WO2008038405A1 - Molten salt electrolyzing vessel for metal production and process for producing metal therewith - Google Patents

Molten salt electrolyzing vessel for metal production and process for producing metal therewith Download PDF

Info

Publication number
WO2008038405A1
WO2008038405A1 PCT/JP2007/000861 JP2007000861W WO2008038405A1 WO 2008038405 A1 WO2008038405 A1 WO 2008038405A1 JP 2007000861 W JP2007000861 W JP 2007000861W WO 2008038405 A1 WO2008038405 A1 WO 2008038405A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
partition
molten salt
electrolytic bath
electrolytic
Prior art date
Application number
PCT/JP2007/000861
Other languages
French (fr)
Japanese (ja)
Inventor
Yuichi Ono
Masanori Yamaguchi
Original Assignee
Toho Titanium Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Titanium Co., Ltd. filed Critical Toho Titanium Co., Ltd.
Priority to JP2008536276A priority Critical patent/JPWO2008038405A1/en
Publication of WO2008038405A1 publication Critical patent/WO2008038405A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C5/00Electrolytic production, recovery or refining of metal powders or porous metal masses
    • C25C5/04Electrolytic production, recovery or refining of metal powders or porous metal masses from melts
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/02Electrolytic production, recovery or refining of metals by electrolysis of melts of alkali or alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/26Electrolytic production, recovery or refining of metals by electrolysis of melts of titanium, zirconium, hafnium, tantalum or vanadium
    • C25C3/28Electrolytic production, recovery or refining of metals by electrolysis of melts of titanium, zirconium, hafnium, tantalum or vanadium of titanium

Definitions

  • the present invention relates to a method for producing a metal using a molten salt electrolytic cell, and more particularly to a partition wall structure constituting a molten salt electrolytic cell.
  • titanium metal has been produced by a crawl method by reducing magnesium tetrachloride with magnesium, and along with this, various manufacturing improvements have been made to reduce production costs.
  • the crawl method is a batch process, it is difficult to achieve significant cost reductions through efficiency.
  • molten metal calcium produced by molten salt electrolysis of calcium chloride is generated and accumulated inside a partition wall having a plurality of openings on the side wall of the molten salt electrolytic cell, while the outside of the partition wall And the reaction with chlorine gas generated from an anode immersed in an electrolytic bath partitioned into an electrolytic cell wall.
  • Patent Document 1 WO 9 9/0 6 4 6 3 8
  • Patent Document 2 Japanese Patent Laid-Open No. 2 0 0 3 _ 1 2 9 2 6 8
  • Patent Document 3 Japanese Patent Laid-Open No. 2 0 0 3 _ 3 0 6 7 2 5
  • Patent Document 4 US Patent No. 3 2 2 6 3 1 1
  • Patent Document 5 Japanese Unexamined Patent Publication No. 2 0 0 6 _ 1 1 1 8 9 5
  • the present invention can effectively avoid the reverse reaction between the molten metal produced at the cathode and the chlorine gas produced at the anode in an electrolytic cell for producing molten metal by electrolyzing metal chloride.
  • An object of the present invention is to provide a molten salt electrolytic cell that can be used and a metal production method using the same.
  • the present invention has a first to second arrangements in which a molten salt electrolytic cell for metal production is disposed between an electrolytic cell main body, an anode, a cathode, and the anode and the cathode.
  • 2 partition wall and electrolytic bath, where the electrolytic bath is partitioned by the first partition wall and the second partition wall (hereinafter referred to as “intermediate chamber”).
  • intermediate chamber hereinafter referred to as the “cathode chamber”.
  • the present invention relates to an electrolytic cell main body for holding an electrolytic bath, and an immersion bath disposed in the electrolytic bath.
  • a molten salt electrolytic cell for metal production having an anode and a cathode, wherein the molten salt electrolytic cell is divided into three spaces by a first partition and a second partition, and is partitioned by an electrolytic cell body and a first partition.
  • a cathode chamber including a cathode, an intermediate chamber defined by a first partition and a second partition, and an anode chamber defined by an electrolytic cell body and a second partition and including an anode are configured, and an electrolytic bath is an intermediate chamber It is configured to form a circulating flow from the cathode chamber to the cathode chamber.
  • the lower ends of the first and second partition walls arranged from the cathode side to the anode side constituting the molten salt electrolytic cell are opened.
  • a through hole is provided in the first partition wall portion in contact with the vicinity of the electrolytic bath surface.
  • an inert gas is preferably flowed upward from the bottom. According to such an embodiment, it is possible to suppress the metal produced at the cathode from being dissipated throughout the electrolytic bath, and to collect it by concentrating near the liquid surface above the electrolytic bath.
  • molten metal magnesium is melt-held on the electrolytic bath surface held in the intermediate chamber.
  • the molten metal leaking from the cathode chamber to the intermediate chamber can be trapped by dissolving in magnesium, and the generated metal can be efficiently collected by separating and collecting in a separate process. It has the effect that it can be recovered.
  • FIG. 1 is a schematic cross-sectional view showing an embodiment of a molten salt electrolysis apparatus of the present invention.
  • FIG. 2 is a schematic cross-sectional view showing a modified example of the first partition wall of the molten salt electrolysis apparatus of the present invention.
  • FIG. 1 shows one embodiment of a cathode for carrying out the present invention.
  • Reference numeral 1 denotes an electrolytic cell body, and the electrolytic cell body 1 is filled with an electrolytic bath 11.
  • a mixed bath composed of calcium chloride and potassium chloride is used as the electrolytic bath 11 1 as the electrolytic bath, molten metal calcium is generated at the cathode, and chlorine gas is generated at the anode. I will explain.
  • An anode 2 and a cathode 3 are immersed in the electrolytic bath 11. Also, electrolytic cell The main body 1 is partitioned by the first partition wall 4 and the second partition wall 5 as shown in FIG. 1. A space surrounded by the electrolytic cell body 1 and the second partition wall 5 and including the anode 2 is referred to as an anode chamber 2 1, and a space surrounded by the first partition wall 4 and the second partition wall 5 is referred to as an intermediate chamber 22.
  • Reference numeral 10 is a molten metal calcium layer or a concentrated layer of molten metal calcium generated by molten salt electrolysis in an electrolytic bath, and reference numeral 12 leaks from the cathode chamber 20 as will be described later. It is a molten metal magnesium layer provided for molten metal calcium recovery.
  • the specific gravity of the electrolytic bath composition so that the molten metallic calcium generated by the cathode 3 floats on the surface of the electrolytic bath 11 in the cathode chamber 20.
  • molten calcium generated by molten salt electrolysis floats in the electrolytic bath and is extracted out of the system via the molten metal extraction pipe 6 introduced from the outside of the electrolytic cell body 1. be able to.
  • the lower end of the first partition 4 that divides the cathode chamber 20 and the intermediate chamber 22 is opened, and a bath circulation port 14 is provided in the vicinity of the bath surface of the first partition 4. It is preferable to leave it.
  • the anode chamber 21 is preferably defined by the electrolytic cell body 1 and the second partition wall 5, and the lower end thereof is preferably open. With such an open end, the electrolytic bath can be circulated with the intermediate chamber and the cathode chamber, and the electrolytic reaction can proceed efficiently.
  • an inert gas introduction tube 8 at the bottom of the cathode chamber 20 to introduce the inert gas from the bottom of the electrolytic bath.
  • a flow of the electrolytic bath 11 from the bottom of the cathode chamber 20 to the upper side occurs, and along with this flow, electrolysis from the bottom of the intermediate chamber 22 to the cathode chamber 20 also occurs.
  • a flow of bath 1 1 can be formed.
  • the inert gas introduced into the cathode chamber 20 is preferably configured to be continuously discharged out of the system through an inert gas discharge pipe 7 provided at the top of the cathode chamber 20.
  • the molten metal calcium has a solubility in calcium chloride constituting the electrolytic bath 11
  • the molten metal calcium generated on the surface of the cathode 3 can be quickly extracted out of the system.
  • the circulating flow by introduction of the inert gas can effectively promote the floating separation of the molten metal calcium produced at the cathode, and has an effect that the molten metal calcium can be efficiently recovered. Is.
  • a weir 13 is provided in the vicinity of the circulation port 14 provided in the first partition wall 4. By providing such a weir 13, leakage of the molten metal calcium layer 10 accumulated on the bath surface of the electrolytic bath 11 to the intermediate chamber can be effectively avoided.
  • the flow rate of the inert gas supplied to the electrolytic bath 11 held in the cathode chamber 20 is preferably matched with the flow rate of chlorine gas generated at the anode 2.
  • the gas stirring force received by the electrolytic baths held in the respective regions of the cathode chamber 20 and the anode chamber 21 is equalized, and the electrolytic reaction proceeding in the electrolytic cell body 1 is stabilized. Can do.
  • molten metal magnesium As shown in FIG. 1, it is preferable to hold molten metal magnesium on the electrolytic bath surface held in the intermediate chamber 22 surrounded by the first partition and the second partition. Since molten metallic calcium has high solubility in molten magnesium, molten metallic calcium leaking from the cathode chamber 20 can be efficiently collected.
  • Molten metal magnesium retained in the electrolytic bath surface of the intermediate chamber 22 surrounded by the first partition wall and the second partition wall 22 is recovered from the magnesium metal by distillation in a separate process (not shown). It can be recovered. Separated and recovered metallic calcium can be used as a direct reducing agent for titanium oxide. it can.
  • Chlorine gas generated in the anode 2 is concentrated in a space portion of the anode chamber 21 surrounded by the second partition wall and the electrolytic cell main body 1, and a chlorine gas discharge pipe 9 provided at the top of the anode chamber 21. More discharged outside the system.
  • the discharged chlorine gas can be used for chlorination reaction of titanium ore, for example.
  • the anode 2 used in the present embodiment is preferably made of a material that can withstand high-temperature chlorine gas.
  • the cathode 3 that produces molten metal calcium is preferably made of a material that does not react with molten metal calcium, and more specifically, is preferably made of carbon steel or stainless steel.
  • the first partition wall 4 and the second partition wall 5 are preferably composed of a material that can withstand both chlorine gas and molten metal calcium.
  • the first partition wall 4 and the second partition wall 5 are composed of a ceramic such as a nitride nitride or boron nitride. It is preferable to do.
  • the electrolytic cell body 1 is also preferably made of a ceramic such as a boron nitride or boron nitride that can withstand high-temperature chlorine gas or molten metal calcium.
  • FIG. 2 shows another preferred embodiment of the first partition wall 4.
  • a communication port 15 for communicating the space portion above the cathode chamber and the space portion above the intermediate chamber on the first partition.
  • an electrolytic bath having a composition in which the metallic calcium produced at the cathode 3 is produced in a molten state, and the produced metallic calcium is difficult to dissolve in the electrolytic bath.
  • Such an electrolytic bath can achieve the above-mentioned object efficiently by selecting the molar ratio of calcium chloride: potassium chloride in the range of 85:15 to 50:50.
  • the temperature of the electrolytic bath in the present invention is preferably maintained in the range of 85 ° to 90 ° C.
  • the temperature of the electrolytic bath in the present invention is preferably maintained in the range of 85 ° to 90 ° C.
  • molten salt electrolysis tank shown in Fig. 1 we were able to recover calcium metal by performing molten salt electrolysis of calcium chloride under the following conditions.
  • the weight of the recovered metal calcium was equivalent to 90 ⁇ 1 ⁇ 2 of the amount of metal calcium calculated from the energization amount, and high current efficiency was confirmed.
  • Atmosphere Argon gas 4. Inert gas flow rate to the cathode chamber: 0.2 NI / min
  • Metal calcium for reduction which is indispensable for the production of metallic titanium, can be produced efficiently, thereby contributing to the cost reduction of metallic titanium.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrolytic Production Of Metals (AREA)

Abstract

An electrolyzing vessel for electrolyzing a metal chloride to thereby produce a molten metal, adapted to effectively avoid any reverse reaction between molten metal formed on negative electrode and chlorine gas formed on positive electrode. The molten salt electrolyzing vessel for metal production is one having an electrolyzing vessel main body for holding an electrolytic bath and, immersed and arranged in the electrolytic bath, a positive electrode and a negative electrode, characterized in that the molten salt electrolyzing vessel is divided by a first diaphragm and a second diaphragm into three spaces to thereby provide a negative electrode compartment partitioned by the electrolyzing vessel main body and the first diaphragm and including a negative electrode, an intermediate compartment partitioned by the first and second diaphragms and a positive electrode compartment partitioned by the electrolyzing vessel main body and the second diaphragm and including a positive electrode so that the electrolytic bath generates a circulating flow from the intermediate compartment toward the negative electrode compartment.

Description

明 細 書  Specification
金属製造用溶融塩電解槽およびこれを用いた金属の製造方法 技術分野  Molten salt electrolytic cell for metal production and metal production method using the same
[0001 ] 本発明は、 溶融塩電解槽を用いた金属の製造方法に係り、 特に、 溶融塩電 解槽を構成する隔壁構造に関する。  TECHNICAL FIELD [0001] The present invention relates to a method for producing a metal using a molten salt electrolytic cell, and more particularly to a partition wall structure constituting a molten salt electrolytic cell.
背景技術  Background art
[0002] 従来、 金属チタンは、 四塩化チタンのマグネシウム還元によるクロール法 により製造されてきており、 これとともに種々の改良の積み重ねにより製造 コス卜の削減が図られている。 しかしながらクロール法はバッチ式プロセス であるために効率化による大幅なコスト削減は難しい状況にある。  [0002] Conventionally, titanium metal has been produced by a crawl method by reducing magnesium tetrachloride with magnesium, and along with this, various manufacturing improvements have been made to reduce production costs. However, since the crawl method is a batch process, it is difficult to achieve significant cost reductions through efficiency.
[0003] 上記の状況に対して、 金属カルシウムを含むカルシウム塩等の溶融塩中に て酸化チタンを還元して直接金属チタンを製造する試みが報告されている ( 例えば、 特許文献 1、 2参照) 。 また、 金属カルシウム等の活性金属または 活性金属合金を含む還元剤を製造し、 この還元剤から放出される電子によつ てチタン化合物を還元して金属チタンを製造する方法も知られている (例え ば、 特許文献 3参照) 。  [0003] For the above situation, attempts have been reported to directly produce titanium metal by reducing titanium oxide in a molten salt such as calcium salt containing metallic calcium (for example, see Patent Documents 1 and 2). ) Also known is a method for producing a titanium metal by producing a reducing agent containing an active metal such as calcium metal or an active metal alloy, and reducing the titanium compound by electrons emitted from the reducing agent ( For example, see Patent Document 3).
[0004] これらの方法においては、 金属カルシウムと酸化チタンが反応して副生し た酸化カルシウムを溶融塩化カルシウム中に一旦溶解させた後、 次いで前記 溶融塩を電解することにより金属カルシウムとして再回収する手法が採られ ている。 しかしながら、 金属カルシウムは、 塩化カルシウムに対して溶解度 を有するために、 金属カルシウムを単独で回収することが難しいと考えられ ている。  [0004] In these methods, calcium oxide produced as a by-product of the reaction between metallic calcium and titanium oxide is once dissolved in molten calcium chloride, and then the molten salt is electrolyzed and recovered again as metallic calcium. The approach is taken. However, since metallic calcium has solubility in calcium chloride, it is considered difficult to recover metallic calcium alone.
[0005] 一方、 金属カルシウムよりも融点の低い複合溶融塩を電解浴に用いて、 金 属カルシウムを固体で回収する技術も知られている (例えば、 特許文献 4参 照) 。 しかしながら、 この方法では複合溶融塩を特別に準備する必要があり 、 また、 回収された固体の金属カルシウムを電極から剥離して回収する技術 も必要とされる。 [0006] このため、 塩化カルシウムの溶融塩還元で溶融カルシウムを生成させ、 こ れを素早く、 系外に抜出す方法が開示されている (例えば、 特許文献 5参照 ) 。 前記の技術においては、 溶融塩電解槽の側壁に複数の開口部を有する隔 壁の内部に塩化カルシウムの溶融塩電解で生成した溶融金属カルシウムを生 成させて蓄積させ、 一方、 前記隔壁の外部と電解槽壁とに区画した電解浴中 に浸漬配置した陽極から発生する塩素ガスとの逆反応を抑制するように構成 している。 しかしながら、 前記の構成をとつても前記溶融カルシウムと塩素 ガスとの逆反応を皆無にすることは難しく、 改善が求められていた。 [0005] On the other hand, a technique for recovering metallic calcium as a solid by using a composite molten salt having a melting point lower than that of metallic calcium in an electrolytic bath is also known (for example, see Patent Document 4). However, this method requires special preparation of the composite molten salt, and also requires a technique for separating and recovering the recovered solid metallic calcium from the electrode. [0006] For this reason, a method has been disclosed in which molten calcium is produced by molten salt reduction of calcium chloride, and this is quickly extracted out of the system (see, for example, Patent Document 5). In the above technique, molten metal calcium produced by molten salt electrolysis of calcium chloride is generated and accumulated inside a partition wall having a plurality of openings on the side wall of the molten salt electrolytic cell, while the outside of the partition wall And the reaction with chlorine gas generated from an anode immersed in an electrolytic bath partitioned into an electrolytic cell wall. However, even with the above configuration, it is difficult to eliminate the reverse reaction between the molten calcium and chlorine gas, and improvement has been demanded.
[0007] 特許文献 1 : WO 9 9 / 0 6 4 6 3 8号  [0007] Patent Document 1: WO 9 9/0 6 4 6 3 8
特許文献 2:特開 2 0 0 3 _ 1 2 9 2 6 8号公報  Patent Document 2: Japanese Patent Laid-Open No. 2 0 0 3 _ 1 2 9 2 6 8
特許文献 3:特開 2 0 0 3 _ 3 0 6 7 2 5号公報  Patent Document 3: Japanese Patent Laid-Open No. 2 0 0 3 _ 3 0 6 7 2 5
特許文献 4:米国特許第 3 2 2 6 3 1 1号  Patent Document 4: US Patent No. 3 2 2 6 3 1 1
特許文献 5:特開 2 0 0 6 _ 1 1 1 8 9 5号公報  Patent Document 5: Japanese Unexamined Patent Publication No. 2 0 0 6 _ 1 1 1 8 9 5
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0008] 本発明は、 金属の塩化物を電解して溶融金属を製造する電解槽において、 陰極で生成させた溶融金属と陽極で生成した塩素ガスとの逆反応を効果的に 回避することができる溶融塩電解槽およびこれを用いた金属の製造方法の提 供を目的とするものである。  [0008] The present invention can effectively avoid the reverse reaction between the molten metal produced at the cathode and the chlorine gas produced at the anode in an electrolytic cell for producing molten metal by electrolyzing metal chloride. An object of the present invention is to provide a molten salt electrolytic cell that can be used and a metal production method using the same.
課題を解決するための手段  Means for solving the problem
[0009] 本発明は、 前記課題を解決すべく鋭意検討した結果、 金属製造用溶融塩電 解槽を電解槽本体、 陽極、 陰極、 前記陽極と陰極との間に配置された第 1 〜 第 2隔壁および電解浴から構成し、 前記電解浴が第 1隔壁と第 2隔壁で区画 された部位 (以降、 「中間室」 と呼ぶ。 ) から前記第 1隔壁と電解槽本体で 区画された部位 (以降、 「陰極室」 と呼ぶ。 ) へ向う循環流を形成するよう に構成することにより、 陰極で生成した還元性金属を効率よく浮上分離させ て回収することができることを見出し、 本願発明を完成するに至った。  As a result of intensive studies to solve the above problems, the present invention has a first to second arrangements in which a molten salt electrolytic cell for metal production is disposed between an electrolytic cell main body, an anode, a cathode, and the anode and the cathode. 2 partition wall and electrolytic bath, where the electrolytic bath is partitioned by the first partition wall and the second partition wall (hereinafter referred to as “intermediate chamber”). (Hereinafter referred to as the “cathode chamber”.) It was found that the reductive metal produced at the cathode can be efficiently levitated and recovered by forming the circulating flow toward the cathode, and the present invention is recovered. It came to be completed.
[0010] 即ち、 本願発明は、 電解浴を保持する電解槽本体と、 電解浴に浸漬配置さ れた陽極および陰極を備えた金属製造用溶融塩電解槽であって、 溶融塩電解 槽は、 第 1隔壁および第 2隔壁によって 3つの空間に区画され、 電解槽本体 および第 1隔壁によって区画され陰極を含む陰極室、 第 1隔壁および第 2隔 壁によって区画されてなる中間室、 および、 電解槽本体および第 2隔壁によ つて区画され陽極を含む陽極室を構成し、 電解浴が中間室から陰極室へ循環 流を形成するように構成したことを特徴とするものである。 That is, the present invention relates to an electrolytic cell main body for holding an electrolytic bath, and an immersion bath disposed in the electrolytic bath. A molten salt electrolytic cell for metal production having an anode and a cathode, wherein the molten salt electrolytic cell is divided into three spaces by a first partition and a second partition, and is partitioned by an electrolytic cell body and a first partition. A cathode chamber including a cathode, an intermediate chamber defined by a first partition and a second partition, and an anode chamber defined by an electrolytic cell body and a second partition and including an anode are configured, and an electrolytic bath is an intermediate chamber It is configured to form a circulating flow from the cathode chamber to the cathode chamber.
[001 1 ] このような本願発明に係る溶融塩電解槽を用いることにより、 生成する金 属と塩素ガスの逆反応を抑制しつつ、 溶融金属を効率よく製造することがで きるという効果を奏するものである。 [001 1] By using such a molten salt electrolyzer according to the present invention, it is possible to efficiently produce a molten metal while suppressing a reverse reaction between the generated metal and chlorine gas. Is.
[0012] また、 本願発明に係る金属製造用溶融塩電解槽は、 前記溶融塩電解槽を構 成する陰極側から陽極側に向かって配置された第 1〜第 2隔壁の下端が開放 されており、 前記電解浴面近傍に接している第 1隔壁部位に貫通孔が設けら れていることを好ましい形態としている。 このような態様によれば、 溶融塩 電解により高い電流効率を維持しつつ、 溶融金属を製造することができると いう効果を奏するものである。 [0012] Further, in the molten salt electrolytic cell for metal production according to the present invention, the lower ends of the first and second partition walls arranged from the cathode side to the anode side constituting the molten salt electrolytic cell are opened. In addition, it is preferable that a through hole is provided in the first partition wall portion in contact with the vicinity of the electrolytic bath surface. According to such an embodiment, there is an effect that a molten metal can be produced while maintaining high current efficiency by molten salt electrolysis.
[0013] 本願発明に係る金属の製造方法は、 前記陰極が浸漬配置された陰極室の電 解浴において、 底部から上方へ向けて不活性ガスを流通させることを好まし い形態としている。 このような態様によれば、 陰極に生成した金属が電解浴 全体に散逸することを抑制し、 電解浴上方の液面近傍に濃化させて回収する ことができる。 [0013] In the metal production method according to the present invention, in the electrolytic bath in the cathode chamber in which the cathode is immersed, an inert gas is preferably flowed upward from the bottom. According to such an embodiment, it is possible to suppress the metal produced at the cathode from being dissipated throughout the electrolytic bath, and to collect it by concentrating near the liquid surface above the electrolytic bath.
[0014] 更に本願発明に係る金属の製造方法は、 前記中間室に保持した電解浴面に 溶融金属マグネシウムを溶融保持したことを好ましい形態としている。 この ような態様によれば、 陰極室から中間室に漏れ出した溶融金属をマグネシゥ ムに溶解させることでトラップすることができ、 別工程にて分離回収するこ とで、 生成した金属を効率よく回収することができるという効果を奏するも のである。  [0014] Further, in the metal production method according to the present invention, it is preferable that molten metal magnesium is melt-held on the electrolytic bath surface held in the intermediate chamber. According to such an embodiment, the molten metal leaking from the cathode chamber to the intermediate chamber can be trapped by dissolving in magnesium, and the generated metal can be efficiently collected by separating and collecting in a separate process. It has the effect that it can be recovered.
図面の簡単な説明  Brief Description of Drawings
[0015] [図 1 ]本発明の溶融塩電解装置の一実施形態を示す模式断面図である。 [図 2]本発明の溶融塩電解装置の第 1隔壁の変更例を示す模式断面図である。 符号の説明 FIG. 1 is a schematic cross-sectional view showing an embodiment of a molten salt electrolysis apparatus of the present invention. FIG. 2 is a schematic cross-sectional view showing a modified example of the first partition wall of the molten salt electrolysis apparatus of the present invention. Explanation of symbols
1 電解槽本体  1 Electrolyzer body
2 陽極  2 Anode
3 陰極  3 Cathode
4 第 1隔壁  4 First bulkhead
5 第 2隔壁  5 Second bulkhead
6 溶融金属抜出し管  6 Molten metal extraction pipe
7 不活性ガス排出管  7 Inert gas discharge pipe
8 不活性ガス導入管  8 Inert gas introduction pipe
9 塩素ガス排出管  9 Chlorine gas discharge pipe
1 0 溶融金属カルシウム (金属カルシウム濃化層)  1 0 Molten metal calcium (concentrated metal calcium layer)
1 1 月牛/ &  1 January cattle / &
1 2 溶融金属マグネシウム  1 2 Molten metal magnesium
1 3 堰  1 3 weir
1 4 浴循環口  1 4 Bath circulation port
1 5 連通口  1 5 Communication port
2 0 陰極室  2 0 Cathode chamber
2 1 陽極室  2 1 Anode chamber
2 2 中間室  2 2 Intermediate room
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[001 7] 本発明の最良の実施形態について図面を用いて以下に説明する。  [001 7] The best embodiment of the present invention will be described below with reference to the drawings.
図 1は本発明を実施するための陰極の一態様を表している。 符号 1は電解 槽本体であり、 電解槽本体 1には電解浴 1 1が満たされている。 本実施態様 においては、 電解浴 1 1 として塩化カルシウムと塩化カリウムから構成され た混合浴を電解浴として用い、 陰極に溶融金属カルシウムを生成し、 陽極に は塩素ガスを発生させる場合を例にとつて説明する。  FIG. 1 shows one embodiment of a cathode for carrying out the present invention. Reference numeral 1 denotes an electrolytic cell body, and the electrolytic cell body 1 is filled with an electrolytic bath 11. In the present embodiment, an example in which a mixed bath composed of calcium chloride and potassium chloride is used as the electrolytic bath 11 1 as the electrolytic bath, molten metal calcium is generated at the cathode, and chlorine gas is generated at the anode. I will explain.
[0018] 電解浴 1 1には陽極 2および陰極 3が浸漬配置されている。 また、 電解槽 本体 1は、 第 1隔壁 4および第 2隔壁 5によって図 1に示すように区画され ており、 電解槽本体 1および第 1隔壁 4によって囲まれて陰極 3を含む空間 を陰極室 2 0とし、 電解槽本体 1および第 2隔壁 5によって囲まれて陽極 2 を含む空間を陽極室 2 1 とし、 第 1隔壁 4および第 2隔壁 5によって囲まれ る空間を中間室 2 2とする。 [0018] An anode 2 and a cathode 3 are immersed in the electrolytic bath 11. Also, electrolytic cell The main body 1 is partitioned by the first partition wall 4 and the second partition wall 5 as shown in FIG. 1. A space surrounded by the electrolytic cell body 1 and the second partition wall 5 and including the anode 2 is referred to as an anode chamber 2 1, and a space surrounded by the first partition wall 4 and the second partition wall 5 is referred to as an intermediate chamber 22.
[0019] 符号 1 0は、 電解浴の溶融塩電解によって生成する溶融金属カルシウムの 層または溶融金属カルシウムの濃化層であり、 符号 1 2は、 後述するように 陰極室 2 0から漏れ出した溶融金属カルシウム回収のために設けられた溶融 金属マグネシウム層である。  [0019] Reference numeral 10 is a molten metal calcium layer or a concentrated layer of molten metal calcium generated by molten salt electrolysis in an electrolytic bath, and reference numeral 12 leaks from the cathode chamber 20 as will be described later. It is a molten metal magnesium layer provided for molten metal calcium recovery.
[0020] 本願発明においては、 陰極室 2 0には電解浴 1 1面に陰極 3で生成した溶 融金属カルシウムが浮遊するように電解浴組成の比重を調整することが好ま しい。 前記のように構成することにより、 溶融塩電解によって生成した溶融 カルシウムは、 電解浴中を浮上し、 電解槽本体 1の外部から導入された溶融 金属抜出し管 6を経由して系外に抜出すことができる。  In the present invention, it is preferable to adjust the specific gravity of the electrolytic bath composition so that the molten metallic calcium generated by the cathode 3 floats on the surface of the electrolytic bath 11 in the cathode chamber 20. By configuring as described above, molten calcium generated by molten salt electrolysis floats in the electrolytic bath and is extracted out of the system via the molten metal extraction pipe 6 introduced from the outside of the electrolytic cell body 1. be able to.
[0021 ] 更には、 前記陰極室 2 0と中間室 2 2とを区画する第 1隔壁 4の下端は開 放させ、 第 1隔壁 4の浴面近傍には、 浴循環口 1 4を設けておくことが好ま しい。  [0021] Further, the lower end of the first partition 4 that divides the cathode chamber 20 and the intermediate chamber 22 is opened, and a bath circulation port 14 is provided in the vicinity of the bath surface of the first partition 4. It is preferable to leave it.
[0022] また、 前記陽極室 2 1は、 電解槽本体 1 と第 2隔壁 5で画成され、 その下 端は開放しておくことが好ましい。 このような開放端に構成しておくことで 、 中間室や陰極室との電解浴の流通を可能とすることができ、 電解反応を効 率よく進行させることができる。  [0022] The anode chamber 21 is preferably defined by the electrolytic cell body 1 and the second partition wall 5, and the lower end thereof is preferably open. With such an open end, the electrolytic bath can be circulated with the intermediate chamber and the cathode chamber, and the electrolytic reaction can proceed efficiently.
[0023] また、 陰極室 2 0の底部に不活性ガス導入管 8を設け、 電解浴底部から不 活性ガスを導入させることが好ましい。 このような装置構成とすることで、 陰極室 2 0の底部から上方への電解浴 1 1の流れが生じ、 この流れに伴って 、 中間室 2 2の底部からも陰極室 2 0への電解浴 1 1の流れを形成させるこ とができる。 また、 陰極室 2 0内に導入した不活性ガスは、 前記陰極室 2 0 の頂部に設けた不活性ガス排出管 7より連続的に系外に排出させるように構 成することが好ましい。 [0024] 溶融金属カルシウムは、 電解浴 1 1を構成する塩化カルシウムに対する溶 解度を有しているために陰極 3の表面で生成した溶融金属カルシウムは速や かに系外に抜出すことが好ましく、 前記の不活性ガスの導入による循環流は 、 陰極で生成した溶融金属カルシウムの浮上分離を効果的に促進させること ができ、 溶融金属カルシウムを効率的に回収することができるという効果を 奏するものである。 [0023] In addition, it is preferable to provide an inert gas introduction tube 8 at the bottom of the cathode chamber 20 to introduce the inert gas from the bottom of the electrolytic bath. By adopting such an apparatus configuration, a flow of the electrolytic bath 11 from the bottom of the cathode chamber 20 to the upper side occurs, and along with this flow, electrolysis from the bottom of the intermediate chamber 22 to the cathode chamber 20 also occurs. A flow of bath 1 1 can be formed. The inert gas introduced into the cathode chamber 20 is preferably configured to be continuously discharged out of the system through an inert gas discharge pipe 7 provided at the top of the cathode chamber 20. [0024] Since the molten metal calcium has a solubility in calcium chloride constituting the electrolytic bath 11, the molten metal calcium generated on the surface of the cathode 3 can be quickly extracted out of the system. Preferably, the circulating flow by introduction of the inert gas can effectively promote the floating separation of the molten metal calcium produced at the cathode, and has an effect that the molten metal calcium can be efficiently recovered. Is.
[0025] 前記第 1隔壁 4に設けた循環口 1 4の近傍には、 堰 1 3を設けておくこと が好ましい。 このような堰 1 3を設けておくことにより、 電解浴 1 1の浴面 に蓄積させた溶融金属カルシウム層 1 0の中間室への漏洩を効果的に回避す ることができる。  [0025] It is preferable that a weir 13 is provided in the vicinity of the circulation port 14 provided in the first partition wall 4. By providing such a weir 13, leakage of the molten metal calcium layer 10 accumulated on the bath surface of the electrolytic bath 11 to the intermediate chamber can be effectively avoided.
[0026] 陰極室 2 0に保持した電解浴 1 1に供給する不活性ガスの流量は、 陽極 2 で発生する塩素ガスの流量に整合させることが好ましい。 その結果、 前記し た陰極室 2 0と陽極室 2 1のそれぞれの領域に保持された電解浴が受けるガ ス攪拌力も均等化し、 電解槽本体 1内で進行する電解反応を安定化させるこ とができる。  [0026] The flow rate of the inert gas supplied to the electrolytic bath 11 held in the cathode chamber 20 is preferably matched with the flow rate of chlorine gas generated at the anode 2. As a result, the gas stirring force received by the electrolytic baths held in the respective regions of the cathode chamber 20 and the anode chamber 21 is equalized, and the electrolytic reaction proceeding in the electrolytic cell body 1 is stabilized. Can do.
[0027] 図 1に示したように第 1隔壁と第 2隔壁で囲まれた中間室 2 2に保持した 電解浴面には、 溶融金属マグネシウムを保持しておくことが好ましい。 溶融 金属カルシウムは、 溶融マグネシウムに対して高い溶解度を有しているので 、 陰極室 2 0から漏れ出した溶融金属カルシウムを効率よく捕集することが できる。  As shown in FIG. 1, it is preferable to hold molten metal magnesium on the electrolytic bath surface held in the intermediate chamber 22 surrounded by the first partition and the second partition. Since molten metallic calcium has high solubility in molten magnesium, molten metallic calcium leaking from the cathode chamber 20 can be efficiently collected.
[0028] 溶融金属マグネシウム層を設けることにより、 中間室 2 2に漏れ出した溶 融金属カルシウムはトラップされ、 更にここから中間室 2 2と隣接した陽極 室 2 1に漏れ出す可能性は低く、 その結果、 溶融金属カルシウムロスや陽極 2で発生した塩素ガスの歩留まり低下も効果的に回避することができる。  [0028] By providing the molten metal magnesium layer, the molten metal calcium leaking into the intermediate chamber 22 is trapped, and further, it is unlikely to leak into the anode chamber 21 adjacent to the intermediate chamber 22, As a result, molten metal calcium loss and yield reduction of chlorine gas generated at the anode 2 can be effectively avoided.
[0029] 第 1隔壁と第 2隔壁で囲まれた中間室 2 2の電解浴面に保持した溶融金属 マグネシウムに溶解させて回収された金属カルシウムは、 図示しない別工程 において蒸留により金属マグネシウムから分離回収することができる。 分離 回収された金属カルシウムは、 酸化チタンの直接還元剤として用いることが できる。 [0029] Molten metal magnesium retained in the electrolytic bath surface of the intermediate chamber 22 surrounded by the first partition wall and the second partition wall 22 is recovered from the magnesium metal by distillation in a separate process (not shown). It can be recovered. Separated and recovered metallic calcium can be used as a direct reducing agent for titanium oxide. it can.
[0030] 陽極 2で発生した塩素ガスは、 第 2隔壁と電解槽本体 1で囲まれた陽極室 2 1の空間部に集約され、 前記陽極室 2 1の頂部に設けた塩素ガス排出管 9 より系外に排出される。 排出された塩素ガスは、 例えば、 チタン鉱石の塩素 化反応に利用することができる。  [0030] Chlorine gas generated in the anode 2 is concentrated in a space portion of the anode chamber 21 surrounded by the second partition wall and the electrolytic cell main body 1, and a chlorine gas discharge pipe 9 provided at the top of the anode chamber 21. More discharged outside the system. The discharged chlorine gas can be used for chlorination reaction of titanium ore, for example.
[0031 ] 本実施態様に用いる陽極 2は、 高温の塩素ガスに耐えるような材料で構成 することが好ましく、 具体的には、 力一ボンで構成することが好ましい。 一 方、 溶融金属カルシウムの生成する陰極 3は、 溶融金属カルシウムと反応し ないような材質で構成することが好ましく、 具体的には炭素鋼あるいはステ ンレス鋼で構成することが好ましい。  [0031] The anode 2 used in the present embodiment is preferably made of a material that can withstand high-temperature chlorine gas. On the other hand, the cathode 3 that produces molten metal calcium is preferably made of a material that does not react with molten metal calcium, and more specifically, is preferably made of carbon steel or stainless steel.
[0032] 前記第 1隔壁 4および第 2隔壁 5は、 塩素ガスや溶融金属カルシウムの両 者に耐える材料で構成することが好ましく、 具体的には、 窒化ケィ素ゃ窒化 ホウ素等のセラミックで構成することが好ましい。  [0032] The first partition wall 4 and the second partition wall 5 are preferably composed of a material that can withstand both chlorine gas and molten metal calcium. Specifically, the first partition wall 4 and the second partition wall 5 are composed of a ceramic such as a nitride nitride or boron nitride. It is preferable to do.
[0033] 電解槽本体 1も、 高温の塩素ガスや溶融金属カルシウムに耐えうる窒化ケ ィ素ゃ窒化ホウ素等のセラミックで構成することが好ましい。  [0033] The electrolytic cell body 1 is also preferably made of a ceramic such as a boron nitride or boron nitride that can withstand high-temperature chlorine gas or molten metal calcium.
[0034] 図 2は、 第 1隔壁 4の別の好ましい態様を表している。 本実施態様におい ては、 第 1隔壁上に、 陰極室上方の空間部と中間室上方の空間部とを連通す る連通口 1 5を設けることを好ましい態様とするものである。 前記連通口 1 5を設けることにより、 中間室 2 2に陰極室 2 0からリークした不活性ガス を効果的に系外に排出させることができる。 その結果、 中間室内の浴レベル 変動を効果的に抑制することができるという効果を奏するものである。  FIG. 2 shows another preferred embodiment of the first partition wall 4. In the present embodiment, it is preferable to provide a communication port 15 for communicating the space portion above the cathode chamber and the space portion above the intermediate chamber on the first partition. By providing the communication port 15, the inert gas leaked from the cathode chamber 20 to the intermediate chamber 22 can be effectively discharged out of the system. As a result, it is possible to effectively suppress the bath level fluctuation in the intermediate chamber.
[0035] 本発明においては、 陰極 3で生成する金属カルシウムは溶融状態で生成さ せ、 かつ生成した金属カルシウムが電解浴に溶解しにくい組成の電解浴を用 いることが好ましい。 このような電解浴は、 塩化カルシウム:塩化カリウム のモル比を 8 5 : 1 5〜5 0 : 5 0の範囲に選択することで前記の目的を効 率よく達成することができる。  [0035] In the present invention, it is preferable to use an electrolytic bath having a composition in which the metallic calcium produced at the cathode 3 is produced in a molten state, and the produced metallic calcium is difficult to dissolve in the electrolytic bath. Such an electrolytic bath can achieve the above-mentioned object efficiently by selecting the molar ratio of calcium chloride: potassium chloride in the range of 85:15 to 50:50.
[0036] また、 本発明における電解浴の温度は、 8 5 0〜9 0 0 °Cの範囲に保持す ることが好ましい。 [0037] 以上述べたような溶融塩電解槽を用いて塩化カルシウムを原料とした溶融 塩電解を行うことにより、 溶融金属カルシウムを効率よく生成して回収する ことができるという効果を奏するものである。 [0036] In addition, the temperature of the electrolytic bath in the present invention is preferably maintained in the range of 85 ° to 90 ° C. [0037] By performing molten salt electrolysis using calcium chloride as a raw material using the molten salt electrolysis tank as described above, there is an effect that molten metal calcium can be efficiently generated and recovered. .
実施例  Example
[0038] [実施例 1 ]  [0038] [Example 1]
図 1に示した溶融塩電解槽を用いて、 更に、 以下の条件で塩化カルシウム の溶融塩電解を行い、 金属カルシウムを回収することができた。 回収された 金属カルシウムの重量は、 通電量より計算される金属カルシウム量の 90 <½ に相当し、 高電流効率が確認された。  Using the molten salt electrolysis tank shown in Fig. 1, we were able to recover calcium metal by performing molten salt electrolysis of calcium chloride under the following conditions. The weight of the recovered metal calcium was equivalent to 90 <½ of the amount of metal calcium calculated from the energization amount, and high current efficiency was confirmed.
1. 電解装置  1. Electrolytic device
1 ) 電解槽本体  1) Electrolyzer body
材質:窒化ケィ素  Material: nitride nitride
2) 加熱炉 (図示なし) : ニクロム線ヒータ一  2) Heating furnace (not shown): Nichrome wire heater
3) 陽極  3) Anode
材質: グラフアイ ト  Material: Graph Item
形状:丸棒、 直径 1 5mm  Shape: Round bar, diameter 15mm
4) 陰極  4) Cathode
材質:炭素鋼  Material: Carbon steel
形状:丸棒、 直径 1 0mm  Shape: round bar, diameter 10 mm
5) 第 1および第 2隔壁  5) 1st and 2nd bulkhead
材質:窒化ケィ素  Material: nitride nitride
形状:板状、 厚み 5 mm  Shape: Plate, thickness 5 mm
2. 電解条件  2. Electrolysis conditions
1 ) 電解浴  1) Electrolytic bath
組成:塩化カルシウム:塩化力リゥム = 85 : 1 5 (モル比) 融点: 7 1 3 °C  Composition: Calcium chloride: Rum chloride power = 85: 1 5 (molar ratio) Melting point: 7 1 3 ° C
2 ) 電解温度: 850〜860°C  2) Electrolysis temperature: 850 ~ 860 ° C
3. 雰囲気: アルゴンガス 4 . 陰極室に供給する不活性ガス流量: 0 . 2 N I /分 3. Atmosphere: Argon gas 4. Inert gas flow rate to the cathode chamber: 0.2 NI / min
(陽極で生成する塩素ガス流量の相当量)  (Equivalent amount of chlorine gas flow generated at the anode)
[0039] [比較例] [0039] [Comparative Example]
実施例 1で使用した電解槽 1に設けた第 1隔壁および第 2隔壁を撤去した 電解槽 1を用いて塩化カルシウムの溶融塩電解を行った。 その結果、 通電量 を基準として計算される電流効率は 4 0 %と計算された。  Molten salt electrolysis of calcium chloride was performed using the electrolytic cell 1 in which the first and second partition walls provided in the electrolytic cell 1 used in Example 1 were removed. As a result, the current efficiency calculated on the basis of the energization amount was calculated as 40%.
[0040] 以上、 実施例および比較例により、 本願発明の溶融塩電解装置によって溶 融塩電解を行うことにより、 陰極で生成する金属カルシウムを効率よく回収 することができるという効果が確認された。 [0040] As described above, according to the examples and comparative examples, it was confirmed that by performing the molten salt electrolysis with the molten salt electrolysis apparatus of the present invention, metallic calcium produced at the cathode can be efficiently recovered.
産業上の利用可能性  Industrial applicability
[0041 ] 金属チタンの製造に必要不可欠な還元用の金属カルシウムを効率良く製造 することができ、 これにより、 金属チタンのコストダウンに寄与する。  [0041] Metal calcium for reduction, which is indispensable for the production of metallic titanium, can be produced efficiently, thereby contributing to the cost reduction of metallic titanium.

Claims

請求の範囲 The scope of the claims
[1 ] 電解浴を保持する電解槽本体と、 上記電解浴に浸漬配置された陽極および 陰極を備えた金属製造用溶融塩電解槽であって、  [1] A molten salt electrolytic cell for metal production comprising an electrolytic cell main body for holding an electrolytic bath, an anode and a cathode immersed in the electrolytic bath,
上記溶融塩電解槽は、 第 1隔壁および第 2隔壁によって 3つの空間に区画さ れ、 上記電解槽本体および上記第 1隔壁によって区画され上記陰極を含む陰 極室、 上記第 1隔壁および上記第 2隔壁によって区画されてなる中間室、 お よび、 上記電解槽本体および上記第 2隔壁によって区画され上記陽極を含む 陽極室を構成し、  The molten salt electrolytic cell is divided into three spaces by a first partition and a second partition, and is divided by the electrolytic body and the first partition, and includes a cathode chamber including the cathode, the first partition, and the first partition. An intermediate chamber defined by two partition walls, and an anode chamber defined by the electrolytic cell body and the second partition walls and including the anode;
上記電解浴が上記中間室から上記陰極室へ向う循環流を形成するように構成 したことを特徴とする金属製造用溶融塩電解槽。  A molten salt electrolytic cell for producing metal, characterized in that the electrolytic bath forms a circulating flow from the intermediate chamber to the cathode chamber.
[2] 前記第 1隔壁および前記第 2隔壁の下端が開放されており、 さらに、 上記 第 1隔壁の電解浴面近傍部位に貫通孔が設けられていることを特徴とする請 求項 1に記載の金属製造用溶融塩電解槽。 [2] Claim 1 characterized in that lower ends of the first partition and the second partition are opened, and a through hole is provided in the vicinity of the electrolytic bath surface of the first partition. The molten salt electrolytic cell for metal manufacture as described.
[3] 前記第 1隔壁に、 前記陰極室上方の空間部と前記中間室上方の空間部とを 連通する連通口を設けたことを特徴とする請求項 1に記載の金属製造用溶融 塩電解槽。 [3] The molten salt electrolysis for metal production according to [1], wherein the first partition is provided with a communication port for communicating the space above the cathode chamber and the space above the intermediate chamber. Tank.
[4] 前記陰極室に保持された電解浴底部に不活性ガス供給管が浸漬配置され、 上記陰極室上方の空間部に不活性ガス排出管を設けたことを特徴とする請求 項 2に記載の金属製造用溶融塩電解槽。  4. The inert gas supply pipe is immersed in the bottom of the electrolytic bath held in the cathode chamber, and an inert gas discharge pipe is provided in the space above the cathode chamber. Molten salt electrolytic cell for metal production.
[5] 前記第 1隔壁および前記第 2隔壁が窒化ケィ素または窒化ホウ素で構成さ れていることを特徴とする請求項 1〜 4のいずれかに記載の金属製造用溶融 塩電解槽。 [5] The molten salt electrolytic cell for metal production according to any one of [1] to [4], wherein the first partition and the second partition are made of silicon nitride or boron nitride.
[6] 前記請求項 1〜 5のいずれかに記載の溶融塩電解槽を用いることを特徴と する金属の製造方法。  [6] A metal production method using the molten salt electrolytic cell according to any one of claims 1 to 5.
[7] 前記陰極が浸漬配置された電解浴の底部から上方へ向けて不活性ガスを流 通させることを特徴とする請求項 6に記載の金属の製造方法。  7. The method for producing a metal according to claim 6, wherein an inert gas is allowed to flow upward from the bottom of the electrolytic bath in which the cathode is immersed.
[8] 前記電解浴中に流通させる不活性ガスの流量を、 前記陽極で発生する塩素 ガスの流量と同量とすることを特徴とする請求項 7に記載の金属の製造方法 8. The method for producing a metal according to claim 7, wherein the flow rate of the inert gas flowing through the electrolytic bath is the same as the flow rate of the chlorine gas generated at the anode.
[9] 前記第 1隔壁および前記第 2隔壁で区画された中間室に保持された電解浴 面に溶融マグネシウムを保持させたことを特徴とする請求項 6に記載の金属 の製造方法。 9. The method for producing a metal according to claim 6, wherein molten magnesium is held on the electrolytic bath surface held in the intermediate chamber defined by the first partition and the second partition.
[10] 前記電解浴を塩化カルシウムおよび塩化力リウムの混合塩浴で構成するこ とを特徴とする請求項 6に記載の金属の製造方法。  10. The method for producing a metal according to claim 6, wherein the electrolytic bath is composed of a mixed salt bath of calcium chloride and strong lithium chloride.
[1 1 ] 前記金属が金属カルシウムであることを特徴とする請求項 6に記載の金属 の製造方法。 [1 1] The method for producing a metal according to claim 6, wherein the metal is calcium metal.
[12] 前記電解浴の温度を金属カルシウムの融点以上とすることを特徴とする請 求項 6に記載の金属の製造方法。  [12] The method for producing a metal according to claim 6, wherein the temperature of the electrolytic bath is equal to or higher than the melting point of calcium metal.
PCT/JP2007/000861 2006-09-28 2007-08-09 Molten salt electrolyzing vessel for metal production and process for producing metal therewith WO2008038405A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008536276A JPWO2008038405A1 (en) 2006-09-28 2007-08-09 Molten salt electrolytic cell for metal production and method for producing metal using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006264630 2006-09-28
JP2006-264630 2006-09-28

Publications (1)

Publication Number Publication Date
WO2008038405A1 true WO2008038405A1 (en) 2008-04-03

Family

ID=39229851

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/000861 WO2008038405A1 (en) 2006-09-28 2007-08-09 Molten salt electrolyzing vessel for metal production and process for producing metal therewith

Country Status (2)

Country Link
JP (1) JPWO2008038405A1 (en)
WO (1) WO2008038405A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021004398A (en) * 2019-06-26 2021-01-14 東邦チタニウム株式会社 Molten salt electrolytic cell, and method of producing metal using the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5443811A (en) * 1977-09-16 1979-04-06 Asahi Glass Co Ltd Production of metallic lithium
JPS6237387A (en) * 1985-08-12 1987-02-18 Sumitomo Light Metal Ind Ltd Production of high-purity lithium
JP2005068539A (en) * 2003-08-28 2005-03-17 Sumitomo Titanium Corp Method and apparatus for producing metal
JP2005264320A (en) * 2004-02-20 2005-09-29 Sumitomo Titanium Corp PROCESS FOR PRODUCING Ti OR Ti ALLOY BY REDUCTION OF Ca
JP2006111895A (en) * 2004-10-12 2006-04-27 Toho Titanium Co Ltd Method for producing metal by molten salt electrolysis and production device therefor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5443811A (en) * 1977-09-16 1979-04-06 Asahi Glass Co Ltd Production of metallic lithium
JPS6237387A (en) * 1985-08-12 1987-02-18 Sumitomo Light Metal Ind Ltd Production of high-purity lithium
JP2005068539A (en) * 2003-08-28 2005-03-17 Sumitomo Titanium Corp Method and apparatus for producing metal
JP2005264320A (en) * 2004-02-20 2005-09-29 Sumitomo Titanium Corp PROCESS FOR PRODUCING Ti OR Ti ALLOY BY REDUCTION OF Ca
JP2006111895A (en) * 2004-10-12 2006-04-27 Toho Titanium Co Ltd Method for producing metal by molten salt electrolysis and production device therefor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021004398A (en) * 2019-06-26 2021-01-14 東邦チタニウム株式会社 Molten salt electrolytic cell, and method of producing metal using the same
JP7206160B2 (en) 2019-06-26 2023-01-17 東邦チタニウム株式会社 A molten salt electrolytic bath and a method for producing metal using the same.

Also Published As

Publication number Publication date
JPWO2008038405A1 (en) 2010-01-28

Similar Documents

Publication Publication Date Title
WO2006040978A1 (en) Metal producing method and producing device by molten salt electrolysis
WO2006040979A1 (en) Method for producing metal by molten salt electrolysis and method for producing metal titanium
CZ20032555A3 (en) A method and an electrowinning cell for production of metal
JP5183498B2 (en) Electrolytic production of silicon and scouring method
WO2007034605A1 (en) Molten salt electrolyzer for reducing metal, method of electrolyzing the same and process for producing high-melting-point metal with use of reducing metal
WO2005080642A1 (en) PROCESS FOR PRODUCING Ti OR Ti ALLOY BY REDUCTION OF Ca
WO2014101694A1 (en) Method and apparatus for producing titanium by means of fused salt electrolysis method
JP2007063585A (en) MOLTEN SALT ELECTROLYSIS METHOD, ELECTROLYTIC CELL, AND METHOD FOR PRODUCING Ti BY USING THE SAME
JP4395386B2 (en) Method for producing Ti or Ti alloy by circulating Ca source
WO2007034645A1 (en) PROCESS FOR PRODUCING Ti AND APPARATUS THEREFOR
JP4092129B2 (en) Sponge titanium manufacturing method and manufacturing apparatus
WO2008038405A1 (en) Molten salt electrolyzing vessel for metal production and process for producing metal therewith
JP2009019250A (en) Method and apparatus for producing metal
JP2009197277A (en) MOLTEN SALT ELECTROLYSIS METHOD, ELECTROLYTIC CELL, AND METHOD FOR PRODUCING Ti BY USING THE SAME
WO2006003865A1 (en) Method for producing metal by molten salt electrolysis
JP4934012B2 (en) Method for producing metallic calcium
JPWO2009107339A1 (en) Method for producing reducing metal and molten salt electrolysis apparatus used therefor
JP2006124813A (en) METHOD AND APPARATUS FOR PRODUCING Ti BY Ca REDUCTION
JPWO2008102520A1 (en) Metal production apparatus by molten salt electrolysis and metal production method using the same
JP2010504432A (en) Method for producing metal from molten chloride and electrolysis cell
JP2012172194A (en) Electrolytic apparatus and electrowinning method using the same
US20090032405A1 (en) Molten Salt Electrolytic Cell and Process for Producing Metal Using the Same
JP2005171357A (en) Electrolyzer for molten metal chloride
JP7453109B2 (en) Passage section structure of melt feeding pipe and method for producing metal magnesium
JP5829843B2 (en) Polycrystalline silicon manufacturing method and reduction / electrolysis furnace used in polycrystalline silicon manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07790349

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008536276

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07790349

Country of ref document: EP

Kind code of ref document: A1