WO2008044723A1 - Organic electroluminescent device material, organic electroluminescent device, display and illuminating device - Google Patents

Organic electroluminescent device material, organic electroluminescent device, display and illuminating device Download PDF

Info

Publication number
WO2008044723A1
WO2008044723A1 PCT/JP2007/069822 JP2007069822W WO2008044723A1 WO 2008044723 A1 WO2008044723 A1 WO 2008044723A1 JP 2007069822 W JP2007069822 W JP 2007069822W WO 2008044723 A1 WO2008044723 A1 WO 2008044723A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
general formula
organic
atom
represented
Prior art date
Application number
PCT/JP2007/069822
Other languages
French (fr)
Japanese (ja)
Inventor
Motoaki Sugino
Masato Nishizeki
Tomohiro Oshiyama
Original Assignee
Konica Minolta Holdings, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Holdings, Inc. filed Critical Konica Minolta Holdings, Inc.
Priority to JP2008538748A priority Critical patent/JP5099013B2/en
Publication of WO2008044723A1 publication Critical patent/WO2008044723A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1022Heterocyclic compounds bridged by heteroatoms, e.g. N, P, Si or B
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • C09K2211/1033Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom with oxygen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • C09K2211/1037Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom with sulfur
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1059Heterocyclic compounds characterised by ligands containing three nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1074Heterocyclic compounds characterised by ligands containing more than three nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1092Heterocyclic compounds characterised by ligands containing sulfur as the only heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/185Metal complexes of the platinum group, i.e. Os, Ir, Pt, Ru, Rh or Pd
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/321Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3]
    • H10K85/322Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3] comprising boron
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/346Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising platinum
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/348Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising osmium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/361Polynuclear complexes, i.e. complexes comprising two or more metal centers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole

Definitions

  • Organic-elect mouth luminescence element material organic-elect-mouth luminescence element, display device and lighting device
  • the present invention relates to an organic electoluminescence device material, an organic electroluminescence device, a display device, and a lighting device.
  • ELD components include inorganic-electric luminescence elements and organic-electric luminescence elements (hereinafter referred to as organic EL elements! /).
  • Inorganic electoric luminescence elements require an alternating high voltage to drive the force light-emitting elements that have been used as planar light sources.
  • An organic EL device has a structure in which a light-emitting layer containing a light-emitting compound is sandwiched between a cathode and an anode, and excitons (excitons) are generated by injecting electrons and holes into the light-emitting layer and recombining them.
  • a stilbene derivative, a distyrylarylene derivative or a tristyrylarylene derivative is doped with a trace amount of a phosphor to improve emission luminance and extend the lifetime of the element.
  • an element having an organic light emitting layer in which an 8-hydroxyquinoline aluminum complex is used as a host compound and a small amount of phosphor is doped to the host compound for example, JP-A 63-264692
  • an 8-hydroxyquinoline aluminum complex is used as a host
  • an element having an organic light emitting layer doped with a quinacridone dye for example, Japanese Patent Publication No. 3-255190
  • the upper limit of the internal quantum efficiency is 100%, so that in principle the luminous efficiency is four times that of the excited singlet, and almost the same performance as a cold cathode tube is obtained. It is also attracting attention as a lighting application.
  • an electron-withdrawing group such as a fluorine atom, a trifluoromethyl group, and a cyano group has been introduced into phenylpyridine as a substituent, and a picolinic acid villaza ball type as a ligand.
  • a picolinic acid villaza ball type as a ligand.
  • ligands see, for example, Patent Documents 6 to 10 and Non-patent documents;! To 4
  • the emission wavelength of the light-emitting material is shortened and blue.
  • high-efficiency devices can be achieved, while the light-emitting lifetime of the devices is greatly deteriorated, so an improvement in the trade-off has been demanded.
  • Patent Documents 1 and 11 examples using a compound having a heterocyclic skeleton of a 6-5-6 type tricyclic condensed ring such as carbazole, dibenzofuran, dibenzothiophene and the like as a ligand are disclosed (for example, Patent Documents 1 and 11). 17 and 18)), however, is insufficient in terms of both the light emission lifetime and the light emission efficiency, and further improvement has been desired.
  • Patent Document 1 JP 2002-332291 A
  • Patent Document 2 Japanese Patent Laid-Open No. 2002-332292
  • Patent Document 3 JP-A-2002-338588
  • Patent Document 4 Japanese Patent Application Laid-Open No. 2002-226495
  • Patent Document 5 JP-A-2002-234894
  • Patent Document 6 International Publication No. 02/15645
  • Patent Document 7 Japanese Patent Laid-Open No. 2003-123982
  • Patent Document 8 JP 2002-117978 A
  • Patent Document 9 Japanese Patent Laid-Open No. 2003-146996
  • Patent Document 10 International Publication No. 04/016711 Pamphlet
  • Patent Document 11 Pamphlet of International Publication No. 04/085450
  • Patent Document 12 Japanese Patent Laid-Open No. 2005-53912
  • Patent Document 13 Japanese Unexamined Patent Publication No. 2003-109758
  • Patent Document 14 Japanese Patent Laid-Open No. 2001-247859
  • Patent Document 15 International Publication No. 05/007767 Pamphlet
  • Patent Document 16 Japanese Patent Laid-Open No. 2005-68110
  • Patent Document 17 Japanese Unexamined Patent Publication No. 2005-23070
  • Patent Document 18 Japanese Patent Laid-Open No. 2005-23071
  • Non-Patent Document 1 Inorganic Chemistry, Vol. 41, No. 12, pp. 3055-3066 (2002)
  • Non-Patent Document 2 Aplied Physics Letters, 79, 2082 (2001)
  • Non-Patent Document 3 Aplied Physics Letters, 83, 3818 (2003)
  • Non-Patent Document 4 New Journal of Chemistry, 26 Volume 1171 (2002) Disclosure of the invention
  • the present invention has been made in view of the above problems, and an object of the present invention is to control an organic EL element using an organic EL element material that has a controlled emission wavelength, exhibits high emission efficiency, and has a long emission lifetime. It is providing an element, an illuminating device, and a display apparatus.
  • A is a cyclic group bonded to the metal atom M through a carbon atom, and B is through a nitrogen atom.
  • the cyclic group represented by A is a group represented by the following general formula (lb), or on the metal complex represented by the general formula (la), A group represented by (lb) is included as a substituent.
  • X represents ⁇ , S, N—R 2 (R 2 represents an alkyl group, an aryl group, or a heteroaryl group).
  • X -L -X is a two-seat arrangement
  • L is
  • X and X represent a group of atoms that form a bidentate ligand.
  • ml represents an integer of 1, 2, or 3
  • M2 represents an integer of 0, 1 or 2 ml + m2 is 2 or 3.
  • M, which is a metal atom, represents a group 8 to group 10 metal in the periodic table.
  • R represents an alkyl group, an aryl group, or a heteroaryl group.
  • Y and Y are nitrogen atoms
  • R is a methyl group or an aryl group.
  • organic electoluminescence device material according to any one of 24, characterized in that
  • R is a ally having a substituent at the 2,6 position.
  • M is Ir or Pt
  • An organic electoluminescence device comprising the organic electroluminescence device material according to item 1 in any one of the above 1 to 8, in a light emitting layer.
  • a display device comprising the organic-electric-luminescence element as described in 9 above.
  • An illuminating device comprising the organic electoluminescence device described in 9 above.
  • an organic EL element material useful for an organic EL element can be obtained.
  • the emission wavelength is controlled, the emission efficiency is high, and the emission lifetime is long.
  • FIG. 1 is a schematic view showing an example of a display device composed of organic EL elements.
  • FIG. 2 is a schematic diagram of display unit A.
  • FIG. 3 is a schematic diagram of a pixel.
  • FIG. 4 is a schematic diagram of a passive matrix type full-color display device.
  • FIG. 5 is a schematic view of a lighting device.
  • FIG. 6 is a schematic diagram of a lighting device.
  • C and N form a covalent bond or a coordinate bond with metal atom M.
  • A is a cyclic group bonded to the metal atom M through a carbon atom.
  • the cyclic group represented by A is preferably a 5-membered or 6-membered ring, and more preferably a ring structure represented by the following general formulas A— ;! to A-53.
  • RA is independently a hydrogen atom or substituent 4
  • Examples of the substituent include an alkyl group (for example, a methyl group, an ethyl group, a propyl group, an isopropyl group, a tert butyl group, a pentyl group, a hexyl group, an octyl group, a dodecyl group, a tridecyl group, a tetradecyl group).
  • an alkyl group for example, a methyl group, an ethyl group, a propyl group, an isopropyl group, a tert butyl group, a pentyl group, a hexyl group, an octyl group, a dodecyl group, a tridecyl group, a tetradecyl group.
  • Aromatic hydrocarbon ring groups also called aromatic carbocyclic groups, aryl groups, etc., for example, phenyl groups, p-phenyl groups, mesityl groups, tolyl groups, xylyl groups, naphthyl groups, anthryl groups, Azulenyl group, acenaphthene binole group, fluorenyl group, phenanthryl group, indur group, pyrenyl group, biphenylurine group, etc.), aromatic heterocyclic group (eg For example, pyridyl group, pyrimidinyl group, furyl group, pyrroly
  • oxazolyl group ⁇ , 1, 2, 4 2,3 ⁇ lyso 'mono- 1- 1-no-re group, etc.
  • oxazolyl group benzoxazolyl group, thiazolyl group, isoxazolyl group, isothia group, furazanyl group, chenyl group, quinolyl group, benzofuryl group, dibenzofuryl group , Benzocenyl group, dibenzocenyl group, indolyl group, canolenozolinole group, carbolinyl group, diazacarbazolyl group (one of the carbon atoms constituting the carboline ring of the carbolinyl group is replaced by a nitrogen atom)
  • Quinoxalinyl group pyridazinyl group, triazinyl group, quinazolinyl group, phthaladyl group, etc.
  • heterocyclic group eg, pyrrolidyl group,
  • a ring may be formed.
  • Rings formed by combining two of RA to RA include naphthalene and tetralyl.
  • Anthracene, phenanthrene, quinoline, isoquinoline, indanol, benzofuran examples include ring structures such as Nzochi-aged phen, indazonore, benzimidazole, benzothiazonole, benzoxazole, carbazonole, dibenzofuran, dibenzothiophene, and benzotriazole.
  • A is also a ring structure represented by the general formula (lb).
  • B is a cyclic group bonded to the metal atom M through a nitrogen atom.
  • the cyclic group represented by B is preferably a 5-membered or 6-membered ring, and more preferably a ring structure represented by the following general formulas B-1-B-27.
  • B represents a cyclic group bonded to the metal atom M through a nitrogen atom.
  • RB, RB, and RB are independently a hydrogen atom or a substituent.
  • Examples of substituents represented by RB, RB, RB, and RB include the above RA, RA, RA, RA, RA
  • Two of RB, RB, RB, and RB may be bonded to each other to form a ring.
  • RB ⁇ An example of a ring formed by combining two of RB is as follows:
  • the A part has a force represented by the general formula (lb), and the substitutable site of the metal complex represented by the general formula (la).
  • the ring structure represented by the general formula (lb) is substituted.
  • X represents ⁇ , S, N 2 -R.
  • R represents an alkyl group, an aryl group, or a heteroaryl group.
  • Examples of the alkyl group, aryl group, and heteroaryl group represented by R include those similar to the alkyl group, aryl group, and heteroaryl group represented by RA, RA, RA, RA.
  • One of Z, Z, Z and Z is a nitrogen atom.
  • Examples of the substituent represented by R are the same as the examples of the substituent represented by RA, RA, RA and RA.
  • X—L—X represents a bidentate ligand
  • X 1 and X 2 each independently represent carbon
  • L represents an atomic group forming a bidentate ligand together with X and X.
  • X — L — 2 represented by X
  • 1 1 2 1 1 2dentate ligands include substituted or unsubstituted phenylpyrrolidine, phenylpyra zonore, phenylimidazonole, phenyltriazolene, phenyltetrazonole, pyrazabole. Acetylacetone, picolinic acid and the like.
  • ml represents an integer of 1, 2 or 3
  • m2 represents a force representing an integer of 0, 1 or 2
  • ml + m2 is 2 or 3. Of these, m2 is preferably 0.
  • the metal represented by M used for forming the metal complex includes
  • transition metal elements of Group 8 to Group 10 also referred to simply as transition metals
  • iridium and platinum are preferable transition metal elements.
  • the metal complex according to the present invention has, for example, a partial structure shown in parentheses having ml, or a portion represented by a tautomer thereof, when ml> m2 as described in the general formula (la).
  • the structure is called a main ligand
  • the partial structure shown in parentheses having m2 or a partial structure represented by a tautomer thereof is called a subligand.
  • the metal complex is composed of a combination of a main ligand or a tautomer thereof and a subligand or a tautomer thereof.
  • m2 0, that is, all the ligands of the metal complex may be composed only of a partial structure represented by the main ligand or a tautomer thereof.
  • a so-called ligand used in the formation of a conventionally known metal complex has a ligand (also known as a coordination compound) known as a ligand, if necessary, as a ligand! / Well! /
  • the type of the ligand in the complex is preferably composed of 1 to 2 types, more preferably 1 type. .
  • the metal complex represented by the general formula (la) is a compound represented by the general formula
  • R represents an alkyl group, an aryl group, or a heteroaryl group.
  • Y, Y is Nikko
  • M is the same as A, X, L, X, ml, m2, M in the general formula (la),
  • the metal complex represented by the general formula (1) is represented by the general formula (1).
  • R is a carbyl group or an aryl group.
  • TM represents the following ⁇ 3 ⁇ 4
  • the organic EL device of the present invention is formed on the light emitting layer or the electron blocking layer in the constituent layers (details will be described later) of the organic EL device. It is preferable to use a material. In the light emitting layer, it is preferably used as a light emitting dopant as described above.
  • the mixing ratio of the light-emitting dopant to the light-emitting host is preferably adjusted to a range of from 0.;! To less than 30% by mass.
  • the luminescent dopant may be a mixture of a plurality of types of compounds.
  • the partner to be mixed may have a different structure, and other metal complexes or phosphorescent dopants or fluorescent dopants having other structures may also be used. Good.
  • Luminescent dopants can be broadly divided into two types: fluorescent dopants that emit fluorescence and phosphorescent dopants that emit phosphorescence.
  • fluorescent dopant include coumarin dyes, pyran dyes, cyanine dyes, croconium dyes, squalium dyes, oxobenzanthracene dyes, fluorescein dyes, rhodamine dyes , Pyrylium dyes, perylene dyes, steel Examples thereof include rubene dyes, polythiophene dyes, and rare earth complex phosphors.
  • a typical example of the latter is preferably a complex compound containing a transition metal element of Group 8, 9, or 10 in the periodic table of elements, and more preferably an iridium compound.
  • An osmium compound, and most preferred is an iridium compound.
  • JP 2002-100476 JP 2002-173674, JP 2002-359082, JP 2002-175884, JP 2002-363552, JP 2002-184582 Publication, JP 2003-7469, JP 2002-525 808, JP 2003-7471, JP 2002-525833, JP 2003
  • the host compound used in the present invention represents a compound having a phosphorescence quantum yield of phosphorescence emission of less than 0.01 at room temperature (25 ° C.) among compounds contained in the light emitting layer.
  • the luminescent host used in the present invention is not particularly limited in terms of structure, but is typically a force rubazole derivative, triarylamine derivative, aromatic borane derivative, nitrogen-containing bicyclic compound, thiophene derivative.
  • Basic bones such as furan derivatives and oligoarylene compounds
  • Examples thereof include carboline derivatives and derivatives having a ring structure in which at least one of the carbon atoms of the hydrocarbon ring constituting the carboline ring of the carboline derivative is substituted with a nitrogen atom.
  • a force rubazole derivative, a carboline derivative, and a derivative having a ring structure in which at least one of the carbon atoms of the hydrocarbon ring constituting the carboline ring of the carboline derivative is substituted with a nitrogen atom are preferably used.
  • a plurality of known host compounds may be used in combination as a host compound.
  • multiple types of host compounds it is possible to adjust the movement of charges, and the organic EL device can be made highly efficient.
  • these known host compounds compounds that have a hole transporting ability and an electron transporting ability, prevent emission of longer wavelengths, and have a high Tg (glass transition temperature) are preferred! / ,.
  • the light-emitting host used in the present invention may be a low-molecular compound or a high-molecular compound having a repeating unit, which may be a low-molecular compound having a polymerizable group such as a bur group or an epoxy group (evaporation polymerizable light-emitting). Even the host) [0230]
  • a compound having a hole transporting ability and an electron transporting ability, which prevents the light emission from being increased in wavelength, and has a high Tg (glass transition temperature) is preferable.
  • the light emitting layer may further contain a host compound having a fluorescence maximum wavelength as a host compound.
  • a host compound having a fluorescence maximum wavelength is a compound having a high fluorescence quantum yield in a solution state.
  • the fluorescence quantum yield is preferably 10% or more, particularly preferably 30% or more.
  • host compounds having a maximum fluorescence wavelength include coumarin dyes, pyran dyes, cyanine dyes, croconium dyes, squalium dyes, oxobenzanthracene dyes, fluorescein dyes, rhodamine dyes. And pyrylium dyes, perylene dyes, stilbene dyes, polythiophene dyes, and the like.
  • the fluorescence quantum yield can be measured by the method described in the third edition of Experimental Chemistry Course 7, Spectroscopy II, page 362 (1992 edition, Maruzen).
  • the blocking layer for example, electron blocking layer, hole blocking layer
  • the blocking layer for example, electron blocking layer, hole blocking layer
  • the organic EL device material of the present invention for a hole blocking layer, an electron blocking layer, and the like.
  • the organic EL device material of the present invention is contained in a hole blocking layer and an electron blocking layer
  • the organic EL of the present invention described in any one of claims 1 to 7 The element material may be contained in a state of 100% by mass as a layer constituent component such as a hole blocking layer or an electron blocking layer, or may be mixed with other organic compounds.
  • the thickness of the blocking layer according to the present invention is preferably 3 to 100 nm, and more preferably 5 to 30 nm.
  • the hole blocking layer has a function of an electron transport layer in a broad sense, and is made of a material that has a function of transporting electrons and has an extremely small ability to transport holes, and blocks holes while transporting electrons. By stopping, the recombination probability of electrons and holes can be improved.
  • Examples of the hole blocking layer include, for example, Japanese Patent Application Laid-Open Nos. 11 204258 and 11 204359, and “The Forefront of Organic EL Devices and Their Industrialization (November 30, 1998, NTT Corporation)
  • the hole blocking layer described in page 237 of “Issuance)” is applicable as the hole blocking layer according to the present invention.
  • the structure of the electron carrying layer mentioned later can be used as a hole-blocking layer concerning this invention as needed.
  • the organic EL device of the present invention has a hole blocking layer as a constituent layer, and the hole blocking layer is at least one of the carbon atoms of the hydrocarbon ring constituting the carboline ring of the strong ruporin derivative or the carboline derivative. It is preferable to include a derivative having a ring structure in which one is substituted with a nitrogen atom.
  • the electron blocking layer has a function of a hole transport layer in a broad sense, and is made of a material having a function of transporting holes and an extremely small capacity of transporting electrons. The probability of recombination of electrons and holes can be improved by blocking the children. Moreover, the structure of the positive hole transport layer mentioned later can be used as an electron blocking layer as needed.
  • the organic EL device material of the present invention for the adjacent layer adjacent to the light emitting layer, that is, the hole blocking layer and the electron blocking layer, particularly for the electron blocking layer. It is preferable.
  • the hole transport layer includes a material having a function of transporting holes, and in a broad sense, a hole injection layer and an electron blocking layer are also included in the hole transport layer.
  • a single hole or multiple hole transport layers should be provided.
  • the hole transport material is not particularly limited, and is conventionally used as a hole charge injection / transport material in photoconductive materials, and used in the hole injection layer and hole transport layer of organic EL devices. Any known medium force can be selected and used.
  • the hole transport material has either hole injection or transport or electron barrier properties.
  • organic substances and inorganic substances may be used.
  • triazole derivatives oxazia Azole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives and pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino substituted chalcone derivatives, oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives, stilbene derivatives, silazane derivatives, Examples thereof include aniline-based copolymers and conductive polymer oligomers, particularly thiophene oligomers.
  • Typical examples of aromatic tertiary amine compounds and styrylamine compounds include N, N, N ', N' —tetraphenenole 4, A 'diaminophenol; N, N' — diphenenole N, N , —Bis (3 methylphenyl) 1 [1, 1 ′ — biphenyl] 1, 4, 4 ′ — Diamine (TPD); 2, 2-bis (4 di 1 p trilaminophenyl) propane; 1-bis (4 di-l-triarylaminophenenyl) cyclohexane; N, N, N ', N' —tetra-l-trinore 4, A ′ —diaminobiphenyl; 1, 1-bis (4-di-one) p-tolylaminophenyl) 4-phenylcyclohexan; bis (4-dimethylamino-2-methylphenyl) phenylmethane; bis (4-di-amino-
  • No. 5,061, 569 in the molecule for example 4 , 4 'bis [N- (1 naphthyl) N phenylamino] biphenyl (NPD), three triphenylamine units described in JP-A-4 308688 are connected in a starburst type, 4, 4', 4 '—Tris [N— (3-methylphenyl) N phenyla Roh] triphenyl ⁇ Min (MTDATA) and the like.
  • these materials are introduced into the polymer chain, or these materials are used as the polymer main chain.
  • High polymer materials can also be used.
  • Inorganic compounds such as p-type Si and p-type SiC can also be used as the hole injecting material and hole transporting material.
  • the hole transport layer is formed by thinning the hole transport material by a known method such as a vacuum deposition method, a spin coating method, a casting method, an ink jet method, or an LB method. That power S.
  • a vacuum deposition method such as a vacuum deposition method, a spin coating method, a casting method, an ink jet method, or an LB method. That power S.
  • a vacuum deposition method such as a vacuum deposition method, a spin coating method, a casting method, an ink jet method, or an LB method. That power S.
  • a vacuum deposition method such as a vacuum deposition method, a spin coating method, a casting method, an ink jet method, or an LB method. That power S.
  • the electron transport layer is made of a material having a function of transporting electrons, and in a broad sense, an electron injection layer and a hole blocking layer are also included in the electron transport layer.
  • an electron injection layer and a hole blocking layer are also included in the electron transport layer.
  • a single layer or a plurality of layers are provided.
  • the electron transporting layer has a function of transferring electrons injected from the cathode to the light emitting layer, any material selected from conventionally known compounds should be used. Touch with force S.
  • electron transport materials examples include heterocyclic tetrafluoride derivatives, diphenylquinone derivatives, thiopyran dioxide derivatives, naphthalene perylene, and the like.
  • derivatives having a cyclic structure examples include heterocyclic tetrafluoride derivatives, diphenylquinone derivatives, thiopyran dioxide derivatives, naphthalene perylene, and the like.
  • a thiadiazole derivative in which the oxygen atom of the oxadiazole ring is substituted with a sulfur atom, or a quinoxaline derivative having a quinoxaline ring, known as an electron withdrawing group, can also be used as an electron transport material.
  • these materials are introduced into the polymer chain, or these materials are used as the polymer main chain.
  • High polymer materials can also be used.
  • metal complexes of 8 quinolinol derivatives such as tris (8 quinolinol) aluminum (Alq), tris (5,7-dichloro-1-8-quinolinol) aluminum, tris (5,7-dive mouth 8 quinolinol) Aluminum, tris (2-methyl-8-quinolinol) aluminum, tris (5-methyl-8-quinolinol) aluminum, bis (8-quinolinol) zinc (Znq), etc.
  • the central metals of these metal complexes are In, Mg, Cu, Metal complexes replacing Ca, Sn, Ga or Pb can also be used as electron transport materials.
  • metal-free or metal phthalocyanine or those having terminal ends substituted with an alkyl group or a sulfonic acid group can be preferably used as the electron transport material.
  • the distyrylvirazine derivative exemplified as the material of the light emitting layer can also be used as an electron transport material, and inorganic semiconductors such as n-type Si and n-type SiC can be used as well as the hole injection layer and the hole transport layer. It can be used as an electron transport material.
  • This electron transport layer can be formed by thinning the electron transport material by a known method such as a vacuum deposition method, a spin coating method, a casting method, an ink jet method, or an LB method. S can. Although there is no restriction
  • This electron transport layer may have a single layer structure composed of one or more of the above materials.
  • the injection layer is provided as necessary, and has an electron injection layer and a hole injection layer, and as described above, exists between the anode and the light emitting layer or hole transport layer and between the cathode and the light emitting layer or electron transport layer. May be.
  • the injection layer is a layer that is provided between the electrode and the organic layer in order to reduce the drive voltage and increase the luminance of the light emission.
  • the organic EL element and the forefront of its industrialization June 30, 1998, NTT) 2) Chapter 2 “Electrode Materials” (pages 123-166) ”of the 2nd volume of“ E.S. Co., Ltd.) ”, the hole injection layer (anode buffer layer), the electron injection layer (cathode buffer layer) There is.
  • Lid Examples include a phthalocyanine buffer layer represented by cyanine, an oxide buffer layer represented by vanadium oxide, an amorphous carbon buffer layer, and a polymer buffer layer using a conductive polymer such as polyaniline (emeraldine) or polythiophene. .
  • cathode buffer layer (electron injection layer) Details of the cathode buffer layer (electron injection layer) are also described in JP-A-6-325871, JP-A-917574, JP-A-10-74586, and the like.
  • Metal buffer layer typified by aluminum, etc., alkali metal compound buffer layer typified by lithium fluoride, alkaline earth metal compound buffer layer typified by magnesium fluoride, oxide buffer typified by aluminum oxide One layer and so on.
  • the buffer layer (injection layer) is preferably a very thin film, although the film thickness is preferably in the range of 0.;! To lOOnm.
  • This injection layer can be formed by thinning the above material by a known method such as a vacuum deposition method, a spin coating method, a casting method, an ink jet method, or an LB method.
  • the thickness of the injection layer is not particularly limited, but is usually about 5 to 5000 nm.
  • This injection layer may have a single layer structure composed of one or more of the above materials.
  • an electrode material made of a metal, an alloy, an electrically conductive compound or a mixture thereof having a high work function (4 eV or more) is preferably used.
  • electrode materials include metals such as Au, and conductive transparent materials such as Cul, indium tin oxide (ITO), SnO, and ZnO.
  • conductive transparent materials such as Cul, indium tin oxide (ITO), SnO, and ZnO.
  • ITO indium tin oxide
  • ZnO ZnO
  • an amorphous material such as IDIXO (In 2 O 3 —ZnO) capable of forming a transparent conductive film may be used.
  • these electrode materials can be formed into a thin film by vapor deposition or sputtering, and a pattern of the desired shape can be formed by photolithography, or when pattern accuracy is not so high (about 100 m or more) ), A pattern may be formed through a mask having a desired shape when the electrode material is deposited or sputtered.
  • the transmittance greater than 10%
  • the sheet resistance as the anode is preferably several hundred ⁇ / mouth or less.
  • the film thickness is usually 10 to 1000 nm, preferably 10 to 200 nm.
  • the cathode a material having a low work function (4 eV or less) metal (referred to as an electron injecting metal), an alloy, an electrically conductive compound, and a mixture thereof is used.
  • an electron injecting metal a material having a low work function (4 eV or less) metal
  • an alloy a material having a low work function (4 eV or less) metal
  • an alloy a material having a low work function (4 eV or less) metal
  • an alloy referred to as an electron injecting metal
  • an alloy an electrically conductive compound
  • a mixture thereof a mixture thereof.
  • Specific examples of such electrode materials include sodium, sodium isotropic lithium alloy, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide (Al O) mixtures, indium, lithium / aluminum mixtures, rare earth metals and the like.
  • a mixture of an electron injecting metal and a second metal which is a stable metal having a larger work function value than this for example, a magnesium / silver mixture.
  • Magnesium / aluminum mixtures, magnesium / indium mixtures, aluminum / aluminum oxide (Al 2 O 3) mixtures, lithium / aluminum mixtures, aluminum and the like are suitable.
  • the cathode can be made by forming a thin film of these electrode materials by vapor deposition or sputtering.
  • the sheet resistance as the cathode is preferably several hundred ⁇ / mouth or less.
  • the film thickness is usually 10 to 1000 nm, preferably 50 to 200 nm.
  • it is convenient that either the anode or the cathode of the organic EL element is transparent or translucent to improve the light emission luminance.
  • Substrate also referred to as substrate, substrate, support, etc.
  • the substrate of the organic EL device of the present invention is not particularly limited as long as it is transparent or transparent, and there are no particular restrictions on the type of glass, plastic, etc.
  • Examples of substrates that are preferably used include glass, Examples thereof include quartz and a light-transmitting resin film.
  • a particularly preferred substrate is a resin film that can give flexibility to the organic EL element.
  • Examples of the resin film include polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyethersulfone (PES), polyetherimide, polyetheroletherketone, polyphenylenesulfide, polyarylate, polyimide, polycarbonate (PC ), A film made of cellulose triacetate (TAC), cellulose acetate propionate (CAP) or the like.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • PES polyethersulfone
  • PES polyetherimide
  • polyetheroletherketone polyphenylenesulfide
  • PC polycarbonate
  • a film made of cellulose triacetate (TAC), cellulose acetate propionate (CAP) or the like On the surface of the resin film, a water vapor transmission rate of 0.01 g / (m 2 '24h'MPa) or less is acceptable even if an inorganic or organic film or a hybrid film of both is formed.
  • the external extraction efficiency at room temperature of light emission of the organic EL device of the present invention is preferably 1% or more, more preferably 2% or more.
  • the external extraction quantum efficiency (%) the number of photons emitted outside the organic EL element / the number of electrons X I 00 flowed to the organic EL element.
  • a hue improving filter such as a color filter may be used in combination.
  • a roughened film such as anti-glare phenol
  • a roughened film may be used in combination in order to reduce unevenness in light emission.
  • anode / hole injection layer / hole transport layer / light emitting layer / hole blocking layer / electron transport layer / cathode buffer layer / cathode force I will explain to you!
  • a thin film made of a desired electrode material for example, an anode material
  • a suitable substrate by a method such as vapor deposition or sputtering so that the film thickness is 1 ⁇ m or less, preferably 10 to 200 nm.
  • an anode is produced.
  • a thin film containing an organic compound such as a hole injection layer, a hole transport layer, a light emitting layer, a hole blocking layer, or an electron transport layer, which is an element material, is formed thereon.
  • a method for reducing the thickness of a thin film containing an organic compound there are a spin coating method, a casting method, an ink jet method, a vapor deposition method, a printing method, and the like.
  • the vacuum deposition method or the spin coating method is particularly preferable because it is difficult to form. Further, a different film forming method may be applied for each layer.
  • the vapor deposition conditions vary depending on the type of compound used, but generally the boat heating temperature is 50 to 450 ° C, the degree of vacuum is 10-6 to 10-2 Pa, and the deposition rate is 0. It is desirable to select as appropriate in the range of 0;! To 50 nm / second, substrate temperature—50 to 300 ° C., and film thickness of 0.1 to 5 m.
  • a thin film made of a cathode material is formed thereon with a thickness of 1 ⁇ m or less, preferably 50
  • a desired organic EL device can be obtained by forming the film so as to have a film thickness in the range of ⁇ 200 nm by, for example, vapor deposition or sputtering, and providing a cathode.
  • the organic EL device is preferably manufactured from the hole injection layer to the cathode consistently by a single vacuum, but it may be taken out halfway and subjected to different film forming methods. At that time, it is necessary to consider that the work is performed in a dry inert gas atmosphere.
  • the display device of the present invention will be described.
  • the display device of the present invention has the organic EL element.
  • the display device of the present invention may be single color or multicolor, but here, the multicolor display device will be described.
  • a shadow mask is provided only at the time of forming a light emitting layer, and a film can be formed on one surface by a vapor deposition method, a casting method, a spin coating method, an ink jet method, a printing method, or the like.
  • the method is not limited, but the vapor deposition method, the ink jet method, and the printing method are preferable. When using vapor deposition, patterning with a shadow mask is preferred.
  • the multicolor display device can be used as a display device, a display, and various light sources.
  • full-color display is possible by using three organic EL elements, blue, red, and green light emission.
  • Examples of the display device and display include a television, a personal computer, a mopile device, an AV device, a character broadcast display, and an information display in a car.
  • a display device for playing back still images and moving images and the drive method when used as a display device for moving image playback is either a simple matrix (passive matrix) method or an active matrix method. It may be.
  • Luminescent light sources include home lighting, interior lighting, clock and liquid crystal backlights, billboard advertisements, traffic lights, optical storage media light sources, electrophotographic copying machine light sources, optical communication processor light sources, optical sensor Examples include light sources, but are not limited to this!
  • the lighting device of the present invention will be described.
  • the lighting device of the present invention has the organic EL element.
  • the organic EL element having the resonator structure may be used as an organic EL element having a resonator structure in the organic EL element of the present invention.
  • Examples include a light source of an electrophotographic copying machine, a light source of an optical communication processor, a light source of an optical sensor, and the like. Moreover, you may use for the said use by making a laser oscillation.
  • the organic EL element of the present invention may be used as a kind of lamp for illumination or exposure light source, a projection device for projecting an image, a still image or a moving image directly visible It may be used as a type of display device (display).
  • the driving method may be either a simple matrix (passive matrix) method or an active matrix method.
  • a full-color display device can be manufactured by using two or more organic EL elements of the present invention having different emission colors.
  • FIG. 1 is a schematic view showing an example of a display device composed of organic EL elements.
  • FIG. 2 is a schematic diagram of a display such as a mobile phone that displays image information by light emission of an organic EL element.
  • the display 1 includes a display unit A having a plurality of pixels, a control unit B that performs image scanning of the display unit A based on image information, and the like.
  • the control unit B is electrically connected to the display unit A, and sends a scanning signal and an image data signal to each of a plurality of pixels based on image information from the outside. Sequentially emits light according to the image data signal, scans the image, and sends the image information to the display unit A.
  • FIG. 2 is a schematic diagram of the display unit A.
  • the display portion A includes a wiring portion including a plurality of scanning lines 5 and data lines 6 and a plurality of pixels on a substrate.
  • the figure shows a case where the light emitted from the pixel 3 is extracted in the direction of the white arrow (downward).
  • the scanning lines 5 and the plurality of data lines 6 in the wiring portion are each made of a conductive material, and the scanning lines 5 and the data lines 6 are orthogonal to each other in a grid pattern and are connected to the pixels 3 at the orthogonal positions (details) Is not shown).
  • the pixel 3 When a scanning signal is applied from the scanning line 5, the pixel 3 receives an image data signal from the data line 6, and emits light in accordance with the received image data.
  • Full color display is possible by arranging pixels in the red region, the green region, and the blue region as appropriate on the same substrate.
  • FIG. 3 is a schematic diagram of a pixel.
  • the pixel includes an organic EL element 10, a switching transistor 11, a driving transistor 12, a capacitor 13, and the like.
  • organic EL elements that emit red, green, and blue as the organic EL elements 10 in multiple pixels, and arranging them on the same substrate in parallel, full-color display can be achieved with power S.
  • an image data signal is applied from the control unit B to the drain of the switching transistor 11 via the data line 6.
  • a scanning signal is applied from the control unit B to the gate of the switching transistor 11 via the scanning line 5
  • the driving of the switching transistor 11 is turned on, and the image data signal applied to the drain is transferred to the capacitor 13 and the driving transistor. It is transmitted to the gate of the star 12.
  • the capacitor 13 is charged according to the potential of the image data signal, and the drive of the drive transistor 12 is turned on.
  • the drive transistor 12 has a drain connected to the power supply line 7 and a source connected to the electrode of the organic EL element 10. Current is supplied from the power supply line 7 to the organic EL element 10 in accordance with the potential of the image data signal applied at a time.
  • the organic EL element 10 emits light by providing a switching transistor 11 and a drive transistor 12 as active elements for each of the organic EL elements 10 of each of the plurality of pixels, thereby providing organic EL for each of the plurality of pixels 3.
  • Element 10 is emitting light.
  • Such a light emitting method is called an active matrix method.
  • the light emission of the organic EL element 10 may be light emission of a plurality of gradations by a multi-value image data signal having a plurality of gradation potentials! /
  • the light emission amount may be on or off.
  • the potential of the capacitor 13 can be maintained until the next scanning signal is applied, or can be discharged immediately before the next scanning signal is applied! /.
  • the present invention is not limited to the above-described active matrix system, and may be a passive matrix system light emission drive in which an organic EL element emits light according to a data signal only when a scanning signal is scanned. .
  • FIG. 4 is a schematic diagram of a display device using a passive matrix method.
  • a plurality of scanning lines 5 and a plurality of image data lines 6 are provided in a lattice shape so as to face each other with the pixel 3 interposed therebetween.
  • the pixel 3 connected to the applied scanning line 5 emits light according to the image data signal.
  • the organic EL material of the present invention is an organic EL element that emits substantially white light as a lighting device. Applicable to children. A plurality of light emitting colors are simultaneously emitted by a plurality of light emitting materials, and white light emission is obtained by mixing colors.
  • the combination of multiple emission colors may include three emission maximum wavelengths of the three primary colors of blue, green, and blue, or the complementary colors such as blue and yellow, and blue-green and orange are used 2 It may be one containing two emission maximum wavelengths.
  • a combination of light emitting materials for obtaining a plurality of emission colors includes a combination of a plurality of phosphorescent or fluorescent materials, a fluorescent material or a phosphorescent material, Any combination with a dye material that emits light as excitation light may be used, but in the white organic EL device according to the present invention, only a combination of a plurality of light-emitting dopants may be mixed.
  • a mask is provided only at the time of formation of the light emitting layer, hole transport layer, electron transport layer, etc.
  • an electrode film can be formed on one side by vapor deposition, casting, spin coating, ink jet, printing, etc., and productivity is improved. According to this method, unlike the white organic EL device in which light emitting elements of a plurality of colors are arranged in parallel in an array, the elements themselves emit white light.
  • the light emitting material used for the light emitting layer is not particularly limited.
  • the light emitting material according to the present invention is adapted so as to conform to the wavelength range corresponding to the CF (color filter) characteristics. Select any of the metal complexes and known luminescent materials and combine them to whiten! /.
  • the white light-emitting organic EL device is not only the display device and the display, but also a variety of light-emitting light sources and lighting devices, such as home lighting, interior lighting, and exposure light source. It is also useful for display devices such as backlights for liquid crystal display devices.
  • the transparent support substrate with this ITO transparent electrode was ultrasonically cleaned with isopropyl alcohol Then, it was dried with dry nitrogen gas, and UV ozone cleaning was performed for 5 minutes.
  • This transparent support substrate is fixed to a substrate holder of a commercially available vacuum evaporation system, while ⁇ -NPD, H4, Ir 12, BCP, and Alq are placed in five tantalum resistance heating boats, respectively. (Vacuum chamber).
  • lithium fluoride was put into a resistance heating boat made of tantalum, and aluminum was put into a resistance heating boat made of tungsten, respectively, and attached to the second vacuum chamber of the vacuum evaporation apparatus.
  • the heating boat containing H4 and the boat containing Ir 12 are energized independently so that the deposition rate of H4 as a light emitting host and Ir-12 as a light emitting dopant is 100: 6. And a light emitting layer was provided by vapor deposition to a thickness of 30 nm.
  • the heating boat containing BCP was energized and heated, and a hole blocking layer having a thickness of lOnm was provided at a deposition rate of 0.2;! To 0.2 nm / sec. Further, the heating boat containing Alq was passed through and heated to provide an electron transporting layer having a film thickness of 20 nm at a deposition rate of 0.2;
  • organic EL device 1-1 In the production of organic EL device 1-1, organic EL device 1 1-2 ⁇ ! ⁇ was produced in the same manner except that the light-emitting host, light-emitting dopant, and hole blocking material were changed as shown in Table 1. .
  • the organic EL device produced using the metal complex according to the present invention has higher emission efficiency and longer lifetime while having a short-wave emission of pure blue to blue green compared to the organic EL device of the comparative example. It is clear that a long life can be achieved. In addition, it can be seen that it is useful as a blue light emitting device having a higher blue purity than the organic EL device of the comparative example.
  • Polyburcarbazole hole transporting binder polymer
  • Ir 13 blue light-emitting orthometalated complex
  • 2 (4-biphenyl) -5- (4 t-butylphenyl) 1, 3, 4 —Oxadiazole electron transport material
  • a buttered mask (a mask with a light emitting area of 5 mm x 5 mm) is placed on the organic compound layer, and 0.5 nm of lithium fluoride is deposited as a cathode buffer layer and 150 nm of aluminum is deposited as a cathode in a deposition apparatus.
  • a cathode was provided to produce an organic EL device 21 emitting blue light.
  • Organic EL elements 2-2 to 2-14 were prepared in the same manner as in the preparation of organic EL element 2-1, except that the luminescent dopant was changed as shown in Table 2.
  • the non-light-emitting surface of each organic EL element after fabrication was covered with a glass case, and a glass substrate having a thickness of 300 m was used as the sealing substrate.
  • the epoxy-based photo-curing adhesive (Latus Track LC0629B manufactured by Toagosei Co., Ltd.) is applied as a sealant around the glass substrate, and this is overlaid on the cathode and brought into close contact with the transparent support substrate. Then, UV light was irradiated, cured, sealed, and an illumination device as shown in FIGS. 5 and 6 was formed and evaluated.
  • the organic EL device 112 of Example 1 was used as a blue light emitting device.
  • a green light emitting device was produced in the same manner as in Example 1 except that Ir-12 was changed to Ir-1 in the organic EL device 11 of Example 1, and this was used as a green light emitting device.
  • a red light emitting device was produced in the same manner as in Example 1 except that Ir-12 was changed to Ir-9 in the organic EL device 11 of Example 1, and this was used as a red light emitting device.
  • FIG. 2 shows only a schematic view of the display portion A of the display device thus manufactured. That is, a plurality of pixels 3 (light emitting elements) juxtaposed with a wiring portion including a plurality of scanning lines 5 and data lines 6 on the same substrate. And the scanning line 5 and the plurality of data lines 6 in the wiring portion are each made of a conductive material, and the scanning line 5 and the data line 6 Is orthogonal to the grid and is connected to the pixel 3 at the orthogonal position (details not shown).
  • the plurality of pixels 3 are driven by switches that are organic EL elements and active elements corresponding to the respective emission colors.
  • switches that are organic EL elements and active elements corresponding to the respective emission colors.
  • the pixel 3 receives and receives an image data signal from the data line 6. Emits light according to the image data. In this way, a full-color display device was produced by appropriately juxtaposing red, green, and blue pixels.
  • the electrode of the transparent electrode substrate of Example 1 was patterned to 20 mm x 20 mm, and ⁇ -NPD was deposited to a thickness of 25 nm as a hole injection / transport layer on the same as in Example 1, and then H
  • the heated boat containing 4 and the example compound 2—425 and Ir 9 containing boat are energized independently, and the light emitting host HI and the example dopant 2—425 and Ir—
  • the vapor deposition rate of 9 was adjusted to 100: 5: 0.6, vapor deposition was performed to a thickness of 30 ⁇ m, and a light emitting layer was provided.
  • Example 2 a square perforated mask having substantially the same shape as the transparent electrode made of stainless steel was placed on the electron injection layer, and lithium fluoride 0.5 nm as a cathode buffer layer and a cathode as a cathode buffer layer. Aluminum 150nm was deposited.
  • This element was provided with a sealing can having the same method and the same structure as in Example 1, and a flat lamp as shown in Figs. 5 and 6 was produced.
  • a flat lamp as shown in Figs. 5 and 6 was produced.
  • this flat lamp was energized, almost white light was obtained, indicating that it could be used as a lighting device. It was found that white light emission could be obtained in the same manner even if it was replaced with other exemplified compounds.
  • the ITO transparent electrode is formed after patterning on a substrate ( ⁇ Techno Glass Co., Ltd. 45-45) made of ITO (Indium Toxide) on a lOOmmX lOOmm X l. 1mm glass substrate as an anode.
  • the transparent support substrate was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and subjected to UV ozone cleaning for 5 minutes.
  • poly (3,4 ethylene dioxythiophene) polystyrene sulfonate (PEDOT / PSS: Bayer, Baytron P A1 4083) diluted to 70% with pure water was formed by spin coating at 3000 rpm for 30 seconds and dried at 200 ° C. for 1 hour to provide a first hole transport layer having a thickness of 30 nm.
  • This substrate was transferred to a nitrogen atmosphere, and a solution of 50 mg of Compound A dissolved in 10 ml of toluene was formed on the first hole transport layer by spin coating at 1000 rpm for 30 seconds. . After irradiating with ultraviolet light for 180 seconds to perform photopolymerization / crosslinking, vacuum drying was performed at 60 ° C. for 1 hour to form a second hole transport layer.
  • a film in which Compound C (20 mg) was dissolved in 6 ml of toluene was used to form a film by spin coating under conditions of 1000 rpm and 30 seconds. Irradiated with ultraviolet light for 15 seconds to cause photopolymerization and crosslinking, and further heated in a vacuum at 80 ° C. for 1 hour to form a hole blocking layer.
  • this substrate was fixed to a substrate holder of a vacuum vapor deposition apparatus, and 200 mg of Alq was put into a molybdenum resistance heating boat and attached to the vacuum vapor deposition apparatus.
  • pressure in the vacuum tank was reduced by 4 X 10- 4 Pa or, and heated by supplying an electric current to the boat charged with Alq, it is deposited on the electron transport layer at a deposition rate of 0. lnm / sec, further film An electron transport layer with a thickness of 40 nm was provided.
  • the substrate temperature during vapor deposition was room temperature.
  • a white light emitting organic EL device was produced.

Abstract

Disclosed is an organic EL device using an organic EL device material having controlled emission wavelength, high luminous efficiency and long emission life. Also disclosed are a display and an illuminating device. Specifically disclosed is an organic EL device material represented by the following general formula (1a). [In the formula (1a), A represents a cyclic group; B represents a cyclic group; and A is a group represented by the general formula (1b) below, or alternatively the compound represented by the general formula (1a) has a group represented by the general formula (1b) below asa substituent: (In the formula (1b) wherein X represents O, S or N-R2 (wherein R2 represents an alkyl group, an aryl group or a heteroaryl group); Z1, Z2, Z3 and Z4 represent N or -CR4= (wherein R4 represents a hydrogen atom or a substituent), and one of them is N); X1 and X2 represent C, N or O; L1 represents an atomic group forming a bidentate ligand together with X1 and X2; m1 represents 1, 2 or 3, m2 represents 0, 1 or 2 and m1 + m2 is 2 or 3; and M1 represents a group 8-10 metal of the periodic table.]

Description

明 細 書  Specification
有機エレクト口ルミネッセンス素子材料、有機エレクト口ルミネッセンス素子 、表示装置及び照明装置  Organic-elect mouth luminescence element material, organic-elect-mouth luminescence element, display device and lighting device
技術分野  Technical field
[0001] 本発明は、有機エレクト口ルミネッセンス素子材料、有機エレクト口ルミネッセンス素 子、表示装置及び照明装置に関する。  TECHNICAL FIELD [0001] The present invention relates to an organic electoluminescence device material, an organic electroluminescence device, a display device, and a lighting device.
背景技術  Background art
[0002] 従来、発光型の電子ディスプレイデバイスとして、エレクト口ルミネッセンスディスプレ ィ(以下、 ELDという)がある。 ELDの構成要素としては、無機エレクト口ルミネッセン ス素子や有機エレクト口ルミネッセンス素子(以下、有機 EL素子と!/、う)が挙げられる 。無機エレクト口ルミネッセンス素子は平面型光源として使用されてきた力 発光素子 を駆動させるためには交流の高電圧が必要である。有機 EL素子は発光する化合物 を含有する発光層を陰極と陽極で挟んだ構成を有し、発光層に電子及び正孔を注 入して、再結合させることにより励起子(エキシトン)を生成させ、このエキシトンが失 活する際の光の放出(蛍光'リン光)を利用して発光する素子であり、数 V〜数十 V程 度の電圧で発光が可能であり、更に自己発光型であるために視野角に富み、視認性 が高ぐ薄膜型の完全固体素子であるために省スペース、携帯性等の観点から注目 されている。  [0002] Conventionally, as a light-emitting electronic display device, there is an electoric luminescence display (hereinafter referred to as ELD). ELD components include inorganic-electric luminescence elements and organic-electric luminescence elements (hereinafter referred to as organic EL elements! /). Inorganic electoric luminescence elements require an alternating high voltage to drive the force light-emitting elements that have been used as planar light sources. An organic EL device has a structure in which a light-emitting layer containing a light-emitting compound is sandwiched between a cathode and an anode, and excitons (excitons) are generated by injecting electrons and holes into the light-emitting layer and recombining them. This is an element that emits light using the emission of light (fluorescence 'phosphorescence) when this exciton is deactivated. It can emit light at a voltage of several volts to several tens of volts. For this reason, it is a thin-film, completely solid element that has a wide viewing angle and high visibility, and is attracting attention from the viewpoints of space saving and portability.
[0003] しかしながら、今後の実用化に向けた有機 EL素子においては、更に低消費電力で 効率よく高輝度に発光する有機 EL素子の開発が望まれている。  [0003] However, for organic EL elements for practical use in the future, it is desired to develop organic EL elements that emit light with high power and efficiency with lower power consumption.
[0004] 特許第 3093796号公報では、スチルベン誘導体、ジスチリルァリーレン誘導体ま たはトリススチリルァリーレン誘導体に微量の蛍光体をドープし、発光輝度の向上、素 子の長寿命化を達成している。また、 8—ヒドロキシキノリンアルミニウム錯体をホスト 化合物として、これに微量の蛍光体をドープした有機発光層を有する素子(例えば、 特開昭 63— 264692号公報)、 8—ヒドロキシキノリンアルミユウム錯体をホスト化合物 として、これにキナクリドン系色素をドープした有機発光層を有する素子(例えば、特 開平 3— 255190号公報)等が知られている。 [0005] 以上のように、励起一重項からの発光を用いる場合、一重項励起子と三重項励起 子の生成比が 1 : 3であるため発光性励起種の生成確率が 25%であり、光の取り出し 効率が約 20%であるため、外部取り出し量子効率( ext)の限界は 5%とされている[0004] In Japanese Patent No. 3093796, a stilbene derivative, a distyrylarylene derivative or a tristyrylarylene derivative is doped with a trace amount of a phosphor to improve emission luminance and extend the lifetime of the element. Yes. In addition, an element having an organic light emitting layer in which an 8-hydroxyquinoline aluminum complex is used as a host compound and a small amount of phosphor is doped to the host compound (for example, JP-A 63-264692), an 8-hydroxyquinoline aluminum complex is used as a host As a compound, an element having an organic light emitting layer doped with a quinacridone dye (for example, Japanese Patent Publication No. 3-255190) is known. [0005] As described above, when using emission from excited singlet, the generation ratio of singlet exciton and triplet exciton is 1: 3, so the generation probability of luminescent excited species is 25%, Since the light extraction efficiency is about 20%, the limit of external extraction quantum efficiency (ext) is 5%.
Yes
[0006] ところ力 プリンストン大より励起三重項からのリン光発光を用いる有機 EL素子の報 告(M. A. Baldo et al. , Nature, 395巻、 151〜; 154頁(1998年))力 Sされて以 来、室温でリン光を示す材料の研究が活発になってきている。  [0006] However, Princeton University reported on organic EL devices using phosphorescence emission from excited triplets (MA Baldo et al., Nature, 395, 151-; 154 (1998)). Since then, research on materials that exhibit phosphorescence at room temperature has become active.
[0007] 例えば、 M. A. Baldo et al. , Nature, 403巻、 17号、 750〜753頁(2000年[0007] For example, M. A. Baldo et al., Nature, 403, 17, 750-753 (2000
)、また米国特許第 6, 097, 147号明細書等にも開示されている。 ), And US Pat. No. 6,097,147.
[0008] 励起三重項を使用すると、内部量子効率の上限が 100%となるため励起一重項の 場合に比べて原理的に発光効率が 4倍となり、冷陰極管とほぼ同等の性能が得られ る可能性があることから照明用途としても注目されている。 [0008] When the excited triplet is used, the upper limit of the internal quantum efficiency is 100%, so that in principle the luminous efficiency is four times that of the excited singlet, and almost the same performance as a cold cathode tube is obtained. It is also attracting attention as a lighting application.
[0009] 例えば、 S. Lamansky et al. , J. Am. Chem. Soc. , 123巻、 4304頁(2001 年)等においては、多くの化合物がイリジウム錯体系等重金属錯体を中心に合成検 討されている。 [0009] For example, in S. Lamansky et al., J. Am. Chem. Soc., Vol. 123, p. 4304 (2001), many compounds are synthesized and studied focusing on heavy metal complexes such as iridium complexes. Has been.
[0010] また、前述の M. A. Baldo et al. , Nature, 403巻、 17号、 750〜753頁(200 0年)においては、ドーパントとしてトリス(2—フエ二ルビリジン)イリジウムを用いた検 討がされている。  [0010] Further, in the above-mentioned MA Baldo et al., Nature, 403, No. 17, 750-753 (2000), there is a study using tris (2-phenylviridine) iridium as a dopant. Has been.
[0011] その他、 M. E. Tompson等は、 The 10th International Workshop on In organic and Organic Electroluminescence (EL' 00、浜松) ίこおレヽて、ドーノ ン卜として L Ir (acac)、例えば、 (ppy) Ir (acac)を、また Moon— Jae Youn. 0g、 T etsuo Tsutsui等は、やはり The 10th International Workshop on Inorga nic and Organic Electroluminescence (EL, 00、浜松) ίこおレヽて、ドーノ ント としてトリス(2— (ρ—トリル)ピリジン)イリジウム(Ir (ptpy) ) , トリス(ベンゾ [h]キノリン [0011] In addition, ME Tompson et al., The 10th International Workshop on In organic and Organic Electroluminescence (EL'00, Hamamatsu), and Lon (acac), for example, (ppy) Ir ( acac), Moon— Jae Youn. 0g, Tetsuo Tsutsui, et al. ρ-Tolyl) pyridine) iridium (Ir (ptpy)), tris (benzo [h] quinoline
)イリジウム (Ir (bzq) )等を用いた検討を行って!/、る(なおこれらの金属錯体は一般 にオルトメタル化イリジウム錯体と呼ばれて!/、る。 )。 ) Iridium (Ir (bzq)) and other studies are conducted! (These metal complexes are generally called ortho-metalated iridium complexes! /.).
[0012] また、前記 S . Lamansky et al. , J. Am. Chem. Soc. , 123巻、 4304頁(20 01年)や特許文献 14等においても、各種イリジウム錯体を用いて素子化する試みが されている。 [0012] In addition, in the above-mentioned S. Lamansky et al., J. Am. Chem. Soc., 123, 4304 (2001) and Patent Document 14, etc., attempts are made to form devices using various iridium complexes. But Has been.
[0013] また高い発光効率を得るために、 The 10th International Workshop on I norganic and Organic Electroluminescence (EL' 00、浜松)では、 Ikai等は ホール輸送性の化合物をリン光性化合物のホストとして用いている。また、 M. E. To mpson等は各種電子輸送性材料をリン光性化合物のホストとして、これらに新規なィ リジゥム錯体をドープして用いてレ、る。  [0013] In order to obtain high luminous efficiency, the 10th International Workshop on Inorganic and Organic Electroluminescence (EL'00, Hamamatsu) uses Ikai et al. As a host for phosphorescent compounds. . M. E. Tompson et al. Use various electron transport materials as a host of phosphorescent compounds and dope them with a novel iridium complex.
[0014] 中心金属をイリジウムの代わりに白金としたオルトメタル化錯体も注目されている。こ の種の錯体に関しては、配位子に特徴を持たせた例が多数知られて!/、る(例えば、 特許文献;!〜 5及び非特許文献 1参照。)。  [0014] Orthometalated complexes in which the central metal is platinum instead of iridium are also attracting attention. For this type of complex, many examples of ligands are known! /, E.g. (see patent literature;! -5 and non-patent literature 1).
[0015] V、ずれの場合も発光素子とした場合の発光輝度や発光効率は、その発光する光が リン光に由来することから従来の素子に比べ大幅に改良されるものであるが、素子の 発光寿命については従来の素子よりも低いという問題点があった。このように、リン光 性の高効率の発光材料は、発光波長の短波化と素子の発光寿命の改善が難しぐ 実用に耐えうる性能を十分に達成できて!/、な!/、のが現状である。  [0015] In the case of V, the light emission brightness and the light emission efficiency in the case of the light emitting element are greatly improved as compared to the conventional element because the emitted light is derived from phosphorescence. There was a problem that the light emission lifetime was lower than that of the conventional device. As described above, phosphorescent highly efficient light-emitting materials are difficult to shorten the emission wavelength and improve the light emission lifetime of the device. Currently.
[0016] また波長の短波化に関しては、これまでフエニルピリジンにフッ素原子、トリフルォロ メチル基、シァノ基等の電子吸引基を置換基として導入すること、配位子としてピコリ ン酸ゃビラザボール系の配位子を導入することが知られている(例えば、特許文献 6 〜; 10及び非特許文献;!〜 4参照。)が、これらの配位子では発光材料の発光波長が 短波化して青色を達成し、高効率の素子を達成できる一方、素子の発光寿命は大幅 に劣化するため、そのトレードオフの改善が求められていた。  [0016] Regarding wavelength shortening, an electron-withdrawing group such as a fluorine atom, a trifluoromethyl group, and a cyano group has been introduced into phenylpyridine as a substituent, and a picolinic acid villaza ball type as a ligand. It is known to introduce ligands (see, for example, Patent Documents 6 to 10 and Non-patent documents;! To 4), but with these ligands, the emission wavelength of the light-emitting material is shortened and blue. As a result, high-efficiency devices can be achieved, while the light-emitting lifetime of the devices is greatly deteriorated, so an improvement in the trade-off has been demanded.
[0017] 配位子としてフエ二ル基を置換したフエ二ルビラゾールを有する金属錯体が知られ ている(例えば、特許文献 11、 12参照。)。しかし、ここで開示されているフエ二ルピラ ゾールへのフエニル基の置換様式では発光の素子寿命に改善が見られる力 まだ十 分ではなく発光効率の観点からも改良の余地が残っている。一方、立体障害性の置 換基を有する配位子が発光輝度の改善に良いという知見が得られており、フエ二ノレ ピラゾール母核に適用された例も見られている(例えば、特許文献 13参照。)。  [0017] Metal complexes having phenylbiazole substituted with a phenyl group as a ligand are known (see, for example, Patent Documents 11 and 12). However, the phenyl group substitution mode disclosed here for phenyl groups is not sufficient for improving the light emitting device lifetime, and there is still room for improvement from the viewpoint of light emission efficiency. On the other hand, the knowledge that a ligand having a sterically hindered substituent is good for improving the luminance of light emission has been obtained, and examples of application to a parent nucleus of fenenorepyrazole have also been seen (for example, Patent Documents). (See 13.)
[0018] 配位子としてフエ二ルイミダゾールを基本骨格にして、種々の置換基を導入した例 が開示されている力 S、発光寿命には大きな改善は見られず改良の余地が残っている (例えば、特許文献 15、 16参照。)。 [0018] Examples in which various substituents are introduced using phenylimidazole as a basic skeleton as a ligand have been disclosed. Force S and emission lifetime have not been greatly improved, leaving room for improvement. (For example, see Patent Documents 15 and 16.)
また、配位子としてカルバゾール、ジベンゾフラン、ジベンゾチォフェン等の 6— 5— 6型の三環縮環の複素環骨格を有する化合物を用いる例が開示されている(たとえ ば、特許文献 1、 11、 17、 18参照。)が、発光寿命、発光効率の両立という点では不 十分であり、 ,更なる改良が望まれていた。  In addition, examples using a compound having a heterocyclic skeleton of a 6-5-6 type tricyclic condensed ring such as carbazole, dibenzofuran, dibenzothiophene and the like as a ligand are disclosed (for example, Patent Documents 1 and 11). 17 and 18)), however, is insufficient in terms of both the light emission lifetime and the light emission efficiency, and further improvement has been desired.
特許文献 1: :特開 2002— -332291号公報 Patent Document 1:: JP 2002-332291 A
特許文献 2: :特開 2002— -332292号公報 Patent Document 2: Japanese Patent Laid-Open No. 2002-332292
特許文献 3: :特開 2002— -338588号公報 Patent Document 3: JP-A-2002-338588
特許文献 4: :特開 2002— -226495号公報 Patent Document 4: Japanese Patent Application Laid-Open No. 2002-226495
特許文献 5: :特開 2002— -234894号公報 Patent Document 5: JP-A-2002-234894
特許文献 6: :国際公開第 02/15645号パ Patent Document 6: International Publication No. 02/15645
特許文献 7: :特開 2003— 123982号公報 Patent Document 7:: Japanese Patent Laid-Open No. 2003-123982
特許文献 8: :特開 2002— 117978号公報 Patent Document 8:: JP 2002-117978 A
特許文献 9: :特開 2003— 146996号公報 Patent Document 9: Japanese Patent Laid-Open No. 2003-146996
特許文献 10:国際公開第 04/016711号パンフレット Patent Document 10: International Publication No. 04/016711 Pamphlet
特許文献 11:国際公開第 04/085450号パンフレット Patent Document 11: Pamphlet of International Publication No. 04/085450
特許文献 12:特開 2005— 53912号公報 Patent Document 12: Japanese Patent Laid-Open No. 2005-53912
特許文献 13:特開 2003— 109758号公報 Patent Document 13: Japanese Unexamined Patent Publication No. 2003-109758
特許文献 14:特開 2001— 247859号公報 Patent Document 14: Japanese Patent Laid-Open No. 2001-247859
特許文献 15:国際公開第 05/007767号パンフレット Patent Document 15: International Publication No. 05/007767 Pamphlet
特許文献 16:特開 2005— 68110号公報 Patent Document 16: Japanese Patent Laid-Open No. 2005-68110
特許文献 17:特開 2005— 23070号公報 Patent Document 17: Japanese Unexamined Patent Publication No. 2005-23070
特許文献 18:特開 2005— 23071号公報 Patent Document 18: Japanese Patent Laid-Open No. 2005-23071
非特許文献 1: Inorganic Chemistry,第 41巻、第 12号、 3055〜3066頁(2002 年) Non-Patent Document 1: Inorganic Chemistry, Vol. 41, No. 12, pp. 3055-3066 (2002)
非特許文献 2:Aplied Physics Letters,第 79巻、 2082頁(2001年) 非特許文献 3:Aplied Physics Letters,第 83巻、 3818頁(2003年) 非特許文献 4: New Journal of Chemistry,第 26巻、 1171頁(2002年) 発明の開示 Non-Patent Document 2: Aplied Physics Letters, 79, 2082 (2001) Non-Patent Document 3: Aplied Physics Letters, 83, 3818 (2003) Non-Patent Document 4: New Journal of Chemistry, 26 Volume 1171 (2002) Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0020] 本発明は係る課題に鑑みてなされたものであり、本発明の目的は、発光波長が制 御され、高い発光効率を示し、且つ発光寿命の長い有機 EL素子材料を用いた有機 EL素子、照明装置及び表示装置を提供することである。 [0020] The present invention has been made in view of the above problems, and an object of the present invention is to control an organic EL element using an organic EL element material that has a controlled emission wavelength, exhibits high emission efficiency, and has a long emission lifetime. It is providing an element, an illuminating device, and a display apparatus.
課題を解決するための手段  Means for solving the problem
[0021] 上記課題は、以下の構成により解決することができた。 [0021] The above problem has been solved by the following configuration.
[0022] 1.下記一般式(la)で表される金属錯体であることを特徴とする有機エレクト口ルミ ネッセンス素子材料。  [0022] 1. An organic electoluminescence element material, which is a metal complex represented by the following general formula (la):
[0023] [化 1] [0023] [Chemical 1]
Figure imgf000007_0001
Figure imgf000007_0001
[0024] 〔一般式(la)中、 Cと Nは金属原子 Mに対して共有結合または配位結合をしている [In the general formula (la), C and N are covalently bonded or coordinated to the metal atom M.
1  1
。 Aは炭素原子を介して金属原子 Mと結合した環状基であり、 Bは窒素原子を介し  . A is a cyclic group bonded to the metal atom M through a carbon atom, and B is through a nitrogen atom.
1  1
て、金属原子 Mと結合した環状基を表す。  Represents a cyclic group bonded to the metal atom M.
1  1
[0025] さらに、一般式(la)中、 Aであらわされる環状基が下記一般式(lb)であらわされる 基であるか、又は、一般式(la)であらわされる金属錯体上に下記一般式(lb)であら わされる基を置換基として有する。  [0025] Further, in the general formula (la), the cyclic group represented by A is a group represented by the following general formula (lb), or on the metal complex represented by the general formula (la), A group represented by (lb) is included as a substituent.
[0026] [化 2] .般式[0026] [Chemical 2] General formula
Figure imgf000008_0001
Figure imgf000008_0001
[0027] 一般式(lb)中、 Xは〇、 S、 N— R2 (R2はアルキル基、ァリール基、またはへテロァリ 一ル基を表す。)を表す。 In the general formula (lb), X represents ◯, S, N—R 2 (R 2 represents an alkyl group, an aryl group, or a heteroaryl group).
[0028] Z、 Z、 Z、 Zは独立に窒素原子または CR = (Rは水素原子または置換基を表 [0028] Z, Z, Z, and Z are independently a nitrogen atom or CR = (R represents a hydrogen atom or a substituent.
1 2 3 4 4 4  1 2 3 4 4 4
す。)を表し、 Z、 Z、 Z、 Zのうちひとつは窒素原子である。 X -L -Xは 2座の配  The ), And one of Z, Z, Z and Z is a nitrogen atom. X -L -X is a two-seat arrangement
1 2 3 4 1 1 2  1 2 3 4 1 1 2
位子を表し、 X、 Xは各々独立に炭素原子、窒素原子または酸素原子を表す。 Lは  Represents a ligand, and X and X each independently represent a carbon atom, a nitrogen atom or an oxygen atom. L is
1 2 1 1 2 1
X、 Xと共に 2座の配位子を形成する原子群を表す。 mlは 1、 2または 3の整数を表X and X represent a group of atoms that form a bidentate ligand. ml represents an integer of 1, 2, or 3
1 2 1 2
し、 m2は 0、 1または 2の整数を表す力 ml +m2は 2または 3である。金属原子であ る Mは元素周期表における 8族〜 10族の金属を表す。〕  M2 represents an integer of 0, 1 or 2 ml + m2 is 2 or 3. M, which is a metal atom, represents a group 8 to group 10 metal in the periodic table. ]
1  1
2.前記一般式(la)が下記一般式(1)で表されることを特徴とする前記 1に記載の 有機エレクト口ルミネッセンス素子材料。  2. The organic electroluminescence device material according to 1, wherein the general formula (la) is represented by the following general formula (1).
[0029] [化 3] 一般式 (1 )[0029] [Chemical formula 3] General formula (1)
Figure imgf000008_0002
Figure imgf000008_0002
〔式中、 Rはアルキル基、ァリール基、ヘテロァリール基を表す。 Y、 Yは窒素原子 [Wherein, R represents an alkyl group, an aryl group, or a heteroaryl group. Y and Y are nitrogen atoms
1 1 2  1 1 2
または CR = (Rは水素原子または置換基)を表す。 X、 L、 X、 ml、 m2、 Mは  Or CR = (R is a hydrogen atom or a substituent). X, L, X, ml, m2, M
3 3 1 1 2 1 前記一般式(la)における X、 L、 X、 ml、 m2、 Mと同義である。〕 3.前記一般式(1)が下記一般式(2)で表されることを特徴とする前記 2に記載の有 機エレクト口ルミネッセンス素子材料。 3 3 1 1 2 1 Synonymous with X, L, X, ml, m2, and M in formula (la). ] 3. The organic electroluminescent device material according to 2, wherein the general formula (1) is represented by the following general formula (2).
[0031] [化 4] 一般式 (2) [0031] [Chemical formula 4] General formula (2)
Figure imgf000009_0001
Figure imgf000009_0001
[0032] 〔式中、 X L X ml m2 M R Y Yは前記一般式(1)における X L X [In the formula, X L X ml m2 M R Y Y represents X L X in the general formula (1).
1 1 2 1 1 1 2 1 1 2 ml m2 M R Y Yと同義である。 X Ζ Ζ Ζ Ζは前記一般式(lb)にお  1 1 2 1 1 1 2 1 1 2 ml Synonymous with m2 MRY. X Ζ Ζ Ζ に お is the above general formula (lb)
1 1 1 2 1 2 3 4  1 1 1 2 1 2 3 4
ける各 X Z Z Z Zと同義である。〕  It is synonymous with each X Z Z Z Z. ]
1 2 3 4  1 2 3 4
4.前記一般式(1)又は一般式(2)において、 Y Yがー CR = CR =(R R  4. In the above general formula (1) or general formula (2), Y Y is-CR = CR = (R R
1 2 4 5 4 5 は水素原子または置換基を表す。 )であることを特徴とする前記 2又は 3に記載の有 機エレクト口ルミネッセンス素子材料。  1 2 4 5 4 5 represents a hydrogen atom or a substituent. 2. The organic electoluminescence device material according to 2 or 3, wherein
[0033] 5.前記一般式(1)又は一般式(2)において、 Rがメチル基、ァリール基であること [0033] 5. In the general formula (1) or (2), R is a methyl group or an aryl group.
1  1
を特徴とする前記 2 4の何れか 1項に記載の有機エレクト口ルミネッセンス素子材料  The organic electoluminescence device material according to any one of 24, characterized in that
[0034] 6.前記一般式(1)又は一般式(2)において、 Rが 2, 6位に置換基を有するァリー [0034] 6. In the above general formula (1) or general formula (2), R is a ally having a substituent at the 2,6 position.
1  1
ル基であることを特徴とする前記 2 5の何れか 1項に記載の有機エレクト口ルミネッ センス素子材料。  26. The organic electoluminescence device material according to any one of the above 25, which is a ruthenium group.
[0035] 7.前記一般式(1)又は一般式(2)において、 Mが Irまたは Ptであることを特徴と  [0035] 7. In the general formula (1) or (2), M is Ir or Pt,
1  1
する前記 2 6の何れ力、 1項に記載の有機エレクト口ルミネッセンス素子材料。  2. The organic electoluminescence device material according to 1 above, wherein any one of the above 2 6 forces.
[0036] 8.前記一般式(1)又は一般式(2)において、 m2が 0であることを特徴とする前記 2 〜7の何れ力、 1項に記載の有機エレクト口ルミネッセンス素子材料。 [0036] 8. In the general formula (1) or the general formula (2), m2 is 0, The organic electoluminescence element material according to any one of ˜7.
[0037] 9.前記 1〜8の何れ力、 1項に記載の有機エレクト口ルミネッセンス素子材料を発光 層に含有することを特徴とする有機エレクト口ルミネッセンス素子。 [0037] 9. An organic electoluminescence device comprising the organic electroluminescence device material according to item 1 in any one of the above 1 to 8, in a light emitting layer.
[0038] 10.前記 9に記載の有機エレクト口ルミネッセンス素子を有することを特徴とする表 示装置。 [0038] 10. A display device comprising the organic-electric-luminescence element as described in 9 above.
[0039] 11.前記 9に記載の有機エレクト口ルミネッセンス素子を有することを特徴とする照 明装置。  [0039] 11. An illuminating device comprising the organic electoluminescence device described in 9 above.
発明の効果  The invention's effect
[0040] 本発明により、有機 EL素子用に有用な有機 EL素子材料が得られ、該有機 EL素 子材料を用いることにより発光波長が制御され、高い発光効率を示し、且つ発光寿 命の長い有機 EL素子、照明装置及び表示装置を提供することができた。  [0040] According to the present invention, an organic EL element material useful for an organic EL element can be obtained. By using the organic EL element material, the emission wavelength is controlled, the emission efficiency is high, and the emission lifetime is long. We were able to provide organic EL elements, lighting devices, and display devices.
図面の簡単な説明  Brief Description of Drawings
[0041] [図 1]有機 EL素子から構成される表示装置の一例を示した模式図である。  FIG. 1 is a schematic view showing an example of a display device composed of organic EL elements.
[図 2]表示部 Aの模式図である。  FIG. 2 is a schematic diagram of display unit A.
[図 3]画素の模式図である。  FIG. 3 is a schematic diagram of a pixel.
[図 4]パッシブマトリクス方式フルカラー表示装置の模式図である。  FIG. 4 is a schematic diagram of a passive matrix type full-color display device.
[図 5]照明装置の概略図である。  FIG. 5 is a schematic view of a lighting device.
[図 6]照明装置の模式図である。  FIG. 6 is a schematic diagram of a lighting device.
符号の説明  Explanation of symbols
[0042] 1 ディスプレイ [0042] 1 display
3 画素  3 pixels
5 走査線  5 scan lines
6 データ線  6 Data line
7 電源ライン  7 Power line
10 有機 EL素子  10 Organic EL devices
12 駆動トランジスタ 12 Driving transistor
13 コンデンサ A 表示部 13 Capacitor A Display section
B 制御部  B Control unit
102 ガラスカバー  102 Glass cover
105 陰極  105 cathode
106 有機 EL層  106 OLED layer
107 透明電極付きガラス基板  107 Glass substrate with transparent electrode
108 窒素ガス  108 nitrogen gas
109 捕水剤  109 Water catcher
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0043] 以下、本発明に係る各構成要素の詳細について、順次説明する。 [0043] Hereinafter, details of each component according to the present invention will be sequentially described.
[0044] 本発明の有機 EL素子材料である金属錯体について説明する。 [0044] The metal complex as the organic EL device material of the present invention will be described.
[0045] まず一般式(la)であらわされる金属錯体について説明する。 First, the metal complex represented by the general formula (la) will be described.
[0046] 一般式(la)中、 C、 Nは金属原子 Mと共有結合または配位結合を形成している。 In general formula (la), C and N form a covalent bond or a coordinate bond with metal atom M.
1  1
[0047] Aは炭素原子を介して金属原子 Mと結合した環状基である。  [0047] A is a cyclic group bonded to the metal atom M through a carbon atom.
1  1
[0048] Aで表される環状基としては、好ましくは 5員または 6員環であり、更に好ましくは下 記一般式 A—;!〜 A— 53で表される環構造である。  [0048] The cyclic group represented by A is preferably a 5-membered or 6-membered ring, and more preferably a ring structure represented by the following general formulas A— ;! to A-53.
[0049] ( *は金属原子 Mと結合を形成する箇所を示して!/、る)。 [0049] (* indicates a position where a bond is formed with the metal atom M! /).
1  1
[0050] [化 5] [0050] [Chemical 5]
冒〔〕〕 Blasp []]
Figure imgf000012_0001
Figure imgf000012_0001
**
Figure imgf000013_0001
Figure imgf000013_0001
[0052] 一般式 A—;!〜 A— 53中、 RA [0052] In general formula A— ;! to A—53, RA
1、 RA 1, RA
2、 RA  2, RA
3、 RAは独立に水素原子または置換基 4  3, RA is independently a hydrogen atom or substituent 4
を表す。  Represents.
[0053] 置換基の例としてはアルキル基(例えば、メチル基、ェチル基、プロピル基、イソプ 口ピル基、 tert ブチル基、ペンチル基、へキシル基、ォクチル基、ドデシル基、トリ デシル基、テトラデシル基、ペンタデシル基等)、シクロアルキル基(例えば、シクロぺ ンチル基、シクロへキシル基等)、アルケニル基(例えば、ビュル基、ァリル基等)、ァ ルキエル基 (例えば、ェチュル基、プロパルギル基等)、芳香族炭化水素環基(芳香 族炭素環基、ァリール基等ともいい、例えば、フエニル基、 p クロ口フエ二ル基、メシ チル基、トリル基、キシリル基、ナフチル基、アントリル基、ァズレニル基、ァセナフテ 二ノレ基、フルォレニル基、フエナントリル基、インデュル基、ピレニル基、ビフエユリノレ 基等)、芳香族複素環基 (例えば、ピリジル基、ピリミジニル基、フリル基、ピロリル基、 イミダゾリル基、ベンゾイミダゾリル基、ピラゾリル基、ピラジュル基、トリァゾリル基(例 免 ίί、 1 , 2, 4 卜リ ゾ '一ノレ 1ーィノレ基、 1 , 2, 3 卜リ ゾ '一ノレ 1ーィノレ基等)、 ォキサゾリル基、ベンゾォキサゾリル基、チアゾリル基、イソォキサゾリル基、イソチア 基、フラザニル基、チェニル基、キノリル基、ベンゾフリル基、ジベンゾフリル基 、ベンゾチェ二ル基、ジベンゾチェニル基、インドリル基、カノレノ ゾリノレ基、カルボリニ ル基、ジァザカルバゾリル基(前記カルボリニル基のカルボリン環を構成する炭素原 子の一つが窒素原子で置き換わったものを示す)、キノキサリニル基、ピリダジニル基 、トリアジニル基、キナゾリニル基、フタラジュル基等)、複素環基 (例えば、ピロリジル 基、イミダゾリジノレ基、モルホリル基、ォキサゾリジノレ基等)、アルコキシ基(例えば、メ トキシ基、エトキシ基、プロピルォキシ基、ペンチルォキシ基、へキシルォキシ基、ォ クチルォキシ基、ドデシルォキシ基等)、シクロアルコキシ基(例えば、シクロペンチル ォキシ基、シクロへキシノレオキシ基等)、ァリーノレォキシ基(例えば、フエノキシ基、ナ フチルォキシ基等)、アルキルチオ基(例えば、メチルチオ基、ェチルチオ基、プロピ ルチオ基、ペンチルチオ基、へキシルチオ基、ォクチルチオ基、ドデシルチオ基等) 、シクロアルキルチオ基(例えば、シクロペンチルチオ基、シクロへキシルチオ基等)、 ァリールチオ基(例えば、フエ二ルチオ基、ナフチルチオ基等)、アルコキシカルボ二 ノレ基(例えば、メチノレオキシカノレポ二ノレ基、ェチノレオキシカノレポ二ノレ基、ブチノレオキ シカルボニル基、ォクチルォキシカルボニル基、ドデシルォキシカルボニル基等)、 ァリールォキシカルボニル基(例えば、フエニルォキシカルボニル基、ナフチルォキ シカルボニル基等)、スルファモイル基(例えば、アミノスルホニル基、メチルアミノスル ホニル基、ジメチルアミノスルホニル基、ブチルアミノスルホニル基、へキシルアミノス ノレホニル基、シクロへキシルアミノスルホニル基、ォクチルアミノスルホニル基、ドデシ ルアミノスルホニル基、フエニルアミノスルホニル基、ナフチルアミノスルホニル基、 2 ピリジルアミノスルホニル基等)、ァシル基(例えば、ァセチル基、ェチルカルボ二 ル基、プロピルカルボニル基、ペンチルカルボニル基、シクロへキシルカルボニル基 、ォクチルカルボニル基、 2—ェチルへキシルカルボニル基、ドデシルカルボニル基 、フエニルカルボニル基、ナフチルカルボニル基、ピリジルカルボニル基等)、ァシル ォキシ基(例えば、ァセチルォキシ基、ェチルカルボニルォキシ基、ブチルカルボ二 ルォキシ基、ォクチルカルポニルォキシ基、ドデシルカルポニルォキシ基、フエ二ノレ カルボニルォキシ基等)、アミド基(例えば、メチルカルボニルァミノ基、ェチルカルボ ニノレアミノ基、ジメチルカルポニルァミノ基、プロピルカルボニルァミノ基、ペンチルカ ノレボニノレアミノ基、シクロへキシルカルボニルァミノ基、 2—ェチルへキシルカルボ二 ルァミノ基、ォクチルカルポニルァミノ基、ドデシルカルポニルァミノ基、フエニルカル ボニルァミノ基、ナフチルカルボニルァミノ基等)、力ルバモイル基(例えば、アミノカ ルポニル基、メチルァミノカルボニル基、ジメチルァミノカルボニル基、プロピルアミノ カルボニル基、ペンチルァミノカルボニル基、シクロへキシルァミノカルボニル基、ォ クチルァミノカルボニル基、 2—ェチルへキシルァミノカルボニル基、ドデシルァミノ力 ノレボニル基、フエニルァミノカルボニル基、ナフチルァミノカルボニル基、 2—ピリジル ァミノカルボニル基等)、ウレイド基(例えば、メチルウレイド基、ェチルウレイド基、ぺ ンチルウレイド基、シクロへキシルウレイド基、ォクチルゥレイド基、ドデシルウレイド基 、フエニルウレイド基ナフチルウレイド基、 2—ピリジルアミノウレイド基等)、スルフィニ ノレ基(例えば、メチルスルフィエル基、ェチルスルフィエル基、ブチルスルフィエル基 、シクロへキシルスルフィニル基、 2—ェチルへキシルスルフィニル基、ドデシルスル フィエル基、フエニルスルフィエル基、ナフチルスルフィエル基、 2—ピリジルスルフィ ニル基等)、アルキルスルホニル基(例えば、メチルスルホニル基、ェチルスルホニル 基、ブチルスルホニル基、シクロへキシルスルホニル基、 2—ェチルへキシルスルホ 二ノレ基、ドデシルスルホニル基等)、ァリールスルホニル基またはへテロアリールスル ホニル基(例えば、フエニルスルホニル基、ナフチルスルホニル基、 2—ピリジルスル ホニル基等)、アミノ基(例えば、アミノ基、ェチルァミノ基、ジメチノレアミノ基、ブチル アミノ基、シクロペンチルァミノ基、 2—ェチルへキシルァミノ基、ドデシルァミノ基、ァ 二リノ基、ナフチルァミノ基、 2—ピリジルァミノ基等)、ハロゲン原子(例えば、フッ素 原子、塩素原子、臭素原子等)、フッ化炭化水素基 (例えば、フルォロメチル基、トリ フルォロメチル基、ペンタフルォロェチル基、ペンタフルオロフェニル基等)、シァノ 基、ニトロ基、ヒドロキシ基、メルカプト基、シリル基(例えば、トリメチルシリル基、トリイ ソプロビルシリル基、トリフエニルシリル基、フエ二ルジェチルシリル基等)等が挙げら れる。 [0053] Examples of the substituent include an alkyl group (for example, a methyl group, an ethyl group, a propyl group, an isopropyl group, a tert butyl group, a pentyl group, a hexyl group, an octyl group, a dodecyl group, a tridecyl group, a tetradecyl group). Group, pentadecyl group, etc.), cycloalkyl group (for example, cyclopentyl group, cyclohexyl group, etc.), alkenyl group (for example, bur group, allyl group, etc.), alkyl group (for example, etulyl group, propargyl group, etc.) ), Aromatic hydrocarbon ring groups (also called aromatic carbocyclic groups, aryl groups, etc., for example, phenyl groups, p-phenyl groups, mesityl groups, tolyl groups, xylyl groups, naphthyl groups, anthryl groups, Azulenyl group, acenaphthene binole group, fluorenyl group, phenanthryl group, indur group, pyrenyl group, biphenylurine group, etc.), aromatic heterocyclic group (eg For example, pyridyl group, pyrimidinyl group, furyl group, pyrrolyl group, imidazolyl group, benzimidazolyl group, pyrazolyl group, pyrazol group, triazolyl group (ex. Ίί, 1, 2, 4 2,3 卜 lyso 'mono- 1- 1-no-re group, etc.), oxazolyl group, benzoxazolyl group, thiazolyl group, isoxazolyl group, isothia group, furazanyl group, chenyl group, quinolyl group, benzofuryl group, dibenzofuryl group , Benzocenyl group, dibenzocenyl group, indolyl group, canolenozolinole group, carbolinyl group, diazacarbazolyl group (one of the carbon atoms constituting the carboline ring of the carbolinyl group is replaced by a nitrogen atom) Quinoxalinyl group, pyridazinyl group, triazinyl group, quinazolinyl group, phthaladyl group, etc.), heterocyclic group (eg, pyrrolidyl group, imidazolidinole group, morpholyl group, oxazolidinole group, etc.), alkoxy group (eg, methoxy group) , Ethoxy group, propyloxy group, pentyloxy group, hexyloxy group, octyloxy group, dodecyloxy group, etc.), cycloalkoxy group (for example, cyclopentyloxy group, cyclohexylenoreoxy group, etc.), arylenooxy group (for example, phenoxy group, naphthyloxy Etc.), alkylthio groups (eg, methylthio group, ethylthio group, propylthio group, pentylthio group, hexylthio group, octylthio group, dodecylthio group, etc.), cycloalkylthio groups (eg, cyclopentylthio group, cyclohexylthio group, etc.), Arylthio group (eg, phenylthio group, naphthylthio group, etc.), alkoxycarbonyl group (eg, methenoreoxycanolepoinore group, ethenoreoxycanolepoinole group, butinoreoxycarbonyl group, octylo group) Xyloxycarbonyl, dodecyloxycarbonyl, etc.), aryloxycarbonyl (eg, phenyloxycarbonyl, naphthyloxycarbonyl, etc.), sulfamoyl (eg, aminosulfonyl, methylaminosulfonyl), Dimethylaminosulfonyl group Butylaminosulfonyl group, hexylaminosulfonyl group, cyclohexylaminosulfonyl group, octylaminosulfonyl group, dodecylaminosulfonyl group, phenylaminosulfonyl group, naphthylaminosulfonyl group, 2-pyridylaminosulfonyl group, etc.), acyl group ( For example, acetyl group, ethylcarbonyl group, propylcarbonyl group, pentylcarbonyl group, cyclohexylcarbonyl group, octylcarbonyl group, 2-ethylhexylcarbonyl group, dodecylcarbonyl group, phenylcarbonyl group, naphthylcarbonyl group, Pyridylcarbonyl group, etc.), acyloxy groups (eg, acetyloxy group, ethylcarbonyloxy group, butylcarbonyloxy group, octylcarbonyloxy group, dodecylcarbonyloxy group, phenyl group) A carbonylcarbonylamino group), an amide group (for example, a methylcarbonylamino group, an ethylcarbonylaminoamino group, a dimethylcarbonylamino group, a propylcarbonylamino group, a pentylcarbonylaminoamino group, a cyclohexylcarbonylamino group, 2-Ethylhexylcarboxy A ruamino group, an octylcarbonylamino group, a dodecylcarbonylamino group, a phenylcarbonylamino group, a naphthylcarbonylamino group, etc., a strong rubamoyl group (for example, an aminocarbonyl group, a methylaminocarbonyl group, a dimethylaminocarbonyl group, Propylamino carbonyl group, pentylaminocarbonyl group, cyclohexylaminocarbonyl group, octylaminocarbonyl group, 2-ethylhexylaminocarbonyl group, dodecylamino group norbornyl group, phenylaminocarbonyl group, naphthyla Minocarbonyl group, 2-pyridylaminocarbonyl group, etc.), ureido group (for example, methylureido group, ethylureido group, pentylureido group, cyclohexylureido group, octylureido group, dodecylureido group, phenylureido) Naphthylureido group, 2-pyridylaminoureido group, etc.), sulfininole group (for example, methylsulfiel group, ethylsulfiel group, butylsulfiel group, cyclohexylsulfinyl group, 2-ethylhexylsulfinyl group, dodecylsulfenyl group) Group, phenyl sulfier group, naphthyl sulfier group, 2-pyridyl sulfinyl group, etc.), alkylsulfonyl group (for example, methylsulfonyl group, ethylsulfonyl group, butylsulfonyl group, cyclohexylsulfonyl group, 2- Ethylhexylsulfonino group, dodecylsulfonyl group, etc., arylsulfonyl group or heteroarylsulfonyl group (eg, phenylsulfonyl group, naphthylsulfonyl group, 2-pyridylsulfonyl group, etc.), amino group (eg, amino Group, ethyl Mino group, dimethylolamino group, butyl amino group, cyclopentylamino group, 2-ethylhexylamino group, dodecylamino group, anilino group, naphthylamino group, 2-pyridylamino group, etc., halogen atom (for example, fluorine atom, chlorine atom) , Bromine atom, etc.), fluorinated hydrocarbon group (eg, fluoromethyl group, trifluoromethyl group, pentafluoroethyl group, pentafluorophenyl group, etc.), cyano group, nitro group, hydroxy group, mercapto group, silyl group ( For example, a trimethylsilyl group, a triisopropyl silyl group, a triphenylsilyl group, a phenyljetylsilyl group, and the like.
[0054] また、 A—;!〜 A— 53において、 RA , RA , RA , RAのうち 2つが互いに結合して  [0054] In A- ;! to A-53, two of RA, RA, RA and RA are combined with each other
1 2 3 4  1 2 3 4
、環を形成してもよい。  A ring may be formed.
[0055] RA〜RAのうち 2つが結合することにより形成される環としてはナフタレン、テトラリ  [0055] Rings formed by combining two of RA to RA include naphthalene and tetralyl.
1 4  14
ン、アントラセン、フエナントレン、キノリン、イソキノリン、インドーノレ、ベンゾフラン、ベ ンゾチ才フェン、インダゾーノレ、ベンズイミダゾーノレ、ベンゾチアゾーノレ、ベンズォキ サゾール、カルバゾーノレ、ジベンゾフラン、ジベンゾチォフェン、ベンゾトリアゾール等 の環構造が挙げられる。 , Anthracene, phenanthrene, quinoline, isoquinoline, indanol, benzofuran, Examples include ring structures such as Nzochi-aged phen, indazonore, benzimidazole, benzothiazonole, benzoxazole, carbazonole, dibenzofuran, dibenzothiophene, and benzotriazole.
[0056] Aの好ましい形態のひとつとして前記一般式(lb)で表される環構造も挙げられる。 [0056] One preferred form of A is also a ring structure represented by the general formula (lb).
[0057] 次に Bで表される環状基につ!/、て説明する。 [0057] Next, the cyclic group represented by B will be described.
[0058] Bは窒素原子を介して金属原子 Mと結合した環状基である。 [0058] B is a cyclic group bonded to the metal atom M through a nitrogen atom.
1  1
[0059] Bで表される環状基としては、好ましくは 5員または 6員環であり、更に好ましくは下 記一般式 B— 1〜B— 27で表される環構造である。  [0059] The cyclic group represented by B is preferably a 5-membered or 6-membered ring, and more preferably a ring structure represented by the following general formulas B-1-B-27.
[0060] ( *は金属原子 Mと結合を形成する箇所を示して!/、る)。 [0060] (* indicates a position where a bond is formed with the metal atom M! /).
1  1
[0061] [化 7] [0061] [Chemical 7]
Figure imgf000017_0001
Figure imgf000017_0001
[0062] Bは窒素原子を介して、金属原子 Mと結合した環状基を表す。 [0062] B represents a cyclic group bonded to the metal atom M through a nitrogen atom.
1  1
[0063] 一般式 B— 1〜B— 27中、 RB、 RB、 RB、 RBは独立に水素原子または置換基  [0063] In the general formulas B— 1 to B— 27, RB, RB, RB, and RB are independently a hydrogen atom or a substituent.
1 2 3 4  1 2 3 4
を表す。  Represents.
[0064] RB、 RB、 RB、 RBで表される置換基の例としては、上記 RA、 RA、: RA、: RA  [0064] Examples of substituents represented by RB, RB, RB, and RB include the above RA, RA, RA, RA
1 2 3 4 1 2 3 4 で表される置換基の例と同様のものを挙げることができる。  The same examples as the substituents represented by 1 2 3 4 1 2 3 4 can be given.
[0065] また RB、 RB、 RB、 RBのうち 2つが互いに結合して環を形成してもよい。 RB〜 RBのうち 2つが結合することにより形成される環の例としては RA 〜RAのうち 2つが[0065] Two of RB, RB, RB, and RB may be bonded to each other to form a ring. RB ~ An example of a ring formed by combining two of RB is as follows:
4 1 4 結合することにより形成される環と同様のものを挙げること力 sできる。 4 1 4 Can give the same thing as the ring formed by bonding.
[0066] さらに一般式(l a)で表される金属錯体は Aの部分が一般式(lb)で表される力、、一 般式(l a)で表される金属錯体の置換可能な部位に一般式(lb)で表される環構造 が置換しているものである。 [0066] Further, in the metal complex represented by the general formula (la), the A part has a force represented by the general formula (lb), and the substitutable site of the metal complex represented by the general formula (la). The ring structure represented by the general formula (lb) is substituted.
[0067] 一般式(lb)中、 Xは〇、 S、 N -Rを表す。 Rはアルキル基、ァリール基、ヘテロァ リール基を表す。 In the general formula (lb), X represents ◯, S, N 2 -R. R represents an alkyl group, an aryl group, or a heteroaryl group.
[0068] Rで表されるアルキル基、ァリール基、ヘテロァリール基の例としては、 RA、: RA 、 RA 、 RAで表されるアルキル基、ァリール基、ヘテロァリール基と同様のものを挙げ [0068] Examples of the alkyl group, aryl group, and heteroaryl group represented by R include those similar to the alkyl group, aryl group, and heteroaryl group represented by RA, RA, RA, RA.
3 4 3 4
ること力 Sでさる。  The power S
[0069] Z 、 Z 、 Z 、 Zは独立に窒素原子または CR = (Rは水素原子または置換基)を  [0069] Z 1, Z 2, Z 3 and Z are independently a nitrogen atom or CR = (R is a hydrogen atom or a substituent)
1 2 3 4 3 3  1 2 3 4 3 3
表し、 Z 、 Z 、 Z 、 Zのうちひとつは窒素原子である。  One of Z, Z, Z and Z is a nitrogen atom.
1 2 3 4  1 2 3 4
[0070] Rで表される置換基の例としては RA 、 RA 、 RA 、 RAで表される置換基の例と同  [0070] Examples of the substituent represented by R are the same as the examples of the substituent represented by RA, RA, RA and RA.
3 1 2 3 4  3 1 2 3 4
様のあのを挙げること力 sでさる。  I'm gonna give you that power.
[0071] 一般式(l a)において、 X— L—Xは 2座の配位子を表し、 X 、 Xは各々独立に炭 [0071] In the general formula (l a), X—L—X represents a bidentate ligand, and X 1 and X 2 each independently represent carbon
1 1 2 1 2  1 1 2 1 2
素原子、窒素原子または酸素原子を表す。  Represents an elementary atom, nitrogen atom or oxygen atom.
[0072] Lは X 、 Xと共に 2座の配位子を形成する原子群を表す。 X— L —Xで表される 2  [0072] L represents an atomic group forming a bidentate ligand together with X and X. X — L — 2 represented by X
1 1 2 1 1 2 座の配位子の具体例としては、置換または無置換のフエ二ルビリジン、フエ二ルピラ ゾーノレ、フエ二ルイミダゾ一ノレ、フエニルトリァゾーノレ、フエ二ルテトラゾーノレ、ピラザボ ール、ァセチルアセトン、ピコリン酸等が挙げられる。 mlは 1、 2または 3の整数を表し 、 m2は 0、 1または 2の整数を表す力 ml + m2は 2または 3である。中でも、 m2は 0 である場合が好ましい。  Specific examples of 1 1 2 1 1 2dentate ligands include substituted or unsubstituted phenylpyrrolidine, phenylpyra zonore, phenylimidazonole, phenyltriazolene, phenyltetrazonole, pyrazabole. Acetylacetone, picolinic acid and the like. ml represents an integer of 1, 2 or 3, m2 represents a force representing an integer of 0, 1 or 2, ml + m2 is 2 or 3. Of these, m2 is preferably 0.
[0073] 一般式(l a)において金属錯体の形成に用いられる Mで表される金属としては、元  [0073] In the general formula (la), the metal represented by M used for forming the metal complex includes
1  1
素周期表の 8族〜 10族の遷移金属元素(単に遷移金属ともいう)が用いられる力 中 でも、イリジウム、白金が好ましい遷移金属元素として挙げられる。  Among the forces in which transition metal elements of Group 8 to Group 10 (also referred to simply as transition metals) of the elementary periodic table are used, iridium and platinum are preferable transition metal elements.
[0074] (配位子) [0074] (Ligand)
本発明に係る金属錯体は、例えば上記一般式(l a)で説明すると ml〉m2である 場合、 mlを有する括弧内に示す部分構造、もしくはその互変異性体で表される部分 構造を主配位子と称し、 m2を有する括弧内に示す部分構造、もしくはその互変異性 体で表される部分構造を副配位子と称す。本発明においては、一般式(la)に代表 されるように、該金属錯体は主配位子もしくはその互変異性体と副配位子もしくはそ の互変異性体の組み合わせで構成される力、、 m2 = 0の場合、すなわち該金属錯体 の配位子の全てが、主配位子またはその互変異性体で表される部分構造のみで構 成されていてもよい。 The metal complex according to the present invention has, for example, a partial structure shown in parentheses having ml, or a portion represented by a tautomer thereof, when ml> m2 as described in the general formula (la). The structure is called a main ligand, and the partial structure shown in parentheses having m2 or a partial structure represented by a tautomer thereof is called a subligand. In the present invention, as represented by the general formula (la), the metal complex is composed of a combination of a main ligand or a tautomer thereof and a subligand or a tautomer thereof. In the case of m2 = 0, that is, all the ligands of the metal complex may be composed only of a partial structure represented by the main ligand or a tautomer thereof.
[0075] さらに従来公知の金属錯体形成に用いられる、所謂配位子として当該業者が周知 の配位子(配位化合物ともレ、う)を必要に応じて配位子として有して!/、てもよ!/、。  [0075] Further, a so-called ligand used in the formation of a conventionally known metal complex has a ligand (also known as a coordination compound) known as a ligand, if necessary, as a ligand! / Well! /
[0076] 本発明に記載の効果を好ましく得る観点からは、錯体中の配位子の種類は、好まし くは 1〜2種類から構成されることが好ましぐ更に好ましくは 1種類である。  [0076] From the viewpoint of preferably obtaining the effects described in the present invention, the type of the ligand in the complex is preferably composed of 1 to 2 types, more preferably 1 type. .
[0077] 従来公知の金属錯体に用いられる配位子としては、種々の公知の配位子があるが 、例えは、「Photochemistry and Photophysics of Coordination Compou nds」 Springer— Verlag社 H. Yersin著 1987年発行、「有機金属化学一基礎と 応用一」 裳華房社 山本明夫著 1982年発行等に記載の配位子(例えば、ハロゲ ン配位子(好ましくは塩素配位子)、含窒素へテロ環配位子(例えば、ビビリジル、フ ェナント口リンなど)、ジケトン配位子なと)が挙げられる。  [0077] There are various known ligands used in conventionally known metal complexes. For example, “Photochemistry and Photophysics of Coordination Compounds” Springer—Verlag H. Yersin 1987 Issuance, “Organic Metal Chemistry Basics and Applications” Liu Huabo Company Akio Yamamoto Ligand (for example, halogen ligands (preferably chlorine ligands), nitrogen-containing heterologues, etc. Ring ligands (for example, bibilidyl, phenantorin, etc.) and diketone ligands).
[0078] 本発明の好ましい形態として、前記一般式(la)で表される金属錯体が前記一般式  As a preferred embodiment of the present invention, the metal complex represented by the general formula (la) is a compound represented by the general formula
(1)で表される構造であることが挙げられる。  It is mentioned that it is a structure represented by (1).
[0079] 一般式(1)中、 Rはアルキル基、ァリール基、ヘテロァリール基を表す。 Y、 Yは窒  In general formula (1), R represents an alkyl group, an aryl group, or a heteroaryl group. Y, Y is Nikko
1 1 2 素原子または CR = (Rは水素原子または置換基)を表す。 A、 X、 L、 X、 ml、  1 1 2 Elemental atom or CR = (R is a hydrogen atom or a substituent). A, X, L, X, ml,
3 3 1 1 2 m2、 Mは前記一般式(la)における A、 X、 L、 X、 ml、 m2、 Mと同義であるか、 3 3 1 1 2 m2, M is the same as A, X, L, X, ml, m2, M in the general formula (la),
1 1 1 2 1 又は、一般式(1)であらわされる金属錯体上に前記一般式(lb)であらわされる基を 置換基として有する。 1 1 1 2 1 Alternatively, the group represented by the general formula (lb) is included as a substituent on the metal complex represented by the general formula (1).
[0080] 本発明の好ましい形態として、前記一般式(1)で表される金属錯体が前記一般式(  [0080] As a preferred embodiment of the present invention, the metal complex represented by the general formula (1) is represented by the general formula (1).
2)で表される構造であることが挙げられる。  It is mentioned that it is a structure represented by 2).
[0081] 一般式(2)中、 、2、2、2、2、 、し、 、 ml、 m2、 Mは一般式(1)中の X、 [0081] In the general formula (2),, 2, 2, 2, 2,,, ml, m2, M is X in the general formula (1),
1 2 3 4 1 1 2 1  1 2 3 4 1 1 2 1
Z、Z、 Z、Z、X、L、X、 ml、 m2、 Mと同義である。  Synonymous with Z, Z, Z, Z, X, L, X, ml, m2, M.
1 2 3 4 1 1 2 1  1 2 3 4 1 1 2 1
[0082] 一般式(1)又は一般式(2)中、 Y、 Yがー CR = , —CR =であることがより好まし い。 [0082] In general formula (1) or general formula (2), it is more preferable that Y and Y are -CR =, —CR = Yes.
[0083] 一般式(1)又は一般式(2)中、 Rカ チル基、ァリール基あることがより好ましぐ R  [0083] In general formula (1) or general formula (2), it is more preferable that R is a carbyl group or an aryl group.
1 1 力 Sさらに好ましくは 2, 6—位に置換基を有するァリール基であることが好ましい。  1 1 Force S More preferably, it is an aryl group having a substituent at the 2,6-position.
[0084] 以下、本発明に係る前記一般式(la)、(1)及び (2)で表される金属錯体の具体例 を示すが、本発明はこれらに限定されない。 [0084] Specific examples of the metal complex represented by the general formulas (la), (1) and (2) according to the present invention are shown below, but the present invention is not limited to these.
[0085] [化 8] [0085] [Chemical 8]
Figure imgf000020_0001
Figure imgf000020_0001
Figure imgf000020_0002
Figure imgf000020_0002
[0086] [化 9] [0086] [Chemical 9]
Figure imgf000021_0001
Figure imgf000021_0001
[0087] [化 10] [0087] [Chemical 10]
0088 0088
Figure imgf000022_0001
Figure imgf000022_0001
Figure imgf000023_0001
Figure imgf000023_0001
[0089] [化 12]
Figure imgf000024_0001
[0089] [Chemical 12]
Figure imgf000024_0001
Figure imgf000025_0001
Figure imgf000025_0001
[0091] [化 14] [0091] [Chemical 14]
Figure imgf000026_0001
Figure imgf000026_0001
[0092] [化 15] s0093 [0092] [Chemical 15] s0093
Figure imgf000027_0001
Figure imgf000027_0001
Figure imgf000028_0001
Figure imgf000028_0001
[0094] [化 17]  [0094] [Chemical 17]
-般式 (2)  -General formula (2)
Figure imgf000028_0002
Figure imgf000028_0002
— i—U—X,™ は.以下の镌¾ 表す  — I—U—X, ™ represents the following 镌 ¾
Figure imgf000028_0003
Figure imgf000028_0003
[0095] [化 18]
Figure imgf000029_0001
[0095] [Chemical 18]
Figure imgf000029_0001
[OZ^] 600] [OZ ^] 600]
32  32
■,
Figure imgf000030_0001
idf/X3d 83 £Z^tO/800Z OM t L O 2o5 xo N» 1i—— -
Figure imgf000031_0001
■,
Figure imgf000030_0001
idf / X3d 83 £ Z ^ tO / 800Z OM t LO 2o5 xo N »1i ———
Figure imgf000031_0001
OXXP es oひ H ■iけ U——-ί——i OXXP es o ひ H ■ i け U ——- ί——i
O OO O
Figure imgf000031_0002
Figure imgf000031_0002
«3 ] Έ °«3] Έ °
xouni i  xouni i
i Hu— "  i Hu—
JT i
Figure imgf000032_0001
JT i
Figure imgf000032_0001
Figure imgf000032_0002
Figure imgf000032_0002
O O G p o o
Figure imgf000032_0003
OOG poo
Figure imgf000032_0003
] m ] m
ε  ε
ε  ε
X  X
>  >
-
Figure imgf000033_0001
-
Figure imgf000033_0001
X o o  X o o
Figure imgf000033_0002
Figure imgf000033_0002
]
Figure imgf000034_0001
ε
Figure imgf000034_0002
]
Figure imgf000034_0001
ε
Figure imgf000034_0002
Figure imgf000034_0003
Figure imgf000034_0003
] a. o ] a.o
5^ K = H -, -il1  5 ^ K = H-, -il1
I ^o x Hn N ,i 3.... 2 i H I!! 1 I ^ o x Hn N, i 3 .... 2 i H I !! 1
Figure imgf000035_0001
iΗひ¾¾οί =—- o p o
Figure imgf000035_0001
iΗ ひ ¾¾οί = —- opo
I I
X  X
u  u
it  it
X  X
 !
ίί  ίί
X  X
u  u
i  i
CM [9 ] KOTO]cm [9] KOTO]
,,,,
Figure imgf000036_0001
-^r 3^ 32 H i "t !l!
Figure imgf000036_0002
Figure imgf000036_0001
-^ r 3 ^ 32 H i "t! l!
Figure imgf000036_0002
ZZ 690/L00Zd£/lDd ん /800Z OAV ZZ 690 / L00Zd £ / lDd / 800Z OAV
0 0
00
Figure imgf000037_0001
Figure imgf000037_0001
QQ
Figure imgf000037_0002
Figure imgf000037_0002
Figure imgf000037_0003
Figure imgf000037_0003
[0104] [化 27] [8 W [90 T O] [0104] [Chemical 27] [8 W [90 TO]
263CHCHNH OC==II I I1  263CHCHNH OC == II I I1
2621 H 261CHCHNC O== I—-—— 2621 H 261CHCHNC O == I —-——
260CHCHNH oC==———  260CHCHNH oC == ———
s 21 2sCHCHNHC o==II1 I s 21 2sCHCHNHC o == II1 I
2「「 m2 ml Λ IΙ
Figure imgf000038_0001
2 `` 'm2 ml Λ IΙ
Figure imgf000038_0001
ZZ8690/Z,00Zdf/X3d 98 ZlLttmmi OAV 1SC¾ Ί X 1し ZZ8690 / Z, 00Zdf / X3d 98 ZlLttmmi OAV 1SC¾ Ί X 1
Figure imgf000039_0001
] — 23 Z4—— X R.1 — Y产 Y2
Figure imgf000039_0001
] — 2 3 Z 4 —— X R.1 — Y Y 2
2— 7 — GH ~ 0H— CH— O2— 7 — GH ~ 0H— CH— O
f〕〔s 〔s0071f] [s (s0071
Figure imgf000040_0001
Figure imgf000040_0002
Figure imgf000040_0001
Figure imgf000040_0002
Figure imgf000041_0001
Figure imgf000041_0001
」〔画
Figure imgf000042_0001
[Image
Figure imgf000042_0001
一 Zi=Z2— z3=z4— x — Yi=Y2- — ^-X2- ml m2One Zi = Z 2 - z 3 = z 4 - x - Yi = Y 2 - - ^ -X 2 - ml m2
2_88 - 2 0 Pt2_88-2 0 Pt
2-89 — 一 3 0 Ir2-89 — One 3 0 Ir
2-90 — (1 ) 1 1 Pt2-90 — (1) 1 1 Pt
2一 91 — (2) 1 1 Pt2 1 91 — (2) 1 1 Pt
2-92 — 一 3 0 Ir2-92 — One 3 0 Ir
Figure imgf000043_0001
Figure imgf000043_0001
£ § ^ £ i .∑ χοΗ oΜΗΟ HひπΗ. ί ί ί-— £ § ^ £ i .∑ χοΗ oΜΗΟ H ひ πΗ. Ί ί ί-—
w « ^ ^ «■> r¾ « w «^ ^« ■> r¾ «
£¾χϋΧΟΜ— ί-, 62sSxuH»i >l— £ ¾χϋΧΟΜ— ί-, 62sSxuH »i> l—
-J Ho H" I, fe^i  -J Ho H "I, fe ^ i
0 02 HH?05 l- I— 0 02 HH? 05 l- I—
Figure imgf000044_0001
Figure imgf000044_0001
CO ] a. CO] a.
E o ァ 1 E o 1
I I
X  X
ί ί
ίί
< <
,し, And
Figure imgf000045_0001
Figure imgf000045_0001
Figure imgf000045_0002
] s-oloxv 0on Itil
Figure imgf000045_0002
] s-oloxv 0on Itil
X X
i
Figure imgf000046_0001
i
Figure imgf000046_0001
Figure imgf000046_0002
Figure imgf000046_0002
O
Figure imgf000046_0003
O
Figure imgf000046_0003
o  o
o  o
\ \
] 一 Ζι— Z2― i-3 ~ Z4 Yi=Y2- — ^-L - i- ml m2 M,] One Ζι- Z 2 - i- 3 ~ Z 4 Yi = Y 2 - - ^ -L - i- ml m2 M,
2-112 — CH=CH-CH=N— CH=CH- 0 Pt2-112 — CH = CH-CH = N— CH = CH- 0 Pt
2-113 — CH=CH-CH=N— — CH=CH— 3 0 Ir2-113 — CH = CH-CH = N— — CH = CH— 3 0 Ir
2-114 — CH=CH-CH=N— — CH = CH- (3) 2 1 Ir2-114 — CH = CH-CH = N— — CH = CH- (3) 2 1 Ir
2-115 — CH二 CH— CH=N— — CH=CH- 3 0 h 2-115 — CH 2 CH— CH = N— — CH = CH- 3 0 h
2-116 — CH=CH-CH=N— — CH = CH— 3 0 Ir2-116 — CH = CH-CH = N— — CH = CH— 3 0 Ir
Figure imgf000047_0001
Figure imgf000047_0001
2122CHCHCH N o= =—1II 2122CHCHCH N o = = —1II
[8ε^] [sno] CHHCCHN O== III [8ε ^] [sno] CHHCCHN O == III
Figure imgf000048_0001
Figure imgf000048_0001
_≤ _≤
Figure imgf000048_0002
Figure imgf000048_0002
ir8690/Loordf/i3d dv ん /80oz OAV i ir8690 / Loordf / i3d dv / 80oz OAV i
Figure imgf000049_0001
Figure imgf000049_0001
ί ϊ>4] a. ί ϊ> 4] a.
Figure imgf000050_0001
] s 0
Figure imgf000050_0001
] s 0
 One
i  i
 One
Figure imgf000051_0001
] Ir
Figure imgf000051_0001
] Ir
Pt Pt
PtPt
Ir
Figure imgf000052_0001
Ir
Figure imgf000052_0001
£ £
Figure imgf000053_0001
] ίΐζιο]
Figure imgf000053_0001
] ίΐζιο]
-) -)
Figure imgf000054_0001
Figure imgf000054_0001
c r isj r 3c r isj r 3
Figure imgf000054_0002
Figure imgf000054_0002
=T - =Γ =7 =Γ =ί" 2 =T ^ ^  = T-= Γ = 7 = Γ = ί "2 = T ^ ^
ZZ8690/L00Zd£/13d 33 εΖ ^0/800Ζ OAV — -Ζ,— 22— Z3™Z4—— X Ri — 广 ZZ8690 / L00Zd £ / 13d 33 εΖ ^ 0 / 800Ζ OAV — -Ζ, — 2 2 — Z 3 ™ Z4—— X Ri — 广
〔〕〔」051224[] [] 051224
Figure imgf000055_0001
Figure imgf000055_0001
i
Figure imgf000056_0001
i
Figure imgf000056_0001
Figure imgf000056_0002
Figure imgf000056_0002
Z-j 一 一 - Y Y2— ml m2 M1 Zj 一一-YY 2 — ml m2 M 1
2-167 — CH¾=N-CH=CH CH=CH- 3 0 ΪΓ -168 — CH=N—CH=CH CH=CH— - 3 0 ir2-167 — CH¾ = N-CH = CH CH = CH- 3 0 ΪΓ -168 — CH = N—CH = CH CH = CH—-3 0 ir
2-169 — CH — CH=CH CH=CH™ (1) 2 1 ir 2-169 — CH — CH = CH CH = CH ™ (1) 2 1 ir
Figure imgf000057_0001
Figure imgf000057_0001
匿 ¾ Concealment ¾
Figure imgf000058_0001
Figure imgf000058_0001
― —. f〔 2" 183 — 'C'H-CH— ― —. F [2 "183 — 'C'H-CH—
2— 184 — 0 !r2— 184 — 0! R
Figure imgf000059_0001
Figure imgf000059_0001
2— —CH=^-"CH~CH— S -CH-CH- b  2— —CH = ^-”CH ~ CH— S —CH-CH- b
2~18β — CH»N-CH=CH— S -CH-CH- h 2-187 — CH-N— CH-GH— 3 -C{CHa)=CH- !r 2 ~ 18β — CH »N-CH = CH— S -CH-CH- h 2-187 — CH-N— CH-GH— 3 -C (CHa) = CH-! R
Figure imgf000059_0002
Figure imgf000059_0002
X X
J【■.  J 【■.
i 2
Figure imgf000060_0001
osunn iil—
i 2
Figure imgf000060_0001
osunn iil—
Figure imgf000060_0002
] E
Figure imgf000060_0002
] E
ί ί
-J  -J
Figure imgf000061_0001
Figure imgf000061_0001
Figure imgf000061_0002
Figure imgf000061_0003
Figure imgf000061_0002
Figure imgf000061_0003
q ] q]
Figure imgf000062_0001
Figure imgf000062_0002
Figure imgf000062_0003
] [£ ^] [οετο]
Figure imgf000062_0001
Figure imgf000062_0002
Figure imgf000062_0003
] [£ ^] [οετο]
2210CHCHNCH III lI2210CHCHNCH III lI
1Γ2 ml m2ΧΧ ΙΙΙΙ
Figure imgf000063_0001
en ω to
1Γ2 ml m2ΧΧ ΙΙΙΙ
Figure imgf000063_0001
en ω to
o o o o
Figure imgf000063_0002
8690/L00Zdr/13d !■9 εΖ^0/800Ζ OAV [ ' ] [τετο]
Figure imgf000064_0001
Figure imgf000063_0002
8690 / L00Zdr / 13d! 9 εΖ ^ 0 / 800Ζ OAV ['] [τετο]
Figure imgf000064_0001
S S
Figure imgf000064_0002
x
Figure imgf000064_0002
x
r-  r-
/X3d Z9 ■け 0/800Z ΟΛ\
Figure imgf000065_0001
/ X3d Z9 ■ 0 / 800Z ΟΛ \
Figure imgf000065_0001
¾fJff ¾ ¾ ¾ t X IL£———一¾fJff ¾ ¾ ¾ t X IL £ ——— One
χυχοπ ιι g t X N S HひH i s—  χυχοπ ιι g t X N S H
Figure imgf000065_0002
Figure imgf000065_0002
Figure imgf000065_0003
] a. a:
Figure imgf000066_0001
Figure imgf000065_0003
] a. a:
Figure imgf000066_0001
Figure imgf000066_0002
Figure imgf000066_0002
] 〔〕〔」035714 ] [] [] 035714
— Zi=Z2— Z3=Z4一 x - =丫2— — Χ,- -Χζ- ml m2 — Zi = Z 2 — Z 3 = Z4 one x-= 丫2 — — Χ,--Χζ- ml m2
Figure imgf000067_0001
Figure imgf000067_0001
1一し 1一 X2一 1 one 1 one X2 one
Pt (1) Pt (2) Pt  Pt (1) Pt (2) Pt
Ir
Figure imgf000068_0001
Ir
Figure imgf000068_0001
o o
E ϊ E ϊ
X  X
Figure imgf000069_0001
] ε
Figure imgf000069_0001
] ε
E  E
S  S
-J -J
SΝΗひ HΗ3Η Π ί—ίSΝΗ ひ HΗ3Η Π ί—ί
Figure imgf000070_0001
Figure imgf000070_0001
HHひoΗυ——ί—ί き3Ηひ ϋ}ϋ
Figure imgf000070_0002
HH ひ oΗυ——ί—ί き 3Η ひ ϋ} ϋ
Figure imgf000070_0002
Figure imgf000070_0003
]
Figure imgf000070_0003
]
Shi
Figure imgf000071_0001
] o o o o Z Ηϋ Ho «ΝΗΟΗΟ Ηϋ = —— ΙΙ——
Figure imgf000071_0001
] oooo Z Ηϋ Ho «ΝΗΟΗΟ Ηϋ = —— ΙΙ——
Figure imgf000072_0001
ioIO w Z zzNH3H3 H II Il
Figure imgf000072_0001
ioIO w Z zzNH3H3 H II Il
Il—ι-ιlIl—ι-ιl
Figure imgf000072_0002
Figure imgf000072_0002
szz ιι IIl—  szz ιι IIl—
Figure imgf000072_0003
σ
Figure imgf000072_0003
σ
I, I,
J" ί
Figure imgf000073_0001
Figure imgf000073_0002
J "ί
Figure imgf000073_0001
Figure imgf000073_0002
] £] £
^l  ^ l
X X
-J  -J
X  X
Figure imgf000074_0001
Figure imgf000074_0002
Figure imgf000074_0001
Figure imgf000074_0002
] ε ε ] ε ε
> zz  > zz
x X  x X
o U  o U
tt  tt
o o o o
i  i
Figure imgf000075_0001
] 冒〕 s3014
Figure imgf000075_0001
] Blasphemy) s3014
Figure imgf000076_0001
Figure imgf000076_0001
¾5(> 2289NCCCCHCHCH S=== I—- II-¾5 (> 2289NCCCCHCHCH S === I—- II-
[ 9^1 ] [^ΐ θ] 5(eSe一>{ 23288HCHNccHccCHCH S CH===1 II——I eqs β 2287cHCH NcHCHCH S= =I I I—-— 下3 2286HNC "CCHCH S CH S==— III—I o {6> 2285CHCHNC sCH SCCH===— II—-— [9 ^ 1] [^ ΐ θ] 5 (eSe 1> {23288HCHNccHccCHCH S CH === 1 II——I eqs β 2287cHCH NcHCHCH S = = III ——— Bottom 3 2286HNC “CCHCH S CH S == — III —I o {6> 2285CHCHNC sCH SCCH === — II —-—
73 124S mlZZZZ== II—  73 124S mlZZZZ == II—
ro r ro r
o oo o
Figure imgf000077_0001
Figure imgf000077_0001
91 1=Z2— Z3=Z4— X Ri -Υι=Υ2- Xi— Li一 X2' 91 1 = Z 2 — Z 3 = Z 4 — X Ri -Υι = Υ 2 -Xi— Li I X2 '
Pt Pt
Ir (1) Pt
Figure imgf000078_0001
Ir (1) Pt
Figure imgf000078_0001
Figure imgf000079_0001
When
Figure imgf000079_0001
^ ι
xaon ■.  xaon ■.
 Shi
ΗNϋΗHひMΗ M -—— I——  ΗNϋΗH ひ MΗ M -—— I——
ioX^z Ηϋ !i———  ioX ^ z Ηϋ! i ———
Hoi Hoi
Figure imgf000079_0002
Figure imgf000079_0002
] 〔〕 ] []
Figure imgf000080_0001
Figure imgf000080_0001
Figure imgf000081_0001
Figure imgf000081_0001
£  £
iouH3Hn〜 iouH3Hn ~
Figure imgf000081_0002
Figure imgf000081_0002
-
¾ ¾
1  1
> ε¾"XOXοM !Iίϊ s s ΝOOfoXHii !i ΗひΗΝΟΗ ΗΗ ί ΙΙ〜 ixsoHii
Figure imgf000082_0001
> ε¾ "XOXοM! Iίϊ ss ΝOOfoXHii! i Η ひ ΗΝΟΗ ΗΗ ί ΙΙ〜 ixsoHii
Figure imgf000082_0001
X  X
n n
X X
n x ] /v: O s8690/-00ifcl£AV !∞■ nx] / v: O s8690 / -00ifcl £ AV! ∞ ■
Figure imgf000083_0001
Figure imgf000083_0001
星ε0
Figure imgf000084_0001
o
Star ε0
Figure imgf000084_0001
o
\ ixun!  \ ixun!
xon >, xon>,
Figure imgf000084_0002
Figure imgf000084_0002
] 2 ooioxxuni s- xoxo χοn Ifι ] 2 ooioxxuni s- xoxo χοn Ifι
Figure imgf000085_0001
Figure imgf000085_0001
,
Figure imgf000085_0002
Figure imgf000085_0002
x  x
o  o
w  w
Ν X  Ν X
o  o
ί  ί
a  a
ii x  ii x
o ] o]
Aui oAui o
(4 (Four
Shi
ΐΐ
χχοη ,*  χχοη, *
It X xouxozx I It X xouxozx I
HひNi H H"i—— il  H hi Ni H H "i——il
Figure imgf000086_0001
Figure imgf000086_0001
] ]
Figure imgf000087_0001
X X x X o o
Figure imgf000087_0001
XX x X oo
ii  ii
X  X
o a o a
H3 =  H3 =
Figure imgf000087_0002
— Ζι= Ζ2-Ζ34— 一 Xi—L— X2— ml m2 M, 2-351 — CH — CH=CH— - 2 0 Pt
Figure imgf000087_0002
— Ζι = Ζ2-Ζ 3 = Ζ 4 — One Xi—L— X 2 — ml m2 M, 2-351 — CH — CH = CH—-2 0 Pt
2-352 — CH — CH=CH— 3 0 Ir2-352 — CH — CH = CH— 3 0 Ir
2-353 — CH= 一 CH=CH一 (3) 2 1 Ir2-353 — CH = one CH = CH one (3) 2 1 Ir
2-354 — CH= — CH=CH— - 3 0 h2-354 — CH = — CH = CH—-3 0 h
2-355 — CH= — CH=CH— - 3 0 Ir2-355 — CH = — CH = CH—-3 0 Ir
2-356 — CH = — CH=CH— - 3 0 Ir2-356 — CH = — CH = CH—-3 0 Ir
Figure imgf000088_0001
Figure imgf000088_0001
x ioou,
Figure imgf000089_0001
x ioou,
Figure imgf000089_0001
Hひ±0 ■, H ±± 0 ■,
εΖh ί l it "
Figure imgf000089_0002
εΖh ί l it "
Figure imgf000089_0002
] ]
Figure imgf000090_0001
Figure imgf000090_0001
[0157] [化 80] E
Figure imgf000091_0001
Figure imgf000091_0002
1] L
[0157] [Chemical 80] E
Figure imgf000091_0001
Figure imgf000091_0002
1] L
S S
ε ε
 !
-J  -J
X  X
:ζί
Figure imgf000092_0001
: ζί
Figure imgf000092_0001
]
Figure imgf000093_0001
]
Figure imgf000093_0001
§ώ §Ώ
1=Z2— Z3=Z4— X R -Yi=Y2- Xl一し1_ズ2' M 1 = Z 2 — Z 3 = Z 4 — XR -Yi = Y 2 -Xl
Pt  Pt
(1 Pt (1 Pt
(2) Pt
Figure imgf000094_0001
(2) Pt
Figure imgf000094_0001
ε ε
¾ ¾
xoxoh»t l χχαϋχη Ηί
Figure imgf000095_0001
xoxoh » t l χχαϋχη Ηί
Figure imgf000095_0001
]
Figure imgf000096_0001
]
Figure imgf000096_0001
/ Oさ 80sAV7:zfc>d 96 S8690.00 / O 80sAV7: zfc> d 96 S8690.00
Figure imgf000097_0001
Figure imgf000097_0001
l — z人 =*■人一 l — z people = * ■ 人 一
[88^] [9910] [88 ^] [9910]
Figure imgf000098_0001
Figure imgf000098_0001
ZZ8690/.00Zdf/X3d 96 £ZLt 0/800Z OAV
Figure imgf000099_0001
ZZ8690 / .00Zdf / X3d 96 £ ZLt 0 / 800Z OAV
Figure imgf000099_0001
££;
Figure imgf000100_0001
££;
Figure imgf000100_0001
Figure imgf000100_0002
Figure imgf000100_0002
]
Figure imgf000101_0001
]
Figure imgf000101_0001
Ϊ 寸 fαχοχο -i  寸 Dimension fαχοχο -i
H!
Figure imgf000101_0002
H!
Figure imgf000101_0002
] ]
Figure imgf000102_0001
Figure imgf000102_0001
[0169] [化 92] ― X ~ L,— X2— ml m2 [0169] [Chem 92] ― X ~ L, — X 2 — ml m2
Figure imgf000103_0001
Figure imgf000103_0001
33<>(> 2441CHCHCHN— 33 <> (> 2441CHCHCHN—
[ 6 ] [UTO] 3{3一{> I (3(3}一 2 I1-— l I ¾3{( =— II ¾ [6] [UTO] 3 {3 one {> I (3 (3} one 2 I1-— l I ¾3 {(= — II ¾
123112 X1 Z m ZZl XLX _≤ = = —I —III 123112 X1 Z m ZZl XLX _≤ = = —I —III
Figure imgf000104_0001
Figure imgf000104_0001
■D 0Zdr/LDd んけ OAV o■ D 0Zdr / LDd OAV o
E χοχϋπ ιίE χοχϋπ ιί
H?H3 io"け  H? H3 io "
J"  J "
? w  ? w
HひひH》 ,-
Figure imgf000105_0001
Figure imgf000105_0002
H hihi H,-
Figure imgf000105_0001
Figure imgf000105_0002
] XL ] XL
ί ί
-J 2 -J 2
X X
if N X ioONI  if N X ioONI
Figure imgf000106_0001
ΧΟχϋΗ ι ϊί
Figure imgf000106_0001
ΧΟχϋΗ ι ϊί
XX
< u  <u
Figure imgf000106_0002
] E ί
Figure imgf000106_0002
] E ί
K K
-J ί  -J ί
Figure imgf000107_0001
Figure imgf000107_0001
X X
Figure imgf000107_0002
Figure imgf000107_0002
] 賺— 9 一 Z 辦— ] 賺 — 9 One Z 辦 —
Figure imgf000108_0001
Figure imgf000108_0001
M ί. Z — HO=HO™  M ί. Z — HO = HO ™
H 0 — HO=HD—  H 0 — HO = HD—
H Q  H Q
2tu Jx— — 一 X 一 一. ¾= 一  2tu Jx— — One X One One. ¾ = One
3S と3S When
Figure imgf000109_0001
Figure imgf000109_0001
HfXL† NXOUHXM I(i
Figure imgf000109_0002
HfXL † NXOUHXM I (i
Figure imgf000109_0002
Figure imgf000109_0003
Figure imgf000109_0003
] X2— mi m2 wl.] X 2 — mi m2 wl.
2— 475 (5) 2 1 !r2—475 (5) 2 1! R
2- 476 3 0 Rh2- 476 3 0 Rh
2— 477 2 0 Pt2— 477 2 0 Pt
2-478 — 3 0 ir
Figure imgf000110_0001
2-478 — 3 0 ir
Figure imgf000110_0001
f ε ° o f ε ° o
X X
-Γ £0, -Γ £ 0,
X X
Figure imgf000111_0001
Figure imgf000111_0001
0 0 OXOXOHM I!0 0 OXOXOHM I!
Figure imgf000112_0001
ΟΗυΗ —,
Figure imgf000112_0001
ΟΗυΗ —,
,
Figure imgf000112_0002
Figure imgf000112_0002
«5* "Five*
o w <* i  o w <* i
X  X
寸6 w〜 6w ~
£f N6ォ
Figure imgf000113_0001
£ f N6
Figure imgf000113_0001
3]
Figure imgf000114_0001
3]
Figure imgf000114_0001
ε ε
εε
*  *
£1  £ 1
Figure imgf000115_0001
Figure imgf000115_0001
Figure imgf000115_0002
5] E s S
Figure imgf000115_0002
Five] E s S
Figure imgf000116_0001
6] ε
Figure imgf000117_0001
Figure imgf000116_0001
6] ε
Figure imgf000117_0001
x fx ¾fe—t tx fx ¾fe—t t
Figure imgf000117_0002
Figure imgf000117_0003
Figure imgf000117_0002
Figure imgf000117_0003
7]
Figure imgf000118_0001
7]
Figure imgf000118_0001
. .
I I
\  \
J"  J "
£ぬ ¾ー  £ nu ¾ ー
HOWio HひUはI 1
Figure imgf000119_0001
HOWio H HI U 1
Figure imgf000119_0001
Figure imgf000119_0002
Figure imgf000119_0002
9] よ fnooonH Ii! 9] Yo fnooonH Ii!
[Οΐΐ^] [ 8Ϊ0] [Οΐΐ ^] [8Ϊ0]
53 53
2: HI 2: 2: HI 2:
Figure imgf000120_0001
25 AH—
Figure imgf000120_0001
25 AH—
HcHCAH= i
Figure imgf000120_0002
HcHCAH = i
Figure imgf000120_0002
Figure imgf000120_0003
<
Figure imgf000120_0003
<
ώ ^ ¼ " »  ώ ^ ¼ "»
o o o o o 3  o o o o o 3
" =r - 3 ™ ~ § i∑:8690/.00Zdf/X3d 8 είΖ,Ι-1-0/8001 OAV a, "= r-3 ™ ~ § i∑: 8690 / .00Zdf / X3d 8 είΖ, Ι-1-0 / 8001 OAV a,
K K
> H }0H3 ——, > H} 0H3 ——,
!1 ! 1
Figure imgf000121_0001
1] i Z ί
Figure imgf000121_0001
1] i Z ί
X  X
io H¾>? io H¾>?
Figure imgf000122_0001
S S t—
Figure imgf000122_0002
Figure imgf000122_0001
SS t—
Figure imgf000122_0002
2] 2 o ε 2] 2 o ε
o ε  o ε
o I  o I
(s> i _
Figure imgf000123_0001
] —
(s> i _
Figure imgf000123_0001
] —
Figure imgf000124_0001
Figure imgf000124_0001
sβ nΐΐ6^ ί sβ nΐΐ6 ^ ί
^ ——i s- oxan ^ ——I s- oxan
Figure imgf000125_0001
Figure imgf000125_0001
CsJ CsJ
5] 5: Five] Five:
Figure imgf000126_0001
Figure imgf000126_0001
Figure imgf000126_0002
Figure imgf000126_0002
 卜
CMcm
6] 卜6] 卜
s s
ΐζ
Figure imgf000127_0001
ΐζ
Figure imgf000127_0001
ϋ ϋ
ll
Figure imgf000128_0001
i W
Figure imgf000128_0001
i W
Figure imgf000128_0002
Figure imgf000128_0002
ί ί
Figure imgf000128_0003
Figure imgf000128_0003
8] -589 2-590 8] -589 2-590
Figure imgf000129_0001
9] -S95
Figure imgf000129_0001
9] -S95
Figure imgf000130_0001
0] //:/ O S8690L00I>dL50800AV 65
Figure imgf000130_0001
0] //: / O S8690L00I> dL50800AV 65
009 ββ 2— j
Figure imgf000131_0001
009 ββ 2— j
Figure imgf000131_0001
〔STS6 [STS6
Figure imgf000132_0001
Figure imgf000132_0001
[0199] [化 122]
Figure imgf000133_0001
[0199] [Chemical 122]
Figure imgf000133_0001
Figure imgf000134_0001
4]
Figure imgf000134_0001
Four]
Figure imgf000135_0001
Figure imgf000135_0001
[0202] [化 125] [0202] [Chemical 125]
Figure imgf000136_0001
Figure imgf000136_0001
[0203] 以下に、代表的な化合物の合成例を示す。 [0203] The synthesis examples of typical compounds are shown below.
[0204] 《例示化合物 2— 425の合成》 [0204] <Synthesis of Exemplified Compound 2-425>
[0205] [化 126] [0205] [Chemical 126]
Figure imgf000137_0001
Figure imgf000137_0001
[0206] 〈錯体 Aの合成〉 [0206] <Synthesis of Complex A>
15. 2gの中間体 1を 2—エトキシエタノール 200ml、水 75ml中に溶解し、窒素雰 囲気下、塩化イリジウム 4. 7g加え、加熱還流を 3時間行った。反応液を放冷し、析出 した固体をろ取し、メタノールで洗浄し、乾燥し錯体 Aを 12. lg得た。  15. 2 g of Intermediate 1 was dissolved in 200 ml of 2-ethoxyethanol and 75 ml of water, 4.7 g of iridium chloride was added under a nitrogen atmosphere, and the mixture was heated to reflux for 3 hours. The reaction solution was allowed to cool, and the precipitated solid was collected by filtration, washed with methanol, and dried to obtain 12. lg of complex A.
[0207] 〈錯体 Bの合成〉 錯体 Aの 8· 4gを 2—エトキシエタノール 150mlに溶解し、ァセチルアセトン 7ml、 炭酸ナトリウム 7. Ogを加え、窒素雰囲気下加熱還流を 3時間行った。反応液を放冷 し、 300mlの水にあけ、析出した固体をろ取し、水で洗浄し錯体 Bを得た。更なる精 製は行わず、次工程に用いた。 [0207] <Synthesis of Complex B> 8.4 g of Complex A was dissolved in 150 ml of 2-ethoxyethanol, 7 ml of acetylylacetone and 7. Og of sodium carbonate were added, and the mixture was refluxed with heating in a nitrogen atmosphere for 3 hours. The reaction solution was allowed to cool, poured into 300 ml of water, and the precipitated solid was collected by filtration and washed with water to obtain Complex B. It was used in the next step without further purification.
[0208] 〈例示化合物 2— 425の合成〉  <Synthesis of Exemplified Compound 2-425>
上記のごとく合成した錯体 Bをエチレングリコール 200mlに溶解し、中間体 1を 4. 2 g加え、窒素雰囲気下で 150°Cで加熱しながら 4時間撹拌した。反応液を放冷した後 、水 200mlを加え、析出した固体をろ取し、メタノールで洗浄した。さらに少量の塩化 メチレンに溶解し、シリカゲルカラムクロマトグラフィーで精製し、 目的とする例示化合 物 2— 425を 7. 7g得た。  Complex B synthesized as described above was dissolved in 200 ml of ethylene glycol, 4.2 g of intermediate 1 was added, and the mixture was stirred for 4 hours while heating at 150 ° C. in a nitrogen atmosphere. The reaction solution was allowed to cool, 200 ml of water was added, and the precipitated solid was collected by filtration and washed with methanol. Further, the product was dissolved in a small amount of methylene chloride and purified by silica gel column chromatography to obtain 7.7 g of the intended exemplified compound 2-425.
[0209] 《有機 EL素子材料の有機 EL素子への適用》  [0209] << Application of organic EL element materials to organic EL elements >>
本発明の有機 EL素子材料を用いて本発明の有機 EL素子を作製する場合、有機 EL素子の構成層(詳細は後述する)の中で、発光層または電子阻止層に本発明の 有機 EL素子材料を用いることが好ましい。また、発光層中では上記のように発光ドー パントとして好ましく用いられる。  When producing the organic EL device of the present invention using the organic EL device material of the present invention, the organic EL device of the present invention is formed on the light emitting layer or the electron blocking layer in the constituent layers (details will be described later) of the organic EL device. It is preferable to use a material. In the light emitting layer, it is preferably used as a light emitting dopant as described above.
[0210] (発光ホストと発光ドーパント)  [0210] (Light-emitting host and light-emitting dopant)
発光層中の主成分であるホスト化合物である発光ホストに対する発光ドーパントとの 混合比は、好ましくは質量で 0. ;!〜 30質量%未満の範囲に調整することである。  The mixing ratio of the light-emitting dopant to the light-emitting host, which is the host compound as the main component in the light-emitting layer, is preferably adjusted to a range of from 0.;! To less than 30% by mass.
[0211] 但し、発光ドーパントは複数種の化合物を混合して用いてもよぐ混合する相手は 構造を異にする、その他の金属錯体やその他の構造を有するリン光性ドーパントや 蛍光性ドーパントでもよい。  [0211] However, the luminescent dopant may be a mixture of a plurality of types of compounds. The partner to be mixed may have a different structure, and other metal complexes or phosphorescent dopants or fluorescent dopants having other structures may also be used. Good.
[0212] ここで、発光ドーパントとして用いられる金属錯体と併用してもよいドーパント(リン光 性ドーパント、蛍光性ドーパント等)について述べる。発光ドーパントは大きく分けて、 蛍光を発光する蛍光性ドーパントとリン光を発光するリン光性ドーパントの 2種類があ  [0212] Here, the dopants (phosphorescent dopant, fluorescent dopant, etc.) that may be used in combination with the metal complex used as the luminescent dopant will be described. Luminescent dopants can be broadly divided into two types: fluorescent dopants that emit fluorescence and phosphorescent dopants that emit phosphorescence.
[0213] 前者 (蛍光性ドーパント)の代表例としては、クマリン系色素、ピラン系色素、シァニ ン系色素、クロコニゥム系色素、スクァリウム系色素、ォキソベンツアントラセン系色素 、フルォレセイン系色素、ローダミン系色素、ピリリウム系色素、ペリレン系色素、スチ ルベン系色素、ポリチォフェン系色素、または希土類錯体系蛍光体等が挙げられる。 [0213] Representative examples of the former (fluorescent dopant) include coumarin dyes, pyran dyes, cyanine dyes, croconium dyes, squalium dyes, oxobenzanthracene dyes, fluorescein dyes, rhodamine dyes , Pyrylium dyes, perylene dyes, steel Examples thereof include rubene dyes, polythiophene dyes, and rare earth complex phosphors.
[0214] 後者 (リン光性ドーパント)の代表例としては、好ましくは元素周期表で 8族、 9族、 1 0族の遷移金属元素を含有する錯体系化合物であり、更に好ましくはイリジウム化合 物、オスミウム化合物であり、中でも最も好ましいのはイリジウム化合物である。 [0214] A typical example of the latter (phosphorescent dopant) is preferably a complex compound containing a transition metal element of Group 8, 9, or 10 in the periodic table of elements, and more preferably an iridium compound. An osmium compound, and most preferred is an iridium compound.
[0215] 具体的には以下の特許公報に記載されている化合物である。 [0215] Specifically, it is a compound described in the following patent publications.
[0216] 国際公開第 00/70655号パンフレット、特開 2002— 280178号公報、特開 2001 —18皿 6号公報、特開 2002— 280179号公報、特開 2001— 18皿 7号公報、 特開 2002— 280180号公報、特開 2001— 247859号公報、特開 2002— 299060 号公報、特開 2001— 313178号公報、特開 2002— 302671号公報、特開 2001— 345183号公報、特開 2002— 324679号公報、国際公開第 02/15645号パンフ レツ K特開 2002— 332291号公報、特開 2002— 50484号公報、特開 2002— 33 2292号公報、特開 2002— 83684号公報、特表 2002— 540572号公報、特開 20 02— 117978号公報、特開 2002— 338588号公報、特開 2002— 170684号公報 、特開 2002— 352960号公報、国際公開第 01/93642号パンフレット、特開 2002[0216] WO 00/70655 pamphlet, JP 2002-280178, JP 2001-18 plate 6, JP 2002-280179, JP 2001-18 plate 7, JP JP 2002-280180, JP 2001-247859, JP 2002-299060, JP 2001-313178, JP 2002-302671, JP 2001-345183, JP 2002- No. 324679, International Publication No. 02/15645 Pamphlet K JP 2002-332291 A, JP 2002-50484 A, JP 2002-33 2292 A, JP 2002-83684 A, Special Table 2002 — 540572, JP 20 02-117978, JP 2002-338588, JP 2002-170684, JP 2002-352960, WO 01/93642, JP 2002
— 50483号公報、特開 2002— 100476号公報、特開 2002— 173674号公報、特 開 2002— 359082号公報、特開 2002— 175884号公報、特開 2002— 363552号 公報、特開 2002— 184582号公報、特開 2003— 7469号公報、特表 2002— 525 808号公報、特開 2003— 7471号公報、特表 2002— 525833号公報、特開 2003— 50483, JP 2002-100476, JP 2002-173674, JP 2002-359082, JP 2002-175884, JP 2002-363552, JP 2002-184582 Publication, JP 2003-7469, JP 2002-525 808, JP 2003-7471, JP 2002-525833, JP 2003
— 31366号公報、特開 2002— 226495号公報、特開 2002— 234894号公報、特 開 2002— 235076号公報、特開 2002— 241751号公報、特開 2001— 319779号 公報、特開 2001— 319780号公報、特開 2002— 62824号公報、特開 2002— 10 0474号公報、特開 2002— 203679号公報、特開 2002— 343572号公報、特開 2 002— 203678号公報等。 — 31366, JP 2002-226495, JP 2002-234894, JP 2002-235076, JP 2002-241751, JP 2001-319779, JP 2001-319780 JP, 2002-62824, JP 2002-10474, JP 2002-203679, JP 2002-343572, JP 2002-203678, and the like.
[0217] 以下に、具体例の一部を示す。  [0217] A part of a specific example is shown below.
[0218] [化 127] Pt~1 Pt~2 [0218] [Chemical 127] Pt ~ 1 Pt ~ 2
Figure imgf000140_0001
28]
Figure imgf000140_0001
28]
Figure imgf000141_0001
Figure imgf000141_0001
Figure imgf000141_0002
Figure imgf000141_0002
Figure imgf000142_0001
Figure imgf000142_0001
[0221] (発光ホスト) [0221] (Light emitting host)
本発明に用いられるホスト化合物とは、発光層に含有される化合物のうちで室温(2 5°C)においてリン光発光のリン光量子収率が、 0. 01未満の化合物を表す。  The host compound used in the present invention represents a compound having a phosphorescence quantum yield of phosphorescence emission of less than 0.01 at room temperature (25 ° C.) among compounds contained in the light emitting layer.
[0222] 本発明に用いられる発光ホストとしては構造的には特に制限はないが、代表的に は力ルバゾール誘導体、トリアリールァミン誘導体、芳香族ボラン誘導体、含窒素複 素環化合物、チォフェン誘導体、フラン誘導体、オリゴァリーレン化合物等の基本骨 格を有するもの、またはカルボリン誘導体ゃ該カルボリン誘導体のカルボリン環を構 成する炭化水素環の炭素原子の少なくとも一つが窒素原子で置換されている環構 造を有する誘導体等が挙げられる。中でも、力ルバゾール誘導体、カルボリン誘導体 ゃ該カルボリン誘導体のカルボリン環を構成する炭化水素環の炭素原子の少なくと も一つが窒素原子で置換されて!/、る環構造を有する誘導体が好ましく用いられる。 [0222] The luminescent host used in the present invention is not particularly limited in terms of structure, but is typically a force rubazole derivative, triarylamine derivative, aromatic borane derivative, nitrogen-containing bicyclic compound, thiophene derivative. , Basic bones such as furan derivatives and oligoarylene compounds Examples thereof include carboline derivatives and derivatives having a ring structure in which at least one of the carbon atoms of the hydrocarbon ring constituting the carboline ring of the carboline derivative is substituted with a nitrogen atom. Among them, a force rubazole derivative, a carboline derivative, and a derivative having a ring structure in which at least one of the carbon atoms of the hydrocarbon ring constituting the carboline ring of the carboline derivative is substituted with a nitrogen atom are preferably used.
[0223] 以下に具体例を挙げる力 本発明はこれらに限定されない。これらの化合物は正孔 阻止材料として使用することも好ましい。  [0223] Power to give specific examples below [0223] The present invention is not limited to these. These compounds are also preferably used as hole blocking materials.
[0224] [化 130] [0224] [Chemical 130]
Figure imgf000144_0001
Figure imgf000144_0001
[0225] [化 131] H10 [0225] [Chemical 131] H10
Figure imgf000145_0001
32]
Figure imgf000145_0001
32]
Figure imgf000146_0001
Figure imgf000146_0001
[0227] [化 133] 隨 H24 [0227] [Chemical 133] 隨 H24
Figure imgf000147_0001
Figure imgf000147_0001
[0228] 本発明に係る発光層においては、ホスト化合物として公知のホスト化合物を複数種 併用して用いてもよい。ホスト化合物を複数種用いることで、電荷の移動を調整する ことが可能であり、有機 EL素子を高効率化することができる。これらの公知のホスト化 合物としては、正孔輸送能、電子輸送能を有しつつ、且つ発光の長波長化を防ぎ、 なお且つ高 Tg (ガラス転移温度)である化合物が好まし!/、。 [0228] In the light emitting layer according to the present invention, a plurality of known host compounds may be used in combination as a host compound. By using multiple types of host compounds, it is possible to adjust the movement of charges, and the organic EL device can be made highly efficient. As these known host compounds, compounds that have a hole transporting ability and an electron transporting ability, prevent emission of longer wavelengths, and have a high Tg (glass transition temperature) are preferred! / ,.
[0229] また、本発明に用いられる発光ホストは低分子化合物でも、繰り返し単位をもつ高 分子化合物でもよぐビュル基やエポキシ基のような重合性基を有する低分子化合 物 (蒸着重合性発光ホスト)でもレ、レ、。 [0230] 発光ホストとしては、正孔輸送能、電子輸送能を有しつつ、且つ発光の長波長化を 防ぎ、なお且つ高 Tg (ガラス転移温度)である化合物が好まし!/、。 [0229] The light-emitting host used in the present invention may be a low-molecular compound or a high-molecular compound having a repeating unit, which may be a low-molecular compound having a polymerizable group such as a bur group or an epoxy group (evaporation polymerizable light-emitting). Even the host) [0230] As the light-emitting host, a compound having a hole transporting ability and an electron transporting ability, which prevents the light emission from being increased in wavelength, and has a high Tg (glass transition temperature) is preferable.
[0231] 発光ホストの具体例としては、以下の文献に記載されている化合物が好適である。  [0231] As specific examples of the light-emitting host, compounds described in the following documents are suitable.
例えば、特開 2001— 257076号公報、特開 2002— 308855号公報、特開 2001— 313179号公報、特開 2002— 319491号公報、特開 2001— 357977号公報、特 開 2002— 334786号公報、特開 2002— 8860号公報、特開 2002— 334787号公 報、特開 2002— 15871号公報、特開 2002— 334788号公報、特開 2002— 4305 6号公報、特開 2002— 334789号公報、特開 2002— 75645号公報、特開 2002— 338579号公報、特開 2002— 105445号公報、特開 2002— 343568号公報、特 開 2002— 141173号公報、特開 2002— 352957号公報、特開 2002— 203683号 公報、特開 2002— 363227号公報、特開 2002— 231453号公報、特開 2003— 3 165号公報、特開 2002— 234888号公報、特開 2003— 27048号公報、特開 200 2— 255934号公報、特開 2002— 260861号公報、特開 2002— 280183号公報、 特開 2002— 299060号公報、特開 2002— 302516号公報、特開 2002— 305083 号公報、特開 2002— 305084号公報、特開 2002— 308837号公報等。  For example, JP 2001-257076, JP 2002-308855, JP 2001-313179, JP 2002-319491, JP 2001-357977, JP 2002-334786, JP 2002-8860, JP 2002-334787, JP 2002-15871, JP 2002-334788, JP 2002-4305 6, JP 2002-334789, JP 2002-75645, JP 2002-338579, JP 2002-105445, JP 2002-343568, JP 2002-141173, JP 2002-352957, JP JP 2002-203683, JP 2002-363227, JP 2002-231453, JP 2003-3165, JP 2002-234888, JP 2003-27048, JP 200 JP 2-255934, JP 2002-260861, JP 2002-280183, JP 2002-299060, JP 2002-302516, JP 2002-305083 JP 2002-305084 A, JP 2002-308837 A, etc.
[0232] また、発光層はホスト化合物として更に蛍光極大波長を有するホスト化合物を含有 していてもよい。この場合、他のホスト化合物とリン光性化合物から蛍光性化合物へ のエネルギー移動で、有機 EL素子としての電界発光は蛍光極大波長を有する他の ホスト化合物からの発光も得られる。蛍光極大波長を有するホスト化合物として好まし いのは、溶液状態で蛍光量子収率が高いものである。ここで、蛍光量子収率は 10% 以上、特に 30%以上が好ましい。具体的な蛍光極大波長を有するホスト化合物とし ては、クマリン系色素、ピラン系色素、シァニン系色素、クロコニゥム系色素、スクァリ ゥム系色素、ォキソベンツアントラセン系色素、フルォレセイン系色素、ローダミン系 色素、ピリリウム系色素、ペリレン系色素、スチルベン系色素、ポリチォフェン系色素 等が挙げられる。蛍光量子収率は、前記第 4版実験化学講座 7の分光 IIの 362頁(1 992年版、丸善)に記載の方法により測定することができる。  [0232] The light emitting layer may further contain a host compound having a fluorescence maximum wavelength as a host compound. In this case, the energy transfer from the other host compound and the phosphorescent compound to the fluorescent compound allows electroluminescence as an organic EL device to be emitted from the other host compound having a fluorescence maximum wavelength. Preferred as a host compound having a fluorescence maximum wavelength is a compound having a high fluorescence quantum yield in a solution state. Here, the fluorescence quantum yield is preferably 10% or more, particularly preferably 30% or more. Specific examples of host compounds having a maximum fluorescence wavelength include coumarin dyes, pyran dyes, cyanine dyes, croconium dyes, squalium dyes, oxobenzanthracene dyes, fluorescein dyes, rhodamine dyes. And pyrylium dyes, perylene dyes, stilbene dyes, polythiophene dyes, and the like. The fluorescence quantum yield can be measured by the method described in the third edition of Experimental Chemistry Course 7, Spectroscopy II, page 362 (1992 edition, Maruzen).
[0233] 次に、代表的な有機 EL素子の構成について述べる。  [0233] Next, a configuration of a typical organic EL element will be described.
[0234] 《有機 EL素子の構成層》 本発明の有機 EL素子の構成層について説明する。 [0234] <Structure layers of organic EL elements> The constituent layers of the organic EL device of the present invention will be described.
[0235] 本発明の有機 EL素子の層構成の好ましい具体例を以下に示すが、本発明はこれ らに限定されない。 [0235] Preferred specific examples of the layer structure of the organic EL device of the present invention are shown below, but the present invention is not limited thereto.
[0236] (i)陽極/正孔輸送層/発光層/正孔阻止層/電子輸送層/陰極  [I] Anode / hole transport layer / light emitting layer / hole blocking layer / electron transport layer / cathode
(ii)陽極/電子阻止層/発光層/正孔阻止層/電子輸送層/陰極  (ii) Anode / electron blocking layer / light emitting layer / hole blocking layer / electron transport layer / cathode
(iii)陽極/正孔輸送層/電子阻止層/発光層/正孔阻止層/電子輸送層/陰 極  (iii) Anode / hole transport layer / electron blocking layer / light emitting layer / hole blocking layer / electron transport layer / cathode
(iv)陽極/正孔輸送層/電子阻止層/発光層/正孔阻止層/電子輸送層/陰 極  (iv) Anode / hole transport layer / electron blocking layer / light emitting layer / hole blocking layer / electron transport layer / cathode
(V)陽極/正孔輸送層/電子阻止層/発光層/正孔阻止層/電子輸送層/陰 極バッファー層/陰極  (V) Anode / hole transport layer / electron blocking layer / light emitting layer / hole blocking layer / electron transport layer / cathode buffer layer / cathode
(vi)陽極/陽極バッファ一層/正孔輸送層/電子阻止層/発光層/正孔阻止層 (vi) Anode / anode buffer layer / hole transport layer / electron blocking layer / light emitting layer / hole blocking layer
/電子輸送層/陰極バッファー層/陰極 / Electron transport layer / cathode buffer layer / cathode
(vii)陽極/陽極バッファ一層/正孔輸送層/電子阻止層/発光層/正孔阻止層 (vii) Anode / anode buffer layer / hole transport layer / electron blocking layer / light emitting layer / hole blocking layer
/電子輸送層/陰極バッファー層/陰極 / Electron transport layer / cathode buffer layer / cathode
《阻止層(電子阻止層、正孔阻止層)》  《Blocking layer (electron blocking layer, hole blocking layer)》
本発明に係る阻止層(例えば、電子阻止層、正孔阻止層)について説明する。  The blocking layer (for example, electron blocking layer, hole blocking layer) according to the present invention will be described.
[0237] 本発明においては、正孔阻止層、電子阻止層等に本発明の有機 EL素子材料を用 いること力 S好ましく、特に好ましくは正孔阻止層に用いることである。  In the present invention, it is preferable to use the organic EL device material of the present invention for a hole blocking layer, an electron blocking layer, and the like.
[0238] 本発明の有機 EL素子材料を正孔阻止層、電子阻止層に含有させる場合、請求の 範囲第 1項〜第 7項のいずれ力、 1項に記載されている本発明の有機 EL素子材料を、 正孔阻止層や電子阻止層等の層構成成分として 100質量%の状態で含有させても よいし、他の有機化合物等と混合してもよい。  [0238] When the organic EL device material of the present invention is contained in a hole blocking layer and an electron blocking layer, the organic EL of the present invention described in any one of claims 1 to 7, The element material may be contained in a state of 100% by mass as a layer constituent component such as a hole blocking layer or an electron blocking layer, or may be mixed with other organic compounds.
[0239] 本発明に係る阻止層の膜厚としては好ましくは 3〜100nmであり、更に好ましくは 5 〜30nmである。  [0239] The thickness of the blocking layer according to the present invention is preferably 3 to 100 nm, and more preferably 5 to 30 nm.
[0240] 《正孔阻止層》  [0240] 《Hole blocking layer》
正孔阻止層とは広い意味では電子輸送層の機能を有し、電子を輸送する機能を有 しつつ正孔を輸送する能力が著しく小さい材料からなり、電子を輸送しつつ正孔を阻 止することで電子と正孔の再結合確率を向上させることができる。 The hole blocking layer has a function of an electron transport layer in a broad sense, and is made of a material that has a function of transporting electrons and has an extremely small ability to transport holes, and blocks holes while transporting electrons. By stopping, the recombination probability of electrons and holes can be improved.
[0241] 正孔阻止層としては、例えば、特開平 11 204258号公報、同 11 204359号公 報、及び「有機 EL素子とその工業化最前線(1998年 11月 30日 ェヌ'ティー'エス 社発行)」の 237頁等に記載の正孔阻止(ホールブロック)層等を本発明に係る正孔 阻止層として適用可能である。また、後述する電子輸送層の構成を必要に応じて、本 発明に係る正孔阻止層として用いることができる。  [0241] Examples of the hole blocking layer include, for example, Japanese Patent Application Laid-Open Nos. 11 204258 and 11 204359, and “The Forefront of Organic EL Devices and Their Industrialization (November 30, 1998, NTT Corporation) The hole blocking layer described in page 237 of “Issuance)” is applicable as the hole blocking layer according to the present invention. Moreover, the structure of the electron carrying layer mentioned later can be used as a hole-blocking layer concerning this invention as needed.
[0242] 本発明の有機 EL素子は構成層として正孔阻止層を有し、該正孔阻止層が前記力 ルポリン誘導体または該カルボリン誘導体のカルボリン環を構成する炭化水素環の 炭素原子の少なくとも一つが窒素原子で置換されている環構造を有する誘導体を含 有することが好ましい。  [0242] The organic EL device of the present invention has a hole blocking layer as a constituent layer, and the hole blocking layer is at least one of the carbon atoms of the hydrocarbon ring constituting the carboline ring of the strong ruporin derivative or the carboline derivative. It is preferable to include a derivative having a ring structure in which one is substituted with a nitrogen atom.
[0243] 《電子阻止層》  [0243] 《Electron blocking layer》
一方、電子阻止層とは広い意味では正孔輸送層の機能を有し、正孔を輸送する機 能を有しつつ電子を輸送する能力が著しく小さい材料からなり、正孔を輸送しつつ電 子を阻止することで電子と正孔の再結合確率を向上させることができる。また、後述 する正孔輸送層の構成を必要に応じて電子阻止層として用いることができる。  On the other hand, the electron blocking layer has a function of a hole transport layer in a broad sense, and is made of a material having a function of transporting holes and an extremely small capacity of transporting electrons. The probability of recombination of electrons and holes can be improved by blocking the children. Moreover, the structure of the positive hole transport layer mentioned later can be used as an electron blocking layer as needed.
[0244] また本発明においては、発光層に隣接する隣接層、即ち正孔阻止層、電子阻止層 に上記の本発明の有機 EL素子材料を用いることが好ましぐ特に電子阻止層に用 いることが好ましい。  [0244] In the present invention, it is preferable to use the organic EL device material of the present invention described above for the adjacent layer adjacent to the light emitting layer, that is, the hole blocking layer and the electron blocking layer, particularly for the electron blocking layer. It is preferable.
[0245] 《正孔輸送層》  [0245] 《Hole transport layer》
正孔輸送層とは正孔を輸送する機能を有する材料を含み、広い意味で正孔注入 層、電子阻止層も正孔輸送層に含まれる。正孔輸送層は単層もしくは複数層設ける こと力 Sでさる。  The hole transport layer includes a material having a function of transporting holes, and in a broad sense, a hole injection layer and an electron blocking layer are also included in the hole transport layer. A single hole or multiple hole transport layers should be provided.
[0246] 正孔輸送材料としては、特に制限はなぐ従来、光導伝材料において正孔の電荷 注入輸送材料として慣用されているものや、有機 EL素子の正孔注入層、正孔輸送 層に使用される公知のものの中力も任意のものを選択して用いることができる。  [0246] The hole transport material is not particularly limited, and is conventionally used as a hole charge injection / transport material in photoconductive materials, and used in the hole injection layer and hole transport layer of organic EL devices. Any known medium force can be selected and used.
[0247] 正孔輸送材料は正孔の注入もしくは輸送、電子の障壁性のいずれかを有するもの であり  [0247] The hole transport material has either hole injection or transport or electron barrier properties.
、有機物、無機物のいずれであってもよい。例えば、トリァゾール誘導体、ォキサジァ ゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体 及びピラゾロン誘導体、フエ二レンジァミン誘導体、ァリールァミン誘導体、ァミノ置換 カルコン誘導体、ォキサゾール誘導体、スチリルアントラセン誘導体、フルォレノン誘 導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、ァニリン系共重合体、 また導電性高分子オリゴマー、特にチォフェンオリゴマー等が挙げられる。 Any of organic substances and inorganic substances may be used. For example, triazole derivatives, oxazia Azole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives and pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino substituted chalcone derivatives, oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives, stilbene derivatives, silazane derivatives, Examples thereof include aniline-based copolymers and conductive polymer oligomers, particularly thiophene oligomers.
[0248] 正孔輸送材料としては上記のものを使用することができる力 ポルフィリン化合物、 芳香族第三級ァミン化合物及びスチリルアミン化合物、特に芳香族第三級ァミン化 合物を用いることが好ましい。  [0248] The ability to use the above-mentioned materials as the hole transporting material. It is preferable to use a porphyrin compound, an aromatic tertiary amine compound, and a styrylamine compound, particularly an aromatic tertiary amine compound.
[0249] 芳香族第三級ァミン化合物及びスチリルァミン化合物の代表例としては、 N, N, N ' , N' —テトラフエニノレー 4, A' ージァミノフエ二ノレ; N, N' —ジフエニノレー N, N, —ビス(3 メチルフエ二ル)一〔1 , 1' —ビフエ二ル〕一 4, 4' —ジァミン(TPD) ; 2, 2 -ビス(4 ジ一 p トリルァミノフエニル)プロパン; 1 , 1—ビス(4 ジ一 p トリルァ ミノフエ二ノレ)シクロへキサン; N, N, N' , N' —テトラ一 p トリノレ一 4, A' —ジアミ ノビフエニル; 1 , 1—ビス(4—ジ一 p トリルァミノフエニル) 4—フエニルシクロへキ サン;ビス(4 -ジメチルァミノ一 2 メチルフエ二ノレ)フエニルメタン;ビス(4 ジ一 p— トリルァミノフエ二ノレ)フエニルメタン; N, N' —ジフエ二ノレ一 N, N' —ジ(4—メトキシ フエ二ノレ)一 4, 4' —ジアミノビフエ二ノレ; N, N, N' , N' —テトラフエ二ノレ一 4, 4 ' ージアミノジフエニルエーテノレ; 4, A' ビス(ジフエニルァミノ)クオードリフエニル ; N, N, N—トリ(p—トリル)ァミン; 4—(ジ—p—トリルァミノ)ー 一〔4—(ジ—p ト リルァミノ)スチリル〕スチルベン; 4— N, N ジフエニルアミノー(2 ジフエ二ルビ二 ノレ)ベンゼン; 3—メトキシー 4 ' N, N ジフエニルアミノスチルベンゼン; N フエ二 ルカルバゾール、更には米国特許第 5, 061 , 569号明細書に記載されている 2個の 縮合芳香族環を分子内に有するもの、例えば、 4, 4' ビス〔N—(1 ナフチル) N フエニルァミノ〕ビフエニル(NPD)、特開平 4 308688号公報に記載されてい るトリフエニルァミンユニットが 3つスターバースト型に連結された 4, 4' , 4' —トリス〔 N— (3—メチルフエニル) N フエニルァミノ〕トリフエニルァミン(MTDATA)等が 挙げられる。  [0249] Typical examples of aromatic tertiary amine compounds and styrylamine compounds include N, N, N ', N' —tetraphenenole 4, A 'diaminophenol; N, N' — diphenenole N, N , —Bis (3 methylphenyl) 1 [1, 1 ′ — biphenyl] 1, 4, 4 ′ — Diamine (TPD); 2, 2-bis (4 di 1 p trilaminophenyl) propane; 1-bis (4 di-l-triarylaminophenenyl) cyclohexane; N, N, N ', N' —tetra-l-trinore 4, A ′ —diaminobiphenyl; 1, 1-bis (4-di-one) p-tolylaminophenyl) 4-phenylcyclohexan; bis (4-dimethylamino-2-methylphenyl) phenylmethane; bis (4-di-amino-phenyl) phenylmethane; N, N '— diphenyleno N, N ′ —di (4-methoxyphenol) 1 4, 4′—diaminobiphenol; N, N, N ', N' — Tetraphenylol 4,4'-diaminodiphenyl ethereol; 4, A 'bis (diphenylamino) quadrenyl; N, N, N-tri (p-tolyl) amine 4- (di-p-tolylamino) -one [4- (di-p-tolylamino) styryl] stilbene; 4-N, N diphenylamino- (2 diphenylbinole) benzene; 3-methoxy-4 ' N, N diphenylaminostilbenzene; N phenylcarbazole, and further two condensed aromatic rings described in US Pat. No. 5,061, 569 in the molecule, for example 4 , 4 'bis [N- (1 naphthyl) N phenylamino] biphenyl (NPD), three triphenylamine units described in JP-A-4 308688 are connected in a starburst type, 4, 4', 4 '—Tris [N— (3-methylphenyl) N phenyla Roh] triphenyl § Min (MTDATA) and the like.
[0250] 更にこれらの材料を高分子鎖に導入した、またはこれらの材料を高分子の主鎖とし た高分子材料を用いることもできる。また、 p型 Si、 p型 SiC等の無機化合物も正 孔注入材料、正孔輸送材料として使用することができる。 [0250] Further, these materials are introduced into the polymer chain, or these materials are used as the polymer main chain. High polymer materials can also be used. Inorganic compounds such as p-type Si and p-type SiC can also be used as the hole injecting material and hole transporting material.
[0251] この正孔輸送層は上記正孔輸送材料を、例えば、真空蒸着法、スピンコート法、キ ヤスト法、インクジェット法、 LB法等の公知の方法により、薄膜化することにより形成す ること力 Sできる。正孔輸送層の膜厚については特に制限はないが、通常は 5〜5000 nm程度である。この正孔輸送層は上記材料の一種または二種以上からなる一層構 造であってもよい。 [0251] The hole transport layer is formed by thinning the hole transport material by a known method such as a vacuum deposition method, a spin coating method, a casting method, an ink jet method, or an LB method. That power S. Although there is no restriction | limiting in particular about the film thickness of a positive hole transport layer, Usually, it is about 5-5000 nm. The hole transport layer may have a single layer structure composed of one or more of the above materials.
[0252] 《電子輸送層》 [0252] 《Electron Transport Layer》
電子輸送層とは電子を輸送する機能を有する材料からなり、広い意味で電子注入 層、正孔阻止層も電子輸送層に含まれる。電子輸送層は単層もしくは複数層を設け ること力 Sでさる。  The electron transport layer is made of a material having a function of transporting electrons, and in a broad sense, an electron injection layer and a hole blocking layer are also included in the electron transport layer. For the electron transport layer, a single layer or a plurality of layers are provided.
[0253] 従来、単層の電子輸送層、及び複数層とする場合は発光層に対して陰極側に隣 接する電子輸送層に用いられる電子輸送材料 (正孔阻止材料を兼ねる)としては、下 記の材料が知られている。  Conventionally, in the case of a single electron transport layer and a plurality of layers, as an electron transport material (also serving as a hole blocking material) used for an electron transport layer adjacent to the light emitting layer on the cathode side, The following materials are known.
[0254] 更に、電子輸送層は陰極より注入された電子を発光層に伝達する機能を有してい ればよぐその材料としては従来公知の化合物の中から任意のものを選択して用いる こと力 Sでさる。 [0254] Furthermore, as long as the electron transporting layer has a function of transferring electrons injected from the cathode to the light emitting layer, any material selected from conventionally known compounds should be used. Touch with force S.
[0255] この電子輸送層に用いられる材料 (以下、電子輸送材料という)の例としては、ニト 口置換フルオレン誘導体、ジフヱ二ルキノン誘導体、チォピランジオキシド誘導体、ナ フタレンペリレン等の複素環テトラカルボン酸無水物、カルポジイミド、フレオレニリデ ンメタン誘導体、アントラキノジメタン及びアントロン誘導体、ォキサジァゾール誘導体 、カルボリン誘導体、または該カルボリン誘導体のカルボリン環を構成する炭化水素 環の炭素原子の少なくとも一つが窒素原子で置換されている環構造を有する誘導体 等が挙げられる。更に上記ォキサジァゾール誘導体において、ォキサジァゾール環 の酸素原子を硫黄原子に置換したチアジアゾール誘導体、電子吸引性基として知ら れて!/、るキノキサリン環を有するキノキサリン誘導体も電子輸送材料として用いること ができる。  [0255] Examples of materials used for the electron transport layer (hereinafter referred to as electron transport materials) include heterocyclic tetrafluoride derivatives, diphenylquinone derivatives, thiopyran dioxide derivatives, naphthalene perylene, and the like. Carboxylic anhydride, carbopositimide, fluorenylidenemethane derivative, anthraquinodimethane and anthrone derivative, oxaziazole derivative, carboline derivative, or at least one carbon atom of the hydrocarbon ring constituting the carboline ring of the carboline derivative is substituted with a nitrogen atom. And derivatives having a cyclic structure. Furthermore, in the above oxadiazole derivative, a thiadiazole derivative in which the oxygen atom of the oxadiazole ring is substituted with a sulfur atom, or a quinoxaline derivative having a quinoxaline ring, known as an electron withdrawing group, can also be used as an electron transport material.
[0256] 更にこれらの材料を高分子鎖に導入した、またはこれらの材料を高分子の主鎖とし た高分子材料を用いることもできる。 [0256] Furthermore, these materials are introduced into the polymer chain, or these materials are used as the polymer main chain. High polymer materials can also be used.
[0257] また 8 キノリノール誘導体の金属錯体、例えば、トリス(8 キノリノール)アルミユウ ム(Alq )、トリス(5, 7—ジクロロ一 8—キノリノール)アルミニウム、トリス(5, 7—ジブ口 モー 8 キノリノール)アルミニウム、トリス(2—メチルー 8 キノリノール)アルミニウム 、トリス(5—メチル 8—キノリノール)アルミニウム、ビス(8—キノリノール)亜鉛(Znq )等、及びこれらの金属錯体の中心金属が In、 Mg、 Cu、 Ca、 Sn、 Gaまたは Pbに置 き替わった金属錯体も電子輸送材料として用いることができる。その他、メタルフリー もしくはメタルフタロシアニン、またはそれらの末端がアルキル基ゃスルホン酸基等で 置換されているものも電子輸送材料として好ましく用いることができる。また、発光層 の材料として例示したジスチリルビラジン誘導体も、電子輸送材料として用いることが できるし、正孔注入層、正孔輸送層と同様に n型 Si、 n型 SiC等の無機半導体も 電子輸送材料として用いることができる。 [0257] Also, metal complexes of 8 quinolinol derivatives such as tris (8 quinolinol) aluminum (Alq), tris (5,7-dichloro-1-8-quinolinol) aluminum, tris (5,7-dive mouth 8 quinolinol) Aluminum, tris (2-methyl-8-quinolinol) aluminum, tris (5-methyl-8-quinolinol) aluminum, bis (8-quinolinol) zinc (Znq), etc., and the central metals of these metal complexes are In, Mg, Cu, Metal complexes replacing Ca, Sn, Ga or Pb can also be used as electron transport materials. In addition, metal-free or metal phthalocyanine, or those having terminal ends substituted with an alkyl group or a sulfonic acid group can be preferably used as the electron transport material. In addition, the distyrylvirazine derivative exemplified as the material of the light emitting layer can also be used as an electron transport material, and inorganic semiconductors such as n-type Si and n-type SiC can be used as well as the hole injection layer and the hole transport layer. It can be used as an electron transport material.
[0258] この電子輸送層は上記電子輸送材料を、例えば、真空蒸着法、スピンコート法、キ ヤスト法、インクジェット法、 LB法等の公知の方法により、薄膜化することにより形成す ること力 Sできる。電子輸送層の膜厚については特に制限はないが、通常は 5〜5000 nm程度である。この電子輸送層は上記材料の一種または二種以上からなる一層構 造であってもよい。 [0258] This electron transport layer can be formed by thinning the electron transport material by a known method such as a vacuum deposition method, a spin coating method, a casting method, an ink jet method, or an LB method. S can. Although there is no restriction | limiting in particular about the film thickness of an electron carrying layer, Usually, it is about 5-5000 nm. This electron transport layer may have a single layer structure composed of one or more of the above materials.
[0259] 次に、本発明の有機 EL素子の構成層として用いられる注入層について説明する。  Next, the injection layer used as the constituent layer of the organic EL element of the present invention will be described.
[0260] 《注入層》:電子注入層、正孔注入層 [0260] << Injection layer >>: Electron injection layer, hole injection layer
注入層は必要に応じて設け、電子注入層と正孔注入層があり、上記のごとく陽極と 発光層または正孔輸送層の間、及び陰極と発光層または電子輸送層との間に存在 させてもよい。  The injection layer is provided as necessary, and has an electron injection layer and a hole injection layer, and as described above, exists between the anode and the light emitting layer or hole transport layer and between the cathode and the light emitting layer or electron transport layer. May be.
[0261] 注入層とは駆動電圧低下や発光輝度向上のために電極と有機層間に設けられる 層のことで、「有機 EL素子とその工業化最前線(1998年 11月 30日 ェヌ'ティー'ェ ス社発行)」の第 2編第 2章「電極材料」(123〜166頁)に詳細に記載されており、正 孔注入層(陽極バッファ一層)と電子注入層(陰極バッファ一層)とがある。  [0261] The injection layer is a layer that is provided between the electrode and the organic layer in order to reduce the drive voltage and increase the luminance of the light emission. “The organic EL element and the forefront of its industrialization (November 30, 1998, NTT) 2) Chapter 2 “Electrode Materials” (pages 123-166) ”of the 2nd volume of“ E.S. Co., Ltd.) ”, the hole injection layer (anode buffer layer), the electron injection layer (cathode buffer layer) There is.
[0262] 陽極バッファ一層(正孔注入層)は特開平 9— 45479号公報、同 9 260062号公 報、同 8— 288069号公報等にもその詳細が記載されており、具体例として、銅フタ口 シァニンに代表されるフタロシアニンバッファ一層、酸化バナジウムに代表される酸 化物バッファ一層、アモルファスカーボンバッファ一層、ポリア二リン(ェメラルディン) やポリチォフェン等の導電性高分子を用いた高分子バッファ一層等が挙げられる。 [0262] The details of the anode buffer layer (hole injection layer) are described in JP-A-9-45479, JP-A-9260062, JP-A-8-288069 and the like. Lid Examples include a phthalocyanine buffer layer represented by cyanine, an oxide buffer layer represented by vanadium oxide, an amorphous carbon buffer layer, and a polymer buffer layer using a conductive polymer such as polyaniline (emeraldine) or polythiophene. .
[0263] 陰極バッファ一層(電子注入層)は特開平 6— 325871号公報、同 9 17574号公 報、同 10— 74586号公報等にもその詳細が記載されており、具体的にはストロンチ ゥムゃアルミニウム等に代表される金属バッファ一層、フッ化リチウムに代表されるァ ルカリ金属化合物バッファ一層、フッ化マグネシウムに代表されるアルカリ土類金属 化合物バッファ一層、酸化アルミニウムに代表される酸化物バッファ一層等が挙げら れる。 [0263] Details of the cathode buffer layer (electron injection layer) are also described in JP-A-6-325871, JP-A-917574, JP-A-10-74586, and the like. Metal buffer layer typified by aluminum, etc., alkali metal compound buffer layer typified by lithium fluoride, alkaline earth metal compound buffer layer typified by magnesium fluoride, oxide buffer typified by aluminum oxide One layer and so on.
[0264] 上記バッファ一層(注入層)はごく薄い膜であることが望ましぐ素材にもよるがその 膜厚は 0.;!〜 lOOnmの範囲が好ましい。  [0264] The buffer layer (injection layer) is preferably a very thin film, although the film thickness is preferably in the range of 0.;! To lOOnm.
[0265] この注入層は上記材料を、例えば、真空蒸着法、スピンコート法、キャスト法、インク ジェット法、 LB法等の公知の方法により、薄膜化することにより形成することができる 。注入層の膜厚については特に制限はないが、通常は 5〜5000nm程度である。こ の注入層は上記材料の一種または二種以上からなる一層構造であってもよい。  [0265] This injection layer can be formed by thinning the above material by a known method such as a vacuum deposition method, a spin coating method, a casting method, an ink jet method, or an LB method. The thickness of the injection layer is not particularly limited, but is usually about 5 to 5000 nm. This injection layer may have a single layer structure composed of one or more of the above materials.
[0266] 《陽極》  [0266] 《Anode》
本発明の有機 EL素子に係る陽極としては、仕事関数の大きい (4eV以上)金属、 合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが好ましく用い られる。このような電極物質の具体例としては、 Au等の金属、 Cul、インジウムチンォ キシド(ITO)、 SnO、 ZnO等の導電性透明材料が挙げられる。また、 IDIXO (In O — ZnO)等非晶質で透明導電膜を作製可能な材料を用いてもよい。陽極はこれらの 電極物質を蒸着やスパッタリング等の方法により薄膜を形成させ、フォトリソグラフィー 法で所望の形状のパターンを形成してもよぐあるいはパターン精度をあまり必要とし ない場合は(100 m以上程度)、上記電極物質の蒸着やスパッタリング時に所望の 形状のマスクを介してパターンを形成してもよい。この陽極より発光を取り出す場合に は、透過率を 10%より大きくすることが望ましぐまた陽極としてのシート抵抗は数百 Ω /口以下が好ましい。更に膜厚は材料にもよるが通常 10〜; 1000nm、好ましくは 10〜200nmの範囲で選ばれる。 [0267] 《陰極》 As the anode of the organic EL device of the present invention, an electrode material made of a metal, an alloy, an electrically conductive compound or a mixture thereof having a high work function (4 eV or more) is preferably used. Specific examples of such electrode materials include metals such as Au, and conductive transparent materials such as Cul, indium tin oxide (ITO), SnO, and ZnO. Alternatively, an amorphous material such as IDIXO (In 2 O 3 —ZnO) capable of forming a transparent conductive film may be used. For the anode, these electrode materials can be formed into a thin film by vapor deposition or sputtering, and a pattern of the desired shape can be formed by photolithography, or when pattern accuracy is not so high (about 100 m or more) ), A pattern may be formed through a mask having a desired shape when the electrode material is deposited or sputtered. In the case of taking out light emission from this anode, it is desirable to make the transmittance greater than 10%, and the sheet resistance as the anode is preferably several hundred Ω / mouth or less. Furthermore, although it depends on the material, the film thickness is usually 10 to 1000 nm, preferably 10 to 200 nm. [0267] 《Cathode》
一方、本発明に係る陰極としては、仕事関数の小さい (4eV以下)金属(電子注入 性金属と称する)、合金、電気伝導性化合物及びこれらの混合物を電極物質とするも のが用いられる。このような電極物質の具体例としては、ナトリウム、ナトリウム一力リウ ム合金、マグネシウム、リチウム、マグネシウム/銅混合物、マグネシウム/銀混合物 、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム /酸化アルミニウム (Al O )混合物、インジウム、リチウム/アルミニウム混合物、希 土類金属等が挙げられる。これらの中で、電子注入性及び酸化等に対する耐久性の 点から、電子注入性金属とこれより仕事関数の値が大きく安定な金属である第二金 属との混合物、例えば、マグネシウム/銀混合物、マグネシウム/アルミニウム混合 物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム (Al O )混合 物、リチウム/アルミニウム混合物、アルミニウム等が好適である。陰極はこれらの電 極物質を蒸着やスパッタリング等の方法により、薄膜を形成させることにより作製する こと力 Sできる。また、陰極としてのシート抵抗は数百 Ω /口以下が好ましぐ膜厚は通 常 10〜; 1000nm、好ましくは 50〜200nmの範囲で選ばれる。なお、発光を透過さ せるため、有機 EL素子の陽極または陰極のいずれか一方が、透明または半透明で あれば発光輝度が向上し好都合である。  On the other hand, as the cathode according to the present invention, a material having a low work function (4 eV or less) metal (referred to as an electron injecting metal), an alloy, an electrically conductive compound, and a mixture thereof is used. Specific examples of such electrode materials include sodium, sodium isotropic lithium alloy, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide (Al O) mixtures, indium, lithium / aluminum mixtures, rare earth metals and the like. Among these, from the viewpoint of electron injectability and durability against oxidation, etc., a mixture of an electron injecting metal and a second metal which is a stable metal having a larger work function value than this, for example, a magnesium / silver mixture. Magnesium / aluminum mixtures, magnesium / indium mixtures, aluminum / aluminum oxide (Al 2 O 3) mixtures, lithium / aluminum mixtures, aluminum and the like are suitable. The cathode can be made by forming a thin film of these electrode materials by vapor deposition or sputtering. The sheet resistance as the cathode is preferably several hundred Ω / mouth or less. The film thickness is usually 10 to 1000 nm, preferably 50 to 200 nm. In order to transmit light emission, it is convenient that either the anode or the cathode of the organic EL element is transparent or translucent to improve the light emission luminance.
[0268] 《基体 (基板、基材、支持体等ともいう)》 [0268] << Substrate (also referred to as substrate, substrate, support, etc.) >>
本発明の有機 EL素子に係る基体としては、ガラス、プラスチック等の種類には特に 限定はなぐまた透明のものであれば特に制限はないが、好ましく用いられる基板と しては、例えば、ガラス、石英、光透過性樹脂フィルムを挙げることができる。特に好 ましい基体は、有機 EL素子にフレキシブル性を与えることが可能な樹脂フィルムであ  The substrate of the organic EL device of the present invention is not particularly limited as long as it is transparent or transparent, and there are no particular restrictions on the type of glass, plastic, etc. Examples of substrates that are preferably used include glass, Examples thereof include quartz and a light-transmitting resin film. A particularly preferred substrate is a resin film that can give flexibility to the organic EL element.
[0269] 樹脂フィルムとしては、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナ フタレート(PEN)、ポリエーテルスルホン(PES)、ポリエーテルイミド、ポリエーテノレ エーテルケトン、ポリフエ二レンスルフイド、ポリアリレート、ポリイミド、ポリカーボネート (PC) ,セルローストリアセテート(TAC)、セルロースアセテートプロピオネート(CAP )等からなるフィルム等が挙げられる。 [0270] 樹脂フィルムの表面には、無機物もしくは有機物の被膜またはその両者のハイブリ ッド被膜が形成されていてもよぐ水蒸気透過率が 0. 01g/ (m2' 24h'MPa)以下の 高バリア性フィルムであることが好ましい。 [0269] Examples of the resin film include polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyethersulfone (PES), polyetherimide, polyetheroletherketone, polyphenylenesulfide, polyarylate, polyimide, polycarbonate (PC ), A film made of cellulose triacetate (TAC), cellulose acetate propionate (CAP) or the like. [0270] On the surface of the resin film, a water vapor transmission rate of 0.01 g / (m 2 '24h'MPa) or less is acceptable even if an inorganic or organic film or a hybrid film of both is formed. A barrier film is preferred.
[0271] 本発明の有機 EL素子の発光の室温における外部取り出し効率は 1 %以上であるこ とが好ましぐより好ましくは 2%以上である。ここに、外部取り出し量子効率(%) =有 機 EL素子外部に発光した光子数/有機 EL素子に流した電子数 X I 00である。  [0271] The external extraction efficiency at room temperature of light emission of the organic EL device of the present invention is preferably 1% or more, more preferably 2% or more. Here, the external extraction quantum efficiency (%) = the number of photons emitted outside the organic EL element / the number of electrons X I 00 flowed to the organic EL element.
[0272] また、カラーフィルタ一等の色相改良フィルタ一等を併用してもよい。  [0272] A hue improving filter such as a color filter may be used in combination.
[0273] 照明用途で用いる場合には、発光ムラを低減させるために粗面加工したフィルム( アンチグレアフイノレム等)を併用することもできる。  [0273] When used for illumination, a roughened film (such as anti-glare phenol) may be used in combination in order to reduce unevenness in light emission.
[0274] 多色表示装置として用いる場合は、少なくとも 2種類の異なる発光極大波長を有す る有機 EL素子からなるが、有機 EL素子を作製する好適な例を説明する。  [0274] When used as a multicolor display device, it is composed of at least two types of organic EL elements having different emission maximum wavelengths, and a preferred example of producing an organic EL element will be described.
[0275] 《有機 EL素子の作製方法》  [0275] <Method for manufacturing organic EL element>
本発明の有機 EL素子の作製方法の一例として、陽極/正孔注入層/正孔輸送層 /発光層/正孔阻止層/電子輸送層/陰極バッファー層/陰極力 なる有機 EL 素子の作製法につ!/、て説明する。  As an example of the method for producing the organic EL device of the present invention, a method for producing an organic EL device comprising: anode / hole injection layer / hole transport layer / light emitting layer / hole blocking layer / electron transport layer / cathode buffer layer / cathode force I will explain to you!
[0276] まず適当な基体上に所望の電極物質、例えば、陽極用物質からなる薄膜を、 1 μ m 以下、好ましくは 10〜200nmの膜厚になるように蒸着やスパッタリング等の方法によ り形成させ、陽極を作製する。次に、この上に素子材料である正孔注入層、正孔輸送 層、発光層、正孔阻止層、電子輸送層等の有機化合物を含有する薄膜を形成させ  [0276] First, a thin film made of a desired electrode material, for example, an anode material, is deposited on a suitable substrate by a method such as vapor deposition or sputtering so that the film thickness is 1 μm or less, preferably 10 to 200 nm. Then, an anode is produced. Next, a thin film containing an organic compound such as a hole injection layer, a hole transport layer, a light emitting layer, a hole blocking layer, or an electron transport layer, which is an element material, is formed thereon.
[0277] この有機化合物を含有する薄膜の薄膜化の方法としては、スピンコート法、キャスト 法、インクジェット法、蒸着法、印刷法等があるが、均質な膜が得られやすぐ且つピ ンホールが生成しにくい等の点から、真空蒸着法またはスピンコート法が特に好まし い。更に層ごとに異なる製膜法を適用してもよい。製膜に蒸着法を採用する場合、そ の蒸着条件は、使用する化合物の種類等により異なるが、一般にボート加熱温度 50 〜450°C、真空度 10— 6〜10— 2Pa、蒸着速度 0. 0;!〜 50nm/秒、基板温度ー5 0〜300°C、膜厚 0. 1〜5 mの範囲で適宜選ぶことが望ましい。 [0277] As a method for reducing the thickness of a thin film containing an organic compound, there are a spin coating method, a casting method, an ink jet method, a vapor deposition method, a printing method, and the like. The vacuum deposition method or the spin coating method is particularly preferable because it is difficult to form. Further, a different film forming method may be applied for each layer. When a vapor deposition method is used for film formation, the vapor deposition conditions vary depending on the type of compound used, but generally the boat heating temperature is 50 to 450 ° C, the degree of vacuum is 10-6 to 10-2 Pa, and the deposition rate is 0. It is desirable to select as appropriate in the range of 0;! To 50 nm / second, substrate temperature—50 to 300 ° C., and film thickness of 0.1 to 5 m.
[0278] これらの層の形成後、その上に陰極用物質からなる薄膜を 1 μ m以下好ましくは 50 〜200nmの範囲の膜厚になるように、例えば、蒸着やスパッタリング等の方法により 形成させ、陰極を設けることにより所望の有機 EL素子が得られる。この有機 EL素子 の作製は一回の真空引きで一貫して正孔注入層から陰極まで作製するのが好まし いが、途中で取り出して異なる製膜法を施しても構わない。その際、作業を乾燥不活 性ガス雰囲気下で行う等の配慮が必要となる。 [0278] After the formation of these layers, a thin film made of a cathode material is formed thereon with a thickness of 1 μm or less, preferably 50 A desired organic EL device can be obtained by forming the film so as to have a film thickness in the range of ˜200 nm by, for example, vapor deposition or sputtering, and providing a cathode. The organic EL device is preferably manufactured from the hole injection layer to the cathode consistently by a single vacuum, but it may be taken out halfway and subjected to different film forming methods. At that time, it is necessary to consider that the work is performed in a dry inert gas atmosphere.
[0279] 《表示装置》 [0279] <Display device>
本発明の表示装置について説明する。本発明の表示装置は上記有機 EL素子を 有する。  The display device of the present invention will be described. The display device of the present invention has the organic EL element.
[0280] 本発明の表示装置は単色でも多色でもよいが、ここでは多色表示装置について説 明する。多色表示装置の場合は発光層形成時のみシャドーマスクを設け、一面に蒸 着法、キャスト法、スピンコート法、インクジェット法、印刷法等で膜を形成できる。  [0280] The display device of the present invention may be single color or multicolor, but here, the multicolor display device will be described. In the case of a multicolor display device, a shadow mask is provided only at the time of forming a light emitting layer, and a film can be formed on one surface by a vapor deposition method, a casting method, a spin coating method, an ink jet method, a printing method, or the like.
[0281] 発光層のみパターユングを行う場合、その方法に限定はないが、好ましくは蒸着法 、インクジェット法、印刷法である。蒸着法を用いる場合においては、シャドーマスクを 用いたパターユングが好ましレ、。  [0281] When patterning is performed only on the light emitting layer, the method is not limited, but the vapor deposition method, the ink jet method, and the printing method are preferable. When using vapor deposition, patterning with a shadow mask is preferred.
[0282] また作製順序を逆にして、陰極、電子輸送層、正孔阻止層、発光層、正孔輸送層、 陽極の順に作製することも可能である。  [0282] Further, it is also possible to reverse the production order to produce a cathode, an electron transport layer, a hole blocking layer, a light emitting layer, a hole transport layer, and an anode in this order.
[0283] このようにして得られた多色表示装置に直流電圧を印加する場合には、陽極を +、 陰極を一の極性として電圧 2〜40V程度を印加すると発光が観測できる。また、逆の 極性で電圧を印加しても電流は流れずに発光は全く生じない。更に交流電圧を印加 する場合には、陽極が +、陰極が—の状態になったときのみ発光する。なお、印加 する交流の波形は任意でよ!/、。  [0283] When a DC voltage is applied to the multicolor display device thus obtained, light emission can be observed by applying a voltage of about 2 to 40 V with the anode serving as + and the cathode serving as one polarity. In addition, even if a voltage is applied with the opposite polarity, no current flows and no light is emitted. In addition, when an AC voltage is applied, light is emitted only when the anode is in the + state and the cathode is in the-state. The AC waveform to be applied is arbitrary! /.
[0284] 多色表示装置は表示デバイス、ディスプレイ、各種発光光源として用いることができ る。表示デバイス、ディスプレイにおいて、青、赤、緑発光の 3種の有機 EL素子を用 V、ることによりフルカラーの表示が可能となる。  [0284] The multicolor display device can be used as a display device, a display, and various light sources. For display devices and displays, full-color display is possible by using three organic EL elements, blue, red, and green light emission.
[0285] 表示デバイス、ディスプレイとしては、テレビ、パソコン、モパイル機器、 AV機器、文 字放送表示、 自動車内の情報表示等が挙げられる。特に静止画像や動画像を再生 する表示装置として使用してもよく、動画再生用の表示装置として使用する場合の駆 動方式は単純マトリクス(パッシブマトリクス)方式でもアクティブマトリクス方式でもどち らであよい。 [0285] Examples of the display device and display include a television, a personal computer, a mopile device, an AV device, a character broadcast display, and an information display in a car. In particular, it may be used as a display device for playing back still images and moving images, and the drive method when used as a display device for moving image playback is either a simple matrix (passive matrix) method or an active matrix method. It may be.
[0286] 発光光源としては家庭用照明、車内照明、時計や液晶用のバックライト、看板広告 、信号機、光記憶媒体の光源、電子写真複写機の光源、光通信処理機の光源、光 センサーの光源等が挙げられるが、これに限定するものではな!/、。  [0286] Luminescent light sources include home lighting, interior lighting, clock and liquid crystal backlights, billboard advertisements, traffic lights, optical storage media light sources, electrophotographic copying machine light sources, optical communication processor light sources, optical sensor Examples include light sources, but are not limited to this!
[0287] 《照明装置》  [0287] 《Lighting device》
本発明の照明装置について説明する。本発明の照明装置は上記有機 EL素子を 有する。  The lighting device of the present invention will be described. The lighting device of the present invention has the organic EL element.
[0288] 本発明の有機 EL素子に共振器構造を持たせた有機 EL素子として用いてもよぐこ のような共振器構造を有した有機 EL素子の使用目的としては、光記憶媒体の光源、 電子写真複写機の光源、光通信処理機の光源、光センサーの光源等が挙げられる 1S これらに限定されない。また、レーザー発振をさせることにより上記用途に使用し てもよい。  [0288] The organic EL element having the resonator structure may be used as an organic EL element having a resonator structure in the organic EL element of the present invention. Examples include a light source of an electrophotographic copying machine, a light source of an optical communication processor, a light source of an optical sensor, and the like. Moreover, you may use for the said use by making a laser oscillation.
[0289] また、本発明の有機 EL素子は照明用や露光光源のような一種のランプとして使用 してもよいし、画像を投影するタイプのプロジェクシヨン装置や、静止画像や動画像を 直接視認するタイプの表示装置(ディスプレイ)として使用してもよい。動画再生用の 表示装置として使用する場合の駆動方式は、単純マトリクス (パッシブマトリクス)方式 でもアクティブマトリクス方式でもどちらでもよい。または、異なる発光色を有する本発 明の有機 EL素子を 2種以上使用することにより、フルカラー表示装置を作製すること が可能である。  [0289] Further, the organic EL element of the present invention may be used as a kind of lamp for illumination or exposure light source, a projection device for projecting an image, a still image or a moving image directly visible It may be used as a type of display device (display). When used as a display device for video playback, the driving method may be either a simple matrix (passive matrix) method or an active matrix method. Alternatively, a full-color display device can be manufactured by using two or more organic EL elements of the present invention having different emission colors.
[0290] 以下、本発明の有機 EL素子を有する表示装置の一例を図面に基づいて説明する  Hereinafter, an example of a display device having the organic EL element of the present invention will be described with reference to the drawings.
[0291] 図 1は有機 EL素子から構成される表示装置の一例を示した模式図である。有機 E L素子の発光により画像情報の表示を行う、例えば、携帯電話等のディスプレイの模 式図である。 FIG. 1 is a schematic view showing an example of a display device composed of organic EL elements. FIG. 2 is a schematic diagram of a display such as a mobile phone that displays image information by light emission of an organic EL element.
[0292] ディスプレイ 1は複数の画素を有する表示部 A、画像情報に基づいて表示部 Aの画 像走査を行う制御部 B等からなる。  [0292] The display 1 includes a display unit A having a plurality of pixels, a control unit B that performs image scanning of the display unit A based on image information, and the like.
[0293] 制御部 Bは表示部 Aと電気的に接続され、複数の画素それぞれに外部からの画像 情報に基づいて走査信号と画像データ信号を送り、走査信号により走査線毎の画素 が画像データ信号に応じて順次発光して画像走査を行って画像情報を表示部 Aに[0293] The control unit B is electrically connected to the display unit A, and sends a scanning signal and an image data signal to each of a plurality of pixels based on image information from the outside. Sequentially emits light according to the image data signal, scans the image, and sends the image information to the display unit A.
Ik小 ^る。 Ik small.
[0294] 図 2は表示部 Aの模式図である。  FIG. 2 is a schematic diagram of the display unit A.
[0295] 表示部 Aは基板上に、複数の走査線 5及びデータ線 6を含む配線部と複数の画素 [0295] The display portion A includes a wiring portion including a plurality of scanning lines 5 and data lines 6 and a plurality of pixels on a substrate.
3等とを有する。表示部 Aの主要な部材の説明を以下に行う。 It has 3 mag. The main members of the display unit A will be described below.
[0296] 図においては、画素 3の発光した光が白矢印方向(下方向)へ取り出される場合を 示している。 [0296] The figure shows a case where the light emitted from the pixel 3 is extracted in the direction of the white arrow (downward).
[0297] 配線部の走査線 5及び複数のデータ線 6はそれぞれ導電材料からなり、走査線 5と データ線 6は格子状に直交して、直交する位置で画素 3に接続している(詳細は図示 していない)。  [0297] The scanning lines 5 and the plurality of data lines 6 in the wiring portion are each made of a conductive material, and the scanning lines 5 and the data lines 6 are orthogonal to each other in a grid pattern and are connected to the pixels 3 at the orthogonal positions (details) Is not shown).
[0298] 画素 3は走査線 5から走査信号が印加されると、データ線 6から画像データ信号を 受け取り、受け取った画像データに応じて発光する。発光の色が赤領域の画素、緑 領域の画素、青領域の画素を適宜同一基板上に並置することによって、フルカラー 表示が可能となる。  [0298] When a scanning signal is applied from the scanning line 5, the pixel 3 receives an image data signal from the data line 6, and emits light in accordance with the received image data. Full color display is possible by arranging pixels in the red region, the green region, and the blue region as appropriate on the same substrate.
[0299] 次に、画素の発光プロセスを説明する。  Next, the light emission process of the pixel will be described.
[0300] 図 3は画素の模式図である。  FIG. 3 is a schematic diagram of a pixel.
[0301] 画素は有機 EL素子 10、スイッチングトランジスタ 11、駆動トランジスタ 12、コンデン サ 13等を備えている。複数の画素に有機 EL素子 10として、赤色、緑色、青色発光 の有機 EL素子を用い、これらを同一基板上に並置することでフルカラー表示を行う こと力 Sでさる。  [0301] The pixel includes an organic EL element 10, a switching transistor 11, a driving transistor 12, a capacitor 13, and the like. Using organic EL elements that emit red, green, and blue as the organic EL elements 10 in multiple pixels, and arranging them on the same substrate in parallel, full-color display can be achieved with power S.
[0302] 図 3において、制御部 Bからデータ線 6を介してスイッチングトランジスタ 11のドレイ ンに画像データ信号が印加される。そして、制御部 Bから走査線 5を介してスィッチン グトランジスタ 11のゲートに走査信号が印加されると、スイッチングトランジスタ 11の 駆動がオンし、ドレインに印加された画像データ信号がコンデンサ 13と駆動トランジ スタ 12のゲートに伝達される。  In FIG. 3, an image data signal is applied from the control unit B to the drain of the switching transistor 11 via the data line 6. When a scanning signal is applied from the control unit B to the gate of the switching transistor 11 via the scanning line 5, the driving of the switching transistor 11 is turned on, and the image data signal applied to the drain is transferred to the capacitor 13 and the driving transistor. It is transmitted to the gate of the star 12.
[0303] 画像データ信号の伝達により、コンデンサ 13が画像データ信号の電位に応じて充 電されるとともに、駆動トランジスタ 12の駆動がオンする。駆動トランジスタ 12は、ドレ インが電源ライン 7に接続され、ソースが有機 EL素子 10の電極に接続されており、ゲ 一トに印加された画像データ信号の電位に応じて電源ライン 7から有機 EL素子 10に 電流が供給される。 [0303] By transmitting the image data signal, the capacitor 13 is charged according to the potential of the image data signal, and the drive of the drive transistor 12 is turned on. The drive transistor 12 has a drain connected to the power supply line 7 and a source connected to the electrode of the organic EL element 10. Current is supplied from the power supply line 7 to the organic EL element 10 in accordance with the potential of the image data signal applied at a time.
[0304] 制御部 Bの順次走査により走査信号が次の走査線 5に移ると、スイッチングトランジ スタ 11の駆動がオフする。しかし、スイッチングトランジスタ 11の駆動がオフしてもコン デンサ 13は充電された画像データ信号の電位を保持するので、駆動トランジスタ 12 の駆動はオン状態が保たれて、次の走査信号の印加が行われるまで有機 EL素子 1 0の発光が継続する。順次走査により次に走査信号が印加されたとき、走査信号に 同期した次の画像データ信号の電位に応じて駆動トランジスタ 12が駆動して有機 E L素子 10が発光する。  [0304] When the scanning signal is moved to the next scanning line 5 by the sequential scanning of the control unit B, the driving of the switching transistor 11 is turned off. However, even if the driving of the switching transistor 11 is turned off, the capacitor 13 holds the potential of the charged image data signal, so that the driving of the driving transistor 12 is kept on and the next scanning signal is applied. The organic EL device 10 continues to emit light until it is seen. When a scanning signal is next applied by sequential scanning, the driving transistor 12 is driven according to the potential of the next image data signal synchronized with the scanning signal, and the organic EL element 10 emits light.
[0305] 即ち、有機 EL素子 10の発光は、複数の画素それぞれの有機 EL素子 10に対して 、アクティブ素子であるスイッチングトランジスタ 11と駆動トランジスタ 12を設けて、複 数の画素 3それぞれの有機 EL素子 10の発光を行っている。このような発光方法をァ クティブマトリクス方式と呼んでいる。  That is, the organic EL element 10 emits light by providing a switching transistor 11 and a drive transistor 12 as active elements for each of the organic EL elements 10 of each of the plurality of pixels, thereby providing organic EL for each of the plurality of pixels 3. Element 10 is emitting light. Such a light emitting method is called an active matrix method.
[0306] ここで、有機 EL素子 10の発光は複数の階調電位を持つ多値の画像データ信号に よる複数の階調の発光でもよ!/、し、 2値の画像データ信号による所定の発光量のオン 、オフでもよい。また、コンデンサ 13の電位の保持は次の走査信号の印加まで継続 して保持してもよレ、し、次の走査信号が印加される直前に放電させてもよ!/、。  Here, the light emission of the organic EL element 10 may be light emission of a plurality of gradations by a multi-value image data signal having a plurality of gradation potentials! / The light emission amount may be on or off. The potential of the capacitor 13 can be maintained until the next scanning signal is applied, or can be discharged immediately before the next scanning signal is applied! /.
[0307] 本発明にお!/、ては、上述したアクティブマトリクス方式に限らず、走査信号が走査さ れたときのみデータ信号に応じて有機 EL素子を発光させるパッシブマトリクス方式の 発光駆動でもよい。  [0307] The present invention is not limited to the above-described active matrix system, and may be a passive matrix system light emission drive in which an organic EL element emits light according to a data signal only when a scanning signal is scanned. .
[0308] 図 4はパッシブマトリクス方式による表示装置の模式図である。図 4において、複数 の走査線 5と複数の画像データ線 6が画素 3を挟んで対向して格子状に設けられて いる。  FIG. 4 is a schematic diagram of a display device using a passive matrix method. In FIG. 4, a plurality of scanning lines 5 and a plurality of image data lines 6 are provided in a lattice shape so as to face each other with the pixel 3 interposed therebetween.
[0309] 順次走査により走査線 5の走査信号が印加されたとき、印加された走査線 5に接続 してレ、る画素 3が画像データ信号に応じて発光する。  When the scanning signal of the scanning line 5 is applied by sequential scanning, the pixel 3 connected to the applied scanning line 5 emits light according to the image data signal.
[0310] ノ ッシブマトリクス方式では画素 3にアクティブ素子が無ぐ製造コストの低減が計れ [0310] With the noisy matrix method, there is no active element in pixel 3, and the manufacturing cost can be reduced.
[0311] また本発明の有機 EL材料は照明装置として、実質白色の発光を生じる有機 EL素 子に適用できる。複数の発光材料により複数の発光色を同時に発光させて混色によ り白色発光を得る。複数の発光色の組み合わせとしては、青色、緑色、青色の 3原色 の 3つの発光極大波長を含有させたものでもよいし、青色と黄色、青緑と橙色等の補 色の関係を利用した 2つの発光極大波長を含有したものでもよい。 [0311] The organic EL material of the present invention is an organic EL element that emits substantially white light as a lighting device. Applicable to children. A plurality of light emitting colors are simultaneously emitted by a plurality of light emitting materials, and white light emission is obtained by mixing colors. The combination of multiple emission colors may include three emission maximum wavelengths of the three primary colors of blue, green, and blue, or the complementary colors such as blue and yellow, and blue-green and orange are used 2 It may be one containing two emission maximum wavelengths.
[0312] また複数の発光色を得るための発光材料の組み合わせは、複数のリン光または蛍 光で発光する材料を複数組み合わせたもの、蛍光またはリン光で発光する発光材料 と、発光材料からの光を励起光として発光する色素材料との組み合わせたもののい ずれでもよいが、本発明に係る白色有機 EL素子においては、発光ドーパントを複数 組み合わせ混合するだけでよい。発光層もしくは正孔輸送層あるいは電子輸送層等 の形成時のみマスクを設け、マスクにより塗り分ける等単純に配置するだけでよぐ他 層は共通であるのでマスク等のパターユングは不要であり、一面に蒸着法、キャスト 法、スピンコート法、インクジェット法、印刷法等で例えば電極膜を形成でき、生産性 も向上する。この方法によれば、複数色の発光素子をアレー状に並列配置した白色 有機 EL装置と異なり、素子自体が発光白色である。  [0312] A combination of light emitting materials for obtaining a plurality of emission colors includes a combination of a plurality of phosphorescent or fluorescent materials, a fluorescent material or a phosphorescent material, Any combination with a dye material that emits light as excitation light may be used, but in the white organic EL device according to the present invention, only a combination of a plurality of light-emitting dopants may be mixed. A mask is provided only at the time of formation of the light emitting layer, hole transport layer, electron transport layer, etc. For example, an electrode film can be formed on one side by vapor deposition, casting, spin coating, ink jet, printing, etc., and productivity is improved. According to this method, unlike the white organic EL device in which light emitting elements of a plurality of colors are arranged in parallel in an array, the elements themselves emit white light.
[0313] 発光層に用いる発光材料としては特に制限はなぐ例えば、液晶表示素子におけ るバックライトであれば、 CF (カラーフィルター)特性に対応した波長範囲に適合する ように、本発明に係る金属錯体、また公知の発光材料の中から任意のものを選択して 組み合わせて白色化すればよ!/、。  [0313] The light emitting material used for the light emitting layer is not particularly limited. For example, in the case of a backlight in a liquid crystal display element, the light emitting material according to the present invention is adapted so as to conform to the wavelength range corresponding to the CF (color filter) characteristics. Select any of the metal complexes and known luminescent materials and combine them to whiten! /.
[0314] このように、本発明に係る白色発光有機 EL素子は、前記表示デバイス、ディスプレ ィに加えて、各種発光光源、照明装置として、家庭用照明、車内照明、また露光光源 のような一種のランプとして、また液晶表示装置のバックライト等、表示装置にも有用 に用いられる。  [0314] Thus, the white light-emitting organic EL device according to the present invention is not only the display device and the display, but also a variety of light-emitting light sources and lighting devices, such as home lighting, interior lighting, and exposure light source. It is also useful for display devices such as backlights for liquid crystal display devices.
[0315] その他、時計等のバックライト、看板広告、信号機、光記憶媒体等の光源、電子写 真複写機の光源、光通信処理機の光源、光センサーの光源等、更には表示装置を 必要とする一般の家庭用電気器具等広い範囲の用途が挙げられる。  [0315] Other light sources such as backlights for watches, billboard advertisements, traffic lights, optical storage media, electronic photocopiers, optical communication processors, photosensors, etc. And a wide range of uses such as general household appliances.
実施例  Example
[0316] 以下、実施例により本発明を説明するが、本発明はこれらに限定されない。  [0316] Hereinafter, the present invention will be described with reference to Examples, but the present invention is not limited thereto.
[0317] 実施例 1 《有機 EL素子 1 1の作製》 [0317] Example 1 << Production of organic EL elements 1 1 >>
陽極としてガラス上に ITOを 150nm成膜した基板(NHテクノグラス社製: NA— 45 )にパターユングを行った後、この ITO透明電極を設けた透明支持基板を iso プロ ピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、 UVオゾン洗浄を 5分間行 つた。この透明支持基板を市販の真空蒸着装置の基板ホルダーに固定し、一方 5つ のタンタル製抵抗加熱ボートに α— NPD、 H4、 Ir 12、 BCP、 Alqをそれぞれ入 れ、真空蒸着装置 (第 1真空槽)に取り付けた。  After patterning a substrate with 150nm ITO film on glass (NH Techno Glass: NA-45) as the anode, the transparent support substrate with this ITO transparent electrode was ultrasonically cleaned with isopropyl alcohol Then, it was dried with dry nitrogen gas, and UV ozone cleaning was performed for 5 minutes. This transparent support substrate is fixed to a substrate holder of a commercially available vacuum evaporation system, while α-NPD, H4, Ir 12, BCP, and Alq are placed in five tantalum resistance heating boats, respectively. (Vacuum chamber).
[0318] 更に、タンタル製抵抗加熱ボートにフッ化リチウムを、タングステン製抵抗加熱ボー トにアルミニウムをそれぞれ入れ、真空蒸着装置の第 2真空槽に取り付けた。 [0318] Further, lithium fluoride was put into a resistance heating boat made of tantalum, and aluminum was put into a resistance heating boat made of tungsten, respectively, and attached to the second vacuum chamber of the vacuum evaporation apparatus.
[0319] まず、第 1の真空槽を 4 X 10— 4Paまで減圧した後、 α NPDの入った前記加熱ボ ートに通電して加熱し、蒸着速度 0. ;!〜 0. 2nm/秒で透明支持基板に膜厚 20nm の厚さになるように蒸着し、正孔注入/輸送層を設けた。 [0319] First, after the vacuum of the first vacuum chamber to 4 X 10- 4 Pa, and heated by supplying an electric current to the baud preparative containing the alpha NPD, deposition rate 0.;! ~ 0. 2nm / In a second, vapor deposition was performed on the transparent support substrate to a thickness of 20 nm, and a hole injection / transport layer was provided.
[0320] 更に、 H4の入った前記加熱ボートと Ir 12の入ったボートをそれぞれ独立に通電 して、発光ホストである H4と発光ドーパントである Ir— 12の蒸着速度が 100: 6になる ように調節し、膜厚 30nmの厚さになるように蒸着し、発光層を設けた。 [0320] Further, the heating boat containing H4 and the boat containing Ir 12 are energized independently so that the deposition rate of H4 as a light emitting host and Ir-12 as a light emitting dopant is 100: 6. And a light emitting layer was provided by vapor deposition to a thickness of 30 nm.
[0321] 次いで、 BCPの入った前記加熱ボートに通電して加熱し、蒸着速度 0. ;!〜 0. 2n m/秒で厚さ lOnmの正孔阻止層を設けた。更に Alqの入った前記加熱ボートを通 電して加熱し、蒸着速度 0. ;!〜 0. 2nm/秒で膜厚 20nmの電子輸送層を設けた。 [0321] Next, the heating boat containing BCP was energized and heated, and a hole blocking layer having a thickness of lOnm was provided at a deposition rate of 0.2;! To 0.2 nm / sec. Further, the heating boat containing Alq was passed through and heated to provide an electron transporting layer having a film thickness of 20 nm at a deposition rate of 0.2;
[0322] 次に、電子輸送層まで成膜した素子を真空のまま第 2真空槽に移した後、電子輸 送層の上にステンレス鋼製の長方形穴あきマスクが配置されるように装置外部からリ モートコントロールして設置した。 [0322] Next, after the element deposited up to the electron transport layer was transferred to the second vacuum chamber while maintaining a vacuum, the stainless steel rectangular perforated mask was placed on the electron transport layer. It was installed with remote control.
[0323] 第 2真空槽を 2 X 10— 4Paまで減圧した後、フッ化リチウム入りのボートに通電して蒸 着速度 0. 01—0. 02nm/秒で膜厚 0. 5nmの陰極バッファ一層を設け、次いでァ ノレミニゥムの入ったボートに通電して、蒸着速度 l〜2nm/秒で膜厚 150nmの陰極 をつけ、有機 EL素子 1—1を作製した。 [0323] After decompression of the second vacuum chamber up to 2 X 10- 4 Pa, evaporation Chakusokudo 0. 01-0 by energizing the boat lithium fluoride containing. 02nm / sec to a film thickness 0. 5 nm cathode buffer One layer was provided, and then the boat containing the anode was energized, and a cathode with a film thickness of 150 nm was attached at a deposition rate of 1 to 2 nm / second to produce an organic EL device 1-1.
[0324] [化 134] BCP & - ΡΌ [0324] [Chemical 134] BCP &-ΡΌ
Figure imgf000163_0001
Figure imgf000163_0001
[0325] 《有機 EL素子 1—2〜;!— 37の作製》 [0325] << Organic EL device 1-2 ~;!-37 fabrication >>
有機 EL素子 1—1の作製において、表 1に記載のように発光ホスト、発光ドーパント 及び正孔阻止材料を変更した以外は同様にして、有機 EL素子 1一 2〜;!一☆を作製 した。  In the production of organic EL device 1-1, organic EL device 1 1-2 ~ !! ☆ was produced in the same manner except that the light-emitting host, light-emitting dopant, and hole blocking material were changed as shown in Table 1. .
[0326] [表 1] [0326] [Table 1]
発光 正孔阻止外部取出し Emission Hole blocking external extraction
有祷 εし素子^- 発光ドーバン卜 凳允寿命発光色 « 考 ォ、スト «料 量子効 * 祷 し 素 子 ^ 発 光 発 光 ド ー ド ー 凳 允 凳 允 lifetime emission color «consideration, strike« material quantum effect *
1 ― Λ H - 4 Ir-lE 100 100 '水色 比較例 - 2 H - 4比較化合物 1 8 C P 102: 9S 緑 比較例 1 ― Λ H-4 Ir-lE 100 100 'Light blue Comparative example-2 H-4 Comparative compound 1 8 C P 102: 9S Green Comparative example
1 -3 H - 4比較化合物 2 B C P 105 93 青緑 比較 «1 -3 H-4 Comparative compound 2 B C P 105 93 Blue green Comparison «
1 - A H— 4比較化合物 3: BCP 99 青緣 比較 «1-A H— 4Comparison Compound 3: BCP 99 Blue Agate Comparison «
1 — H— 4例示化合物 ·1 ― 1 BC P 134 332 緑 本発明1 — H— 4 Exemplified compounds 1 — 1 BC P 134 332 Green The present invention
1 6 H— 4例示:化合物 1 ― 4 B C M6 407 赤 本発明1 6 H—4 Ex .: Compound 1 — 4 B C M6 407 Red The present invention
1 - 7 H 4例示化合物 1. ― 6 BC P: 13? 4SS 本発明1-7 H 4 Exemplified compound 1. ― 6 BC P: 13? 4SS The present invention
1― B H— 4例示化食物 1 -44 BC P 156 411 純青 本発明 : 1—BH—4 Illustrative food 1 -44 BC P 156 411 Pure blue The present invention :
1 —9 H― 例示化合物 2—69 B C P 149 400 m 本発明1 —9 H—Exemplary compound 2—69 B C P 149 400 m The present invention
1 ~W H— 4価化合物 2 -76 B C f 168 689 純寳 本発 ·明1 ~ W H— Tetravalent compound 2 -76 B C f 168 689
1 -11 H— 4倒示化.合物 2 389 B C P 153 Si7 健青 本発明 ί -12 H - 4例示化合.物 2' - 42S B C P 174 ?77 純臂 本発明1 -11 H— 4 Inverted compound. 2 389 B C P 153 Si7 Ken blue Present invention ί -12 H-4 Illustrated compound 2 '-42S B C P 174? 77 Pure present invention
\ H - 例示化合物 ·?-·»■ 559· B C P 166 702 純青 本発明 —14 H - 4例.示化含物 2 -619 a c ITS 765 «青 本発明\ H-Exemplified compounds ·?-· »■ 559 · B C P 166 702 Pure blue Present invention —14 H-4 examples. Including inclusions 2 -619 a c ITS 765« Blue Present invention
1 — H -- 4例示化合物 '1 - 1 H - 5 t 9 442 録 本発明1 — H-4 Exemplified compound '1-1 H-5 t 9 442
1 -16 H- 4例示化合物 1 -4 ; H - 5 177 4'0 赤 本発明1 -16 H-4 Exemplified Compound 1 -4; H-5 177 4'0 Red The present invention
1 ™17 ■ - H - - -— 4 - - -例示化合物〗 ~ 8 H - 5 178 503 純膏 :本発1 ™ 17 ■-H---— 4---Exemplified compound〗 ~ 8 H-5 178 503
1 -18 H - 4例示化合物 1· -44 H - 5 5§6 543 青 本発明:1 -18 H-4 Exemplified compound 1-44 H-5 5 § 6 543 Blue The present invention:
1 -1 H ~ 例示化台物 '2 69 H—■ 5 158 678 本発明1 -1 H ~ Illustrated platform '2 69 H— ■ 5 158 678
1 ™20 H -- 4例示化合物 2 7δ H - 5 180 747 本発明1 ™ 20 H-4 Exemplary compounds 2 7δ H-5 180 747 The present invention
1 -21 H— 4.埦示化合物 2—389 H— 5 !77 720 本発明1 -21 H— 4. Display compound 2—389 H— 5! 77 720 The present invention
1 -22 H '― 4例示 :化台物 ·2 --425 H一 S 165 769 赫 本発明 1 —23 H— 4例示化合物' 2—559 H - 5 171 677 齊 本翻1 -22 H '― 4 Ex . : Chemical base 2 --425 H 1 S 165 769 赫 The present invention 1 —23 H—4 Exemplified compounds' 2—559 H-5 171 677 齊
1 — H— 4例示化合物 2 -619 ■H— 5 168 621 *発明1 — H— 4 Exemplified compounds 2 -619 ■ H— 5 168 621 * Invention
\ 25. H— 6倒示化合物 1 -44 B C P 159 490 青 本穽明 -26 H - 6例示化合物 ·2—42 SO P 170 799 純青 本発明\ 25. H-6 Inversion compound 1 -44 B C P 159 490 Aomoto Tomoaki -26 H-6 Exemplified compound · 2-42 SO P 170 799 Pure blue The present invention
\ -11 H ~ 6例示化合物 2 -6.19 BC P 567 638 as 本発明\ -11 H ~ 6 Exemplified compound 2 -6.19 BC P 567 638 as the present invention
\ -" Z& H― 6例示化合物 1—44 H - 5 178 531 麵 本発明\-"Z & H-6 Exemplified compound 1-44 H-5 178 531 麵 The present invention
1 -23 H ~ 6例示化含物: 2.—389 H - 5 161 499 純青 本発明1 -23 H ~ 6 Examples include: 2.—389 H-5 161 499 Pure blue
) —30 H - 6例示化合物 · 2. -4Ζ5 H - 5 ϊ81 758 青 本発明 … H― 6例示化合物' 2 -6Τ9; H - 5 169 731 ate 本発明) —30 H-6 Exemplified compound · 2. -4Ζ5 H-5 ϊ81 758 Blue Present invention… H-6 Illustrated compound '2 -6Τ9; H-5 169 731 ate Present invention
1 —32 H - 30 1 [示:化合物 1 —44 I BC Ρ rn 519 本発明1 —32 H-30 1 [Indication: Compound 1 —44 I BC Ρ rn 519
1 -33 H -30 ■ 化台キ 2 -425 B C P 178 800 賨 本発明1 -33 H -30 ■ Chemical base 2 -425 B C P 178 800 賨 This invention
1 -34 H - 3D例 :示化合物 2— 6 IS BC P 169 707 本発明1 -34 H-3D Example : Compound 2-6 IS BC P 169 707 The present invention
1一 H - 30剁示化合物〗— 44 H- 5 165 468 本発明1 1 H-30 剁 Compound〗 — 44 H- 5 165 468 The present invention
1 -36 H - 30例:示:化合物 2— 5 H - 5 !81 ?90 純青 本発明1 -36 H-30 Example: Indication: Compound 2— 5 H-5! 81? 90 Pure blue The present invention
1 ™37 H - 30 示化合物 一 6Ί9 J H - 5 167 6S0 本発明 135] 比較化合物 1 1 ™ 37 H-30 Compound 1 6-9 JH-5 167 6S0 Invention 135] Comparative compound 1
Figure imgf000165_0001
Figure imgf000165_0001
園際公開第 04/08S4SO号の 22:頁- 般式に該当の化合物  Inter-Academic Publication No. 04 / 08S4SO No. 22: Page-Compounds falling under the general formula
[0328] 表 1から、本発明に係る金属錯体を用いて作製した有機 EL素子は、比較例の有機 EL素子に比べ、純青〜青緑色の短波な発光を持ちながら高い発光効率と発光寿命 の長寿命化が達成できることが明らかである。加えて、比較例の有機 EL素子に比べ 、青色純度が高ぐ青色発光素子として有用であることがわかる。 [0328] From Table 1, the organic EL device produced using the metal complex according to the present invention has higher emission efficiency and longer lifetime while having a short-wave emission of pure blue to blue green compared to the organic EL device of the comparative example. It is clear that a long life can be achieved. In addition, it can be seen that it is useful as a blue light emitting device having a higher blue purity than the organic EL device of the comparative example.
[0329] また、本発明の金属錯体においてより好ましい形態を用いることにより、発光素子の 寿命をさらに向上することが可能である。 [0330] 実施例 2 [0329] Further, the lifetime of the light-emitting element can be further improved by using a more preferable form in the metal complex of the present invention. [0330] Example 2
《有機 EL素子 2 1の作製》  <Production of organic EL element 21>
25mm X 25mm X O. 5mmのガラス支持基板上に直流電源を用い、スパッタ法に てインジウム錫酸化物(ITO、インジウム/錫 = 95/5モル比)の陽極を形成した (厚 み 200nm)。この陽極の表面抵抗は 10 Ω /口であった。これにポリビュルカルバゾ ール (正孔輸送性バインダーポリマー) /Ir 13 (青発光性オルトメタル化錯体) /2 一(4ービフエ二リル)ー5—(4 t ブチルフエニル) 1 , 3, 4—ォキサジァゾ ル( 電子輸送材) = 200/2/50質量比を溶解したジクロロエタン溶液をスピンコ一タ一 で塗布し、 lOOnmの発光層を得た。この有機化合物層の上にバタ—ユングしたマス ク (発光面積が 5mm X 5mmとなるマスク)を設置し、蒸着装置内で陰極バッファ一層 としてフッ化リチウム 0. 5nm及び陰極としてアルミニウム 150nmを蒸着して陰極を設 けて、青色発光の有機 EL素子 2 1を作製した。  An anode of indium tin oxide (ITO, indium / tin = 95/5 molar ratio) was formed by sputtering on a glass support substrate of 25 mm X 25 mm X O. 5 mm using a DC power source (thickness 200 nm). The surface resistance of this anode was 10 Ω / mouth. Polyburcarbazole (hole transporting binder polymer) / Ir 13 (blue light-emitting orthometalated complex) / 2 (4-biphenyl) -5- (4 t-butylphenyl) 1, 3, 4 —Oxadiazole (electron transport material) = A dichloroethane solution in which a mass ratio of 200/2/50 was dissolved was applied with a spin coater to obtain a light emitting layer of lOOnm. A buttered mask (a mask with a light emitting area of 5 mm x 5 mm) is placed on the organic compound layer, and 0.5 nm of lithium fluoride is deposited as a cathode buffer layer and 150 nm of aluminum is deposited as a cathode in a deposition apparatus. Thus, a cathode was provided to produce an organic EL device 21 emitting blue light.
[0331] 《有機 EL素子 2— 2〜2— 14の作製》  [0331] << Production of organic EL elements 2-2 to 2-14 >>
有機 EL素子 2—1の作製において、表 2に記載のように発光ドーパントを変更した 以外は同様にして、有機 EL素子 2— 2〜2— 14を作製した。  Organic EL elements 2-2 to 2-14 were prepared in the same manner as in the preparation of organic EL element 2-1, except that the luminescent dopant was changed as shown in Table 2.
[0332] 《有機 EL素子の評価》  [0332] << Evaluation of organic EL elements >>
得られた有機 EL素子 2—;!〜 2— 14を評価するに際しては、作製後の各有機 EL 素子の非発光面をガラスケースで覆い、厚み 300 mのガラス基板を封止用基板と して用いて、周囲にシール材として、エポキシ系光硬化型接着剤(東亞合成社製ラッ タストラック LC0629B)を適用し、これを上記陰極上に重ねて前記透明支持基板と 密着させ、ガラス基板側から UV光を照射して、硬化させて、封止して、図 5、図 6に 示すような照明装置を形成して評価した。  When evaluating the obtained organic EL elements 2— ;! to 2-14, the non-light-emitting surface of each organic EL element after fabrication was covered with a glass case, and a glass substrate having a thickness of 300 m was used as the sealing substrate. The epoxy-based photo-curing adhesive (Latus Track LC0629B manufactured by Toagosei Co., Ltd.) is applied as a sealant around the glass substrate, and this is overlaid on the cathode and brought into close contact with the transparent support substrate. Then, UV light was irradiated, cured, sealed, and an illumination device as shown in FIGS. 5 and 6 was formed and evaluated.
[0333] 次いで、下記のようにして発光輝度及び発光効率を測定した。  [0333] Next, light emission luminance and light emission efficiency were measured as follows.
[0334] (発光輝度、発光効率)  [0334] (Luminance, luminous efficiency)
東洋テクユカ製ソ―スメジャ―ユニット 2400型を用いて、直流電圧を有機 EL素子 に印加して発光させ、 10Vの直流電圧を印加した時の発光輝度(cd/m2)と 2. 5m A/cm2の電流を通じた時の発光効率 (lm/W)を測定した。得られた結果を表 2に 示す。有機 EL素子 2—1を 100とする相対値で表した。 [0335] [表 2] Using a Toyo Tech Yuka source measure unit type 2400, a direct current voltage was applied to the organic EL element to emit light, and the emission luminance (cd / m 2 ) and 2.5 mA / The luminous efficiency (lm / W) was measured when a current of cm 2 was passed. Table 2 shows the results obtained. It is expressed as a relative value where the organic EL element 2-1 is 100. [0335] [Table 2]
Figure imgf000167_0001
Figure imgf000167_0001
[0336] 表 2から、本発明に係る金属錯体を用いて作製した有機 EL素子は、比較例の有機 EL素子に比べ、高い発光効率と高い輝度が達成できることが明らかである [0336] From Table 2, it is clear that the organic EL device produced using the metal complex according to the present invention can achieve higher luminous efficiency and higher luminance than the organic EL device of the comparative example.
実施例 3  Example 3
《フルカラー表示装置の作製》  <Production of full-color display device>
(青色発光素子の作製)  (Production of blue light-emitting elements)
実施例 1の有機 EL素子 1 12を青色発光素子として用レ、た。  The organic EL device 112 of Example 1 was used as a blue light emitting device.
[0337] (緑色発光素子の作製) [0337] (Production of green light-emitting element)
実施例 1の有機 EL素子 1 1にお!/、て、 Ir— 12を Ir— 1に変更した以外は同様にし て、緑色発光素子を作製し、これを緑色発光素子として用いた。  A green light emitting device was produced in the same manner as in Example 1 except that Ir-12 was changed to Ir-1 in the organic EL device 11 of Example 1, and this was used as a green light emitting device.
[0338] (赤色発光素子の作製) [0338] (Production of red light-emitting element)
実施例 1の有機 EL素子 1 1にお!/、て、 Ir— 12を Ir— 9に変更した以外は同様にし て、赤色発光素子を作製し、これを赤色発光素子として用いた。  A red light emitting device was produced in the same manner as in Example 1 except that Ir-12 was changed to Ir-9 in the organic EL device 11 of Example 1, and this was used as a red light emitting device.
[0339] 上記で作製した赤色、緑色、青色発光有機 EL素子を同一基板上に並置し、図 1に 記載のような形態を有するアクティブマトリクス方式フルカラー表示装置を作製した。 図 2には、作製した前記表示装置の表示部 Aの模式図のみを示した。即ち、同一基 板上に複数の走査線 5及びデータ線 6を含む配線部と並置した複数の画素 3 (発光 の色が赤領域の画素、緑領域の画素、青領域の画素等)とを有し、配線部の走査線 5及び複数のデータ線 6はそれぞれ導電材料からなり、走査線 5とデータ線 6は格子 状に直交して、直交する位置で画素 3に接続している(詳細は図示せず)。前記複数 画素 3は、それぞれの発光色に対応した有機 EL素子、アクティブ素子であるスィッチ 駆動されており、走査線 5から走査信号が印加されるとデータ線 6から画像データ信 号を受け取り、受け取った画像データに応じて発光する。このように赤、緑、青の画素 を適宜、並置することによって、フルカラー表示装置を作製した。 [0339] The red, green, and blue light-emitting organic EL elements produced above were juxtaposed on the same substrate, and an active matrix full-color display device having a configuration as shown in Fig. 1 was produced. FIG. 2 shows only a schematic view of the display portion A of the display device thus manufactured. That is, a plurality of pixels 3 (light emitting elements) juxtaposed with a wiring portion including a plurality of scanning lines 5 and data lines 6 on the same substrate. And the scanning line 5 and the plurality of data lines 6 in the wiring portion are each made of a conductive material, and the scanning line 5 and the data line 6 Is orthogonal to the grid and is connected to the pixel 3 at the orthogonal position (details not shown). The plurality of pixels 3 are driven by switches that are organic EL elements and active elements corresponding to the respective emission colors. When a scanning signal is applied from the scanning line 5, the pixel 3 receives and receives an image data signal from the data line 6. Emits light according to the image data. In this way, a full-color display device was produced by appropriately juxtaposing red, green, and blue pixels.
[0340] このフルカラー表示装置は駆動することにより、輝度が高ぐ高耐久性を有し、且つ 鮮明なフルカラー動画表示が得られることが分かった。  [0340] It was found that when this full-color display device is driven, a high-brightness, high-durability and clear full-color moving image display can be obtained.
[0341] 実施例 4  [0341] Example 4
《白色発光素子及び白色照明装置の作製 1》  << Production of white light-emitting element and white illumination device 1 >>
実施例 1の透明電極基板の電極を 20mm X 20mmにパターユングし、その上に実 施例 1と同様に正孔注入/輸送層として α— NPDを 25nmの厚さで成膜し、更に H 4の入った前記加熱ボートと例示化合物 2— 425の入ったボート及び Ir 9の入った ボートをそれぞれ独立に通電して、発光ホストである HIと発光ドーパントである例示 化合物 2— 425及び Ir— 9の蒸着速度が 100 : 5 : 0. 6になるように調節し、膜厚 30η mの厚さになるように蒸着し、発光層を設けた。  The electrode of the transparent electrode substrate of Example 1 was patterned to 20 mm x 20 mm, and α-NPD was deposited to a thickness of 25 nm as a hole injection / transport layer on the same as in Example 1, and then H The heated boat containing 4 and the example compound 2—425 and Ir 9 containing boat are energized independently, and the light emitting host HI and the example dopant 2—425 and Ir— The vapor deposition rate of 9 was adjusted to 100: 5: 0.6, vapor deposition was performed to a thickness of 30 ηm, and a light emitting layer was provided.
[0342] 次いで、 BCPを 10nm成膜して正孔阻止層を設けた。更に、 Alqを 40nmで成膜し 電子輸送層を設けた。 [0342] Next, 10 nm of BCP was formed to provide a hole blocking layer. Furthermore, Alq was deposited at 40 nm to provide an electron transport layer.
[0343] 次に、実施例 1と同様に電子注入層の上にステンレス鋼製の透明電極とほぼ同じ 形状の正方形穴あきマスクを設置し、陰極バッファ一層としてフッ化リチウム 0. 5nm 及び陰極としてアルミニウム 150nmを蒸着成膜した。  [0343] Next, as in Example 1, a square perforated mask having substantially the same shape as the transparent electrode made of stainless steel was placed on the electron injection layer, and lithium fluoride 0.5 nm as a cathode buffer layer and a cathode as a cathode buffer layer. Aluminum 150nm was deposited.
[0344] この素子を実施例 1と同様な方法及び同様な構造の封止缶を具備させ、図 5、図 6 に示すような平面ランプを作製した。この平面ランプに通電したところほぼ白色の光 が得られ、照明装置として使用できることが分かった。例示の他の化合物に置き換え ても同様に白色の発光が得られることが判った。  [0344] This element was provided with a sealing can having the same method and the same structure as in Example 1, and a flat lamp as shown in Figs. 5 and 6 was produced. When this flat lamp was energized, almost white light was obtained, indicating that it could be used as a lighting device. It was found that white light emission could be obtained in the same manner even if it was replaced with other exemplified compounds.
[0345] 実施例 5 《白色発光素子及び白色照明装置の作製 2》 [0345] Example 5 << Production of white light-emitting element and white illumination device 2 >>
陽極として lOOmmX lOOmm X l . 1mmのガラス基板上に ITO (インジウムチンォ キシド)を lOOnm製膜した基板(ΝΗテクノグラス社製 ΝΑ— 45)にパターユングを行 つた後、この ITO透明電極を設けた透明支持基板をイソプロピルアルコールで超音 波洗浄し、乾燥窒素ガスで乾燥し、 UVオゾン洗浄を 5分間行った。  The ITO transparent electrode is formed after patterning on a substrate (ΝΗ Techno Glass Co., Ltd. 45-45) made of ITO (Indium Toxide) on a lOOmmX lOOmm X l. 1mm glass substrate as an anode. The transparent support substrate was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and subjected to UV ozone cleaning for 5 minutes.
[0346] この透明支持基板上に、ポリ(3, 4 エチレンジォキシチォフェン) ポリスチレンス ルホネート(PEDOT/PSS、: Bayer社製、 Baytron P A1 4083)を純水で 70% に希釈した溶液を 3000rpm、 30秒でスピンコート法により製膜した後、 200°Cにて 1 時間乾燥し、膜厚 30nmの第 1正孔輸送層を設けた。  [0346] On this transparent support substrate, poly (3,4 ethylene dioxythiophene) polystyrene sulfonate (PEDOT / PSS: Bayer, Baytron P A1 4083) diluted to 70% with pure water Was formed by spin coating at 3000 rpm for 30 seconds and dried at 200 ° C. for 1 hour to provide a first hole transport layer having a thickness of 30 nm.
[0347] この基板を窒素雰囲気下に移し、第 1正孔輸送層上に、 50mgの化合物 Aを 10ml のトルエンに溶解した溶液を 1000rpm、 30秒の条件下、スピンコート法により製膜し た。 180秒間紫外光を照射し、光重合 ·架橋を行った後、 60°Cで 1時間真空乾燥し 第 2正孔輸送層とした。  [0347] This substrate was transferred to a nitrogen atmosphere, and a solution of 50 mg of Compound A dissolved in 10 ml of toluene was formed on the first hole transport layer by spin coating at 1000 rpm for 30 seconds. . After irradiating with ultraviolet light for 180 seconds to perform photopolymerization / crosslinking, vacuum drying was performed at 60 ° C. for 1 hour to form a second hole transport layer.
[0348] 次に、化合物 B (60mg)、 Ir—14 (3. Omg)、 2— 637 (3. Omg)をトルエン 6mlに 溶解した溶液を用い、 1000rpm、 30秒の条件下、スピンコート法により製膜した。 15 秒間紫外光を照射し、光重合 ·架橋を行わせ、さらに真空中 150°Cで 1時間加熱を 行い、発光層とした。  [0348] Next, a solution in which Compound B (60 mg), Ir-14 (3. Omg), 2-637 (3. Omg) was dissolved in 6 ml of toluene was used, and spin coating was performed at 1000 rpm for 30 seconds. To form a film. Irradiated with ultraviolet light for 15 seconds to cause photopolymerization / crosslinking, and further heated in vacuum at 150 ° C. for 1 hour to form a light emitting layer.
[0349] 更に、化合物 C (20mg)をトルエン 6mlに溶解した溶液を用い、 1000rpm、 30秒 の条件下、スピンコート法により製膜した。 15秒間紫外光を照射し、光重合'架橋を 行わせ、さらに真空中 80°Cで 1時間加熱を行い、正孔阻止層とした。  [0349] Further, a film in which Compound C (20 mg) was dissolved in 6 ml of toluene was used to form a film by spin coating under conditions of 1000 rpm and 30 seconds. Irradiated with ultraviolet light for 15 seconds to cause photopolymerization and crosslinking, and further heated in a vacuum at 80 ° C. for 1 hour to form a hole blocking layer.
[0350] [化 136] [0350] [Chemical 136]
Figure imgf000170_0001
Figure imgf000170_0001
[0351] 続いて、この基板を真空蒸着装置の基板ホルダーに固定し、モリブデン製抵抗加 熱ボートに Alqを 200mg入れ、真空蒸着装置に取り付けた。真空槽を 4 X 10— 4Paま で減圧した後、 Alqの入った前記加熱ボートに通電して加熱し、蒸着速度 0. lnm/ 秒で前記電子輸送層の上に蒸着して、更に膜厚 40nmの電子輸送層を設けた。 [0351] Subsequently, this substrate was fixed to a substrate holder of a vacuum vapor deposition apparatus, and 200 mg of Alq was put into a molybdenum resistance heating boat and attached to the vacuum vapor deposition apparatus. After pressure in the vacuum tank was reduced by 4 X 10- 4 Pa or, and heated by supplying an electric current to the boat charged with Alq, it is deposited on the electron transport layer at a deposition rate of 0. lnm / sec, further film An electron transport layer with a thickness of 40 nm was provided.
[0352] なお、蒸着時の基板温度は室温であった。 [0352] The substrate temperature during vapor deposition was room temperature.
[0353] 引き続き、フッ化リチウム 0. 5nm及びアルミニウム 11 Onmを蒸着して陰極を形成し [0353] Subsequently, lithium fluoride 0.5 nm and aluminum 11 Onm were vapor-deposited to form a cathode.
、白色発光有機 EL素子を作製した。 A white light emitting organic EL device was produced.
[0354] この素子に通電したところほぼ白色の光が得られ、照明装置として使用出来ること が判った。 [0354] When this element was energized, almost white light was obtained, indicating that it could be used as a lighting device.

Claims

請求の範囲 The scope of the claims
下記一般式(la)で表される金属錯体であることを特徴とする有機エレクト口ルミネッ センス素子材料。 Organic electroluminescent element material characterized by being a metal complex represented by the following general formula (la).
[化 1] [Chemical 1]
:般式 a): General formula a)
Figure imgf000171_0001
Figure imgf000171_0001
〔一般式(la)中、 Cと Nは金属原子 Mに対して共有結合または配位結合をしている [In general formula (la), C and N are covalently or coordinated to metal atom M.
1  1
。 Aは炭素原子を介して金属原子 Mと結合した環状基であり、 Bは窒素原子を介し  . A is a cyclic group bonded to the metal atom M through a carbon atom, and B is through a nitrogen atom.
1  1
て、金属原子 Mと結合した環状基を表す。 Represents a cyclic group bonded to the metal atom M.
1  1
さらに、一般式(la)中、 Aで表される環状基が下記一般式(lb)で表される基であ るか、又は、一般式(la)で表される金属錯体上に下記一般式(lb)で表される基を 置換基として有する。  Further, in the general formula (la), the cyclic group represented by A is a group represented by the following general formula (lb), or on the metal complex represented by the general formula (la), It has a group represented by the formula (lb) as a substituent.
«式 f1W
Figure imgf000171_0002
一般式(lb)中、 Xは〇、 S、 N-R (Rはアルキル基、ァリール基、またはへテロァリ 一ル基を表す。)を表す。
«Formula f1W
Figure imgf000171_0002
In the general formula (lb), X represents O, S, NR (R represents an alkyl group, an aryl group, or a heteroaryl group).
Z、 Z、 Z、 Zは独立に窒素原子または CR = (Rは水素原子または置換基を表 Z, Z, Z, Z are independently a nitrogen atom or CR = (R represents a hydrogen atom or a substituent.
1 2 3 4 4 4 1 2 3 4 4 4
す。)を表し、 Z、 Z、 Z、 Zのうちひとつは窒素原子である。 X -L -Xは 2座の配 The ), And one of Z, Z, Z and Z is a nitrogen atom. X -L -X is a two-seat arrangement
1 2 3 4 1 1 2  1 2 3 4 1 1 2
位子を表し、 X、 Xは各々独立に炭素原子、窒素原子または酸素原子を表す。 Lは X Xと共に 2座の配位子を形成する原子群を表す。 mlは 1 2または 3の整数を表Represents a ligand, and X and X each independently represent a carbon atom, a nitrogen atom or an oxygen atom. L is Represents a group of atoms that form a bidentate ligand with XX. ml represents an integer of 1 2 or 3
1 2 1 2
し、 m2は 0 1または 2の整数を表す力 ml +m2は 2または 3である。金属原子であ る Mは元素周期表における 8族〜 10族の金属を表す。〕  M2 is 0 or a force representing an integer of 1 or 2 ml + m2 is 2 or 3. M, which is a metal atom, represents a group 8 to group 10 metal in the periodic table. ]
1  1
[2] 前記一般式(la)が下記一般式(1)で表されることを特徴とする請求の範囲第 1項に 記載の有機エレクト口ルミネッセンス素子材料。  [2] The organic electroluminescent device material according to claim 1, wherein the general formula (la) is represented by the following general formula (1).
[化 3] 一般式 (1 ) [Chemical formula 3] General formula (1)
Figure imgf000172_0001
Figure imgf000172_0001
〔式中、 Rはアルキル基、ァリール基、ヘテロァリール基を表す。 Y Yは窒素原子 [Wherein, R represents an alkyl group, an aryl group, or a heteroaryl group. Y Y is a nitrogen atom
1 1 2  1 1 2
または CR = (Rは水素原子または置換基)を表す。 A X L X ml m2 M  Or CR = (R is a hydrogen atom or a substituent). A X L X ml m2 M
3 3 1 1 2 1 は前記一般式(la)における A X L X ml m2 Mと同義である力、又は、一  3 3 1 1 2 1 is a force having the same meaning as A X L X ml m2 M in the general formula (la), or
1 1 2 1  1 1 2 1
般式(1)で表される金属錯体上に前記一般式(lb)で表される基を置換基として有す る。〕  The metal complex represented by the general formula (1) has a group represented by the general formula (lb) as a substituent. ]
[3] 前記一般式(1)が下記一般式 (2)で表されることを特徴とする請求の範囲第 2項に 記載の有機エレクト口ルミネッセンス素子材料。  [3] The organic electroluminescence device material according to claim 2, wherein the general formula (1) is represented by the following general formula (2).
[化 4] [Chemical 4]
一般式 (2) General formula (2)
Figure imgf000173_0001
Figure imgf000173_0001
〔式中、 X L X ml m2 M R Y Yは前記一般式(1)における X L X [In the formula, X L X ml m2 M R Y Y represents X L X in the general formula (1).
1 1 2 1 1 1 2 1 1 2 ml m2 M R Y Yと同義である。 X Ζ Ζ Ζ Ζは前記一般式(lb)にお  1 1 2 1 1 1 2 1 1 2 ml Synonymous with m2 MRY. X Ζ Ζ Ζ に お is the above general formula (lb)
1 1 1 2 1 2 3 4  1 1 1 2 1 2 3 4
ける各 X Z Z Z Zと同義である。〕 It is synonymous with each X Z Z Z Z. ]
1 2 3 4  1 2 3 4
前記一般式(1)又は一般式(2)において、 Y Yがー CR = CR = (R Rは水 In the general formula (1) or (2), Y Y is CR = CR = (R R is water
1 2 4 5 4 5 素原子または置換基を表す。 )であることを特徴とする請求の範囲第 2項又は第 3項 に記載の有機エレクト口ルミネッセンス素子材料。  1 2 4 5 4 5 Represents an elementary atom or a substituent. The organic electoluminescence device material according to claim 2 or 3, characterized in that:
前記一般式(1)又は一般式(2)において、 R力 Sメチル基、ァリール基であることを特 In the general formula (1) or (2), R force S methyl group, aryl group
1  1
徴とする請求の範囲第 2項〜第 4項の何れか 1項に記載の有機エレクト口ルミネッセ ンス素子材料。 5. The organic electroluminescent element material according to any one of claims 2 to 4, wherein the organic electroluminescent element is a material.
前記一般式(1)又は一般式(2)において、 Rが 2, 6位に置換基を有するァリール基 In the above general formula (1) or general formula (2), R is an aryl group having a substituent at the 2,6 position.
1  1
であることを特徴とする請求の範囲第 2項〜第 5項の何れ力、 1項に記載の有機エレク トロルミネッセンス素子材料。 The organic electroluminescent element material according to any one of claims 2 to 5, characterized in that:
前記一般式(1)又は一般式(2)において、 Mが Irまたは Ptであることを特徴とする請 In the general formula (1) or (2), M is Ir or Pt.
1  1
求の範囲第 2項〜第 6項の何れ力、 1項に記載の有機エレクト口ルミネッセンス素子材 料。 2. The organic electroluminescence device material according to item 1, wherein any force of items 2 to 6 is obtained.
前記一般式(1)又は一般式(2)において、 m2が 0であることを特徴とする請求の範 囲第 2項〜第 7項の何れか 1項に記載の有機エレクト口ルミネッセンス素子材料。 請求の範囲第 1項〜第 8項の何れ力、 1項に記載の有機エレクト口ルミネッセンス素子 材料を発光層に含有することを特徴とする有機エレクト口ルミネッセンス素子。 [10] 請求の範囲第 9項に記載の有機エレクト口ルミネッセンス素子を有することを特徴とす る表示装置。 The organic electoluminescence device material according to any one of claims 2 to 7, wherein m2 is 0 in the general formula (1) or the general formula (2). The organic electoluminescence device according to any one of claims 1 to 8, wherein the organic electroluminescence device material according to claim 1 is contained in a light emitting layer. [10] A display device comprising the organic electoluminescence element according to claim 9.
[11] 請求の範囲第 9項に記載の有機エレクト口ルミネッセンス素子を有することを特徴とす る照明装置。  [11] An illumination device comprising the organic electoluminescence device according to claim 9.
PCT/JP2007/069822 2006-10-13 2007-10-11 Organic electroluminescent device material, organic electroluminescent device, display and illuminating device WO2008044723A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008538748A JP5099013B2 (en) 2006-10-13 2007-10-11 ORGANIC ELECTROLUMINESCENT ELEMENT MATERIAL, ORGANIC ELECTROLUMINESCENT ELEMENT, DISPLAY DEVICE AND LIGHTING DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-279973 2006-10-13
JP2006279973 2006-10-13

Publications (1)

Publication Number Publication Date
WO2008044723A1 true WO2008044723A1 (en) 2008-04-17

Family

ID=39282913

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/069822 WO2008044723A1 (en) 2006-10-13 2007-10-11 Organic electroluminescent device material, organic electroluminescent device, display and illuminating device

Country Status (2)

Country Link
JP (1) JP5099013B2 (en)
WO (1) WO2008044723A1 (en)

Cited By (171)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009133753A1 (en) * 2008-04-30 2009-11-05 コニカミノルタホールディングス株式会社 Organic electroluminescent device, illuminating device and display device
JP2012522844A (en) * 2009-04-06 2012-09-27 ユニバーサル ディスプレイ コーポレイション Metal complexes containing novel ligand structures
JP2013521280A (en) * 2010-03-03 2013-06-10 ユニバーサル ディスプレイ コーポレイション Phosphorescent substance
JP2013187211A (en) * 2012-03-06 2013-09-19 Konica Minolta Inc Organic electroluminescent element, display device and lighting device
US20140054563A1 (en) * 2012-08-24 2014-02-27 Universal Display Corporation Phosphorescent emitters with phenylimidazole ligands
US20140131663A1 (en) * 2012-11-09 2014-05-15 Universal Display Corporation Iridium Complexes With Aza-Benzo Fused Ligands
KR20140060241A (en) * 2012-11-09 2014-05-19 유니버셜 디스플레이 코포레이션 Iridium complexes with aza-benzo fused ligands
US8889864B2 (en) 2006-02-10 2014-11-18 Universal Display Corporation Metal complexes of cyclometallated imidazo[1,2-f]phenanthridine and diimidazo[1,2-a:1′,2′-c]quinazoline ligands and isoelectronic and benzannulated analogs thereof
JP2015005736A (en) * 2013-05-20 2015-01-08 株式会社半導体エネルギー研究所 Organometallic complex, light emitting element, light emitting device, electronic appliance, and lighting device
US8962383B2 (en) 2012-08-27 2015-02-24 Universal Display Corporation Multi-nozzle organic vapor jet printing
US9054344B2 (en) 2010-01-20 2015-06-09 Universal Display Corporation Electroluminescent devices for lighting applications
US9130195B2 (en) 2013-11-22 2015-09-08 Universal Display Corporation Structure to enhance light extraction and lifetime of OLED devices
JP2015166336A (en) * 2013-12-16 2015-09-24 ユニバーサル ディスプレイ コーポレイション metal complex for phosphorescent OLED
US20150315222A1 (en) * 2014-05-02 2015-11-05 Universal Display Corporation Organic electroluminescent materials and devices
US9184419B2 (en) 2011-05-12 2015-11-10 Universal Display Corporation Flexible lighting devices
US9252363B2 (en) 2012-10-04 2016-02-02 Universal Display Corporation Aryloxyalkylcarboxylate solvent compositions for inkjet printing of organic layers
US9337441B2 (en) 2014-04-15 2016-05-10 Universal Display Corporation OLED lighting panel and methods for fabricating thereof
US9349954B2 (en) 2007-11-09 2016-05-24 Universal Display Corporation Stable blue phosphorescent organic light emitting devices
US9380675B2 (en) 2014-04-17 2016-06-28 Universal Display Corporation Energy saving OLED lighting system and method
US9450198B2 (en) 2014-04-15 2016-09-20 Universal Display Corporation Organic electroluminescent materials and devices
US9478758B1 (en) 2015-05-08 2016-10-25 Universal Display Corporation Organic electroluminescent materials and devices
US9572232B2 (en) 2014-05-15 2017-02-14 Universal Display Corporation Biosensing electronic devices
US9685617B2 (en) 2012-11-09 2017-06-20 Universal Display Corporation Organic electronuminescent materials and devices
US9711730B2 (en) 2015-01-25 2017-07-18 Universal Display Corporation Organic electroluminescent materials and devices
US9748500B2 (en) 2015-01-15 2017-08-29 Universal Display Corporation Organic light emitting materials
US9761842B2 (en) 2014-12-19 2017-09-12 The Regents Of The University Of Michigan Enhancing light extraction of organic light emitting diodes via nanoscale texturing of electrode surfaces
US9825243B2 (en) 2014-08-18 2017-11-21 Udc Ireland Limited Methods for fabricating OLEDs on non-uniform substrates and devices made therefrom
US9847498B2 (en) 2014-04-14 2017-12-19 Universal Display Corporation Organic electroluminescent materials and devices
US9876173B2 (en) 2013-12-09 2018-01-23 Universal Display Corporation Organic electroluminescent materials and devices
US9899631B2 (en) 2015-07-08 2018-02-20 Universal Display Corporation Flexible multilayer scattering substrate used in OLED
US9911928B2 (en) 2015-03-19 2018-03-06 Universal Display Corporation Organic electroluminescent materials and devices
US9947895B2 (en) 2015-06-17 2018-04-17 Universal Display Corporation Flexible AMOLED display
US9947728B2 (en) 2015-08-25 2018-04-17 Universal Display Corporation Hybrid MEMS OLED display
US9978965B2 (en) 2015-06-17 2018-05-22 Universal Display Corporation Rollable OLED display
US9997716B2 (en) 2014-05-27 2018-06-12 Universal Display Corporation Organic electroluminescent materials and devices
US10008679B2 (en) 2014-04-14 2018-06-26 Universal Display Corporation Organic electroluminescent materials and devices
US10038167B2 (en) 2015-01-08 2018-07-31 The Regents Of The University Of Michigan Thick-ETL OLEDs with sub-ITO grids with improved outcoupling
US10043987B2 (en) 2014-09-29 2018-08-07 Universal Display Corporation Organic electroluminescent materials and devices
US10135007B2 (en) 2014-09-29 2018-11-20 Universal Display Corporation Organic electroluminescent materials and devices
US10147360B2 (en) 2015-03-31 2018-12-04 Universal Display Corporation Rugged display device architecture
US10153445B2 (en) 2016-11-21 2018-12-11 Universal Display Corporation Organic electroluminescent materials and devices
US10153443B2 (en) 2016-07-19 2018-12-11 Universal Display Corporation Organic electroluminescent materials and devices
US10177126B2 (en) 2014-12-16 2019-01-08 Universal Display Corporation Tunable OLED lighting source
US10177318B2 (en) 2015-10-29 2019-01-08 Universal Display Corporation Organic electroluminescent materials and devices
US10205105B2 (en) 2016-08-15 2019-02-12 Universal Display Corporation Organic electroluminescent materials and devices
US10211413B2 (en) 2012-01-17 2019-02-19 Universal Display Corporation Organic electroluminescent materials and devices
US10229960B2 (en) 2016-08-02 2019-03-12 Universal Display Corporation OLED displays with variable display regions
US10236458B2 (en) 2016-10-24 2019-03-19 Universal Display Corporation Organic electroluminescent materials and devices
US10276809B2 (en) 2016-04-05 2019-04-30 Universal Display Corporation Organic electroluminescent materials and devices
US10340464B2 (en) 2016-11-10 2019-07-02 Universal Display Corporation Organic electroluminescent materials and devices
US10355222B2 (en) 2015-02-06 2019-07-16 Universal Display Corporation Organic electroluminescent materials and devices
US10388893B2 (en) 2015-10-29 2019-08-20 Universal Display Corporation Organic electroluminescent materials and devices
US10388892B2 (en) 2015-10-29 2019-08-20 Universal Display Corporation Organic electroluminescent materials and devices
US10403826B2 (en) 2015-05-07 2019-09-03 Universal Display Corporation Organic electroluminescent materials and devices
US10411200B2 (en) 2014-08-07 2019-09-10 Universal Display Corporation Electroluminescent (2-phenylpyridine)iridium complexes and devices
US10418562B2 (en) 2015-02-06 2019-09-17 Universal Display Corporation Organic electroluminescent materials and devices
US10460663B2 (en) 2016-05-31 2019-10-29 Universal Display Corporation Architecture for very high resolution AMOLED display backplane
US10476010B2 (en) 2015-11-30 2019-11-12 Universal Display Corporation Organic electroluminescent materials and devices
US10490753B2 (en) 2016-12-15 2019-11-26 Universal Display Corporation Organic electroluminescent materials and devices
US10505127B2 (en) 2016-09-19 2019-12-10 Universal Display Corporation Organic electroluminescent materials and devices
US10510973B2 (en) 2014-12-17 2019-12-17 Universal Display Corporation Color-stable organic light emitting diode stack
US10522769B2 (en) 2015-08-18 2019-12-31 Universal Display Corporation Organic electroluminescent materials and devices
US10529931B2 (en) 2015-03-24 2020-01-07 Universal Display Corporation Organic Electroluminescent materials and devices
US10566547B2 (en) 2016-07-11 2020-02-18 Universal Display Corporation Organic electroluminescent materials and devices
US10593900B2 (en) 2005-04-21 2020-03-17 Universal Display Corporation Non-blocked phosphorescent OLEDs
US10593892B2 (en) 2015-10-01 2020-03-17 Universal Display Corporation Organic electroluminescent materials and devices
US10593890B2 (en) 2015-04-06 2020-03-17 Universal Display Corporation Organic electroluminescent materials and devices
US10600967B2 (en) 2016-02-18 2020-03-24 Universal Display Corporation Organic electroluminescent materials and devices
US10600966B2 (en) 2015-02-27 2020-03-24 Universal Display Corporation Organic electroluminescent materials and devices
US10608185B2 (en) 2016-10-17 2020-03-31 Univeral Display Corporation Organic electroluminescent materials and devices
US10629820B2 (en) 2017-01-18 2020-04-21 Universal Display Corporation Organic electroluminescent materials and devices
US10644247B2 (en) 2015-02-06 2020-05-05 Universal Display Corporation Organic electroluminescent materials and devices
US10651403B2 (en) 2016-06-20 2020-05-12 Universal Display Corporation Organic electroluminescent materials and devices
US10662196B2 (en) 2016-11-17 2020-05-26 Universal Display Corporation Organic electroluminescent materials and devices
US10680183B2 (en) 2015-02-15 2020-06-09 Universal Display Corporation Organic electroluminescent materials and devices
US10680188B2 (en) 2016-11-11 2020-06-09 Universal Display Corporation Organic electroluminescent materials and devices
US10686140B2 (en) 2016-06-20 2020-06-16 Universal Display Corporation Organic electroluminescent materials and devices
US10707427B2 (en) 2016-02-09 2020-07-07 Universal Display Corporation Organic electroluminescent materials and devices
US10720587B2 (en) 2016-07-19 2020-07-21 Universal Display Corporation Organic electroluminescent materials and devices
US10741780B2 (en) 2017-03-10 2020-08-11 Universal Display Corporation Organic electroluminescent materials and devices
US10770664B2 (en) 2015-09-21 2020-09-08 Universal Display Corporation Organic electroluminescent materials and devices
US10770673B2 (en) 2017-11-28 2020-09-08 The Regents Of The University Of Michigan Highly reliable stacked white organic light emitting device
US10777749B2 (en) 2015-05-07 2020-09-15 Universal Display Corporation Organic electroluminescent materials and devices
US10777754B2 (en) 2017-04-11 2020-09-15 Universal Display Corporation Organic electroluminescent materials and devices
US10790455B2 (en) 2017-05-18 2020-09-29 Universal Display Corporation Organic electroluminescent materials and devices
US10811618B2 (en) 2016-12-19 2020-10-20 Universal Display Corporation Organic electroluminescent materials and devices
US10822362B2 (en) 2017-05-11 2020-11-03 Universal Display Corporation Organic electroluminescent materials and devices
US10825997B2 (en) 2015-06-25 2020-11-03 Universal Display Corporation Organic electroluminescent materials and devices
US10833276B2 (en) 2016-11-21 2020-11-10 Universal Display Corporation Organic electroluminescent materials and devices
US10847728B2 (en) 2015-10-01 2020-11-24 Universal Display Corporation Organic electroluminescent materials and devices
US10862046B2 (en) 2017-03-30 2020-12-08 Universal Display Corporation Organic electroluminescent materials and devices
US10868261B2 (en) 2014-11-10 2020-12-15 Universal Display Corporation Organic electroluminescent materials and devices
US10873036B2 (en) 2015-07-07 2020-12-22 Universal Display Corporation Organic electroluminescent materials and devices
US10873037B2 (en) 2017-03-28 2020-12-22 Universal Display Corporation Organic electroluminescent materials and devices
US10910577B2 (en) 2017-03-28 2021-02-02 Universal Display Corporation Organic electroluminescent materials and devices
US10910570B2 (en) 2017-04-28 2021-02-02 Universal Display Corporation Organic electroluminescent materials and devices
US10930864B2 (en) 2017-05-10 2021-02-23 Universal Display Corporation Organic electroluminescent materials and devices
US10930862B2 (en) 2017-06-01 2021-02-23 Universal Display Corporation Organic electroluminescent materials and devices
US10934293B2 (en) 2017-05-18 2021-03-02 Universal Display Corporation Organic electroluminescent materials and devices
US10941170B2 (en) 2017-05-03 2021-03-09 Universal Display Corporation Organic electroluminescent materials and devices
US10944060B2 (en) 2017-05-11 2021-03-09 Universal Display Corporation Organic electroluminescent materials and devices
US10944062B2 (en) 2017-05-18 2021-03-09 Universal Display Corporation Organic electroluminescent materials and devices
US10950803B2 (en) 2014-10-13 2021-03-16 Universal Display Corporation Compounds and uses in devices
US10957861B2 (en) 2015-12-29 2021-03-23 Universal Display Corporation Organic electroluminescent materials and devices
US10964904B2 (en) 2017-01-20 2021-03-30 Universal Display Corporation Organic electroluminescent materials and devices
US10964893B2 (en) 2016-11-17 2021-03-30 Universal Display Corporation Organic electroluminescent materials and devices
US10968226B2 (en) 2017-06-23 2021-04-06 Universal Display Corporation Organic electroluminescent materials and devices
US10971687B2 (en) 2017-12-14 2021-04-06 Universal Display Corporation Organic electroluminescent materials and devices
US10978647B2 (en) 2017-02-15 2021-04-13 Universal Display Corporation Organic electroluminescent materials and devices
US10998507B2 (en) 2015-11-23 2021-05-04 Universal Display Corporation Organic electroluminescent materials and devices
US11018309B2 (en) 2015-08-03 2021-05-25 Universal Display Corporation Organic electroluminescent materials and devices
US11024808B2 (en) 2015-12-29 2021-06-01 Universal Display Corporation Organic electroluminescent materials and devices
US11038117B2 (en) 2017-04-11 2021-06-15 Universal Display Corporation Organic electroluminescent materials and devices
US11038137B2 (en) 2017-04-28 2021-06-15 Universal Display Corporation Organic electroluminescent materials and devices
US11081647B2 (en) 2016-04-22 2021-08-03 Universal Display Corporation Organic electroluminescent materials and devices
US11101434B2 (en) 2017-04-21 2021-08-24 Universal Display Corporation Organic electroluminescent materials and devices
US11108000B2 (en) 2014-08-07 2021-08-31 Unniversal Display Corporation Organic electroluminescent materials and devices
US11139443B2 (en) 2017-03-31 2021-10-05 Universal Display Corporation Organic electroluminescent materials and devices
US11145837B2 (en) 2014-12-17 2021-10-12 Universal Display Corporation Color stable organic light emitting diode stack
US11158820B2 (en) 2017-03-29 2021-10-26 Universal Display Corporation Organic electroluminescent materials and devices
US11168103B2 (en) 2017-11-17 2021-11-09 Universal Display Corporation Organic electroluminescent materials and devices
US11174259B2 (en) 2017-06-23 2021-11-16 Universal Display Corporation Organic electroluminescent materials and devices
US11183646B2 (en) 2017-11-07 2021-11-23 Universal Display Corporation Organic electroluminescent materials and devices
US11201299B2 (en) 2017-05-04 2021-12-14 Universal Display Corporation Organic electroluminescent materials and devices
US11228004B2 (en) 2018-06-22 2022-01-18 Universal Display Corporation Organic electroluminescent materials and devices
US11233204B2 (en) 2017-12-14 2022-01-25 Universal Display Corporation Organic electroluminescent materials and devices
US11233205B2 (en) 2017-12-14 2022-01-25 Universal Display Corporation Organic electroluminescent materials and devices
US11271177B2 (en) 2018-01-11 2022-03-08 Universal Display Corporation Organic electroluminescent materials and devices
US11292245B2 (en) 2020-01-03 2022-04-05 Trustees Of Boston University Microelectromechanical shutters for organic vapor jet printing
US11322691B2 (en) 2017-07-26 2022-05-03 Universal Display Corporation Organic electroluminescent materials and devices
US11325932B2 (en) 2019-02-08 2022-05-10 Universal Display Corporation Organic electroluminescent materials and devices
US11342526B2 (en) 2019-01-29 2022-05-24 The Regents Of The University Of Michigan Hybrid organic light emitting device
US11339182B2 (en) 2018-06-07 2022-05-24 Universal Display Corporation Organic electroluminescent materials and devices
US11349083B2 (en) 2017-08-10 2022-05-31 Universal Display Corporation Organic electroluminescent materials and devices
US11349099B2 (en) 2019-01-25 2022-05-31 The Regents Of The University Of Michigan Method of fabricating a light emitting device having a polymer film with a specified surface rouggness
US11367840B2 (en) 2018-01-26 2022-06-21 Universal Display Corporation Organic electroluminescent materials and devices
US11370809B2 (en) 2019-02-08 2022-06-28 Universal Display Corporation Organic electroluminescent materials and devices
US11437591B2 (en) 2017-08-24 2022-09-06 Universal Display Corporation Organic electroluminescent materials and devices
US11444249B2 (en) 2017-09-07 2022-09-13 Universal Display Corporation Organic electroluminescent materials and devices
US11469383B2 (en) 2018-10-08 2022-10-11 Universal Display Corporation Organic electroluminescent materials and devices
US11495749B2 (en) 2015-04-06 2022-11-08 Universal Display Corporation Organic electroluminescent materials and devices
US11495757B2 (en) 2017-06-23 2022-11-08 Universal Display Corporation Organic electroluminescent materials and devices
US11495752B2 (en) 2018-10-08 2022-11-08 Universal Display Corporation Organic electroluminescent materials and devices
US11508913B2 (en) 2017-08-10 2022-11-22 Universal Display Corporation Organic electroluminescent materials and devices
US11512093B2 (en) 2019-03-04 2022-11-29 Universal Display Corporation Compound used for organic light emitting device (OLED), consumer product and formulation
US11515489B2 (en) 2018-11-28 2022-11-29 Universal Display Corporation Host materials for electroluminescent devices
US11552247B2 (en) 2019-03-20 2023-01-10 The Regents Of The University Of Michigan Organic vapor jet nozzle with shutter
US11557733B2 (en) 2018-03-12 2023-01-17 Universal Display Corporation Organic electroluminescent materials and devices
US11557738B2 (en) 2019-02-22 2023-01-17 Universal Display Corporation Organic electroluminescent materials and devices
US11608321B2 (en) 2017-06-23 2023-03-21 Universal Display Corporation Organic electroluminescent materials and devices
US11616203B2 (en) 2018-04-17 2023-03-28 Universal Display Corporation Organic electroluminescent materials and devices
US11613550B2 (en) 2019-04-30 2023-03-28 Universal Display Corporation Organic electroluminescent materials and devices comprising benzimidazole-containing metal complexes
US11678565B2 (en) 2017-06-23 2023-06-13 Universal Display Corporation Organic electroluminescent materials and devices
US11706972B2 (en) 2015-09-08 2023-07-18 Universal Display Corporation Organic electroluminescent materials and devices
US11773320B2 (en) 2019-02-21 2023-10-03 Universal Display Corporation Organic electroluminescent materials and devices
US11780829B2 (en) 2019-01-30 2023-10-10 The University Of Southern California Organic electroluminescent materials and devices
US11812624B2 (en) 2019-01-30 2023-11-07 The University Of Southern California Organic electroluminescent materials and devices
US11818949B2 (en) 2015-04-06 2023-11-14 Universal Display Corporation Organic electroluminescent materials and devices
US11825687B2 (en) 2019-07-17 2023-11-21 The Regents Of The University Of Michigan Organic light emitting device
US11832504B2 (en) 2019-11-25 2023-11-28 The Regents Of The University Of Michigan System and method for organic electronic device patterning
US11834459B2 (en) 2018-12-12 2023-12-05 Universal Display Corporation Host materials for electroluminescent devices
US11882759B2 (en) 2018-04-13 2024-01-23 Universal Display Corporation Organic electroluminescent materials and devices
US11895853B2 (en) 2019-01-17 2024-02-06 The Regents Of The University Of Michigan Organic photovoltaic device having a lateral charge transport channel
US11910699B2 (en) 2017-08-10 2024-02-20 Universal Display Corporation Organic electroluminescent materials and devices
US11917843B2 (en) 2017-07-26 2024-02-27 Universal Display Corporation Organic electroluminescent materials and devices
US11920070B2 (en) 2019-07-12 2024-03-05 The University Of Southern California Luminescent janus-type, two-coordinated metal complexes
US11957050B2 (en) 2018-02-09 2024-04-09 Universal Display Corporation Organic electroluminescent materials and devices
US11963438B2 (en) 2019-03-26 2024-04-16 The University Of Southern California Organic electroluminescent materials and devices
US11963441B2 (en) 2018-11-26 2024-04-16 Universal Display Corporation Organic electroluminescent materials and devices
US11968883B2 (en) 2017-07-26 2024-04-23 Universal Display Corporation Organic electroluminescent materials and devices
US11985888B2 (en) 2020-07-30 2024-05-14 The Regents Of The University Of Michigan Organic electroluminescent device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017104325A1 (en) 2015-12-15 2017-06-22 コニカミノルタ株式会社 Organic electroluminescent element, method for manufacturing organic electroluminescent element, display device, lighting device and organic electroluminescent element material

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006096697A (en) * 2004-09-29 2006-04-13 Konica Minolta Holdings Inc Fine particle dispersion, organic el element material, organoelectroluminescent element, display and illumination apparatus
JP2006120905A (en) * 2004-10-22 2006-05-11 Konica Minolta Holdings Inc Organic electroluminescent element, display and lighting device
WO2007108362A1 (en) * 2006-03-17 2007-09-27 Konica Minolta Holdings, Inc. Organic electroluminescent device, display and illuminating device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007108327A1 (en) * 2006-03-17 2007-09-27 Konica Minolta Holdings, Inc. Organic electroluminescence element, display device, and illumination device
JP5470849B2 (en) * 2006-09-19 2014-04-16 コニカミノルタ株式会社 Organic electroluminescence device
JP5556014B2 (en) * 2006-09-20 2014-07-23 コニカミノルタ株式会社 Organic electroluminescence device
JP5011908B2 (en) * 2006-09-26 2012-08-29 コニカミノルタホールディングス株式会社 Organic electroluminescence element, display device and lighting device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006096697A (en) * 2004-09-29 2006-04-13 Konica Minolta Holdings Inc Fine particle dispersion, organic el element material, organoelectroluminescent element, display and illumination apparatus
JP2006120905A (en) * 2004-10-22 2006-05-11 Konica Minolta Holdings Inc Organic electroluminescent element, display and lighting device
WO2007108362A1 (en) * 2006-03-17 2007-09-27 Konica Minolta Holdings, Inc. Organic electroluminescent device, display and illuminating device

Cited By (247)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10916721B2 (en) 2005-04-21 2021-02-09 Universal Display Corporation Non-blocked phosphorescent OLEDs
US10593900B2 (en) 2005-04-21 2020-03-17 Universal Display Corporation Non-blocked phosphorescent OLEDs
US11594697B2 (en) 2005-04-21 2023-02-28 Universal Display Corporation Non-blocked phosphorescent OLEDs
US9065063B2 (en) 2006-02-10 2015-06-23 Universal Display Corporation Metal complexes of cyclometallated imidazo[1,2-f]phenanthridine and diimidazo[1,2-a:1′,2′-c]quinazoline ligands and isoelectronic and benzannulated analogs thereof
US8889864B2 (en) 2006-02-10 2014-11-18 Universal Display Corporation Metal complexes of cyclometallated imidazo[1,2-f]phenanthridine and diimidazo[1,2-a:1′,2′-c]quinazoline ligands and isoelectronic and benzannulated analogs thereof
US9349954B2 (en) 2007-11-09 2016-05-24 Universal Display Corporation Stable blue phosphorescent organic light emitting devices
US8475938B2 (en) 2008-04-30 2013-07-02 Konica Minolta Holdings, Inc. Organic electroluminescent element, lighting device and display device
WO2009133753A1 (en) * 2008-04-30 2009-11-05 コニカミノルタホールディングス株式会社 Organic electroluminescent device, illuminating device and display device
JP5267557B2 (en) * 2008-04-30 2013-08-21 コニカミノルタ株式会社 Organic electroluminescence element, lighting device and display device
CN105820192A (en) * 2009-04-06 2016-08-03 通用显示公司 Metal complex comprising novel ligand structures
CN105820192B (en) * 2009-04-06 2020-04-07 通用显示公司 Metal complexes comprising novel ligand structures
US9359549B2 (en) 2009-04-06 2016-06-07 Universal Display Corporation Organic electroluminescent materials and devices
JP2012522844A (en) * 2009-04-06 2012-09-27 ユニバーサル ディスプレイ コーポレイション Metal complexes containing novel ligand structures
US9054344B2 (en) 2010-01-20 2015-06-09 Universal Display Corporation Electroluminescent devices for lighting applications
US9175211B2 (en) 2010-03-03 2015-11-03 Universal Display Corporation Phosphorescent materials
JP2013521280A (en) * 2010-03-03 2013-06-10 ユニバーサル ディスプレイ コーポレイション Phosphorescent substance
US9184419B2 (en) 2011-05-12 2015-11-10 Universal Display Corporation Flexible lighting devices
US10211413B2 (en) 2012-01-17 2019-02-19 Universal Display Corporation Organic electroluminescent materials and devices
JP2013187211A (en) * 2012-03-06 2013-09-19 Konica Minolta Inc Organic electroluminescent element, display device and lighting device
KR20140026282A (en) * 2012-08-24 2014-03-05 유니버셜 디스플레이 코포레이션 Phosphorescent emitters with phenylimidazole ligands
US9978958B2 (en) * 2012-08-24 2018-05-22 Universal Display Corporation Phosphorescent emitters with phenylimidazole ligands
CN108586544A (en) * 2012-08-24 2018-09-28 通用显示公司 Phosphorescent emitters with phenylimidazole ligand
KR102034902B1 (en) * 2012-08-24 2019-10-21 유니버셜 디스플레이 코포레이션 Phosphorescent emitters with phenylimidazole ligands
CN108586544B (en) * 2012-08-24 2020-07-28 通用显示公司 Phosphorescent emitters with phenylimidazole ligands
JP2014043444A (en) * 2012-08-24 2014-03-13 Universal Display Corp Phosphorescent emitters with phenylimidazole ligands
US20140054563A1 (en) * 2012-08-24 2014-02-27 Universal Display Corporation Phosphorescent emitters with phenylimidazole ligands
US8962383B2 (en) 2012-08-27 2015-02-24 Universal Display Corporation Multi-nozzle organic vapor jet printing
US9252363B2 (en) 2012-10-04 2016-02-02 Universal Display Corporation Aryloxyalkylcarboxylate solvent compositions for inkjet printing of organic layers
US10510968B2 (en) * 2012-11-09 2019-12-17 Universal Display Corporation Organic electroluminescent materials and devices
JP2018022896A (en) * 2012-11-09 2018-02-08 ユニバーサル ディスプレイ コーポレイション Iridium complex with aza-benzo fused ligand
KR102450268B1 (en) 2012-11-09 2022-09-30 유니버셜 디스플레이 코포레이션 Iridium complexes with aza-benzo fused ligands
US20220278287A1 (en) * 2012-11-09 2022-09-01 Universal Display Corporation Organic electroluminescent materials and devices
KR102210297B1 (en) * 2012-11-09 2021-02-01 유니버셜 디스플레이 코포레이션 Iridium complexes with aza-benzo fused ligands
US9634264B2 (en) 2012-11-09 2017-04-25 Universal Display Corporation Organic electroluminescent materials and devices
US9685617B2 (en) 2012-11-09 2017-06-20 Universal Display Corporation Organic electronuminescent materials and devices
TWI677490B (en) * 2012-11-09 2019-11-21 美商環球展覽公司 Iridium complexes with aza-benzo fused ligands
KR102099987B1 (en) * 2012-11-09 2020-04-13 유니버셜 디스플레이 코포레이션 Iridium complexes with aza-benzo fused ligands
KR20200038443A (en) * 2012-11-09 2020-04-13 유니버셜 디스플레이 코포레이션 Iridium complexes with aza-benzo fused ligands
KR20210012029A (en) * 2012-11-09 2021-02-02 유니버셜 디스플레이 코포레이션 Iridium complexes with aza-benzo fused ligands
US20140131663A1 (en) * 2012-11-09 2014-05-15 Universal Display Corporation Iridium Complexes With Aza-Benzo Fused Ligands
KR20140060241A (en) * 2012-11-09 2014-05-19 유니버셜 디스플레이 코포레이션 Iridium complexes with aza-benzo fused ligands
TWI633090B (en) * 2012-11-09 2018-08-21 環球展覽公司 Iridium complexes with aza-benzo fused ligands
JP7147013B2 (en) 2012-11-09 2022-10-04 ユニバーサル ディスプレイ コーポレイション Iridium complexes with aza-benzofused ligands
JP2019001795A (en) * 2012-11-09 2019-01-10 ユニバーサル ディスプレイ コーポレイション Iridium complexes with aza-benzo fused ligands
US11380855B2 (en) * 2012-11-09 2022-07-05 Universal Display Corporation Organic electroluminescent materials and devices
JP2020181984A (en) * 2012-11-09 2020-11-05 ユニバーサル ディスプレイ コーポレイション Iridium complex with aza-benzo fused ligand
JP2014094941A (en) * 2012-11-09 2014-05-22 Universal Display Corp Iridium complex with aza-benzo fused ligand
JP2021168391A (en) * 2012-11-09 2021-10-21 ユニバーサル ディスプレイ コーポレイション Iridium complex with aza-benzo fused ligand
JP7376656B2 (en) 2012-11-09 2023-11-08 ユニバーサル ディスプレイ コーポレイション Iridium complexes with aza-benzo fused ligands
US8946697B1 (en) 2012-11-09 2015-02-03 Universal Display Corporation Iridium complexes with aza-benzo fused ligands
US10033002B2 (en) 2012-11-09 2018-07-24 Universal Display Corporation Organic electroluminescent materials and devices
US10109806B2 (en) 2013-05-20 2018-10-23 Semiconductor Energy Laboratory Co., Ltd. Organometallic complex, light-emitting element, light-emitting device, electronic appliance, and lighting device
JP2015005736A (en) * 2013-05-20 2015-01-08 株式会社半導体エネルギー研究所 Organometallic complex, light emitting element, light emitting device, electronic appliance, and lighting device
US9130195B2 (en) 2013-11-22 2015-09-08 Universal Display Corporation Structure to enhance light extraction and lifetime of OLED devices
US9876173B2 (en) 2013-12-09 2018-01-23 Universal Display Corporation Organic electroluminescent materials and devices
JP2015166336A (en) * 2013-12-16 2015-09-24 ユニバーサル ディスプレイ コーポレイション metal complex for phosphorescent OLED
US10355227B2 (en) 2013-12-16 2019-07-16 Universal Display Corporation Metal complex for phosphorescent OLED
JP2020155779A (en) * 2013-12-16 2020-09-24 ユニバーサル ディスプレイ コーポレイション Metal complex for phosphorescent OLED
US11653558B2 (en) 2013-12-16 2023-05-16 Universal Display Corporation Organic electroluminescent materials and devices
US9847498B2 (en) 2014-04-14 2017-12-19 Universal Display Corporation Organic electroluminescent materials and devices
US10825998B2 (en) 2014-04-14 2020-11-03 Universal Display Corporation Organic electroluminescent materials and devices
US10008679B2 (en) 2014-04-14 2018-06-26 Universal Display Corporation Organic electroluminescent materials and devices
US11005052B2 (en) 2014-04-14 2021-05-11 Universal Display Corporation Organic electroluminescent materials and devices
US9905785B2 (en) 2014-04-14 2018-02-27 Universal Display Corporation Organic electroluminescent materials and devices
US11793066B2 (en) 2014-04-14 2023-10-17 Universal Display Corporation Organic electroluminescent materials and devices
US9450198B2 (en) 2014-04-15 2016-09-20 Universal Display Corporation Organic electroluminescent materials and devices
US9337441B2 (en) 2014-04-15 2016-05-10 Universal Display Corporation OLED lighting panel and methods for fabricating thereof
US9380675B2 (en) 2014-04-17 2016-06-28 Universal Display Corporation Energy saving OLED lighting system and method
KR102422704B1 (en) * 2014-05-02 2022-07-20 유니버셜 디스플레이 코포레이션 Organic electroluminescent materials and devices
US20220348600A1 (en) * 2014-05-02 2022-11-03 Universal Display Corporation Organic electroluminescent materials and devices
KR20150126308A (en) * 2014-05-02 2015-11-11 유니버셜 디스플레이 코포레이션 Organic electroluminescent materials and devices
KR20220104130A (en) * 2014-05-02 2022-07-26 유니버셜 디스플레이 코포레이션 Organic electroluminescent materials and devices
US11919916B2 (en) 2014-05-02 2024-03-05 Universal Display Corporation Organic electroluminescent materials and devices
US20150315222A1 (en) * 2014-05-02 2015-11-05 Universal Display Corporation Organic electroluminescent materials and devices
US11427607B2 (en) 2014-05-02 2022-08-30 Universal Display Corporation Organic electroluminescent materials and devices
KR102648525B1 (en) * 2014-05-02 2024-03-15 유니버셜 디스플레이 코포레이션 Organic electroluminescent materials and devices
US10457699B2 (en) 2014-05-02 2019-10-29 Universal Display Corporation Organic electroluminescent materials and devices
US9572232B2 (en) 2014-05-15 2017-02-14 Universal Display Corporation Biosensing electronic devices
US9997716B2 (en) 2014-05-27 2018-06-12 Universal Display Corporation Organic electroluminescent materials and devices
US10411200B2 (en) 2014-08-07 2019-09-10 Universal Display Corporation Electroluminescent (2-phenylpyridine)iridium complexes and devices
US11108000B2 (en) 2014-08-07 2021-08-31 Unniversal Display Corporation Organic electroluminescent materials and devices
US9825243B2 (en) 2014-08-18 2017-11-21 Udc Ireland Limited Methods for fabricating OLEDs on non-uniform substrates and devices made therefrom
US10043987B2 (en) 2014-09-29 2018-08-07 Universal Display Corporation Organic electroluminescent materials and devices
US10135007B2 (en) 2014-09-29 2018-11-20 Universal Display Corporation Organic electroluminescent materials and devices
US10950803B2 (en) 2014-10-13 2021-03-16 Universal Display Corporation Compounds and uses in devices
US10868261B2 (en) 2014-11-10 2020-12-15 Universal Display Corporation Organic electroluminescent materials and devices
US10177126B2 (en) 2014-12-16 2019-01-08 Universal Display Corporation Tunable OLED lighting source
US10510973B2 (en) 2014-12-17 2019-12-17 Universal Display Corporation Color-stable organic light emitting diode stack
US11145837B2 (en) 2014-12-17 2021-10-12 Universal Display Corporation Color stable organic light emitting diode stack
US9761842B2 (en) 2014-12-19 2017-09-12 The Regents Of The University Of Michigan Enhancing light extraction of organic light emitting diodes via nanoscale texturing of electrode surfaces
US10211429B2 (en) 2014-12-19 2019-02-19 The Regents Of The University Of Michigan Enhancing light extraction of organic light emitting diodes via nanoscale texturing of electrode surfaces
US10038167B2 (en) 2015-01-08 2018-07-31 The Regents Of The University Of Michigan Thick-ETL OLEDs with sub-ITO grids with improved outcoupling
US9748500B2 (en) 2015-01-15 2017-08-29 Universal Display Corporation Organic light emitting materials
US9711730B2 (en) 2015-01-25 2017-07-18 Universal Display Corporation Organic electroluminescent materials and devices
US11245081B2 (en) 2015-02-06 2022-02-08 Universal Display Corporation Organic electroluminescent materials and devices
US10355222B2 (en) 2015-02-06 2019-07-16 Universal Display Corporation Organic electroluminescent materials and devices
US10644247B2 (en) 2015-02-06 2020-05-05 Universal Display Corporation Organic electroluminescent materials and devices
US10418562B2 (en) 2015-02-06 2019-09-17 Universal Display Corporation Organic electroluminescent materials and devices
US10680183B2 (en) 2015-02-15 2020-06-09 Universal Display Corporation Organic electroluminescent materials and devices
US10600966B2 (en) 2015-02-27 2020-03-24 Universal Display Corporation Organic electroluminescent materials and devices
US11678567B2 (en) 2015-02-27 2023-06-13 Universal Display Corporation Organic electroluminescent materials and devices
US9911928B2 (en) 2015-03-19 2018-03-06 Universal Display Corporation Organic electroluminescent materials and devices
US10529931B2 (en) 2015-03-24 2020-01-07 Universal Display Corporation Organic Electroluminescent materials and devices
US10147360B2 (en) 2015-03-31 2018-12-04 Universal Display Corporation Rugged display device architecture
US11672175B2 (en) 2015-04-06 2023-06-06 Universal Display Corporation Organic electroluminescent materials and devices
US11818949B2 (en) 2015-04-06 2023-11-14 Universal Display Corporation Organic electroluminescent materials and devices
US10693082B2 (en) 2015-04-06 2020-06-23 Universal Display Corporation Organic electroluminescent materials and devices
US11495749B2 (en) 2015-04-06 2022-11-08 Universal Display Corporation Organic electroluminescent materials and devices
US10593890B2 (en) 2015-04-06 2020-03-17 Universal Display Corporation Organic electroluminescent materials and devices
US11245080B2 (en) 2015-04-06 2022-02-08 Universal Display Corporation Organic electroluminescent materials and devices
US10777749B2 (en) 2015-05-07 2020-09-15 Universal Display Corporation Organic electroluminescent materials and devices
US10403826B2 (en) 2015-05-07 2019-09-03 Universal Display Corporation Organic electroluminescent materials and devices
US11744151B2 (en) 2015-05-07 2023-08-29 Universal Display Corporation Organic electroluminescent materials and devices
US9478758B1 (en) 2015-05-08 2016-10-25 Universal Display Corporation Organic electroluminescent materials and devices
US9947895B2 (en) 2015-06-17 2018-04-17 Universal Display Corporation Flexible AMOLED display
US9978965B2 (en) 2015-06-17 2018-05-22 Universal Display Corporation Rollable OLED display
US10811633B2 (en) 2015-06-17 2020-10-20 Universal Display Corporation Method of increasing the flexibility of an AMOLDED display, a flexible display, and a product
US10490774B2 (en) 2015-06-17 2019-11-26 Universal Display Corporation Flexible AMOLED display
US10825997B2 (en) 2015-06-25 2020-11-03 Universal Display Corporation Organic electroluminescent materials and devices
US10873036B2 (en) 2015-07-07 2020-12-22 Universal Display Corporation Organic electroluminescent materials and devices
US10020466B2 (en) 2015-07-08 2018-07-10 Universal Display Corporation Flexible multilayer scattering substrate used in OLED
US9899631B2 (en) 2015-07-08 2018-02-20 Universal Display Corporation Flexible multilayer scattering substrate used in OLED
US11018309B2 (en) 2015-08-03 2021-05-25 Universal Display Corporation Organic electroluminescent materials and devices
US10522769B2 (en) 2015-08-18 2019-12-31 Universal Display Corporation Organic electroluminescent materials and devices
US9947728B2 (en) 2015-08-25 2018-04-17 Universal Display Corporation Hybrid MEMS OLED display
US11706972B2 (en) 2015-09-08 2023-07-18 Universal Display Corporation Organic electroluminescent materials and devices
US10770664B2 (en) 2015-09-21 2020-09-08 Universal Display Corporation Organic electroluminescent materials and devices
US10847728B2 (en) 2015-10-01 2020-11-24 Universal Display Corporation Organic electroluminescent materials and devices
US11889747B2 (en) 2015-10-01 2024-01-30 Universal Display Corporation Organic electroluminescent materials and devices
US10593892B2 (en) 2015-10-01 2020-03-17 Universal Display Corporation Organic electroluminescent materials and devices
US11349087B2 (en) 2015-10-29 2022-05-31 Universal Display Corporation Organic electroluminescent materials and devices
US10388892B2 (en) 2015-10-29 2019-08-20 Universal Display Corporation Organic electroluminescent materials and devices
US10388893B2 (en) 2015-10-29 2019-08-20 Universal Display Corporation Organic electroluminescent materials and devices
US10177318B2 (en) 2015-10-29 2019-01-08 Universal Display Corporation Organic electroluminescent materials and devices
US10998507B2 (en) 2015-11-23 2021-05-04 Universal Display Corporation Organic electroluminescent materials and devices
US11832456B2 (en) 2015-11-23 2023-11-28 Universal Display Corporation Organic electroluminescent materials and devices
US10476010B2 (en) 2015-11-30 2019-11-12 Universal Display Corporation Organic electroluminescent materials and devices
US11818948B2 (en) 2015-12-29 2023-11-14 Universal Display Corporation Organic electroluminescent materials and devices
US10957861B2 (en) 2015-12-29 2021-03-23 Universal Display Corporation Organic electroluminescent materials and devices
US11024808B2 (en) 2015-12-29 2021-06-01 Universal Display Corporation Organic electroluminescent materials and devices
US11716898B2 (en) 2016-02-09 2023-08-01 Universal Display Corporation Organic electroluminescent materials and devices
US10707427B2 (en) 2016-02-09 2020-07-07 Universal Display Corporation Organic electroluminescent materials and devices
US10600967B2 (en) 2016-02-18 2020-03-24 Universal Display Corporation Organic electroluminescent materials and devices
US10276809B2 (en) 2016-04-05 2019-04-30 Universal Display Corporation Organic electroluminescent materials and devices
US11081647B2 (en) 2016-04-22 2021-08-03 Universal Display Corporation Organic electroluminescent materials and devices
US10460663B2 (en) 2016-05-31 2019-10-29 Universal Display Corporation Architecture for very high resolution AMOLED display backplane
US11683981B2 (en) 2016-06-20 2023-06-20 Universal Display Corporation Organic electroluminescent materials and devices
US10651403B2 (en) 2016-06-20 2020-05-12 Universal Display Corporation Organic electroluminescent materials and devices
US11114624B2 (en) 2016-06-20 2021-09-07 Universal Display Corporation Organic electroluminescent materials and devices
US10686140B2 (en) 2016-06-20 2020-06-16 Universal Display Corporation Organic electroluminescent materials and devices
US10566547B2 (en) 2016-07-11 2020-02-18 Universal Display Corporation Organic electroluminescent materials and devices
US10680184B2 (en) 2016-07-11 2020-06-09 Universal Display Corporation Organic electroluminescent materials and devices
US10153443B2 (en) 2016-07-19 2018-12-11 Universal Display Corporation Organic electroluminescent materials and devices
US10720587B2 (en) 2016-07-19 2020-07-21 Universal Display Corporation Organic electroluminescent materials and devices
US10229960B2 (en) 2016-08-02 2019-03-12 Universal Display Corporation OLED displays with variable display regions
US10205105B2 (en) 2016-08-15 2019-02-12 Universal Display Corporation Organic electroluminescent materials and devices
US10505127B2 (en) 2016-09-19 2019-12-10 Universal Display Corporation Organic electroluminescent materials and devices
US10608185B2 (en) 2016-10-17 2020-03-31 Univeral Display Corporation Organic electroluminescent materials and devices
US10236458B2 (en) 2016-10-24 2019-03-19 Universal Display Corporation Organic electroluminescent materials and devices
US10340464B2 (en) 2016-11-10 2019-07-02 Universal Display Corporation Organic electroluminescent materials and devices
US11069864B2 (en) 2016-11-11 2021-07-20 Universal Display Corporation Organic electroluminescent materials and devices
US10680188B2 (en) 2016-11-11 2020-06-09 Universal Display Corporation Organic electroluminescent materials and devices
US10662196B2 (en) 2016-11-17 2020-05-26 Universal Display Corporation Organic electroluminescent materials and devices
US10964893B2 (en) 2016-11-17 2021-03-30 Universal Display Corporation Organic electroluminescent materials and devices
US10833276B2 (en) 2016-11-21 2020-11-10 Universal Display Corporation Organic electroluminescent materials and devices
US10153445B2 (en) 2016-11-21 2018-12-11 Universal Display Corporation Organic electroluminescent materials and devices
US10490753B2 (en) 2016-12-15 2019-11-26 Universal Display Corporation Organic electroluminescent materials and devices
US10811618B2 (en) 2016-12-19 2020-10-20 Universal Display Corporation Organic electroluminescent materials and devices
US10629820B2 (en) 2017-01-18 2020-04-21 Universal Display Corporation Organic electroluminescent materials and devices
US10964904B2 (en) 2017-01-20 2021-03-30 Universal Display Corporation Organic electroluminescent materials and devices
US10978647B2 (en) 2017-02-15 2021-04-13 Universal Display Corporation Organic electroluminescent materials and devices
US10741780B2 (en) 2017-03-10 2020-08-11 Universal Display Corporation Organic electroluminescent materials and devices
US10910577B2 (en) 2017-03-28 2021-02-02 Universal Display Corporation Organic electroluminescent materials and devices
US10873037B2 (en) 2017-03-28 2020-12-22 Universal Display Corporation Organic electroluminescent materials and devices
US11158820B2 (en) 2017-03-29 2021-10-26 Universal Display Corporation Organic electroluminescent materials and devices
US10862046B2 (en) 2017-03-30 2020-12-08 Universal Display Corporation Organic electroluminescent materials and devices
US11139443B2 (en) 2017-03-31 2021-10-05 Universal Display Corporation Organic electroluminescent materials and devices
US11038117B2 (en) 2017-04-11 2021-06-15 Universal Display Corporation Organic electroluminescent materials and devices
US10777754B2 (en) 2017-04-11 2020-09-15 Universal Display Corporation Organic electroluminescent materials and devices
US11101434B2 (en) 2017-04-21 2021-08-24 Universal Display Corporation Organic electroluminescent materials and devices
US11038137B2 (en) 2017-04-28 2021-06-15 Universal Display Corporation Organic electroluminescent materials and devices
US10910570B2 (en) 2017-04-28 2021-02-02 Universal Display Corporation Organic electroluminescent materials and devices
US10941170B2 (en) 2017-05-03 2021-03-09 Universal Display Corporation Organic electroluminescent materials and devices
US11201299B2 (en) 2017-05-04 2021-12-14 Universal Display Corporation Organic electroluminescent materials and devices
US10930864B2 (en) 2017-05-10 2021-02-23 Universal Display Corporation Organic electroluminescent materials and devices
US10944060B2 (en) 2017-05-11 2021-03-09 Universal Display Corporation Organic electroluminescent materials and devices
US10822362B2 (en) 2017-05-11 2020-11-03 Universal Display Corporation Organic electroluminescent materials and devices
US10790455B2 (en) 2017-05-18 2020-09-29 Universal Display Corporation Organic electroluminescent materials and devices
US10934293B2 (en) 2017-05-18 2021-03-02 Universal Display Corporation Organic electroluminescent materials and devices
US10944062B2 (en) 2017-05-18 2021-03-09 Universal Display Corporation Organic electroluminescent materials and devices
US10930862B2 (en) 2017-06-01 2021-02-23 Universal Display Corporation Organic electroluminescent materials and devices
US11958825B2 (en) 2017-06-23 2024-04-16 Universal Display Corporation Organic electroluminescent materials and devices
US10968226B2 (en) 2017-06-23 2021-04-06 Universal Display Corporation Organic electroluminescent materials and devices
US11174259B2 (en) 2017-06-23 2021-11-16 Universal Display Corporation Organic electroluminescent materials and devices
US11731975B2 (en) 2017-06-23 2023-08-22 Universal Display Corporation Organic electroluminescent materials and devices
US11678565B2 (en) 2017-06-23 2023-06-13 Universal Display Corporation Organic electroluminescent materials and devices
US11608321B2 (en) 2017-06-23 2023-03-21 Universal Display Corporation Organic electroluminescent materials and devices
US11495757B2 (en) 2017-06-23 2022-11-08 Universal Display Corporation Organic electroluminescent materials and devices
US11917843B2 (en) 2017-07-26 2024-02-27 Universal Display Corporation Organic electroluminescent materials and devices
US11322691B2 (en) 2017-07-26 2022-05-03 Universal Display Corporation Organic electroluminescent materials and devices
US11968883B2 (en) 2017-07-26 2024-04-23 Universal Display Corporation Organic electroluminescent materials and devices
US11508913B2 (en) 2017-08-10 2022-11-22 Universal Display Corporation Organic electroluminescent materials and devices
US11910699B2 (en) 2017-08-10 2024-02-20 Universal Display Corporation Organic electroluminescent materials and devices
US11349083B2 (en) 2017-08-10 2022-05-31 Universal Display Corporation Organic electroluminescent materials and devices
US11437591B2 (en) 2017-08-24 2022-09-06 Universal Display Corporation Organic electroluminescent materials and devices
US11444249B2 (en) 2017-09-07 2022-09-13 Universal Display Corporation Organic electroluminescent materials and devices
US11183646B2 (en) 2017-11-07 2021-11-23 Universal Display Corporation Organic electroluminescent materials and devices
US11168103B2 (en) 2017-11-17 2021-11-09 Universal Display Corporation Organic electroluminescent materials and devices
US10770673B2 (en) 2017-11-28 2020-09-08 The Regents Of The University Of Michigan Highly reliable stacked white organic light emitting device
US11233204B2 (en) 2017-12-14 2022-01-25 Universal Display Corporation Organic electroluminescent materials and devices
US10971687B2 (en) 2017-12-14 2021-04-06 Universal Display Corporation Organic electroluminescent materials and devices
US11233205B2 (en) 2017-12-14 2022-01-25 Universal Display Corporation Organic electroluminescent materials and devices
US11818946B2 (en) 2018-01-11 2023-11-14 Universal Display Corporation Organic electroluminescent materials and devices
US11271177B2 (en) 2018-01-11 2022-03-08 Universal Display Corporation Organic electroluminescent materials and devices
US11367840B2 (en) 2018-01-26 2022-06-21 Universal Display Corporation Organic electroluminescent materials and devices
US11957050B2 (en) 2018-02-09 2024-04-09 Universal Display Corporation Organic electroluminescent materials and devices
US11557733B2 (en) 2018-03-12 2023-01-17 Universal Display Corporation Organic electroluminescent materials and devices
US11882759B2 (en) 2018-04-13 2024-01-23 Universal Display Corporation Organic electroluminescent materials and devices
US11616203B2 (en) 2018-04-17 2023-03-28 Universal Display Corporation Organic electroluminescent materials and devices
US11339182B2 (en) 2018-06-07 2022-05-24 Universal Display Corporation Organic electroluminescent materials and devices
US11228004B2 (en) 2018-06-22 2022-01-18 Universal Display Corporation Organic electroluminescent materials and devices
US11469383B2 (en) 2018-10-08 2022-10-11 Universal Display Corporation Organic electroluminescent materials and devices
US11495752B2 (en) 2018-10-08 2022-11-08 Universal Display Corporation Organic electroluminescent materials and devices
US11963441B2 (en) 2018-11-26 2024-04-16 Universal Display Corporation Organic electroluminescent materials and devices
US11706980B2 (en) 2018-11-28 2023-07-18 Universal Display Corporation Host materials for electroluminescent devices
US11515489B2 (en) 2018-11-28 2022-11-29 Universal Display Corporation Host materials for electroluminescent devices
US11834459B2 (en) 2018-12-12 2023-12-05 Universal Display Corporation Host materials for electroluminescent devices
US11895853B2 (en) 2019-01-17 2024-02-06 The Regents Of The University Of Michigan Organic photovoltaic device having a lateral charge transport channel
US11349099B2 (en) 2019-01-25 2022-05-31 The Regents Of The University Of Michigan Method of fabricating a light emitting device having a polymer film with a specified surface rouggness
US11832475B2 (en) 2019-01-25 2023-11-28 The Regents Of The University Of Michigan Flexible electronic display device
US11342526B2 (en) 2019-01-29 2022-05-24 The Regents Of The University Of Michigan Hybrid organic light emitting device
US11780829B2 (en) 2019-01-30 2023-10-10 The University Of Southern California Organic electroluminescent materials and devices
US11812624B2 (en) 2019-01-30 2023-11-07 The University Of Southern California Organic electroluminescent materials and devices
US11370809B2 (en) 2019-02-08 2022-06-28 Universal Display Corporation Organic electroluminescent materials and devices
US11325932B2 (en) 2019-02-08 2022-05-10 Universal Display Corporation Organic electroluminescent materials and devices
US11773320B2 (en) 2019-02-21 2023-10-03 Universal Display Corporation Organic electroluminescent materials and devices
US11557738B2 (en) 2019-02-22 2023-01-17 Universal Display Corporation Organic electroluminescent materials and devices
US11758807B2 (en) 2019-02-22 2023-09-12 Universal Display Corporation Organic electroluminescent materials and devices
US11512093B2 (en) 2019-03-04 2022-11-29 Universal Display Corporation Compound used for organic light emitting device (OLED), consumer product and formulation
US11552247B2 (en) 2019-03-20 2023-01-10 The Regents Of The University Of Michigan Organic vapor jet nozzle with shutter
US11963438B2 (en) 2019-03-26 2024-04-16 The University Of Southern California Organic electroluminescent materials and devices
US11613550B2 (en) 2019-04-30 2023-03-28 Universal Display Corporation Organic electroluminescent materials and devices comprising benzimidazole-containing metal complexes
US11920070B2 (en) 2019-07-12 2024-03-05 The University Of Southern California Luminescent janus-type, two-coordinated metal complexes
US11825687B2 (en) 2019-07-17 2023-11-21 The Regents Of The University Of Michigan Organic light emitting device
US11832504B2 (en) 2019-11-25 2023-11-28 The Regents Of The University Of Michigan System and method for organic electronic device patterning
US11292245B2 (en) 2020-01-03 2022-04-05 Trustees Of Boston University Microelectromechanical shutters for organic vapor jet printing
US11985888B2 (en) 2020-07-30 2024-05-14 The Regents Of The University Of Michigan Organic electroluminescent device

Also Published As

Publication number Publication date
JP5099013B2 (en) 2012-12-12
JPWO2008044723A1 (en) 2010-02-18

Similar Documents

Publication Publication Date Title
JP5099013B2 (en) ORGANIC ELECTROLUMINESCENT ELEMENT MATERIAL, ORGANIC ELECTROLUMINESCENT ELEMENT, DISPLAY DEVICE AND LIGHTING DEVICE
JP5181448B2 (en) Organic electroluminescence element material
JP4923478B2 (en) Organic electroluminescence element, display device and lighting device
JP5011908B2 (en) Organic electroluminescence element, display device and lighting device
JP5194596B2 (en) Organic electroluminescence element, display device and lighting device
JP5589251B2 (en) Organic electroluminescence element material
JP5098641B2 (en) Method for manufacturing organic electroluminescence element
JP5724204B2 (en) Organic electroluminescence element, display device, and lighting device
JP5067114B2 (en) ORGANIC ELECTROLUMINESCENT ELEMENT MATERIAL, ORGANIC ELECTROLUMINESCENT ELEMENT, DISPLAY DEVICE AND LIGHTING DEVICE
JP5115094B2 (en) ORGANIC ELECTROLUMINESCENT ELEMENT MATERIAL, ORGANIC ELECTROLUMINESCENT ELEMENT, DISPLAY DEVICE AND LIGHTING DEVICE
JP4961664B2 (en) Organic electroluminescence element, display device and lighting device
JP5130913B2 (en) ORGANIC ELECTROLUMINESCENT ELEMENT MATERIAL, ORGANIC ELECTROLUMINESCENT ELEMENT, DISPLAY DEVICE AND LIGHTING DEVICE
JP5151045B2 (en) Organic electroluminescence element, display device and lighting device
WO2008035664A1 (en) Organic electroluminescent device material, organic electroluminescent device, display and illuminating device
JPWO2005083033A1 (en) ORGANIC ELECTROLUMINESCENT ELEMENT MATERIAL, ORGANIC ELECTROLUMINESCENT ELEMENT, DISPLAY DEVICE AND LIGHTING DEVICE
JPWO2006082742A1 (en) ORGANIC ELECTROLUMINESCENT ELEMENT MATERIAL, ORGANIC ELECTROLUMINESCENT ELEMENT, DISPLAY DEVICE AND LIGHTING DEVICE
JPWO2009069442A1 (en) Organic electroluminescence element, display device and lighting device
JPWO2006100888A1 (en) Organic EL element material, organic EL element, display device and lighting device
JP2008069268A (en) Organic electroluminescent element material, organic electroluminescent element, displaying device and lighting device
JP4830283B2 (en) Organic electroluminescence element, display device and lighting device
JP2008074921A (en) Organic electroluminescent element material, organic electroluminescent element, displaying device and illuminating device
JP2006282965A (en) Organic electroluminescent device material, organic electroluminescent device, display device and lighting device
JP5556017B2 (en) ORGANIC ELECTROLUMINESCENT ELEMENT, DISPLAY DEVICE, LIGHTING DEVICE, AND ORGANIC ELECTROLUMINESCENT ELEMENT MATERIAL
JP4325324B2 (en) Organic electroluminescence device
JPWO2006100925A1 (en) Organic EL element material, organic EL element, display device and lighting device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07829560

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008538748

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07829560

Country of ref document: EP

Kind code of ref document: A1