WO2008038702A1 - Sulfonic acid group-containing polymer, method for producing the same, polymer electrolyte membrane using sulfonic acid group-containing polymer, membrane electrode assembly, and fuel cell - Google Patents

Sulfonic acid group-containing polymer, method for producing the same, polymer electrolyte membrane using sulfonic acid group-containing polymer, membrane electrode assembly, and fuel cell Download PDF

Info

Publication number
WO2008038702A1
WO2008038702A1 PCT/JP2007/068780 JP2007068780W WO2008038702A1 WO 2008038702 A1 WO2008038702 A1 WO 2008038702A1 JP 2007068780 W JP2007068780 W JP 2007068780W WO 2008038702 A1 WO2008038702 A1 WO 2008038702A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
sulfonic acid
chemical
polymer
containing polymer
Prior art date
Application number
PCT/JP2007/068780
Other languages
French (fr)
Japanese (ja)
Inventor
Kota Kitamura
Yoshimitsu Sakaguchi
Hiroki Yamaguchi
Masahiro Yamashita
Kousuke Sasai
Original Assignee
Toyo Boseki Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Boseki Kabushiki Kaisha filed Critical Toyo Boseki Kabushiki Kaisha
Priority to JP2007556453A priority Critical patent/JPWO2008038702A1/en
Publication of WO2008038702A1 publication Critical patent/WO2008038702A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/122Ionic conductors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L81/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen or carbon only; Compositions of polysulfones; Compositions of derivatives of such polymers
    • C08L81/02Polythioethers; Polythioether-ethers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1027Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having carbon, oxygen and other atoms, e.g. sulfonated polyethersulfones [S-PES]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1032Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having sulfur, e.g. sulfonated-polyethersulfones [S-PES]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1039Polymeric electrolyte materials halogenated, e.g. sulfonated polyvinylidene fluorides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • H01M8/1072Polymeric electrolyte materials characterised by the manufacturing processes by chemical reactions, e.g. insitu polymerisation or insitu crosslinking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • Sulfonic acid group-containing polymer production method thereof, polymer electrolyte membrane using sulfonic acid group-containing polymer, membrane / electrode assembly, and fuel cell
  • the present invention relates to a sulfonic acid group-containing polymer having a novel structure, a production method thereof, a polymer electrolyte membrane using the polymer, a membrane / electrode assembly, and a fuel cell.
  • the polymer solid electrolyte membrane a proton conductive polymer electrolyte membrane is usually used.
  • the polymer electrolyte membrane must have properties such as fuel permeation deterrence and mechanical strength that prevent the permeation of fuel hydrogen and the like.
  • a membrane containing a perfluorocarbon sulfonic acid polymer into which a sulfonic acid group has been introduced is known.
  • fluorine is contained in the molecule, harmful hydrofluoric acid is generated in the exhaust gas depending on the conditions of use, and the environmental load at the time of disposal is regarded as a problem.
  • a perfluorocarbon sulfonic acid polymer electrolyte membrane exhibits a well-balanced characteristic as an electrolyte membrane of a fuel cell, but the synthesis method is complicated, and the membrane is superior in terms of cost and performance.
  • Hydrocarbon polymer electrolyte membranes have been actively developed in order to obtain a high temperature, and many hydrocarbon polymer electrolyte membranes include heat-resistant polymers such as polyimide and polysulfone, and ionic groups such as sulfonic acid groups.
  • a polymer having a group introduced therein is used (for example, see Patent Document 1).
  • Patent Document 1 Japanese Translation of Special Publication 2004-509224
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2004-149779
  • Patent Document 3 Japanese Unexamined Patent Publication No. 2006-45512
  • FIG. 1 is a 1 H-NMR spectrum obtained by measuring the polymer synthesized in Synthesis Example 1 in the present invention at room temperature in deuterated dimethyl sulfoxide using GEMINI-200 manufactured by VARIAN.
  • FIG. 2 is a 1 H-NMR spectrum obtained by measuring the polymer synthesized in Synthesis Example 3 in the present invention at room temperature in deuterated dimethyl sulfoxide using GEMINI-200 manufactured by VARIAN.
  • FIG. 3 is a 1 H-NMR spectrum obtained by measuring the polymer synthesized in Synthesis Example 10 in the present invention at room temperature in deuterated dimethyl sulfoxide using GEMINI-200 manufactured by VARIAN.
  • FIG. 4 is a 1 H-NMR spectrum obtained by measuring the polymer synthesized in Synthesis Example 11 in the present invention at room temperature in deuterated dimethyl sulfoxide using GEMINI-200 manufactured by VARIAN.
  • the polymer synthesized in Synthesis Example 12 in the present invention is obtained from GEMINI-2 manufactured by VARIAN. 1 H-NMR spectrum measured at room temperature in deuterated dimethyl sulfoxide using 00.
  • FIG. 6 is a 1 H-NMR spectrum obtained by measuring the polymer synthesized in Synthesis Example 17 in the present invention at room temperature in deuterated dimethyl sulfoxide using GEMINI-200 manufactured by VARIAN.
  • FIG. 7 is a 1 H-NMR spectrum obtained by measuring the polymer synthesized in Synthesis Example 18 in the present invention at room temperature in deuterated dimethyl sulfoxide using GEMINI-200 manufactured by VARIAN.
  • NMP A signal derived from N-methyl-2-pyrrolidone, a polymerization solvent that is contained as an impurity in the polymer!
  • DMSO A factor derived from dimethyl sulfoxide in deuterated dimethyl sulfoxide.
  • HO Signal derived from water adsorbed on the polymer.
  • Acetone NMR measuring tube
  • the present invention has been made against the background of the problems of the prior art, and is to provide a stable novel sulfonic acid group-containing polymer that does not have the above-described drawbacks even when an aliphatic group is introduced into the main chain structure. It is an object of the present invention to provide uses such as a polymer electrolyte membrane exhibiting excellent proton conductivity and durability, a membrane / electrode assembly using the polymer electrolyte membrane, and a fuel cell. Means for solving the problem
  • R 1 is a monovalent cation
  • R 1 is any one of an alkylene group having 1 to 10 carbon atoms, an oxyalkylene group, an arylene group, and a direct bond (a benzene ring and a SO Y group)
  • R 2 is Sulfur atom
  • Ar 1 is a divalent aromatic group having an electron-withdrawing group
  • n and m are each It represents an integer of 1 to 1000 in terms of the number of moles in the structural unit polymer molecule.
  • R 1 is an alkylene group having 1 to 10 carbon atoms, an oxyalkylene group, an arylene group, or a direct bond (with a benzene ring and a S0 Y group), Ar 1 is an electron Suction group
  • Z 1 is either an oxygen atom or a sulfur atom
  • Z 2 is an oxygen atom, sulfur atom, C (CH) — group, — C (CF) — group, — CH Group, cyclohexylene
  • O and p are each an integer of 1 to 1000 in terms of the number of moles of each structural unit in the polymer molecule.
  • R 1 is an alkylene group having 1 to 10 carbon atoms, an oxyalkylene group, Or Ar 1 is a direct bond (between benzene ring and SO Y group).
  • a divalent aromatic group having an attractive group Z 3 is either an oxygen atom or a sulfur atom
  • Ar 2 is a trivalent or tetravalent group containing an aromatic group
  • q is 1 or 2
  • r and s represent an integer of 1 to 1000 in terms of the number of moles in the polymer molecule of each structural unit.
  • R 1 in the chemical formulas 1, 3, 5 and 12 is a direct bond with SO Y group.
  • the sulfonic acid group-containing polymer The sulfonic acid group-containing polymer.
  • R 2 in Chemical Formula 1 and 2 is a linear alkylene group (1) to (3) acid groups-containing polymer according to.
  • (10) Z 2 in Formulas 3 and 4 is a —C (CH 2) — group, —C (CF 2) — group, cyclohex
  • the sulfonic acid group-containing polymer according to (2) which is any one of silylene groups.
  • a polymer electrolyte membrane comprising the sulfonic acid group-containing polymer described in (1) to (; 14).
  • a membrane / electrode assembly comprising the polymer electrolyte membrane according to (15) to (; 17) and an electrode catalyst layer
  • a fuel cell comprising the membrane / electrode assembly according to (18) or (19).
  • R 3 may contain a sulfur atom or an oxygen atom! /, C 2-2
  • the novel sulfonic acid group-containing polymer according to the present invention has improved polymer flexibility and improved brittleness, and when used as a polymer electrolyte membrane, compared to a conventional hydrocarbon polymer electrolyte membrane, It has excellent proton conductivity and durability!
  • the polymer electrolyte membrane of the present invention has excellent bonding properties with the electrode catalyst layer, output characteristics, and durability, and a solid polymer that uses a liquid such as methanol, dimethyl ether, formic acid or a gas such as hydrogen as the fuel. It can be suitably used for a fuel cell. Furthermore, it can be used for any known application as a polymer electrolyte membrane such as an electrolytic membrane and a separation membrane.
  • the sulfonic acid group-containing polymer of the present invention is a polymer having at least structural units represented by Chemical Formula 1 and Chemical Formula 2. As for each structural unit, the same unit may be continuously bonded, or may be bonded randomly or alternately. N in Chemical Formula 1 and m in Chemical Formula 2 each independently represent an integer of 1 to 1000;
  • the sulfonic acid group-containing polymer of the present invention preferably has structural units represented by chemical formulas 3 and 4 in addition to the structural units represented by chemical formulas 1 and 2. As for each structural unit, the same unit may be continuously bonded, or may be randomly or alternately bonded. O in Chemical Formula 3 and m in Chemical Formula 4 each independently represent an integer of! -1000.
  • the sulfonic acid group-containing polymer of the present invention has a chemical unit having a structural unit represented by Chemical Formula 5 and Chemical Formula 6 in addition to a structural unit represented by Chemical Formula 1 and Chemical Formula 2. It is more preferable because durability is improved. Furthermore, all structural units represented by chemical formulas 1-6 More preferably. As for each structural unit, the same unit may be continuously bonded, or may be bonded randomly or alternately. R in Chemical Formula 5 and s in Chemical Formula 6 each independently represent an integer of !!-1000.
  • Y in Chemical Formula 1 represents H or a monovalent cation. When used as a proton exchange membrane in a fuel cell, Y is preferably H. Also, in processes such as dissolution, molding, and film formation, Y is more preferable than H because the thermal stability of the monovalent cation, which is a monovalent cation, is increased. Examples of monovalent cations include alkali metal ions such as Na K Li, ammonium ions, and quaternary amin salts. Alkali metal ions such as Na K Li are preferred.
  • Sulfonic acid groups that are alkali metal salts can be converted to sulfonic acid groups by treating the polymer with a strong acid such as sulfuric acid, hydrochloric acid, perchloric acid or an aqueous solution thereof.
  • Polymers having sulfonic acid groups exhibit high proton conductivity and can be used as proton exchange resins or proton exchange membranes.
  • the proton exchange membrane can be used as an electrolyte for a polymer electrolyte fuel cell and is an excellent polymer electrolyte membrane.
  • R 1 in Chemical Formula 1, Chemical Formula 3, and Chemical Formula 5 is an alkylene group having 1 to 10 carbon atoms, an oxyalkylene group, an arylene group, and SO Y
  • the alkylene group is preferably a straight chain rather than a branched one.
  • the number of carbon atoms of the alkylene group is preferably 15 and more preferably 3 4.
  • n-propylene group and n-butylene group are preferable.
  • the number of carbon atoms of the oxyalkylene group is preferably 15 and more preferably 34.
  • oxy-n-propylene group and oxy-n-butylene group are preferable.
  • the arylene group include an oxyphenylene group and a phenylene group.
  • partial structure represented by [0022] Specific examples of the partial structure represented by [0022] are shown below, but are not limited thereto, and include those in which part and all of the sulfonic acid groups form a monovalent cation. .
  • Chemical Formulas 12A and 12B are more preferred, with Chemical Formulas 1, 12B, 12C, and 12D being more preferred.
  • R 2 in Formulas 1 and 2 more force alkylene group represents an alkylene group or Ararukiren group sulfur atom or 2 to 20 carbon atoms which may contain an oxygen atom good preferable.
  • the carbon number is 4 to 10; 10 is preferred, and 4 to 6 is more preferred.
  • the alkylene group is preferably a straight chain rather than a branched one.
  • the alkylene group may contain a sulfur atom or an oxygen atom, but preferably does not contain or preferably contains a sulfur atom.
  • linear alkylene groups include ethylene, n-propylene, n butylene, n pentylene, n hexylene, n heptylene, n octylene, and n nonylene.
  • the force S can be exemplified by a thiapentylene group and the like, but is not limited thereto.
  • n-butylene group, n-pentylene group, n-hexylene group, n-heptylene group, n-octylene group, n nonylene group, n decylene group, 3, 7-dithianonylene group, 3 thia n-pentylene group Preferred are n-butylene group, n-pentylene group and n-hexylene group.
  • branched alkylene groups include, for example, 1 methylethylene group, 2,3-dihydroxy n butylene group, S force S, and not limited thereto. .
  • the aralkylene group represents an aromatic group having an alkylene group at both ends, and can include o-xylidene group, m-xylidene group, p-xylidene group and the like. It is not limited.
  • Ar 1 in the chemical formulas 2, 4 and 6 represents a divalent aromatic group having an electron-withdrawing group.
  • electron withdrawing groups include sulfone groups, carbonyl groups, sulfonyl groups, phosphine groups, cyano groups, perfluoroalkyl groups such as trifluoromethyl groups, nitro groups, halogen groups, etc. , Sulfone group and carbonyl group are preferred.
  • An aromatic group represents a group having an aromatic ring. Examples of the group having an aromatic ring include a phenylene group, a pyridylene group, a naphthylene group, and an anthranylene group.
  • Ar 1 is a group in which an aromatic ring group is linked with an electron-withdrawing group! /.
  • Z 1 is oxygen atom or sulfur atom! /
  • Z 3 is oxygen atom, sulfur atom, -C (CH 3) single group, C (CF) — group, —CH— group, to cyclo
  • z 1 is an oxygen atom since the cost and toxicity of the monomer do not increase, and coloring during polymerization hardly occurs. It is preferable that z 1 is a sulfur atom rather than an oxygen atom because oxidation resistance is increased.
  • Z 2 is preferably an oxygen atom, a sulfur atom, a -C (CH) group, a C (CF) — group, or a cyclohexylene group.
  • formulas 14A, 14C, 14D, 14E, 14G, 141, 14K, and 14M are preferred, and the formulas 14A, 14C, 14D, 14E, 14G, 14K, and 14M are preferred. More preferred are formulas 14 ⁇ , 14C, 14D, 14E, and 14M.
  • Z 5 represents either a sulfur atom or an oxygen atom.
  • the 1S oxygen atom is preferred because it is easy to obtain and synthesize the monomer, and the preferred sulfur atom is preferred because the oxidation resistance of the polymer is improved.
  • Ar 2 represents a trivalent or tetravalent group containing an aromatic group, and examples thereof include a benzene ring, a naphthalene ring, and a diphenylmethane group, and a phenyl ring is preferable.
  • q is 1 or 2.
  • each structural unit surrounded by 0 is not coupled to the order of description! /, But represents! /, And represents a component constituting the polymer.
  • the same thing may be couple
  • n, m, o, p, r, and s which are the number of repeating structural units in the sulfonic acid group-containing polymer of the present invention, satisfy Formulas 1 to 3.
  • the sulfonic acid group-containing polymer sulfonic acid group-containing polymer of the present invention does not have the structural unit represented by Chemical Formula 3 and Chemical Formula 4, o and p in Formulas!
  • the sulfonic acid of the present invention In the case where the group-containing polymer sulfonic acid group-containing polymer does not have the structural unit represented by Chemical Formula 5 and Chemical Formula 6, r and s are set to 0 in Formulas!
  • Equation 1 when (n + o + r) / (n + m + o + p + r + s) is smaller than 0 ⁇ 05, proton conductivity is obtained when a polymer electrolyte membrane is obtained. Is extremely low, which may be difficult to use as a fuel cell. If (n + o + r) / (n + m + o + p + r + s) is greater than 0 ⁇ 70, the swellability is significantly increased when a polymer electrolyte membrane is formed, resulting in mechanical strength and durability. This is not preferable because the properties are lowered.
  • a more preferable range of (n + o + r) / (n + m + o + p + r + s) is a range of 0.05 ⁇ 0.50.
  • the sulfonic acid group-containing polymer of the present invention can be used for an ion exchange resin, a polymer electrolyte membrane, a hygroscopic resin, a hygroscopic membrane, a moisture permeable membrane, an electrolytic membrane, etc., and particularly as a polymer electrolyte membrane. It is preferable to use it. Furthermore, a high molecular weight using the sulfonic acid group-containing polymer of the present invention
  • the child electrolyte membrane can be used as a proton exchange membrane by converting the sulfonic acid group to a sulfonic acid type, and is particularly suitable for a proton exchange membrane for a fuel cell.
  • the sulfonic acid group-containing polymer of the present invention is also suitable for use as an adhesive when a polymer electrolyte membrane or the like is bonded to an electrode or a catalyst.
  • the structural unit represented by the chemical formulas 1, 3 and 5 has a thickness of Y. H (hydrogen ion) is preferred!
  • the number of structural units in the sulfonic acid group-containing polymer of the present invention is , N, m, o, p, r, and s preferably satisfy Formulas 5 to 8.
  • the sulfonic acid group-containing polymer of the present invention does not have the structural unit represented by Chemical Formula 3 and Chemical Formula 4, o and p are 0 in Formulas 5 to 8. .
  • the structural unit represented by Chemical Formula 5 and Chemical Formula 6 is not included, r and s are set to 0 in Formulas 5 to 8.
  • Equation 6 if (o + p) / (n + m + o + p + r + s) is less than 0 ⁇ 10, the solubility of the polymer and the stability of the polymer solution are reduced. There is. When (o + p) / (n + m + o + p + r + s) is larger than 0.9, durability and proton conductivity may be lowered. A more preferable range of (o + p) / (n + m + o + p + r + s) is 0.2 to 0.9, and a more preferable range is 0.3 to 0.8.
  • Equation 8 when (n + m) / (n + m + o + p + r + s) is smaller than 0 ⁇ 1, the durability of the polymer electrolyte membrane and the proton conductivity are improved. The effect tends to be too small.
  • a more preferable range of (n + m) / (n + m + o + p + r + s) is 0.2 to 0.8, and a more preferable range is 0.2 to 0.5. .
  • n, m, o which are the number of repeating structural units in the sulfonic acid group-containing polymer of the present invention.
  • P, r, and s preferably satisfy Equations 9 to 12 below.
  • Equation 9 if (n + o + r) / (n + m + o + p + r + s) is smaller than 0 ⁇ 15, the proton conductivity is remarkably lowered, and the fuel cell It may be difficult to use and is not preferable.
  • a more preferable range of (n + o + r) / (n + m + o + p + r + s) is 0.15-0.50, and a more preferable range is 0.2-0.4.
  • Equation 10 when (o + p) / (n + m + o + p + r + s) is smaller than 0 ⁇ 01, the solubility of the polymer and the stability of the polymer solution are lowered. There is a case. When (o + p) / (n + m + o + p + r + s) is larger than 0.70, durability and proton conductivity may be lowered. A more preferable range of (o + p) / (n + m + o + p + r + s) is 0.;! to 0.7, and a more preferable range is 0.2 to 0.6.
  • Equation 12 if (n + m) / (n + m + o + p + r + s) is less than 0 ⁇ 05, the polymer electrolyte membrane has improved durability and proton conductivity. Tends to be too small. ( If (n + m) / (n + m + o + p + r + s) is greater than 0 ⁇ 8, the solubility of the polymer and the stability of the polymer solution may be reduced. A more preferable range of (n + m) / (n + m + o + p + r + s) is 0.1 to 0.7, and a more preferable range is 0.2 to 0.6.
  • the sulfonic acid group-containing polymer of the present invention can be dissolved and dispersed in an appropriate solvent and used as a composition.
  • Solvents that can be used include N, N-dimethylformamide, N, N-dimethylacetamide, N, N-jetylacetamide, N-methylol-2-pyrrolidone, dimethylsulfoxide, hexamethylphosphonamide
  • Polar solvents such as aprotic organic polar solvents such as N-morpholine oxide, alcohol solvents such as methanol and ethanol, ketone solvents such as acetone, ether solvents such as jetyl ether, and these organic solvents Examples include, but are not limited to, a mixture of solvents and a mixture with water.
  • the concentration of the polymer solution is preferably in the range of 0. In the case of forming a film, fiber, etc. from the solution, the concentration is more preferably in the range of 5 to 50% by mass, and more preferably in the range of 10 to 40% by mass.
  • the concentration is more preferably in the range of 0 .
  • the solution may contain other components such as carbon particles carrying a catalyst such as Pt and Pt—Ru and a fluororesin.
  • the structural units represented by the chemical formulas 3 and 4 can reduce the swelling property of the whole polymer, reduce the methanol permeability, improve the solubility of the polymer, and improve the stability of the polymer solution.
  • the structural units represented by the chemical formulas 1, 3, and 5 have the effect of imparting ionic conductivity and proton conductivity.
  • the structural units represented by chemical formulas 5 and 6 have the effect of suppressing chemical deterioration and further improving durability.
  • the sulfonic acid group-containing polymer of the present invention can be polymerized by a aromatic nucleophilic substitution reaction from a mixture of monomers containing compounds represented by chemical formulas 160 to 162 as essential components. it can.
  • R 3 represents 1 carbon atom
  • Represents any one of 10 alkylene groups, oxyalkylene groups, arylene groups and direct bonds (with benzene ring and SO Y group).
  • the alkylene group is preferably a straight chain rather than a branched one.
  • the alkylene group preferably has 1 to 5 carbon atoms, more preferably 3 to 4 carbon atoms.
  • n-propylene group and n-butylene group are preferable.
  • the number of carbon atoms of the oxyalkylene group is more preferably from 1 to 5, and more preferably from 3 to 4.
  • oxy-n-propylene group and oxy-n-butylene group are preferable.
  • arylene groups include oxyphenylene groups and phenylene groups.
  • Y is preferably H or a force representing a monovalent cation.
  • Alkali metal ions such as S, Na, K and Li are preferred.
  • Z 4 represents one or more groups selected from the group consisting of a fluorine atom, a chlorine atom, a bromine atom, a silicon atom and a nitro group.
  • Specific examples of the compound represented by Chemical Formula 160 include 3, 3 'disulfo-4,4'-dichlorodiphenylsulfone, 3,3'disulfo-4,4'-difluorodiphenylsulfone, 3, 3, 1-disulfo-4,4'-dichlorodiphenyl ketone, 3, 3, 1-disulfo-4,4'-diphenylolenylsulfone, 3, 3 'disulfobutyl-4,4'-dichlorodiphenylnorethone, 3, 3'Disulfobutyl-4,4'-difluorodiphenylsulfone, 3,3 'disulfobutyl-4,4'-dichlorodiphenyl ketone, 3,3,1 disulfobutyl-4,4'-difluorodiphenylsulfone, and their sulfonic acid groups
  • Monovalent cation species are not limited to sodium, potassium, other metal species, and various amines.
  • examples of the compound in which the sulfonic acid group is a salt include 3, 3 ′ sodium disulfonate 4, 4′-dichlorodiphenyl sulfone, 3, 3, sodium monodisulfonate 1, 4, 4'-difluorodiphenylsulfone, 3,3, sodium monodisulfonate -4,4'-dichlorodiphenylketone, 3,3, sodium monodisulfonate1,4,4'-difluorodiphenylsulfone, 3 , 3, sodium monodisulfonate 4, 4'-difluorodiphenyl ketone, 3, 3, potassium monodisulfonate 4, 4'-dichlorodiphenyl sulfone, 3, 3, potassium disulfonate 4, 4, -diflu Borodiphenyl sulfone, 3, 3, potassium monod
  • Ar 3 is a divalent aromatic group having an electron-withdrawing group
  • Z 5 is one or more selected from the group consisting of a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, and a nitro group
  • electron withdrawing groups in Ar 3 include perfluoroalkyl groups such as sulfone groups, carbonyl groups, sulfonyl groups, phosphine groups, cyano groups, trifluoromethyl groups, nitro groups, halogen groups, etc.
  • a cyano group, a sulfone group, and a carbonyl group are preferable.
  • the aromatic group in Ar 3 represents a group having an aromatic ring.
  • Examples of the group having an aromatic ring include a phenylene group, a pyridylene group, a naphthylene group, and an anthranylene group.
  • groups having an aromatic ring may be linked with an electron-withdrawing group.
  • Examples of the compound represented by Chemical Formula 161 include compounds having a leaving group in a nucleophilic substitution reaction such as halogen and nitro group on the same aromatic ring and an electron-withdrawing group that activates the same. it can. Specific examples include 2,6 dichlorobenzobenzonitrile, 2,4 dichlorobenzobenzonitrile, 2,6 difluorobenzonitrile, 2,4 difluorobenzonitrile, 4,4'-dichlorodiphenylsulfone, 4 , 4'-difluorodiphenylsulfone, 4,4 'difluorobenzophenone, 4,4'-dichroic benzophenone, decafluorobiphenenole, etc., but are not limited thereto.
  • Chemical Formula 161 Specific examples of the compound represented by Chemical Formula 161 are shown below, but are not limited thereto. Well then! Among them, the chemical formulas 161A, 161B, 161C, 161D, 1610, 161P, 161Q, and 161R are preferable, 161C, 161D, 161Q, and 161R are more preferable, and 161D and 161R are more preferable.
  • R 4 is a force representing an alkylene group or an aralkylene group having 2 to 20 carbon atoms which may contain a sulfur atom or an oxygen atom.
  • the carbon number is 4 to 10; 10 is preferred, and 4 to 6 is more preferred.
  • the alkylene group is preferably a straight chain rather than a branched one.
  • the alkylene group may contain a sulfur atom or an oxygen atom, but it does not contain or contains a sulfur atom.
  • the linear alkylene group includes an ethylene group, an n-propylene group, an n-butylene group, an n-pentylene group, an n-xylene group, an n-heptylene group, an n-octylene group, and an n-nonylene group.
  • N a decylene group, a 3,6-dioxaoctylene group, a 3,7-dithianonylene group, a 3-thia-n pentylene group, and the like S. Absent.
  • n-butylene group, n-pentylene group, n-hexylene group, n-heptylene group, n-octylene group, n-nonylene group, n-decylene group, 3,7-dithianonylene group, 3-thion-pentylene group are preferable.
  • N-butylene group, n-pentylene group, and n-hexylene group are more preferable.
  • examples of the branched alkylene group include a 1-methylethylene group and a 2,3-dihydroxy-n-butylene group. ⁇ It is not limited to these.
  • the aralkylene group represents an aromatic group having an alkylene group at both ends, and includes ⁇ xylidene group, m-xylidene group, p-xylidene group, and the like. is not.
  • Z 6 in the chemical formula 162 represents a mercapto group or a derivative thereof.
  • Derivatives of mercapto groups in Chemical Formula 162 include alkali metal salts such as Na, K, Li, and force rumoylated products by reaction with isocyanate compounds.
  • Examples of the compound represented by Chemical Formula 162 include 1,2 ethanedithiol, 1,3 propanedithionole, 1,2-propanedithionole, 1,4 butanedithionole, 2,3-dihydroxysilane 1 , 4-, tandithiole, 1,5-pentanedithiole, 1,6-hexanedithiol, 1,7-heptanedithiol, 1,8-octanedithiol, 1,9-nonanedithiol, 1,10-decanedithiol 1, 11-undecanedithiol, 1,12-dodecanedithiol, 1,13 tridecanedithiol, 1,14-tetradecanedithiol, 1,15 pentadecanedithiol, 1,16 hexadecanedithiol, 1,17 heptade Candithiol, 1,18 Octadecanedithiol, 1,19-N
  • the sulfonic acid group-containing polymer of the present invention uses a compound represented by the following chemical formula 163 in addition to the compounds represented by the chemical formulas 160 to 162, thereby forming a polymer electrolyte membrane. It can improve the form stability, polymer solubility, and polymer solution stability.
  • Z 7 is either an OH group or an SH group
  • Z 9 is an oxygen atom, a sulfur atom, C (CH) — group C (CF) — group CH group, cyclohexylene group, Directly
  • Z 7 is an OH group because the compound can be easily synthesized and obtained.
  • Z 7 is an SH group, it is possible to improve the oxidation resistance of the obtained polymer, and it is preferable because a polymer having a high degree of polymerization is easily obtained because of high reactivity.
  • coloring of the obtained polymer is preferable. May be big.
  • Z 9 is oxygen atom, sulfur atom, C (CH)
  • Z 9 is a sulfur atom, C (CH) — group, C (CF) — group, cyclohexyl
  • a len group is preferable because the solubility of the polymer and the stability of the polymer solution can be improved.
  • z 9 is a direct bond, because it can increase the morphological stability of the polymer electrolyte membrane, which is preferable!
  • Specific examples of the compound represented by Chemical Formula 163 include 2, 2 bis (4-hydroxyphenyl) propane, bis (4-hydroxyphenol) methane, 2,2 bis (4-hydroxyphenol) hexane. Fluoropropane, 4,4'-thiobisbenzenethiol, 4,4'-oxybisbenzenethiol, bis (4-hydroxyphenyl) sulfide, 4,4'-dihydroxydiphenyl ether, 1,1-bis ( 4-hydroxyphenenoyl) cyclohexane, 4,4'-biphenol, etc., 4, 4'-thiobisbenzenethiol, bis (4-hydroxyphenenoyl) sulfide, 2,2bis (4 hydroxyphenenole) propane, 2, 2 bis (4-hydroxyphenenole) hexafluoropropane, 1,1-bis (4-hydroxyphenyl) cyclohexane, 4, 4'-bifu Nord is preferable.
  • the sulfonic acid group-containing polymer of the present invention is obtained by using a compound having the structure represented by the following chemical formula 164 as a component of the monomer, in addition to the compound represented by the chemical formula 160 to 162; Durability can be increased.
  • Z 9 is a force representing either an OH group or an SH group.
  • An OH group is preferred because it is easy to obtain and synthesize the monomer, and the SH group is preferred because the oxidation resistance of the polymer. It is preferable because it improves.
  • Ar 4 represents a trivalent or tetravalent group including an aromatic group, and examples thereof include a benzene ring, a naphthalene ring, and a diphenylmethane group, and a benzene ring is preferable.
  • t is 1 or 2, with 1 being preferred.
  • Chemical Formula 164 Preferred examples of the structure represented by Chemical Formula 164 are shown below, but are not limited thereto. Of these, chemical formula 164A is preferred.
  • the compounds represented by the chemical formulas 160 to 164 may be used by mixing a plurality of compounds within the range of the structure.
  • aromatic diol compounds or aromatic dithiol compounds can be used as one of the monomer components.
  • aromatic diol compounds or aromatic dithiol compounds include 9, 9 bis (4-hydroxyphenyl) fluorene, 9, 9 bis (3-methyl 4-hydroxyphenyleno) fluorene, bis (4 —Hydroxyphenenole) Surephon, 1, 1-bis (4 hydroxyphenenole) ethane, 2, 2 bis (4 hydroxyphenenole) butane, 3, 3 bis (4 hydroxyphenenole) pentane, 2 , 2 Bis (4 hydroxy -3,5-Dimethylphenol) propane, bis (4-hydroxy 3,5-dimethylphenyl) methane, bis (4-hydroxy-2,5-dimethylphenol) methane, bis (4-hydroxyphenol) phenylmethane, hydroquinone, resorcinol Bis (4-hydroxyphenenole) ketone, 1,4 benzenedithiol, 1,3-benzenedithion
  • a polymer can be obtained by adding dinitroaromatic compounds, aromatic diols or aromatic dithiols and reacting them in the presence of a basic compound.
  • the degree of polymerization of the resulting polymer can be increased. Force that can be adjusted 0.8 to; 1.2 Force to be S S, more preferably in the range of 0.9 to 1.1, in the range of 0.9.5-1.05 Is preferably 1, since a polymer with a high degree of polymerization can be obtained.
  • the polymerization is preferably in the range of 50-250 ° C force that can be carried out in the temperature range of 0-350 ° C.
  • the reaction can be carried out in the absence of a solvent, but is preferably carried out in a solvent.
  • solvents that can be used include N-methyl 2-pyrrolidone, N, N dimethylacetamide, N, N dimethylformamide, dimethyl sulfoxide, diphenyl sulfone, sulfolane, and the like.
  • solvents that can be used include N-methyl 2-pyrrolidone, N, N dimethylacetamide, N, N dimethylformamide, dimethyl sulfoxide, diphenyl sulfone, sulfolane, and the like.
  • These organic solvents may be used alone or as a mixture of two or more.
  • Examples of the basic compound include sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate and the like, but include aliphatic dithiols, aromatic diols, and aromatics. Any dimercapto compound can be used as long as it can form an active phenoxide structure.
  • the basic compound is used in an amount of 100 mol% or more based on the total number of moles of the aliphatic dithiol compound, aromatic diol compound, and aromatic dithiol compound, it can be polymerized well.
  • it is in the range of 105 to 125 mol% with respect to the total number of moles of the aliphatic dithiols, aromatic diol compound, and aromatic dithiol compound. 125 mol 0/0 multi-than
  • water may be generated as a by-product.
  • water can be removed from the system as an azeotrope by coexisting toluene or the like unrelated to the polymerization solvent in the reaction system.
  • a water absorbing material such as molecular sieve can be used.
  • a dehydrating agent such as molecular sieve that is preferably reacted under reflux to prevent evaporation may be added to the reaction solution. preferable.
  • the aromatic nucleophilic substitution reaction is carried out in a solvent
  • the amount is less than 5% by mass, the degree of polymerization tends to be difficult to increase.
  • the viscosity of the reaction system becomes so high that post-treatment of the reaction product tends to be difficult.
  • the solvent is removed from the reaction solution by evaporation, and the residue is washed as necessary to obtain the desired polymer. Mer is obtained.
  • the polymer can be precipitated as a solid, and the polymer can be obtained by filtering the precipitate.
  • a polymer solution can be obtained by removing by-product salts by filtration.
  • the sulfonic acid group-containing polymer in the present invention preferably has a polymer log viscosity measured by a method described later of not less than 0.1 IdL / g.
  • the logarithmic viscosity is more preferably 0.3 dL / g or more.
  • the logarithmic viscosity exceeds 5 dL / g, problems in processability such as difficulty in dissolving the polymer occur, which is not preferable.
  • a force S that can use a polar organic solvent such as N-methylpyrrolidone or N, N-dimethylacetamide is generally used. Can also be measured using concentrated sulfuric acid.
  • the ion exchange capacity of the sulfonic acid group-containing polymer in the present invention is preferably 0.1 lmeq / g or more, more preferably 3.5 meq / g or less.
  • a small ion exchange capacity is preferable because proton conductivity decreases. As the ion exchange capacity increases, proton conductivity increases, but at the same time, problems such as membrane swelling and water dissolution are likely to occur.
  • the ion exchange capacity of the sulfonic acid group-containing polymer in the present invention is more preferably in the range of 0.3 to 3.5 meq / g, and more preferably in the range of 0.4 to 2.5 meq / g. .
  • the polymer electrolyte membrane in the present invention is preferably 10 m or more, since it is difficult to satisfy the predetermined characteristics when the force that can be made to an arbitrary thickness is 10 m or less. It is more preferable that it is. In addition, since it becomes difficult to produce when it is 300 mm or more, it is preferably 300 m or less.
  • the sulfonic acid group-containing polymer in the present invention can be used as a single substance, but can also be used as a resin composition in combination with other polymers.
  • these polymers include polyesters such as polyethylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate, polyamides such as nylon 6, nylon 66, nylon 610, and nylon 12, polymethyl methacrylate, and polymethacrylates.
  • Acrylate resins such as polymethyl acrylate and polyacrylates, poly acrylate Cellulose resins such as phosphoric acid resins, polymethacrylic acid resins, polyethylene, polypropylene, polystyrene-containing polymers, polyurethane resins, cellulose acetate, ethyl cellulose, polyarylate, aramid, polycarbonate, Aromatic polymers such as polyphenylene noride, polyphenylene oxide, polysenolephone, polyether etherephone, polyetheretherketone, polyetherimide, polyimide, polyamideimide, polybenzimidazole, polybenzoxazole, polybenzthiazole, Thermosetting resins such as epoxy resin, phenolic resin, nopolac resin, and benzoxazine resin are not particularly limited!
  • a resin composition with a basic polymer such as polybenzimidazole or polybulupyridine is a preferable combination for improving polymer dimensionality, and a sulfonic acid group is further introduced into these basic polymers. And the workability of the composition becomes more preferable.
  • the sulfonic acid group-containing polymer of the present invention is preferably contained in an amount of 50% by mass or more and less than 100% by mass of the entire resin composition. More preferably, it is 70 mass% or more and less than 100 mass%.
  • the content of the sulfonic acid group-containing polymer of the present invention is less than 50% by mass of the entire resin composition, the sulfonic acid group concentration of the polymer electrolyte membrane containing this resin composition is lowered and good ionic conductivity is obtained.
  • the unit containing a sulfonic acid group tends to be a discontinuous phase, and the mobility of ions to be conducted tends to decrease.
  • composition of the present invention may contain, for example, an antioxidant, a heat stabilizer, a lubricant, a tackifier, a plasticizer, a crosslinking agent, a viscosity modifier, an antistatic agent, an antibacterial agent, an antifoaming agent, Various additives such as a dispersant and a polymerization inhibitor may be contained.
  • the polymer electrolyte membrane of the present invention can be obtained from the composition containing the sulfonic acid group-containing ion exchange resin of the present invention by any method such as extrusion, rolling or casting. Among them, it is preferable to mold from a solution dissolved in an appropriate solvent.
  • a method for obtaining a molded body from a solution can be performed using a conventionally known method.
  • the solvent can be removed by heating, drying under reduced pressure, or immersion in a compound non-solvent that can be mixed with a solvent that dissolves the compound, to obtain a molded article.
  • the solvent is an organic solvent
  • the solvent is preferably distilled off by heating or drying under reduced pressure. At this time, if necessary, it can be molded in a composite form with other compounds.
  • the sulfonic acid group in the molded product thus obtained may contain a salt form with a cationic species, but if necessary, it can be converted to a free sulfonic acid group by acid treatment. You can also
  • the most preferable method for forming a polymer electrolyte membrane from the sulfonic acid group-containing polymer and the resin composition thereof in the present invention is casting from a solution, and the solvent is removed from the cast solution as described above.
  • a polymer electrolyte membrane can be obtained.
  • the solution include a solution using an organic solvent such as N-methylpyrrolidone, N, N-dimethylformamide, and dimethyl sulfoxide, and an alcohol solvent in some cases.
  • the uniformity of the polymer electrolyte membrane is preferably removed by drying the solvent.
  • it in order to avoid decomposition or alteration of the compound or solvent, it can be dried under reduced pressure and at a temperature as low as possible.
  • the thickness of the solution at the time of casting is not particularly limited, but is preferably in the range of 10 to 2000 111. More preferred is 50 to 1500 m. If the thickness of the solution is less than 10 m, the shape of the polymer electrolyte membrane tends not to be maintained, and if it is more than 2000 m, a non-uniform membrane tends to be easily formed. A known method can be used to control the cast thickness of the solution.
  • the thickness with the amount and concentration of the solution can obtain a more uniform film by adjusting the solvent removal rate. For example, when heating, it is possible to reduce the evaporation rate by lowering the temperature in the first stage.
  • a non-solvent such as water
  • the sulfonic acid group in the membrane may contain a metal salt, but it can be converted to free sulfonic acid by an appropriate acid treatment. In this case, it is also effective to immerse the membrane in an aqueous solution of sulfuric acid, hydrochloric acid or the like with or without heating.
  • the membrane / electrode assembly of the present invention can be obtained by bonding the polymer electrolyte membrane of the present invention to an electrode.
  • the electrode includes an electrode material and a layer (electrode catalyst layer) containing a catalyst formed on the surface thereof, and a known material can be used as the electrode material.
  • a conductive porous material such as carbon paper or carbon cloth
  • a material subjected to surface treatment such as water repellent treatment or hydrophilic treatment can be used.
  • a known material can be used for the catalyst.
  • power that can include platinum, an alloy of platinum and ruthenium, and the like is not limited thereto.
  • the catalyst can be used in any known form.
  • the force carrying catalyst fine particles is the force S that can use one bon particle, but is not limited thereto.
  • An adhesive can be used for the catalyst and the electrode catalyst layer containing the particles carrying the catalyst, and as the adhesive, a resin having proton conductivity can be used.
  • a known method can be used for the conventional force.
  • a method of applying an adhesive to the electrode surface and bonding the polymer electrolyte membrane and the electrode or a high molecular weight There is a method of heating and pressurizing the electrolyte membrane and the electrode.
  • the adhesive a known material such as a naphthion (trade name) solution may be used, or an adhesive mainly composed of the same polymer composition as that of the polymer constituting the polymer electrolyte membrane of the present invention may be used.
  • those containing other hydrocarbon-based proton conductive polymers as main components may be used.
  • a catalyst such as platinum or platinum-ruthenium alloy necessary for the electrode reaction can be obtained by dispersing the catalyst supported on conductive particles such as carbon in the adhesive. .
  • the preferred method for producing an electrode / polymer electrolyte membrane assembly is to apply and adhere to the electrode surface! Since the polymer electrolyte membrane and the polymer composition of the present invention have an appropriate softening temperature, they are particularly suitable for a method of joining a polymer electrolyte membrane and an electrode by pressure heating.
  • the fuel cell of the present invention can be produced using the polymer electrolyte membrane or the polymer electrolyte membrane / electrode assembly of the present invention.
  • the fuel cell of the present invention includes, for example, an oxygen electrode, a fuel electrode, a polymer electrolyte membrane sandwiched between the electrodes, an oxidant flow path provided on the oxygen electrode side, and a fuel electrode side.
  • the fuel flow path is provided.
  • a platinum wire (diameter: 0.2 mm) is pressed against the surface of a strip-shaped membrane sample on a self-made measurement probe (made of tetrafluoroethylene resin), and it is kept at 25 ° C in water or at 80 ° C and 95% RH.
  • the sample was held in a humidity thermostat, and the impedance between the platinum wires was measured by SOLARTRON 1250FREQU ENCY RESPONSE ANALYSER. The measurement was performed while changing the distance between the electrodes, and the conductivity with the contact resistance between the film and the platinum wire canceled was calculated from the gradient obtained by plotting the distance measured between the electrodes and the resistance measurement value estimated from the CC plot.
  • the liquid fuel permeation rate of the polymer electrolyte membrane was measured as the methanol permeation rate by the following method.
  • a polymer electrolyte membrane immersed in a 5M (mol / liter) methanol solution adjusted to 25 ° C for 24 hours is sandwiched between H-type cells, and lOOmL of 5M methanol aqueous solution is placed on one side of the cell in the other cell.
  • lOOmL of ultrapure water (18 ⁇ ⁇ 'cm) was injected, and the amount of methanol that diffused into the ultrapure water through the polymer electrolyte membrane while stirring the cells on both sides at 25 ° C was measured. It was calculated by measuring using a graph (the area of the polymer electrolyte membrane was 2. Ocm 2 ). From the obtained methanol permeation rate and the film thickness of the sample, the methanol permeation coefficient was determined.
  • a polymer electrolyte membrane is sandwiched between the gas diffusion layers with an electrode catalyst layer so that the electrode catalyst layer is in contact with the membrane, and is pressurized and heated at 5 MPa for 3 minutes by a hot press method.
  • a polar assembly was obtained. The heating temperature was appropriately adjusted to the temperature at which peeling of the electrode catalyst layer and the membrane did not occur for each polymer electrolyte membrane used for evaluation.
  • This assembly was assembled into an evaluation fuel cell FC25-02SP manufactured by Electrochem, and the cell temperature was 80 ° C, the anode was humidified with hydrogen at 75 ° C, and the power sword was humidified with air humidified at 75 ° C. The power generation characteristics were evaluated by supplying them.
  • the initial voltage was the output voltage at a current density of 0.5 A / cm 2 immediately after the start.
  • continuous operation was performed under the above conditions while measuring open circuit voltage at a rate of 3 times per hour.
  • the time when the open circuit voltage dropped 10% or more from the value immediately after the start was defined as the endurance time.
  • Durability evaluation was performed with 2000 hours as the upper limit.
  • Pt / Ru catalyst-supported carbon (TEC61E54 manufactured by Tanaka Kikinzoku Kogyo Co., Ltd.) is moistened with a small amount of ultrapure water and isopropyl alcohol. Was added so that the mass ratio of Pt / Ru catalyst-supported carbon to naphthion (registered trademark) was 2.5: 1. Next, stirring was performed to prepare an anode catalyst paste. This catalyst paste is applied to a carbon paper (TG PH-060 manufactured by Toray Industries, Inc.) as a gas diffusion layer by screen printing so that the amount of platinum deposited is 2 mg / cm 2, and is provided with an electrode catalyst layer for the anode. Carbon paper was produced.
  • a carbon paper TG PH-060 manufactured by Toray Industries, Inc.
  • the membrane sample is The membrane so that the catalyst layer was in contact with the membrane sample, and was pressed and heated at 5 MPa for 3 minutes by a hot press method to obtain a membrane electrode assembly.
  • the heating temperature was appropriately adjusted to a temperature at which peeling between the electrode catalyst layer and the membrane did not occur for each polymer electrolyte membrane used for evaluation.
  • This joined body was incorporated into an evaluation fuel cell FC25-02SP manufactured by Ele ctrochem, and a power generation test was performed using a fuel cell power generation tester (manufactured by Toyo Corporation).
  • Power generation is performed at a cell temperature of 40 ° C, a 5 mol / L aqueous methanol solution (1.5 ml / min) adjusted to 40 ° C at the anode, and a high-purity air gas (80 ml / min) adjusted to 40 ° C in the power sword. ) was performed while supplying each.
  • the output voltage at a current density of 0.05 A / cm 2 was measured.
  • the sample was dried at 100 ° C for 1 hour and allowed to stand overnight at room temperature in a nitrogen atmosphere. After weighing with a sodium hydroxide aqueous solution, the ion exchange capacity was determined by back titration with a hydrochloric acid aqueous solution.
  • NMP N-methyl-2-pyrrolidone
  • the comparative polysynthesis synthesis examples 11 to 77 of the polypolylimer were synthesized and synthesized.
  • the cacalylium carbonate is likely to be in excess of 1100% relative to the sum of the number of momols of the aromatic aromatic digiool compound. The correct amount was used.
  • Molecula molecular sieves were used in an amount of approximately the same amount as that of the lithium carbonate power.
  • the NNMMPP used an amount of about 22.66 times the mass of the mass of the poplar limomer as calculated above. .
  • 332200mmll of NN Methicill Loo 22 Pipirolo Liridon Dong ((abbreviation: NNMMPP)) was put in, and put into the oil oil bath, and the temperature of oil oil babas was adjusted to 115500 After stirring for 3300 minutes at a temperature of °° CC, the temperature of the oily babascus was set to 22 1155 °° CC and the reaction was continued for 1122 hours. I was letting you. . After standing to cool, the sedimentary sedimentary sieve is removed by filtration with an 11GG22 55 galalas filter filter. Then, the polypolymerization solution was allowed to settle into water in the form of a strandorand. . The obtained polypolilimer was washed, washed and washed 66 times with normal temperature water and dried at 111100 ° C. .
  • SSDDSS : 33 ,, 33,, Niditosulphophonate Nanato Triliumum 44 ,, 44 '' --Dichlorochlorodihydrophenenylsulfurphone
  • DDCCSS : 44 ,, 44 ⁇ ——Dichlorochlorodiphweinyl Luthululhohon
  • CCBBPP : 44 ,, 44 ⁇ ——Dichlorochlorobenbenzozofuenonon
  • NNDDTT : 33 ,, 66——Dizychiaia 11,, 99
  • PPDDTT 22——Memerulkacaptoethyl sulsulfide
  • BPS Bis (4-hydroxyphenol) sulfide BP: 4, 4, Bihuenore
  • Table 3 shows the evaluation results.
  • the polymer electrolyte membranes (Examples 17 to 21) for hydrogen-fueled fuel cells (PEFCs) in the present invention are the polymer electrolyte membranes of the comparative examples (Comparative Examples 3 to 4).
  • the initial voltage is equivalent to that of the membrane, but the durability time is greatly improved, indicating that the membrane is an excellent polymer electrolyte membrane.
  • the polymer electrolyte membranes for direct methanol fuel cells (DMFC) Examples;! To 16
  • DMFC direct methanol fuel cells
  • the polymer electrolyte membrane of the present invention exhibits high proton conductivity compared to the polymer electrolyte membrane of the comparative example having the same ion exchange capacity, and contributes to higher output of the fuel cell.
  • the polymer electrolyte membrane of the present invention has a mild temperature of 110 to 160 ° C. The film and the electrode can be satisfactorily joined with each other, and the polarity and properties are excellent.
  • the sulfonic acid group-containing polymer of the present invention has improved polymer flexibility and improved brittleness, and, when used as a polymer electrolyte membrane, has a proton conductivity higher than that of conventional hydrocarbon polymer electrolyte membranes. It is useful as a polymer electrolyte membrane for fuel cells because it has the advantage of being excellent in durability, and it can also be used as a polymer electrolyte membrane such as an electrolytic membrane and a separation membrane. Can contribute to the industry.

Abstract

Disclosed is a novel sulfonic acid group-containing polymer which is excellent in flexibility and stability, and suitably used in fuel cells and the like. Specifically disclosed is a sulfonic acid group-containing polymer characterized by having at least structural units represented by the chemical formulae 1 and 2 below. [In the chemical formulae 1 and 2, X represents an -S(=O)2- group or a -C(=O)- group; Y represents H or a monovalent cation; R1 represents an alkylene group having 1-10 carbon atoms, an arylene group or a direct bond; R2 represents an alkylene group having 2-20 carbon atoms or an aralkylene group; Ar1 represents a divalent aromatic group having an electron-withdrawing group; and n and m represent the mole number of the respective structural units.]

Description

明 細 書  Specification
スルホン酸基含有ポリマー、その製造方法、スルホン酸基含有ポリマーを 用いた高分子電解質膜、膜/電極接合体及び燃料電池  Sulfonic acid group-containing polymer, production method thereof, polymer electrolyte membrane using sulfonic acid group-containing polymer, membrane / electrode assembly, and fuel cell
技術分野  Technical field
[0001] 本発明は、新規な構造のスルホン酸基含有ポリマー、その製造方法、該ポリマーを 用いた高分子電解質膜、膜/電極接合体及び燃料電池などの用途に関する。 背景技術  The present invention relates to a sulfonic acid group-containing polymer having a novel structure, a production method thereof, a polymer electrolyte membrane using the polymer, a membrane / electrode assembly, and a fuel cell. Background art
[0002] 近年、エネルギー効率や環境性に優れた新し!/、発電技術が注目を集めて!/、る。中 でも高分子固体電解質膜を使用した固体高分子型燃料電池はエネルギー密度が高 ぐまた、他の方式の燃料電池に比べて運転温度が低いため起動、停止が容易であ るなどの特徴を有するため、電気自動車や分散発電などの電源装置としての開発が 進んできている。  [0002] In recent years, new energy-efficient and environmentally friendly! /, And power generation technology has attracted attention! Among them, polymer electrolyte fuel cells using polymer electrolyte membranes have high energy density, and the operating temperature is lower than other types of fuel cells, making them easy to start and stop. Therefore, development as a power supply for electric vehicles and distributed power generation is progressing.
[0003] 高分子固体電解質膜には通常プロトン伝導性の高分子電解質膜が使用される。高 分子固体電解質膜にはプロトン伝導性以外にも、燃料の水素などの透過を防ぐ燃料 透過抑止性や機械的強度などの特性が必要である。このような高分子固体電解質膜 としては、スルホン酸基を導入したパーフルォロカーボンスルホン酸ポリマーを含む 膜が知られている。し力もながら、分子中にフッ素を含むため、使用条件によっては 排気ガス中に有害なフッ酸が発生することや、廃棄時に環境への負荷が大きいこと などが問題視されている。  [0003] As the polymer solid electrolyte membrane, a proton conductive polymer electrolyte membrane is usually used. In addition to proton conductivity, the polymer electrolyte membrane must have properties such as fuel permeation deterrence and mechanical strength that prevent the permeation of fuel hydrogen and the like. As such a polymer solid electrolyte membrane, a membrane containing a perfluorocarbon sulfonic acid polymer into which a sulfonic acid group has been introduced is known. However, since fluorine is contained in the molecule, harmful hydrofluoric acid is generated in the exhaust gas depending on the conditions of use, and the environmental load at the time of disposal is regarded as a problem.
[0004] パーフルォロカーボンスルホン酸系高分子電解質膜は、燃料電池の電解質膜とし てバランスのよい特性を示すものの、合成方法が複雑であり、コストや性能などで、よ り優れた膜を得るために、炭化水素系高分子電解質膜の開発が盛んに行われてい 多くの炭化水素系高分子電解質膜には、ポリイミドゃポリスルホンなどの耐熱性ポリ マーに、スルホン酸基などのイオン性基を導入したポリマーが用いられている(例え ば特許文献 1を参照)。  [0004] A perfluorocarbon sulfonic acid polymer electrolyte membrane exhibits a well-balanced characteristic as an electrolyte membrane of a fuel cell, but the synthesis method is complicated, and the membrane is superior in terms of cost and performance. Hydrocarbon polymer electrolyte membranes have been actively developed in order to obtain a high temperature, and many hydrocarbon polymer electrolyte membranes include heat-resistant polymers such as polyimide and polysulfone, and ionic groups such as sulfonic acid groups. A polymer having a group introduced therein is used (for example, see Patent Document 1).
[0005] 一般に炭化水素系高分子電解質膜では、パーフルォロカーボンスルホン酸系高分 子電解質膜と同等のプロトン伝導性を発現させるためには、より多くのイオン性基を 導入する必要がある。し力もながら、一般にイオン性基の量が多くなると、耐久性が低 下する傾向にある。そのため、ポリマーの構造を改良し、より膨潤性を抑制した炭化 水素系高分子電解質膜もある (例えば特許文献 2を参照)。 [0005] In general, in a hydrocarbon polymer electrolyte membrane, a perfluorocarbon sulfonic acid-based polymer is used. It is necessary to introduce more ionic groups in order to develop proton conductivity equivalent to that of the child electrolyte membrane. However, in general, the durability tends to decrease as the amount of ionic groups increases. For this reason, there are also hydrocarbon-based polymer electrolyte membranes with improved polymer structure and more suppressed swelling (see, for example, Patent Document 2).
[0006] しかしながら、芳香族系の炭化水素系高分子電解質膜は、乾燥した場合に脆さが 大きくなる傾向があるため、主鎖構造に脂肪族基を組み込むことが提案されている( 例えば特許文献 3を参照)。し力もながら、具体的な構造として挙げられている、ォキ シアルキレン基やォキシアルキレンォキシ基のような脂肪族基は、酸化によって切断 されやすく、燃料電池の高分子電解質膜には適してレ、なレ、とレ、う問題を有して!/、た。 また、両末端に芳香族基を有するアルキレン基も例示されているが、脂肪族基の導 入効果が芳香族基で損なわれるため好ましくない場合があった。  [0006] However, since aromatic hydrocarbon polymer electrolyte membranes tend to become brittle when dried, it has been proposed to incorporate aliphatic groups into the main chain structure (for example, patents). (Ref. 3). However, aliphatic groups such as oxyalkylene groups and oxyalkyleneoxy groups listed as specific structures are easily cleaved by oxidation and are suitable for polymer electrolyte membranes of fuel cells. I have a problem! Further, although an alkylene group having an aromatic group at both ends is also exemplified, there are cases where the effect of introducing an aliphatic group is impaired by the aromatic group, which is not preferable.
[0007] 特許文献 1 :特表 2004— 509224号公報  [0007] Patent Document 1: Japanese Translation of Special Publication 2004-509224
特許文献 2:特開 2004— 149779号公報  Patent Document 2: Japanese Patent Application Laid-Open No. 2004-149779
特許文献 3 :特開 2006— 45512号公報  Patent Document 3: Japanese Unexamined Patent Publication No. 2006-45512
図面の簡単な説明  Brief Description of Drawings
[0008] [図 1]本発明における合成例 1で合成したポリマーを、 VARIAN社製 GEMINI— 20 0を用いて、重水素化ジメチルスルホキシド中室温で測定した1 H— NMRスペクトル である。 FIG. 1 is a 1 H-NMR spectrum obtained by measuring the polymer synthesized in Synthesis Example 1 in the present invention at room temperature in deuterated dimethyl sulfoxide using GEMINI-200 manufactured by VARIAN.
[図 2]本発明における合成例 3で合成したポリマーを、 VARIAN社製 GEMINI— 20 0を用いて、重水素化ジメチルスルホキシド中室温で測定した1 H— NMRスペクトル である。 FIG. 2 is a 1 H-NMR spectrum obtained by measuring the polymer synthesized in Synthesis Example 3 in the present invention at room temperature in deuterated dimethyl sulfoxide using GEMINI-200 manufactured by VARIAN.
[図 3]本発明における合成例 10で合成したポリマーを、 VARIAN社製 GEMINI— 2 00を用いて、重水素化ジメチルスルホキシド中室温で測定した1 H— NMRスペクトル である。 FIG. 3 is a 1 H-NMR spectrum obtained by measuring the polymer synthesized in Synthesis Example 10 in the present invention at room temperature in deuterated dimethyl sulfoxide using GEMINI-200 manufactured by VARIAN.
[図 4]本発明における合成例 11で合成したポリマーを、 VARIAN社製 GEMINI— 2 00を用いて、重水素化ジメチルスルホキシド中室温で測定した1 H— NMRスペクトル である。 FIG. 4 is a 1 H-NMR spectrum obtained by measuring the polymer synthesized in Synthesis Example 11 in the present invention at room temperature in deuterated dimethyl sulfoxide using GEMINI-200 manufactured by VARIAN.
[図 5]本発明における合成例 12で合成したポリマーを、 VARIAN社製 GEMINI— 2 00を用いて、重水素化ジメチルスルホキシド中室温で測定した1 H— NMRスペクトル である。 [Fig. 5] The polymer synthesized in Synthesis Example 12 in the present invention is obtained from GEMINI-2 manufactured by VARIAN. 1 H-NMR spectrum measured at room temperature in deuterated dimethyl sulfoxide using 00.
[図 6]本発明における合成例 17で合成したポリマーを、 VARIAN社製 GEMINI— 2 00を用いて、重水素化ジメチルスルホキシド中室温で測定した1 H— NMRスペクトル である。 FIG. 6 is a 1 H-NMR spectrum obtained by measuring the polymer synthesized in Synthesis Example 17 in the present invention at room temperature in deuterated dimethyl sulfoxide using GEMINI-200 manufactured by VARIAN.
[図 7]本発明における合成例 18で合成したポリマーを、 VARIAN社製 GEMINI— 2 00を用いて、重水素化ジメチルスルホキシド中室温で測定した1 H— NMRスペクトル である。 なお、図中の略号はそれぞれ以下の意味を表す。 NMP :ポリマーに不純 物として含まれて!/、る重合溶媒である N—メチルー 2—ピロリドンに由来するシグナル 。 DMSO :重水素化ジメチルスルホキシド中のジメチルスルホキシドに由来するシ ダナル。 H O :ポリマーに吸着した水に由来するシグナル。 アセトン: NMR測定管 FIG. 7 is a 1 H-NMR spectrum obtained by measuring the polymer synthesized in Synthesis Example 18 in the present invention at room temperature in deuterated dimethyl sulfoxide using GEMINI-200 manufactured by VARIAN. In addition, the symbol in a figure represents the following meaning, respectively. NMP: A signal derived from N-methyl-2-pyrrolidone, a polymerization solvent that is contained as an impurity in the polymer! DMSO: A factor derived from dimethyl sulfoxide in deuterated dimethyl sulfoxide. HO: Signal derived from water adsorbed on the polymer. Acetone: NMR measuring tube
2  2
の洗浄に用いたアセトンの残存物に由来するシグナル。  Signal derived from the residue of acetone used for washing.
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0009] 本発明は従来技術の課題を背景になされたもので、主鎖構造に脂肪族基を導入し ても上記の欠点のない安定な新規スルホン酸基含有ポリマーを提供することであり、 優れたプロトン伝導性と耐久性を示す高分子電解質膜、該高分子電解質膜を用い た膜/電極接合体、燃料電池などの用途を提供することを課題とするものである。 課題を解決するための手段  [0009] The present invention has been made against the background of the problems of the prior art, and is to provide a stable novel sulfonic acid group-containing polymer that does not have the above-described drawbacks even when an aliphatic group is introduced into the main chain structure. It is an object of the present invention to provide uses such as a polymer electrolyte membrane exhibiting excellent proton conductivity and durability, a membrane / electrode assembly using the polymer electrolyte membrane, and a fuel cell. Means for solving the problem
[0010] 本発明者らは上記課題を解決するため、鋭意研究した結果、脂肪族鎖を導入する 構造として、脂肪族ビススルフイド構造を用いると優れた特性が得られることを見出し 、ついに本発明を完成するに至った。すなわち本発明は、  [0010] As a result of intensive studies to solve the above problems, the present inventors have found that an excellent characteristic can be obtained by using an aliphatic bissulfide structure as a structure into which an aliphatic chain is introduced. It came to be completed. That is, the present invention
(1)少なくとも下記化学式 1及び 2で表される構造単位を有することを特徴とするスノレ ホン酸基含有ポリマー。  (1) A sulfonic acid group-containing polymer having at least structural units represented by the following chemical formulas 1 and 2.
[化 1]
Figure imgf000005_0001
[化学式 1及び 2において、 Xは S ( =〇) 一基又は C ( =〇)一基を、 Yは H又は
[Chemical 1]
Figure imgf000005_0001
[In chemical formulas 1 and 2, X is one S (= 〇) or one C (= 〇), Y is H or
2  2
1価の陽イオンを、 R1は炭素数 1〜10のアルキレン基、ォキシアルキレン基、ァリーレ ン基及び直接結合 (ベンゼン環と SO Y基との)のうちのいずれかを、 R2は硫黄原子 R 1 is a monovalent cation, R 1 is any one of an alkylene group having 1 to 10 carbon atoms, an oxyalkylene group, an arylene group, and a direct bond (a benzene ring and a SO Y group), and R 2 is Sulfur atom
3  Three
又は酸素原子を含んでレ、てもよ!/、炭素数 2〜20のアルキレン基又はァラルキレン基 を、 Ar1は電子吸引性基を有する 2価の芳香族基を、 n及び mはそれぞれの構造単 位のポリマー分子中のモル数で 1〜1000の整数を表す。 ] Or an oxygen atom may be included! /, An alkylene or aralkylene group having 2 to 20 carbon atoms, Ar 1 is a divalent aromatic group having an electron-withdrawing group, and n and m are each It represents an integer of 1 to 1000 in terms of the number of moles in the structural unit polymer molecule. ]
(2)下記化学式 3及び 4で表される構造をさらに構造単位として有する(1)に記載の スルホン酸基含有ポリマー。  (2) The sulfonic acid group-containing polymer according to (1), which further has a structure represented by the following chemical formulas 3 and 4 as a structural unit.
[化 2] >'  [Chemical 2]> '
-、、^、、Αΐ、、-ϊ^:-、、·¾^ 、、 -、や、、、 -, ^ ,, Αΐ,, -ϊ ^:-,, ¾ ^,,-,,,
Figure imgf000006_0001
ϊ; % 、 ' * 4 )
Figure imgf000006_0001
ϊ;%, '* 4)
[化学式 3及び 4において、 Xは S ( =〇) 一基又は C ( =〇)一基を、 Yは H又は [In Chemical Formulas 3 and 4, X is one S (= ○) or one C (= ○), Y is H or
2  2
1価の陽イオンを、 R1は炭素数 1〜10のアルキレン基、ォキシアルキレン基、ァリーレ ン基及び直接結合 (ベンゼン環と S〇 Y基との)のいずれかを、 Ar1は電子吸引性基 A monovalent cation, R 1 is an alkylene group having 1 to 10 carbon atoms, an oxyalkylene group, an arylene group, or a direct bond (with a benzene ring and a S0 Y group), Ar 1 is an electron Suction group
3  Three
を有する 2価の芳香族基を、 Z1は酸素原子又は硫黄原子のいずれかを、 Z2は、酸素 原子、硫黄原子、 C (CH ) —基、— C (CF ) —基、— CH 基、シクロへキシレ Z 1 is either an oxygen atom or a sulfur atom, Z 2 is an oxygen atom, sulfur atom, C (CH) — group, — C (CF) — group, — CH Group, cyclohexylene
3 2 3 2 2  3 2 3 2 2
ン基及び直接結合(ベンゼン環同士の)のうちのいずれかを、 o及び pはそれぞれの 構造単位のポリマー分子中のモル数で 1〜1000の整数を表す。 ] O and p are each an integer of 1 to 1000 in terms of the number of moles of each structural unit in the polymer molecule. ]
(3)下記化学式 5及び 6で表される構造をさらに構造単位として有する(1)又は(2) に記載のスルホン酸基含有ポリマー。  (3) The sulfonic acid group-containing polymer according to (1) or (2), further having a structure represented by the following chemical formulas 5 and 6 as a structural unit.
[化 3コ [Chemical 3
Figure imgf000006_0002
Figure imgf000006_0002
[化学式 5及び 6において、 Xは S ( =〇) 一基又は C ( =〇)一基を、 Yは H又は [In Chemical Formulas 5 and 6, X is one S (= ○) or one C (= ○), Y is H or
2  2
1価の陽イオンを、 R1は炭素数 1〜10のアルキレン基、ォキシアルキレン基、ァリーレ ン基、直接結合(ベンゼン環と SO Y基との)のうちのいずれかであり、 Ar1は電子吸 A monovalent cation, R 1 is an alkylene group having 1 to 10 carbon atoms, an oxyalkylene group, Or Ar 1 is a direct bond (between benzene ring and SO Y group).
3  Three
引性基を有する 2価の芳香族基を、 Z3は酸素原子又は硫黄原子のいずれかを、 Ar2 は芳香族基を含む 3価又は 4価の基を、 qは 1又は 2を、 r及び sはそれぞれの構造単 位のポリマー分子中のモル数で 1〜1000の整数を表す。 ] A divalent aromatic group having an attractive group, Z 3 is either an oxygen atom or a sulfur atom, Ar 2 is a trivalent or tetravalent group containing an aromatic group, q is 1 or 2, r and s represent an integer of 1 to 1000 in terms of the number of moles in the polymer molecule of each structural unit. ]
(4)化学式 2、 4及び 6における Ar1が、下記化学式 7〜; 10で表される構造単位のうち の少なくとも 1種である(1)〜(3)に記載のスルホン酸基含有ポリマー。 (4) The sulfonic acid group-containing polymer according to (1) to (3), wherein Ar 1 in chemical formulas 2, 4 and 6 is at least one of structural units represented by chemical formulas 7 to 10 below.
[化 4] [Chemical 4]
Figure imgf000007_0001
Figure imgf000007_0001
(5)化学式 2、 4及び 6における Ar1が、化学式 9又は 10で表される構造であるひ)〜 (3)に記載のスルホン酸基含有ポリマー。 (5) The sulfonic acid group-containing polymer according to (3), wherein Ar 1 in the chemical formulas 2, 4 and 6 has a structure represented by the chemical formula 9 or 10.
(6)化学式 1、 3、 5及び 12における R1が SO Y基との直接結合であるひ)〜(3)に記 (6) R 1 in the chemical formulas 1, 3, 5 and 12 is a direct bond with SO Y group.
3  Three
載のスルホン酸基含有ポリマー。 The sulfonic acid group-containing polymer.
(7)化学式 1及び 2における R2が直鎖のアルキレン基である(1)〜(3)に記載のスル ホン酸基含有ポリマー。 (7) R 2 in Chemical Formula 1 and 2 is a linear alkylene group (1) to (3) acid groups-containing polymer according to.
(8)化学式 3及び 4における Z1が酸素原子である(2)に記載のスルホン酸基含有ポリ マ—。 (8) The sulfonic acid group-containing polymer according to (2), wherein Z 1 in chemical formulas 3 and 4 is an oxygen atom.
(9)化学式 3及び 4における Z2がベンゼン環の直接結合である(2)に記載のスルホン 酸基含有ポリマー。 (9) The sulfonic acid group-containing polymer according to (2), wherein Z 2 in chemical formulas 3 and 4 is a direct bond of a benzene ring.
(10)化学式 3及び 4における Z2が、— C (CH ) —基、— C (CF ) —基、シクロへキ (10) Z 2 in Formulas 3 and 4 is a —C (CH 2) — group, —C (CF 2) — group, cyclohex
3 2 3 2  3 2 3 2
シレン基のいずれかである(2)に記載のスルホン酸基含有ポリマー。 The sulfonic acid group-containing polymer according to (2), which is any one of silylene groups.
(11)化学式 5及び 6における Z3が酸素原子である(3)に記載のスルホン酸基含有ポ リマー。 (11) The sulfonic acid group-containing polymer according to (3), wherein Z 3 in chemical formulas 5 and 6 is an oxygen atom.
(12)化学式 3及び 4における Ar2がベンゼン環である(3)に記載のスルホン酸基含 有ポリマー。 (12) The sulfonic acid group-containing polymer according to (3), wherein Ar 2 in Chemical Formulas 3 and 4 is a benzene ring.
(13)化学式 5及び 6における qが 1である(3)に記載のスルホン酸基含有ポリマー。 [0011] (14)化学式;!〜 6における n、 m、 o、 p、 r、 sが下記数式;!〜 3を満たす(1)〜(; 13)の V、ずれかに記載のスルホン酸基含有ポリマー。 (13) The sulfonic acid group-containing polymer according to (3), wherein q in chemical formulas 5 and 6 is 1. [0011] (14) Chemical formula; n in the formulas! ~ 6, m, o, p, r, s satisfy the following formula; Group-containing polymer.
0.05≤ (n + o + r)/(n + m+o + p + r + s)≤0. 70 (数式 1)  0.05≤ (n + o + r) / (n + m + o + p + r + s) ≤0.770 (Formula 1)
0.01≤ (o + p)/(n + m + o + p + r + s)≤0. 99 (数式 2)  0.01≤ (o + p) / (n + m + o + p + r + s) ≤ 0.99 (Formula 2)
0≤ (r+s)/(n + m + o + p + r+s)≤0. 10 (数式 3)  0≤ (r + s) / (n + m + o + p + r + s) ≤0.10 (Equation 3)
0.01≤ (n + m)/(n + m + o + p + r + s)≤1. 00 (数式 4)  0.01≤ (n + m) / (n + m + o + p + r + s) ≤1.00 (Formula 4)
(15) (1)〜(; 14)に記載のスルホン酸基含有ポリマーからなる高分子電解質膜。 (15) A polymer electrolyte membrane comprising the sulfonic acid group-containing polymer described in (1) to (; 14).
(16)化学式 1〜6における n、 m、 o、 p、 r、 sが下記数式 4〜6を満たし、ダイレクトメタ ノール燃料電池用である(15)に記載の高分子電解質膜。 (16) The polymer electrolyte membrane according to (15), wherein n, m, o, p, r, and s in chemical formulas 1 to 6 satisfy the following formulas 4 to 6 and are used for direct methanol fuel cells.
0.05≤ (n + o + r)/(n + m+o + p + r + s)≤0.40 (数式 5)  0.05≤ (n + o + r) / (n + m + o + p + r + s) ≤0.40 (Formula 5)
0. 10≤ (o + p)/(n + m + o + p + r + s)≤0. 90 (数式 6)  0. 10≤ (o + p) / (n + m + o + p + r + s) ≤ 0.990 (Equation 6)
0≤ (r+s)/(n + m + o + p + r+s)≤0. 10 (数式 7)  0≤ (r + s) / (n + m + o + p + r + s) ≤0.10 (Equation 7)
0. 1≤ (n + m)/(n + m + o + p + r + s)≤0. 9 (数式 8)  0. 1≤ (n + m) / (n + m + o + p + r + s) ≤0.9 (Equation 8)
(17)化学式 1〜6における n、 m、 o、 p、 r、 sが下記数式 7〜9を満たし、水素を燃料と する燃料電池用である(15)に記載の高分子電解質膜。  (17) The polymer electrolyte membrane according to (15), which is for a fuel cell in which n, m, o, p, r, and s in chemical formulas 1 to 6 satisfy the following formulas 7 to 9 and hydrogen is used as a fuel.
0. 15≤ (n + o + r)/(n + m+o + p + r + s)≤0. 70 (数式 9)  0. 15≤ (n + o + r) / (n + m + o + p + r + s) ≤0.770 (Equation 9)
0.01≤ (o + p)/(n + m + o + p + r + s)≤0. 70 (数式 10)  0.01≤ (o + p) / (n + m + o + p + r + s) ≤ 0.70 (Equation 10)
0≤ (r+s)/(n + m + o + p + r+s)≤0. 10 (数式 11)  0≤ (r + s) / (n + m + o + p + r + s) ≤0.10 (Equation 11)
0.05≤ (n + m)/(n + m + o + p + r + s)≤0. 8 (数式 12)  0.05≤ (n + m) / (n + m + o + p + r + s) ≤0.8 (Formula 12)
[0012] (18) (15)〜(; 17)に記載の高分子電解質膜と電極触媒層からなる膜/電極接合体 [0012] (18) A membrane / electrode assembly comprising the polymer electrolyte membrane according to (15) to (; 17) and an electrode catalyst layer
Yes
(19)膜/電極接合体の電極触媒層に、(1)〜(; 14)のいずれかのスルホン酸基含 有ポリマーを用いてなる膜/電極接合体。  (19) A membrane / electrode assembly in which the sulfonic acid group-containing polymer of any one of (1) to (; 14) is used for the electrode catalyst layer of the membrane / electrode assembly.
[0013] (20) (18)又は(19)に記載の膜/電極接合体を用いてなる燃料電池。 [0013] (20) A fuel cell comprising the membrane / electrode assembly according to (18) or (19).
[0014] (21) (1)のスルホン酸基含有ポリマーの芳香族求核置換反応による製造方法であ つて、主鎖構造に脂肪族基を導入するに際し、化学式 11で表される構造の化合物を 反応成分の一つとして用いることを特徴とするスルホン酸基含有ポリマーの製造方法 [化 5] 側 : : [0014] (21) A method for producing a sulfonic acid group-containing polymer of (1) by an aromatic nucleophilic substitution reaction, wherein a compound having a structure represented by Chemical Formula 11 is used when an aliphatic group is introduced into a main chain structure. As a reaction component, and a method for producing a sulfonic acid group-containing polymer [Chemical 5] side::
[化学式 11にお!/、て、 R3は硫黄原子又は酸素原子を含んでレ、てもよ!/、炭素数 2〜2[In Formula 11! /, R 3 may contain a sulfur atom or an oxygen atom! /, C 2-2
0のアルキレン基又はァラルキレン基を表す。 ] Represents 0 alkylene group or aralkylene group; ]
である。  It is.
発明の効果  The invention's effect
[0015] 本発明による新規スルホン酸基含有ポリマーは、ポリマーの柔軟性が向上して脆さ が改善され、高分子電解質膜とした場合に、従来の炭化水素系高分子電解質膜に 比べて、プロトン伝導性と耐久性に優れると!/、う長所を有して!/、る。  [0015] The novel sulfonic acid group-containing polymer according to the present invention has improved polymer flexibility and improved brittleness, and when used as a polymer electrolyte membrane, compared to a conventional hydrocarbon polymer electrolyte membrane, It has excellent proton conductivity and durability!
また、本発明の高分子電解質膜は、電極触媒層との接合性、出力特性、耐久性に 優れ、燃料にメタノール、ジメチルエーテル、ギ酸などの液体や、水素などの気体な どを用いる固体高分子型燃料電池に好適に用いることができる。さらに、電解膜、分 離膜など、高分子電解質膜としても公知の任意の用途に用いることができる。  In addition, the polymer electrolyte membrane of the present invention has excellent bonding properties with the electrode catalyst layer, output characteristics, and durability, and a solid polymer that uses a liquid such as methanol, dimethyl ether, formic acid or a gas such as hydrogen as the fuel. It can be suitably used for a fuel cell. Furthermore, it can be used for any known application as a polymer electrolyte membrane such as an electrolytic membrane and a separation membrane.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0016] 以下、本発明を詳細に説明する。  Hereinafter, the present invention will be described in detail.
本発明のスルホン酸基含有ポリマーは、少なくとも化学式 1及び化学式 2で表され る構造単位を有するポリマーである。それぞれの構造単位は、同じものが連続して結 合していてもよいし、ランダムや交互に結合していてもよい。化学式 1における n及び 化学式 2における mは、それぞれ独立して 1〜; 1000の整数を表す。  The sulfonic acid group-containing polymer of the present invention is a polymer having at least structural units represented by Chemical Formula 1 and Chemical Formula 2. As for each structural unit, the same unit may be continuously bonded, or may be bonded randomly or alternately. N in Chemical Formula 1 and m in Chemical Formula 2 each independently represent an integer of 1 to 1000;
[0017] 本発明のスルホン酸基含有ポリマーは、化学式 1及び 2で表される構造単位に加え て、化学式 3及び化学式 4で表される構造単位を有していることがより好ましい。それ ぞれの構造単位は、同じものが連続して結合していてもよいし、ランダムや交互に結 合していてもよい。化学式 3における o及び化学式 4における mは、それぞれ独立して ;!〜 1000の整数を表す。  [0017] The sulfonic acid group-containing polymer of the present invention preferably has structural units represented by chemical formulas 3 and 4 in addition to the structural units represented by chemical formulas 1 and 2. As for each structural unit, the same unit may be continuously bonded, or may be randomly or alternately bonded. O in Chemical Formula 3 and m in Chemical Formula 4 each independently represent an integer of! -1000.
[0018] 本発明のスルホン酸基含有ポリマーは、化学式 1及び化学式 2で表される構造単 位に加えて、化学式 5及び化学式 6で表される構造単位を有していると、化学的な耐 久性が向上するためより好ましい。さらに化学式 1〜6で表される全ての構造単位を 有しているとさらに好ましい。それぞれの構造単位は、同じものが連続して結合して いてもよいし、ランダムや交互に結合していてもよい。化学式 5における r及び化学式 6における sは、それぞれ独立して;!〜 1000の整数を表す。 [0018] The sulfonic acid group-containing polymer of the present invention has a chemical unit having a structural unit represented by Chemical Formula 5 and Chemical Formula 6 in addition to a structural unit represented by Chemical Formula 1 and Chemical Formula 2. It is more preferable because durability is improved. Furthermore, all structural units represented by chemical formulas 1-6 More preferably. As for each structural unit, the same unit may be continuously bonded, or may be bonded randomly or alternately. R in Chemical Formula 5 and s in Chemical Formula 6 each independently represent an integer of !!-1000.
[0019] 化学式 1、化学式 3、及び化学式 5における Xは一 S ( =〇) 一基又は一 C ( =〇)一 [0019] X in Chemical Formula 1, Chemical Formula 3, and Chemical Formula 5 is one S (= 〇) or one C (= 〇).
2  2
基を表すが、 s (=o) —基であると、溶媒への溶解性が高まるため好ましい。また  Represents a group, but s (= o) — group is preferable because solubility in a solvent is increased. Also
2  2
c (=o)—基であると、ポリマーに光架橋性を付与することが可能になるため好 ましい。化学式 1における Yは H又は 1価の陽イオンを表す力 燃料電池のプロトン交 換膜として用いる場合には、 Yは Hであることが好ましい。また、溶解、成形、製膜な どの加工においては、 Yが Hであるよりも 1価の陽イオンであるほう力 スルホン酸基 の熱安定性が高まるため好ましい。 1価の陽イオンとしては、 Na K Liなどのアル力 リ金属イオンや、アンモニゥムイオン、第四級ァミン塩などが例として挙げることができ Na K Liなどのアルカリ金属のイオンが好ましい。アルカリ金属塩となっているス ルホン酸基は、硫酸、塩酸、過塩素酸などの強酸又はその水溶液でポリマーを処理 することによって、スルホン酸基に変換することができる。スルホン酸基を有するポリマ 一は高いプロトン伝導性を示し、プロトン交換樹脂や、プロトン交換膜として用いるこ と力 Sできる。中でもプロトン交換膜は、固体高分子形燃料電池の電解質として用いる ことができ、優れた高分子電解質膜となる。化学式 1、化学式 3、及び化学式 5におけ る R1は炭素数 1〜; 10のアルキレン基、ォキシアルキレン基、ァリーレン基及び SO Y The c (= o) — group is preferred because it can impart photocrosslinkability to the polymer. Y in Chemical Formula 1 represents H or a monovalent cation. When used as a proton exchange membrane in a fuel cell, Y is preferably H. Also, in processes such as dissolution, molding, and film formation, Y is more preferable than H because the thermal stability of the monovalent cation, which is a monovalent cation, is increased. Examples of monovalent cations include alkali metal ions such as Na K Li, ammonium ions, and quaternary amin salts. Alkali metal ions such as Na K Li are preferred. Sulfonic acid groups that are alkali metal salts can be converted to sulfonic acid groups by treating the polymer with a strong acid such as sulfuric acid, hydrochloric acid, perchloric acid or an aqueous solution thereof. Polymers having sulfonic acid groups exhibit high proton conductivity and can be used as proton exchange resins or proton exchange membranes. Among them, the proton exchange membrane can be used as an electrolyte for a polymer electrolyte fuel cell and is an excellent polymer electrolyte membrane. R 1 in Chemical Formula 1, Chemical Formula 3, and Chemical Formula 5 is an alkylene group having 1 to 10 carbon atoms, an oxyalkylene group, an arylene group, and SO Y
3 基との直接結合のうちの!/、ずれかを表すが、アルキレン基であるとプロトン伝導性が 向上するため好ましい。また、スルホン酸基とベンゼン環が直接結合している直接結 合であると、熱やラジカルなどに対するスルホン酸基の安定性が高まり、プロトン伝導 性にも優れるため、より好ましい。アルキレン基は、分岐を有するものよりも、直鎖のも のが好ましい。アルキレン基の炭素数は 1 5がより好ましぐ 3 4がより好ましい。具 体的には、 n—プロピレン基、 n ブチレン基が好ましい。ォキシアルキレン基の炭素 数は 1 5がより好ましぐ 3 4がより好ましい。具体的には、ォキシ—n プロピレン 基、ォキシ n ブチレン基が好ましい。ァリーレン基としては、ォキシフエ二レン基、 フエ二レン基、などを挙げることができる。  Of the direct bond with the 3 groups, it represents! / Or a deviation, but an alkylene group is preferred because proton conductivity is improved. In addition, a direct bond in which a sulfonic acid group and a benzene ring are directly bonded is more preferable because stability of the sulfonic acid group against heat, radicals, and the like is increased and proton conductivity is excellent. The alkylene group is preferably a straight chain rather than a branched one. The number of carbon atoms of the alkylene group is preferably 15 and more preferably 3 4. Specifically, n-propylene group and n-butylene group are preferable. The number of carbon atoms of the oxyalkylene group is preferably 15 and more preferably 34. Specifically, oxy-n-propylene group and oxy-n-butylene group are preferable. Examples of the arylene group include an oxyphenylene group and a phenylene group.
[0020] 化学式 1、化学式 3、及び化学式 5で表される構造単位における、下記化学式 12 ; [0021] [化 6][0020] In the structural unit represented by chemical formula 1, chemical formula 3, and chemical formula 5, the following chemical formula 12; [0021] [Chemical 6]
W  W
.、、-€、、¾、、"*··€、■# .  .,-€, ¾, "* · €, ■ #.
[0022] で表される部分構造の具体例を以下に示すが、これらに限定されるわけではなぐ スルホン酸基の一部及び全部が 1価の陽イオンを形成しているものも含む。。下記の 部分構造のうち、化学式 1 、 12B、 12C、及び 12Dがより好ましぐ化学式 12A及 び化学式 12Bがさらに好ましい。 Specific examples of the partial structure represented by [0022] are shown below, but are not limited thereto, and include those in which part and all of the sulfonic acid groups form a monovalent cation. . Of the following partial structures, Chemical Formulas 12A and 12B are more preferred, with Chemical Formulas 1, 12B, 12C, and 12D being more preferred.
[0023] [化 7]  [0023] [Chemical 7]
Figure imgf000011_0001
: 、
Figure imgf000011_0001
:
[0024] 化学式 1及び化学式 2における R2は、硫黄原子又は酸素原子を含んでいてもよい 炭素数 2〜20のアルキレン基又はァラルキレン基を表す力 アルキレン基のほうが好 ましい。炭素数は 4〜; 10が好ましぐ 4〜6がより好ましい。アルキレン基は、分岐を有 するものよりも直鎖のものが好ましい。化学式 1及び化学式 2における R2において、ァ ルキレン基は、硫黄原子や酸素原子を含んでいてもよいが、含まないか、硫黄原子 を含んでいることが好ましぐ含まないことがより好ましい。化学式 1における R2におい て、直鎖のアルキレン基としては、エチレン基、 n—プロピレン基、 n ブチレン基、 n ペンチレン基、 n へキシレン基、 n へプチレン基、 n オタチレン基、 n ノニレ ン基、 n デシレン基、 3, 6—ジォキサォクチレン基、 3, 7—ジチアノ二レン基、 3— チア ペンチレン基などを例としてあげることができる力 S、これらに限定されるもの ではない。中でも n ブチレン基、 n—ペンチレン基、 n へキシレン基、 n—ヘプチレ ン基、 n—オタチレン基、 n ノニレン基、 n デシレン基、 3, 7—ジチアノ二レン基、 3 チア n—ペンチレン基が好ましぐ n ブチレン基、 n—ペンチレン基、 n へキシ レン基がより好ましい。化学式 1及び化学式 2における R2において、分岐のアルキレ ン基としては、 1 メチルエチレン基、 2, 3—ジヒドロキシ n ブチレン基などを挙げ ること力 Sできる力 S、これらに限定されるものではない。化学式 1及び化学式 2における R2において、ァラルキレン基とは、両端にアルキレン基を有する芳香族基を表し、 o ーキシリデン基、 m—キシリデン基、 p キシリデン基などを挙げることができる力 こ れらに限定されるものではない。 [0024] R 2 in Formulas 1 and 2, more force alkylene group represents an alkylene group or Ararukiren group sulfur atom or 2 to 20 carbon atoms which may contain an oxygen atom good preferable. The carbon number is 4 to 10; 10 is preferred, and 4 to 6 is more preferred. The alkylene group is preferably a straight chain rather than a branched one. In R 2 in Chemical Formula 1 and Chemical Formula 2, the alkylene group may contain a sulfur atom or an oxygen atom, but preferably does not contain or preferably contains a sulfur atom. In R 2 in Chemical Formula 1, linear alkylene groups include ethylene, n-propylene, n butylene, n pentylene, n hexylene, n heptylene, n octylene, and n nonylene. , N Decylene group, 3, 6-Dioxaoctylene group, 3, 7-Dithianonylene group, 3— The force S can be exemplified by a thiapentylene group and the like, but is not limited thereto. Among them, n-butylene group, n-pentylene group, n-hexylene group, n-heptylene group, n-octylene group, n nonylene group, n decylene group, 3, 7-dithianonylene group, 3 thia n-pentylene group Preferred are n-butylene group, n-pentylene group and n-hexylene group. In R 2 in Chemical Formula 1 and Chemical Formula 2, branched alkylene groups include, for example, 1 methylethylene group, 2,3-dihydroxy n butylene group, S force S, and not limited thereto. . In R 2 in Chemical Formula 1 and Chemical Formula 2, the aralkylene group represents an aromatic group having an alkylene group at both ends, and can include o-xylidene group, m-xylidene group, p-xylidene group and the like. It is not limited.
[0025] 化学式 2、 4及び 6における Ar1は電子吸引性基を有する二価の芳香族基を表す。 [0025] Ar 1 in the chemical formulas 2, 4 and 6 represents a divalent aromatic group having an electron-withdrawing group.
電子吸引性基の例としては、スルホン基、カルボニル基、スルホニル基、ホスフィン基 、シァノ基、トリフルォロメチル基などのパーフルォロアルキル基、ニトロ基、ハロゲン 基などが挙げられ、シァノ基、スルホン基、カルボニル基が好ましい。芳香族基とは、 芳香環を有する基を表す。芳香環を有する基としては、フエ二レン基、ピリジレン基、 ナフチレン基、アントラニレン基を挙げることができる。 Ar1は、芳香環を有する基同士 が電子吸引性基で連結されて!/、てもよレ、。 Examples of electron withdrawing groups include sulfone groups, carbonyl groups, sulfonyl groups, phosphine groups, cyano groups, perfluoroalkyl groups such as trifluoromethyl groups, nitro groups, halogen groups, etc. , Sulfone group and carbonyl group are preferred. An aromatic group represents a group having an aromatic ring. Examples of the group having an aromatic ring include a phenylene group, a pyridylene group, a naphthylene group, and an anthranylene group. Ar 1 is a group in which an aromatic ring group is linked with an electron-withdrawing group! /.
[0026] 化学式 2、 4及び 6における Ar1の例を以下に示す力、これらに限定されるものでは ない。 [0026] Examples of Ar 1 in Chemical Formulas 2, 4, and 6 are the following forces, but are not limited thereto.
[0027] [化 8] [0027] [Chemical 8]
Figure imgf000013_0001
Figure imgf000013_0001
[0028] 化学式 2、 4及び 6における Ar1のより好ましい例として、化学式 7〜; 10で表される構 造を挙げること力 Sでき、中でも化学式 9又は 10で表される構造がさらに好ましぐ化学 式 10で表される構造が最も好ましい。 [0028] As a more preferred example of Ar 1 in the chemical formulas 2, 4 and 6, the structure represented by the chemical formulas 7 to 10 can be cited, and among them, the structure represented by the chemical formula 9 or 10 is more preferable. The structure represented by Formula 10 is most preferred.
[0029] 化学式 3及び化学式 4にお!/、て、 Z1は酸素原子又は硫黄原子の!/、ずれかを、 Z3は 、酸素原子、硫黄原子、 -C (CH ) 一基、—C (CF ) —基、—CH—基、シクロへ [0029] In Chemical Formula 3 and Chemical Formula 4! /, Z 1 is oxygen atom or sulfur atom! /, Z 3 is oxygen atom, sulfur atom, -C (CH 3) single group, C (CF) — group, —CH— group, to cyclo
3 2 3 2 2  3 2 3 2 2
キシレン基のいずれかを表す。 z1が酸素原子であると、モノマーのコストや毒性が高 くならず、重合における着色などが起こりにくいため好ましい。 z1が酸素原子よりも硫 黄原子であるほうが、耐酸化性が高くなるため好ましい。 Z2は酸素原子、硫黄原子、 -C (CH ) 一基、 C (CF ) —基、シクロへキシレン基であることが好ましぐ酸素 Represents any xylene group. It is preferable that z 1 is an oxygen atom since the cost and toxicity of the monomer do not increase, and coloring during polymerization hardly occurs. It is preferable that z 1 is a sulfur atom rather than an oxygen atom because oxidation resistance is increased. Z 2 is preferably an oxygen atom, a sulfur atom, a -C (CH) group, a C (CF) — group, or a cyclohexylene group.
3 2 3 2  3 2 3 2
原子及び硫黄原子がより好まし!/、。  Atoms and sulfur atoms are more preferred!
[0030] 化学式 3及び化学式 4における、下記化学式 14 ; [0030] In Chemical Formula 3 and Chemical Formula 4, the following Chemical Formula 14;
[0031] [化 9]
Figure imgf000014_0001
[0031] [Chemical 9]
Figure imgf000014_0001
[0032] で表される部分構造の具体例を以下に示すが、これらに限定されるわけではない。 Specific examples of the partial structure represented by the following are shown below, but are not limited thereto.
中でも、ィ匕学式 14A、 14C、 14D、 14E、 14G、 141、 14K、及び 14Mカ好ましく、ィ匕 学式 14A、 14C、 14D、 14E, 14G、 14K、及び 14Mカより好ましく、ィ匕学式 14Α、 14C、 14D、 14E、及び 14Mがさらに好ましい。  Of these, the formulas 14A, 14C, 14D, 14E, 14G, 141, 14K, and 14M are preferred, and the formulas 14A, 14C, 14D, 14E, 14G, 14K, and 14M are preferred. More preferred are formulas 14Α, 14C, 14D, 14E, and 14M.
[0033] [化 10]  [0033] [Chemical 10]
Figure imgf000014_0002
Figure imgf000014_0002
[0034] 化学式 5及び化学式 6において、 Z5は硫黄原子又は酸素原子のいずれかを表す In Chemical Formula 5 and Chemical Formula 6, Z 5 represents either a sulfur atom or an oxygen atom.
1S 酸素原子であるとモノマーの入手や合成が容易であるため好ましぐ硫黄原子で あるとポリマーの耐酸化性が向上するため好ましい。 Ar2は芳香族基を含む 3価又は 4価の基を表し、ベンゼン環、ナフタレン環、ジフエニルメタン基などを挙げることがで き、フエニル環が好ましい。 qは 1又は 2である。 The 1S oxygen atom is preferred because it is easy to obtain and synthesize the monomer, and the preferred sulfur atom is preferred because the oxidation resistance of the polymer is improved. Ar 2 represents a trivalent or tetravalent group containing an aromatic group, and examples thereof include a benzene ring, a naphthalene ring, and a diphenylmethane group, and a phenyl ring is preferable. q is 1 or 2.
[0035] 化学式 5及び化学式 6における、下記化学式 15 ;  [0035] In Chemical Formula 5 and Chemical Formula 6, the following chemical formula 15;
[0036] [化 11]
Figure imgf000014_0003
で表される部分構造の具体例を以下に示す力 これらに限定されるわけではな!/ 中でも、化学式 15Aが好ましい。
[0036] [Chemical 11]
Figure imgf000014_0003
Specific examples of the partial structure represented by the following are not limited to these forces! Among them, the chemical formula 15A is preferable.
[0037] [化 12]
Figure imgf000015_0001
[0037] [Chemical 12]
Figure imgf000015_0001
» 曜  " Weekday
Figure imgf000015_0002
Figure imgf000015_0002
[0038] 本発明のスルホン酸基含有ポリマーの好ましい構造を以下に示す力 これらに限 定されるわけではない。下記化学式において、 0で囲まれた各構造単位は、記載の 順に結合して!/、ることを表して!/、るわけではなく、ポリマーを構成する成分を表してレヽ るものであり、同一のものが連続して結合していてもよいし、異なる構造単位がランダ ムに結合していても、交互に結合していてもよい。 [0038] The following preferred structures of the sulfonic acid group-containing polymer of the present invention are not limited thereto. In the following chemical formula, each structural unit surrounded by 0 is not coupled to the order of description! /, But represents! /, And represents a component constituting the polymer. The same thing may be couple | bonded continuously, and the different structural unit may couple | bond together at random or may couple | bond together alternately.
[0039] [化 13] [0039] [Chemical 13]
//:/ O 08L890L00I>d S 82800AV //: / O 08L890L00I> d S 82800AV
皇0
Figure imgf000016_0001
Imperial 0
Figure imgf000016_0001
Figure imgf000017_0001
' ί.
Figure imgf000017_0001
'ί.
■D  ■ D
、、ヽ '' <^¾ ,' '> 、 、 ^$、^^、、 、- , ヽ '' <^ ¾, ''>,, ^ $, ^^,,-
Figure imgf000017_0002
Figure imgf000017_0002
Figure imgf000018_0001
Figure imgf000018_0001
[0043] [化 17]
Figure imgf000019_0001
[0043] [Chemical 17]
Figure imgf000019_0001
[6Π>] [9^00] [6Π>] [9 ^ 00]
Figure imgf000020_0001
Figure imgf000020_0001
-'、¼0"^、、' ^: X、 ^ 、 、、 、、 "^ ^^^^»;; † 、'"¾ : 、 、、 -', ¼0 "^,' ^: X, ^,,,," ^ ^^^^ »;; †, '" ¾:,,,
¾# ^ ¾ # ^
¾ 翁 ¾ 翁
90/Z.00Zdf/X3d 8ί Ζ0Ζ.8£0/800ί ΟΛΧ 90 / Z.00Zdf / X3d 8ί Ζ0Ζ.8 £ 0 / 800ί ΟΛΧ
Figure imgf000021_0001
Figure imgf000021_0001
[0046] [化 20]
Figure imgf000022_0001
[0046] [Chemical 20]
Figure imgf000022_0001
(化学式 S 2 A〜
Figure imgf000022_0002
(Chemical formula S 2 A ~
Figure imgf000022_0002
O A〜 P) (OA ~ P)
言拳墓ί¾<ΐ >, ..Word Fist Tomb ί¾ <ΐ>, ..
Figure imgf000023_0001
Figure imgf000023_0001
Figure imgf000024_0001
Figure imgf000024_0001
^\:!; : -V、 ^ \ :! ;: -V,
[0049] [化 23] [ Z^ [0900] 、 [0049] [Chemical 23] [Z ^ [0900],
、: ,:
Figure imgf000025_0001
Figure imgf000025_0001
.:.:.:.ί:.:. 、、、 "¾·::;^^^、、 '1"、 、 "^、"^、、、 、1^ .:.:.:. ί:.:.,, "¾ · :: ; ^^^, ' 1 ",, "^," ^,,, 1 ^
Figure imgf000025_0002
8L890/L00rdf/I3d rOL8eO/800∑; OAV
Figure imgf000026_0001
Figure imgf000025_0002
8L890 / L00rdf / I3d rOL8eO / 800∑; OAV
Figure imgf000026_0001
[0051] [化 25] [9 [Z 00] [0051] [Chemical 25] [9 [Z 00]
Figure imgf000027_0001
L00∑df/I3d rOL8eO/800∑; OAV [LZ^] [egoo] ί' | ' - ΐ; ij' s
Figure imgf000027_0001
L00∑df / I3d rOL8eO / 800∑; OAV [LZ ^] [egoo] ί '|'-ΐ; ij 's
Figure imgf000028_0001
Figure imgf000028_0001
ゝ 0  ゝ 0
、、、- 、、ゝ.、 、:;; 、、 .^'、 ゝ ' .ヽ 、、 修 、 、令'物 ^-补- .890/.00Zdf/X3d 93 Z0.8C0/800Z OAV ,,-, ゝ.,,: ;;,,. ^ ', ヽ'. 、,,,, Dec 'things ^-补-.890 / .00Zdf / X3d 93 Z0.8C0 / 800Z OAV
[8Z^>] [ 00] [8Z ^>] [00]
.^ L^'^^ 、-、 <^、、冬 ^、、 、^^ : . ^ L ^ '^^,-, <^, winter ^,, ^^ :
Figure imgf000029_0001
Figure imgf000029_0001
-: \¾ "·"■ ::' ί ::  -: \ ¾ "·" ■ :: 'ί ::
^ ^  ^ ^
、 - ..  ,-..
卜 ¥ ^ ¾  卜 ¥ ^ ¾
^; - "^、、  ^;-"^, ...
.、' \ ., '\
'  '
Figure imgf000029_0002
Figure imgf000029_0002
Z,890/.00ldf/X3d LZ Z0.8C0/800i OAV
Figure imgf000030_0001
Z, 890 / .00ldf / X3d LZ Z0.8C0 / 800i OAV
Figure imgf000030_0001
Figure imgf000031_0001
Figure imgf000031_0001
[0056] ィヒ学式 16〜; 159において、添字 A〜Pは、 Ar及び Arlの構造の組合せを表す。 A 〜Pに対する Ar及び Arlの構造の組合せを表 1に示す。 [0056] In the formulas 16 to 159, the subscripts A to P represent a combination of Ar and Arl structures. Table 1 shows the combinations of Ar and Arl structures for A to P.
[0057]  [0057]
[表 1] [table 1]
Figure imgf000032_0001
Figure imgf000032_0001
本発明のスルホン酸基含有ポリマーにおける構造単位の繰り返し数である、 n、 m、 o、 p、 r、 sは、数式 1〜3を満たすことが好ましい。本発明のスルホン酸基含有ポリマ ースルホン酸基含有ポリマーが、化学式 3及び化学式 4で表される構造単位を有して いない場合には、数式;!〜 3において、 o及び pは 0とする。また、本発明のスルホン酸 基含有ポリマースルホン酸基含有ポリマーが、化学式 5及び化学式 6で表される構造 単位を有していない場合には、数式;!〜 3において、 r及び sは 0とする。 It is preferable that n, m, o, p, r, and s, which are the number of repeating structural units in the sulfonic acid group-containing polymer of the present invention, satisfy Formulas 1 to 3. In the case where the sulfonic acid group-containing polymer sulfonic acid group-containing polymer of the present invention does not have the structural unit represented by Chemical Formula 3 and Chemical Formula 4, o and p in Formulas! The sulfonic acid of the present invention In the case where the group-containing polymer sulfonic acid group-containing polymer does not have the structural unit represented by Chemical Formula 5 and Chemical Formula 6, r and s are set to 0 in Formulas!
[0059] 0.05≤ (n + o + r)/(n + m+o + p + r + s)≤0. 70 (数式 1)  [0059] 0.05≤ (n + o + r) / (n + m + o + p + r + s) ≤0.70 (Formula 1)
0.01≤ (o + p)/(n + m + o + p + r + s)≤0. 99 (数式 2)  0.01≤ (o + p) / (n + m + o + p + r + s) ≤ 0.99 (Formula 2)
0≤ (r+s)/(n + m + o + p + r+s)≤0. 10 (数式 3)  0≤ (r + s) / (n + m + o + p + r + s) ≤0.10 (Equation 3)
[0060] 数式 1において、(n + o + r)/(n + m + o + p + r + s)が 0· 05よりも小さいと、高分 子電解質膜としたときに、プロトン伝導性が著しく低くなり、燃料電池としての使用が 困難になる場合があり好ましくない。 (n + o + r)/(n + m + o + p + r + s)が 0· 70より も大きいと、高分子電解質膜としたときに、膨潤性が著しく増大し、機械強度や耐久 性が低下するため好ましくない。 (n + o + r)/(n + m + o + p + r + s)のより好ましい 範囲は、 0.05—0. 50の範囲である。  [0060] In Equation 1, when (n + o + r) / (n + m + o + p + r + s) is smaller than 0 · 05, proton conductivity is obtained when a polymer electrolyte membrane is obtained. Is extremely low, which may be difficult to use as a fuel cell. If (n + o + r) / (n + m + o + p + r + s) is greater than 0 · 70, the swellability is significantly increased when a polymer electrolyte membrane is formed, resulting in mechanical strength and durability. This is not preferable because the properties are lowered. A more preferable range of (n + o + r) / (n + m + o + p + r + s) is a range of 0.05−0.50.
[0061] 数式 2において、(o + p)/(n + m + o + p + r + s)が 0· 01よりも小さいと、ポリマー の溶解性や、ポリマー溶液の安定性が低下する傾向がある。 (o + p)/(n + m + o + p + r + s)が 0. 99よりも大きいと、高分子電解質膜としたときにプロトン伝導性や耐久 性が低下する傾向がある。 (o + p)/(n + m + o + p + r + s)のより好ましい範囲は 0. ;!〜 0. 9であり、さらに好ましい範囲は 0. 2〜0. 8である。  [0061] In Formula 2, when (o + p) / (n + m + o + p + r + s) is smaller than 0 · 01, the solubility of the polymer and the stability of the polymer solution tend to decrease. There is. When (o + p) / (n + m + o + p + r + s) is larger than 0.99, proton conductivity and durability tend to be lowered when a polymer electrolyte membrane is formed. A more preferable range of (o + p) / (n + m + o + p + r + s) is 0.;! To 0.9, and a more preferable range is 0.2 to 0.8.
[0062] 数式 3において、(r + s)/(n + m + o + p + r + s)が 0· 10よりも大きいと、重合度の 低いポリマーしか得られない場合があり、機械強度や耐久性が低下する傾向がある。 (r + s)/(n + m + o + p + r + s)のより好ましい範囲は 0· 001—0.07であり、さらに 好ましい範囲は 0.01-0.05である。  [0062] In Formula 3, when (r + s) / (n + m + o + p + r + s) is larger than 0 · 10, only a polymer having a low degree of polymerization may be obtained. And the durability tends to decrease. A more preferable range of (r + s) / (n + m + o + p + r + s) is 0 · 001−0.07, and a more preferable range is 0.01−0.05.
[0063] 数式 4において、(n + m)/(n + m + o + p + r + s)が 0.01よりも小さいと、高分子 電解質膜としたときの耐久性やプロトン伝導性の向上効果が小さくなりすぎる傾向が ある。 (n + m)/(n + m + o + p + r+s)のより好ましい範囲は、 0· 05—0. 9であり、 さらに好ましい範囲は 0. ;!〜 0. 8である。 (n + m)/(n + m + o + p + r+s)力 の場 合、ポリマーの溶解性や、ポリマー溶液の安定性が低下する場合がある。  [0063] In Formula 4, if (n + m) / (n + m + o + p + r + s) is smaller than 0.01, the effect of improving durability and proton conductivity when a polymer electrolyte membrane is obtained Tends to be too small. A more preferable range of (n + m) / (n + m + o + p + r + s) is 0 · 05−0.9, and a more preferable range is 0.;! To 0.8. In the case of (n + m) / (n + m + o + p + r + s) force, the solubility of the polymer and the stability of the polymer solution may decrease.
[0064] 本発明のスルホン酸基含有ポリマーは、イオン交換樹脂や、高分子電解質膜、吸 湿樹脂、吸湿膜、透湿膜、電解膜などに用いることができ、特に高分子電解質膜とし て用いることが好ましい。さらに、本発明のスルホン酸基含有ポリマーを用いた高分 子電解質膜は、スルホン酸基をスルホン酸型にすることでプロトン交換膜として用い ること力 Sでき、燃料電池用プロトン交換膜に特に適している。また、本発明のスルホン 酸基含有ポリマーは、高分子電解質膜などを、電極、触媒と接合する際に、接着剤と して用いることにも適している。本発明のスルホン酸基含有ポリマーを、高分子電解 質膜や、高分子電解質膜の接着剤に用いる場合には、化学式 1、 3及び 5で表される 構造単位にぉレ、て、 Yが H (水素イオン)であることが好まし!/、。 [0064] The sulfonic acid group-containing polymer of the present invention can be used for an ion exchange resin, a polymer electrolyte membrane, a hygroscopic resin, a hygroscopic membrane, a moisture permeable membrane, an electrolytic membrane, etc., and particularly as a polymer electrolyte membrane. It is preferable to use it. Furthermore, a high molecular weight using the sulfonic acid group-containing polymer of the present invention The child electrolyte membrane can be used as a proton exchange membrane by converting the sulfonic acid group to a sulfonic acid type, and is particularly suitable for a proton exchange membrane for a fuel cell. The sulfonic acid group-containing polymer of the present invention is also suitable for use as an adhesive when a polymer electrolyte membrane or the like is bonded to an electrode or a catalyst. When the sulfonic acid group-containing polymer of the present invention is used for a polymer electrolyte membrane or an adhesive for a polymer electrolyte membrane, the structural unit represented by the chemical formulas 1, 3 and 5 has a thickness of Y. H (hydrogen ion) is preferred!
[0065] 本発明の高分子電解質膜を、メタノール、蟻酸、エタノールなどの液体を燃料とす る燃料電池に用いる場合には、本発明のスルホン酸基含有ポリマーにおける構造単 位の繰り返し数である、 n、 m、 o、 p、 r、 sは、数式 5〜8を満たすことが好ましい。本発 明のスルホン酸基含有ポリマースルホン酸基含有ポリマーが、化学式 3及び化学式 4 で表される構造単位を有していない場合には、数式 5〜8において、 o及び pは 0とす る。また、本発明のスルホン酸基含有ポリマースルホン酸基含有ポリマー力 化学式 5及び化学式 6で表される構造単位を有していない場合には、数式 5〜8において、 r 及び sは 0とする。 [0065] When the polymer electrolyte membrane of the present invention is used in a fuel cell using a liquid such as methanol, formic acid or ethanol as a fuel, the number of structural units in the sulfonic acid group-containing polymer of the present invention is , N, m, o, p, r, and s preferably satisfy Formulas 5 to 8. When the sulfonic acid group-containing polymer of the present invention does not have the structural unit represented by Chemical Formula 3 and Chemical Formula 4, o and p are 0 in Formulas 5 to 8. . In addition, when the structural unit represented by Chemical Formula 5 and Chemical Formula 6 is not included, r and s are set to 0 in Formulas 5 to 8.
[0066] 数式 5において、(n + o + r) / (n + m + o + p + r + s)が 0· 05よりも小さいと、プロト ン伝導性が著しく低くなり、燃料電池としての使用が困難になる場合があり好ましくな い。 (n + o + r) / (n + m + o + p + r + s)が 0· 40よりも大きいと、メタノールなどの燃 料透過性が著しく増大し、発電出力や効率が低下する傾向がある。 (n + o + r) / (n + m + o + p + r+ s)のより好ましい範囲は、 0· ;!〜 0· 3である。  [0066] In Formula 5, if (n + o + r) / (n + m + o + p + r + s) is smaller than 0 · 05, the proton conductivity is remarkably lowered, and the fuel cell It may be difficult to use and is not preferable. When (n + o + r) / (n + m + o + p + r + s) is larger than 0 · 40, the permeability of fuel such as methanol tends to increase remarkably, and power generation output and efficiency tend to decrease. There is. A more preferable range of (n + o + r) / (n + m + o + p + r + s) is 0 · ;! to 0 · 3.
[0067] 数式 6において、(o + p) / (n + m + o + p + r + s)が 0· 10よりも小さいと、ポリマー の溶解性や、ポリマー溶液の安定性が低下する場合がある。 (o + p) / (n + m + o + p + r + s)が 0. 9よりも大きいと、耐久性やプロトン伝導性が低下する場合がある。 (o + p) / (n + m + o + p + r + s)のより好ましい範囲は 0. 2〜0. 9であり、さらに好まし い範囲は 0. 3〜0. 8である。  [0067] In Equation 6, if (o + p) / (n + m + o + p + r + s) is less than 0 · 10, the solubility of the polymer and the stability of the polymer solution are reduced. There is. When (o + p) / (n + m + o + p + r + s) is larger than 0.9, durability and proton conductivity may be lowered. A more preferable range of (o + p) / (n + m + o + p + r + s) is 0.2 to 0.9, and a more preferable range is 0.3 to 0.8.
[0068] 数式 7において、(r + s) / (n + m + o + p + r + s)が 0· 10よりも大きいと、重合度の 低いポリマーしか得られない場合があり、高分子電解質膜の機械強度や耐久性が低 下する傾向がある。 (r + s) / (n + m + o + p + r + s)のより好ましい範囲は 0. 00;!〜 0. 07であり、さらに好ましい範囲は 0. 01—0. 05である。 [0069] 数式 8において、(n + m) / (n + m + o + p + r + s)が 0· 1よりも小さいと、高分子電 解質膜の耐久性やプロトン伝導性の向上効果が小さくなりすぎる傾向がある。 (n + m ) / (n + m + o + p + r + s)が 0· 9よりも大きい場合、ポリマーの溶解性や、ポリマー 溶液の安定性が低下する場合がある。 (n + m) / (n + m + o + p + r + s)のより好まし い範囲は、 0. 2〜0. 8であり、さらに好ましい範囲は 0. 2〜0. 5である。 [0068] In Formula 7, if (r + s) / (n + m + o + p + r + s) is larger than 0 · 10, only a polymer having a low degree of polymerization may be obtained. There is a tendency for the mechanical strength and durability of the electrolyte membrane to decrease. A more preferable range of (r + s) / (n + m + o + p + r + s) is 0.00;! To 0.07, and a more preferable range is 0.01-01.05. [0069] In Equation 8, when (n + m) / (n + m + o + p + r + s) is smaller than 0 · 1, the durability of the polymer electrolyte membrane and the proton conductivity are improved. The effect tends to be too small. When (n + m) / (n + m + o + p + r + s) is larger than 0 · 9, the solubility of the polymer and the stability of the polymer solution may be lowered. A more preferable range of (n + m) / (n + m + o + p + r + s) is 0.2 to 0.8, and a more preferable range is 0.2 to 0.5. .
[0070] 本発明の高分子電解質膜を、水素などの気体を燃料とする燃料電池に用いる場合 には、本発明のスルホン酸基含有ポリマーにおける構造単位の繰り返し数である、 n 、 m、 o、 p、 r、 sは、数式 9〜; 12を満たすことが好ましい。本発明のスルホン酸基含有 ポリマースルホン酸基含有ポリマーが、化学式 3及び化学式 4で表される構造単位を 有していない場合には、数式 9〜; 12において、 o及び pは 0とする。また、本発明のス ルホン酸基含有ポリマースルホン酸基含有ポリマーが、化学式 5及び化学式 6で表さ れる構造単位を有していない場合には、数式 9〜; 12において、 r及び sは 0とする。  [0070] When the polymer electrolyte membrane of the present invention is used in a fuel cell using a gas such as hydrogen as a fuel, n, m, o, which are the number of repeating structural units in the sulfonic acid group-containing polymer of the present invention. , P, r, and s preferably satisfy Equations 9 to 12 below. In the case where the sulfonic acid group-containing polymer of the present invention does not have the structural unit represented by Chemical Formula 3 and Chemical Formula 4, o and p are 0 in Formulas 9 to 12; In addition, when the sulfonic acid group-containing polymer of the present invention does not have a structural unit represented by Chemical Formula 5 and Chemical Formula 6, r and s are 0 in Formulas 9 to 12; And
[0071] 数式 9において、(n + o + r) / (n + m + o + p + r + s)が 0· 15よりも小さいと、プロト ン伝導性が著しく低くなり、燃料電池としての使用が困難になる場合があり好ましくな い。 (n + o + r) / (n + m + o + p + r + s)が 0· 70よりも大きいと、膨潤性が著しく増大 し、発電出力や効率が低下する傾向がある。 (n + o + r) / (n + m+ o + p + r+ s)の より好ましい範囲は、 0. 15-0. 50であり、さらに好ましい範囲は 0. 2〜0. 4である。  [0071] In Equation 9, if (n + o + r) / (n + m + o + p + r + s) is smaller than 0 · 15, the proton conductivity is remarkably lowered, and the fuel cell It may be difficult to use and is not preferable. When (n + o + r) / (n + m + o + p + r + s) is larger than 0 · 70, the swellability increases remarkably, and the power generation output and efficiency tend to decrease. A more preferable range of (n + o + r) / (n + m + o + p + r + s) is 0.15-0.50, and a more preferable range is 0.2-0.4.
[0072] 数式 10において、(o + p) / (n + m + o + p + r + s)が 0· 01よりも小さいと、ポリマ 一の溶解性や、ポリマー溶液の安定性が低下する場合がある。 (o + p) / (n + m + o + p + r + s)が 0. 70よりも大きいと、耐久性やプロトン伝導性が低下する場合がある。 (o + p) / (n + m + o + p + r+ s)のより好ましい範囲は 0. ;!〜 0. 7であり、さらに好ま しい範囲は 0. 2〜0. 6である。  [0072] In Equation 10, when (o + p) / (n + m + o + p + r + s) is smaller than 0 · 01, the solubility of the polymer and the stability of the polymer solution are lowered. There is a case. When (o + p) / (n + m + o + p + r + s) is larger than 0.70, durability and proton conductivity may be lowered. A more preferable range of (o + p) / (n + m + o + p + r + s) is 0.;! to 0.7, and a more preferable range is 0.2 to 0.6.
[0073] 数式 11において、(r + s) / (n + m + o + p + r + s)が 0. 10よりも大きいと、重合度 の低いポリマーしか得られない場合があり、高分子電解質膜の機械強度や耐久性が 低下する傾向がある。 (r + s) / (n + m + o + p + r + s)のより好ましい範囲は 0. 0;!〜 0. 07であり、さらに好ましい範囲は 0. 02—0. 05である。  [0073] In Formula 11, if (r + s) / (n + m + o + p + r + s) is larger than 0.10, only a polymer having a low degree of polymerization may be obtained. There is a tendency for the mechanical strength and durability of the electrolyte membrane to decrease. A more preferable range of (r + s) / (n + m + o + p + r + s) is 0.0;! To 0.07, and a more preferable range is 0.02-0.05.
[0074] 数式 12において、(n + m) / (n + m + o + p + r + s)が 0· 05よりも小さいと、高分 子電解質膜の耐久性やプロトン伝導性の向上効果が小さくなりすぎる傾向がある。 ( n + m) / (n + m + o + p + r+ s)が 0· 8よりも大きい場合、ポリマーの溶解性や、ポリ マー溶液の安定性が低下する場合がある。 (n + m) / (n + m + o + p + r + s)のより 好ましい範囲は、 0. 1〜0. 7であり、さらに好ましい範囲は 0. 2〜0. 6である。 [0074] In Equation 12, if (n + m) / (n + m + o + p + r + s) is less than 0 · 05, the polymer electrolyte membrane has improved durability and proton conductivity. Tends to be too small. ( If (n + m) / (n + m + o + p + r + s) is greater than 0 · 8, the solubility of the polymer and the stability of the polymer solution may be reduced. A more preferable range of (n + m) / (n + m + o + p + r + s) is 0.1 to 0.7, and a more preferable range is 0.2 to 0.6.
[0075] 本発明のスルホン酸基含有ポリマーは、適当な溶媒に溶解、分散して組成物として 用いることもできる。用いることのできる溶媒としては、 N, N—ジメチルホルムアミド、 N, N—ジメチルァセトアミド、 N, N—ジェチルァセトアミド、 N—メチノレ一 2—ピロリド ン、ジメチルスルホキシド、へキサメチルホスホンアミド、 N—モルフォリンオキサイドな どの非プロトン性有機極性溶媒や、メタノール、エタノールなどのアルコール系溶媒、 アセトンなどのケトン系溶媒、ジェチルエーテルなどのエーテル系溶媒などの極性溶 媒、及びこれらの有機溶媒の混合物、並びに水との混合物を挙げることができるが、 これらに限定されるものではない。  [0075] The sulfonic acid group-containing polymer of the present invention can be dissolved and dispersed in an appropriate solvent and used as a composition. Solvents that can be used include N, N-dimethylformamide, N, N-dimethylacetamide, N, N-jetylacetamide, N-methylol-2-pyrrolidone, dimethylsulfoxide, hexamethylphosphonamide Polar solvents such as aprotic organic polar solvents such as N-morpholine oxide, alcohol solvents such as methanol and ethanol, ketone solvents such as acetone, ether solvents such as jetyl ether, and these organic solvents Examples include, but are not limited to, a mixture of solvents and a mixture with water.
[0076] ポリマー溶液の濃度は 0. ;!〜 50質量%の範囲が好ましい。溶液から、膜、繊維な どを成形する場合には、濃度が 5〜50質量%の範囲にあることがより好ましぐ 10〜 40質量%の範囲がさらに好ましい。溶液を接着剤として用いる場合には、濃度が 0. ;!〜 20質量%の範囲であるとより好ましい。溶液を接着剤として用いる場合には、 Pt 、 Pt— Ruなどの触媒を担持したカーボン粒子や、フッ素樹脂など、他の成分を含ん でいてもよい。  [0076] The concentration of the polymer solution is preferably in the range of 0. In the case of forming a film, fiber, etc. from the solution, the concentration is more preferably in the range of 5 to 50% by mass, and more preferably in the range of 10 to 40% by mass. When the solution is used as an adhesive, the concentration is more preferably in the range of 0 .; When the solution is used as an adhesive, it may contain other components such as carbon particles carrying a catalyst such as Pt and Pt—Ru and a fluororesin.
[0077] 本発明のスルホン酸基含有ポリマーにおいて、化学式 1及び 2で表される構造単位  [0077] In the sulfonic acid group-containing polymer of the present invention, the structural unit represented by the chemical formulas 1 and 2
1S ポリマーの柔軟性を高めて変形に対する破壊を抑制して耐久性を向上させ、ガ ラス転移温度を低下させて電極との接合性を高めることなどの効果をもたらしている。 また、化学式 3及び 4で表される構造単位は、ポリマー全体の膨潤性を小さくしたり、 メタノール透過性を小さくしたり、ポリマーの溶解性を向上させたり、ポリマー溶液の 安定性を向上させたりする効果をもたらしている。化学式 1、 3、及び 5で表される構 造単位は、イオン伝導性やプロトン伝導性を付与する効果をもたらしている。化学式 5及び 6で表される構造単位は、化学的な劣化を抑制し、耐久性をさらに向上させる 効果をもたらしている。  It has the effects of improving the flexibility of the 1S polymer to prevent deformation and improving durability, and lowering the glass transition temperature to improve the bondability with the electrode. In addition, the structural units represented by the chemical formulas 3 and 4 can reduce the swelling property of the whole polymer, reduce the methanol permeability, improve the solubility of the polymer, and improve the stability of the polymer solution. Has an effect. The structural units represented by the chemical formulas 1, 3, and 5 have the effect of imparting ionic conductivity and proton conductivity. The structural units represented by chemical formulas 5 and 6 have the effect of suppressing chemical deterioration and further improving durability.
[0078] 本発明のスルホン酸基含有ポリマーは、化学式 160〜; 162で表される化合物を必 須成分として含むモノマーの混合物から芳香族求核置換反応により重合することが できる。 [0078] The sulfonic acid group-containing polymer of the present invention can be polymerized by a aromatic nucleophilic substitution reaction from a mixture of monomers containing compounds represented by chemical formulas 160 to 162 as essential components. it can.
[0079] [化 30]
Figure imgf000037_0001
[0079] [Chemical 30]
Figure imgf000037_0001
[0080] 化学式 160において、 Xは S ( =〇) 一基又は C ( =〇)一基を、 R3は炭素数 1 [0080] In Chemical Formula 160, X represents one S (= 〇) group or one C (= 〇) group, and R 3 represents 1 carbon atom.
2  2
〜; 10のアルキレン基、ォキシアルキレン基、ァリーレン基及び直接結合(ベンゼン環 と SO Y基との)のうちのいずれかを表すが、アルキレン基であるとプロトン伝導性が ~; Represents any one of 10 alkylene groups, oxyalkylene groups, arylene groups and direct bonds (with benzene ring and SO Y group).
3 Three
向上するため好ましい。また、スルホン酸基とベンゼン環が直接結合している直接結 合であると、熱やラジカルなどに対するスルホン酸基の安定性が高まり、プロトン伝導 性にも優れるため、より好ましい。アルキレン基は、分岐を有するものよりも、直鎖のも のが好ましい。アルキレン基の炭素数は 1〜5がより好ましぐ 3〜4がより好ましい。具 体的には、 n—プロピレン基、 n ブチレン基が好ましい。ォキシアルキレン基の炭素 数は 1〜5がより好ましぐ 3〜4がより好ましい。具体的には、ォキシ—n プロピレン 基、ォキシ n ブチレン基が好ましい。ァリーレン基としては、ォキシフエ二レン基、 フエ二レン基、などを挙げること力 Sできる。 Yは H又は 1価の陽イオンを表す力 S、 Na、 K 、 Liなどのアルカリ金属イオンが好ましい。 Z4はフッ素原子、塩素原子、臭素原子、ョ ゥ素原子、ニトロ基からなる群より選ばれる 1種以上の基を表す。 It is preferable because it improves. In addition, a direct bond in which a sulfonic acid group and a benzene ring are directly bonded is more preferable because stability of the sulfonic acid group against heat, radicals, and the like is increased and proton conductivity is excellent. The alkylene group is preferably a straight chain rather than a branched one. The alkylene group preferably has 1 to 5 carbon atoms, more preferably 3 to 4 carbon atoms. Specifically, n-propylene group and n-butylene group are preferable. The number of carbon atoms of the oxyalkylene group is more preferably from 1 to 5, and more preferably from 3 to 4. Specifically, oxy-n-propylene group and oxy-n-butylene group are preferable. Examples of arylene groups include oxyphenylene groups and phenylene groups. Y is preferably H or a force representing a monovalent cation. Alkali metal ions such as S, Na, K and Li are preferred. Z 4 represents one or more groups selected from the group consisting of a fluorine atom, a chlorine atom, a bromine atom, a silicon atom and a nitro group.
[0081] 化学式 160で表される化合物の具体例としては、 3, 3' ジスルホー 4, 4'ージクロ ロジフエニルスルホン、 3, 3' ジスルホー 4, 4'ージフルォロジフエニルスルホン、 3 , 3, 一ジスルホー 4, 4'ージクロロジフエ二ルケトン、 3, 3, 一ジスルホー 4, 4'ージフ ノレォロジフエニルスルホン、 3, 3' ジスルホブチルー 4, 4'ージクロロジフエニルス ノレホン、 3, 3' ジスルホブチルー 4, 4'ージフルォロジフエニルスルホン、 3, 3' ジスルホブチルー 4, 4'ージクロロジフエ二ルケトン、 3, 3, 一ジスルホブチルー 4, 4' ージフルォロジフエニルスルホン、及びそれらのスルホン酸基が 1価陽イオン種との 塩になったもの等が挙げられる。 1価陽イオン種としては、ナトリウム、カリウムや他の 金属種や各種アミン類等でも良ぐこれらに制限されるわけではない。化学式 160で 表される化合物のうち、スルホン酸基が塩になっている化合物の例としては、 3, 3 ' ジスルホン酸ナトリウム 4, 4 'ージクロロジフエニルスルホン、 3, 3,一ジスルホン酸 ナトリウム一 4, 4 '—ジフルォロジフエニルスルホン、 3, 3,一ジスルホン酸ナトリウム —4, 4 '—ジクロロジフエ二ルケトン、 3, 3,一ジスルホン酸ナトリウム一 4, 4 '—ジフル ォロジフエニルスルホン、 3, 3,一ジスルホン酸ナトリウム 4, 4 'ージフルォロジフエ 二ルケトン、 3, 3,一ジスルホン酸カリウム 4, 4 'ージクロロジフエニルスルホン、 3, 3, ジスルホン酸カリウム 4, 4,ージフルォロジフエニルスルホン、 3, 3,一ジスルホン酸 カリウム 4, 4 '—ジクロロジフエ二ルケトン、 3, 3,一ジスルホン酸カリウム 4, 4 '—ジフ ノレォロジフエニルスルホン、 3, 3,一ジスルホン酸カリウム 4, 4 '—ジフルォロジフエ二 ルケトンなどを挙げることができる。 [0081] Specific examples of the compound represented by Chemical Formula 160 include 3, 3 'disulfo-4,4'-dichlorodiphenylsulfone, 3,3'disulfo-4,4'-difluorodiphenylsulfone, 3, 3, 1-disulfo-4,4'-dichlorodiphenyl ketone, 3, 3, 1-disulfo-4,4'-diphenylolenylsulfone, 3, 3 'disulfobutyl-4,4'-dichlorodiphenylnorethone, 3, 3'Disulfobutyl-4,4'-difluorodiphenylsulfone, 3,3 'disulfobutyl-4,4'-dichlorodiphenyl ketone, 3,3,1 disulfobutyl-4,4'-difluorodiphenylsulfone, and their sulfonic acid groups In the form of a salt with a monovalent cation species. Monovalent cation species are not limited to sodium, potassium, other metal species, and various amines. In chemical formula 160 Among the compounds represented, examples of the compound in which the sulfonic acid group is a salt include 3, 3 ′ sodium disulfonate 4, 4′-dichlorodiphenyl sulfone, 3, 3, sodium monodisulfonate 1, 4, 4'-difluorodiphenylsulfone, 3,3, sodium monodisulfonate -4,4'-dichlorodiphenylketone, 3,3, sodium monodisulfonate1,4,4'-difluorodiphenylsulfone, 3 , 3, sodium monodisulfonate 4, 4'-difluorodiphenyl ketone, 3, 3, potassium monodisulfonate 4, 4'-dichlorodiphenyl sulfone, 3, 3, potassium disulfonate 4, 4, -diflu Borodiphenyl sulfone, 3, 3, potassium monodisulfonate 4, 4'-dichlorodiphenyl ketone, 3, 3, potassium monodisulfonate 4, 4'-difluorodiphenyl sulfone, 3, 3, monodisulfo Potassium acid 4, 4 '- like Jifuruorojifue two ketone can be exemplified.
[0082] 化学式 161において、 Ar3は電子吸引性基を有する 2価の芳香族基を、 Z5はフッ素 原子、塩素原子、臭素原子、ヨウ素原子、ニトロ基からなる群より選ばれる 1種以上の 基を表す。 Ar3における、電子吸引性基の例としては、スルホン基、カルボニル基、ス ルホニル基、ホスフィン基、シァノ基、トリフルォロメチル基などのパーフルォロアルキ ル基、ニトロ基、ハロゲン基などが挙げられ、シァノ基、スルホン基、カルボニル基が 好ましい。 Ar3における、芳香族基とは、芳香環を有する基を表す。芳香環を有する 基としては、フエ二レン基、ピリジレン基、ナフチレン基、アントラニレン基を挙げること ができる。 Ar3は、芳香環を有する基同士が電子吸引性基で連結されていてもよい。 [0082] In Chemical Formula 161, Ar 3 is a divalent aromatic group having an electron-withdrawing group, Z 5 is one or more selected from the group consisting of a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, and a nitro group Represents the group of Examples of electron withdrawing groups in Ar 3 include perfluoroalkyl groups such as sulfone groups, carbonyl groups, sulfonyl groups, phosphine groups, cyano groups, trifluoromethyl groups, nitro groups, halogen groups, etc. And a cyano group, a sulfone group, and a carbonyl group are preferable. The aromatic group in Ar 3 represents a group having an aromatic ring. Examples of the group having an aromatic ring include a phenylene group, a pyridylene group, a naphthylene group, and an anthranylene group. In Ar 3 , groups having an aromatic ring may be linked with an electron-withdrawing group.
[0083] 化学式 161で表される化合物としては、同一芳香環にハロゲン、ニトロ基などの求 核置換反応における脱離基と、それを活性化する電子吸引性基を有する化合物を 挙げること力 Sできる。具体例としては、 2, 6 ジクロ口べンゾニトリル、 2, 4 ジクロ口 ベンゾニトリル、 2, 6 ジフルォロベンゾニトリル、 2, 4 ジフルォロベンゾニトリル、 4 , 4 'ージクロロジフエニルスルホン、 4, 4 'ージフルォロジフエニルスルホン、 4, 4 ' ジフルォロベンゾフエノン、 4, 4 '—ジクロ口べンゾフエノン、デカフルォロビフエ二ノレ 等が挙げられるがこれらに制限されることなぐ芳香族求核置換反応に活性のある他 の芳香族ジハロゲン化合物、芳香族ジニトロ化合物、芳香族ジシァノ化合物なども使 用すること力 Sでさる。  [0083] Examples of the compound represented by Chemical Formula 161 include compounds having a leaving group in a nucleophilic substitution reaction such as halogen and nitro group on the same aromatic ring and an electron-withdrawing group that activates the same. it can. Specific examples include 2,6 dichlorobenzobenzonitrile, 2,4 dichlorobenzobenzonitrile, 2,6 difluorobenzonitrile, 2,4 difluorobenzonitrile, 4,4'-dichlorodiphenylsulfone, 4 , 4'-difluorodiphenylsulfone, 4,4 'difluorobenzophenone, 4,4'-dichroic benzophenone, decafluorobiphenenole, etc., but are not limited thereto. The ability to use other aromatic dihalogen compounds, aromatic dinitro compounds, aromatic dicyano compounds, etc. that are active in aromatic nucleophilic substitution reactions.
[0084] 化学式 161で表される化合物の具体例を以下に示すが、これらに限定されるもの ではな!/、。中でもィ匕学式 161A、 161B、 161C、 161D、 1610、 161P、 161Q、及 び 161Rカ好ましく、 161C、 161D、 161Q,及び 161Rカより好ましく、 161D及び 1 61Rがさらに好ましい。 [0084] Specific examples of the compound represented by Chemical Formula 161 are shown below, but are not limited thereto. Well then! Among them, the chemical formulas 161A, 161B, 161C, 161D, 1610, 161P, 161Q, and 161R are preferable, 161C, 161D, 161Q, and 161R are more preferable, and 161D and 161R are more preferable.
[化 31] [Chemical 31]
" % ~%jH¾"% ~% jH¾
Figure imgf000039_0001
Figure imgf000039_0001
 賴
 Flower
Figure imgf000039_0002
[化 32] :: :■¾ ί¾
Figure imgf000040_0001
ί A >-.-■ 化学式 162において、 R4は、硫黄原子又は酸素原子を含んでいてもよい炭素数 2 〜20のアルキレン基又はァラルキレン基を表す力 アルキレン基のほうが好まし!/、。 炭素数は 4〜; 10が好ましぐ 4〜6がより好ましい。アルキレン基は、分岐を有するもの よりも直鎖のものが好ましい。化学式 1及び化学式 2における R2において、アルキレン 基は、硫黄原子や酸素原子を含んでいてもよいが、含まないか、硫黄原子を含んで いること力 S好ましく、含まないことがより好ましい。化学式 162における R4において、直 鎖のアルキレン基としては、エチレン基、 n—プロピレン基、 n ブチレン基、 n—ペン チレン基、 n へキシレン基、 n へプチレン基、 n オタチレン基、 n ノニレン基、 n デシレン基、 3, 6—ジォキサォクチレン基、 3, 7—ジチアノ二レン基、 3—チア n ペンチレン基などを例としてあげることができる力 S、これらに限定されるものではな い。中でも n ブチレン基、 n ペンチレン基、 n へキシレン基、 n へプチレン基、 n オタチレン基、 n ノニレン基、 n デシレン基、 3, 7—ジチアノ二レン基、 3—チ ァ n—ペンチレン基が好ましく、 n ブチレン基、 n—ペンチレン基、 n へキシレン 基がより好ましい。化学式 162における R4において、分岐のアルキレン基としては、 1 メチルエチレン基、 2, 3 ジヒドロキシー n ブチレン基などを挙げることができる ί これらに限定されるものではない。化学式 162における R4において、ァラルキレ ン基とは、両端にアルキレン基を有する芳香族基を表し、 ο キシリデン基、 m キシ リデン基、 p キシリデン基などを挙げることができる力 これらに限定されるものでは ない。
Figure imgf000039_0002
[Chemical 32] :: : ■ ¾ ί¾
Figure imgf000040_0001
ί A> -.- ■ In the chemical formula 162, R 4 is a force representing an alkylene group or an aralkylene group having 2 to 20 carbon atoms which may contain a sulfur atom or an oxygen atom. The carbon number is 4 to 10; 10 is preferred, and 4 to 6 is more preferred. The alkylene group is preferably a straight chain rather than a branched one. In R 2 in Chemical Formula 1 and Chemical Formula 2, the alkylene group may contain a sulfur atom or an oxygen atom, but it does not contain or contains a sulfur atom. In R 4 in Chemical Formula 162, the linear alkylene group includes an ethylene group, an n-propylene group, an n-butylene group, an n-pentylene group, an n-xylene group, an n-heptylene group, an n-octylene group, and an n-nonylene group. N, a decylene group, a 3,6-dioxaoctylene group, a 3,7-dithianonylene group, a 3-thia-n pentylene group, and the like S. Absent. Among them, n-butylene group, n-pentylene group, n-hexylene group, n-heptylene group, n-octylene group, n-nonylene group, n-decylene group, 3,7-dithianonylene group, 3-thion-pentylene group are preferable. , N-butylene group, n-pentylene group, and n-hexylene group are more preferable. In R 4 in Chemical Formula 162, examples of the branched alkylene group include a 1-methylethylene group and a 2,3-dihydroxy-n-butylene group. ί It is not limited to these. In R 4 in Chemical Formula 162, the aralkylene group represents an aromatic group having an alkylene group at both ends, and includes ο xylidene group, m-xylidene group, p-xylidene group, and the like. is not.
[0088] 化学式 162における Z6はメルカプト基、及びその誘導体を表す。化学式 162にお ける、メルカプト基の誘導体とは、 Na、 K、 Liなどのアルカリ金属塩、イソシァネート化 合物との反応による力ルバモイル化物などを挙げることができる。 [0088] Z 6 in the chemical formula 162 represents a mercapto group or a derivative thereof. Derivatives of mercapto groups in Chemical Formula 162 include alkali metal salts such as Na, K, Li, and force rumoylated products by reaction with isocyanate compounds.
[0089] 化学式 162で表される化合物の例として、 1, 2 エタンジチオール、 1, 3 プロパ ンジチォーノレ、 1, 2—プロパンジチォ一ノレ、 1, 4 ブタンジチォ一ノレ、 2, 3—ジヒド 口キシ一 1, 4—プ、タンジチォ一ノレ、 1, 5—ペンタンジチォ一ノレ、 1, 6—へキサンジチ オール、 1, 7 ヘプタンジチオール、 1, 8—オクタンジチオール、 1, 9ーノナンジチ オール、 1, 10—デカンジチオール、 1, 11ーゥンデカンジチオール、 1, 12—ドデカ ンジチオール、 1, 13 トリデカンジチオール、 1, 14ーテトラデカンジチオール、 1, 15 ペンタデカンジチオール、 1, 16 へキサデカンジチオール、 1, 17 へプタデ カンジチオール、 1, 18 ォクタデカンジチオール、 1, 19ーノナデカンジチオール、 1, 20—ィコサンジチオール、 3, 6 ジォキサー 1, 8—オクタンジチオール、 3, 7— ジチア 1, 9ーノナンジチオール、 3 チア 1, 5 ペンタンジチオール、 2, 3 ジ ヒドロキシー 1, 4 ブタンジチオール、 1, 4 ビス(メルカプトメチノレ)ベンゼン、 1, 3 ビス(メルカプトメチル)ベンゼン、 1, 2—ビス(メルカプトメチル)ベンゼンなどを挙 げること力 Sできる力 これらに限定されるものではなぐこれ以外にも化学式 162の範 囲内であれば任意の化合物を用いることができる。また、  [0089] Examples of the compound represented by Chemical Formula 162 include 1,2 ethanedithiol, 1,3 propanedithionole, 1,2-propanedithionole, 1,4 butanedithionole, 2,3-dihydroxysilane 1 , 4-, tandithiole, 1,5-pentanedithiole, 1,6-hexanedithiol, 1,7-heptanedithiol, 1,8-octanedithiol, 1,9-nonanedithiol, 1,10-decanedithiol 1, 11-undecanedithiol, 1,12-dodecanedithiol, 1,13 tridecanedithiol, 1,14-tetradecanedithiol, 1,15 pentadecanedithiol, 1,16 hexadecanedithiol, 1,17 heptade Candithiol, 1,18 Octadecanedithiol, 1,19-Nonadecanedithiol, 1,20—Icosanedithiol, 3,6 Dioxer 1,8—Octanedithiol, 3, 7— Thia 1,9-nonanedithiol, 3 Thia 1,5 Pentanedithiol, 2, 3 Dihydroxy-1, 4 Butanedithiol, 1, 4 Bis (mercaptomethinole) benzene, 1, 3 Bis (mercaptomethyl) benzene, 1, Ability to enumerate 2-bis (mercaptomethyl) benzene, etc. A force that can be applied S Any other compound can be used as long as it is within the range of chemical formula 162, but is not limited thereto. Also,
[0090] 本発明のスルホン酸基含有ポリマーは、化学式 160〜; 162で表される化合物に加 えて、下記化学式 163で表される化合物を用いることで、高分子電解質膜としたとき の膜の形態安定性や、ポリマーの溶解性、ポリマー溶液の安定性などを向上させるこ と力 Sできる。  [0090] The sulfonic acid group-containing polymer of the present invention uses a compound represented by the following chemical formula 163 in addition to the compounds represented by the chemical formulas 160 to 162, thereby forming a polymer electrolyte membrane. It can improve the form stability, polymer solubility, and polymer solution stability.
[0091] [化 33] [0092] 化学式 163において、 Z7は OH基又は SH基のいずれかを、 Z9は、酸素原子、硫黄 原子、 C (CH ) —基 C (CF ) —基 CH 基、シクロへキシレン基、直接 [0091] [Chemical 33] [0092] In Chemical Formula 163, Z 7 is either an OH group or an SH group, Z 9 is an oxygen atom, a sulfur atom, C (CH) — group C (CF) — group CH group, cyclohexylene group, Directly
3 2 3 2 2  3 2 3 2 2
結合のいずれかを表す。 Z7が OH基であると、化合物の合成や入手が容易であり好 ましい。 Z7が SH基であると、得られるポリマーの耐酸化性を向上させることが可能で あり、反応性が高いので高重合度のポリマーが得られやすいので好ましいが、得られ るポリマーの着色が大きい場合がある。 Z9は、酸素原子、硫黄原子、 C (CH ) Represents one of the bonds. It is preferable that Z 7 is an OH group because the compound can be easily synthesized and obtained. When Z 7 is an SH group, it is possible to improve the oxidation resistance of the obtained polymer, and it is preferable because a polymer having a high degree of polymerization is easily obtained because of high reactivity. However, coloring of the obtained polymer is preferable. May be big. Z 9 is oxygen atom, sulfur atom, C (CH)
3 2 基、 C (CF ) —基、シクロへキシレン基、直接結合がより好ましぐ硫黄原子、 C  3 2 group, C (CF) — group, cyclohexylene group, sulfur atom with direct bond preferred, C
3 2  3 2
(CH ) 一基、 C (CF ) 一基、シクロへキシレン基、直接結合(ベンゼン環同士の) (CH) 1 group, C (CF) 1 group, cyclohexylene group, direct bond (between benzene rings)
3 2 3 2 3 2 3 2
力 Sさらに好ましい。 Z9が硫黄原子、 C (CH ) —基、 C (CF ) —基、シクロへキシ Force S is more preferred. Z 9 is a sulfur atom, C (CH) — group, C (CF) — group, cyclohexyl
3 2 3 2  3 2 3 2
レン基であると、ポリマーの溶解性やポリマー溶液の安定性を向上させることができる ので好ましい。 z9が直接結合であると、高分子電解質膜としたときの形態安定性を高 めることができるので好まし!/、。 A len group is preferable because the solubility of the polymer and the stability of the polymer solution can be improved. z 9 is a direct bond, because it can increase the morphological stability of the polymer electrolyte membrane, which is preferable!
[0093] 化学式 163で表される化合物の具体例としては 2, 2 ビス(4ーヒドロキシフヱニル )プロパン、ビス(4ーヒドロキシフエ二ノレ)メタン、 2, 2 ビス(4ーヒドロキシフエ二ノレ) へキサフルォロプロパン、 4, 4'ーチォビスベンゼンチオール、 4, 4'ーォキシビスべ ンゼンチオール、ビス(4ーヒドロキシフエニル)スルフイド、 4, 4'ージヒドロキシジフエ ニルエーテル、 1 , 1—ビス(4—ヒドロキシフエ二ノレ)シクロへキサン、 4, 4'—ビフエノ ールなどを挙げることができ、 4, 4'ーチォビスベンゼンチオール、ビス(4ーヒドロキ シフエ二ノレ)スルフイド、 2, 2 ビス(4 ヒドロキシフエ二ノレ)プロパン、 2, 2 ビス(4 —ヒドロキシフエ二ノレ)へキサフルォロプロパン、 1 , 1—ビス(4—ヒドロキシフエニル) シクロへキサン、 4, 4'ービフエノールが好ましい。  [0093] Specific examples of the compound represented by Chemical Formula 163 include 2, 2 bis (4-hydroxyphenyl) propane, bis (4-hydroxyphenol) methane, 2,2 bis (4-hydroxyphenol) hexane. Fluoropropane, 4,4'-thiobisbenzenethiol, 4,4'-oxybisbenzenethiol, bis (4-hydroxyphenyl) sulfide, 4,4'-dihydroxydiphenyl ether, 1,1-bis ( 4-hydroxyphenenoyl) cyclohexane, 4,4'-biphenol, etc., 4, 4'-thiobisbenzenethiol, bis (4-hydroxyphenenoyl) sulfide, 2,2bis (4 hydroxyphenenole) propane, 2, 2 bis (4-hydroxyphenenole) hexafluoropropane, 1,1-bis (4-hydroxyphenyl) cyclohexane, 4, 4'-bifu Nord is preferable.
[0094] 本発明のスルホン酸基含有ポリマーは、化学式 160〜; 162で表される化合物だけ でなぐ下記化学式 164で表される構造の化合物をモノマーの一成分として用いるこ とによって、化学的な耐久性を高めることができる。  [0094] The sulfonic acid group-containing polymer of the present invention is obtained by using a compound having the structure represented by the following chemical formula 164 as a component of the monomer, in addition to the compound represented by the chemical formula 160 to 162; Durability can be increased.
[0095] [化 34]  [0095] [Chemical 34]
Figure imgf000042_0001
[0096] 化学式 164において、 Z9は OH基又は SH基のいずれかを表す力 OH基であると モノマーの入手や合成が容易であるため好ましぐ SH基であるとポリマーの耐酸化 性が向上するため好ましい。 Ar4は芳香族基を含む 3価又は 4価の基を表し、ベンゼ ン環、ナフタレン環、ジフエニルメタン基などを挙げることができ、ベンゼン環が好まし い。 tは 1又は 2であり、 1が好ましい。
Figure imgf000042_0001
[0096] In Formula 164, Z 9 is a force representing either an OH group or an SH group. An OH group is preferred because it is easy to obtain and synthesize the monomer, and the SH group is preferred because the oxidation resistance of the polymer. It is preferable because it improves. Ar 4 represents a trivalent or tetravalent group including an aromatic group, and examples thereof include a benzene ring, a naphthalene ring, and a diphenylmethane group, and a benzene ring is preferable. t is 1 or 2, with 1 being preferred.
[0097] 化学式 164で表される構造の好ましい例を以下に示すが、これらに限定されるもの ではない。中でも化学式 164Aが好ましい。  [0097] Preferred examples of the structure represented by Chemical Formula 164 are shown below, but are not limited thereto. Of these, chemical formula 164A is preferred.
[0098] [化 35] 冊 、 S .、 、雜
Figure imgf000043_0001
[0098] [Chemical 35] book, S.
Figure imgf000043_0001
( 攀 ^糊 : 《 摩 φ纖 ( t  (攀 ^ glue: 《Ma φ 纖 (t
■。 s ■. s
、 f · ¾ , F
Figure imgf000043_0002
:攀 懒
Figure imgf000043_0002
: 攀 懒
Figure imgf000043_0003
Figure imgf000043_0003
[0099] 化学式 160〜; 164で表される化合物は、その構造の範囲内で複数の化合物を混 合して用いてもよい。 [0099] The compounds represented by the chemical formulas 160 to 164 may be used by mixing a plurality of compounds within the range of the structure.
[0100] その他にも、他の芳香族ジオール化合物又は芳香族ジチオール化合物をモノマー 成分の一つとして用いることができる。他の芳香族ジオール化合物又は芳香族ジチ オール化合物の例としては、 9, 9 ビス(4ーヒドロキシフエニル)フルオレン、 9, 9 ビス(3—メチル 4—ヒドロキシフエ二ノレ)フルオレン、ビス(4—ヒドロキシフエ二ノレ)ス ノレホン、 1 , 1—ビス(4 ヒドロキシフエ二ノレ)ェタン、 2, 2 ビス(4 ヒドロキシフエ二 ノレ)ブタン、 3, 3 ビス(4 ヒドロキシフエ二ノレ)ペンタン、 2, 2 ビス(4 ヒドロキシ - 3, 5—ジメチルフエ二ノレ)プロパン、ビス(4ーヒドロキシ 3, 5—ジメチルフエ二ノレ) メタン、ビス(4ーヒドロキシ 2, 5 ジメチルフエ二ノレ)メタン、ビス(4ーヒドロキシフエ 二ノレ)フエニルメタン、ハイドロキノン、レゾルシン、ビス(4—ヒドロキシフエ二ノレ)ケトン 、 1 , 4 ベンゼンジチオール、 1 , 3—ベンゼンジチォ一ノレ、フエノールフタレイン、 4 ーェチノレレゾノレシノーノレ、 4一へキシノレレゾノレシノーノレ、 2 へキシノレハイドロキノン、 2—ォクチルハイドロキノン、 2—ォクダデシルハイドロキノン、 2—ターシャリーブチノレ ハイドロキノン、 2, 5 ジターシャリーブチルハイドロキノン、 2, 5 ジターシャリーアミ ノレハイドロキノン、 2, 2,ージへキシルー 4, 4'ージヒドロキシビフエニル、 1ーォクチ が挙げられるが、この他にも芳香族求核置換反応によるポリアリーレンエーテル系化 合物の重合に用いることができる各種芳香族ジオール又は各種芳香族ジチオール を使用することもでき、上記の化合物に限定されるものではない。 [0100] In addition, other aromatic diol compounds or aromatic dithiol compounds can be used as one of the monomer components. Examples of other aromatic diol compounds or aromatic dithiol compounds include 9, 9 bis (4-hydroxyphenyl) fluorene, 9, 9 bis (3-methyl 4-hydroxyphenyleno) fluorene, bis (4 —Hydroxyphenenole) Surephon, 1, 1-bis (4 hydroxyphenenole) ethane, 2, 2 bis (4 hydroxyphenenole) butane, 3, 3 bis (4 hydroxyphenenole) pentane, 2 , 2 Bis (4 hydroxy -3,5-Dimethylphenol) propane, bis (4-hydroxy 3,5-dimethylphenyl) methane, bis (4-hydroxy-2,5-dimethylphenol) methane, bis (4-hydroxyphenol) phenylmethane, hydroquinone, resorcinol Bis (4-hydroxyphenenole) ketone, 1,4 benzenedithiol, 1,3-benzenedithionole, phenolphthalein, 4-ethylenoresorenosinole, 4-hexenorezonoresinore, 2 Hexinorehydroquinone, 2-Octylhydroquinone, 2-Ocdadecylhydroquinone, 2-Tertiary butinore hydroquinone, 2,5 Ditertiary butylhydroquinone, 2,5 Ditertiary aminohydroquinone, 2, 2, Hexirous 4, 4'-dihydroxybiphenyl, 1-octy In addition, various aromatic diols or various aromatic dithiols that can be used for the polymerization of polyarylene ether compounds by aromatic nucleophilic substitution reaction can also be used. Is not to be done.
[0101] 本発明におけるスルホン酸基含有ポリマーを芳香族求核置換反応により重合する 場合、化学式 160〜164で表される構造の化合物と、必要に応じて他の活性化ジノ、 ロゲン芳香族化合物ゃジニトロ芳香族化合物や芳香族ジオール類又は芳香族ジチ オール類を加えて、塩基性化合物の存在下で反応させることで重合体を得ることが できる。モノマー中の、反応性のハロゲン基又はニトロ基の合計と、反応性のヒドロキ シ基及びチオール基の合計とのモル比を、任意のモル比にすることで、得られるポリ マーの重合度を調整することができる力 0. 8〜; 1. 2であること力 S好ましく、 0. 9〜1 . 1の範囲であることがより好ましぐ 0. 95-1. 05の範囲であることが好ましぐ 1で あると高重合度のポリマーを得ることができるため最も好ましい。  [0101] When the sulfonic acid group-containing polymer in the present invention is polymerized by an aromatic nucleophilic substitution reaction, a compound having a structure represented by chemical formulas 160 to 164 and, if necessary, other activated dino or rogen aromatic compounds A polymer can be obtained by adding dinitroaromatic compounds, aromatic diols or aromatic dithiols and reacting them in the presence of a basic compound. By setting the molar ratio of the total of reactive halogen groups or nitro groups and the total of reactive hydroxy groups and thiol groups in the monomer to an arbitrary molar ratio, the degree of polymerization of the resulting polymer can be increased. Force that can be adjusted 0.8 to; 1.2 Force to be S S, more preferably in the range of 0.9 to 1.1, in the range of 0.9.5-1.05 Is preferably 1, since a polymer with a high degree of polymerization can be obtained.
[0102] 重合は、 0〜350°Cの温度範囲で行うことができる力 50〜250°Cの範囲であること が好ましい。 0°Cより低い場合には、十分に反応が進まない傾向にあり、 350°Cより高 い場合には、ポリマーの分解も起こり始める傾向がある。反応は、無溶媒下で行うこと もできるが、溶媒中で行うことが好ましい。使用できる溶媒としては、 N—メチル 2— ピロリドン、 N, N ジメチルァセトアミド、 N, N ジメチルホルムアミド、ジメチルスル ホキシド、ジフエニルスルホン、スルホランなどを挙げることができる力 これらに限定 されることはなく、芳香族求核置換反応において安定な溶媒として使用できるもので あればよい。これらの有機溶媒は、単独でも 2種以上の混合物として使用されても良 い。 [0102] The polymerization is preferably in the range of 50-250 ° C force that can be carried out in the temperature range of 0-350 ° C. When the temperature is lower than 0 ° C, the reaction does not tend to proceed sufficiently. When the temperature is higher than 350 ° C, the polymer tends to start to decompose. The reaction can be carried out in the absence of a solvent, but is preferably carried out in a solvent. Examples of solvents that can be used include N-methyl 2-pyrrolidone, N, N dimethylacetamide, N, N dimethylformamide, dimethyl sulfoxide, diphenyl sulfone, sulfolane, and the like. Can be used as a stable solvent in aromatic nucleophilic substitution reactions I just need it. These organic solvents may be used alone or as a mixture of two or more.
[0103] 塩基性化合物としては、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸力 リウム、炭酸水素ナトリウム、炭酸水素カリウム等が挙げられるが、脂肪族ジチオール 類、芳香族ジオール類、及び芳香族ジメルカプト化合物を活性なフエノキシド構造に なしうるものであれば、これらに限定されず使用することができる。塩基性化合物は、 脂肪族ジチオール化合物、芳香族ジオール化合物、及び芳香族ジチオール化合物 の、それぞれのモル数の総和に対して 100モル%以上の量を用いると良好に重合す ること力 Sでき、好ましくは脂肪族ジチオール類、芳香族ジオール化合物、及び芳香族 ジチオール化合物の、それぞれのモル数の総和に対して 105〜125モル%の範囲 である。 125モル0 /0よりも多 [0103] Examples of the basic compound include sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate and the like, but include aliphatic dithiols, aromatic diols, and aromatics. Any dimercapto compound can be used as long as it can form an active phenoxide structure. When the basic compound is used in an amount of 100 mol% or more based on the total number of moles of the aliphatic dithiol compound, aromatic diol compound, and aromatic dithiol compound, it can be polymerized well. Preferably, it is in the range of 105 to 125 mol% with respect to the total number of moles of the aliphatic dithiols, aromatic diol compound, and aromatic dithiol compound. 125 mol 0/0 multi-than
いと、分解などの副反応の原因となる場合があり好ましくなぐ 100モル%未満では 反応を十分に進行させることができな!/、場合があり好ましくなレ、。  If it is less than 100 mol%, the reaction cannot proceed sufficiently! /, Which may be preferable.
[0104] また、上記重合反応において、塩基性化合物を用いずに、脂肪族ジチオール類、 芳香族ジオール化合物、及び芳香族ジチオール化合物を、イソシァネート化合物と 反応させて力ルバモイル化したものと、活性化ジハロゲン芳香族化合物や活性化ジ ニトロ芳香族化合物とを直接反応させることもできる。  [0104] In addition, in the above polymerization reaction, without using a basic compound, an aliphatic dithiol, an aromatic diol compound, and an aromatic dithiol compound are reacted with an isocyanate compound to be activated, and activated. Dihalogen aromatic compounds and activated dinitro aromatic compounds can also be reacted directly.
[0105] 芳香族求核置換反応においては、副生物として水が生成する場合がある。この際 は、重合溶媒とは関係なぐトルエンなどを反応系に共存させて共沸物として水を系 外に除去することもできる。水を系外に除去する方法としては、モレキュラーシーブな どの吸水材を使用することもできる。脂肪族ジチオールとして沸点が 250°C以下のも のを用いる場合には、蒸発を防ぐため還流下で反応させることが好ましぐモレキユラ 一シーブなどの脱水剤を反応溶液内に加えておくことも好ましい。芳香族求核置換 反応を溶媒中で行う場合、得られるポリマー濃度として 5〜50質量%の範囲となるよ うにモノマーを仕込むことが好ましい。 5質量%よりも少ない場合は、重合度が上がり にくい傾向がある。一方、 50質量%よりも多い場合には、反応系の粘性が高くなりす ぎ、反応物の後処理が困難になる傾向がある。重合反応終了後は、反応溶液より蒸 発によって溶媒を除去し、必要に応じて残留物を洗浄することによって、所望のポリ マーが得られる。また、反応溶液を、ポリマーの溶解度が低い溶媒中に加えることに よって、ポリマーを固体として沈殿させ、沈殿物の濾取によりポリマーを得ることもでき る。また副生する塩類を濾過によって取り除いてポリマー溶液を得ることもできる。 [0105] In the aromatic nucleophilic substitution reaction, water may be generated as a by-product. In this case, water can be removed from the system as an azeotrope by coexisting toluene or the like unrelated to the polymerization solvent in the reaction system. As a method for removing water from the system, a water absorbing material such as molecular sieve can be used. When using an aliphatic dithiol having a boiling point of 250 ° C or lower, a dehydrating agent such as molecular sieve that is preferably reacted under reflux to prevent evaporation may be added to the reaction solution. preferable. When the aromatic nucleophilic substitution reaction is carried out in a solvent, it is preferable to charge the monomer so that the polymer concentration obtained is in the range of 5 to 50% by mass. When the amount is less than 5% by mass, the degree of polymerization tends to be difficult to increase. On the other hand, if it exceeds 50% by mass, the viscosity of the reaction system becomes so high that post-treatment of the reaction product tends to be difficult. After completion of the polymerization reaction, the solvent is removed from the reaction solution by evaporation, and the residue is washed as necessary to obtain the desired polymer. Mer is obtained. Further, by adding the reaction solution in a solvent having low polymer solubility, the polymer can be precipitated as a solid, and the polymer can be obtained by filtering the precipitate. In addition, a polymer solution can be obtained by removing by-product salts by filtration.
[0106] また、本発明におけるスルホン酸基含有ポリマーは、後で述べる方法により測定し たポリマー対数粘度が 0. IdL/g以上であることが好ましい。対数粘度が 0. IdL/g よりも小さいと、高分子電解質膜として成形したときに、膜が脆くなりやすくなる。対数 粘度は、 0. 3dL/g以上であることがさらに好ましい。一方、対数粘度が 5dL/gを超 えると、ポリマーの溶解が困難になるなど、加工性での問題が出てくるので好ましくな い。なお、対数粘度を測定する溶媒としては、一般に N—メチルピロリドン、 N, N—ジ メチルァセトアミドなどの極性有機溶媒を使用することができる力 S、これらに溶解性が 低レ、場合には濃硫酸を用いて測定することもできる。 [0106] The sulfonic acid group-containing polymer in the present invention preferably has a polymer log viscosity measured by a method described later of not less than 0.1 IdL / g. When the logarithmic viscosity is less than 0.1.IdL / g, the membrane tends to become brittle when molded as a polymer electrolyte membrane. The logarithmic viscosity is more preferably 0.3 dL / g or more. On the other hand, if the logarithmic viscosity exceeds 5 dL / g, problems in processability such as difficulty in dissolving the polymer occur, which is not preferable. In addition, as a solvent for measuring logarithmic viscosity, a force S that can use a polar organic solvent such as N-methylpyrrolidone or N, N-dimethylacetamide is generally used. Can also be measured using concentrated sulfuric acid.
[0107] 本発明におけるスルホン酸基含有ポリマーのイオン交換容量は、 0. lmeq/g以上 であることが好ましいが、 3. 5meq/g以下であることがさらに好ましい。イオン交換容 量が小さくなるとプロトン伝導性が低下するため好ましくな!/、。イオン交換容量が大き くなると、プロトン伝導性は増大するが、同時に膜が膨潤したり、水に溶解してしまつ たりする問題が起きやすくなる。本発明におけるスルホン酸基含有ポリマーのイオン 交換容量は、 0. 3〜3. 5meq/gの範囲にあることがより好ましぐ 0. 4〜2· 5meq /gの範囲であることがさらに好ましい。  [0107] The ion exchange capacity of the sulfonic acid group-containing polymer in the present invention is preferably 0.1 lmeq / g or more, more preferably 3.5 meq / g or less. A small ion exchange capacity is preferable because proton conductivity decreases. As the ion exchange capacity increases, proton conductivity increases, but at the same time, problems such as membrane swelling and water dissolution are likely to occur. The ion exchange capacity of the sulfonic acid group-containing polymer in the present invention is more preferably in the range of 0.3 to 3.5 meq / g, and more preferably in the range of 0.4 to 2.5 meq / g. .
[0108] 本発明における高分子電解質膜は任意の厚みにすることができる力 10 m以下 だと所定の特性を満たすことが困難になるので 10 m以上であることが好ましぐ 20 〃m以上であること力 り好ましい。また、 300〃m以上になると製造が困難になるた め、 300 m以下であることが好ましい。  [0108] The polymer electrolyte membrane in the present invention is preferably 10 m or more, since it is difficult to satisfy the predetermined characteristics when the force that can be made to an arbitrary thickness is 10 m or less. It is more preferable that it is. In addition, since it becomes difficult to produce when it is 300 mm or more, it is preferably 300 m or less.
[0109] 本発明におけるスルホン酸基含有ポリマーは、単体として使用することができるが、 他のポリマーとの組み合わせによる樹脂組成物として使用することもできる。これらの ポリマーとしては、例えばポリエチレンテレフタレート、ポリブチレンテレフタレート、ポ リエチレンナフタレートなどのポリエステル類、ナイロン 6、ナイロン 66、ナイロン 610、 ナイロン 12などのポリアミド類、ポリメチルメタタリレート、ポリメタクリル酸エステル類、 ポリメチルアタリレート、ポリアクリル酸エステル類などのアタリレート系樹脂、ポリアタリ ル酸系樹脂、ポリメタクリル酸系樹脂、ポリエチレン、ポリプロピレン、ポリスチレンゃジ ェン系ポリマーを含む各種ポリオレフイン、ポリウレタン系樹脂、酢酸セルロース、ェ チルセルロースなどのセルロース系樹脂、ポリアリレート、ァラミド、ポリカーボネート、 ポリフエ二レンスノレフイド、ポリフエ二レンォキシド、ポリスノレホン、ポリエーテノレスノレホ ン、ポリエーテルエーテルケトン、ポリエーテルイミド、ポリイミド、ポリアミドイミド、ポリ ベンズイミダゾール、ポリべンズォキサゾール、ポリべンズチアゾールなどの芳香族系 ポリマー、エポキシ樹脂、フエノール樹脂、ノポラック樹脂、ベンゾォキサジン樹脂な どの熱硬化性樹脂等、特に制限はな!/、。ポリべンズイミダゾールゃポリビュルピリジン などの塩基性ポリマーとの樹脂組成物は、ポリマー寸法性の向上のために好ましい 組み合わせといえる、これらの塩基性ポリマー中に、さらにスルホン酸基を導入して おくと、組成物の加工性がより好ましいものとなる。これら樹脂組成物として使用する 場合には、本発明のスルホン酸基含有ポリマーは、樹脂組成物全体の 50質量%以 上 100質量%未満含まれていることが好ましい。より好ましくは 70質量%以上 100質 量%未満である。本発明のスルホン酸基含有ポリマーの含有量が樹脂組成物全体 の 50質量%未満の場合には、この樹脂組成物を含む高分子電解質膜のスルホン酸 基濃度が低くなり良好なイオン伝導性が得られない傾向にあり、また、スルホン酸基 を含有するユニットが非連続相となり伝導するイオンの移動度が低下する傾向にある 。なお、本発明の組成物は、必要に応じて、例えば酸化防止剤、熱安定剤、滑剤、 粘着付与剤、可塑剤、架橋剤、粘度調整剤、静電気防止剤、抗菌剤、消泡剤、分散 剤、重合禁止剤、などの各種添加剤を含んでいても良い。 [0109] The sulfonic acid group-containing polymer in the present invention can be used as a single substance, but can also be used as a resin composition in combination with other polymers. Examples of these polymers include polyesters such as polyethylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate, polyamides such as nylon 6, nylon 66, nylon 610, and nylon 12, polymethyl methacrylate, and polymethacrylates. , Acrylate resins such as polymethyl acrylate and polyacrylates, poly acrylate Cellulose resins such as phosphoric acid resins, polymethacrylic acid resins, polyethylene, polypropylene, polystyrene-containing polymers, polyurethane resins, cellulose acetate, ethyl cellulose, polyarylate, aramid, polycarbonate, Aromatic polymers such as polyphenylene noride, polyphenylene oxide, polysenolephone, polyether etherephone, polyetheretherketone, polyetherimide, polyimide, polyamideimide, polybenzimidazole, polybenzoxazole, polybenzthiazole, Thermosetting resins such as epoxy resin, phenolic resin, nopolac resin, and benzoxazine resin are not particularly limited! A resin composition with a basic polymer such as polybenzimidazole or polybulupyridine is a preferable combination for improving polymer dimensionality, and a sulfonic acid group is further introduced into these basic polymers. And the workability of the composition becomes more preferable. When used as these resin compositions, the sulfonic acid group-containing polymer of the present invention is preferably contained in an amount of 50% by mass or more and less than 100% by mass of the entire resin composition. More preferably, it is 70 mass% or more and less than 100 mass%. When the content of the sulfonic acid group-containing polymer of the present invention is less than 50% by mass of the entire resin composition, the sulfonic acid group concentration of the polymer electrolyte membrane containing this resin composition is lowered and good ionic conductivity is obtained. In addition, the unit containing a sulfonic acid group tends to be a discontinuous phase, and the mobility of ions to be conducted tends to decrease. In addition, the composition of the present invention may contain, for example, an antioxidant, a heat stabilizer, a lubricant, a tackifier, a plasticizer, a crosslinking agent, a viscosity modifier, an antistatic agent, an antibacterial agent, an antifoaming agent, Various additives such as a dispersant and a polymerization inhibitor may be contained.
本発明の高分子電解質膜は、本発明のスルホン酸基含有イオン交換樹脂を含む 組成物から、押し出し、圧延又はキャストなど任意の方法で得ることができる。中でも 適当な溶媒に溶解した溶液から成形することが好ましい。溶液から成形体を得る方 法は従来力 公知の方法を用いて行うことができる。例えば、加熱、減圧乾燥、化合 物を溶解する溶媒と混和することができる化合物非溶媒への浸漬等によって、溶媒 を除去し成形体を得ることができる。溶媒が、有機溶媒の場合には、加熱又は減圧 乾燥によって溶媒を留去させることが好ましい。この際、必要に応じて他の化合物と 複合された形で成形することもできる。溶解挙動が類似する化合物と組み合わせた 場合には、良好な成形ができる点で好ましい。このようにして得られた成形体中のス ルホン酸基は陽イオン種との塩の形のものを含んでいても良いが、必要に応じて酸 処理することによりフリーのスルホン酸基に変換することもできる。 The polymer electrolyte membrane of the present invention can be obtained from the composition containing the sulfonic acid group-containing ion exchange resin of the present invention by any method such as extrusion, rolling or casting. Among them, it is preferable to mold from a solution dissolved in an appropriate solvent. A method for obtaining a molded body from a solution can be performed using a conventionally known method. For example, the solvent can be removed by heating, drying under reduced pressure, or immersion in a compound non-solvent that can be mixed with a solvent that dissolves the compound, to obtain a molded article. When the solvent is an organic solvent, the solvent is preferably distilled off by heating or drying under reduced pressure. At this time, if necessary, it can be molded in a composite form with other compounds. Combined with compounds with similar dissolution behavior In this case, it is preferable in that good molding can be performed. The sulfonic acid group in the molded product thus obtained may contain a salt form with a cationic species, but if necessary, it can be converted to a free sulfonic acid group by acid treatment. You can also
[0111] 本発明におけるスルホン酸基含有ポリマー及びその樹脂組成物から高分子電解質 膜を成形する手法として最も好ましいのは、溶液からのキャストであり、キャストした溶 液から上記のように溶媒を除去して高分子電解質膜を得ることができる。当該溶液と しては N—メチルピロリドン、 N, N—ジメチルホルムアミド、ジメチルスルホキシド等の 有機溶媒を用いた溶液や、場合によってはアルコール系溶媒等も挙げることができる 。溶媒の除去は、乾燥によることが高分子電解質膜の均一性力 は好ましい。また、 化合物や溶媒の分解や変質を避けるため、減圧下できるだけ低レ、温度で乾燥するこ ともできる。また、溶液の粘度が高い場合には、基板や溶液を加熱して高温でキャス トすると溶液の粘度が低下して容易にキャストすることができる。キャストする際の溶液 の厚みは特に制限されないが、 10〜2000 111の範囲であることが好ましい。より好 ましくは 50〜; 1500 mである。溶液の厚みが 10 mよりも薄いと高分子電解質膜と しての形態を保てなくなる傾向にあり、 2000 mよりも厚いと不均一な膜ができやす くなる傾向にある。溶液のキャスト厚を制御する方法は公知の方法を用いることができ る。例えば、アプリケーター、ドクターブレードなどを用いて一定の厚みにしたり、ガラ スシャーレなどを用いてキャスト面積を一定にしたりして溶液の量や濃度で厚みを制 御すること力 Sできる。キャストした溶液は、溶媒の除去速度を調整することでより均一 な膜を得ること力できる。例えば、加熱する場合には最初の段階では低温にして蒸発 速度を下げたりすること力できる。また、水などの非溶媒に浸漬する場合には、溶液 を空気中や不活性ガス中に適当な時間放置しておくなどして化合物の凝固速度を 調整すること力 Sできる。高分子電解質膜として使用する場合、膜中のスルホン酸基は 金属塩になっているものを含んでいても良いが、適当な酸処理によりフリーのスルホ ン酸に変換することもできる。この場合、硫酸、塩酸等の水溶液中に加熱下あるいは 加熱せずに膜を浸漬処理することで行うことも効果的である。 [0111] The most preferable method for forming a polymer electrolyte membrane from the sulfonic acid group-containing polymer and the resin composition thereof in the present invention is casting from a solution, and the solvent is removed from the cast solution as described above. Thus, a polymer electrolyte membrane can be obtained. Examples of the solution include a solution using an organic solvent such as N-methylpyrrolidone, N, N-dimethylformamide, and dimethyl sulfoxide, and an alcohol solvent in some cases. The uniformity of the polymer electrolyte membrane is preferably removed by drying the solvent. In addition, in order to avoid decomposition or alteration of the compound or solvent, it can be dried under reduced pressure and at a temperature as low as possible. In addition, when the viscosity of the solution is high, when the substrate or the solution is heated and cast at a high temperature, the viscosity of the solution is lowered and can be easily cast. The thickness of the solution at the time of casting is not particularly limited, but is preferably in the range of 10 to 2000 111. More preferred is 50 to 1500 m. If the thickness of the solution is less than 10 m, the shape of the polymer electrolyte membrane tends not to be maintained, and if it is more than 2000 m, a non-uniform membrane tends to be easily formed. A known method can be used to control the cast thickness of the solution. For example, it is possible to control the thickness with the amount and concentration of the solution by making the thickness constant using an applicator, doctor blade, etc., or making the cast area constant using a glass petri dish. The cast solution can obtain a more uniform film by adjusting the solvent removal rate. For example, when heating, it is possible to reduce the evaporation rate by lowering the temperature in the first stage. In addition, when immersed in a non-solvent such as water, it is possible to adjust the coagulation rate of the compound by leaving the solution in air or an inert gas for an appropriate time. When used as a polymer electrolyte membrane, the sulfonic acid group in the membrane may contain a metal salt, but it can be converted to free sulfonic acid by an appropriate acid treatment. In this case, it is also effective to immerse the membrane in an aqueous solution of sulfuric acid, hydrochloric acid or the like with or without heating.
[0112] 本発明の膜/電極接合体は、本発明の高分子電解質膜を電極と接合することによ つて得ることができる。 電極は、電極材料と、その表面に形成された触媒を含む層(電極触媒層)とからなり 、電極材料としては、公知の材料を用いることができる。例えば、カーボンペーパー やカーボンクロスなど、導電性の多孔質材料を用いることができる力 それらに限定さ れるものではない。カーボンペーパーやカーボンクロスなど、導電性の多孔質材料は 、撥水処理、親水処理などの表面処理がされたものを用いることもできる。触媒には、 公知の材料を用いることができる。例えば、白金、白金とルテニウムなどの合金などを 挙げることができる力 それらに限定されるものではない。 [0112] The membrane / electrode assembly of the present invention can be obtained by bonding the polymer electrolyte membrane of the present invention to an electrode. The electrode includes an electrode material and a layer (electrode catalyst layer) containing a catalyst formed on the surface thereof, and a known material can be used as the electrode material. For example, the ability to use a conductive porous material such as carbon paper or carbon cloth is not limited thereto. As the conductive porous material such as carbon paper or carbon cloth, a material subjected to surface treatment such as water repellent treatment or hydrophilic treatment can be used. A known material can be used for the catalyst. For example, power that can include platinum, an alloy of platinum and ruthenium, and the like is not limited thereto.
触媒は公知の任意の形態で用いることができ、例えば触媒微粒子を坦持させた力 一ボン粒子を用いることができる力 S、それらに限定されるものではない。  The catalyst can be used in any known form. For example, the force carrying catalyst fine particles is the force S that can use one bon particle, but is not limited thereto.
触媒や触媒を坦持した粒子を含む電極触媒層には、接着剤を用いることができ、 接着剤としては、プロトン伝導性を有する樹脂を用いることができる。  An adhesive can be used for the catalyst and the electrode catalyst layer containing the particles carrying the catalyst, and as the adhesive, a resin having proton conductivity can be used.
[0113] この接合体の作製方法としては、従来力も公知の方法を用いて行うことができ、例 えば、電極表面に接着剤を塗布し高分子電解質膜と電極とを接着する方法又は高 分子電解質膜と電極とを加熱加圧する方法等がある。接着剤としては、ナフイオン( 商品名)溶液など公知のものを用いてもよいし、本発明の高分子電解質膜を構成す るポリマーと同種のポリマー組成物を主成分としたものを用いてもよいし、他の炭化水 素系プロトン伝導性ポリマーを主成分とするものを用いてもよい。電極反応に必要な 白金、白金一ルテニウム合金などの触媒は、カーボンなどの導電性粒子に坦持させ たものを、上記接着剤中に分散させておくことで、電極触媒層を得ることができる。電 極と高分子電解質膜の接合体を作製する方法は、電極表面に塗布して接着する方 法が好まし!/、。本発明の高分子電解質膜及びポリマー組成物は適度な軟化温度を 有するため、加圧加熱によって高分子電解質膜と電極とを接合する方法に特に適し ている。 [0113] As a method for producing this joined body, a known method can be used for the conventional force. For example, a method of applying an adhesive to the electrode surface and bonding the polymer electrolyte membrane and the electrode or a high molecular weight There is a method of heating and pressurizing the electrolyte membrane and the electrode. As the adhesive, a known material such as a naphthion (trade name) solution may be used, or an adhesive mainly composed of the same polymer composition as that of the polymer constituting the polymer electrolyte membrane of the present invention may be used. Alternatively, those containing other hydrocarbon-based proton conductive polymers as main components may be used. A catalyst such as platinum or platinum-ruthenium alloy necessary for the electrode reaction can be obtained by dispersing the catalyst supported on conductive particles such as carbon in the adhesive. . The preferred method for producing an electrode / polymer electrolyte membrane assembly is to apply and adhere to the electrode surface! Since the polymer electrolyte membrane and the polymer composition of the present invention have an appropriate softening temperature, they are particularly suitable for a method of joining a polymer electrolyte membrane and an electrode by pressure heating.
[0114] 本発明の燃料電池は、本発明の高分子電解質膜又は高分子電解質膜/電極接 合体を用いて作製することができる。本発明の燃料電池は、例えば酸素極と、燃料極 と、それぞれの極に挟まれて配置された高分子電解質膜と、酸素極側に設けられた 酸化剤の流路と、燃料極側に設けられた燃料の流路を有するものである。このような 一つの単位セルを導電性のセパレーターで連結することによって燃料電池スタックを 得ること力 Sでさる。 [0114] The fuel cell of the present invention can be produced using the polymer electrolyte membrane or the polymer electrolyte membrane / electrode assembly of the present invention. The fuel cell of the present invention includes, for example, an oxygen electrode, a fuel electrode, a polymer electrolyte membrane sandwiched between the electrodes, an oxidant flow path provided on the oxygen electrode side, and a fuel electrode side. The fuel flow path is provided. By connecting such unit cells with a conductive separator, the fuel cell stack is formed. Get power S
実施例  Example
[0115] 以下本発明を、実施例を用いて具体的に説明する力 本発明はこれらの実施例に 限定されることはない。なお、各種測定は次のように行った。  Hereinafter, the present invention will be described in detail with reference to examples. The present invention is not limited to these examples. Various measurements were performed as follows.
<対数粘度〉  <Logarithmic viscosity>
ポリマー粉末を 0. 5g/dLの濃度で N メチルピロリドンに溶解し、 30°Cの恒温槽 中でウベローデ型粘度計を用いて粘度測定を行い、対数粘度 ln[ta/tb]/Cで評 価した (taは試料溶液の落下秒数、 tbは溶媒のみの落下秒数、 cはポリマー濃度)。 Dissolve the polymer powder in N-methylpyrrolidone at a concentration of 0.5 g / dL, measure the viscosity using a Ubbelohde viscometer in a constant temperature bath at 30 ° C, and evaluate the logarithmic viscosity ln [ ta / tb] / C. (Ta is the sample solution drop time, tb is the solvent drop time, c is the polymer concentration).
[0116] <プロトン伝導性〉 [0116] <Proton conductivity>
自作測定用プローブ (テトラフルォロエチレン樹脂製)上で短冊状膜試料の表面に 白金線(直径: 0. 2mm)を押しあて、 25°Cの水中又は 80°C、 95%RHの恒湿恒温 槽に試料を保持し、白金線間のインピーダンスを SOLARTRON社 1250FREQU ENCY RESPONSE ANALYSERにより測定した。極間距離を変化させて測定 し、極間距離と C Cプロットから見積もられる抵抗測定値をプロットした勾配から以 下の式により膜と白金線間の接触抵抗をキャンセルした導電率を算出した。  A platinum wire (diameter: 0.2 mm) is pressed against the surface of a strip-shaped membrane sample on a self-made measurement probe (made of tetrafluoroethylene resin), and it is kept at 25 ° C in water or at 80 ° C and 95% RH. The sample was held in a humidity thermostat, and the impedance between the platinum wires was measured by SOLARTRON 1250FREQU ENCY RESPONSE ANALYSER. The measurement was performed while changing the distance between the electrodes, and the conductivity with the contact resistance between the film and the platinum wire canceled was calculated from the gradient obtained by plotting the distance measured between the electrodes and the resistance measurement value estimated from the CC plot.
導電率 [S/cm] = 1 /膜幅 [cm] X膜厚 [cm] X抵抗極間勾配 [ Ω /cm]  Conductivity [S / cm] = 1 / film width [cm] X film thickness [cm] X resistance-to-electrode gradient [Ω / cm]
[0117] <メタノール透過性〉 [0117] <Methanol permeability>
高分子電解質膜の液体燃料透過速度はメタノールの透過速度として、以下の方法 で測定した。 25°Cに調整した 5M (モル/リットル)の濃度のメタノール水溶液に 24時 間浸漬した高分子電解質膜を H型セルに挟み込み、セルの片側に lOOmLの 5Mメ タノール水溶液を、他方のセルに lOOmLの超純水(18Μ Ω 'cm)を注入し、 25°Cで 両側のセルを撹拌しながら、高分子電解質膜を通って超純水中に拡散してくるメタノ ール量を、ガスクロマトグラフを用いて測定することで算出した(高分子電解質膜の面 積は、 2. Ocm2)。得られたメタノール透過速度とサンプルの膜厚から、メタノール透 過係数を求めた。 The liquid fuel permeation rate of the polymer electrolyte membrane was measured as the methanol permeation rate by the following method. A polymer electrolyte membrane immersed in a 5M (mol / liter) methanol solution adjusted to 25 ° C for 24 hours is sandwiched between H-type cells, and lOOmL of 5M methanol aqueous solution is placed on one side of the cell in the other cell. lOOmL of ultrapure water (18Μ Ω 'cm) was injected, and the amount of methanol that diffused into the ultrapure water through the polymer electrolyte membrane while stirring the cells on both sides at 25 ° C was measured. It was calculated by measuring using a graph (the area of the polymer electrolyte membrane was 2. Ocm 2 ). From the obtained methanol permeation rate and the film thickness of the sample, the methanol permeation coefficient was determined.
[0118] <水素を燃料とする燃料電池 (PEFC)の発電評価〉 [0118] <Power generation evaluation of hydrogen-fueled fuel cell (PEFC)>
デュポン社製 20%ナフイオン (登録商標)溶液に、 40%Pt触媒担持カーボン(田中 貴金属工業社製燃料電池用触媒: TEC10V40E)と、少量の超純水及びイソプロパ ノールを加えた後、均一になるまで撹拌し、触媒ペーストを調製した。この触媒ぺー ストを、カーボンペーパー(東レ社製 TGPH— 060)に白金の付着量が 0. 5mg/cm 2になるように均一に塗布 ·乾燥して、電極触媒層付きガス拡散層を作製した。上記の 電極触媒層付きガス拡散層の間に、高分子電解質膜を、電極触媒層が膜に接する ように挟み、ホットプレス法により 5MPaにて 3分間加圧、加熱することにより、膜—電 極接合体とした。加熱温度は、評価に用いる高分子電解質膜ごとに電極触媒層と膜 との剥離が生じな!/、温度に適宜調整した。この接合体を Electrochem社製の評価 用燃料電池セル FC25— 02SPに組み込んでセル温度 80°Cで、アノードに 75°Cで 加湿した水素を、力ソードに 75°Cで加湿した空気を、それぞれ供給して発電特性を 評価した。開始直後における電流密度が 0. 5A/cm2における出力電圧を初期特性 とした。また、耐久性評価として、 1時間に 3回の割合で開回路電圧を測定しつつ上 記の条件で連続運転を行った。開回路電圧が開始直後の値よりも 10%以上低下し たときの時間を耐久時間とした。耐久性評価は 2000時間を上限として行った。 DuPont 20% Nafion (registered trademark) solution, 40% Pt catalyst-supported carbon (Tanaka Kikinzoku Kogyo Co., Ltd. fuel cell catalyst: TEC10V40E), small amount of ultrapure water and isopropaline After adding the knoll, the mixture was stirred until uniform to prepare a catalyst paste. This catalyst paste was uniformly applied and dried on carbon paper (TGPH-060 manufactured by Toray Industries Inc.) so that the amount of platinum deposited was 0.5 mg / cm 2 to produce a gas diffusion layer with an electrode catalyst layer. . A polymer electrolyte membrane is sandwiched between the gas diffusion layers with an electrode catalyst layer so that the electrode catalyst layer is in contact with the membrane, and is pressurized and heated at 5 MPa for 3 minutes by a hot press method. A polar assembly was obtained. The heating temperature was appropriately adjusted to the temperature at which peeling of the electrode catalyst layer and the membrane did not occur for each polymer electrolyte membrane used for evaluation. This assembly was assembled into an evaluation fuel cell FC25-02SP manufactured by Electrochem, and the cell temperature was 80 ° C, the anode was humidified with hydrogen at 75 ° C, and the power sword was humidified with air humidified at 75 ° C. The power generation characteristics were evaluated by supplying them. The initial voltage was the output voltage at a current density of 0.5 A / cm 2 immediately after the start. For durability evaluation, continuous operation was performed under the above conditions while measuring open circuit voltage at a rate of 3 times per hour. The time when the open circuit voltage dropped 10% or more from the value immediately after the start was defined as the endurance time. Durability evaluation was performed with 2000 hours as the upper limit.
<ダイレクトメタノール型燃料電池(DMFC)の発電評価〉 <Power generation evaluation of direct methanol fuel cell (DMFC)>
Pt/Ru触媒担持カーボン(田中貴金属工業社製 TEC61E54)に少量の超純水及 びイソプロピルアルコールを加えて湿らせた後、デュポン社製 20%ナフイオン(登録 商標)溶液(品番: SE— 20192)を、 Pt/Ru触媒担持カーボンとナフイオン (登録商 標)の質量比が 2. 5 : 1になるように加えた。次いで撹拌してアノード用触媒ペースト を調製した。この触媒ペーストを、ガス拡散層となるカーボンペーパー(東レ社製 TG PH— 060)に白金の付着量が 2mg/cm2になるようにスクリーン印刷により塗布乾 燥して、アノード用電極触媒層付きカーボンペーパーを作製した。また、 Pt触媒担持 カーボン(田中貴金属工業社 TEC10V40E)に少量の超純水及びイソプロピルアル コールを加えて湿らせた後、デュポン社製 20%ナフイオン (登録商標)溶液(品番: S E— 20192)を、 Pt触媒担持カーボンとナフイオン (登録商標)の質量比が 2. 5 : 1と なるように加え、撹拌して力ソード用触媒ペーストを調製した。この触媒ペーストを、撥 水加工を施したカーボンペーパー(東レ社製 TGPH— 060)に白金の付着量力 mg /cm2となるように塗布 '乾燥して、力ソード用電極触媒層付きカーボンペーパーを 作製した。上記 2種類の電極触媒層付きカーボンペーパーの間に、膜試料を、電極 触媒層が膜試料に接するように挟み、ホットプレス法により 5MPaにて 3分間加圧、加 熱することにより、膜 電極接合体とした。加熱温度は、評価に用いる高分子電解質 膜ごとに電極触媒層と膜との剥離が生じない温度に適宜調整した。この接合体を Ele ctrochem社製評価用燃料電池セル FC25— 02SPに組み込み、燃料電池発電試 験機 (株式会社東陽テクユカ製)を用いて発電試験を行った。発電は、セル温度 40 °Cで、アノードに 40°Cに調整した 5mol/Lのメタノール水溶液(1. 5ml/min)を、 力ソードに 40°Cに調整した高純度空気ガス(80ml/min)を、それぞれ供給しながら 行った。電流密度が 0. 05A/cm2における出力電圧を測定した。 Pt / Ru catalyst-supported carbon (TEC61E54 manufactured by Tanaka Kikinzoku Kogyo Co., Ltd.) is moistened with a small amount of ultrapure water and isopropyl alcohol. Was added so that the mass ratio of Pt / Ru catalyst-supported carbon to naphthion (registered trademark) was 2.5: 1. Next, stirring was performed to prepare an anode catalyst paste. This catalyst paste is applied to a carbon paper (TG PH-060 manufactured by Toray Industries, Inc.) as a gas diffusion layer by screen printing so that the amount of platinum deposited is 2 mg / cm 2, and is provided with an electrode catalyst layer for the anode. Carbon paper was produced. In addition, after adding a small amount of ultrapure water and isopropyl alcohol to Pt catalyst-supporting carbon (Tanaka Kikinzoku Kogyo TEC10V40E) and moistening, DuPont 20% Nafion (registered trademark) solution (Product No .: SE-20192) The Pt catalyst-supporting carbon and naphthion (registered trademark) were added so that the mass ratio was 2.5: 1 and stirred to prepare a power sword catalyst paste. This catalyst paste was applied to carbon paper with water repellent finish (TGPH-060 manufactured by Toray Industries Inc.) so that the adhesion amount of platinum was mg / cm 2 'and dried, and carbon paper with an electrode catalyst layer for force sword was applied. Produced. Between the two types of carbon paper with the electrode catalyst layer, the membrane sample is The membrane was joined so that the catalyst layer was in contact with the membrane sample, and was pressed and heated at 5 MPa for 3 minutes by a hot press method to obtain a membrane electrode assembly. The heating temperature was appropriately adjusted to a temperature at which peeling between the electrode catalyst layer and the membrane did not occur for each polymer electrolyte membrane used for evaluation. This joined body was incorporated into an evaluation fuel cell FC25-02SP manufactured by Ele ctrochem, and a power generation test was performed using a fuel cell power generation tester (manufactured by Toyo Corporation). Power generation is performed at a cell temperature of 40 ° C, a 5 mol / L aqueous methanol solution (1.5 ml / min) adjusted to 40 ° C at the anode, and a high-purity air gas (80 ml / min) adjusted to 40 ° C in the power sword. ) Was performed while supplying each. The output voltage at a current density of 0.05 A / cm 2 was measured.
[0120] <イオン交換容量〉  [0120] <Ion exchange capacity>
100°Cで 1時間乾燥し、窒素雰囲気下室温で一晩放置した試料の質量をはかり、 水酸化ナトリウム水溶液と撹拌処理した後、塩酸水溶液による逆滴定でイオン交換容 量を求めた。  The sample was dried at 100 ° C for 1 hour and allowed to stand overnight at room temperature in a nitrogen atmosphere. After weighing with a sodium hydroxide aqueous solution, the ion exchange capacity was determined by back titration with a hydrochloric acid aqueous solution.
[0121] <合成例;!〉  [0121] <Synthesis example;!>
3, 3,—ジスルホン酸ナトリウム—4, 4,ージクロロジフエニルスルホン(略号: SDS) 25. 00g、 2, 6 ジクロロべンゾニトリル(略号: DCB) 64· 19g、 1 , 6 へキサンジチ オール(略号: HDT) 63. 74g、炭酸カリウム 64. 47g、乾燥したモレキュラーシーブ 3—A60gを冷却還流管を取り付けた 2000mL四つ口フラスコに計り取り、 0. 5L/ 分で窒素を流した。 400mlの N メチル—2 ピロリドン(略号: NMP)を入れて、ォ ィルバスに入れ、オイルバスの温度を 150°Cにして 30分撹拌した後、オイルバスの 温度を 215°Cにして 12時間反応させた。放冷の後、沈降しているモレキュラーシー ブを 1G25ガラスフィルターで濾過して除き、重合溶液を水中にストランド状に沈殿さ せた。得られたポリマーは、常温の水で 6回洗浄し、 110°C乾燥した。  3, 3, —Sodium disulfonate—4, 4, -dichlorodiphenyl sulfone (abbreviation: SDS) 25.00 g, 2,6 dichlorobenzonitrile (abbreviation: DCB) 64 · 19 g, 1, 6 hexanedithiol (abbreviation) : HDT) 63.74 g, potassium carbonate 64.47 g, and dried molecular sieve 3-A60 g were weighed into a 2000 mL four-necked flask equipped with a cooling reflux tube and flushed with nitrogen at 0.5 L / min. Add 400 ml of N-methyl-2-pyrrolidone (abbreviation: NMP), put in oil bath, stir for 30 minutes with oil bath temperature at 150 ° C, then react for 12 hours with oil bath temperature at 215 ° C. I let you. After cooling, the precipitated molecular sieve was removed by filtration with a 1G25 glass filter, and the polymerization solution was precipitated in water into a strand. The obtained polymer was washed 6 times with normal temperature water and dried at 110 ° C.
[0122] <合成例 2〜20〉  [0122] <Synthesis Examples 2 to 20>
各モノマー成分、及びそのモル比を変更した他は、合成例 1と同様にして合成例 2 〜20のポリマーを合成した。炭酸カリウムは、脂肪族ジチオール化合物、芳香族ジォ ール化合物、及び芳香族ジチオール化合物のモル数の合計に対して 10%過剰に なるような量を用いた。モレキュラーシーブは、炭酸カリウムとほぼ同量の量を用いた 。 NMPは、計算上のポリマー量に対して約 2. 6倍の質量の量を用いた。 [[00112233]] <<比比較較合合成成例例 11〜〜44〉〉及及びびそそののモモルル比比をを変変更更ししたた他他はは、、合合成成例例 11とと同同様様ににししてて比比較較 合合成成例例 11〜〜77ののポポリリママーーをを合合成成ししたた。。炭炭酸酸カカリリウウムムはは、、芳芳香香族族ジジオオーールル化化合合物物ののモモルル 数数のの合合計計にに対対ししてて 1100%%過過剰剰ににななるるよよううなな量量をを用用いいたた。。モモレレキキュュララーーシシーーブブはは、、炭炭酸酸力力 リリウウムムととほほぼぼ同同量量のの量量をを用用いいたた。。 NNMMPPはは、、計計算算上上ののポポリリママーー量量にに対対ししてて約約 22.. 66倍倍のの 質質量量のの量量をを用用いいたた。。 Polymers of Synthesis Examples 2 to 20 were synthesized in the same manner as Synthesis Example 1 except that each monomer component and the molar ratio thereof were changed. Potassium carbonate was used in an amount that would be 10% excess relative to the total number of moles of the aliphatic dithiol compound, aromatic diol compound, and aromatic dithiol compound. The molecular sieve was used in approximately the same amount as potassium carbonate. NMP was used in an amount of about 2.6 times the mass of the calculated polymer amount. [[00112233]] << Comparative Comparative Synthetic Examples 11 to 44 >>> and other changes in the ratio of mormors of Biso were as follows. In the same manner, the comparative polysynthesis synthesis examples 11 to 77 of the polypolylimer were synthesized and synthesized. . The cacalylium carbonate is likely to be in excess of 1100% relative to the sum of the number of momols of the aromatic aromatic digiool compound. The correct amount was used. . Molecula molecular sieves were used in an amount of approximately the same amount as that of the lithium carbonate power. . The NNMMPP used an amount of about 22.66 times the mass of the mass of the poplar limomer as calculated above. .
[[00112244]] <<合合成成例例 2211〉〉 [[00112244]] << Synthetic example 2211 >>
SSDDSS 5500.. 0000gg、、DDCCBB 4455.. 0022gg、、 11 ,, 1100 デデカカンンジジチチオオーールル((略略号号:: DDDDTT)) 1155.. OOllgg,, BBPP 5544.. 1155gg、、炭炭酸酸カカリリウウムム 5533.. 7766gg 、、乾乾燥燥ししたたモモレレキキュュララーーシシーーブブ 33—— AA 6600ggをを冷冷却却還還流流管管をを取取りり付付けけたた 22000000mmLL四四つつ口口フフララススココにに計計りり取取りり、、 00.. 55LL//分分でで窒窒 素素をを流流ししたた。。 332200mmllのの NN メメチチルルーー 22 ピピロロリリドドンン((略略号号:: NNMMPP))をを入入れれてて、、オオイイルルババ ススにに入入れれ、、オオイイルルババススのの温温度度をを 115500°°CCににししてて 3300分分撹撹拌拌ししたた後後、、オオイイルルババススのの温温度度をを 22 1155°°CCににししてて 1122時時間間反反応応ささせせたた。。放放冷冷のの後後、、沈沈降降ししてていいるるモモレレキキュュララーーシシーーブブをを 11GG22 55ガガララススフフィィルルタターーでで濾濾過過ししてて除除きき、、重重合合溶溶液液をを水水中中ににスストトラランンドド状状にに沈沈殿殿ささせせたた。。得得 らられれたたポポリリママーーはは、、常常温温のの水水でで 66回回洗洗浄浄しし、、 111100°°CCでで乾乾燥燥ししたた。。  SSDDSS 5500 .. 0000gg, DDCCBB 4455 .. 0022gg, 11,, 1100 Decacandidithiothiool ((abbreviation: DDDDTT)) 1155 .. OOllgg ,, BBPP 5544 .. 1155gg, charcoal Calcium sodium carbonate 5533 .. 7766 gg, dry-dried peach molecular sieve sieve 33——AA 6600 gg was attached to a cooling and cooling return reflux tube. We measured and collected it at the mouth and mouth of the fluffy glass, and flown nitrogen at 00..55 LL / min. . 332200mmll of NN Methicill Loo 22 Pipirolo Liridon Dong ((abbreviation: NNMMPP)) was put in, and put into the oil oil bath, and the temperature of oil oil babas was adjusted to 115500 After stirring for 3300 minutes at a temperature of °° CC, the temperature of the oily babascus was set to 22 1155 °° CC and the reaction was continued for 1122 hours. I was letting you. . After standing to cool, the sedimentary sedimentary sieve is removed by filtration with an 11GG22 55 galalas filter filter. Then, the polypolymerization solution was allowed to settle into water in the form of a strandorand. . The obtained polypolilimer was washed, washed and washed 66 times with normal temperature water and dried at 111100 ° C. .
合合成成例例;;!!〜〜 2211、、及及びび比比較較合合成成例例 11〜〜44ののポポリリママーーににつついいてて、、組組成成及及びび対対数数粘粘度度をを 表表 22にに示示すす。。表表 22ににおおけけるる略略号号はは以以下下のの化化合合物物をを表表すす。。  Examples of synthetic synthesis;; !! ~~ 2211, and comparative comparison comparative examples of synthetic examples 11--44, composition composition and logarithmic viscosity Table 22 shows the viscosity. . The abbreviations in Table 22 represent the following compounds. .
SSDDSS :: 33,, 33,,一一ジジススルルホホンン酸酸ナナトトリリウウムム 44,, 44 ''ーージジククロロロロジジフフエエニニルルススルルホホンン SSDDSS :: 33 ,, 33,, Niditosulphophonate Nanato Triliumum 44 ,, 44 '' --Dichlorochlorodihydrophenenylsulfurphone
SSBBPP :: 33,, 33,, 一一ジジススルルホホンン酸酸ナナトトリリウウムム一一 44,, 44''——ジジククロロロロべべンンゾゾフフエエノノンン SSBBPP :: 33 ,, 33 ,, 1-1 Natholitrium sodium idisulfurfonate 44 ,, 44 '' —— Dichlorochlorolobenbenzozofuenon
DDCCBB :: 22,, 66 ジジククロロ口口べべンンゾゾニニトトリリノノレレ  DDCCBB :: 22 ,, 66 Dichlorochloro mouth bezonzozonito trilinorore
DDCCSS :: 44,, 44''——ジジククロロロロジジフフエエニニルルススルルホホンン  DDCCSS :: 44 ,, 44``——Dichlorochlorodiphweinyl Luthululhohon
CCBBPP :: 44,, 44''——ジジククロロロロべべンンゾゾフフエエノノンン  CCBBPP :: 44 ,, 44``——Dichlorochlorobenbenzozofuenonon
HHDDTT :: 11 ,, 66——へへキキササンンジジチチオオーールル  HHDDTT :: 11 ,, 66——Hexoxasan didithiothiool
DDDDTT :: 11 ,, 1100——デデカカンンジジチチオオーールル  DDDDTT :: 11 ,, 1100——Decacandidithiothiool
NNDDTT :: 33,, 66——ジジチチアア 11 ,, 99ーーノノナナンンジジチチォォ一一ノノレレ  NNDDTT :: 33 ,, 66——Dizychiaia 11,, 99
PPDDTT :: 22——メメルルカカププトトェェチチルルススルルフフイイドド
Figure imgf000053_0001
PPDDTT :: 22——Memerulkacaptoethyl sulsulfide
Figure imgf000053_0001
BPS:ビス(4—ヒドロキシフエ二ノレ)スルフイド BP :4, 4,ービフエノーノレ BPS: Bis (4-hydroxyphenol) sulfide BP: 4, 4, Bihuenore
TBT:4, 4'—チォビスベンゼンチォーノレ  TBT: 4, 4'—Chobisbenzenecinore
DHE:4, 4'—ジヒドロキシジフエニルエーテル  DHE: 4,4'-dihydroxydiphenyl ether
BPA :2, 2 ビス(4ーヒドロキシフエ二ノレ)プロパン  BPA: 2, 2 Bis (4-hydroxyphenol) propane
BPF :2, 2 ビス(4ーヒドロキシフエ二ノレ)へキサフノレオ口プロパン BPF: 2, 2 Bis (4-hydroxyphenol) Hexafnoreo Mouth Propane
BPH:1, 1—ビス(4—ヒドロキシフエ二ノレ)シクロへキサン BPH: 1,1-bis (4-hydroxyphenenoyl) cyclohexane
DHM:4, 4'—ジヒドロキシジフエニルメタン  DHM: 4,4'-dihydroxydiphenylmethane
HCQ:10-(2, 5 ジヒドロキシフエ二ル)一 9, 10 ジヒドロ一 9 ォキ フォスファフェナントレン 10—才キシド  HCQ: 10- (2,5 dihydroxyphenyl) 1,9,10 dihydro-1,9 phosphaphenanthrene 10-year-old oxide
[表 2] [Table 2]
Figure imgf000055_0001
Figure imgf000055_0001
表 2における化学式 166〜; 168で表されるポリマー構造を以下に示す。 [0127] [化 36] The polymer structures represented by chemical formulas 166 to 168 in Table 2 are shown below. [0127] [Chemical 36]
Figure imgf000056_0001
Figure imgf000056_0001
HO,S 0 S03H CM HO, S 0 S0 3 H CM
Ar' : ---Q--S-- -- - のいずれかを表す Ar ': One of --- Q--S----
(化学式 1 6 8 )  (Chemical formula 1 6 8)
[0128] <実施例;!〜 21〉 [0128] <Example;! ~ 21>
合成例;!〜 21で得られたポリマーについて、それぞれ 7gを NMP28gに溶解し、ホ ッ卜プレー卜上ガラス板 ίこ約 400〃 m厚 ίこキャス卜して 80oGで 0. 5日寺 、 120。( で 0. 5時間、 150°Cで 0. 5時間加熱した後、窒素雰囲気の 150°Cのオーブン中で 1時間 乾燥し、ガラス板からフィルムを剥離した。得られたフィルムは室温の純水に 1日浸漬 した後、 2mol/Lの硫酸水溶液に 1時間浸漬し、さらに別の 2mol/Lの硫酸水溶液 に 1時間浸漬した。その後、洗浄水が中性になるまでフィルムを純水で洗浄し、ろ紙 で表面の水分を除去した後、清浄なろ紙に挟み、さらに両面をガラス板で挟み、荷重 をかけながら室内に 2日間放置して乾燥し、高分子電解質膜を得た。得られた高分 子電解質膜にっレ、て評価を行った。 Synthesis Example;! ~ 21 for each of the polymers obtained in! ~ 21 were dissolved in 28 g of NMP and the glass plate on the hot plate was about 400 mm thick and cast at 80 o G for 0.5 days. Temple, 120. (After 0.5 hour at 150 ° C for 0.5 hour, dried in an oven at 150 ° C under nitrogen atmosphere for 1 hour to peel off the film from the glass plate. After being immersed in water for 1 day, it was immersed in a 2 mol / L sulfuric acid aqueous solution for 1 hour and further immersed in another 2 mol / L aqueous sulfuric acid solution for 1 hour, and then the film was washed with pure water until the washing water became neutral. After washing and removing the moisture on the surface with filter paper, it was sandwiched between clean filter papers, and both sides were sandwiched between glass plates, and left to dry in the room for 2 days while applying a load to obtain a polymer electrolyte membrane. The obtained polymer electrolyte membrane was evaluated.
<比較例;!〜 4〉  <Comparative example;! ~ 4>
合成例;!〜 4で得られたポリマーについて、実施例と同様にして高分子電解質膜を 得た。得られた高分子電解質膜について評価を行った。比較例 2〜4の発電評価で は、予め高分子電解質膜を 25°C100%RH下の雰囲気に 1時間放置してから、ホット プレスして膜/電極接合体を作製した。  Synthesis Example; For the polymers obtained in! To 4, a polymer electrolyte membrane was obtained in the same manner as in Example. The obtained polymer electrolyte membrane was evaluated. In power generation evaluation of Comparative Examples 2 to 4, the polymer electrolyte membrane was previously left in an atmosphere at 25 ° C. and 100% RH for 1 hour and then hot-pressed to produce a membrane / electrode assembly.
評価結果を表 3に示す。  Table 3 shows the evaluation results.
[0129] [表 3] [0129] [Table 3]
Figure imgf000057_0001
Figure imgf000057_0001
表 3から、本発明における水素を燃料とする燃料電池 (PEFC)用の高分子電解質 膜 (実施例 17〜21)は、比較例の高分子電解質膜 (比較例 3〜4)の高分子電解質 膜に対して、初期電圧は同等であるが、耐久時間が大きく向上しており、優れた高分 子電解質膜であることが分かる。また、本発明における、ダイレクトメタノール型燃料 電池 (DMFC)用の高分子電解質膜 (実施例;!〜 16)は、比較例の高分子電解質膜 (比較例 1〜2)に対して、出力電圧が高ぐ優れた高分子電解質膜であることが明ら 力、である。また、本発明の高分子電解質膜は、イオン交換容量が同等である比較例 の高分子電解質膜に対して、高いプロトン伝導性を示しており、燃料電池の高出力 化に寄与している。また、本発明の高分子電解質膜は、 110〜160°Cという温和な温 度で良好に膜と電極を接合することができ、取り极レ、性にも優れてレ、る。 From Table 3, the polymer electrolyte membranes (Examples 17 to 21) for hydrogen-fueled fuel cells (PEFCs) in the present invention are the polymer electrolyte membranes of the comparative examples (Comparative Examples 3 to 4). The initial voltage is equivalent to that of the membrane, but the durability time is greatly improved, indicating that the membrane is an excellent polymer electrolyte membrane. Further, in the present invention, the polymer electrolyte membranes for direct methanol fuel cells (DMFC) (Examples;! To 16) were compared with the polymer electrolyte membranes of Comparative Examples (Comparative Examples 1 to 2). It is clear that this is a high polymer electrolyte membrane. In addition, the polymer electrolyte membrane of the present invention exhibits high proton conductivity compared to the polymer electrolyte membrane of the comparative example having the same ion exchange capacity, and contributes to higher output of the fuel cell. The polymer electrolyte membrane of the present invention has a mild temperature of 110 to 160 ° C. The film and the electrode can be satisfactorily joined with each other, and the polarity and properties are excellent.
産業上の利用可能性 Industrial applicability
本発明のスルホン酸基含有ポリマーは、ポリマーの柔軟性が向上して脆さが改善さ れ、高分子電解質膜とした場合に、従来の炭化水素系高分子電解質膜に比べて、 プロトン伝導性と耐久性に優れるという長所を有しているため、燃料電池用高分子電 解質膜として有用であり、さらには、電解膜、分離膜など、高分子電解質膜としても公 知の任意の用途に用いることができ、産業界に寄与すること大である。  The sulfonic acid group-containing polymer of the present invention has improved polymer flexibility and improved brittleness, and, when used as a polymer electrolyte membrane, has a proton conductivity higher than that of conventional hydrocarbon polymer electrolyte membranes. It is useful as a polymer electrolyte membrane for fuel cells because it has the advantage of being excellent in durability, and it can also be used as a polymer electrolyte membrane such as an electrolytic membrane and a separation membrane. Can contribute to the industry.

Claims

請求の範囲 The scope of the claims
少なくとも下記化学式 1及び 2で表される構造単位を有することを特徴とするスルホ ン酸基含有ポリマー。  A sulfonic acid group-containing polymer having at least a structural unit represented by the following chemical formulas 1 and 2.
[化 1]
Figure imgf000059_0001
(化学式 I ) (化学式 2 )
[Chemical 1]
Figure imgf000059_0001
(Chemical Formula I) (Chemical Formula 2)
[化学式 I及び 2において、 Xは— S ( =〇) 一基又は— C ( =〇)一基を、 Yは H又は [In Formulas I and 2, X is — S (= 〇) or — C (= 〇), Y is H or
2  2
I価の陽イオンを、 R1は炭素数 1〜10のアルキレン基、ォキシアルキレン基、ァリーレ ン基及び直接結合 (ベンゼン環と SO Y基との)のうちのいずれかを、 R2は硫黄原子 An I-valent cation, R 1 is any one of an alkylene group having 1 to 10 carbon atoms, an oxyalkylene group, an arylene group, and a direct bond (a benzene ring and a SO Y group), and R 2 is Sulfur atom
3  Three
又は酸素原子を含んでレ、てもよ!/、炭素数 2〜20のアルキレン基又はァラルキレン基 を、 Ar1は電子吸引性基を有する 2価の芳香族基を、 n及び mはそれぞれの構造単 位のポリマー分子中のモル数で 1〜1000の整数を表す。 ] Or an oxygen atom may be included! /, An alkylene or aralkylene group having 2 to 20 carbon atoms, Ar 1 is a divalent aromatic group having an electron-withdrawing group, and n and m are each It represents an integer of 1 to 1000 in terms of the number of moles in the structural unit polymer molecule. ]
[2] 下記化学式 3及び 4で表される構造単位をさらに有する請求項 1に記載 (;  [2] The claim 1 further comprising a structural unit represented by the following chemical formulas 3 and 4 (;
酸基含有ポリマー。  Acid group-containing polymer.
[化 2]
Figure imgf000059_0002
(化学式 3 ) (化学式 4 )
[Chemical 2]
Figure imgf000059_0002
(Chemical formula 3) (Chemical formula 4)
[化学式 3及び 4において、 Xは— S ( =〇) 一基又は— C ( =〇)一基を、 Yは H又は [In the chemical formulas 3 and 4, X represents one — S (= 〇) or — C (= 〇), Y represents H or
2  2
1価の陽イオンを、 R1は炭素数 1〜10のアルキレン基、ォキシアルキレン基、ァリーレ ン基及び直接結合(ベンゼン環と SO Y基との)のうちのいずれかを、 Ar1は電子吸引 A monovalent cation, R 1 is an alkylene group having 1 to 10 carbon atoms, an oxyalkylene group, an arylene group, or a direct bond (a benzene ring and a SO Y group), Ar 1 is Electronic suction
3  Three
性基を有する 2価の芳香族基を、 Z1は酸素原子又は硫黄原子のいずれかを、 Z2は、 酸素原子、硫黄原子、 -C (CH ) 一基、—C (CF ) —基、—CH—基、シクロへキ A divalent aromatic group having a functional group, Z 1 represents either an oxygen atom or a sulfur atom, Z 2 represents an oxygen atom, a sulfur atom, a single —C (CH 3) group, a —C (CF 3) — group , —CH— group, cyclohex
3 2 3 2 2  3 2 3 2 2
シレン基、直接結合(ベンゼン環同士の)のうちのいずれかを、 o及び pはそれぞれの 構造単位のポリマー分子中のモル数で 1〜1000の整数を表す。 ] [3] 下記化学式 5及び 6で表される構造単位をさらに有する請求項 1又は 2に記載のス ルホン酸基含有ポリマー。 Either a silene group or a direct bond (between benzene rings), o and p each represents an integer of 1 to 1000 in terms of moles in the polymer molecule of each structural unit. ] [3] The sulfonic acid group-containing polymer according to claim 1 or 2, further comprising a structural unit represented by the following chemical formulas 5 and 6.
[化 3]  [Chemical 3]
Figure imgf000060_0001
:学式 5 ) (化学式 6 )
Figure imgf000060_0001
: Formula 5) (Chemical formula 6)
[化学式 5及び 6において、 Xは— S ( =〇) 一基又は— C ( =〇)一基を、 Yは H又は [In Chemical Formulas 5 and 6, X is — S (= 〇) or — C (= 〇), Y is H or
2  2
1価の陽イオンを、 R1は炭素数 1〜10のアルキレン基、ォキシアルキレン基、ァリーレ ン基及び直接結合(ベンゼン環と SO Y基との)のうちのいずれかであり、 Ar1は電子 A monovalent cation, R 1 is any one of an alkylene group having 1 to 10 carbon atoms, an oxyalkylene group, an arylene group, and a direct bond (a benzene ring and a SO Y group), Ar 1 Is electronic
3  Three
吸引性基を有する 2価の芳香族基を、 Z3は酸素原子又は硫黄原子のいずれかを、 A r2は芳香族基を含む 3価又は 4価の基を、 qは 1又は 2を、 r及び sはそれぞれの構造 単位のポリマー分子中のモル数で 1〜1000の整数を表す。 ] A divalent aromatic group having an attractive group, Z 3 is either an oxygen atom or a sulfur atom, Ar 2 is a trivalent or tetravalent group containing an aromatic group, q is 1 or 2 , R and s each represent an integer of 1 to 1000 in terms of the number of moles of each structural unit in the polymer molecule. ]
化学式 2、 4及び 6における Ar1が、下記化学式 7〜; 10で表される構造単位のうちの 少なくとも 1種である請求項 1〜3に記載のスルホン酸基含有ポリマー。 4. The sulfonic acid group-containing polymer according to claim 1, wherein Ar 1 in chemical formulas 2, 4 and 6 is at least one of structural units represented by chemical formulas 7 to 10 below:
[化 4]  [Chemical 4]
(化学式 8 )
Figure imgf000060_0002
(Chemical formula 8)
Figure imgf000060_0002
[5] 化学式 2、 4及び 6における Ar1が、化学式 9又は 10で表される構造単位のいずれ かである請求項 1〜3のいずれかに記載のスルホン酸基含有ポリマー。 [5] The sulfonic acid group-containing polymer according to any one of claims 1 to 3, wherein Ar 1 in the chemical formulas 2, 4 and 6 is any one of the structural units represented by the chemical formulas 9 and 10.
[6] 化学式 1、 3、 5及び 12における R1が SO Y基との直接結合である請求項 1〜3に記 [6] R 1 in the chemical formulas 1, 3, 5 and 12 is a direct bond with the SO Y group.
3  Three
載のスルホン酸基含有ポリマー。  The sulfonic acid group-containing polymer.
[7] 化学式 1及び 2における R2が直鎖のアルキレン基である請求項 1〜3に記載のスル (6¾ί¾) ΟΖ ·0 (s十ュ十 d十 ο十 + 十 ο十 u) si ·〇 [7] according to claim 1 to 3 R 2 in Chemical Formula 1 and 2 is a linear alkylene group (6¾ί¾) ΟΖ · 0 (s tens tens d ο ten + ten ο ten u) si · ○
°灏葛姆篡士 O)靠^ ) Slgl 鍵 <5 ^ ^观篡佛 2 佛 峯氺、 コ继 6〜Ζ¾ί凝^土 sJd0 raU(5 ¾ )9〜!: ^^ ° 灏 姆 篡 靠 O) ^) Slgl key <5 ^ ^ 观 篡 佛 2 继 继, 继 6 ~ Ζ¾ί 凝s , J , d , 0 ra , U ( 5 ¾) 9 ~! : ^^
(8^W 6 (s + j + d + o + ui + u) / (Tii + u) ·〇(8 ^ W 6 (s + j + d + o + ui + u) / (Tii + u)
^ 01 (s+j + d + o + ui + u)/(s+j) ^ 01 (s + j + d + o + ui + u) / (s + j)
(9¾ί¾) 06 ·0 (s十ュ十 d十 o十 ui + u)/(cl十 o) 01 Ό (Q^ 0 ·0 (s+j十 d十 o十 + 十 o十 u) ^go Ό  (9¾ί¾) 06 0 (s 10 tens d 10 o ui + u) / (cl 10 o) 01 Ό (Q ^ 0 0 (s + j ten d ten o ten + ten o ten u) ^ go Ό
°灏葛姆篡士 O)靠^ ) S¾l 鍵 观篡佛  ° 灏 Katsuo O) 靠 ^) S¾l key 观 篡 佛
—/ ^!^^ 、 コ继 9〜 ¾ί凝^土 sJd0raU(5 ¾ 9〜!: ^^ — / ^! ^^, co-继9~ ¾ί coagulation ^ soil s, J, d, 0, ra, U (5 ¾ 9~ !: ^^
°灏葛姆篡士 ? 一ム ίί 暴 S べ^ O)靠^ 1〜1¾ 鍵  ° 灏 Katsu Kushi? 1 ίί S ^ ^ O) 靠 ^ 1〜1¾ Key
(P^W 00 -χ^ (s + j + d + o + ui + u) / (Tii + u) ^ ο (P ^ W 00 -χ ^ (s + j + d + o + ui + u) / (Tii + u) ^ ο
(S^ 01 (s+j + d + o + ui + u)/(s+j) (S ^ 01 (s + j + d + o + ui + u) / (s + j)
(Z^ 66 ·0 (s十ュ十 d十 ο十 ui + u)/(cl十 ο) το Ό (Χ¾ί¾) 0Ζ ·0 (s十ュ十 d十 ο十 + 十 ο十 u) so Ό (Z ^ 66 · 0 (s ten tens d ten ο ten ui + u) / (cl ten ο) τ ο Ό (Χ¾ί¾) 0Ζ · 0 (s ten tens d ten ο ten + ten ο ten u) so Ό
。一ム fl 阜 S べ ^^ O)靠^ SI〜!: gl 鍵 S〜!: 凝^土 sJd0raU(5 ¾ )9〜!: ^^. 1m fl Fu S Be ^^ O) 靠 ^ SI ~! : gl key S ~! : Coal s , J , d , 0 , ra , U ( 5 ¾) 9 ~! : ^^
。一ム n 暴 s べ ^^ o)靠^ ) ε¾ 鍵 <5 ^ι^ゆ ^ ^ ^ ^s ^w . ^^ o) 靠 ^) ε¾ key <5 ^ ι ^^ ^ ^ ^ ^ s ^ w
。一ム 暴 ¾ ベ^^ O)靠^ ) Sgr 鍵 <5 ベ^べ^^ S JV<5 ¾ ^S^^W . Sem key <5 ^^ S J V <5 ¾ ^ S ^^ W
。一ム ίί 暴 ¾ べ^ , Ο)扉 鍵 <5 士^峯 ^ εΖ<5 9 . Ichimu ίί violence ¾ base ^, Ο) door key <5 mechanic ^ Mine ^ ε Ζ <5 9
。一ム Π 阜 S べ^^ θ)靠 鍵 § H、 0) O)蒼べ Λ ^ ^ ¾- ( dO)0- ¾- ( H ) —、 sz§ ¾ ¾¾ ^ .ム S 阜 S S ^^ θ) 靠 Key § H, 0) O) 蒼 Λ ^ ^ ¾- (dO) 0- ¾- (H) —, s z§ ¾ ¾¾ ^
。一ム η 暴 s べ^ 。一ム ίΐ 暴 ¾ べ^ , Ο)扉 鍵 <^ 士^峯 ^ <5 ^s ^w  . 1 η violently. Ϊ́ ΐ ΐ ¾ べ ^ ^ ^ ^ 扉 扉 扉 Door Key <^ Shi ^^
。一ム n 暴 s べ^  . N violent s
08.890/.00Zdf/X3d 69 Z0.8C0/800Z OAV 08.890 / .00Zdf / X3d 69 Z0.8C0 / 800Z OAV
0. 01≤ (o + p) / (n + m + o + p + r + s)≤0. 70 (数式 10) 0. 01≤ (o + p) / (n + m + o + p + r + s) ≤0.770 (Equation 10)
0≤ (r+ s) / (n + m + o + p + r+ s)≤0. 10 (数式 11)  0≤ (r + s) / (n + m + o + p + r + s) ≤0.10 (Equation 11)
0. 05≤ (n + m) / (n + m + o + p + r + s)≤0. 8 (数式 12)  0. 05≤ (n + m) / (n + m + o + p + r + s) ≤0.8 (Formula 12)
[18] 請求項 15〜; 17に記載の高分子電解質膜と電極触媒層からなる膜/電極接合体。  [18] A membrane / electrode assembly comprising the polymer electrolyte membrane according to claims 15 to 17 and an electrode catalyst layer.
[19] 膜/電極接合体の電極触媒層に、請求項 1〜; 14のいずれかのスルホン酸基含有 ポリマーを用いてなる膜/電極接合体。 [19] A membrane / electrode assembly using the sulfonic acid group-containing polymer according to any one of claims 1 to 14 for the electrode catalyst layer of the membrane / electrode assembly.
[20] 請求項 18又は 19に記載の膜/電極接合体を用いてなる燃料電池。 [20] A fuel cell comprising the membrane / electrode assembly according to [18] or [19].
[21] 請求項 1のスルホン酸基含有ポリマーの芳香族求核置換反応による製造方法であ つて、主鎖構造に脂肪族基を導入するに際し、化学式 11で表される構造の化合物を 反応成分の一つとして用いることを特徴とするスルホン酸基含有ポリマーの製造方法[21] A process for producing an aromatic nucleophilic substitution reaction of a sulfonic acid group-containing polymer according to claim 1, wherein an aliphatic group is introduced into the main chain structure, and a compound having the structure represented by Formula 11 is used as a reaction component For producing a sulfonic acid group-containing polymer, characterized in that
Yes
[化 5]  [Chemical 5]
HS-R^-SH (化学式 1 1 ) HS-R ^ -SH (Chemical formula 1 1)
[化学式 11にお!/、て、 R3は硫黄原子又は酸素原子を含んでレ、てもよ!/、炭素数 2〜2 0のアルキレン基又はァラルキレン基を表す。 ] [In Formula 11,! /, And R 3 may contain a sulfur atom or an oxygen atom! /, And represents an alkylene group or aralkylene group having 2 to 20 carbon atoms. ]
PCT/JP2007/068780 2006-09-29 2007-09-27 Sulfonic acid group-containing polymer, method for producing the same, polymer electrolyte membrane using sulfonic acid group-containing polymer, membrane electrode assembly, and fuel cell WO2008038702A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007556453A JPWO2008038702A1 (en) 2006-09-29 2007-09-27 Sulfonic acid group-containing polymer, production method thereof, polymer electrolyte membrane using sulfonic acid group-containing polymer, membrane / electrode assembly, and fuel cell

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006266792 2006-09-29
JP2006-266792 2006-09-29

Publications (1)

Publication Number Publication Date
WO2008038702A1 true WO2008038702A1 (en) 2008-04-03

Family

ID=39230137

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/068780 WO2008038702A1 (en) 2006-09-29 2007-09-27 Sulfonic acid group-containing polymer, method for producing the same, polymer electrolyte membrane using sulfonic acid group-containing polymer, membrane electrode assembly, and fuel cell

Country Status (2)

Country Link
JP (1) JPWO2008038702A1 (en)
WO (1) WO2008038702A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011016444A1 (en) * 2009-08-03 2011-02-10 東洋紡績株式会社 Novel sulfonic acid group-containing segmented block copolymer and use thereof
CN111393580A (en) * 2020-04-02 2020-07-10 南京清研高分子新材料有限公司 Novel polyarylethersulfone composite material and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004134225A (en) * 2002-10-10 2004-04-30 Tosoh Corp Polymer electrolyte membrane, membrane-electrode joint body for solid polymer fuel cell, and solid polymer fuel cell
JP2004152776A (en) * 2003-12-19 2004-05-27 Hitachi Ltd Solid polymer electrolyte, membrane electrode junction, and fuel cell
JP2006206809A (en) * 2005-01-31 2006-08-10 Toyobo Co Ltd Sulfonic group-containing polymer, polymer composition comprising said polymer, ion exchange resin and ion exchange membrane obtained using said polymer, and membrane/electrode assembly obtained using said ion exchange membrane, and fuel cell
JP2006206779A (en) * 2005-01-28 2006-08-10 Toyobo Co Ltd Sulfonic group-containing polymer, polymer composition comprising said polymer, ion exchange resin and ion exchange membrane obtained using said polymer, membrane/electrode assembly and fuel cell obtained using said ion exchange membrane, and manufacturing method of said polymer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004134225A (en) * 2002-10-10 2004-04-30 Tosoh Corp Polymer electrolyte membrane, membrane-electrode joint body for solid polymer fuel cell, and solid polymer fuel cell
JP2004152776A (en) * 2003-12-19 2004-05-27 Hitachi Ltd Solid polymer electrolyte, membrane electrode junction, and fuel cell
JP2006206779A (en) * 2005-01-28 2006-08-10 Toyobo Co Ltd Sulfonic group-containing polymer, polymer composition comprising said polymer, ion exchange resin and ion exchange membrane obtained using said polymer, membrane/electrode assembly and fuel cell obtained using said ion exchange membrane, and manufacturing method of said polymer
JP2006206809A (en) * 2005-01-31 2006-08-10 Toyobo Co Ltd Sulfonic group-containing polymer, polymer composition comprising said polymer, ion exchange resin and ion exchange membrane obtained using said polymer, and membrane/electrode assembly obtained using said ion exchange membrane, and fuel cell

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011016444A1 (en) * 2009-08-03 2011-02-10 東洋紡績株式会社 Novel sulfonic acid group-containing segmented block copolymer and use thereof
CN111393580A (en) * 2020-04-02 2020-07-10 南京清研高分子新材料有限公司 Novel polyarylethersulfone composite material and preparation method thereof
CN111393580B (en) * 2020-04-02 2022-12-13 宁夏清研高分子新材料有限公司 Polyarylethersulfone composite material and preparation method thereof

Also Published As

Publication number Publication date
JPWO2008038702A1 (en) 2010-01-28

Similar Documents

Publication Publication Date Title
JP3928611B2 (en) Polyarylene ether compounds, compositions containing them, and methods for producing them
JP5720568B2 (en) Solid polymer electrolyte composition, ion exchange membrane, membrane / electrode assembly, fuel cell
WO2006132207A1 (en) Sulfonic acid group-containing polymer, method for producing same, resin composition containing such sulfonic acid group-containing polymer, polymer electrolyte membrane, polymer electrolyte membrane/electrode assembly, and fuel cell
WO2006051749A1 (en) Aromatic hydrocarbon-base proton exchange membrane and direct methanol fuel cell using same
WO2014087957A1 (en) Electrolyte-membrane assembly, membrane electrode assembly, fuel cell, water-electrolysis cell, and water-electrolysis device
JP2007066882A (en) Polyelectrolyte membrane/electrode assembly and fuel cell
JP2008037897A (en) Sulfonic group-containing photocrosslinkable polymer, sulfonic group-containing photocrosslinkable polymer composition, polyelectrolyte film, crosslinked polyelectrolyte film, polyelectrolyte film/electrode assembly, fuel cell and application thereof
JP2007146111A (en) Sulfonic acid group-containing polymer, ion-exchange membrane, membrane/electrode assembly, fuel cell, and polymer composition
JP2009270078A (en) Polymer electrolyte membrane
JP2008115340A (en) Polymer containing sulfonic acid group, its composition and its use
WO2008038702A1 (en) Sulfonic acid group-containing polymer, method for producing the same, polymer electrolyte membrane using sulfonic acid group-containing polymer, membrane electrode assembly, and fuel cell
JP4337038B2 (en) Composition comprising an acidic group-containing polybenzimidazole compound
JP2008120956A (en) Sulfonic acid group-containing polymer, production method and application of the same
JP2007063533A (en) Sulfonic group-containing polymer, use of the same, and method for producing the same
JP2006206809A (en) Sulfonic group-containing polymer, polymer composition comprising said polymer, ion exchange resin and ion exchange membrane obtained using said polymer, and membrane/electrode assembly obtained using said ion exchange membrane, and fuel cell
JP2003147076A (en) Sulfonated fluorine-containing polymer, resin composition containing the same and polymer electrolyte membrane
JP2008074946A (en) Polymer containing sulfonic acid group, composition produced by using the polymer, polymer electrolyte membrane, membrane/electrode assembly and fuel cell
WO2006048942A1 (en) Sulfonated polymer comprising nitrile-type hydrophobic block and solid polymer electrolyte
JP2005235404A (en) Blend ion exchange membrane, membrane/electrode joining body, and fuel cell
JP2006137792A (en) Polyarylene ether-based compound having sulfo group-containing biphenylene structure
JP4022833B2 (en) Sulfonic acid group-containing polymer and use thereof
JP2008097907A (en) Polymer electrolyte membrane, membrane/electrode assembly, and fuel cell using membrane/electrode assembly
JP4720090B2 (en) Sulfonic acid group-containing polymer electrolyte membrane and article using the same
JP2008037896A (en) Sulfonic group-containing thermally crosslinkable polymer, sulfonic group-containing thermally crosslinkable polymer composition, polyelectrolyte film, crosslinked polyelectrolyte film, polyelectrolyte film/electrode assembly, fuel cell and application thereof
JP3651682B1 (en) Durable ion exchange membrane, membrane electrode assembly, fuel cell

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2007556453

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07828526

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07828526

Country of ref document: EP

Kind code of ref document: A1