セルとの間だけに 1枚配置する態様、出 射側偏光子と液晶セルとの間および入射側偏光子と液晶セルとの間それぞれに 1枚 配置する態様、出射側偏光子と液晶セルとの間だけに 2枚配する態様、入射側偏光 子と液晶セルとの間だけに 2枚配置する態様、出射側偏光子と液晶セルとの間およ び入射側偏光子と液晶セルとの間それぞれに 2枚配置する態様、出射側偏光子と液 晶セルとの間に 1枚配置し且つ入射側偏光子と液晶セルとの間に 2枚配置する態様 、および出射側偏光子と液晶セルとの間に 2枚配置し且つ入射側偏光子と液晶セル との間に 1枚配置する態様が含まれる。 [0172] The biaxial optical anisotropic plate may be arranged in a mode in which only one is disposed between the output-side polarizer and the liquid crystal cell, and only one between the incident-side polarizer and the liquid crystal cell. One plate arrangement, one arrangement between the output side polarizer and the liquid crystal cell, and one arrangement between the incident side polarizer and the liquid crystal cell, and two arrangements only between the output side polarizer and the liquid crystal cell In this mode, two sheets are disposed only between the incident side polarizer and the liquid crystal cell, and two sheets are disposed between the output side polarizer and the liquid crystal cell and between the incident side polarizer and the liquid crystal cell. A mode, a mode in which one sheet is disposed between the output side polarizer and the liquid crystal cell, and a second mode is disposed between the incident side polarizer and the liquid crystal cell, and two sheets between the output side polarizer and the liquid crystal cell. A mode in which one sheet is disposed between the incident-side polarizer and the liquid crystal cell is included.
[0173] 第 6実施形態に用いられる二軸性光学異方板は、第 2実施形態に用いられる二軸 性光学異方板として例示されたものと同じものである。また該ニ軸性光学異方板の配 置方向は第 2実施形態で示したものと同様にできる。 [0173] The biaxial optical anisotropic plate used in the sixth embodiment is the same as that exemplified as the biaxial optical anisotropic plate used in the second embodiment. The arrangement direction of the biaxial optical anisotropic plate can be the same as that shown in the second embodiment.
[0174] 第 6実施形態においては、波長 450nm、及び波長 550nmの光が入射角 0度で入 射したときの、前記二軸性光学異方板の面内方向のレターデーシヨンを Re 、及び[0174] In the sixth embodiment, when the light having a wavelength of 450 nm and the light having a wavelength of 550 nm is incident at an incident angle of 0 degree, the in-plane direction letter retardation of the biaxial optical anisotropic plate is Re, and
Re としたとき、前記二軸性光学異方板の全て力 S、 0. 9≤Re /Re ≤1. 05の関 係を満たすことが好ましい。二軸性光学異方板が、このような特性であると、第 6実施 形態の液晶表示装置の表示画像を、正面及び斜めからの観察にお!/、て同様の色バ ランスがとれたものにすることができる。 When Re is set, it is preferable that all the biaxial optical anisotropic plates satisfy the relationship of force S, 0.9≤Re / Re≤1.05. When the biaxial optical anisotropic plate has such characteristics, the display image of the liquid crystal display device of the sixth embodiment can be observed from the front and obliquely! / And the same color balance can be obtained. Can be a thing.
[0175] 第 6実施形態の液晶表示装置では、入射側偏光子と出射側偏光子との間に配され る、出射側偏光板の液晶セルに近い側の保護フィルム、電圧無印加状態のヴァーテ イカルァライメントモードの液晶セル、入射側偏光板の液晶セルに近!/、側の保護フィ ルム、及びすベての二軸性光学異方板を仮に積層体または重層体にしたときに、該 積層体または重層体力、波長 550nmの光を入射角 0度で入射させたときのレターデ ーシヨン Rと、波長 550nmの光を入射角 40度で入射させたときのレターデーシヨン R とが、 I R — R I ≤35nmの関係を満たす。 [0176] また、第 6実施形態の液晶表示装置では、光源から発した光が、本発明偏光板から なる入射側偏光板にお!/、て、式〔2〕の関係を満たす光線透過率で透過するようにな つている。 [0175] In the liquid crystal display device of the sixth embodiment, the protective film on the side close to the liquid crystal cell of the exit-side polarizing plate disposed between the entrance-side polarizer and the exit-side polarizer, When the liquid crystal cell in the Iqual alignment mode, the liquid crystal cell of the incident side polarizing plate is close! /, The protective film on the side, and all the biaxial optical anisotropic plates are temporarily made into a laminated body or multilayer body, The layered or multilayered body force, letter R when light with a wavelength of 550 nm is incident at an incident angle of 0 °, and letter R when light with a wavelength of 550 nm is incident at an incident angle of 40 ° are IR — Satisfies the relationship of RI ≤35nm. [0176] In the liquid crystal display device of the sixth embodiment, the light emitted from the light source is incident on the incident-side polarizing plate comprising the polarizing plate of the present invention, and the light transmittance satisfying the relationship of the formula [2] It has become transparent.
[0177] (液晶表示装置の第 7実施形態)  [0177] (Seventh embodiment of liquid crystal display device)
本発明の第 7実施形態の液晶表示装置は、出射側偏光板、インプレーンスィッチン グモードの液晶セル、入射側偏光板及び光源をこの順に備えてなるものである。 前記出射側偏光板は出射側偏光子と該出射側偏光子の両面に積層された保護フ イルムとを含有してなるものである。前記入射側偏光板は前記本発明の偏光板からな  The liquid crystal display device according to the seventh embodiment of the present invention includes an output-side polarizing plate, an in-plane switching mode liquid crystal cell, an incident-side polarizing plate, and a light source in this order. The exit-side polarizing plate includes an exit-side polarizer and a protective film laminated on both sides of the exit-side polarizer. The incident side polarizing plate is the polarizing plate of the present invention.
[0178] 第 7実施形態の液晶表示装置では、さらに、出射側偏光子と液晶セルとの間およ び/または入射側偏光子と液晶セルとの間に、 n〉n及び n >nの関係(ただし、 n は面内遅相軸方向の屈折率、 nは遅相軸に面内で直交する方向の屈折率、 nは厚 さ方向の屈折率)を満たす二軸性光学異方板を 1枚または 2枚備えている。 [0178] In the liquid crystal display device of the seventh embodiment, n> n and n> n between the exit side polarizer and the liquid crystal cell and / or between the entrance side polarizer and the liquid crystal cell. Biaxial optical anisotropic plate satisfying the relationship (where n is the refractive index in the in-plane slow axis direction, n is the refractive index in the direction perpendicular to the slow axis in the plane, and n is the refractive index in the thickness direction) One or two of them.
[0179] 該ニ軸性光学異方板を配置する態様としては、出射側偏光子と液晶セルとの間だ けに 1枚配する態様、入射側偏光子と液晶セルとの間だけに 1枚配置する態様、出 射側偏光子と液晶セルとの間および入射側偏光子と液晶セルとの間それぞれに 1枚 配置する態様、出射側偏光子と液晶セルとの間だけに 2枚配する態様、入射側偏光 子と液晶セルとの間だけに 2枚配置する態様、出射側偏光子と液晶セルとの間およ び入射側偏光子と液晶セルとの間それぞれに 2枚配置する態様、出射側偏光子と液 晶セルとの間に 1枚配置し且つ入射側偏光子と液晶セルとの間に 2枚配置する態様 、および出射側偏光子と液晶セルとの間に 2枚配置し且つ入射側偏光子と液晶セル との間に 1枚配置する態様が含まれる。 [0179] The biaxial optical anisotropic plate may be arranged in a mode in which only one is disposed between the output-side polarizer and the liquid crystal cell, and only in between the incident-side polarizer and the liquid crystal cell. One plate arrangement, one arrangement between the output side polarizer and the liquid crystal cell, and one arrangement between the incident side polarizer and the liquid crystal cell, and two arrangements only between the output side polarizer and the liquid crystal cell In this mode, two sheets are disposed only between the incident side polarizer and the liquid crystal cell, and two sheets are disposed between the output side polarizer and the liquid crystal cell and between the incident side polarizer and the liquid crystal cell. A mode, a mode in which one sheet is disposed between the output side polarizer and the liquid crystal cell, and a second mode is disposed between the incident side polarizer and the liquid crystal cell, and two sheets between the output side polarizer and the liquid crystal cell. A mode in which one sheet is disposed between the incident-side polarizer and the liquid crystal cell is included.
[0180] 第 7実施形態に用いられる二軸性光学異方板は、第 3実施形態に用いられる二軸 性光学異方板として例示されたものと同じものである。また該ニ軸性光学異方板の配 置方向は第 3実施形態で示したものと同様にできる。 [0180] The biaxial optical anisotropic plate used in the seventh embodiment is the same as that exemplified as the biaxial optical anisotropic plate used in the third embodiment. The arrangement direction of the biaxial optical anisotropic plate can be the same as that shown in the third embodiment.
[0181] 第 7実施形態の液晶表示装置においては、波長 450nm、及び波長 550nmの光が 入射角 0度で入射したときの、前記二軸性光学異方板の面内方向のレターデーショ ンを Re 、及び Re としたとき、前記二軸性光学異方板の全て力 0. 9≤Re /R e ≤1. 1の関係を満たすことが好ましい。二軸性光学異方板力 S、このような特性で[0181] In the liquid crystal display device of the seventh embodiment, the in-plane direction retardation of the biaxial optical anisotropic plate when light having a wavelength of 450 nm and a wavelength of 550 nm is incident at an incident angle of 0 degrees is represented by Re , And Re, all the forces of the biaxial optical anisotropic plate 0.9 ≤ Re / R It is preferable to satisfy the relationship of e ≤1.1. Biaxial optical anisotropic plate force S, with these characteristics
550 550
あると、第 7実施形態の液晶表示装置の表示画像を、正面及び斜めからの観察にお いて同様の色バランスがとれたものにすることができる。  In this case, the display image of the liquid crystal display device according to the seventh embodiment can have the same color balance when viewed from the front and oblique directions.
[0182] 第 7実施形態の液晶表示装置では、入射側偏光子と出射側偏光子との間に配され る、出射側偏光板の液晶セルに近い側の保護フィルム、電圧無印加状態のインプレ ーンスイッチングモードの液晶セル、入射側偏光板の液晶セルに近!/、側の保護フィ ルム、及びすベての二軸性光学異方板を仮に積層体または重層体にしたときに、該 積層体または重層体力、波長 550nmの光を入射角 0度で入射させたときのレターデ ーシヨン Rと、波長 550nmの光を入射角 40度で入射させたときのレターデーシヨン R [0182] In the liquid crystal display device of the seventh embodiment, the protective film on the side close to the liquid crystal cell of the output-side polarizing plate disposed between the input-side polarizer and the output-side polarizer, Near the switching cell mode liquid crystal cell, the incident side polarizing plate liquid crystal cell! /, When the protective film on the side and all biaxial optical anisotropic plates are temporarily laminated or multilayered, Letter strength R when the laminated body or multilayer body force is incident with light having a wavelength of 550 nm at an incident angle of 0 °, and letter retardation R when light having a wavelength of 550 nm is incident at an incident angle of 40 °
0  0
とが、 I R — R I ≤35nmの関係を満たす。  Satisfies the relationship I R — R I ≤35 nm.
40 40 0  40 40 0
[0183] また、第 7実施形態の液晶表示装置では、光源から発した光が、本発明偏光板から なる入射側偏光板にお!/、て、式〔2〕の関係を満たす光線透過率で透過するようにな つている。  [0183] In the liquid crystal display device of the seventh embodiment, the light emitted from the light source is incident on the incident side polarizing plate made of the polarizing plate of the present invention, and the light transmittance satisfying the relationship of the formula [2] It has become transparent.
[0184] (液晶表示装置の第 8実施形態)  [Eighth Embodiment of Liquid Crystal Display Device]
第 8実施形態の液晶表示装置は、出射側偏光板、インプレーンスイッチングモード の液晶セル、入射側偏光板及び光源をこの順に備えてなるものである。  The liquid crystal display device of the eighth embodiment includes an output side polarizing plate, an in-plane switching mode liquid crystal cell, an incident side polarizing plate, and a light source in this order.
前記出射側偏光板は出射側偏光子と該出射側偏光子の両面に積層された保護フ イルムとを含有してなるものである。前記入射側偏光板は前記本発明の偏光板からな  The exit-side polarizing plate includes an exit-side polarizer and a protective film laminated on both sides of the exit-side polarizer. The incident side polarizing plate is the polarizing plate of the present invention.
[0185] 第 8実施形態の液晶表示装置では、さらに、出射側偏光子と液晶セルとの間または 入射側偏光子と液晶セルとの間に、 n≥n >nの関係を満たす 1枚の第 1光学異方 板と、 n〉n≥nの関係を満たす 1枚の第 2光学異方板とを重層または積層して備え ている。 [0185] In the liquid crystal display device of the eighth embodiment, one sheet satisfying the relationship of n≥n> n is further provided between the exit side polarizer and the liquid crystal cell or between the entrance side polarizer and the liquid crystal cell. The first optical anisotropic plate and one second optical anisotropic plate satisfying the relationship of n> n≥n are provided in a multilayer or stacked manner.
n≥n >nの関係を満たす第 1光学異方板は、第 3実施形態の液晶表示装置に用 いた n〉n及び n >nの関係を満たす二軸性光学異方板の中から選択することがで きる。  The first optical anisotropic plate satisfying the relationship of n≥n> n is selected from the biaxial optical anisotropic plates satisfying the relationship of n> n and n> n used in the liquid crystal display device of the third embodiment. can do.
n >n≥nの関係を満たす第 2光学異方板は、第 2実施形態の液晶表示装置に用 いた二軸性光学異方板と同じもの(n >n〉nの関係を満たすもの)を用いてもよい し、 n >n =nの関係を満たすものを用いてもよい。 The second optical anisotropic plate satisfying the relationship of n> n≥n is the same as the biaxial optical anisotropic plate used in the liquid crystal display device of the second embodiment (that satisfies the relationship of n>n> n). May be used A material satisfying the relationship of n> n = n may be used.
n≥n >nの関係を満たす第 1光学異方板の遅相軸と、入射側偏光子の偏光吸収 軸とを略直角に配置することが好まし!/、。  It is preferable to arrange the slow axis of the first optical anisotropic plate satisfying the relationship n≥n> n and the polarization absorption axis of the incident side polarizer at substantially right angles! /.
n >n≥nの関係を満たす第 2光学異方板の遅相軸と、入射側偏光子の偏光吸収 軸とを略直角に配置することが好まし!/、。  It is preferable to arrange the slow axis of the second optical anisotropic plate satisfying the relationship of n> n≥n and the polarization absorption axis of the incident side polarizer at substantially right angles! /.
[0186] 第 8実施形態の液晶表示装置では、入射側偏光子と出射側偏光子との間に配され る、出射側偏光板の液晶セルに近い側の保護フィルム、電圧無印加状態のインプレ ーンスイッチングモードの液晶セル、入射側偏光板の液晶セルに近!/、側の保護フィ ルム、第 1光学異方板及び第 2光学異方板を仮に積層体または重層体にしたときに 、該積層体または重層体が、波長 550nmの光を入射角 0度で入射させたときのレタ 一デーシヨン Rと、波長 550nmの光を入射角 40度で入射させたときのレターデーシ [0186] In the liquid crystal display device of the eighth embodiment, the protective film on the side close to the liquid crystal cell of the output-side polarizing plate disposed between the input-side polarizer and the output-side polarizer, Near the switching-mode liquid crystal cell and the incident-side polarizing plate! /, When the protective film on the side, the first optical anisotropic plate and the second optical anisotropic plate are laminated or multilayered. The laminated body or the multilayer body has a retardation R when light having a wavelength of 550 nm is incident at an incident angle of 0 degrees, and a letter pattern when light having a wavelength of 550 nm is incident at an incident angle of 40 degrees.
0  0
ヨン R とが、 I R — R  Yon R, I R — R
40 0 I ≤35nmの関係を満たす。  Satisfies the relationship of 40 0 I ≤35 nm.
40  40
[0187] また、第 8実施形態の液晶表示装置では、光源から発した光が、本発明偏光板から なる入射側偏光板にお!/、て、式〔2〕の関係を満たす光線透過率で透過するようにな つている。  [0187] Also, in the liquid crystal display device of the eighth embodiment, the light emitted from the light source is incident on the incident-side polarizing plate comprising the polarizing plate of the present invention, and the light transmittance satisfying the relationship of the formula [2] It has become transparent.
[0188] 本発明の液晶表示装置は、前記出射側偏光子、前記液晶セル、前記入射側偏光 子、前記光源、前記光学異方板、及び前記光学フィルタの他に、他のフィルムまたは 層を設けてもよい、例えば、プリズムアレイシート、レンズアレイシート、光拡散板、導 光板、拡散シート、及び輝度向上フィルムなどを適宜な位置に、 1枚または 2枚以上 酉己置すること力 Sでさる。  The liquid crystal display device of the present invention includes other films or layers in addition to the exit side polarizer, the liquid crystal cell, the entrance side polarizer, the light source, the optical anisotropic plate, and the optical filter. For example, one or two or more prism array sheets, lens array sheets, light diffusion plates, light guide plates, diffusion sheets, brightness enhancement films, etc. can be placed at appropriate positions. Monkey.
[0189] 本発明の液晶表示装置では、光源で発光された白色光が、本発明の光学フィルタ 又は本発明の偏光板を透過し、次いで液晶セルを透過して、画像を視認できるように なっている。本発明の光学フィルタ又は本発明の偏光板では、正面方向の透過光の 色度座標に比べ斜め方向の透過光の色度座標が相対的に青色又は緑色になった 光に変換される。液晶セルでは、正面方向の透過光の色度座標に比べ斜め方向の 透過光の色度座標が相対的に赤色又は黄色になった光に変換されるので、本発明 の光学フィルタ又は本発明の偏光板を透過した光が液晶セルを透過すると、正面方 向及び斜め方向ともに、青色、緑色、赤色のバランスが取れた、白色光になる。 実施例 In the liquid crystal display device of the present invention, the white light emitted from the light source passes through the optical filter of the present invention or the polarizing plate of the present invention, and then passes through the liquid crystal cell so that an image can be visually recognized. ing. In the optical filter of the present invention or the polarizing plate of the present invention, the chromaticity coordinates of the transmitted light in the oblique direction are converted into light having a relatively blue or green color compared to the chromaticity coordinates of the transmitted light in the front direction. In the liquid crystal cell, since the chromaticity coordinate of the transmitted light in the oblique direction is converted to light that is relatively red or yellow compared to the chromaticity coordinate of the transmitted light in the front direction, the optical filter of the present invention or the When the light that has passed through the polarizing plate passes through the liquid crystal cell, it becomes white light that balances blue, green, and red in both the front and diagonal directions. Example
[0190] 以下、実施例及び比較例を示し、本発明を更に具体的に説明する力 本発明は下 記の実施例に制限されるものではない。  [0190] Hereinafter, examples and comparative examples will be shown, and the power to further specifically explain the present invention. The present invention is not limited to the following examples.
[0191] 比較例 1 [0191] Comparative Example 1
ノルボルネン系重合体からなる、厚さ 100 mの光学的に等方性のフィルム(ォプ テス社製、商品名「ゼォノアフィルム ZF14」)は、波長 440nmの正面方向の透過率 T F 力 S91 %、波長 440nmの極角 60度方向の透過率の平均ィ直 TF 力 3%、波長 53An optically isotropic film made of norbornene-based polymer with a thickness of 100 m (product name “Zeonor Film ZF14”, manufactured by Optes Co., Ltd.) has a transmittance of 440 nm in the front direction, TF force S91%, wavelength 440nm polar angle 60% direction transmittance average straight T F force 3%, wavelength 53
Β,Ν Β,60 Β, Ν Β, 60
Onmの正面方向の透過率 TF 力 1 %、波長 530nmの極角 60度方向の透過率の Onm front transmittance T F force 1%, wavelength 530nm polar angle 60 ° transmittance
G,N  G, N
平均ィ直 TF 力 3%、波長 620nmの正面方向の透過率 TF 力 2%、及び波長 62 Average straight T F force 3%, wavelength 620nm frontal transmittance T F force 2%, wavelength 62
G,60 R,N  G, 60 R, N
Onmの極角 60度方向の透過率の平均値 TF 力 3%であった。選択反射は生じな The average transmittance of Onm in the 60 ° polar angle direction was TF force of 3%. No selective reflection occurs
R.60  R.60
かった。  won.
[0192] 前記等方性フィルム及び VAモード液晶パネルを重ね、図 1に示す発光スペクトル を持つ白色光を等方性フィルム側から入射し、液晶パネルを白表示の状態にして、 透過光の色度を測定し、 CIE (国際照明委員会) 1931年制定の表色系 (JIS— Z— 8 701)に基づき色度座標を求め、観察角度による分布を求めた。結果を図 4及び図 5 に示す。図 4は色度座標(x、 y)を示すものである。図 4中の白丸は極角 0度の色度座 標である。観察角度が大きくなると色度が右上の方向に分布していくことが判る。図 5 は正面方向の色度座標 (X、y )と斜め方向の色度座標 (X 、y )と間の直線距離(  [0192] The isotropic film and the VA mode liquid crystal panel are overlapped, and white light having an emission spectrum shown in Fig. 1 is incident from the isotropic film side, the liquid crystal panel is in a white display state, and the color of the transmitted light The chromaticity coordinates were measured based on the color system (JIS-Z-8701) established by CIE (International Lighting Commission) 1931, and the distribution according to the observation angle was determined. The results are shown in Figs. Figure 4 shows the chromaticity coordinates (x, y). The white circles in Fig. 4 are chromaticity coordinates with a polar angle of 0 degrees. It can be seen that as the observation angle increases, the chromaticity is distributed in the upper right direction. Figure 5 shows the linear distance between the chromaticity coordinates (X, y) in the front direction and the chromaticity coordinates (X, y) in the diagonal direction (
N N θ Θ  N N θ Θ
A xy)を示したものである。極角が大きくなると( Δ xy)が大きくなることがわかる。  A xy). It can be seen that (Δxy) increases as the polar angle increases.
[0193] 実施例 1 [0193] Example 1
ノルボルネン系重合体からなる、厚さ 100 mの光学的に等方性のフィルム(ォプ テス社製、商品名「ゼォノアフィルム ZF14」)を透明基材として用いた。この透明基材 の両面を濡れ指数が 56dyne/cmになるようにプラズマ処理した。ポリビュルアルコ ール 5重量部及び水 95重量部からなる溶液を透明基材の片面に塗布し、乾燥し て、膜を形成した。次いで、透明基材の長手方向に平行な方向に、フェルトのロール でラビングして、平均厚さ 0. 1 mの配向膜を得た。  An optically isotropic film made of norbornene-based polymer and having a thickness of 100 m (trade name “Zeonor Film ZF14”, manufactured by Optes Co., Ltd.) was used as a transparent substrate. Both surfaces of this transparent substrate were plasma-treated so that the wetting index was 56 dyne / cm. A solution consisting of 5 parts by weight of polybulal alcohol and 95 parts by weight of water was applied to one side of a transparent substrate and dried to form a film. Next, the film was rubbed with a felt roll in a direction parallel to the longitudinal direction of the transparent substrate to obtain an alignment film having an average thickness of 0.1 m.
[0194] ネマチック液晶化合物(BASF社製、商品名「LC242」 ) 100重量部、カイラル剤 ( BASF社製、商品名「LC756」) 6. 05重量部、光重合開始剤(チバ 'スペシャルテ ィ一.ケミカルズ社製、商品名「Irgacure907」 ) 3. 28重量部、及び界面活性剤(セ イミケミカル社製、商品名「KH— 40」) 0. 23重量部を、メチルェチルケトン 164重 量部に溶解し、孔径 2 ^ mのポリフルォロエチレン製 CD/Xシリンジフィルターを用 いて濾過することにより、塗工液を調製した。 [0194] Nematic liquid crystal compound (BASF, trade name “LC242”) 100 parts by weight, chiral agent (BASF, trade name “LC756”) 6.05 parts by weight, photopolymerization initiator (Ciba Ii. Chemicals, trade name “Irgacure907”) 3. 28 parts by weight and surfactant (Chemi Chemicals, trade name “KH-40”) 0.2 parts by weight of methyl ethyl ketone 164 times A coating solution was prepared by dissolving in an amount and filtering using a polyfluoroethylene CD / X syringe filter having a pore size of 2 m.
[0195] 配向膜上に、塗工液を乾燥厚さ 1 μ mになるように塗工し、 100°Cで 5分間乾燥した 。次いで、紫外線を 500mj/cm2で照射し、コレステリック樹脂層を形成し、円偏光 反射板 (光学フィルタ B)を得た。 [0195] On the alignment film, the coating solution was applied to a dry thickness of 1 µm and dried at 100 ° C for 5 minutes. Subsequently, ultraviolet rays were irradiated at 500 mj / cm 2 to form a cholesteric resin layer, and a circularly polarized light reflecting plate (optical filter B) was obtained.
この光学フィルタ Bに、図 1に示す発光スペクトルを持つ平行化された白色光を極 角 0度及び 60度で入射し、光線透過率を分光器 (相馬光学社製、商品名「S— 2600 」)で測定した。  The collimated white light having the emission spectrum shown in FIG. 1 is incident on this optical filter B at polar angles of 0 ° and 60 °, and the light transmittance is measured by a spectroscope (trade name “S-2600” manufactured by Soma Optical Co., Ltd.). )).
[0196] 波長 440nmの正面方向の透過率 TF は 62%、波長 440nmの極角 60度方向の [0196] Frontal transmittance T F of wavelength 440nm is 62%, polar angle of wavelength 440nm is 60 °
Β,Ν  Β, Ν
透過率の平均直 TF は 83%、波長 530nmの正面方向の透過率 TF は 88%、波 Average straight transmittance T F is 83%, front-side transmittance T F of wavelength 530nm is 88%, wave
B,60 G,N  B, 60 G, N
長 530nmの極角 60度方向の透過率の平均直 TF は 84%、波長 620nmの正面方 Long average 530nm polar angle 60% direction average transmittance T F is 84%, wavelength 620nm front
G.60  G.60
向の透過率 TF は 89%、及び波長 620nmの極角 60度方向の透過率の平均値 TF The transmittance T F in the direction is 89%, and the average value of the transmittance T F in the polar angle 60 ° direction at a wavelength of 620 nm T F
R,N R, は 85%であった。正面方向の選択反射帯域の中心波長は 430nm、極角 60度方 R, N R, was 85%. The central wavelength of the selective reflection band in the front direction is 430 nm, the polar angle is 60 degrees
60 60
向の選択反射帯域の中心波長は 360nmであった。  The central wavelength of the selective reflection band in the direction was 360 nm.
[0197] 光学フィルタ B及び VAモード液晶パネルを重ね、図 1に示す発光スペクトルを持つ 白色光を光学フィルタ B側から入射し、液晶パネルを白表示の状態にして、透過光の 色度を測定し、 CIE (国際照明委員会) 1931年制定の表色系 (JIS— Z— 8701)に 基づき色度座標を求め、観察角度による分布を求めた。結果を図 6及び図 7に示す。 図 6は色度座標(x、y)を示すものである。 白丸は極角 0度のときの色度である。観察 角度による色度座標のシフトが少なぐ白丸の周りに小さくまとまった分布を成してい る。図 7は正面方向の色度座標 (X [0197] The optical filter B and the VA mode liquid crystal panel are overlapped, and white light with the emission spectrum shown in Fig. 1 is incident from the optical filter B side, the liquid crystal panel is in the white display state, and the chromaticity of the transmitted light is measured. CIE (International Lighting Commission) Chromaticity coordinates were obtained based on the color system (JIS-Z-8701) established in 1931, and the distribution according to the observation angle was obtained. The results are shown in FIGS. Figure 6 shows the chromaticity coordinates (x, y). The white circle is the chromaticity when the polar angle is 0 degree. It has a small distribution around the white circle where there is little shift in chromaticity coordinates depending on the observation angle. Figure 7 shows the chromaticity coordinates (X
N、y )と斜め方向の色度座標 (X の間の直 N θ、y )と  N, y) and diagonal chromaticity coordinates (direct N θ, y) between X and
Θ  Θ
線距離( Δ xy)を示したものである。観察角度が大きくなつても( Δ xy)が差ほど大きく ならないことがわかる。  The line distance (Δ xy) is shown. It can be seen that (Δ xy) does not increase as much as the difference even when the observation angle increases.
[0198] 実施例 2 [0198] Example 2
ネマチック液晶化合物(BASF社製、商品名「LC242」 ) 100重量部、カイラル剤 ( BASF社製、商品名「LC756」) 3. 46重量部、光重合開始剤(チバ 'スペシャルテ ィ一.ケミカルズ社製、商品名「Irgacure907」 ) 3. 21重量部、及び界面活性剤(セ イミケミカル社製、商品名「ΚΗ— 40」) 0. 1 1重量部を、メチルェチルケトン 160重 量部に溶解し、孔径 2 ^ mのポリフルォロエチレン製 CD/Xシリンジフィルターを用 いて濾過することにより、塗工液を調製した。 Nematic liquid crystal compound (BASF, trade name “LC242”) 100 parts by weight, chiral agent (BASF, trade name “LC756”) 3. 46 parts by weight, photopolymerization initiator (Ciba Special Ii. Chemicals, trade name “Irgacure907”) 3. 21 parts by weight and surfactant (Semi Chemicals, trade name “ΚΗ-40”) 0.1 1 parts by weight of methyl ethyl ketone 160 A coating solution was prepared by dissolving in a weight part and filtering using a CD / X syringe filter made of polyfluoroethylene having a pore diameter of 2 m.
[0199] ノルボルネン系重合体からなる、厚さ 100 mの光学的に等方性のフィルム(ォプ テス社製、商品名「ゼォノアフィルム ZF14」)を透明基材として用いた。この透明基材 の両面を濡れ指数が 56dyne/cmになるようにプラズマ処理した。ポリビュルアルコ ール 5重量部及び水 95重量部からなる溶液を透明基材の片面に塗布し、乾燥し て、膜を形成した。次いで、透明基材の長手方向に平行な方向に、フェルトのロール でラビングして、平均厚さ 0. 1 mの配向膜を得た。  [0199] An optically isotropic film made of norbornene-based polymer and having a thickness of 100 m (trade name “Zeonor Film ZF14”, manufactured by Optes Inc.) was used as a transparent substrate. Both surfaces of this transparent substrate were plasma-treated so that the wetting index was 56 dyne / cm. A solution consisting of 5 parts by weight of polybulal alcohol and 95 parts by weight of water was applied to one side of a transparent substrate and dried to form a film. Next, the film was rubbed with a felt roll in a direction parallel to the longitudinal direction of the transparent substrate to obtain an alignment film having an average thickness of 0.1 m.
[0200] 配向膜上に、塗工液を乾燥厚さ 1. 88 μ mになるように塗工し、 100°Cで 5分間乾 燥した。次いで、紫外線を 150mj/cm2で照射し、コレステリック樹脂層を形成し、円 偏光反射板 (光学フィルタ R)を得た。 [0200] On the alignment film, the coating solution was applied to a dry thickness of 1.88 µm, and dried at 100 ° C for 5 minutes. Subsequently, ultraviolet rays were irradiated at 150 mj / cm 2 to form a cholesteric resin layer, and a circularly polarized light reflector (optical filter R) was obtained.
この光学フィルタ Rは、波長 440nmの正面方向の透過率 TF 力 3%、波長 440η This optical filter R has a transmittance in the front direction at a wavelength of 440 nm, T F force of 3%, and a wavelength of 440η.
Β,Ν  Β, Ν
mの極角 60度方向の透過率の平均直 TF 力 4%、波長 530nmの正面方向の透 polar angle of m average straight transmittance of 60 degree direction TF force 4%, wavelength 530nm front direction transmission
B.60  B.60
過率 TF 力 4%、波長 530nmの極角 60度方向の透過率の平均値 TF 力 75%Excess ratio T F force 4%, wavelength 530nm polar angle 60% average transmittance T F force 75%
G'N G.60 、 波長 620nmの正面方向の透過率 TF 力 5 %、及び波長 620nmの極角 60度方向 G'N G.60, frontal transmittance at wavelength 620nm TF power 5%, polar angle 60% direction at wavelength 620nm
R'N  R'N
の透過率の平均値 TF 力 75%であった。正面方向の選択反射帯域の中心波長は The average transmittance of Tf force was 75%. The center wavelength of the selective reflection band in the front direction is
R.60  R.60
760nm、極角 60度方向の選択反射帯域の中心波長は 640nmであった。  The central wavelength of the selective reflection band in the direction of 760 nm and polar angle 60 degrees was 640 nm.
[0201] 光学フィルタ R及び VAモード液晶パネルを重ね、図 1に示す発光スペクトルを持つ 白色光を光学フィルタ R側から入射し、液晶パネルを白表示の状態にして、透過光の 色度を測定し、 CIE (国際照明委員会) 1931年制定の表色系 (JIS— Z— 8701 )に 基づき色度座標を求め、観察角度による分布を求めた。結果を図 8及び図 9に示す。 図 8は色度座標(x、y)を示すものである。 白丸は極角 0度のときの色度である。観察 角度による色度座標のシフトが少なぐ小さくまとまった分布を成している。図 9は正 面方向の色度座標 (X [0201] Optical filter R and VA mode liquid crystal panel are overlapped, white light with emission spectrum shown in Fig. 1 is incident from optical filter R side, liquid crystal panel is in white display state, and chromaticity of transmitted light is measured CIE (International Commission on Illumination) Chromaticity coordinates were obtained based on the color system (JIS-Z-8701) established in 1931, and the distribution according to the observation angle was obtained. The results are shown in FIGS. Figure 8 shows the chromaticity coordinates (x, y). The white circle is the chromaticity when the polar angle is 0 degree. The distribution is small and small with little shift in chromaticity coordinates depending on the observation angle. Figure 9 shows the chromaticity coordinates (X
Ν、y )と斜め方向の色度座標 (X  Ν, y) and diagonal chromaticity coordinates (X
Ν θ、y )との間の直線距離(Δ χ  直線 θ, y) linear distance (Δ χ
Θ  Θ
y)を示したものである。観察角度が大きくなつても( A xy)が差ほど大きくならな!/、こと 力 sわ力、る。 [0202] (1)厚さ y). Even if the viewing angle is summer large (A xy) is a not as large as the difference! /, The ancient capital force s' s force, Ru. [0202] (1) Thickness
スナップゲージ (ミツトヨ社製、 ID— C112BS)を用いて、二軸性光学異方板の幅方 向に 5cm間隔で厚さを測定して平均値を求める。  Using a snap gauge (Mitutoyo, ID-C112BS), measure the thickness at intervals of 5 cm in the width direction of the biaxial optical anisotropic plate and determine the average value.
[0203] (2)屈折率 [0203] (2) Refractive index
温度 20°C、湿度 60%の条件下で、高速分光エリプソメーター [J. A. Wooolam社 製、 M— 2000U〕を用いて、波長 550nmにおいて二軸性光学異方板の面内の遅相 軸方向の屈折率 n、面内で遅相軸に直角な方向の屈折率 n、厚さ方向の屈折率 n を、二軸性光学異方板の幅方向に等間隔で 10点測定して平均値を求める。  Using a high-speed spectroscopic ellipsometer (JA Wooolam, M-2000U) under the conditions of a temperature of 20 ° C and a humidity of 60%, in the slow axis direction in the plane of the biaxial optical anisotropic plate at a wavelength of 550 nm The refractive index n, the refractive index n in the direction perpendicular to the slow axis in the plane, and the refractive index n in the thickness direction are measured at 10 points at equal intervals in the width direction of the biaxial optical anisotropic plate, and the average value is obtained. Ask.
[0204] (3)レターデーシヨン R、及び R [0204] (3) Letter Decision R and R
0 40  0 40
温度 20°C、湿度 60%の条件下で、高速分光エリプソメーター [J. A. Wooolam社 製、 M— 2000U〕を用いて、波長 550nmの光において、光学積層板の幅方向に等 間隔で 10点測定し、平均値を算出する。  Using a high-speed spectroscopic ellipsometer (JA Wooolam, M-2000U) under conditions of temperature 20 ° C and humidity 60%, measure 10 points at equal intervals in the width direction of the optical laminate with 550 nm wavelength light The average value is calculated.
[0205] (4)レターデーシヨン Re 、及び Re [0205] (4) Letter Decision Re and Re
450 550  450 550
温度 20°C、湿度 60%の条件下で、高速分光エリプソメーター [J. A. Wooolam社 製、 M— 2000U〕を用いて、波長 450nm、及び波長 550nmの光において、二軸性 光学異方板の幅方向に等間隔で 10点測定し、平均直 Re 、及び平均直 Re を算  The width of the biaxial optical anisotropic plate at a wavelength of 450 nm and a wavelength of 550 nm using a high-speed spectroscopic ellipsometer (JA Wooolam, M-2000U) at a temperature of 20 ° C and a humidity of 60%. Measure 10 points at regular intervals in the direction, and calculate the average straight Re and the average straight Re.
450 550 出する。  450 550
[0206] (二軸性光学異方板 2Aの作製)  [0206] (Preparation of biaxial optical anisotropic plate 2A)
ノルボルネン系重合体からなる、厚さ 100 mの光学的に等方性のフィルム(ォプ テス社製、商品名「ゼォノアフィルム ZF14」)をテンター延伸機を使用して、延伸温度 134°C、縦延伸倍率 1. 41倍、横延伸倍率 1. 41倍で同時二軸延伸を行い、さらに、 そのフィルムの片面をコロナ処理 (該フィルムの片面を、高周波発振機 (春日電機社 製 高周波電源 AGI— 024)を用いて、出力 0. 8kWでコロナ放電処理して、フィノレ ムの表面張力を 0. 072N/mとする処理)して、厚さ 50 mの二軸性光学異方板 2 Aを得た。  An optically isotropic film (product name “Zeonor Film ZF14”, manufactured by Optes, Inc.) made of norbornene-based polymer with a thickness of 100 m is stretched at a stretching temperature of 134 ° C using a tenter stretching machine. Simultaneously biaxially stretched at a draw ratio of 1.41 times and a transverse draw ratio of 1.41 times, and then one side of the film was corona-treated (one side of the film was treated as a high-frequency oscillator (high frequency power supply AGI— 024), the corona discharge treatment at an output of 0.8 kW and the surface tension of the finole being 0.072 N / m) to obtain a biaxial optical anisotropic plate 2 A having a thickness of 50 m. Obtained.
得られた二軸性光学異方板 2Aの屈折率は、 n = 1. 53213、 n = 1. 53073、 n The refractive index of the obtained biaxial optical anisotropic plate 2A is n = 1.53213, n = 1.53073, n
= 1. 52713であった。また、二軸性光学異方板 2Aの Re /Re は 1 · 01であった [0207] (二軸性光学異方板 2Bの作製) = 1.52713. The Re / Re of the biaxial optical anisotropic plate 2A was 1 · 01. [0207] (Production of biaxial optical anisotropic plate 2B)
延伸温度を 138°Cとした他は二軸性光学異方板 2Aの作製と同様にして、厚さ 50 11 mの二軸性光学異方板 2Bを得た。  A biaxial optical anisotropic plate 2B having a thickness of 50 11 m was obtained in the same manner as the production of the biaxial optical anisotropic plate 2A except that the stretching temperature was set to 138 ° C.
得られた二軸性光学異方板 2Bの屈折率は、 n = 1. 53137、 n = 1. 53037、 n  The refractive index of the obtained biaxial optical anisotropic plate 2B is n = 1.53137, n = 1.53037, n
x y z x y z
= 1. 52827であった。また、二軸性光学異方板 2Aの Re /Re は 1 · 01であった= 1. 52827. The Re / Re of the biaxial optical anisotropic plate 2A was 1 · 01.
Yes
[0208] (二軸性光学異方板 2Cの作製)  [0208] (Preparation of biaxial optical anisotropic plate 2C)
両面に粘着層を介し熱収縮性フィルムを接着したポリカーボネート製フィルムを、テ ンター延伸機を使用して、延伸温度 152°C、延伸倍率 1. 3倍で、一軸延伸して、厚 さ 100 mの二軸性光学異方板 2Cを得た。得られた二軸性光学異方板 2Cの屈折 率は、 n = 1. 58136、 n = 1. 57863、 n = 1. 58001であった。また、二軸性光学 A polycarbonate film with a heat-shrinkable film bonded to both sides via an adhesive layer is uniaxially stretched at a stretching temperature of 152 ° C and a stretching ratio of 1.3 times using a tenter stretching machine to a thickness of 100 m. The biaxial optical anisotropic plate 2C was obtained. The refractive indexes of the obtained biaxial optical anisotropic plate 2C were n = 1.58136, n = 1.57863, and n = 1.58001. Also biaxial optics
X y z X y z
異方板 2Cの Re /Re は 1 · 06であった。  The Re / Re of anisotropic plate 2C was 1 · 06.
[0209] (二軸性光学異方板 2Dの作製)  [0209] (Production of biaxial optical anisotropic plate 2D)
スチレン—無水マレイン酸共重合体〔ガラス転移温度 100°C〕からなる a層、ノルボ ルネン開環重合体水素化物〔ガラス転移温度 100°C〕からなる b層、及び変性ェチレ ン—酢酸ビュル共重合体〔ビカット軟化点 80°C〕からなる c層を有する、 b層(33 m) c層(8 m)— a層(65 μ m)— c層(8 μ m) b層(33 μ m)の構成を有する未延 伸積層体を共押出成形により得た。得られた未延伸積層体を、テンター延伸機を使 用して、延伸温度 135°C、延伸倍率 1. 5倍で、一軸延伸し、さらに、そのフィルムの 片面をコロナ処理 (該フィルムの片面を、高周波発振機 (春日電機社製 高周波電 源 AGI— 024)を用いて、出力 0. 8kWでコロナ放電処理して、フィルムの表面張力 を 0. 072N/mとする処理)して、厚さ 98 mの二軸性光学異方板 2Dを得た。得ら れたニ軸性光学異方板 2Dの屈折率は、 n = 1. 57024、 n = 1. 56927、 n = 1. 5  A layer composed of a styrene-maleic anhydride copolymer (glass transition temperature 100 ° C), b layer composed of a hydride of norbornene ring-opening polymer (glass transition temperature 100 ° C), and a modified ethylene-butyl acetate copolymer. B layer (33 m) c layer (8 m) —a layer (65 μm) —c layer (8 μm) b layer (33 μm) having c layer made of polymer [Vicat softening point 80 ° C] An unstretched laminate having the structure of m) was obtained by coextrusion molding. The obtained unstretched laminate was uniaxially stretched using a tenter stretching machine at a stretching temperature of 135 ° C and a stretch ratio of 1.5 times, and one side of the film was corona-treated (one side of the film) Using a high-frequency oscillator (high-frequency power supply AGI-024 manufactured by Kasuga Denki Co., Ltd.), corona discharge treatment was performed at an output of 0.8 kW, and the surface tension of the film was adjusted to 0.072 N / m). A 98 m biaxial optical anisotropic plate 2D was obtained. The refractive index of the obtained biaxial optical anisotropic plate 2D is n = 1. 57024, n = 1. 56927, n = 1.5
x y z  x y z
7048であった。また、二軸性光学異方板 2Dの Re /Re は 1 · 04であった。  7048. The Re / Re of the biaxial optical anisotropic plate 2D was 1 · 04.
[0210] (二軸性光学異方板 2Εの作製)  [0210] (Production of biaxial optical anisotropic plate 2mm)
未延伸積層体の各層の厚さを、 b層(38 μ m)— c層(10 m)— a層(76 μ m)— c 層(10 m)— b層(38 a m)として、延伸温度を 134°C、延伸倍率を 1 · 7倍にした以 外は、二軸性光学異方板 2Dの作製と同様にして、厚さ 101 mの二軸性光学異方 板 2Eを得た。 Stretch the thickness of each layer of the unstretched laminate as b layer (38 μm) —c layer (10 m) —a layer (76 μm) —c layer (10 m) —b layer (38 am) A biaxial optical anisotropic with a thickness of 101 m was made in the same manner as the biaxial optical anisotropic plate 2D except that the temperature was 134 ° C and the draw ratio was 1-7 times. Board 2E was obtained.
得られた二軸性光学異方板 2Eの屈折率は、 n = 1. 57041、 n = 1. 56878、 n  The refractive index of the obtained biaxial optical anisotropic plate 2E is n = 1.57041, n = 1.56878, n
x y z x y z
= 1. 57082であった。また、二軸性光学異方板 2Eの Re /Re は 1 · 04であった = 1. 57082. In addition, Re / Re of biaxial optical anisotropic plate 2E was 1 · 04.
450 550  450 550
 Yes
[0211] (二軸性光学異方板 2Fの作製)  [0211] (Preparation of biaxial optical anisotropic plate 2F)
ノルボルネン系重合体からなる、厚さ 100 mの光学的に等方性のフィルム Ζ (ォプ テス社製、商品名「ゼォノアフィルム ZF14」)をテンター延伸機を使用して、延伸温度 140°C、延伸倍率 1. 41倍で延伸を行い、厚さ 71 mの二軸性光学異方板 2Fを得 た。  An optically isotropic film ノ ル (product name “Zeonor Film ZF14”, manufactured by Optes Co., Ltd.) made of a norbornene polymer and having a thickness of 140 ° C. is used with a tenter stretching machine. The draw ratio was 1.41, and a biaxial optical anisotropic plate 2F having a thickness of 71 m was obtained.
さらに、二軸性光学異方板 2Fの片面を高周波発振機 (春日電機社製 高周波電 源 AGI— 024)を用いて、出力 0. 8kWでコロナ放電処理し、フィルムの表面張力を 0 . 072N/mにした。  Further, one side of the biaxial optical anisotropic plate 2F was subjected to corona discharge treatment at a power of 0.8 kW using a high frequency oscillator (high frequency power supply AGI-024 manufactured by Kasuga Electric Co., Ltd.), and the surface tension of the film was adjusted to 0.072N. / m
二軸性光学異方板 2Fの屈折率は、 n = 1. 53072、 n = 1. 52992、 n = 1. 529  Refractive index of biaxial optical anisotropic plate 2F is n = 1. 53072, n = 1.52992, n = 1. 529
x y z  x y z
37であった。また、二軸性光学異方板 2Fの Re /Re は 1. 01であった。  37. In addition, Re / Re of the biaxial optical anisotropic plate 2F was 1.01.
450 550  450 550
[0212] (一軸性光学異方板 2Gの作製)  [0212] (Fabrication of uniaxial optical anisotropic plate 2G)
スチレン 無水マレイン酸共重合体〔ガラス転移温度 130°C〕からなる a層、ノルボ ルネン開環重合体水素化物〔ガラス転移温度 105°C〕からなる b層、及び変性ェチレ ン—酢酸ビュル共重合体〔ビカット軟化点 80°C〕からなる c層を有し、 b層(33 m) - c層(8 m)— a層(65 μ m)— c層(8 μ m) b層(33 μ m)の構成を有する未延伸 積層体を共押出成形により得た。得られた未延伸積層体を、縦一軸延伸機を使用し て、延伸温度 135°C、延伸倍率 1. 5倍で、延伸し、厚さ 118 ^ 111の一軸性光学異方 板 2Gを得た。  Styrene Maleic anhydride copolymer (glass transition temperature 130 ° C) a layer, Norbornene ring-opening polymer hydride (glass transition temperature 105 ° C) b layer, and modified ethylene-butyl acetate copolymer C layer composed of coalescence [Vicat softening point 80 ° C], b layer (33 m)-c layer (8 m)-a layer (65 μm)-c layer (8 μm) b layer (33 An unstretched laminate having a structure of μm) was obtained by coextrusion molding. The obtained unstretched laminate was stretched using a longitudinal uniaxial stretching machine at a stretching temperature of 135 ° C and a stretching ratio of 1.5 times to obtain a uniaxial optical anisotropic plate 2G having a thickness of 118 ^ 111. It was.
[0213] さらに、この一軸性光学異方板 2Gの片面を高周波発振機 (春日電機社製 高周波 電源 AGI— 024)を用いて、出力 0. 8kWでコロナ放電処理し、フィルムの表面張力 を 0. 072N/mにした。  [0213] Further, one side of this uniaxial optical anisotropic plate 2G was subjected to corona discharge treatment at an output of 0.8 kW using a high-frequency oscillator (high-frequency power supply AGI-024 manufactured by Kasuga Denki Co., Ltd.) to reduce the surface tension of the film to 0 072N / m
一軸性光学異方板 2Gの屈折率は、 n = 1. 58033、 n = 1. 57934、 n = 1. 580  Refractive index of uniaxial optical anisotropic plate 2G is n = 1. 58033, n = 1. 57934, n = 1. 580
x y z  x y z
33であった。また、この一軸性光学異方板 2Gの Re /Re は 1 · 04であった。  33. The Re / Re of this uniaxial optically anisotropic plate 2G was 1 · 04.
450 550  450 550
[0214] (偏光子の作製) 厚さ 75 μ mの PVAフィルム(クラレ社製、ビニロン # 7500)をチャックに装着しヨウ 素 0. 2g/l、ヨウ化カリウム 60g/ もなる水溶液中に 30°Cにて 240秒間浸漬した。 次いでホウ酸 70g/l、ヨウ化カリウム 30g/lの組成の水溶液中で 6. 0倍に一軸延伸 し 5分間ホウ酸処理を行った。最後に室温で 24時間乾燥することにより、平均厚さ 30 mで、偏光度 99. 97%の偏光子を得た。 [0214] (Production of polarizer) A 75 μm thick PVA film (Kuraray, Vinylon # 7500) was attached to the chuck and immersed in an aqueous solution of 0.2 g / l iodine and 60 g / potassium iodide at 30 ° C. for 240 seconds. Next, it was uniaxially stretched 6.0 times in an aqueous solution having a composition of boric acid 70 g / l and potassium iodide 30 g / l and subjected to boric acid treatment for 5 minutes. Finally, it was dried at room temperature for 24 hours to obtain a polarizer having an average thickness of 30 m and a polarization degree of 99.97%.
[0215] 実施例 3 [0215] Example 3
(光学積層板 3の作製)  (Preparation of optical laminate 3)
トリァセチルセルロースフィルム(コニ力ミノルタ社製、商品名「KC8UX2M」)の片 面をケン化処理 (該フィルムの片面に、 1. 5規定水酸化カリウムのイソプロピルアルコ ール溶液を 25ml/m2塗布し、 25°Cで 5秒間乾燥した後、流水で 10秒間洗浄し、次 いで 25°Cの空気を吹き付ける処理)して、トリァセチルセルロースフィルム Fを得た。 そして、トリァセチルセルロースフィルム F、 VAモードの液晶セル(厚さ 2. 74 ^ 111, 誘電異方性が正、波長 550nmでの屈折率差 Δ η = 0. 09884、プレチルト角 90度) 、及び二軸性光学異方板 2Αを、この順序で積層して、光学積層板 3を作製した。得 られた光学積層板 3の I R —R は、 22nm Tri § cetyl cellulose film piece surface of (Konica force Minolta Co., Ltd., trade name "KC8UX2M") on one surface of the saponified (the film 1.5 defines isopropyl alcohol solution of potassium hydroxide 25 ml / m 2 coating Then, after drying at 25 ° C. for 5 seconds, washing with running water for 10 seconds, and then blowing air at 25 ° C.), a triacetyl cellulose film F was obtained. And triacetyl cellulose film F, VA mode liquid crystal cell (thickness 2.74 ^ 111, positive dielectric anisotropy, refractive index difference Δ η = 0.09084, pretilt angle 90 degrees), and Two layers of biaxial optical anisotropic plates were laminated in this order to produce an optical laminated plate 3. IR —R of the resulting optical laminate 3 is 22 nm
40 0 I であった。  40 0 I.
[0216] (出射側偏光板 3Aの作製)  [0216] (Production of output-side polarizing plate 3A)
偏光子(出射側偏光子 3a)の両面にトリァセチルセルロースフィルム Fをポリビュル アルコール系接着剤を用いて貼り合わせて、出射側偏光板 3Aを作製した。このとき 、トリァセチルセルロースフィルム Fのケン化処理面が偏光子側に向くようにした。  A triacetyl cellulose film F was bonded to both surfaces of the polarizer (outgoing side polarizer 3a) using a polybutyl alcohol adhesive to produce an outgoing side polarizing plate 3A. At this time, the saponification surface of the triacetyl cellulose film F was set to face the polarizer side.
[0217] (入射側偏光板 3Bの作製) [0217] (Preparation of incident side polarizing plate 3B)
また、別の偏光子(入射側偏光子 3b)を用意し、それの一方の面に光学フィルタ B を、もう一方の面に二軸性光学異方板 2Aを、貼り合わせて、入射側偏光板 3Bを作 製した。このとき、光学フィルタ Bの透明基材側が偏光子に向くようにし、且つ、二軸 性光学異方板 2Aのコロナ処理面が偏光子に向くようにした。  In addition, another polarizer (incident side polarizer 3b) is prepared, and optical filter B is bonded to one side of it, and biaxial optical anisotropic plate 2A is bonded to the other side, and incident side polarized light is bonded. Plate 3B was made. At this time, the transparent substrate side of the optical filter B was directed to the polarizer, and the corona-treated surface of the biaxial optical anisotropic plate 2A was directed to the polarizer.
[0218] この入射側偏光板 3Bの光学フィルタ B側から、図 1に示す発光スペクトルを持つ平 行化された白色光を極角 0度及び 60度で入射し、光線透過率を分光器 (相馬光学 社製、商品名「S— 2600」)で測定した。 [0218] From the optical filter B side of the incident-side polarizing plate 3B, parallel white light having an emission spectrum shown in Fig. 1 is incident at polar angles of 0 and 60 degrees, and the light transmittance is measured by a spectroscope ( It was measured by Soma Optical Co., Ltd., trade name “S-2600”).
波長 440nmの正面方向の透過率 TP は 26%、波長 440nmの極角 60度方向の 透過率の平均直 TP は 27%、波長 530nmの正面方向の透過率 ΤΡ は 42%、波 Front direction of transmittance at a wavelength of 440nm T P is 26%, the wavelength 440nm polar angle direction of 60 degrees of Average straight transmittance T P is 27%, frontal transmittance at wavelength 530nm Ρ is 42%, wave
B,60 G,N  B, 60 G, N
長 530nmの極角 60度方向の透過率の平均直 TP は 31 %、波長 620nmの正面方 Long average 530nm polar angle 60% direction average transmittance T P is 31%, wavelength 620nm front
G.60  G.60
向の透過率 TP は 43%、及び波長 620nmの極角 60度方向の透過率の平均値 ΤΡ Transmittance in the direction T P is 43%, and the average value of the transmittance in the polar angle 60 degree direction with a wavelength of 620 nm Τ Ρ
R,N R, は 31 %であった。正面方向の選択反射帯域の中心波長は 430nm、極角 60度方 R, N R, was 31%. The central wavelength of the selective reflection band in the front direction is 430 nm, the polar angle is 60 degrees
60 60
向の選択反射帯域の中心波長は 360nmであった。  The central wavelength of the selective reflection band in the direction was 360 nm.
[0219] (液晶表示装置 3の作製)  [0219] (Production of liquid crystal display device 3)
図 2に示す発光スペクトルを有する光源装置 Lの上に、入射側偏光板 3B、 VAモー ドの液晶セル (厚さ 2. 74 111、誘電異方性が正、波長 550nmでの屈折率差 Δ η = 0. 09884、プレチルト角 90度)、及び出射側偏光板 3Αを、この順序で積層して、図 11に示す構成の液晶表示装置 3を作製した。なお、図 11中の矢印は、偏光子につ V、ては偏光吸収軸を、二軸性光学異方板につ!/、ては遅相軸を表す。  On the light source device L having the emission spectrum shown in Fig. 2, on the incident side polarizing plate 3B, a VA mode liquid crystal cell (thickness 2.74 111, positive dielectric anisotropy, refractive index difference Δ at a wavelength of 550 nm Δ η = 0.09884, pretilt angle 90 degrees) and the output side polarizing plate 3Α were laminated in this order to produce the liquid crystal display device 3 having the configuration shown in FIG. The arrows in FIG. 11 represent V for the polarizer, the polarization absorption axis, and the biaxial optical anisotropic plate! /, And the slow axis.
入射側偏光板 3Βの二軸性光学異方板 2Αが液晶セル側に向くように配置した。ま た、出射側偏光子 3aの偏光吸収軸と入射側偏光子 3bの偏光吸収軸とが直角になる ようにした。さらに、二軸性光学異方板 2Aの面内の遅相軸と入射側偏光子 3bの偏 光吸収軸とが直角になるようにした。  The biaxial optical anisotropic plate 2 mm of the incident side polarizing plate 3 mm was arranged so as to face the liquid crystal cell side. In addition, the polarization absorption axis of the exit side polarizer 3a and the polarization absorption axis of the entrance side polarizer 3b were set to be perpendicular to each other. Furthermore, the slow axis in the plane of the biaxial optical anisotropic plate 2A and the polarization absorption axis of the incident side polarizer 3b were set to be perpendicular to each other.
得られた液晶表示装置 3の観察角度による色度変化を目視評価したところ、液晶表 示装置 3の表示画像は、表示画面の左右 0〜80度の範囲でほとんど色度変化が認 められなかった。  When the chromaticity change due to the viewing angle of the obtained liquid crystal display device 3 was visually evaluated, the display image of the liquid crystal display device 3 showed almost no chromaticity change in the range of 0 to 80 degrees on the left and right of the display screen. It was.
[0220] 実施例 4  [0220] Example 4
(光学積層板 4の作製)  (Production of optical laminate 4)
二軸性光学異方板 2B (二軸性光学異方板 2blと称す)、 VAモードの液晶セル (厚 さ 2. 74 111、誘電異方性が正、波長 550nmでの屈折率差 Δ η = 0. 09884、プレ チルト角 90度)、別の二軸性光学異方板 2Β (二軸性光学異方板 2b2と称す)を、こ の順序で積層して、光学積層板 4を作製した。二軸性光学異方板 2blの遅相軸と、 二軸性光学異方板 2b2の遅相軸とが直角になるように配置した。得られた光学積層 板 4の I R — R  Biaxial optical anisotropic plate 2B (referred to as biaxial optical anisotropic plate 2bl), VA mode liquid crystal cell (thickness 2.74 111, positive dielectric anisotropy, refractive index difference at wavelength 550nm Δ η = 0.09884, pretilt angle 90 degrees), another biaxial optical anisotropic plate 2Β (referred to as biaxial optical anisotropic plate 2b2) is laminated in this order to produce optical laminated plate 4 did. The slow axis of the biaxial optical anisotropic plate 2bl and the slow axis of the biaxial optical anisotropic plate 2b2 were arranged at right angles. I R — R of optical laminate 4 obtained
40 0 I は 19nmであった。  40 0 I was 19 nm.
[0221] (出射側偏光板 4Aの作製)  [0221] (Preparation of output-side polarizing plate 4A)
偏光子(出射側偏光子 4a)の一方の面にトリァセチルセルロースフィルム Fを、もう 一方の面に二軸性光学異方板 2blを、貼り合わせて、出射側偏光板 4Aを作製した 。このとき、トリァセチルセルロースフィルム Fのケン化処理面が該偏光子に向くように し、且つ二軸性光学異方板 2Mのコロナ処理面が該偏光子に向くようにした。 Triacetyl cellulose film F is already applied to one side of the polarizer (exit-side polarizer 4a). A biaxial optical anisotropic plate 2bl was bonded to one surface to produce an output-side polarizing plate 4A. At this time, the saponification-treated surface of the triacetyl cellulose film F was directed to the polarizer, and the corona-treated surface of the biaxial optical anisotropic plate 2M was oriented to the polarizer.
[0222] (入射側偏光板 4Bの作製)  [0222] (Preparation of incident-side polarizing plate 4B)
また、別の偏光子(入射側偏光子 4b)を用意し、それの一方の面に光学フィルタ B を、もう一方の面に二軸性光学異方板 2b2を、貼り合わせて、入射側偏光板 4Bを作 製した。このとき、光学フィルタ Bの透明基材側が偏光子に向くようにし、且つ二軸性 光学異方板 2b2のコロナ処理面が該偏光子に向くようにした。  Also, prepare another polarizer (incident side polarizer 4b), attach optical filter B on one side of it, and biaxial optical anisotropic plate 2b2 on the other side. Plate 4B was made. At this time, the transparent substrate side of the optical filter B was directed to the polarizer, and the corona-treated surface of the biaxial optical anisotropic plate 2b2 was directed to the polarizer.
[0223] この入射側偏光板 4Bの光学フィルタ B側から、図 1に示す発光スペクトルを持つ平 行化された白色光を極角 0度及び 60度で入射し、光線透過率を分光器 (相馬光学 社製、商品名「S— 2600」)で測定した。  [0223] From the optical filter B side of the incident-side polarizing plate 4B, parallel white light having an emission spectrum shown in Fig. 1 is incident at polar angles of 0 and 60 degrees, and the light transmittance is measured by a spectroscope ( It was measured by Soma Optical Co., Ltd., trade name “S-2600”).
波長 440nmの正面方向の透過率 TP は 26%、波長 440nmの極角 60度方向の Front direction of transmittance at a wavelength of 440nm T P is 26%, the wavelength 440nm polar angle direction of 60 degrees of
Β,Ν  Β, Ν
透過率の平均直 ΤΡ は 27%、波長 530nmの正面方向の透過率 ΤΡ は 42%、波 The average direct transmittance Ρ is 27%, the transmittance in the front direction at a wavelength of 530 nm Ρ is 42%, the wave
B,60 G,N  B, 60 G, N
長 530nmの極角 60度方向の透過率の平均直 TP は 31 %、波長 620nmの正面方 Long average 530nm polar angle 60% direction average transmittance T P is 31%, wavelength 620nm front
G.60  G.60
向の透過率 TP は 43%、及び波長 620nmの極角 60度方向の透過率の平均値 ΤΡ Transmittance in the direction T P is 43%, and the average value of the transmittance in the polar angle 60 degree direction with a wavelength of 620 nm Τ Ρ
R,N R, は 31 %であった。正面方向の選択反射帯域の中心波長は 430nm、極角 60度方 R, N R, was 31%. The central wavelength of the selective reflection band in the front direction is 430 nm, the polar angle is 60 degrees
60 60
向の選択反射帯域の中心波長は 360nmであった。  The central wavelength of the selective reflection band in the direction was 360 nm.
[0224] (液晶表示装置 4の作製) [0224] (Production of liquid crystal display device 4)
図 2に示す発光スペクトルを有する光源装置 Lの上に、入射側偏光板 4B、 VAモー ドの液晶セル、及び出射側偏光板 4Aを、この順序で積層して、図 12に示す構成の 液晶表示装置 4を作製した。  On the light source device L having the emission spectrum shown in FIG. 2, the incident side polarizing plate 4B, the VA mode liquid crystal cell, and the outgoing side polarizing plate 4A are laminated in this order, and the liquid crystal having the configuration shown in FIG. Display device 4 was produced.
なお、図 12の矢印は、偏光子については偏光吸収軸を、二軸性光学異方板につ いては遅相軸を表す。  The arrows in FIG. 12 represent the polarization absorption axis for the polarizer and the slow axis for the biaxial optical anisotropic plate.
[0225] 出射側偏光板 4Aの二軸性光学異方板 2blが液晶セルに向くように、且つ、入射 側偏光板 4Bの二軸性光学異方板 2b2が液晶セルに向くように、配置した。また、出 射側偏光子 4aの偏光吸収軸と入射側偏光子 4bの偏光吸収軸とが直角になるように した。さらに、二軸性光学異方板 2blの面内の遅相軸と出射側偏光子 4aの偏光吸 収軸とが直角、且つ、該ニ軸性光学異方板 2b2の面内の遅相軸と入射側偏光子 4b の偏光吸収軸とが直角になるようにした。 [0225] Arrangement so that the biaxial optical anisotropic plate 2bl of the output side polarizing plate 4A faces the liquid crystal cell, and the biaxial optical anisotropic plate 2b2 of the incident side polarizing plate 4B faces the liquid crystal cell did. In addition, the polarization absorption axis of the output side polarizer 4a and the polarization absorption axis of the incident side polarizer 4b were set to be perpendicular to each other. Furthermore, the slow axis in the plane of the biaxial optical anisotropic plate 2bl is perpendicular to the polarization absorption axis of the output side polarizer 4a, and the slow axis in the plane of the biaxial optical anisotropic plate 2b2 is used. And incident side polarizer 4b The polarization absorption axis of was made to be perpendicular.
得られた液晶表示装置 4の観察角度による色度変化を目視評価したところ、液晶表 示装置 4の表示画像は、表示画面の左右 0〜80度の範囲でほとんど色度変化が認 められなかった。  When the chromaticity change due to the viewing angle of the obtained liquid crystal display device 4 was visually evaluated, the display image of the liquid crystal display device 4 showed almost no chromaticity change in the range of 0 to 80 degrees on the left and right of the display screen. It was.
[0226] 比較例 2 [0226] Comparative Example 2
光学フィルタ Bに代えてトリァセチルセルロースフィルム Fを用いて入射側偏光板 3 Cを得、それを入射側偏光板 3Bと取り替えた他は、実施例 3と同様にして、図 13に 示す構成の液晶表示装置 Cを作製し、観察角度による色度変化を目視評価した。得 られた液晶表示装置 Cは、その表示画面の左右に 60度以上傾けた方向から観察す ると、画像が全体に薄赤色を呈していた。  An incident side polarizing plate 3 C was obtained using a triacetyl cellulose film F instead of the optical filter B, and the structure shown in FIG. 13 was obtained in the same manner as in Example 3 except that it was replaced with the incident side polarizing plate 3 B. A liquid crystal display device C was prepared, and the chromaticity change depending on the observation angle was visually evaluated. When the obtained liquid crystal display device C was observed from a direction tilted at least 60 degrees to the left and right of the display screen, the entire image was light red.
[0227] この入射側偏光板 3Cのトリアセチルセルロースフィルム F側から、図 1に示す発光 スペクトルを持つ平行化された白色光を極角 0度及び 60度で入射し、光線透過率を 分光器 (相馬光学社製、商品名「S— 2600」)で測定した。 [0227] From the triacetylcellulose film F side of the incident side polarizing plate 3C, collimated white light having an emission spectrum shown in Fig. 1 is incident at polar angles of 0 degrees and 60 degrees, and the light transmittance is measured by a spectroscope. (Trade name “S-2600” manufactured by Soma Optical Co., Ltd.).
波長 440nmの正面方向の透過率 TP は 39%、波長 440nmの極角 60度方向の Front direction of transmittance at a wavelength of 440nm T P is 39%, the wavelength 440nm polar angle direction of 60 degrees of
Β,Ν  Β, Ν
透過率の平均直 ΤΡ は 28%、波長 530nmの正面方向の透過率 ΤΡ は 42%、波 The average straight-T [rho 28% transmission, 42% is [rho front direction of the transmittance of the wavelength 530 nm T, waves
B,60 G,N  B, 60 G, N
長 530nmの極角 60度方向の透過率の平均直 TP は 31 %、波長 620nmの正面方 Long average 530nm polar angle 60% direction average transmittance T P is 31%, wavelength 620nm front
G.60  G.60
向の透過率 TP は 43%、及び波長 620nmの極角 60度方向の透過率の平均値 ΤΡ Transmittance in the direction T P is 43%, and the average value of the transmittance in the polar angle 60 degree direction with a wavelength of 620 nm Τ Ρ
R,N R, は 32%であった。選択反射は生じな力、つた。  R and N R were 32%. Selective reflex is a force that does not occur.
60  60
[0228] 実施例 5  [0228] Example 5
(光学積層板 5の作製)  (Preparation of optical laminate 5)
等方性のフィルム Z、 IPSモードの液晶セル (厚さ 2. 74 111、誘電異方性が正、波 長 550nmでの屈折率差 Δ η = 0. 09884、プレチノレト角 0度)、二軸性光学異方板 2 C、及び等方性のフィルム Zを、この順に積層して、光学積層板 5を作製した。  Isotropic film Z, IPS mode liquid crystal cell (thickness 2.74 111, positive dielectric anisotropy, refractive index difference at wavelength 550nm Δ η = 0.09884, pretinoret angle 0 degree), biaxial An optically anisotropic plate 2 C and an isotropic film Z were laminated in this order to produce an optical laminated plate 5.
得られた光学積層板 5の I R —R  I R —R of the obtained optical laminate 5
40 0 I は、 9nmであった。  40 0 I was 9 nm.
[0229] (出射側偏光板 5Aの作製)  [0229] (Production of output-side polarizing plate 5A)
偏光子(出射側偏光子 5aと称す)の両面に等方性のフィルム Zを貼り合わせて、出 射側偏光板 5Aを作製した。  An isotropic film Z was bonded to both sides of a polarizer (referred to as an exit-side polarizer 5a) to produce an exit-side polarizing plate 5A.
[0230] (入射側偏光板 5Bの作製) 偏光子(入射側偏光子 5bと称す)の一方の面に等方性のフィルム Zを、もう一方の 面に光学フィルタ Bを貼り合わせ、さらに等方性のフィルム Zに二軸性光学異方板 2C を貼り合わせて、入射側偏光板 5Bを作製した。 [0230] (Preparation of incident-side polarizing plate 5B) Isotropic film Z is bonded to one side of the polarizer (referred to as incident-side polarizer 5b), optical filter B is bonded to the other side, and biaxial optical anisotropy is applied to the isotropic film Z. The plate 2C was bonded to produce the incident side polarizing plate 5B.
[0231] この入射側偏光板 5Bの光学フィルタ B側から、図 1に示す発光スペクトルを持つ平 行化された白色光を極角 0度及び 60度で入射し、光線透過率を分光器 (相馬光学 社製、商品名「S— 2600」)で測定した。 [0231] From the optical filter B side of the incident-side polarizing plate 5B, parallel white light having an emission spectrum shown in Fig. 1 is incident at polar angles of 0 and 60 degrees, and the light transmittance is measured by a spectroscope ( It was measured by Soma Optical Co., Ltd., trade name “S-2600”).
波長 440nmの正面方向の透過率 TP は 26%、波長 440nmの極角 60度方向の Front direction of transmittance at a wavelength of 440nm T P is 26%, the wavelength 440nm polar angle direction of 60 degrees of
Β,Ν  Β, Ν
透過率の平均直 ΤΡ は 27%、波長 530nmの正面方向の透過率 ΤΡ は 42%、波 The average direct transmittance Ρ is 27%, the transmittance in the front direction at a wavelength of 530 nm Ρ is 42%, the wave
B,60 G,N  B, 60 G, N
長 530nmの極角 60度方向の透過率の平均直 TP は 31 %、波長 620nmの正面方 Long average 530nm polar angle 60% direction average transmittance T P is 31%, wavelength 620nm front
G.60  G.60
向の透過率 TP は 43%、及び波長 620nmの極角 60度方向の透過率の平均値 ΤΡ Transmittance in the direction T P is 43%, and the average value of the transmittance in the polar angle 60 degree direction with a wavelength of 620 nm Τ Ρ
R,N R, は 31 %であった。正面方向の選択反射帯域の中心波長は 430nm、極角 60度方 R, N R, was 31%. The central wavelength of the selective reflection band in the front direction is 430 nm, the polar angle is 60 degrees
60 60
向の選択反射帯域の中心波長は 360nmであった。  The central wavelength of the selective reflection band in the direction was 360 nm.
[0232] (液晶表示装置 5の作製) [0232] (Production of liquid crystal display device 5)
図 2に示す発光スペクトルを有する光源装置 Lの上に、入射側偏光板 5B、 IPSモー ドの液晶セル、及び出射側偏光板 5Aを、この順序で積層して、図 14に示す構成の 液晶表示装置 5を作製した。  On the light source device L having the emission spectrum shown in FIG. 2, the incident side polarizing plate 5B, the IPS mode liquid crystal cell, and the outgoing side polarizing plate 5A are laminated in this order, and the liquid crystal having the configuration shown in FIG. Display device 5 was produced.
なお、図中の矢印は、偏光子については偏光吸収軸を、二軸性光学異方板につ The arrow in the figure indicates that the polarization absorption axis is connected to the biaxial optical anisotropic plate for the polarizer.
V、ては遅相軸を、液晶セルにつ!/、ては電圧無印加時の遅相軸を表す。 V represents the slow axis and the liquid crystal cell represents the slow axis when no voltage is applied.
[0233] このとき、出射側偏光子 5aの偏光吸収軸と入射側偏光子 5bの偏光吸収軸とが直 角とるようにした。また、液晶セルの電圧無印加時の遅相軸と、入射側偏光子 5bの偏 光吸収軸とが直角になるようにした。二軸性光学異方板 2Cの面内の遅相軸と入射 側偏光子 5bの偏光吸収軸とが直角になるようにした。 [0233] At this time, the polarization absorption axis of the exit-side polarizer 5a and the polarization absorption axis of the entrance-side polarizer 5b were set to be perpendicular. In addition, the slow axis when no voltage was applied to the liquid crystal cell and the polarization absorption axis of the incident-side polarizer 5b were set to be perpendicular to each other. The slow axis in the plane of the biaxial optical anisotropic plate 2C and the polarization absorption axis of the incident side polarizer 5b were set to be perpendicular to each other.
得られた液晶表示装置 5の観察角度による色度変化を目視評価したところ、液晶表 示装置 5の表示画像は、表示画面の左右 0〜80度の範囲でほとんど色度変化が認 められな力 た。また、液晶表示装置 5の表示画面を黒表示にし、その画面を斜め方 向から観察したところ、光漏れも見られず、均質な黒表示であった。  When the chromaticity change due to the viewing angle of the obtained liquid crystal display device 5 was visually evaluated, the display image of the liquid crystal display device 5 showed almost no chromaticity change in the range of 0 to 80 degrees on the left and right of the display screen. I was strong. Further, when the display screen of the liquid crystal display device 5 was displayed in black and the screen was observed from an oblique direction, no light leakage was observed, and the display was homogeneous black.
[0234] 実施例 6 [0234] Example 6
(光学積層板 6の作製) 二軸性光学異方板 2D、 IPSモードの液晶セル、二軸性光学異方板 2Eを、この順 に積層して、光学積層板 6を作製した。 (Production of optical laminate 6) The biaxial optical anisotropic plate 2D, the IPS mode liquid crystal cell, and the biaxial optical anisotropic plate 2E were laminated in this order to produce an optical laminated plate 6.
このとき、二軸性光学異方板 2Dの遅相軸と、二軸性光学異方板 2Eの遅相軸とが 直角になるように配置した。  At this time, the slow axis of the biaxial optical anisotropic plate 2D and the slow axis of the biaxial optical anisotropic plate 2E were arranged at right angles.
得られた光学積層板 6の | R —R | は、 19nmであった。  | R —R | of the obtained optical laminated plate 6 was 19 nm.
40 0  40 0
[0235] (出射側偏光板 6 Aの作製)  [0235] (Production of output-side polarizing plate 6 A)
偏光子(出射側偏光子 4aと称す)の一方の面にトリァセチルセルロースフィルム Fを 、もう一方の面に二軸性光学異方板 2Dを、貼り合わせて、出射側偏光板 6Aを作製 した。このとき、トリァセチルセルロースフィルム Fのケン化処理面が偏光子に向くよう にし、且つ、二軸性光学異方板 2Dのコロナ処理面が該偏光子に向くようにした。  The output side polarizing plate 6A was prepared by laminating the triacetyl cellulose film F on one side of the polarizer (referred to as the output side polarizer 4a) and the biaxial optical anisotropic plate 2D on the other side. . At this time, the saponification-treated surface of the triacetyl cellulose film F was directed to the polarizer, and the corona-treated surface of the biaxial optical anisotropic plate 2D was oriented to the polarizer.
[0236] (入射側偏光板 6Bの作製) [0236] (Preparation of incident side polarizing plate 6B)
また、同様にして、偏光子(入射側偏光子 6bと称す)の一方の面に光学フィルタ Bを 、もう一方の面に二軸性光学異方板 2Eを、貼り合わせて、入射側偏光板 6Bを作製し た。  Similarly, an optical filter B is bonded to one surface of a polarizer (referred to as an incident side polarizer 6b), and a biaxial optical anisotropic plate 2E is bonded to the other surface to form an incident side polarizing plate. 6B was produced.
[0237] この入射側偏光板 6Bの光学フィルタ B側から、図 1に示す発光スペクトルを持つ平 行化された白色光を極角 0度及び 60度で入射し、光線透過率を分光器 (相馬光学 社製、商品名「S— 2600」)で測定した。  [0237] From the optical filter B side of the incident-side polarizing plate 6B, parallel white light having an emission spectrum shown in Fig. 1 is incident at polar angles of 0 and 60 degrees, and the light transmittance is measured by a spectroscope ( It was measured by Soma Optical Co., Ltd., trade name “S-2600”).
波長 440nmの正面方向の透過率 TP は 26%、波長 440nmの極角 60度方向の Front direction of transmittance at a wavelength of 440nm T P is 26%, the wavelength 440nm polar angle direction of 60 degrees of
Β,Ν  Β, Ν
透過率の平均直 ΤΡ は 27%、波長 530nmの正面方向の透過率 ΤΡ は 42%、波 The average direct transmittance Ρ is 27%, the transmittance in the front direction at a wavelength of 530 nm Ρ is 42%, the wave
B,60 G,N  B, 60 G, N
長 530nmの極角 60度方向の透過率の平均直 TP は 31 %、波長 620nmの正面方 Long average 530nm polar angle 60% direction average transmittance T P is 31%, wavelength 620nm front
G.60  G.60
向の透過率 TP は 43%、及び波長 620nmの極角 60度方向の透過率の平均値 ΤΡ Transmittance in the direction T P is 43%, and the average value of the transmittance in the polar angle 60 degree direction with a wavelength of 620 nm Τ Ρ
R,N R, は 31 %であった。正面方向の選択反射帯域の中心波長は 430nm、極角 60度方 R, N R, was 31%. The central wavelength of the selective reflection band in the front direction is 430 nm, the polar angle is 60 degrees
60 60
向の選択反射帯域の中心波長は 360nmであった。  The central wavelength of the selective reflection band in the direction was 360 nm.
[0238] (液晶表示装置 6の作製) [0238] (Production of liquid crystal display device 6)
図 2に示す発光スペクトルを有する光源装置 Lの上に、入射側偏光板 6B、 IPSモー ドの液晶セル、及び出射側偏光板 6Aを、この順序で積層して、図 15に示す構成の 液晶表示装置 6を作製した。  On the light source device L having the emission spectrum shown in FIG. 2, the incident side polarizing plate 6B, the IPS mode liquid crystal cell, and the outgoing side polarizing plate 6A are laminated in this order, and the liquid crystal having the configuration shown in FIG. Display device 6 was produced.
このとき、出射側偏光板 6Aの二軸性光学異方板 2Dが液晶セルに向くように、且つ 、入射側偏光板 6Bの二軸性光学異方板 2Eが液晶セルに向くように配置した。また、 出射側偏光子 6aの偏光吸収軸と入射側偏光子 6bの偏光吸収軸とが直角になるよう にした。また、液晶セルの電圧無印加時の遅相軸と、入射側偏光子 6bの偏光吸収 軸とが直角になるようにした。二軸性光学異方板 2Dの面内の遅相軸と出射側偏光 子 6aの偏光吸収軸とが平行に、二軸性光学異方板 2Eの面内の遅相軸と入射側偏 光子 6bの偏光吸収軸とが平行になるようにした。 At this time, the biaxial optical anisotropic plate 2D of the exit side polarizing plate 6A is directed to the liquid crystal cell, and The biaxial optical anisotropic plate 2E of the incident side polarizing plate 6B was disposed so as to face the liquid crystal cell. In addition, the polarization absorption axis of the exit side polarizer 6a and the polarization absorption axis of the entrance side polarizer 6b were set to be perpendicular to each other. In addition, the slow axis when no voltage was applied to the liquid crystal cell and the polarization absorption axis of the incident side polarizer 6b were set to be perpendicular to each other. Biaxial optical anisotropic plate 2D In-plane slow axis and exit side polarizer 6a's polarization absorption axis are parallel, and biaxial optical anisotropic plate 2E in-plane slow axis and incident side polarizer The polarization absorption axis of 6b was made parallel.
[0239] 得られた液晶表示装置 6の観察角度による色度変化を目視評価したところ、液晶表 示装置 6の表示画像は、表示画面の左右 0〜80度の範囲でほとんど色度変化が認 められな力 た。また、液晶表示装置 6の表示画面を黒表示にし、その画面を斜め方 向から観察したところ、光漏れも見られず、均質な黒表示であった。  [0239] When the chromaticity change due to the observation angle of the obtained liquid crystal display device 6 was visually evaluated, the display image of the liquid crystal display device 6 was found to show almost no chromaticity change in the range of 0 to 80 degrees on the left and right of the display screen. I couldn't help. Further, when the display screen of the liquid crystal display device 6 was displayed in black, and the screen was observed from an oblique direction, no light leakage was observed, and the display was uniform black.
[0240] 比較例 3  [0240] Comparative Example 3
光学フィルタ Bに代えて等方性のフィルム Zを用いて入射側偏光板 5Cを得、それを 入射側偏光板 5Bと取り替えた他は、実施例 5と同様にして、図 16に示す構成の液晶 表示装置 Fを作製した。  An isotropic film Z is used in place of the optical filter B to obtain the incident side polarizing plate 5C, and the structure shown in FIG. 16 is obtained in the same manner as in Example 5 except that it is replaced with the incident side polarizing plate 5B. A liquid crystal display device F was produced.
得られた液晶表示装置 Fの観察角度による色度変化を目視評価したところ、液晶 表示装置 Fの表示画面の画像は、画面の左右に 60度以上傾けた方向から観察する と、画像が全体に薄赤色を呈していた。また、液晶表示装置 Fの表示画面を黒表示 にし、その画面を斜め方向力も観察したところ、光漏れは見られな力 た。  When the chromaticity change due to the viewing angle of the obtained liquid crystal display device F was visually evaluated, the image on the display screen of the liquid crystal display device F was observed when viewed from a direction inclined at least 60 degrees to the left and right of the screen. It was light red. In addition, when the display screen of the liquid crystal display device F was displayed in black and the screen was observed for an oblique force, no light leakage was observed.
[0241] この入射側偏光板 5Cの等方性のフィルム Z側から、図 1に示す発光スペクトルを持 つ平行化された白色光を極角 0度及び 60度で入射し、光線透過率を分光器 (相馬 光学社製、商品名「S— 2600」)で測定した。 [0241] From the isotropic film Z side of the incident side polarizing plate 5C, collimated white light having an emission spectrum shown in Fig. 1 is incident at polar angles of 0 degrees and 60 degrees, and the light transmittance is increased. Measured with a spectroscope (trade name “S-2600” manufactured by Soma Optical Co., Ltd.).
波長 440nmの正面方向の透過率 TP は 39%、波長 440nmの極角 60度方向の Front direction of transmittance at a wavelength of 440nm T P is 39%, the wavelength 440nm polar angle direction of 60 degrees of
Β,Ν  Β, Ν
透過率の平均直 ΤΡ は 28%、波長 530nmの正面方向の透過率 ΤΡ は 42%、波 The average straight-T [rho 28% transmission, 42% is [rho front direction of the transmittance of the wavelength 530 nm T, waves
B,60 G,N  B, 60 G, N
長 530nmの極角 60度方向の透過率の平均直 TP は 31 %、波長 620nmの正面方 Long average 530nm polar angle 60% direction average transmittance T P is 31%, wavelength 620nm front
G.60  G.60
向の透過率 TP は 43%、及び波長 620nmの極角 60度方向の透過率の平均値 ΤΡ Transmittance in the direction T P is 43%, and the average value of the transmittance in the polar angle 60 degree direction with a wavelength of 620 nm Τ Ρ
R,N R, は 32%であった。選択反射は生じな力、つた。  R and N R were 32%. Selective reflex is a force that does not occur.
60  60
[0242] 実施例 7  [0242] Example 7
(光学積層板 7) 等方性のフィルム Z、 IPSモードの液晶セル (厚さ 2. 74 111、誘電異方性が正、波 長 550nmでの屈折率差 Δ η = 0. 09884、プレチルト角 0度)、一軸性光学異方板 2 G、及び二軸性光学異方板 2Fを、この順序で積層して、光学積層板 7を作製した。こ のとき、電圧無印加時の液晶セル、一軸性光学異方板 2G、および二軸性光学異方 板 2Fの遅相軸がすべて平行になるように配置した。 (Optical laminate 7) Isotropic film Z, IPS mode liquid crystal cell (thickness 2.74 111, positive dielectric anisotropy, refractive index difference at wavelength 550nm Δ η = 0.09884, pretilt angle 0 degree), uniaxial The optically anisotropic plate 2 G and the biaxial optically anisotropic plate 2F were laminated in this order to produce an optical laminated plate 7. At this time, the slow axes of the liquid crystal cell, the uniaxial optical anisotropic plate 2G, and the biaxial optical anisotropic plate 2F when no voltage was applied were all arranged in parallel.
得られた光学積層板 7の I R —R I は、 8nmであった。  I R —R I of the obtained optical laminated plate 7 was 8 nm.
40 0  40 0
[0243] (出射側偏光板 7Aの作製)  [0243] (Production of output-side polarizing plate 7A)
偏光子(出射側偏光子 7aと称す)の両面に等方性のフィルム Zを貼り合わせて、出 射側偏光板 7Aを作製した。  An isotropic film Z was bonded to both sides of a polarizer (referred to as an exit-side polarizer 7a) to produce an exit-side polarizing plate 7A.
[0244] (入射側偏光板 7Bの作製) [0244] (Preparation of incident-side polarizing plate 7B)
二軸性光学異方板 2Fと一軸性光学異方板 2Gとを遅相軸が平行になるように貼り 合わせて積層板を得る。偏光子(入射側偏光子 7bと称す)の一方の面に光学フィノレ タ Bを、もう一方の面に前記積層板を二軸性光学異方板 2Fが偏光子側になるように 貼り合わせて、入射側偏光板 7Bを作製した。  The biaxial optical anisotropic plate 2F and the uniaxial optical anisotropic plate 2G are bonded so that their slow axes are parallel to obtain a laminated plate. Adhere optical polarizer B on one side of the polarizer (referred to as incident side polarizer 7b) and the laminated plate on the other side so that the biaxial optical anisotropic plate 2F is on the polarizer side. The incident side polarizing plate 7B was produced.
[0245] この入射側偏光板 7Bの光学フィルタ B側から、図 1に示す発光スペクトルを持つ平 行化された白色光を極角 0度及び 60度で入射し、光線透過率を分光器 (相馬光学 社製、商品名「S— 2600」)で測定した。 [0245] From the optical filter B side of the incident-side polarizing plate 7B, parallel white light having an emission spectrum shown in Fig. 1 is incident at polar angles of 0 degrees and 60 degrees, and the light transmittance is measured by a spectroscope ( It was measured by Soma Optical Co., Ltd., trade name “S-2600”).
波長 440nmの正面方向の透過率 TP は 26%、波長 440nmの極角 60度方向の Front direction of transmittance at a wavelength of 440nm T P is 26%, the wavelength 440nm polar angle direction of 60 degrees of
Β,Ν  Β, Ν
透過率の平均直 ΤΡ は 27%、波長 530nmの正面方向の透過率 ΤΡ は 42%、波 The average direct transmittance Ρ is 27%, the transmittance in the front direction at a wavelength of 530 nm Ρ is 42%, the wave
B,60 G,N  B, 60 G, N
長 530nmの極角 60度方向の透過率の平均直 TP は 31 %、波長 620nmの正面方 Long average 530nm polar angle 60% direction average transmittance T P is 31%, wavelength 620nm front
G.60  G.60
向の透過率 TP は 43%、及び波長 620nmの極角 60度方向の透過率の平均値 ΤΡ Transmittance in the direction T P is 43%, and the average value of the transmittance in the polar angle 60 degree direction with a wavelength of 620 nm Τ Ρ
R,N R, は 31 %であった。正面方向の選択反射帯域の中心波長は 430nm、極角 60度方 R, N R, was 31%. The central wavelength of the selective reflection band in the front direction is 430 nm, the polar angle is 60 degrees
60 60
向の選択反射帯域の中心波長は 360nmであった。  The central wavelength of the selective reflection band in the direction was 360 nm.
[0246] (液晶表示装置 7の作製) [0246] (Production of liquid crystal display device 7)
図 2に示す発光スペクトルを有する光源装置 Lの上に、入射側偏光板 7B、 IPSモー ドの液晶セル (厚さ 2. 74 111、誘電異方性が正、波長 550nmでの屈折率差 Δ η = 0. 09884、プレチルト角 0度)、及び出射側偏光板 7Αを、この順序で積層して、図 1 7に示す構成の液晶表示装置 7を作製した。 このとき、出射側偏光子 7aの偏光吸収軸と入射側偏光子 7bの偏光吸収軸とが直 角になるようにした。また、液晶セルの電圧無印加時の遅相軸と、入射側偏光子 7b の偏光吸収軸とが直角になるようにした。二軸性光学異方板 2Fの面内の遅相軸と入 射側偏光子 7bの偏光吸収軸とを直角、且つ、一軸性光学異方板 2Gの面内の遅相 軸と入射側偏光子 7bの偏光吸収軸とを直角にした。 On the light source device L having the emission spectrum shown in Fig. 2, on the incident side polarizing plate 7B, an IPS mode liquid crystal cell (thickness 2.74 111, positive dielectric anisotropy, refractive index difference Δ at a wavelength of 550 nm Δ η = 0.09884, pretilt angle 0 degree), and exit side polarizing plate 7 積 層 were laminated in this order to produce liquid crystal display device 7 having the configuration shown in FIG. At this time, the polarization absorption axis of the exit-side polarizer 7a and the polarization absorption axis of the entrance-side polarizer 7b were set to be perpendicular. In addition, the slow axis when no voltage was applied to the liquid crystal cell and the polarization absorption axis of the incident side polarizer 7b were set to be perpendicular to each other. Biaxial optical anisotropic plate 2F in-plane slow axis and incident-side polarizer 7b polarization absorption axis are perpendicular to each other, and uniaxial optical anisotropic plate 2G in-plane slow axis and incident-side polarization The polarization absorption axis of the child 7b was set at a right angle.
得られた液晶表示装置 7の観察角度による色度変化を目視評価したところ、液晶表 示装置 7の表示画像は、表示画面の左右 0〜80度の範囲でほとんど色度変化が認 められな力 た。また、液晶表示装置 7の表示画面を黒表示にし、その画面を斜め方 向から観察したところ、光漏れも見られず、均質な黒表示が得られた。  When the chromaticity change due to the observation angle of the obtained liquid crystal display device 7 was visually evaluated, the display image of the liquid crystal display device 7 showed almost no chromaticity change in the range of 0 to 80 degrees on the left and right of the display screen. I was strong. Moreover, when the display screen of the liquid crystal display device 7 was displayed in black and the screen was observed from an oblique direction, no light leakage was observed, and a uniform black display was obtained.

Claims

請求の範囲 The scope of the claims
[1] 波長 440nmの正面方向の透過率 TF 、波長 440nmの極角 60度方向の透過率 [1] Transmittance T F in the front direction at a wavelength of 440 nm, Transmittance at a polar angle of 60 degrees in a wavelength of 440 nm
Β,Ν  Β, Ν
の平均直 TF 、波長 530nmの正面方向の透過率 TF 、波長 530nmの極角 60度 Average straight T F , frontal transmittance T F at wavelength 530 nm, polar angle 60 ° at wavelength 530 nm
B,60 G,N  B, 60 G, N
方向の透過率の平均値 TF 、波長 620nmの正面方向の透過率 TF 、及び波長 62 Direction of the mean value T F of transmittance, the front direction of the transmittance T F of wavelength 620 nm, and wavelength 62
G,60 R,N  G, 60 R, N
Onmの極角 60度方向の透過率の平均値 TF が式〔1〕の関係を満たす、選択反射 Average T F polar angle direction of 60 degrees of the transmittance of Onm satisfies the relationship of formula (1), the selective reflection
R.60  R.60
帯域もしくは選択吸収帯域を有する、光学フィルタ。  An optical filter having a band or a selective absorption band.
(TF /TF ) > (TF /TF ) = (TF /TF ) 式〔1〕 ( TF / TF )> ( TF / TF ) = ( TF / TF ) Equation (1)
B,60 B,N G,60 G,N R,60 R,N  B, 60 B, N G, 60 G, N R, 60 R, N
[2] 正面方向において、波長 350nm〜500nmの範囲に選択反射帯域もしくは選択吸 収帯域を有する、請求項 1に記載の光学フィルタ。  [2] The optical filter according to claim 1, which has a selective reflection band or a selective absorption band in a wavelength range of 350 nm to 500 nm in the front direction.
[3] 極角 60度方向において、波長 450nm〜700nmの範囲に少なくとも 1つの選択反 射帯域もしくは選択吸収帯域を有する、請求項 1に記載の光学フィルタ。 [3] The optical filter according to claim 1, which has at least one selective reflection band or selective absorption band in a wavelength range of 450 nm to 700 nm in a polar angle direction of 60 degrees.
[4] 請求項 1に記載の光学フィルタと、光源とを備える、照明装置。 [4] An illumination device comprising the optical filter according to claim 1 and a light source.
[5] 前記光源が、波長 620nm〜680nmの範囲に発光強度のピークを有する、請求項[5] The light source has a peak of emission intensity in a wavelength range of 620 nm to 680 nm.
4に記載の照明装置。 4. The lighting device according to 4.
[6] 請求項 4に記載の照明装置と液晶パネルとを備える、液晶表示装置。 [6] A liquid crystal display device comprising the illumination device according to claim 4 and a liquid crystal panel.
[7] 出射側偏光子と該出射側偏光子の両面に積層された保護フィルムとを含んでなる 出射側偏光板、 [7] An output-side polarizer comprising an output-side polarizer and a protective film laminated on both surfaces of the output-side polarizer,
ヴアーティカルァライメントモードの液晶セル、  Vertical alignment mode LCD cell,
入射側偏光子と該入射側偏光子の両面に積層された保護フィルムとを含んでなる 入射側偏光板、及び  An incident-side polarizing plate comprising an incident-side polarizer and a protective film laminated on both surfaces of the incident-side polarizer, and
光源をこの順に備える液晶表示装置であって、  A liquid crystal display device comprising light sources in this order,
さらに、前記出射側偏光子と前記液晶セルとの間および/または前記入射側偏光 子と前記液晶セルとの間に 1枚または 2枚の二軸性光学異方板を備え、  In addition, one or two biaxial optical anisotropic plates are provided between the exit side polarizer and the liquid crystal cell and / or between the entrance side polarizer and the liquid crystal cell,
さらに、前記入射側偏光子と前記光源との間に、請求項 1に記載の光学フィルタを 備え、  Furthermore, the optical filter according to claim 1 is provided between the incident-side polarizer and the light source,
前記二軸性光学異方板は、 n >n >nの関係(ただし、 nは面内遅相軸方向の屈 折率、 nは遅相軸に面内で直交する方向の屈折率、 nは厚さ方向の屈折率)を満た し、 前記出射側偏光板における前記液晶セルに近!/、側の保護フィルム、電圧無印加 状態の前記液晶セル、前記入射側偏光板における前記液晶セルに近い側の保護フ イルム、及びすベての前記二軸性光学異方板を仮に積層体にしたときに、該積層体 力、波長 550nmの光を入射角 0度で入射させたときのレターデーシヨン Rと、波長 5 The biaxial optical anisotropic plate has a relationship of n>n> n (where n is the refractive index in the in-plane slow axis direction, n is the refractive index in the direction perpendicular to the slow axis in the plane, n Satisfies the refractive index in the thickness direction) Close to the liquid crystal cell on the output side polarizing plate, a protective film on the side, the liquid crystal cell in a state in which no voltage is applied, a protective film on the side close to the liquid crystal cell in the incident side polarizing plate, and all When the biaxial optical anisotropic plate is a laminated body, the laminated body force, letter R when a light having a wavelength of 550 nm is incident at an incident angle of 0 degree, and a wavelength of 5
0  0
50nmの光を入射角 40度で入射させたときのレターデーシヨン R とが、 | R —R |  Letter decision R when 50nm light is incident at an incident angle of 40 degrees | R —R |
40 40 0 40 40 0
≤ 35nmの関係を満たす、 ≤ 35nm satisfying relationship,
液晶表示装置。  Liquid crystal display device.
[8] 出射側偏光子と該出射側偏光子の両面に積層された保護フィルムとを含んでなる 出射側偏光板、  [8] An output side polarizing plate comprising an output side polarizer and a protective film laminated on both surfaces of the output side polarizer,
インプレーンスイッチングモードの液晶セル、  In-plane switching mode liquid crystal cell,
入射側偏光子と該入射側偏光子の両面に積層された保護フィルムとを含んでなる 入射側偏光板、及び  An incident-side polarizing plate comprising an incident-side polarizer and a protective film laminated on both surfaces of the incident-side polarizer, and
光源をこの順に備える液晶表示装置であって、  A liquid crystal display device comprising light sources in this order,
さらに、前記出射側偏光子と前記液晶セルとの間および/または前記入射側偏光 子と前記液晶セルとの間に 1枚または 2枚の二軸性光学異方板を備え、  In addition, one or two biaxial optical anisotropic plates are provided between the exit side polarizer and the liquid crystal cell and / or between the entrance side polarizer and the liquid crystal cell,
さらに、前記入射側偏光子と前記光源との間に、請求項 1に記載の光学フィルタを 備え、  Furthermore, the optical filter according to claim 1 is provided between the incident-side polarizer and the light source,
前記二軸性光学異方板は、 n >n及び n >nの関係(ただし、 nは面内遅相軸方 向の屈折率、 nは遅相軸に面内で直交する方向の屈折率、 nは厚さ方向の屈折率) を満たし、  The biaxial optical anisotropic plate has a relationship of n> n and n> n (where n is the refractive index in the in-plane slow axis direction, n is the refractive index in the direction perpendicular to the slow axis in the plane) , N is the refractive index in the thickness direction)
前記出射側偏光板における前記液晶セルに近!/、側の保護フィルム、電圧無印加 状態の前記液晶セル、前記入射側偏光板における前記液晶セルに近い側の保護フ イルム、及びすベての前記二軸性光学異方板を仮に積層体にしたときに、該積層体 力、波長 550nmの光を入射角 0度で入射させたときのレターデーシヨン Rと、波長 5  Close to the liquid crystal cell on the output side polarizing plate, a protective film on the side, the liquid crystal cell in a state in which no voltage is applied, a protective film on the side close to the liquid crystal cell in the incident side polarizing plate, and all When the biaxial optical anisotropic plate is a laminated body, the laminated body force, letter R when a light having a wavelength of 550 nm is incident at an incident angle of 0 degree, and a wavelength of 5
0  0
50nmの光を入射角 40度で入射させたときのレターデーシヨン R とが、 | R —R |  Letter decision R when 50nm light is incident at an incident angle of 40 degrees | R —R |
40 40 0 40 40 0
≤ 35nmの関係を満たす、 ≤ 35nm satisfying relationship,
液晶表示装置。  Liquid crystal display device.
[9] 出射側偏光子と該出射側偏光子の両面に積層された保護フィルムとを含んでなる 出射側偏光板、 [9] An output side polarizer and a protective film laminated on both surfaces of the output side polarizer Output side polarizing plate,
インプレーンスイッチングモードの液晶セル、  In-plane switching mode liquid crystal cell,
入射側偏光子と該入射側偏光子の両面に積層された保護フィルムとを含んでなる 入射側偏光板、及び  An incident-side polarizing plate comprising an incident-side polarizer and a protective film laminated on both surfaces of the incident-side polarizer, and
光源をこの順に備える液晶表示装置であって、  A liquid crystal display device comprising light sources in this order,
さらに、前記出射側偏光子と前記液晶セルとの間または前記入射側偏光子と前記 液晶セルとの間に光学異方部材を備え、  Furthermore, an optical anisotropic member is provided between the exit side polarizer and the liquid crystal cell or between the entrance side polarizer and the liquid crystal cell,
さらに、前記入射側偏光子と前記光源との間に請求項 1に記載の光学フィルタを備 え、  Furthermore, the optical filter according to claim 1 is provided between the incident-side polarizer and the light source,
前記光学異方部材は、 n≥n >nの関係を満たす 1枚の第 1光学異方板、および The optically anisotropic member includes one first optically anisotropic plate that satisfies a relationship of n≥n> n, and
, n >n≥nの関係を満たす 1枚の第 2光学異方板からなり、 , n> n≥n and one second optical anisotropic plate satisfying the relationship
前記出射側偏光板における前記液晶セルに近!/、側の保護フィルム、電圧無印加 状態の前記液晶セル、前記入射側偏光板における前記液晶セルに近い側の保護フ イルム、及び前記光学異方部材を仮に積層体にしたときに、該積層体が、波長 550η mの光を入射角 0度で入射させたときのレターデーシヨン Rと、波長 550nmの光を入  Close to the liquid crystal cell on the exit side polarizing plate, a protective film on the side, the liquid crystal cell in a state where no voltage is applied, a protective film on the side close to the liquid crystal cell in the incident side polarizing plate, and the optical anisotropic If the member is a laminated body, the laminated body receives the letter R when the light having a wavelength of 550 ηm is incident at an incident angle of 0 ° and the light having a wavelength of 550 nm.
0  0
射角 40度で入射させたときのレターデーシヨン R とが、  Letter Decision R when the incident angle is 40 degrees,
40 I R —R  40 I R —R
40 0 I ≤35nmの関係 を満たす、  40 0 I ≤35nm
液晶表示装置。  Liquid crystal display device.
[10] 偏光子と、該偏光子の両面に積層された保護フィルムとからなり、  [10] A polarizer and a protective film laminated on both sides of the polarizer,
波長 440nmの正面方向の透過率 TP 、波長 440nmの極角 60度方向の透過率 Transmittance T P in the front direction at a wavelength of 440 nm, Transmittance at a polar angle of 60 degrees in a wavelength of 440 nm
Β,Ν  Β, Ν
の平均直 ΤΡ 、波長 530nmの正面方向の透過率 ΤΡ 、波長 530nmの極角 60度 The average straight-T [rho, the transmittance in the front direction of the wavelength 530nm T [rho, polar angle 60 ° Wavelength 530nm of
B,60 G,N  B, 60 G, N
方向の透過率の平均値 TP 、波長 620nmの正面方向の透過率 ΤΡ 、及び波長 62 Direction average transmittance T P , frontal transmittance at wavelength 620 nm Τ Ρ , and wavelength 62
G,60 R,N  G, 60 R, N
Onmの極角 60度方向の透過率の平均値 TP 、式〔2〕の関係を満たす、選択反 Onm polar angle The average value of transmittance in the direction of 60 degrees T P , which satisfies the relationship of equation [2]
R.60  R.60
射帯域もしくは選択吸収帯域を有する、偏光板。  A polarizing plate having a reflection band or a selective absorption band.
ΡΡ ) > (ΤΡΡ ) = (ΤΡΡ ) 式〔2〕 Ρ / Τ Ρ )> (Τ Ρ / Τ Ρ ) = (Τ Ρ / Τ Ρ ) Equation (2)
Β,60 Β,Ν G,60 G,N R,60 R.N  Β, 60 Β, Ν G, 60 G, N R, 60 R.N
[11] 偏光子と、該偏光子の両面に積層された保護フィルムとからなり、光源とともに用い られた際に、前記保護フィルムのうち光源に近い側の保護フィルム力 請求項 1に記 載の光学フィルタである、偏光板。 [11] The protective film according to claim 1, comprising a polarizer and a protective film laminated on both sides of the polarizer, and when used with a light source, the protective film force on the side of the protective film closer to the light source. A polarizing plate, which is an optical filter.
[12] 偏光子と、該偏光子の両面に積層された保護フィルムとからなり、光源とともに用い られた際に、前記保護フィルムのうち光源に近い側の保護フィルム力 光学フィルム と請求項 1に記載の光学フィルタとの積層体である、偏光板。 [12] The protective film is composed of a polarizer and protective films laminated on both sides of the polarizer, and when used together with a light source, the protective film force optical film on the side close to the light source of the protective film. The polarizing plate which is a laminated body with the optical filter of description.
[13] 前記保護フィルムの少なくとも一方が光学的異方性を有する請求項 10に記載の偏 光板。  13. The polarizing plate according to claim 10, wherein at least one of the protective films has optical anisotropy.
[14] 請求項 10に記載の偏光板を備えた液晶パネル。  [14] A liquid crystal panel comprising the polarizing plate according to claim 10.
[15] 請求項 14に記載の液晶パネルを備えた液晶表示装置。  15. A liquid crystal display device comprising the liquid crystal panel according to claim 14.
[16] 出射側偏光子と該出射側偏光子の両面に積層された保護フィルムとを含んでなる 出射側偏光板、  [16] An exit-side polarizing plate comprising an exit-side polarizer and a protective film laminated on both surfaces of the exit-side polarizer,
ヴアーティカルァライメントモードの液晶セル、  Vertical alignment mode LCD cell,
請求項 10に記載の偏光板からなる入射側偏光板、  Incident-side polarizing plate comprising the polarizing plate according to claim 10,
及び光源をこの順に備える液晶表示装置であって、  And a light source comprising a light source in this order,
さらに、出射側偏光子と液晶セルとの間および/または入射側偏光子と液晶セルと の間に、 n >n >nの関係(ただし、 nは面内遅相軸方向の屈折率、 nは遅相軸に 面内で直交する方向の屈折率、 nは厚さ方向の屈折率)を満たす二軸性光学異方 板を 1枚または 2枚備え、  Further, a relationship of n> n> n between the exit side polarizer and the liquid crystal cell and / or between the entrance side polarizer and the liquid crystal cell (where n is the refractive index in the in-plane slow axis direction, n Is equipped with one or two biaxial optical anisotropic plates that satisfy the refractive index in the direction perpendicular to the slow axis in the plane, and n is the refractive index in the thickness direction)
前記出射側偏光板における前記液晶セルに近!/、側の保護フィルム、電圧無印加 状態の前記液晶セル、前記入射側偏光板における前記液晶セルに近い側の保護フ イルム、及びすベての前記二軸性光学異方板を仮に積層体にしたときに、該積層体 力、波長 550nmの光を入射角 0度で入射させたときのレターデーシヨン Rと、波長 5  Close to the liquid crystal cell on the output side polarizing plate, a protective film on the side, the liquid crystal cell in a state in which no voltage is applied, a protective film on the side close to the liquid crystal cell in the incident side polarizing plate, and all When the biaxial optical anisotropic plate is a laminated body, the laminated body force, letter R when a light having a wavelength of 550 nm is incident at an incident angle of 0 degree, and a wavelength of 5
0  0
50nmの光を入射角 40度で入射させたときのレターデーシヨン R とが、 | R —R |  Letter decision R when 50nm light is incident at an incident angle of 40 degrees | R —R |
40 40 0 40 40 0
≤ 35nmの関係を満たす、 ≤ 35nm satisfying relationship,
液晶表示装置。  Liquid crystal display device.
[17] 出射側偏光子と該出射側偏光子の両面に積層された保護フィルムとを含んでなる 出射側偏光板、  [17] An output side polarizing plate comprising an output side polarizer and a protective film laminated on both surfaces of the output side polarizer,
インプレーンスイッチングモードの液晶セル、  In-plane switching mode liquid crystal cell,
請求項 10に記載の偏光板からなる入射側偏光板、  Incident-side polarizing plate comprising the polarizing plate according to claim 10,
及び光源をこの順に備える液晶表示装置であって、 さらに、前記出射側偏光子と前記液晶セルとの間および/または前記入射側偏光 子と前記液晶セルとの間に、 n >n及び n >nの関係(ただし、 nは面内遅相軸方 y z y x And a light source comprising a light source in this order, Further, a relationship of n> n and n> n between the exit-side polarizer and the liquid crystal cell and / or between the entrance-side polarizer and the liquid crystal cell (where n is an in-plane slow axis) Yzyx
向の屈折率、 nは遅相軸に面内で直交する方向の屈折率、 nは厚さ方向の屈折率) y z N is the refractive index in the direction perpendicular to the slow axis in the plane, n is the refractive index in the thickness direction) y z
を満たす二軸性光学異方板を 1枚または 2枚備え、 One or two biaxial optical anisotropic plates satisfying
前記出射側偏光板における前記液晶セルに近!/、側の保護フィルム、電圧無印加 状態の前記液晶セル、前記入射側偏光板における前記液晶セルに近い側の保護フ イルム、及びすベての前記二軸性光学異方板を仮に積層体にしたときに、該積層体 力、波長 550nmの光を入射角 0度で入射させたときのレターデーシヨン Rと、波長 5  Close to the liquid crystal cell on the output side polarizing plate, a protective film on the side, the liquid crystal cell in a state in which no voltage is applied, a protective film on the side close to the liquid crystal cell in the incident side polarizing plate, and all When the biaxial optical anisotropic plate is a laminated body, the laminated body force, letter R when a light having a wavelength of 550 nm is incident at an incident angle of 0 degree, and a wavelength of 5
0  0
50nmの光を入射角 40度で入射させたときのレターデーシヨン R とが、 | R —R |  Letter decision R when 50nm light is incident at an incident angle of 40 degrees | R —R |
40 40 0 40 40 0
≤ 35nmの関係を満たす、 ≤ 35nm satisfying relationship,
液晶表示装置。  Liquid crystal display device.
出射側偏光子と該出射側偏光子の両面に積層された保護フィルムとを含んでなる 出射側偏光板、  An exit-side polarizer comprising an exit-side polarizer and a protective film laminated on both surfaces of the exit-side polarizer;
インプレーンスイッチングモードの液晶セル、  In-plane switching mode liquid crystal cell,
請求項 10に記載の偏光板からなる入射側偏光板、  Incident-side polarizing plate comprising the polarizing plate according to claim 10,
及び光源をこの順に備える液晶表示装置であって、  And a light source comprising a light source in this order,
さらに、前記出射側偏光子と前記液晶セルとの間または前記入射側偏光子と前記 液晶セルとの間に、 n≥n >nの関係を満たす 1枚の第 1光学異方板と、 n >n≥n z x y x y z の関係を満たす 1枚の第 2光学異方板とを重層または積層して備え、  A first optical anisotropic plate satisfying a relationship of n≥n> n between the exit-side polarizer and the liquid crystal cell or between the incident-side polarizer and the liquid crystal cell; and n > a second optical anisotropic plate satisfying the relationship> n≥nzxyxyz
前記出射側偏光板における前記液晶セルに近!/、側の保護フィルム、電圧無印加 状態の前記液晶セル、前記入射側偏光板における前記液晶セルに近い側の保護フ イルム、及び前記光学異方部材を仮に積層体にしたときに、該積層体が、波長 550η mの光を入射角 0度で入射させたときのレターデーシヨン Rと、波長 550nmの光を入  Close to the liquid crystal cell on the exit side polarizing plate, a protective film on the side, the liquid crystal cell in a state where no voltage is applied, a protective film on the side close to the liquid crystal cell in the incident side polarizing plate, and the optical anisotropic If the member is a laminated body, the laminated body receives the letter R when the light having a wavelength of 550 ηm is incident at an incident angle of 0 ° and the light having a wavelength of 550 nm.
0  0
射角 40度で入射させたときのレターデーシヨン R とが、 I R —R I ≤35nmの関係 The relationship between letter R when incident at an incident angle of 40 degrees and I R —R I ≤35 nm
40 40 0  40 40 0
を満たす、 Meet,
液晶表示装置。  Liquid crystal display device.
PCT/JP2007/070687 2006-10-24 2007-10-24 Optical filter, polarizing plate, illumination device, and liquid crystal display device WO2008050784A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006288683 2006-10-24
JP2006-288683 2006-10-24
JP2007-063243 2007-03-13
JP2007063243A JP2008134579A (en) 2006-10-24 2007-03-13 Optical filter, polarizing plate, illumination device and liquid crystal display device

Publications (1)

Publication Number Publication Date
WO2008050784A1 true WO2008050784A1 (en) 2008-05-02

Family

ID=39324578

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/070687 WO2008050784A1 (en) 2006-10-24 2007-10-24 Optical filter, polarizing plate, illumination device, and liquid crystal display device

Country Status (3)

Country Link
JP (1) JP2008134579A (en)
TW (1) TW200821637A (en)
WO (1) WO2008050784A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010072653A (en) * 2008-09-22 2010-04-02 Samsung Corning Precision Glass Co Ltd Color shift-reducing optical filter, and display device with the same
WO2010127467A1 (en) * 2009-05-05 2010-11-11 香港创意国际有限公司 Patterned game card and game method
CN115220256A (en) * 2021-04-21 2022-10-21 胡崇铭 Vertical alignment type liquid crystal display module

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8821994B2 (en) 2007-03-29 2014-09-02 Akron Polymer Systems Liquid crystal display having improved wavelength dispersion characteristics
US9011992B2 (en) 2007-03-29 2015-04-21 Akron Polymer Systems Optical compensation films based on stretched polymer films
US9096719B2 (en) 2007-03-29 2015-08-04 Akron Polymer Systems Optical compensation films with mesogen groups for liquid crystal display
JP6128115B2 (en) * 2012-03-30 2017-05-17 日本ゼオン株式会社 Retardation film laminate, method for producing the same, and liquid crystal display device
CN105793362A (en) * 2013-12-18 2016-07-20 横滨橡胶株式会社 Ultraviolet ray-curable resin composition, and laminate
EP3371630A1 (en) * 2015-11-03 2018-09-12 Materion Corporation Filter array with reduced stray focused light
KR20190141000A (en) * 2017-05-11 2019-12-20 니폰 가야꾸 가부시끼가이샤 UV curable resin composition for blue light blocking film and blue light blocking film using same
JP6890724B2 (en) * 2019-03-27 2021-06-18 大阪瓦斯株式会社 Radiative cooling device and radiative cooling method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01295219A (en) * 1988-05-24 1989-11-28 Asahi Glass Co Ltd Color liquid crystal display element
JPH1164840A (en) * 1997-08-19 1999-03-05 Hitachi Ltd Liquid crystal display device
JP2003186017A (en) * 2001-10-12 2003-07-03 Fujitsu Display Technologies Corp Liquid crystal display device
JP2004093713A (en) * 2002-08-30 2004-03-25 Casio Comput Co Ltd Liquid crystal display device
WO2006038561A1 (en) * 2004-10-01 2006-04-13 Nhk Spring Co., Ltd. Discrimination medium and discrimination method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01295219A (en) * 1988-05-24 1989-11-28 Asahi Glass Co Ltd Color liquid crystal display element
JPH1164840A (en) * 1997-08-19 1999-03-05 Hitachi Ltd Liquid crystal display device
JP2003186017A (en) * 2001-10-12 2003-07-03 Fujitsu Display Technologies Corp Liquid crystal display device
JP2004093713A (en) * 2002-08-30 2004-03-25 Casio Comput Co Ltd Liquid crystal display device
WO2006038561A1 (en) * 2004-10-01 2006-04-13 Nhk Spring Co., Ltd. Discrimination medium and discrimination method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010072653A (en) * 2008-09-22 2010-04-02 Samsung Corning Precision Glass Co Ltd Color shift-reducing optical filter, and display device with the same
WO2010127467A1 (en) * 2009-05-05 2010-11-11 香港创意国际有限公司 Patterned game card and game method
CN115220256A (en) * 2021-04-21 2022-10-21 胡崇铭 Vertical alignment type liquid crystal display module

Also Published As

Publication number Publication date
TW200821637A (en) 2008-05-16
JP2008134579A (en) 2008-06-12

Similar Documents

Publication Publication Date Title
US10663800B2 (en) Optical sheet member and image display device using same
JP3591699B2 (en) Polarizing element, optical element, illumination device, and liquid crystal display device
KR101782827B1 (en) Liquid-crystal display device
JP6321052B2 (en) Brightness improving film, optical sheet member, and liquid crystal display device
WO2008050784A1 (en) Optical filter, polarizing plate, illumination device, and liquid crystal display device
KR101882636B1 (en) Optical film, liquid crystal display device and method for producing optical film
WO2014196637A1 (en) Optical sheet member and image display device employing same
JP2007065314A (en) Circularly polarized light separating sheet
JP6262351B2 (en) Film, film manufacturing method, brightness enhancement film, optical sheet member, and liquid crystal display device
US6795139B1 (en) Polarizing element, optical element, polarized light supply unit and liquid-crystal display device
JPH11160539A (en) Polarizing element, polarizing light source device and liquid crystal display device
JP4853476B2 (en) Optical element, polarizing plate, retardation plate, illumination device, and liquid crystal display device
JP2017068111A (en) Polarizing plate and liquid crystal display
JP2002139624A (en) Optical element, illumination device and liquid crystal display device
JP3401743B2 (en) Polarizing element, polarized light source device and liquid crystal display device
JP2005091825A (en) Polarization separating sheet and luminance raising film
JP3811465B2 (en) Polarizing element, polarized light source, and image display apparatus using them
JPWO2005026830A1 (en) Illumination device and liquid crystal display device
JP6321210B2 (en) Liquid crystal display
JP2007206112A (en) Liquid crystal display device
JP2007148158A (en) Liquid crystal display device
JPH11311710A (en) Polarizing element, optical element, lighting device, and liquid crystal display device
JP4972926B2 (en) Liquid crystal display
JP2007047218A (en) Circularly polarized separating sheet and its manufacturing method
JP2008107455A (en) Illuminating device and liquid crystal display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07830421

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07830421

Country of ref document: EP

Kind code of ref document: A1