WO2008041551A1 - Method for fabricating transparent conductive tin oxide film - Google Patents

Method for fabricating transparent conductive tin oxide film Download PDF

Info

Publication number
WO2008041551A1
WO2008041551A1 PCT/JP2007/068553 JP2007068553W WO2008041551A1 WO 2008041551 A1 WO2008041551 A1 WO 2008041551A1 JP 2007068553 W JP2007068553 W JP 2007068553W WO 2008041551 A1 WO2008041551 A1 WO 2008041551A1
Authority
WO
WIPO (PCT)
Prior art keywords
transparent conductive
conductive film
tin
tin oxide
thin film
Prior art date
Application number
PCT/JP2007/068553
Other languages
French (fr)
Japanese (ja)
Inventor
Tetsuo Tsuchiya
Tomohiko Nakajima
Toshiya Kumagai
Original Assignee
National Institute Of Advanced Industrial Science And Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute Of Advanced Industrial Science And Technology filed Critical National Institute Of Advanced Industrial Science And Technology
Priority to JP2008537475A priority Critical patent/JP5057476B2/en
Publication of WO2008041551A1 publication Critical patent/WO2008041551A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G19/00Compounds of tin
    • C01G19/02Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1295Process of deposition of the inorganic material with after-treatment of the deposited inorganic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/14Decomposition by irradiation, e.g. photolysis, particle radiation or by mixed irradiation sources
    • C23C18/143Radiation by light, e.g. photolysis or pyrolysis
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties

Definitions

  • the present invention relates to an improved production of a fluorine-doped tin oxide transparent conductive film useful as an electrode material for a liquid crystal display, a plasma display, a field emission display (FED), a flat panel display (referred to as FPD), etc. Regarding the method.
  • an ITO thin film in which tin is doped in indium oxide exhibits the highest level of electrical conductivity and patterning, and is therefore the most widely used in the field.
  • Tin oxide-based transparent conductive films doped with fluorine or antimony are chemically stable and inexpensive, so they are used in applications such as solar cells. I'm starting.
  • fluorine-doped tin oxide has a conductivity that is an order of magnitude higher than antimony-doped tin oxide, and so its demand is expected to increase rapidly in the future.
  • a solid phase method such as a vapor phase method such as electron beam evaporation, CVD or spray pyrolysis, or a coating pyrolysis method is used. It has been known.
  • Patent Document 1 Non-Patent Documents 1 and 2.
  • the solid phase method has the advantage that it can be expected to have a large area and a low cost because a large chamber is not required.
  • Patent Document 2 Non-Patent Document 2
  • Patent literature 3 4
  • a metal oxide thin film is produced by irradiating an excimer laser in an oxygen atmosphere after a solution or the like in which a metal organic acid salt or an organic metal compound is dissolved in a soluble solvent is dispersedly coated on the substrate.
  • the method is known! /, Ru (Patent Document 3).
  • this manufacturing method is intended for the production of a general metal oxide crystal thin film, and does not intend to improve the conductivity of the metal oxide thin film. Moreover, nothing is taught about an efficient method for producing a tin oxide transparent conductive film, and the use of oxygen is indispensable, which is not an industrially advantageous method.
  • a metal organic compound is dissolved in a solvent to form a solution, which is applied to a substrate and then dried, and the wavelength is 400 nm or less.
  • the first stage of irradiation is performed with weak irradiation that does not lead to complete decomposition of the metal organic compound.
  • a method for producing a metal oxide was proposed in which strong irradiation that can be changed to an oxide was performed (Patent Document 4).
  • this production method is also intended to produce a general metal oxide crystal thin film as described above. It was shown in the figure, and nothing was mentioned about how a tin oxide transparent conductive film excellent in conductivity can be efficiently produced.
  • the solid-phase method by coating pyrolysis has a problem that it requires a higher temperature than the gas-phase method and firing at a high temperature of 450 ° C or higher is essential.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2002_146536
  • Patent Document 2 Japanese Patent Publication No. 2000-81952
  • Patent Document 3 Patent 2759125 Specification
  • Patent Document 4 Japanese Patent Laid-Open No. 2001-31417
  • Non-Patent Document 1 Takanori Muto, Shigemasa Furuuchi: Applied Physics, 41, 134-142 (1972)
  • Non-Patent Document 2 Kunihiko Adachi, Mamoru Mizuhashi: Imports Res. Lab. Asahi Glasee Co. Ltd., 38, 57 (1
  • Non-Patent Document 3 A. Tsunami, H. Yoshimizu,. Odaira, S. Shimada, T. Matsushita, Mat. Res. Bull., 21 (1986) 2731
  • Non-Patent Document 4 C. Terrier, J. P. Chatelon, A. Roger and R. Berjoan, Thin Solid Films, 2 63, 37-41 (1995)
  • An object of the present invention is to provide an efficient method for producing a tin oxide transparent conductive film capable of low-temperature growth and exhibiting extremely high conductivity.
  • the present inventors used a precursor solution having fluorine and tin in the molecule as a raw material solution, and applied and dried this onto a substrate. Later, by adopting a unique process such as replacing part of the heat treatment process in the coating pyrolysis method with ultraviolet light (laser) irradiation, a tin oxide thin film showing high conductivity can be obtained at low temperature and high speed.
  • a unique process such as replacing part of the heat treatment process in the coating pyrolysis method with ultraviolet light (laser) irradiation, a tin oxide thin film showing high conductivity can be obtained at low temperature and high speed.
  • the patterning required for the device can be performed simultaneously with the film formation by precisely controlling the use of the mask and the irradiation position of the ultraviolet light, and has completed the present invention.
  • Process 1 Process of forming a thin film by applying and drying a precursor solution containing fluorine and tin on a substrate
  • Process 2 The first light irradiation process to irradiate the thin film obtained in Process 1 with ultraviolet rays
  • Process 3 Process of heat-treating the thin film obtained in Process 2
  • Process 4 Second light irradiation process to irradiate the thin film obtained in Process 3 with ultraviolet rays
  • Process 3 and process 4 are performed simultaneously or stepwise, The method for producing a tin oxide transparent conductive film according to the above ⁇ 1>.
  • Steps 2 to 4 are all carried out at 25 ° C.
  • a tin oxide transparent conductive film excellent in durability and conductivity can be produced industrially advantageously with good efficiency at low temperatures.
  • the method for producing a tin oxide transparent conductive film of the present invention includes the following steps.
  • Process 1 Process of forming a thin film by applying and drying a precursor solution containing fluorine and tin on a substrate
  • Process 2 The first light irradiation process to irradiate the thin film obtained in Process 1 with ultraviolet rays
  • Process 3 Process of heat-treating the thin film obtained in Process 2
  • Process 4 Second light irradiation process to irradiate the thin film obtained in Process 3 with ultraviolet rays
  • step 1 a precursor solution containing fluorine and tin is applied on a substrate and dried to form a thin film of this precursor solution.
  • This thin film will eventually become a conductive tin oxide thin film crystal through subsequent processing steps.
  • a substrate having excellent heat resistance and transparency examples include glass substrates, metal oxide substrates such as silicon oxide and titanium oxide, plastic substrates such as polycarbonate resins, polyethylene terephthalate resins, polyethersulfone resins, and polyacrylate resins, strontium titanate (SrTiO ), Lantern alumine
  • AlO magnesium oxide
  • MgO magnesium oxide
  • Nium (Sr) (A1 Ta) 0), Neodymium gallate (NdGaO), Yttrium aluminate (
  • YA10 aluminum oxide (A1 0), yttria-stabilized zirconium oxide ((Zr, Y) 0, YSZ), oxidation
  • Examples include polycrystalline and single crystal substrates such as compound semiconductor substrates such as 3 2 3 2 titanium (TiO 2).
  • the precursor solution containing fluorine and tin provided on the substrate may be any one containing fluorine and tin and forming a conductive tin oxide thin film crystal by a subsequent processing step.
  • One of the typical precursor solutions is a solution containing an organotin compound having fluorine in the molecule.
  • organotin compounds having fluorine in the molecule include tin / 3-diketonates, tin salts of organic acids or tin alkoxides, and those containing fluorine in the molecule.
  • organic tin compounds include hexafluoropentadionate tin (11), bis-pentafluorophenyldimethyltin, di-n-butyldifluoros, trisic.
  • One of other typical precursor solutions is a solution containing a mixture of a fluorine compound and an organotin compound.
  • fluorine compound trifluoroacetic acid, pentafluoropropionic acid, 2-fluorotoluene and the like are used.
  • organotin compounds include tin compounds such as tin / 3-diketonate, tin salts of organic acids or tin alkoxides.
  • the weight ratio of fluorine compound / organotin compound is 1: 5.
  • a solvent that can be dissolved such as an organotin compound, may be used. preferable.
  • solvents examples include hydrocarbons such as hexane, octane, benzene, tolylene, tetralin and the like, hydrocarbons such as acetylacetone, methanol, ethanol, propanol, amines, pyridine, Organic acids such as acetic acid and propionic acid, and esters such as butyl acetate can be used. These organic solvents can be used singly or in combination of two or more depending on the type of organotin compound used.
  • a solution of tin / 3-diketonate, tin salt of organic acid or tin alkoxide and containing fluorine in the molecule is applied onto the substrate. Then, a thin film layer is formed on the substrate.
  • a solution coating method is used, and various conventionally known methods such as a dipping method, a spray method, an ink jet method, a brush coating method, and a spin coating method can be used.
  • step 1 in order to dry the formed coated thin film, the formed coated thin film is allowed to stand for a certain period of time, for example, in a temperature atmosphere of about room temperature or higher or in a slightly heated atmosphere. Is done.
  • the coated thin film formed on the substrate is dried at room temperature or under heating. For example, after raising the temperature to 150 ° C over 15 minutes at a rate of 10 ° C / min in air, holding at that temperature for 15 minutes, then cooling the furnace.
  • the thickness of the film formed on the substrate can ultimately be in the range of lnm to about 10 m.
  • step 2 of the present invention the coated thin film obtained in step 1 is irradiated with ultraviolet rays. This first ultraviolet irradiation is performed to perform partial decomposition and patterning of organic functions while avoiding abrasion of the thin film.
  • This primary light irradiation step can be performed at the heating temperature of the pre-heat treatment step, for example, Since heating causes an evaporation reaction of the metal organic compound and changes the thickness of the film, it is preferably performed at room temperature.
  • the ultraviolet irradiation time can be changed depending on the irradiation repetition rate, for example, 30 seconds at 25 Hz and 15 seconds at 50 Hz. It is.
  • the wavelength, light intensity, repetition rate (pulsed or continuous) substrate temperature and atmosphere in Step 2 are appropriately selected according to the type of the target thin film.
  • the wavelength of the ultraviolet light is not particularly limited, but is preferably 400 nm or less, and it may be a laser light or lamp light.
  • the light source used for light irradiation may be either an ultraviolet laser or an ultraviolet lamp, but an ultraviolet laser XeF (351 nm), XeCl (308 nm), rF (248 nm), ArF (193 nm), which has little heating effect, It is preferable to use an excimer laser such as F2 (157 nm), YAG laser (fourth harmonic: 266 nm), or Ar ion laser (second harmonic: 257 nm)!
  • an excimer laser such as F2 (157 nm), YAG laser (fourth harmonic: 266 nm), or Ar ion laser (second harmonic: 257 nm)!
  • a KrF (248 nm) laser is suitable as a light source for applying a refractive optical system using a lens.
  • step 3 of the present invention the thin film obtained in step 2 is heat-treated. If this heat treatment step is not performed, a thin film exhibiting high conductivity is not formed even if the final process is performed, and thus the intended purpose of the present invention cannot be achieved.
  • the temperature of the heat treatment step is 25 to 600 ° C, preferably 25 to 300 ° C, more preferably 25 to 150 ° C, in order to achieve the above object.
  • the heat treatment temperature was less than 25 ° C, conductivity was shown by subsequent irradiation, but a highly conductive film was not formed. Also, if the temperature exceeds 600 ° C, it is not preferable because the conductivity decreases due to the decomposition of fluorine and the glass substrate melts.
  • step 4 of the present invention the thin film obtained in step 3 is irradiated with ultraviolet rays. This second ultraviolet irradiation is performed in order to improve the conductivity of the thin film. If this second ultraviolet irradiation is not performed, the film is not crystallized, so that the conductivity is low, and the intended purpose of the present invention cannot be achieved.
  • This secondary light irradiation step is preferably performed at room temperature in order to prevent the decomposition of fluorine by force heating that can be performed at 25 to 600 ° C.
  • the UV irradiation time is 10 seconds in the case of 1 Hz repetition frequency.
  • the wavelength, light intensity, repetition rate (pulsed or continuous) substrate temperature, and atmosphere in Step 4 are appropriately selected according to the type of target thin film.
  • the wavelength of the ultraviolet light is not particularly limited, but is preferably 400 nm or less, and may be pulsed laser light or lamp light.
  • the light source used for light irradiation may be either an ultraviolet laser or an ultraviolet lamp, but an ultraviolet laser XeF (351 nm), XeCl (308 nm), rF (248 nm), ArF (193 nm), which has little heating effect, It is preferable to use an excimer laser such as F2 (157 nm), YAG laser (fourth harmonic: 266 nm), or Ar ion laser (second harmonic: 257 nm)! Since the transmittance of the optical material decreases as the wavelength becomes shorter, a KrF (248 nm) laser is suitable as a light source for applying a refractive optical system using a lens.
  • an excimer laser such as F2 (157 nm), YAG laser (fourth harmonic: 266 nm), or Ar ion laser (second harmonic: 257 nm)! Since the transmittance of the optical material decreases as the wavelength becomes shorter, a KrF (248 nm) laser is suitable as
  • Step 3 and step 4 of the present invention may be performed stepwise or individually, but can also be performed simultaneously in view of simplification of the process step.
  • the heat treatment process of step 3 is a process of irradiating ultraviolet rays having a high repetition frequency, a high energy density, and an energy density without using a heat treatment method using an ordinary electric furnace.
  • a non-equilibrium heating effect is produced in the tin oxide film region for several nanoseconds. Therefore, step 3 can be performed in the initial stage of ultraviolet irradiation.
  • the crystallization reaction in step 4 is also promoted.
  • a soot oxide transparent conductive film excellent in durability and conductivity can be produced efficiently and advantageously industrially at low temperatures.
  • the crystallization of the thin film does not proceed until 450 ° C to 500 ° C is reached.
  • thin film crystal growth is possible at room temperature to a low temperature of 250 ° C.
  • the sheet resistance of the transparent conductive film according to the present invention shows a very small value of, for example, 300 ⁇ / port to 50 ⁇ / port.
  • the tin oxide transparent conductive film having significantly improved conductivity can be easily manufactured at a low temperature without using a large-sized device. Na! /, You can expect a new device.
  • the substrates used in the examples of the present invention are a quartz substrate and a non-alkali glass substrate, the raw material solution is tin ( ⁇ ) hexafluoropentadate solution (Sl), and ultraviolet light irradiation is A KrF excimer laser or ArF excimer laser was used.
  • Tin ( ⁇ ) hexafluoropentadionate solution was spin coated on a silicon substrate at 4000 rpm for 10 seconds.
  • ArF excimer laser was irradiated for 10 seconds at 193nm, 25Hz, 40mJm 2 at room temperature in the atmosphere.
  • 10 shots were irradiated at 90 mJ / Cm 2 and 1 Hz, and the transparent conductive film was prepared by repeating the above steps to control the film thickness.
  • the sheet resistance of the irradiated portion of this transparent conductive film was 150 ⁇ / mouth.
  • the XRD pattern of this transparent conductive film is shown in Fig. 1 (a).
  • “before irradiation” in FIG. 1 (a) means a film in a state in which tin ( ⁇ ) hexafluoropentadionate solution is spin-coated on a silicon substrate at 4000 rpm for 10 seconds.
  • a transparent conductive film was produced in the same manner as in Example 1 except that the laser was replaced with a KrF excimer laser in Example 1.
  • the sheet resistance of the irradiated portion of this transparent conductive film was 300 ⁇ / mouth.
  • Example 1 when the substrate is replaced with a TiO single crystal substrate, an epitaxial thin film is formed.
  • a transparent conductive film was obtained that grew and showed a sheet resistance of 50 ⁇ / mouth at the irradiated part.
  • Figure 2 shows the XRD pattern of this transparent conductive film.
  • (b) means a film in a state where a tin ( ⁇ ) hexafluoropentadionate solution is spin-coated on a TiO single crystal substrate at 4000 rpm for 10 seconds.
  • Example 1 when the substrate was replaced with a quartz substrate, a polycrystalline film was grown, and a transparent conductive film having a sheet resistance of 150 ⁇ / mouth at the irradiated portion was obtained.
  • Tin ( ⁇ ) hexafluoropentadionate solution was spin-coated on a quartz substrate at 4000 rpm for 10 seconds. Thereafter, a KrF (248 nm) excimer laser was irradiated for 10 seconds at 25 Hz and 25 mJm 2 at room temperature and in the atmosphere (step 2). Then at 25 ° C, lOOmJ N m 2, and irradiated for 30 seconds at 25 Hz (Step 3), followed by 10 shots irradiated with 90mJ / Cm 2, 1Hz (Step 4). In addition, a transparent conductive film was produced by repeating the above steps in order to control the film thickness. The sheet resistance of the irradiated part of this transparent conductive film was 300 ⁇ / mouth.
  • Tin ( ⁇ ) hexafluoropentadionate solution was spin-coated on a quartz substrate at 4000 rpm for 10 seconds. Thereafter, a KrF (248 nm) excimer laser was irradiated for 10 seconds at 25 Hz and 25 mJm 2 at room temperature and in the atmosphere (step 2). Next, irradiation was carried out at 25 ° C. for 1 minute at 10 mJ, m 2 and 25 Hz (steps 3 and 4). In addition, a transparent conductive film was produced by repeating the above steps in order to control the film thickness. The sheet resistance of the irradiated portion of this transparent conductive film was 200 ⁇ / mouth.
  • a transparent conductive film was produced in the same manner as in Example 5 except that the excimer laser in Example 5 was replaced with an ArF excimer laser.
  • the sheet resistance of the irradiated portion of this transparent conductive film was 250 ⁇ / mouth.
  • Example 1 a transparent conductive film was produced in the same manner as in Example 1 except that the heat treatment step was omitted.
  • the sheet resistance of the irradiated portion of this transparent conductive film was 1000 ⁇ / mouth.

Abstract

A method for fabricating transparent conductive tin oxide film, which can be grown at a low temperature and shows an extremely high conductivity, comprises a step (1) of forming a thin film by coating and drying a precursor solution including fluorine and tin on a substrate, a step (2) of a first light irradiation for irradiating the thin film obtained in the step (1) with ultraviolet rays, a step (3) of heat-treating the thin film obtained in the step (2), and a step (4) of a second light irradiation for irradiating the thin film obtained in the step (3) with ultraviolet rays.

Description

明 細 書  Specification
酸化スズ透明導電膜の製造方法  Manufacturing method of tin oxide transparent conductive film
技術分野  Technical field
[0001] 本発明は、液晶ディスプレイ、プラズマディスプレイ、フィールドェミッションディスプ レイ (FED)、フラットパネルディスプレイ (FPDという)等の電極材料等として有用なフッ 素ドープ酸化スズ透明導電膜の改良された製造方法に関する。  The present invention relates to an improved production of a fluorine-doped tin oxide transparent conductive film useful as an electrode material for a liquid crystal display, a plasma display, a field emission display (FED), a flat panel display (referred to as FPD), etc. Regarding the method.
背景技術  Background art
[0002] 近年のインターネットを中心とした情報化社会の発展に伴い、液晶ディスプレイや プラズマディスプレイ、フィールドェミッションディスプレイ (FED)、有機 ELに代表され るフラットパネルディスプレイ(以下、 FPDという)、太陽電池等の需要が益々高まって きている。  [0002] With the development of an information society centered on the Internet in recent years, liquid crystal displays, plasma displays, field emission displays (FED), flat panel displays represented by organic EL (hereinafter referred to as FPD), solar cells, etc. The demand for these is increasing.
このため、可視光にて透明でかつ高い導電性をもつ透明導電膜は、これらの電極 材料などとして極めて重要な酸化物薄膜と位置付けられている。  For this reason, transparent conductive films that are transparent to visible light and have high conductivity are positioned as extremely important oxide thin films as these electrode materials.
現在、このような酸化物薄膜としては、酸化インジウムにスズをドープした ITO薄膜 が高レ、導電性を示すことやパターユングが容易であるため、最も広レ、分野で用いら れている。  At present, as such an oxide thin film, an ITO thin film in which tin is doped in indium oxide exhibits the highest level of electrical conductivity and patterning, and is therefore the most widely used in the field.
しかしなから、近年、 Inの資源枯渴問題からの同材料の価格の高騰や化学的安定 性などの観点から新しい透明導電膜の開発が急務となってきている。  However, in recent years, there has been an urgent need to develop a new transparent conductive film from the viewpoint of the price increase of the same material due to the problem of resource depletion of In and the chemical stability.
このため、種々の酸化物透明導電膜が提案されている力 フッ素やアンチモンがド ープされた酸化スズ系透明導電膜が化学的に安定で安価であるため、太陽電池な どの用途に用いられ始めている。  For this reason, various oxide transparent conductive films have been proposed. Tin oxide-based transparent conductive films doped with fluorine or antimony are chemically stable and inexpensive, so they are used in applications such as solar cells. I'm starting.
殊に、フッ素ドープ酸化スズは、アンチモンドープ酸化スズよりも 1桁程度導電率が 向上するので、今後その需要が急速に増大するものと見込まれている。  In particular, fluorine-doped tin oxide has a conductivity that is an order of magnitude higher than antimony-doped tin oxide, and so its demand is expected to increase rapidly in the future.
[0003] ところで、一般に、このようなフッ素ドープ酸化スズ等の透明導電膜の作製法として は、電子線蒸着、 CVDあるいはスプレー熱分解法などの気相法や塗布熱分解法な どの固相法が知られている。 By the way, in general, as a method for producing such a transparent conductive film such as fluorine-doped tin oxide, a solid phase method such as a vapor phase method such as electron beam evaporation, CVD or spray pyrolysis, or a coating pyrolysis method is used. It has been known.
しかしながら、気相法たとえば、電子線蒸着法では 550°C、 CVD法やスプレー熱分 解法では 300〜500°Cの加熱を要することに加え、いずれも大掛かりな装置を必要と する問題があった (特許文献 1、非特許文献 1 , 2)。 However, vapor phase methods such as 550 ° C for electron beam evaporation, CVD and spray heat In addition to requiring heating at 300 to 500 ° C in the solution methods, there was a problem that both required large equipment (Patent Document 1, Non-Patent Documents 1 and 2).
[0004] これに対し固相法は、大型のチャンバ一が不要であることから大面積化や低コスト 化が期待できるとレ、つた利点を有する。 [0004] On the other hand, the solid phase method has the advantage that it can be expected to have a large area and a low cost because a large chamber is not required.
しかし、塗布法を用いた場合の結晶成長は、固相反応であるため気相法に比べて 更に高温を必要とし、 450°C以上の高温の焼成が必須とされる(特許文献 2、非特許 文献 3, 4)。  However, crystal growth using the coating method requires a higher temperature than the gas phase method because it is a solid-phase reaction, and firing at a high temperature of 450 ° C or higher is essential (Patent Document 2, Non-Patent Document 2). Patent literature 3, 4).
従って、有機基板や有機物を含むデバイス上に作製する場合や他の相との反応を 制御するため、従来の熱処理を用いない新しいプロセスの開発が必要とされる。 また、透明導電膜をデバイスに応用する際は所望の形状に加工する必要がある。 I TOの場合は、フォトリソグラフィ一法を用いてパターユングを行い、エッチング処理に より回路パターンを作製する力 S、酸化スズは化学的に安定であるためエッチングが困 難である。従って、所望の形状に加工するための新しいプロセスの開発も重要な課 題である。  Therefore, it is necessary to develop a new process that does not use a conventional heat treatment in order to control the reaction with other phases when it is fabricated on an organic substrate or a device containing an organic substance. Moreover, when applying a transparent conductive film to a device, it is necessary to process it into a desired shape. In the case of ITO, patterning is performed using a photolithography method, and the ability to produce circuit patterns by etching treatment S, tin oxide is chemically stable, making etching difficult. Therefore, the development of a new process for processing into a desired shape is also an important issue.
[0005] 一方、金属有機酸塩ないし有機金属化合物を可溶性溶媒に溶かした溶液等を基 板上に分散塗布した後、酸素雰囲気下でエキシマレーザを照射することにより、金属 酸化物薄膜を製造する方法は知られて!/、る (特許文献 3)。  [0005] On the other hand, a metal oxide thin film is produced by irradiating an excimer laser in an oxygen atmosphere after a solution or the like in which a metal organic acid salt or an organic metal compound is dissolved in a soluble solvent is dispersedly coated on the substrate. The method is known! /, Ru (Patent Document 3).
しかしながら、この製造方法は、一般的な金属酸化物の結晶薄膜の製造を目的とし たものであり、金属酸化物薄膜の導電性の改良を意図としたものではな力、つた。また 、酸化スズ透明導電膜の効率的な製造法については何ら教示するものではなぐま た酸素の使用を不可欠とするもので工業的に有利な方法ではな力、つた。  However, this manufacturing method is intended for the production of a general metal oxide crystal thin film, and does not intend to improve the conductivity of the metal oxide thin film. Moreover, nothing is taught about an efficient method for producing a tin oxide transparent conductive film, and the use of oxygen is indispensable, which is not an industrially advantageous method.
[0006] この方法を更に改善する方法としては、本発明者等は、先に、「金属有機化合物を 溶媒に溶解させて溶液状とし、これを基板に塗布した後に、乾燥させ、波長 400nm 以下のレーザー光の照射を複数段階で行!/、、基板上に金属酸化物を形成する方法 において、最初の段階の照射を金属有機化合物を完全に分解させるに至らない程 度の弱い照射で行い、次に酸化物にまで変化させることができる強い照射を行う、金 属酸化物の製造方法」を提案した (特許文献 4)。  [0006] As a method for further improving this method, the present inventors have previously described that "a metal organic compound is dissolved in a solvent to form a solution, which is applied to a substrate and then dried, and the wavelength is 400 nm or less. In the method of forming a metal oxide on the substrate, the first stage of irradiation is performed with weak irradiation that does not lead to complete decomposition of the metal organic compound. Then, a method for producing a metal oxide was proposed in which strong irradiation that can be changed to an oxide was performed (Patent Document 4).
しかし、この製造方法も上記と同様に一般的な金属酸化物の結晶薄膜の製造を意 図したものであり、導電性に優れた酸化スズ透明導電膜を如何にして効率的に製造 し得るか否かについては何ら言及するものではなかった。 However, this production method is also intended to produce a general metal oxide crystal thin film as described above. It was shown in the figure, and nothing was mentioned about how a tin oxide transparent conductive film excellent in conductivity can be efficiently produced.
[0007] このように、従来の気相法による酸化スズ透明導電膜の製造方法では、 300〜500As described above, in the conventional method for producing a tin oxide transparent conductive film by a vapor phase method, 300 to 500 is used.
°cの加熱を要することに加え、いずれも大掛力、りな装置を必要とする難点があり、またIn addition to the need for heating at ° c, each has the disadvantage of requiring a large force and a rigid device.
、塗布熱分解による固相法では、気相法に比べて更に高温を必要とし、 450°C以上 の高温の焼成が必須とされるといった問題点がある。 However, the solid-phase method by coating pyrolysis has a problem that it requires a higher temperature than the gas-phase method and firing at a high temperature of 450 ° C or higher is essential.
また、固相法において、紫外線を用いた塗布光分解法による低温成長法も提案さ れているが、結晶性酸化スズ薄膜等が得られることが報告されているだけで、高い導 電性を示す酸化スズ透明導電膜の効率的な低温製造法に関しては何ら報告されて いないのが現状である。  In addition, as a solid phase method, a low temperature growth method by coating photolysis method using ultraviolet rays has been proposed, but it has been reported that a crystalline tin oxide thin film etc. can be obtained. There is no report on the effective low-temperature manufacturing method for the tin oxide transparent conductive film shown.
[0008] 特許文献 1:特開 2002 _ 146536号公報 [0008] Patent Document 1: Japanese Patent Application Laid-Open No. 2002_146536
特許文献 2:特許公開 2000 - 81952号公報  Patent Document 2: Japanese Patent Publication No. 2000-81952
特許文献 3:特許 2759125号明細書  Patent Document 3: Patent 2759125 Specification
特許文献 4:特開 2001— 31417号公報  Patent Document 4: Japanese Patent Laid-Open No. 2001-31417
非特許文献 1 :武藤隆ニ郎、古内重正:応用物理、 41 , 134 - 142 (1972)  Non-Patent Document 1: Takanori Muto, Shigemasa Furuuchi: Applied Physics, 41, 134-142 (1972)
非特許文献 2 :安達邦彦、水橋衛: Imports Res. Lab. Asahi Glasee Co. Ltd. , 38, 57(1 Non-Patent Document 2: Kunihiko Adachi, Mamoru Mizuhashi: Imports Res. Lab. Asahi Glasee Co. Ltd., 38, 57 (1
988) 988)
非特許文献 3 : A. Tsunami, H. Yoshimizu, . odaira, S.Shimada, T. Matsushita, Ma t. Res. Bull. , 21(1986) 2731  Non-Patent Document 3: A. Tsunami, H. Yoshimizu,. Odaira, S. Shimada, T. Matsushita, Mat. Res. Bull., 21 (1986) 2731
非特許文献 4 : C. Terrier, J. P. Chatelon, A. Roger and R.Berjoan,Thin Solid Films, 2 63, 37-41(1995)  Non-Patent Document 4: C. Terrier, J. P. Chatelon, A. Roger and R. Berjoan, Thin Solid Films, 2 63, 37-41 (1995)
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0009] 本発明は、低温成長が可能であり、かつ極めて高い導電性を示す酸化スズ透明導 電膜の効率的な製造方法を提供することを目的とする。 [0009] An object of the present invention is to provide an efficient method for producing a tin oxide transparent conductive film capable of low-temperature growth and exhibiting extremely high conductivity.
課題を解決するための手段  Means for solving the problem
[0010] 本発明者等は、上記目的を達成するために、長年鋭意検討した結果、原料溶液と して、フッ素とスズを分子内に有する前駆体溶液を用い、これを基板に塗布乾燥した 後、塗布熱分解法における熱処理過程の一部を紫外光(レーザ)照射で置き換える といった特有なプロセスを採用することにより、高い導電性を示す酸化スズ薄膜が、 低温かつ高速で得られこと、更にはマスクの使用や紫外光の照射位置を精密に制御 することにより、素子に必要なパターユングを製膜と同時に行うことができることを知見 し、本発明を完成するに至った。 [0010] As a result of intensive studies over many years in order to achieve the above object, the present inventors used a precursor solution having fluorine and tin in the molecule as a raw material solution, and applied and dried this onto a substrate. Later, by adopting a unique process such as replacing part of the heat treatment process in the coating pyrolysis method with ultraviolet light (laser) irradiation, a tin oxide thin film showing high conductivity can be obtained at low temperature and high speed. Has found that the patterning required for the device can be performed simultaneously with the film formation by precisely controlling the use of the mask and the irradiation position of the ultraviolet light, and has completed the present invention.
すなわち、この出願は、以下の発明を提供するものである。  That is, this application provides the following invention.
〈1〉 <1>
以下の工程を含むことを特徴とするスズ酸化物透明導電膜の製造方法  The manufacturing method of the tin oxide transparent conductive film characterized by including the following processes
工程 1:フッ素とスズを含有する前駆体溶液を基板上に塗布乾燥し薄膜を形成する 工程  Process 1: Process of forming a thin film by applying and drying a precursor solution containing fluorine and tin on a substrate
工程 2:工程 1で得られる薄膜に紫外線を照射する第一の光照射工程  Process 2: The first light irradiation process to irradiate the thin film obtained in Process 1 with ultraviolet rays
工程 3:工程 2で得られる薄膜を熱処理する工程  Process 3: Process of heat-treating the thin film obtained in Process 2
工程 4:工程 3で得られる薄膜に紫外線を照射する第二の光照射工程  Process 4: Second light irradiation process to irradiate the thin film obtained in Process 3 with ultraviolet rays
〈2〉 <2>
工程 3と工程 4が同時もしくは段階的に行われることを特徴とする上記〈1〉に記載の スズ酸化物透明導電膜の製造方法。  Process 3 and process 4 are performed simultaneously or stepwise, The method for producing a tin oxide transparent conductive film according to the above <1>.
〈3〉 <3>
工程 3の熱処理温度が 25〜600°Cであることを特徴とする上記〈1〉に記載のスズ酸 化物透明導電膜の製造方法。  The method for producing a stannic oxide transparent conductive film as described in <1> above, wherein the heat treatment temperature in Step 3 is 25 to 600 ° C.
〈4〉 <Four>
工程 2〜工程 4のいずれもが 25°Cで行われることを特徴とする上記〈1〉に記載のス ズ酸化物透明導電膜の製造方法。  Steps 2 to 4 are all carried out at 25 ° C. The method for producing a soot oxide transparent conductive film according to <1> above.
〈5〉 <Five>
フッ素とスズを含有する前駆体溶液カ、工程 1から 4により酸化スズに転換するもの であることを特徴とする上記〈1〉に記載のスズ酸化物透明導電膜の製造方法。 〈6〉  Precursor solution containing fluorine and tin, which is converted into tin oxide by steps 1 to 4, The method for producing a tin oxide transparent conductive film according to the above <1>. <6>
フッ素とスズを含有する前駆体溶液が、分子内にフッ素を有する有機スズ化合物を 含む溶液であることを特徴とする上記〈5〉に記載のスズ酸化物透明導電膜の製造方 法。 The method for producing a tin oxide transparent conductive film according to <5>, wherein the precursor solution containing fluorine and tin is a solution containing an organotin compound having fluorine in the molecule. Law.
〈7〉  <7>
有機スズ化合物が、 βージケトナート、有機酸塩またはアルコキシドであることを特 徴とする上記〈6〉に記載のスズ酸化物透明導電膜の製造方法。  The method for producing a tin oxide transparent conductive film according to <6>, wherein the organotin compound is β-diketonate, an organic acid salt, or an alkoxide.
〈8〉  <8>
フッ素とスズを含有する前駆体溶液が、フッ素化合物と有機スズ化合物の混合物を 含む溶液であることを特徴とする上記〈5〉に記載のスズ酸化物透明導電膜の製造方 法。  The method for producing a tin oxide transparent conductive film according to the above <5>, wherein the precursor solution containing fluorine and tin is a solution containing a mixture of a fluorine compound and an organotin compound.
〈9〉  <9>
紫外光が 400nm以下のノ ルスレーザ光またはランプ光である上記〈1〉に記載のフッ 素ドープスズ酸化物透明導電膜の製造方法。  The method for producing a fluorine-doped tin oxide transparent conductive film according to the above <1>, wherein the ultraviolet light is a laser light having a wavelength of 400 nm or less or lamp light.
発明の効果  The invention's effect
[0012] 本発明方法によれば、耐久性 ·導電性に優れたスズ酸化物透明導電膜を低温で効 率良く工業的に有利に製造することができる。  [0012] According to the method of the present invention, a tin oxide transparent conductive film excellent in durability and conductivity can be produced industrially advantageously with good efficiency at low temperatures.
図面の簡単な説明  Brief Description of Drawings
[0013] [図 l](a)本発明の実施例 1で得られた酸化スズ透明導電膜の XRDパターン (b)本発 明の実施例 3で得られた酸化スズ透明導電膜の XRDパターン  [Fig.l] (a) XRD pattern of tin oxide transparent conductive film obtained in Example 1 of the present invention (b) XRD pattern of tin oxide transparent conductive film obtained in Example 3 of the present invention
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0014] 本発明のスズ酸化物透明導電膜の製造方法は以下の工程を含むことを特徴として いる。 [0014] The method for producing a tin oxide transparent conductive film of the present invention includes the following steps.
工程 1:フッ素とスズを含有する前駆体溶液を基板上に塗布乾燥し薄膜を形成する 工程  Process 1: Process of forming a thin film by applying and drying a precursor solution containing fluorine and tin on a substrate
工程 2:工程 1で得られる薄膜に紫外線を照射する第一の光照射工程  Process 2: The first light irradiation process to irradiate the thin film obtained in Process 1 with ultraviolet rays
工程 3:工程 2で得られる薄膜を熱処理する工程  Process 3: Process of heat-treating the thin film obtained in Process 2
工程 4:工程 3で得られる薄膜に紫外線を照射する第二の光照射工程  Process 4: Second light irradiation process to irradiate the thin film obtained in Process 3 with ultraviolet rays
[0015] 工程 1は、基板上にフッ素とスズを含有する前駆体溶液を塗布し乾燥させ、この前 駆体溶液の薄膜を形成するものである。この薄膜はその後の処理工程を通して最終 的には導電性酸化スズ薄膜結晶となるものである。 基板としては、耐熱性と透明性に優れたものを用いることが好ましい。このような基 板としては、ガラス基板、酸化珪素、酸化チタンなどの金属酸化物基板、ポリカーボ ネート樹脂、ポリエチレンテレフタレート樹脂、ポリエーテルスルホン樹脂、ポリアクリレ ート樹脂などのプラスチック基板、チタン酸ストロンチウム(SrTiO )、ランタンアルミネ [0015] In step 1, a precursor solution containing fluorine and tin is applied on a substrate and dried to form a thin film of this precursor solution. This thin film will eventually become a conductive tin oxide thin film crystal through subsequent processing steps. It is preferable to use a substrate having excellent heat resistance and transparency. Examples of such substrates include glass substrates, metal oxide substrates such as silicon oxide and titanium oxide, plastic substrates such as polycarbonate resins, polyethylene terephthalate resins, polyethersulfone resins, and polyacrylate resins, strontium titanate (SrTiO ), Lantern alumine
3  Three
ート(LaAlO )、酸化マグネシウム(MgO)、酸化ランタンストロンチウムタンタルアルミ  (LaAlO), magnesium oxide (MgO), lanthanum strontium tantalum aluminum oxide
3  Three
ニゥム(( Sr ) (A1 Ta )0 )、ネオジムガレート (NdGaO )、イットリウムアルミネート(  Nium ((Sr) (A1 Ta) 0), Neodymium gallate (NdGaO), Yttrium aluminate (
1 1 3 3  1 1 3 3
YA10 )、酸化アルミニウム (A1 0 )、イットリア安定化ジルコユア((Zr,Y)0,YSZ)、酸化 YA10), aluminum oxide (A1 0), yttria-stabilized zirconium oxide ((Zr, Y) 0, YSZ), oxidation
3 2 3 2 チタン (TiO )等の化合物半導体基板などの多結晶及び単結晶基板が例示される。 Examples include polycrystalline and single crystal substrates such as compound semiconductor substrates such as 3 2 3 2 titanium (TiO 2).
[0016] この基板上に設けられるフッ素とスズを含有する前駆体溶液としては、フッ素とスズ を含有しその後の処理工程により導電性酸化スズ薄膜結晶を形成するものであれば[0016] The precursor solution containing fluorine and tin provided on the substrate may be any one containing fluorine and tin and forming a conductive tin oxide thin film crystal by a subsequent processing step.
、いずれのあのあ使用すること力 Sでさる。 Anyway, use that power.
[0017] 前駆体溶液の代表的なものの一つは、フッ素を分子内に有する有機スズ化合物を 含む溶液である。 [0017] One of the typical precursor solutions is a solution containing an organotin compound having fluorine in the molecule.
このようなフッ素を分子内に有する有機スズ化合物としては、スズー /3—ジケトナー ト、有機酸のスズ塩またはスズアルコキシドであって、分子内にフッ素を含むものが挙 げられる。  Examples of such organotin compounds having fluorine in the molecule include tin / 3-diketonates, tin salts of organic acids or tin alkoxides, and those containing fluorine in the molecule.
力、かる有機スズ化合物としては、たとえば、へキサフロロペンタジォネートスズ(11)、 ビス一ペンタフルオロフェニルジメチルスズ、ジー n—ブチルジフルォロスズ、トリシク  Examples of organic tin compounds include hexafluoropentadionate tin (11), bis-pentafluorophenyldimethyltin, di-n-butyldifluoros, trisic.
[0018] 前駆体溶液の他の代表的なものの一つは、フッ素化合物と有機スズ化合物の混合 物を含む溶液である。 [0018] One of other typical precursor solutions is a solution containing a mixture of a fluorine compound and an organotin compound.
フッ素化合物としては、トリフロロ酢酸、ペンタフロロプロピオン酸、 2-フルォロトルェ ンなどが用いられる。  As the fluorine compound, trifluoroacetic acid, pentafluoropropionic acid, 2-fluorotoluene and the like are used.
有機スズ化合物としては、スズー /3—ジケトナート、有機酸のスズ塩またはスズアル コキシドなどのスズ化合物が挙げられる。  Examples of organotin compounds include tin compounds such as tin / 3-diketonate, tin salts of organic acids or tin alkoxides.
両者の配合比に特別な制限はないが、通常フッ素化合物/有機スズ化合物が重 量比で 1:5としておくことが好ましい。  There is no particular limitation on the blending ratio of the two, but it is usually preferable that the weight ratio of fluorine compound / organotin compound is 1: 5.
[0019] 上記した前駆体溶液には、有機スズ化合物など溶解し得る溶媒を使用することが 好ましい。 For the precursor solution described above, a solvent that can be dissolved, such as an organotin compound, may be used. preferable.
このような溶媒としては、例えば、へキサン、オクタン、ベンゼン、トノレェン、テトラリン 等の極性のない溶媒である炭化水素類ゃァセチルアセトン、メタノール、エタノール、 プロパノールなどのアルコール類、アミン類、ピリジン、酢酸、プロピオン酸などの有 機酸、酢酸ブチルなどのエステル類などを用いることができる。これらの有機溶媒は、 具体的に用いる有機スズ化合物などの種類に応じて 1種または 2種以上を組み合わ せて用いることができる。  Examples of such solvents include hydrocarbons such as hexane, octane, benzene, tolylene, tetralin and the like, hydrocarbons such as acetylacetone, methanol, ethanol, propanol, amines, pyridine, Organic acids such as acetic acid and propionic acid, and esters such as butyl acetate can be used. These organic solvents can be used singly or in combination of two or more depending on the type of organotin compound used.
[0020] 前記基板上に前駆体溶液を塗布する場合には、たとえば、スズー /3—ジケトナート 、有機酸のスズ塩またはスズアルコキシドであって、分子内にフッ素を含む溶液を基 板上に塗布し、基板上に薄膜層を形成させる。これらの溶液を基板上に塗布するた めの手段としては、今まで基板上に薄膜を形成するために用いられてきた手段を適 宜採用することができる。具体的には、溶液塗布法が用いられ、従来公知の方法、例 えば、浸漬法、スプレー法、インクジェット、ハケ塗り法、スピンコート法等の各種の方 法を用いることができる。  [0020] When the precursor solution is applied onto the substrate, for example, a solution of tin / 3-diketonate, tin salt of organic acid or tin alkoxide and containing fluorine in the molecule is applied onto the substrate. Then, a thin film layer is formed on the substrate. As means for applying these solutions onto the substrate, means that have been used to form a thin film on the substrate can be suitably employed. Specifically, a solution coating method is used, and various conventionally known methods such as a dipping method, a spray method, an ink jet method, a brush coating method, and a spin coating method can be used.
[0021] 工程 1において、形成された塗布薄膜を乾燥させるには、たとえば室温程度以上の 温度雰囲気下に、或いはわずかに加熱した雰囲気下に、これらの形成された塗布薄 膜を一定時間放置することにより行われる。  [0021] In step 1, in order to dry the formed coated thin film, the formed coated thin film is allowed to stand for a certain period of time, for example, in a temperature atmosphere of about room temperature or higher or in a slightly heated atmosphere. Is done.
具体的には、基板上に形成された塗布薄膜を室温又は加温下で乾燥させる。例え ば、空気中 10°C/minの昇温速度にて 15分間かけ 150°Cまで昇温した後、同温度で 1 5min保持した後、炉冷する方法などによる。基板上に形成される膜の厚みは、最終 的には、 lnm〜; 10 m程度の範囲とすることが可能である。  Specifically, the coated thin film formed on the substrate is dried at room temperature or under heating. For example, after raising the temperature to 150 ° C over 15 minutes at a rate of 10 ° C / min in air, holding at that temperature for 15 minutes, then cooling the furnace. The thickness of the film formed on the substrate can ultimately be in the range of lnm to about 10 m.
[0022] 本発明の工程 2は、工程 1で得られる塗布薄膜に紫外線を照射するものである。こ の第一の紫外線照射は、当該薄膜のアブレーシヨンを回避しつつ有機官能の部分 分解やパターユングを行うために行うものである。  [0022] In step 2 of the present invention, the coated thin film obtained in step 1 is irradiated with ultraviolet rays. This first ultraviolet irradiation is performed to perform partial decomposition and patterning of organic functions while avoiding abrasion of the thin film.
この第一の紫外線照射を行わず熱処理を行った場合、最終処理後に膜は高!/、導 電性を示さない。また、パターユングができない問題も生じる。従って、本発明の所期 の目的を達成することができなレ、。  When heat treatment is carried out without this first ultraviolet irradiation, the film is not very conductive after the final treatment. There is also a problem that patterning is not possible. Therefore, the intended purpose of the present invention cannot be achieved.
この第一次光照射工程は、例えば前熱処理工程の加熱温度で行うことができるが、 加熱により金属有機化合物の蒸発反応が生じ、膜の厚みが変化するため、室温で行 うことが好ましい。また紫外線照射時間は、例えば 25Hzの場合、 30秒、 50Hzの場合 1 5秒と照射繰り返し速度により変えることができる。である。 This primary light irradiation step can be performed at the heating temperature of the pre-heat treatment step, for example, Since heating causes an evaporation reaction of the metal organic compound and changes the thickness of the film, it is preferably performed at room temperature. The ultraviolet irradiation time can be changed depending on the irradiation repetition rate, for example, 30 seconds at 25 Hz and 15 seconds at 50 Hz. It is.
[0023] 工程 2における、紫外線の波長、光強度、繰り返し速度 (パルスあるいは連続)基板 温度、雰囲気は、対象とする薄膜の種類に応じて適宜選定される。 [0023] The wavelength, light intensity, repetition rate (pulsed or continuous) substrate temperature and atmosphere in Step 2 are appropriately selected according to the type of the target thin film.
紫外線の波長は特に制限されないが、 400nm以下が好ましぐまた、ノ レスレーザ 光またはランプ光であってもよレ、。  The wavelength of the ultraviolet light is not particularly limited, but is preferably 400 nm or less, and it may be a laser light or lamp light.
光照射に用いる光源としては、紫外線レーザー、或いは紫外線ランプのいずれで あってもよいが、加熱効果が少ない紫外レーザー XeF(351nm)、 XeCl(308nm)、 rF(2 48nm)、 ArF(193nm)、 F2(157nm)等のエキシマレーザーや、 YAGレーザー(四次高調 波: 266nm)、 Arイオンレーザー(第二高調波: 257nm)を用いることが好まし!/、。  The light source used for light irradiation may be either an ultraviolet laser or an ultraviolet lamp, but an ultraviolet laser XeF (351 nm), XeCl (308 nm), rF (248 nm), ArF (193 nm), which has little heating effect, It is preferable to use an excimer laser such as F2 (157 nm), YAG laser (fourth harmonic: 266 nm), or Ar ion laser (second harmonic: 257 nm)!
波長が短くなるに従って光学材料の透過率が減少するため、レンズを用いた屈折 光学系を適用するには KrF (248nm)レーザーが光源として適当である。  Since the transmittance of the optical material decreases as the wavelength becomes shorter, a KrF (248 nm) laser is suitable as a light source for applying a refractive optical system using a lens.
[0024] 本発明の工程 3は、工程 2で得られる薄膜を熱処理するものである。この熱処理ェ 程を踏まないと、最終工程を施しても高い電導度を示す薄膜が生成しないため、本 発明の所期の目的を達成することができない。 [0024] In step 3 of the present invention, the thin film obtained in step 2 is heat-treated. If this heat treatment step is not performed, a thin film exhibiting high conductivity is not formed even if the final process is performed, and thus the intended purpose of the present invention cannot be achieved.
熱処理工程の温度は、上記目的を達成するために、 25〜600°C、好ましくは 25〜30 0°C更に好ましくは 25〜150°Cで行われる。熱処理温度が 25°C未満では、その後の照 射により導電性は示すものの、高い導電性膜は生成しなかった。また、 600°Cを超え るとフッ素の分解による導電性の低下やガラス基板の溶融が生じるため好ましくない The temperature of the heat treatment step is 25 to 600 ° C, preferably 25 to 300 ° C, more preferably 25 to 150 ° C, in order to achieve the above object. When the heat treatment temperature was less than 25 ° C, conductivity was shown by subsequent irradiation, but a highly conductive film was not formed. Also, if the temperature exceeds 600 ° C, it is not preferable because the conductivity decreases due to the decomposition of fluorine and the glass substrate melts.
Yes
この熱処理法としては、一般的には電気炉を用いて処理する方法が用いられる力 赤外線、紫外線照射によっても行うことができる。赤外線ランプや赤外レーザーは、 波長が長いため照射により膜全体の温度が急速に上昇し、数分後に電気炉と同様 の加熱効果が得られる。また、紫外ノ ルスレーザを高い繰り返し周波数で照射した場 合にも、熱電対による平衡温度測定によると、少なくとも数十。 C程度の温度上昇が認 められることから、紫外線パルスレーザを高い繰り返し周波数で照射する方法も熱処 理法として有効に機能する。 [0025] 本発明の工程 4は、工程 3で得られる薄膜に紫外線を照射するものである。この第 二の紫外線照射は、当該薄膜の導電性を向上させるために行うものである。この第 二の紫外線照射を行わないと、膜の結晶化が起こらないため導電性も低くなつて、本 発明の所期の目的を達成することができない。 As this heat treatment method, generally, a method of treating using an electric furnace can be used. Since infrared lamps and lasers have long wavelengths, the temperature of the entire film rises rapidly due to irradiation, and after a few minutes, the same heating effect as an electric furnace can be obtained. In addition, even when an ultraviolet laser is irradiated at a high repetition frequency, it is at least several tens according to the equilibrium temperature measurement using a thermocouple. Since a temperature rise of about C is recognized, the method of irradiating an ultraviolet pulse laser at a high repetition frequency also functions effectively as a heat treatment method. [0025] In step 4 of the present invention, the thin film obtained in step 3 is irradiated with ultraviolet rays. This second ultraviolet irradiation is performed in order to improve the conductivity of the thin film. If this second ultraviolet irradiation is not performed, the film is not crystallized, so that the conductivity is low, and the intended purpose of the present invention cannot be achieved.
この第二次光照射工程は、 25〜600°Cで行うことができる力 加熱によるフッ素の分 解を防ぐため室温で行うことが好ましい。また紫外線照射時間は、 1Hzの繰り返し周 波数の場合、 10秒である。  This secondary light irradiation step is preferably performed at room temperature in order to prevent the decomposition of fluorine by force heating that can be performed at 25 to 600 ° C. The UV irradiation time is 10 seconds in the case of 1 Hz repetition frequency.
[0026] 工程 4における紫外線の波長、光強度、繰り返し速度 (パルスあるいは連続)基板温 度、雰囲気は、対象とする薄膜の種類に応じて適宜選定される。  [0026] The wavelength, light intensity, repetition rate (pulsed or continuous) substrate temperature, and atmosphere in Step 4 are appropriately selected according to the type of target thin film.
また、紫外線の波長は特に制限されないが、 400nm以下が好ましぐまた、パルス レーザ光またはランプ光であってもよレ、。  The wavelength of the ultraviolet light is not particularly limited, but is preferably 400 nm or less, and may be pulsed laser light or lamp light.
光照射に用いる光源としては、紫外線レーザー、或いは紫外線ランプのいずれで あってもよいが、加熱効果が少ない紫外レーザー XeF(351nm)、 XeCl(308nm)、 rF(2 48nm)、 ArF(193nm)、 F2(157nm)等のエキシマレーザーや、 YAGレーザー (第四次高 調波: 266nm)、 Arイオンレーザー(第二高調波: 257nm)を用いることが好まし!/、。 波長が短くなるに従って光学材料の透過率が減少するため、レンズを用いた屈折 光学系を適用するには KrF (248nm)レーザーが光源として適当である。  The light source used for light irradiation may be either an ultraviolet laser or an ultraviolet lamp, but an ultraviolet laser XeF (351 nm), XeCl (308 nm), rF (248 nm), ArF (193 nm), which has little heating effect, It is preferable to use an excimer laser such as F2 (157 nm), YAG laser (fourth harmonic: 266 nm), or Ar ion laser (second harmonic: 257 nm)! Since the transmittance of the optical material decreases as the wavelength becomes shorter, a KrF (248 nm) laser is suitable as a light source for applying a refractive optical system using a lens.
[0027] 本発明の工程 3及び工程 4は、それぞれ段階的、個別的に行ってもよいが、プロセ ス工程の簡略化の点を考慮して、同時に行うこともできる。一つの例をあげると、工程 3の熱処理工程を通常の電気炉による熱処理法を用いずに、高い繰り返し周波数か っ高レ、エネルギー密度の紫外線を照射する工程を行う方法である。このような高!/、 繰り返し周波数でレーザーを照射することで、数ナノ秒間、酸化スズ膜領域において 非平衡加熱効果が生じるため、紫外線照射の初期段階では工程 3を行うことができる 。またエネルギー密度が高い同条件で照射を続けることで、工程 4の結晶化反応も促 進される。  [0027] Step 3 and step 4 of the present invention may be performed stepwise or individually, but can also be performed simultaneously in view of simplification of the process step. As one example, the heat treatment process of step 3 is a process of irradiating ultraviolet rays having a high repetition frequency, a high energy density, and an energy density without using a heat treatment method using an ordinary electric furnace. By irradiating the laser with such a high repetition frequency, a non-equilibrium heating effect is produced in the tin oxide film region for several nanoseconds. Therefore, step 3 can be performed in the initial stage of ultraviolet irradiation. In addition, if the irradiation is continued under the same conditions with high energy density, the crystallization reaction in step 4 is also promoted.
[0028] 上記特有な工程を組み合わせた本発明方法によれば、耐久性 ·導電性に優れたス ズ酸化物透明導電膜を低温で効率良く工業的に有利に製造することができる。 また、従来の薄膜形成法では、 450°C〜500°Cに達しないと薄膜の結晶化が進まな いが、本発明の透明導電膜薄膜の製造方法によれば、室温から 250°Cの低温で薄膜 結晶成長が可能となる。 [0028] According to the method of the present invention in which the above-mentioned specific steps are combined, a soot oxide transparent conductive film excellent in durability and conductivity can be produced efficiently and advantageously industrially at low temperatures. In addition, in the conventional thin film formation method, the crystallization of the thin film does not proceed until 450 ° C to 500 ° C is reached. However, according to the method for producing a transparent conductive film of the present invention, thin film crystal growth is possible at room temperature to a low temperature of 250 ° C.
更に、本発明に係る透明導電膜のシート抵抗は、たとえば、 300 Ω /口〜 50 Ω /口と 極めて小さい値を示す。  Furthermore, the sheet resistance of the transparent conductive film according to the present invention shows a very small value of, for example, 300 Ω / port to 50 Ω / port.
このように、本発明方法によれば、導電性が著しく向上したスズ酸化物透明導電膜 を、大型装置を用いることなく低温で簡便に製造することができるので、製造コストの 削減や従来にはな!/、新しレ、デバイスの創製が期待できる。  As described above, according to the method of the present invention, the tin oxide transparent conductive film having significantly improved conductivity can be easily manufactured at a low temperature without using a large-sized device. Na! /, You can expect a new device.
実施例  Example
[0029] 次に、本発明の具体例を示し、さらに詳しく説明するが、本発明はこれらの実施例 に限定されるものではない。  [0029] Next, specific examples of the present invention will be shown and described in more detail, but the present invention is not limited to these examples.
なお、本発明の実施例で使用した基板は、石英基板および無アルカリガラス基板 であり、原料溶液は、スズ (Π)へキサフルォロペンタジォネート溶液 (Sl)、紫外光照射 は、 KrFエキシマレーザまたは ArFエキシマレーザを用いた。  The substrates used in the examples of the present invention are a quartz substrate and a non-alkali glass substrate, the raw material solution is tin (Π) hexafluoropentadate solution (Sl), and ultraviolet light irradiation is A KrF excimer laser or ArF excimer laser was used.
[0030] 実施例 1 [0030] Example 1
スズ (Π)へキサフルォロペンタジォネート溶液をシリコン基板に 4000rpm; 10秒間でス ピンコートした。その後、室温、大気中で 193nm、 25Hz、 40mJん m2で 10秒間 ArFェキ シマレーザを照射した。その後、 250°Cで 5分間加熱後、 90mJ/Cm2、 1Hzで 10ショット 照射し、また、膜厚の制御を行うため上記各工程を繰り返し行うことで透明導電膜を 作製した。この透明導電膜の照射部のシート抵抗は 150 Ω /口であった。また、この透 明導電膜の XRDパターンを図 1(a)に示す。なお、図 1(a)の照射前とは、スズ (Π)へキ サフルォロペンタジォネート溶液をシリコン基板に 4000rpm;10秒間でスピンコートした 状態の膜を意味する。 Tin (Π) hexafluoropentadionate solution was spin coated on a silicon substrate at 4000 rpm for 10 seconds. After that, ArF excimer laser was irradiated for 10 seconds at 193nm, 25Hz, 40mJm 2 at room temperature in the atmosphere. Thereafter, after heating at 250 ° C. for 5 minutes, 10 shots were irradiated at 90 mJ / Cm 2 and 1 Hz, and the transparent conductive film was prepared by repeating the above steps to control the film thickness. The sheet resistance of the irradiated portion of this transparent conductive film was 150 Ω / mouth. The XRD pattern of this transparent conductive film is shown in Fig. 1 (a). In addition, “before irradiation” in FIG. 1 (a) means a film in a state in which tin (Π) hexafluoropentadionate solution is spin-coated on a silicon substrate at 4000 rpm for 10 seconds.
[0031] 実施例 2 [0031] Example 2
実施例 1において、レーザを KrFエキシマレーザに代えた以外は実施例 1と同様に して透明導電膜を作製した。この透明導電膜の照射部のシート抵抗は 300 Ω /口であ つた。  A transparent conductive film was produced in the same manner as in Example 1 except that the laser was replaced with a KrF excimer laser in Example 1. The sheet resistance of the irradiated portion of this transparent conductive film was 300 Ω / mouth.
[0032] 実施例 3 [0032] Example 3
実施例 1において、基板を TiO単結晶基板に代えた場合、ェピタキシャル薄膜が 成長し、照射部のシート抵抗が 50 Ω /口を示す透明導電膜が得られた。また、この透 明導電膜の XRDパターンを図 2に示す。なお、図 1(b)の照射前とは、スズ (Π)へキサ フルォロペンタジォネート溶液を TiO単結晶基板に 4000rpm; 10秒間でスピンコートし た状態の膜を意味する。 In Example 1, when the substrate is replaced with a TiO single crystal substrate, an epitaxial thin film is formed. A transparent conductive film was obtained that grew and showed a sheet resistance of 50 Ω / mouth at the irradiated part. Figure 2 shows the XRD pattern of this transparent conductive film. In addition, before irradiation in FIG. 1 (b) means a film in a state where a tin (Π) hexafluoropentadionate solution is spin-coated on a TiO single crystal substrate at 4000 rpm for 10 seconds.
[0033] 実施例 4 [0033] Example 4
実施例 1において、基板を石英基板に代えた場合、多結晶膜が成長し、照射部の シート抵抗が 150 Ω /口を示す透明導電膜が得られた。  In Example 1, when the substrate was replaced with a quartz substrate, a polycrystalline film was grown, and a transparent conductive film having a sheet resistance of 150 Ω / mouth at the irradiated portion was obtained.
[0034] 実施例 5 [0034] Example 5
スズ (Π)へキサフルォロペンタジォネート溶液を石英基板に 4000rpm; 10秒間でスピ ンコートした。その後、室温、大気中で 25Hz、 25mJん m2で 10秒間、 KrF(248nm)エキシ マレーザを照射した(工程 2)。次いで、 25°Cで、 lOOmJん m2、 25Hzで 30秒間照射し( 工程 3)、その後、 90mJ/Cm2、 1Hzで 10ショット照射した(工程 4)。また、膜厚の制御 を行うため上記各工程を繰り返し行うことで透明導電膜を作製した。この透明導電膜 の照射部のシート抵抗は、 300 Ω /口だった。 Tin (Π) hexafluoropentadionate solution was spin-coated on a quartz substrate at 4000 rpm for 10 seconds. Thereafter, a KrF (248 nm) excimer laser was irradiated for 10 seconds at 25 Hz and 25 mJm 2 at room temperature and in the atmosphere (step 2). Then at 25 ° C, lOOmJ N m 2, and irradiated for 30 seconds at 25 Hz (Step 3), followed by 10 shots irradiated with 90mJ / Cm 2, 1Hz (Step 4). In addition, a transparent conductive film was produced by repeating the above steps in order to control the film thickness. The sheet resistance of the irradiated part of this transparent conductive film was 300 Ω / mouth.
[0035] 実施例 6 [0035] Example 6
スズ (Π)へキサフルォロペンタジォネート溶液を石英基板に 4000rpm; 10秒間でスピ ンコートした。その後、室温、大気中で 25Hz、 25mJん m2で 10秒間、 KrF(248nm)エキシ マレーザを照射した(工程 2)。次いで、 25°Cで、 lOOmJん m2、 25Hzで 1分間照射した( 工程 3、 4)。また、膜厚の制御を行うため上記各工程を繰り返し行うことで透明導電 膜を作製した。この透明導電膜の照射部のシート抵抗は、 200 Ω /口だった。 Tin (Π) hexafluoropentadionate solution was spin-coated on a quartz substrate at 4000 rpm for 10 seconds. Thereafter, a KrF (248 nm) excimer laser was irradiated for 10 seconds at 25 Hz and 25 mJm 2 at room temperature and in the atmosphere (step 2). Next, irradiation was carried out at 25 ° C. for 1 minute at 10 mJ, m 2 and 25 Hz (steps 3 and 4). In addition, a transparent conductive film was produced by repeating the above steps in order to control the film thickness. The sheet resistance of the irradiated portion of this transparent conductive film was 200 Ω / mouth.
[0036] 実施例 7 [0036] Example 7
実施例 5において、エキシマレーザを ArFエキシマレーザに代えた以外は実実施例 5と同様にして透明導電膜を作製した。この透明導電膜の照射部のシート抵抗は 250 Ω /口であった。  A transparent conductive film was produced in the same manner as in Example 5 except that the excimer laser in Example 5 was replaced with an ArF excimer laser. The sheet resistance of the irradiated portion of this transparent conductive film was 250 Ω / mouth.
[0037] 比較例 1 [0037] Comparative Example 1
実施例 1において、熱処理工程を省いた以外は実施例 1と同様にして透明導電膜 を作製した。この透明導電膜の照射部のシート抵抗は 1000 Ω /口であった。  In Example 1, a transparent conductive film was produced in the same manner as in Example 1 except that the heat treatment step was omitted. The sheet resistance of the irradiated portion of this transparent conductive film was 1000 Ω / mouth.

Claims

請求の範囲 The scope of the claims
[1] 以下の工程を含むことを特徴とするスズ酸化物透明導電膜の製造方法  [1] A method for producing a tin oxide transparent conductive film comprising the following steps:
工程 1:フッ素とスズを含有する前駆体溶液を基板上に塗布乾燥し薄膜を形成する 工程  Process 1: Process of forming a thin film by applying and drying a precursor solution containing fluorine and tin on a substrate
工程 2:工程 1で得られる薄膜に紫外線を照射する第一の光照射工程  Process 2: The first light irradiation process to irradiate the thin film obtained in Process 1 with ultraviolet rays
工程 3:工程 2で得られる薄膜を熱処理する工程  Process 3: Process of heat-treating the thin film obtained in Process 2
工程 4:工程 3で得られる薄膜に紫外線を照射する第二の光照射工程  Process 4: Second light irradiation process to irradiate the thin film obtained in Process 3 with ultraviolet rays
[2] 工程 3と工程 4が同時もしくは段階的に行われることを特徴とする請求項 1に記載の スズ酸化物透明導電膜の製造方法。 [2] The method for producing a tin oxide transparent conductive film according to [1], wherein Step 3 and Step 4 are performed simultaneously or stepwise.
[3] 工程 3の熱処理温度が 25〜600°Cであることを特徴とする請求項 1に記載のスズ酸 化物透明導電膜の製造方法 [3] The method for producing a stannic oxide transparent conductive film according to claim 1, wherein the heat treatment temperature in step 3 is 25 to 600 ° C.
[4] 工程 2〜工程 4の!/、ずれもが 25°Cで行われることを特徴とする請求項 1に記載のス ズ酸化物透明導電膜の製造方法。 [4] The method for producing a soot oxide transparent conductive film according to claim 1, wherein steps 2 to 4 are performed at 25 ° C.
[5] フッ素とスズを含有する前駆体溶液力 工程 1から 4により酸化スズに転換するもの であることを特徴とする請求項 1に記載のスズ酸化物透明導電膜の製造方法。 [5] The method for producing a tin oxide transparent conductive film according to [1], wherein the precursor solution containing fluorine and tin is converted into tin oxide by steps 1 to 4.
[6] フッ素とスズを含有する前駆体溶液が、分子内にフッ素を有する有機スズ化合物を 含む溶液であることを特徴とする請求項 5に記載のスズ酸化物透明導電膜の製造方 法。 6. The method for producing a tin oxide transparent conductive film according to claim 5, wherein the precursor solution containing fluorine and tin is a solution containing an organotin compound having fluorine in the molecule.
[7] 有機スズ化合物が、 /3—ジケトナート、有機酸塩またはアルコキシドであることを特 徴とする請求項 6に記載のスズ酸化物透明導電膜の製造方法。  7. The method for producing a tin oxide transparent conductive film according to claim 6, wherein the organic tin compound is / 3-diketonate, organic acid salt or alkoxide.
[8] フッ素とスズを含有する前駆体溶液が、フッ素化合物と有機スズ化合物の混合物を 含む溶液であることを特徴とする請求項 5に記載のスズ酸化物透明導電膜の製造方 法。  8. The method for producing a tin oxide transparent conductive film according to claim 5, wherein the precursor solution containing fluorine and tin is a solution containing a mixture of a fluorine compound and an organic tin compound.
[9] 紫外光が 400nm以下のパルスレーザ光またはランプ光である請求項 1に記載のスズ 酸化物透明導電膜の製造方法。  9. The method for producing a tin oxide transparent conductive film according to claim 1, wherein the ultraviolet light is pulsed laser light or lamp light having a wavelength of 400 nm or less.
PCT/JP2007/068553 2006-10-02 2007-09-25 Method for fabricating transparent conductive tin oxide film WO2008041551A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008537475A JP5057476B2 (en) 2006-10-02 2007-09-25 Manufacturing method of tin oxide transparent conductive film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006270486 2006-10-02
JP2006-270486 2006-10-02

Publications (1)

Publication Number Publication Date
WO2008041551A1 true WO2008041551A1 (en) 2008-04-10

Family

ID=39268412

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/068553 WO2008041551A1 (en) 2006-10-02 2007-09-25 Method for fabricating transparent conductive tin oxide film

Country Status (2)

Country Link
JP (1) JP5057476B2 (en)
WO (1) WO2008041551A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009277640A (en) * 2007-10-10 2009-11-26 Asahi Kasei Corp Forming method for transparent conductive film
WO2024070844A1 (en) * 2022-09-29 2024-04-04 富士フイルム株式会社 Method for producing electroconductive film, and method for producing electromagnetic wave shielding body

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101557575B1 (en) 2014-03-17 2015-10-05 아주대학교산학협력단 Transparent conductive metal oxides and methods of manufacturing the transparent conductive metal oxides

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63314714A (en) * 1987-06-18 1988-12-22 Matsushita Electric Ind Co Ltd Manufacture of transparent electricity conducting film
JPH03219503A (en) * 1990-01-24 1991-09-26 Matsushita Electric Ind Co Ltd Protection film forming liquid for transparent electrode
JPH1160278A (en) * 1997-08-07 1999-03-02 Asahi Glass Co Ltd Formation of transparent conductive film
JP2003016857A (en) * 2001-06-28 2003-01-17 Fuji Xerox Co Ltd Method for reducing resistance of transparent conductive film formed on base material

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4170639B2 (en) * 2002-02-26 2008-10-22 株式会社アルバック Low resistance transparent conductive film manufacturing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63314714A (en) * 1987-06-18 1988-12-22 Matsushita Electric Ind Co Ltd Manufacture of transparent electricity conducting film
JPH03219503A (en) * 1990-01-24 1991-09-26 Matsushita Electric Ind Co Ltd Protection film forming liquid for transparent electrode
JPH1160278A (en) * 1997-08-07 1999-03-02 Asahi Glass Co Ltd Formation of transparent conductive film
JP2003016857A (en) * 2001-06-28 2003-01-17 Fuji Xerox Co Ltd Method for reducing resistance of transparent conductive film formed on base material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009277640A (en) * 2007-10-10 2009-11-26 Asahi Kasei Corp Forming method for transparent conductive film
WO2024070844A1 (en) * 2022-09-29 2024-04-04 富士フイルム株式会社 Method for producing electroconductive film, and method for producing electromagnetic wave shielding body

Also Published As

Publication number Publication date
JPWO2008041551A1 (en) 2010-02-04
JP5057476B2 (en) 2012-10-24

Similar Documents

Publication Publication Date Title
JP3997731B2 (en) Method for forming a crystalline semiconductor thin film on a substrate
JP4258536B2 (en) Method for producing crystallized metal oxide thin film
CN109713100B (en) Method for preparing active layer of all-inorganic perovskite light-emitting diode
US8932495B1 (en) Transparent conductor materials and processes for forming such materials
JP5219109B2 (en) Manufacturing method of superconducting material
JP4110752B2 (en) A method of reducing the resistance of a transparent conductive film provided on a substrate.
CN109888083A (en) Core-shell structure perovskite thin film, preparation method and controllable fluorescent display methods
TWI709532B (en) The method of forming PZT ferroelectric film
WO2008041551A1 (en) Method for fabricating transparent conductive tin oxide film
JP2000031463A (en) Formation of transparent electrode
TW201231404A (en) Composition for production of oxide thin films and method for producing oxide thin films by using said composition
TWI312545B (en) Method of enhancing laser crystallization for poly-silicon fabrication
JP4377003B2 (en) Method for adjusting sheet resistance value of transparent conductive film and method for forming transparent conductive film
JP4082008B2 (en) Method for forming crystalline compound thin film on sheet substrate and apparatus therefor
JP4705340B2 (en) Method for producing indium oxide film
KR101992480B1 (en) Method of manufacturing oxide semiconductor by a solution-based deposition method and oxide semiconductor
JP4522566B2 (en) Method for adjusting sheet resistance value of transparent conductive film
JP4096529B2 (en) Annealing equipment
JP2010165888A (en) Method of manufacturing resistor film, and resistor film
JP4292759B2 (en) Method for forming a titanium oxide photocatalytic thin film on a substrate
JP2006016273A (en) Film deposition system based on spray pyrolysis method
JP2020076153A (en) Manufacturing method of conductive member
JP2010192294A (en) Method of manufacturing transparent conductive film, transparent conductive film and device
JP2009132932A (en) Phosphor having crystallized metal oxide membrane
JP2010070400A (en) Method for producing high-photoactivity titania containing oxygen-deficient portion

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07807825

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008537475

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE