WO2008035538A1 - Process for producing particle of alkaline earth metal carbonate and particle of alkaline earth metal carbonate - Google Patents

Process for producing particle of alkaline earth metal carbonate and particle of alkaline earth metal carbonate Download PDF

Info

Publication number
WO2008035538A1
WO2008035538A1 PCT/JP2007/066447 JP2007066447W WO2008035538A1 WO 2008035538 A1 WO2008035538 A1 WO 2008035538A1 JP 2007066447 W JP2007066447 W JP 2007066447W WO 2008035538 A1 WO2008035538 A1 WO 2008035538A1
Authority
WO
WIPO (PCT)
Prior art keywords
earth metal
alkaline earth
metal carbonate
particles
particle
Prior art date
Application number
PCT/JP2007/066447
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroshi Takada
Takato Chiba
Original Assignee
Konica Minolta Holdings, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2006252438A external-priority patent/JP2008074634A/en
Priority claimed from JP2007004404A external-priority patent/JP2008169086A/en
Application filed by Konica Minolta Holdings, Inc. filed Critical Konica Minolta Holdings, Inc.
Publication of WO2008035538A1 publication Critical patent/WO2008035538A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F11/00Compounds of calcium, strontium, or barium
    • C01F11/18Carbonates
    • C01F11/186Strontium or barium carbonate
    • C01F11/187Strontium carbonate
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F11/00Compounds of calcium, strontium, or barium
    • C01F11/18Carbonates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F11/00Compounds of calcium, strontium, or barium
    • C01F11/18Carbonates
    • C01F11/186Strontium or barium carbonate
    • C01F11/188Barium carbonate
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • C01P2004/52Particles with a specific particle size distribution highly monodisperse size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/54Particles characterised by their aspect ratio, i.e. the ratio of sizes in the longest to the shortest dimension

Definitions

  • the present invention relates to a method for producing alkaline earth metal carbonate particles having an acicular shape with improved particle size distribution and alkaline earth metal carbonate particles.
  • Alkaline earth metal carbonates such as calcium carbonate, strontium carbonate, and barium carbonate are used as additives for paper, rubber, resin, plastic, paint, cosmetics, pharmaceuticals, and dielectric ceramic materials and high-temperature superconductor materials. It is used in a wide range of industrial fields as a raw material for these materials and as an inorganic dope material for optical films.
  • Alkaline earth metal carbonates are known to have different functions and properties depending on their physical properties.
  • alkaline earth metal carbonates can be used to produce paints with low gloss and excellent wet ink fillability.
  • Spindle-like calcium carbonate is suitable for use, and acicular calcium carbonate is suitable for the production of paints with high glossiness, opacity, ink inking properties, and ink setting!
  • strontium carbonate is used as a raw material for producing strontium titanate, it has been reported that electrical characteristics are improved by using particles having an average particle size of 0.8 in or less.
  • small particles of m order or less are required in order not to impair transparency.
  • a method for producing alkaline earth metal carbonate particles includes a “liquid-at-a-time” method in which carbon dioxide gas is reacted with a solution containing an alkaline earth metal ion, which is referred to as a carbon dioxide gas method.
  • a carbon dioxide gas method Prepared by reacting a solution containing earth metal ions with a solution containing carbonate ions Broadly divided into “liquid” methods.
  • the “liquid-at-a-time” method is mainly used industrially, and alkaline earth metal hydroxides such as Ca (OH), Sr are used as solutions containing alkali earth metal ions. (OH) and Ba (OH) are often used, but these hydroxides are usually used as slurries because of their low solubility.
  • a method of producing 1 to 2 m of columnar calcium carbonate in three stages (see, for example, Patent Document 1), and water-soluble monosaccharides and oligosaccharides are hydrolyzed before the carbonation reaction reaches 30%.
  • a method of adding 1 to 2 m of spindle-shaped calcium carbonate added to the calcium slurry (see, for example, Patent Document 2), the temperature of the strontium hydroxide slurry and the introduction rate of carbon dioxide gas are defined.
  • a method for producing ac needle-shaped strontium carbonate (for example, see Patent Document 3) has been proposed.
  • a metal ion source containing at least one selected from strontium, calcium, norlium, zinc, and lead and a carbonate source are reacted in a liquid by a double jet method to form needle-like and rod-like carbonates.
  • a method using a “liquid-liquid” method such as a manufacturing method (for example, see Patent Document 6) has been proposed!
  • a carbonic acid source is reacted in a liquid of a metal ion source containing at least one selected from the ionic forces of strontium, calcium, norlium, zinc, and lead.
  • a production method has been proposed that includes a step of increasing the number of particles and a step of increasing the volume of a particle, and reacting by controlling the acceleration rate and time of the carbonic acid source, and having a shape with an aspect ratio greater than 1. (For example, see Patent Document 7).
  • this method uses a single jet method as an ion source addition method, it is a manufacturing method that includes the problem described in item i), and metal ions stored in a reaction vessel. Since the carbonic acid source was added to the source, the problem described in item iii) was unavoidable, and it was insufficient as a technique for improving the deterioration of the particle size distribution.
  • Alkaline earth metal carbonates produced by the “liquid at once” method are inherently very strong in cohesion between primary particles (nuclear particles), and many primary particles are aggregated. It forms large secondary particles (coarse aggregates of primary particles), and this secondary particle slurry cannot be peptized to the state of primary particles even if it is vigorously stirred for a long time. It is said that.
  • alkaline earth metal carbonate particles formed as aggregates are A powerful grinding method using a ball mill, sand grinder mill, or the like is used.
  • fine glass beads may be used as a grinding medium.
  • the surface of these glass beads As a result, a large number of coarse glass pieces of several meters or more may be mixed in the alkaline earth metal carbonate particles after the dispersion treatment, which is preferable and difficult! is the current situation.
  • Patent Document 1 Japanese Patent Publication No. 55-51852
  • Patent Document 2 JP 2001-139328 Koyuki
  • Patent Document 3 Japanese Unexamined Patent Publication No. 2006-124199
  • Patent Document 4 Japanese Patent Application Laid-Open No. 59-203728
  • Patent Document 5 JP-A-5-155615
  • Patent Document 6 Japanese Unexamined Patent Publication No. 2006-21988
  • Patent Document 7 Japanese Unexamined Patent Application Publication No. 2006-169038
  • the present invention has been made in view of the above problems, and its purpose is to control the morphology and cohesiveness of alkaline earth metal carbonate particles, and to provide a particle size distribution having a needle-like morphology.
  • An object of the present invention is to provide an improved method for producing alkaline earth metal carbonate particles and an alkaline earth metal carbonate particle produced by the production method.
  • the present inventors have separated the nucleation step and the particle growth step of alkaline earth metal carbonate particles, and provided optimum conditions for each step.
  • the needle-like form includes a columnar form and a bar-like form.
  • an alkaline earth metal salt solution and a carbonate solution are reacted to form needle-shaped particles having an average aspect ratio of 2 or more.
  • a method for producing alkaline earth metal carbonate particles comprising: a particle growth step after the nucleation step, and performing a dispersion operation after the nucleation step is completed. Method.
  • the above-mentioned aggregation inhibitor is a water-soluble polymer having an amide group
  • Average values of major axis and minor axis diameter of the alkaline earth metal carbonate particles at the end of the nucleation step are a and b, respectively, and the alkaline earth metal carbonate at the end of the particle growth step.
  • V (a-a) / (bb)
  • At least one part of the nucleation step or the particle growth step is performed under a condition in which the liquid in the reaction vessel is in excess of alkaline earth metal ions.
  • Rate of addition of alkaline earth metal salt solution and carbonate solution in the nucleation step 0.1 mol / min or more per mol of alkaline earth metal carbonate formed in the nucleation step 15.
  • the molar ratio of the alkaline earth metal carbonate formed in the nucleation step to the alkaline earth metal carbonate particles at the end of the particle growth step is 50 mol% or less.
  • the nucleation step in the production process of alkaline earth metal carbonate particles is a process for generating nuclei particles, and the particle growth step is almost accompanied by the generation of new nuclei particles. Means the process of growing particles without
  • the number of particles increases in the nucleation step, and the number of particles does not increase substantially in the particle growth step! / (The number of particles may decrease when subjected to Ostwald ripening). Therefore, both processes can be distinguished by the presence or absence of new nuclear particles.
  • the fact that the number of particles does not substantially increase means that the number of particles at the end of the particle growth process is within 125% at the start of the particle growth process (or at the end of the ripening process when the ripening process is included). To do.
  • the alkaline earth metal carbonate according to the present invention can be formed by reacting an alkaline earth metal ion and a carbonate ion.
  • alkaline earth metal ion source for example, Ca 2 +, Sr 2+, Ba 2+, is Ra 2+, As the specific compound for the case of Ca 2+, CaCl, Ca (NO),
  • Examples of compounds that can be used as the carbonate ion source include Na CO, NaHCO, K CO, and KH.
  • Alkaline earth metal carbonate particles generated by the reaction begin to grow immediately after the generation of the core particles, and therefore grow faster as the core particles are generated earlier and more difficult to grow as the core particles are generated soon after.
  • particle growth during the nucleation step is not preferable because it increases the particle size distribution of the nucleus particles and causes deterioration of the particle size distribution after the completion of particle growth.
  • the broadening of the particle size distribution of the nuclei that occurs during the nucleation step largely depends on the nucleation time and the nucleation temperature. That is, if the time of the nucleation process is long, the particle size distribution deteriorates due to the early growth of the nucleation particles, and the temperature of the nucleation process is high! The particle size difference between the generated core particles and the core particles generated later is amplified.
  • the time of the nucleation step can be arbitrarily set, but it is preferable to end within 1800 seconds in order to prevent the deterioration of the particle size distribution, and within 300 seconds is more preferable 120 seconds. Within is more preferable.
  • the temperature of the nucleation step can be arbitrarily set, but in order to suppress the growth of nuclei particles during the nucleation step, it is preferable to perform at a temperature as low as possible. It is preferably carried out between 40 ° C. At lower temperatures, the liquid in the reaction vessel freezes, and special equipment is required for temperature control, increasing production costs.
  • Alkaline earth metal carbonate particles can be produced by introducing carbon dioxide gas into a solution of an alkaline earth metal salt called "carbon dioxide gas method” and reacting it ("liquid at once” method) Solutions containing alkaline earth metal salts and carbonate ions, such as the jet and double jet methods There is a method of reacting a liquid (“liquid-liquid” method). In the present invention, it is preferable to use a double jet method for nucleation and particle growth! ! /
  • the double jet method By applying the double jet method to the nucleation process, it is possible to increase the number of nuclei generated per unit time by increasing the degree of supersaturation in the stirring and mixing device. Thus, improvement of distribution deterioration in the nucleation process can be expected.
  • the double jet method to the particle growth process, it is possible to control the degree of supersaturation in the stirring and mixing apparatus with high accuracy, so that control of the particle shape and improvement of the distribution can be expected.
  • the carbon dioxide method can be applied to a part of the particle growth process.
  • a slurry of an alkaline earth metal hydroxide is added to the reaction solution after completion of the nucleation step and the aging step to form a slurry, and carbon dioxide gas is introduced into the slurry to form particles.
  • the growth method can be mentioned. Since this method uses an alkaline earth metal salt slurry, it is possible to effectively use a high-concentration solution, which is effective in improving productivity.
  • the double jet method according to the present invention is a method in which two kinds of solutions are dropped or jetted onto the liquid surface of the liquid in the reaction vessel or into the liquid, respectively, using an appropriate liquid delivery device or the like, if necessary.
  • This is a method of reacting in the liquid in the container by pouring, and in the present invention, it can be carried out by using an alkaline earth metal salt solution and a carbonate solution as additive liquids.
  • the solvent of the solution containing the aggregation inhibitor, the alkaline earth metal salt solution, and the carbonate solution is substantially water.
  • the solvent is substantially water means that the content of a solvent other than water is 10% by volume or less.
  • a solvent other than water, particularly an organic solvent is contained in an amount of 10% by volume or more, there is a concern that the particle aggregation property is deteriorated.
  • the force S can be arbitrarily set or changed by changing the addition rate of the additive solution using a liquid delivery device, etc.
  • the production efficiency decreases because the number of core particles formed per unit time decreases, and if the number of core particles formed is increased by increasing the addition time, the generated core particles grow in parallel. As a result, the particle size distribution deteriorates. Therefore, in the present invention, it is preferable to set the molar addition rate in the nucleation step to be 0.1 mol / min or more per 1 mol of the alkaline earth metal carbonate formed in the step. Furthermore, 0.2-4 mol / min is preferable, and 0.5-2 mol / min is more preferable.
  • the mole addition acceleration is higher than 4 mol / min, the stirring efficiency in the reaction vessel is relatively lowered, and non-uniform core particles are generated, or aggregation due to an increase in local core particle density is suspended. The mind increases.
  • the liquid temperature in the reaction vessel can be maintained higher than the nucleation step as necessary (aging step).
  • aging step a phenomenon occurs in which particles with a small particle size dissolve and particles with a large particle size grow (ostwald ripening). Therefore, in the present invention, the ripening step can be regarded as a part of the particle growth step.
  • the particle growth step is preferably performed at a temperature equal to or higher than that of the nucleation step in order to increase the growth rate of the particles. Specifically, it is preferably performed between 0 to 60 ° C. At a temperature lower than 0 ° C, a sufficient particle growth rate cannot be obtained! / Therefore, it takes a long time for the particle growth process, and at 60 ° C or more, the diameter of the acicular particles increases and the aspect ratio increases. It becomes difficult.
  • the present invention is characterized in that the dispersion operation is performed after the nucleation step and / or after the grain growth step.
  • the dispersion operation is performed for the purpose of peptizing aggregated particles generated in the nucleation process and / or particle growth process into primary particles, and at least from the end of the nucleation process to the start of the particle growth process. It is preferable to be carried out both after the completion of the nucleation step and after the start of the particle growth step and after the end of the particle growth step. Furthermore, it can be carried out in the middle of the nucleation step and the particle growth step as necessary.
  • the dispersing operation can be performed in a reaction vessel, or the reaction solution can be temporarily transferred to another vessel during the dispersing operation.
  • the nucleation step is completed as in the present invention.
  • descending by carrying out the dispersion operation in a solution state in the presence of an anti-agglomeration agent, it is possible to prevent excessive dispersion such that the primary particles are destroyed and reaggregation of the particles after peptization.
  • the time required for the dispersion operation varies depending on the aggregation state of the particles and the power of the disperser to be used, it is preferable to determine by confirming the peptization state.
  • a particle size measuring device or a turbidimeter can be used. Particle size measurement When measuring the change in particle size and turbidity during the dispersion process with an instrument or turbidimeter, the particle size and turbidity decrease as the agglomerated particles are peptized, and most of the particles become primary particles. Then it converges to a certain value.
  • the measured values are dispersed until they converge.
  • media dispersers In the dispersion operation of the present invention, media dispersers, ultrasonic dispersers, and high-speed agitating dispersers can be used! Or, or they can be used in combination.
  • a media-type disperser is one in which beads or the like are introduced into an apparatus, and the particles are dispersed by collision or breakage between bead particles.
  • an apparatus that can be used in the present invention, Kotobuki Industries Apex Mill, Yashaza Industries LMZ, etc.
  • beads having a small particle size In order to break up the agglomeration without crushing the primary particles, it is often preferable to use beads having a small particle size. Specifically, it is preferable to use beads having an average particle size of 0.3 mm or less. More preferably, it is preferable to use beads having an average particle diameter of 0.1 mm or less.
  • glass, titania, alumina, zircoua or the like can be used.
  • An ultrasonic disperser performs dispersion using the vibration (vacuum bubble) force generated by ultrasonic waves S.
  • SMT The company UH150 and Nippon Seiki Seisakusho US-300T.
  • the high-speed agitation type disperser disperses particles by the shearing force in the vicinity of the agitation blades that are agitated at high speed.
  • the aspect ratio is the length (major axis diameter) and diameter of particles having an acicular shape.
  • the present invention is particularly useful for producing an alkaline earth metal carbonate having an acicular shape having an average aspect ratio of 2 or more.
  • the average aspect ratio is It is preferably 2 or more, more preferably 5 or more, and further preferably 5 or more and 50 or less.
  • acicular particles having a high aspect ratio there are a method of forming nuclei particles having a high aspect ratio in the nucleation step and a method of increasing the aspect ratio in the particle growth step. An attempt to increase the ratio often involves deterioration of the particle size distribution.
  • the particle size distribution is more important than the aspect ratio as a characteristic of the core particles obtained in the nucleation step. This is because the formation of more uniform nuclei at the nucleation stage greatly contributes to the improvement of the particle size distribution after particle growth. Therefore, according to the present invention, it is preferable that (I) the particle size distribution is not deteriorated at the nucleation stage. It is preferable to form a high aspect ratio particle by selectively growing the major axis diameter while suppressing the growth.
  • Power S is preferable, 3 or more is more preferable, and 5 or more is more preferable.
  • a and b are each
  • a and b are the average major axis diameter and minor axis diameter of the particles at the end of the grain growth process, respectively. is there.
  • a and b are the average major axis diameter and minor axis diameter of the particles at the end of the grain growth process, respectively. is there.
  • V (a -a) / (bb)
  • the alkali according to the present invention in the method for producing the earth metal carbonate particles, it is preferable that the V force is 3 or more. More preferably, it is 5 or more, more preferably 5 or more and 50 or less, and particularly preferably 5 or more and 10 or less.
  • the particle diameter is represented by the diameter of a circle having an area equal to the projected area of the alkaline earth metal carbonate particles, and the average particle diameter is obtained by obtaining individual particle diameters of 300 or more particles. Means the arithmetic average value obtained.
  • the particle size distribution is expressed as the value obtained by dividing the standard deviation of each particle size used to determine the average particle size by the average particle size and multiplying by 100.
  • Particle size distribution (%) standard deviation of particle size / average particle size particle X 100
  • the projected area and average particle diameter of the particles can be obtained from the particle image of the electron micrograph using an image analyzer.
  • the present invention is useful for producing alkaline earth metal carbonate particles having an excellent particle size distribution.
  • the alkaline earth metal carbonate particles according to the present invention preferably have a particle size distribution of 35% or less, more preferably 30% or less.
  • the average particle size is preferably 60 to 220 nm or less, more preferably 70 to 200 nm or less.
  • the long axis, short axis, and projected area of each particle required for calculating the above average aspect ratio and average particle diameter can be measured from an electron microscope image, and an image analyzer can be used if necessary. Can also be requested.
  • Alkaline earth metal carbonate particles having an acicular shape often cause aggregation of particles joined in the major axis direction during nucleation, which causes deterioration in distribution of the major axis diameter.
  • particle aggregation often occurs in the minor axis direction during grain growth, the distribution of minor axis diameter is deteriorated.
  • the particle cohesiveness is improved by the production method of the present invention, it is expected that both the major axis diameter and the minor axis diameter are improved.
  • the dispersion operation is performed before the start of the particle growth process (dispersion operation A).
  • Operation B) mainly improves the distribution of the short axis diameter. That is, by carrying out the combination of the dispersion operation A and the dispersion operation B, the effect of improving the distribution of both the major axis diameter and the minor axis diameter can be obtained.
  • the major axis diameter distribution is preferably 40% or less, preferably 30% In More preferably.
  • the average value of the major axis diameter is preferably from 150 to 450 nm, more preferably from 200 to 450 nm, and more preferably from 200 to 400 nm.
  • the minor axis diameter distribution is preferably 35% or less, more preferably 30% or less.
  • the average value of the minor axis diameter (20-20 nm is preferable, 20-70 nm is more preferable, 20-60 nm is more preferable! / ,.
  • a force that can arbitrarily change the molar ratio of the raw materials (alkaline earth metal salt and carbonate) consumed in the nucleation step and the particle growth step is an acicular shape having an average aspect ratio of 2 or more.
  • the present invention in the configuration it is preferred instrument further that the molar ratio of alkaline earth metal carbonate is formed in the nucleus formation step below 50 mol% is rather preferably 30 mol% or less, 20 mole 0/0 The following is more preferable.
  • an aggregation inhibitor it is necessary to add an aggregation inhibitor to at least the liquid in the reaction vessel before the start of the nucleation step in order to prevent particle aggregation.
  • an agglomeration inhibitor may be added to the carbonate solution.
  • the aggregation inhibitor that can be used in the present invention is a compound that has an adsorptivity to alkaline earth metal carbonate particles, acts as a steric hindrance, and can prevent aggregation between the particles. Things and synthesis.
  • Examples of the aggregation inhibitor that can be preferably used in the present invention include nitrogen-containing polymers such as polyamide, polyethylenimine, and polybulurpyrrolidone, neutral polymers such as polybulbutyral and polybulal alcohol, carboxymethylcellulose, and methylcellulose. It is possible to use water-soluble polymers such as cellulose polymers such as hydroxyethyl cellulose. Among them, a polymer having an amide group is a preferable compound. There is no restriction on the average molecular weight of the polymer, but if the molecular weight is small, the aggregation inhibiting effect is too small.
  • the average molecular weight of the aggregation inhibitor used in the present invention is preferably 10,000 to 1,000,000, more preferably 30,000 to 500,000, and still more preferably 50,000 to 300,000.
  • the addition amount of the anti-aggregation agent is about 0. ! ⁇ 15% by weight is preferred 0.;! ⁇ 10% by weight is more preferred 0.5 ⁇ ; 10% by weight is more preferred.
  • the anti-aggregation agent used may have a negative effect on product performance, such as when the final product is a hydrophobic paint or plastic. It can also be removed by a solvent replacement step or the like.
  • At least a part of the nucleation step and the particle growth step can be performed under the condition that the liquid in the reaction vessel is in excess of alkaline earth metal ions.
  • the method of operating the liquid in the reaction vessel so that the alkaline earth metal ions are excessive but a necessary amount of alkaline earth metal is added separately from the alkaline earth metal salt solution added by the double jet method.
  • a method of adding a metal salt or a solution thereof into the reaction vessel or a method of adjusting the balance between the flow rate of the alkaline earth metal salt solution and the carbonate solution added by the double jet method is preferable.
  • the excess amount of alkaline earth metal ions is preferably 0.001 to 0.5 monolayer /: L in terms of monolith concentration of alkaline earth metal dissolved in the liquid in the reaction vessel. 0.0 to 0.5 mol / L is more preferable. 0.01-0.2 mol / L is more preferable. Beyond this range, the risk of agglomeration increases.
  • a nucleation step it is preferable to carry out at least a part of the particle growth step under conditions of pH 9 or higher. Furthermore, a pH value of 9 to 13.5 is preferred. A pH value of 10 to 13 is particularly preferred. Even if the pH value is higher than this, the effect on anisotropic growth will not change if aggregation is suppressed.
  • At least a part of the nucleation step or the particle growth step can be carried out in the presence of a form control agent.
  • a form control agent examples include amines. Among them, primary amines and amino alcohols can be preferably used in the present invention.
  • Examples of the form control agent applicable to the present invention include diamine compounds and amino alcohol compounds. Specifically, ethylene diamine, diethylene triamine, triethylene tetramine, propylene diamine, N, N —Dimethylethanolamine, N, N—Jetyl Examples include ethanolamine, 2- (2-aminoethylamino) ethanol, N-methylethanolamine, N-methylethanolamine, 2-aminoethanol and the like.
  • the liquid in the reaction vessel may contain alcohol.
  • the alcohol may be added to the liquid in the reaction vessel at any point in the nucleation step or particle growth step. At least before the start of the particle growth step, it is preferable to add alcohol before the start of the nucleation step. More preferably, the liquid contains alcohol.
  • the alcohol used in the present invention can be mixed with water at an arbitrary ratio. Specifically, at least one of methanol, ethanol, n-propyl alcohol, and i-propyl alcohol should be used. Is preferred.
  • the total amount of these solvents is used in a range not exceeding 10% by volume of the liquid in the reaction vessel.
  • an ultrafiltration membrane having appropriate filtration characteristics is selected in consideration of the particle size of the formed particles and the molecular weight of the anti-aggregation agent, and concentration / dilution operations are performed using the ultrafiltration membrane after the particle growth process is completed. By doing so, it is possible to remove the aggregation inhibitor.
  • a desalting and washing treatment can be performed, or a substitution treatment with an appropriate solvent can be performed for various purposes.
  • the solvent is less soluble than the solvent in the particle growth step, and more preferably by replacing the solvent with an alkaline earth metal carbonate such as alcohol.
  • the produced alkaline earth metal carbonate particles are used as fillers or pigments for rubber, plastic, paint, etc.
  • a dispersion in an appropriate solvent can be obtained without passing through a drying step. Not only can the step of pulverizing the solid after drying be omitted, but also agglomeration generated by drying the particles can be avoided, and the effect obtained when the primary particles are blended can be effectively expressed.
  • the ultrafiltration membrane that can be used in the present invention is not particularly limited as long as it has a fractional molecular weight capable of filtering out alkaline earth metal carbonate particles and has resistance to a solvent. There is no.
  • Solution A1 was placed in a 2 L stainless steel reaction vessel and maintained at 5 ° C, and the pH was adjusted to 11.5 with 5% aqueous sodium hydroxide solution while stirring at lOOOrpm. Subsequently, 40 ml each of the solution B1 and the solution C1 cooled to 4 ° C were equalized using the double jet method! /, Added at a rate of addition, and a constant flow rate into the solution A1 for 30 seconds. .
  • solution A2 cooled to 5 ° C. was added while stirring the reaction solution, and the pH was adjusted to 11.5 with 5% aqueous sodium hydroxide solution. Subsequently, the remaining amount of 160 ml of solution B1 and solution C1 held at 5 ° C was added at the same rate to match the increase in surface area accompanying particle growth. Using the double jet method while accelerating the flow rate, it was added to the liquid in the reaction vessel over 160 minutes.
  • the membrane was washed with water using an ultrafiltration membrane, and further replaced with an ethanol solvent using the ultrafiltration membrane to produce particles 1.
  • reaction solution was collected during and after the particle growth step, and the force s confirmed using an electron microscope was not observed, and the generation of new core particles in the particle growth step was not observed. Also
  • Particle 3 was produced in the same manner as Particle 1 except that the dispersion operation was performed using UH150).
  • Particle 4 was produced in the same manner as Particle 3 except that Solution A3 prepared as follows was used instead of Solution A1.
  • Solution A3 Strontium Chloride Hexahydrate
  • Particle 5 was produced in the same manner as Particle 3 except that Solution A4 prepared as follows was used instead of Solution A1.
  • Solution A4 Strontium Chloride Hexahydrate 5.3g and polybulurpyrrolidone as anti-agglomeration agent
  • Particle 6 was produced in the same manner as Particle 1 except that Solution A1 and Solution A2 were prepared and used except for the anti-aggregation agent polybulpyridone.
  • Particle 7 was produced in the same manner as in the production of Particle 1 except that the dispersion operation after completion of the nucleation step was not performed.
  • Particles 8 were produced as follows without separating the nucleation step and the particle growth step.
  • Solution A3 was placed in a 2 L stainless steel reaction vessel and maintained at 5 ° C, and the pH was adjusted to 12 with 5% aqueous sodium hydroxide solution while stirring at lOOOrpm. Subsequently, Solution B1 kept at 5 ° C. and Solution C1 were equalized! /, And added to the liquid in the reaction vessel for 200 minutes at the addition rate and at a constant flow rate using the double jet method. Next, after performing dispersion operation using an ultrasonic disperser (SMT UH150), washing with water using an ultrafiltration membrane, and further substituting with an ethanol solvent using an ultrafiltration membrane, the particles are used. Manufactured.
  • SMT UH150 ultrasonic disperser
  • each particle produced as described above at least 300 particles were photographed with a scanning electron microscope and the shape thereof was observed.
  • the shape of the particles occupying the main body was acicular particles, spherical particles, and irregularly shaped irregular shapes. Classified into particles.
  • Table 1 shows the results obtained as described above. Note that the particle 6 has a force that cannot measure the short axis diameter and the long axis diameter at which particle aggregation is intense. [0116] [Table 1]
  • the constituent requirement of the present invention that is, "alkaline earths using the double jet method in a solution containing an anti-aggregation agent" It is a production method in which a metal salt solution and a carbonate solution are reacted, wherein the production method includes a particle growth step after the nucleation step, and the dispersion operation is performed after the nucleation step is completed. It can be seen that this is a necessary condition for improving the child distribution.
  • the dispersion operation method after completion of the nucleation step and after the completion of the particle growth step is changed from an ultrasonic disperser to a media disperser (Kotobuki Industries Avex Minore) or a high-speed stirring dispersion.
  • Particles 1-9 and Particles 10 were produced in the same manner as Particles 3 except that the machine was changed to a machine (Primics Co., Ltd. ⁇ Homomixer MARKII).
  • Dispersion operation using a media disperser or a high-speed stirring disperser was also performed until the turbidity of the reaction solution converged to a constant value. Analysis of Particle-9 and Particle-10 confirmed that the particles were excellent in distribution as in Particle-3.
  • Particles As a result of measurement of each property by the same method as in Example 1, the minor axis diameter was attributed to particle aggregation that occurred in the drying process. In addition, deterioration of the long axis diameter distribution was observed. That is, in the method for producing alkaline earth metal carbonate particles of the present invention, an ultrafiltration membrane may be used when a water washing treatment is performed for the purpose of removing excess anti-aggregation inhibitor, shape control agent, salt, and the like. It was confirmed that this was preferable in preventing the aggregation of particles.
  • Barium chloride and calcium carbonate were prepared by changing the strontium chloride hexahydrate used in the production of the particles 1 to 8 of Example 1 to barium chloride and calcium chloride, respectively.
  • the alkaline earth metal carbonate particles produced by the production method of the present invention were Similar to the strontium carbonate particles according to the present invention described in Example 1, it was confirmed to have a needle-like shape and an excellent particle size distribution.
  • a 4000 ml aqueous solution (solution A1) containing 200 ml of ethanol and 120 g of polyvinyl pyrrolidone (molecular weight: 130,000) as an anti-aggregation agent was prepared in a 8 L stainless steel reaction vessel.
  • 1000 ml of 1.0 mol / L aqueous solution prepared from strontium chloride hexahydrate (solution B 1) and 1000 ml of 1.0 mol / L aqueous solution prepared from sodium carbonate (solution C1) were prepared.
  • a dispersion operation was performed using an ultrasonic disperser (SMT U HI 50). The dispersion operation was performed until the turbidity of the reaction solution decreased and converged to a certain value.
  • SMT U HI 50 an ultrasonic disperser
  • the membrane was washed with water using an ultrafiltration membrane, and further replaced with an ethanol solvent using the ultrafiltration membrane to produce particles-21.
  • the X-ray diffraction spectrum of the obtained reaction product was measured, and it was identified that the reaction product was strontium carbonate.
  • solution A 2 an aqueous solution containing 200 ml of ethanol, 0.1 mol of strontium chloride hexahydrate and 120 g of polybulurpyrrolidone (molecular weight: 130,000) as an aggregation inhibitor was prepared.
  • solution B2 1.0 mol / L aqueous solution prepared from strontium chloride hexahydrate
  • solution C2 1.0 mol / L aqueous solution prepared from sodium carbonate were prepared.
  • the nucleation step, dispersion operation 1, and ripening step were performed in the same manner except that Solution A2, Solution B2, and Solution C2 were used instead of Solution Al, Solution Bl, and Solution C1. .
  • a dispersion operation was performed using an ultrasonic disperser (SMT U HI 50). The dispersion operation was performed until the turbidity of the reaction solution decreased and converged to a certain value.
  • SMT U HI 50 an ultrasonic disperser
  • Particles 23 were prepared in the same manner as in the preparation of Particles 22 except that instead of Solution A2, Solution A3 shown below was used.
  • Solution A3 had a pH value of about 12.
  • Particle-24 was prepared in the same manner as in the preparation of the particle-23 except that the nucleation step and the particle growth step were changed to the conditions shown below.
  • Particle-25 was prepared in the same manner as in the preparation of the particle-23 except that the nucleation step and the particle growth step were changed to the conditions shown below.
  • Solution B2 was also added at the same flow rate as solution C2, and the addition was completed prior to solution C2.
  • particles 26 were prepared in the same manner except that the addition time of the solution B 1 and the solution C 1 in the nucleation step was 20 minutes.
  • the molar addition rate per mol of alkaline earth metal carbonate formed in the nucleation process corresponds to 0.05 mol / min.
  • Particle-27 was prepared in the same manner except that the preparation of the particle-21 was changed to the following nucleation step.
  • particles 28 were prepared in the same manner except that the addition time of the solution B 1 and the solution C 1 in the particle growth step was shortened to 40 minutes.
  • the length (major axis diameter) and diameter (minor axis diameter) of the particles were measured using a scanning electron microscope, and the ratio (major axis diameter / The minor axis diameter) was calculated as the aspect ratio, and the average value was obtained, which was used as the average aspect ratio.
  • Each of the alkaline earth metal carbonate particles prepared above was photographed using a scanning electron microscope, the diameter of a circle having an area equal to the projected area of the particles was defined as the particle size, and each of the individual particles measured for 300 particles was measured. The arithmetic average value of the particle diameter was determined and used as the average particle diameter.
  • a value obtained by dividing the standard deviation of the individual particle sizes obtained by the measurement of the average particle size by the average particle size was multiplied by 100 to obtain a particle size distribution.
  • the particles 21 prepared according to the conditions specified in the present invention are alkaline earth metal carbonates having a high aspect ratio and excellent particle size distribution.
  • Particle-26 which is a comparative example, is formed in the nucleation process because it takes time (20 minutes) to add the molar addition rate as low as 0 ⁇ 05 mol / min in the nucleation process. Nuclei grown in parallel, and the average ratio is small because V is small In addition, the particle size distribution is deteriorated.
  • the particle 27 has a non-uniform particle shape in which acicular particles and spherical particles are mixed, and in addition, the particle size distribution is deteriorated. ing.
  • the particle 28 since the addition rate in the particle growth process is not appropriately controlled, the particle 28 also generates nuclei in the particle growth process, resulting in an uneven particle shape in which columnar particles and spherical particles are mixed. This causes deterioration of the particle size distribution.
  • the particle 29 is a force S, which is a particle preparation by changing the double jet method of the particle 21 to the single jet method, and the grown particle is a needle-like particle unlike the particle 21. It was a mixture of negative particles. It is probable that the icidal particles were agglomerated during the nucleation process, and the aggregates were acicularly grown during the particle growth process. It is presumed that the nucleation of particles 29 in the nucleation step was caused by the fact that nucleation was performed under a high salt concentration condition because strontium chloride was added in advance to the reaction solution.
  • the particle preparation is carried out under an excess of alkaline earth metal ions, so that the particle cohesiveness is improved and the particle size is reduced and the particle size distribution is improved. I can understand that they are connected.
  • the aspect ratio can be remarkably increased by applying the form control agent to the production method of the present invention. In this case, the deterioration of the particle size distribution accompanying the increase in the aspect ratio is hardly observed.
  • the comparison of particles 21, 24 and 25 shows that the aspect ratio can be adjusted by the distribution of the molar ratio between the nucleation step and the particle growth step in the production method of the present invention. .
  • the molar ratio in the nucleation step exceeds 50%, the aspect ratio after grain growth decreases, and the characteristics expected for acicular or columnar particles can be sufficiently obtained. It becomes difficult and difficult.
  • barium chloride and calcium carbonate were prepared by changing the strontium chloride hexahydrate used to barium chloride or calcium chloride, respectively.
  • the obtained particles were confirmed to have a needle-like or columnar shape as in the case of the above-mentioned strontium carbonate particles—30 and excellent in particle size distribution.

Abstract

A process for producing particles of an alkaline earth metal carbonate which have an acicular shape and an improved particle diameter distribution. In the process, the shape and susceptibility to aggregation of the particles of an alkaline earth metal carbonate can be controlled. Also provided are particles of an alkaline earth metal carbonate produced by the process. In the process for producing particles of an alkaline earth metal carbonate, a solution of an alkaline earth metal salt is reacted with a carbonate solution in a solution containing an aggregation inhibitor by the double-jet method to form acicular particles having an average aspect ratio of 2 or higher. The process is characterized by comprising a nucleus formation step, a particle growth step conducted after the nucleus formation step, and a dispersing operation conducted after completion of the nucleus formation step.

Description

明 細 書  Specification
アルカリ土類金属炭酸塩粒子の製造方法及びアルカリ土類金属炭酸塩 粒子  Method for producing alkaline earth metal carbonate particles and alkaline earth metal carbonate particles
技術分野  Technical field
[0001] 本発明は、粒度分布が改良された針状の形態を有するアルカリ土類金属炭酸塩粒 子の製造方法及びアルカリ土類金属炭酸塩粒子に関するものである。  The present invention relates to a method for producing alkaline earth metal carbonate particles having an acicular shape with improved particle size distribution and alkaline earth metal carbonate particles.
背景技術  Background art
[0002] 炭酸カルシウムや炭酸ストロンチウム、炭酸バリウム等のアルカリ土類金属炭酸塩は 、紙、ゴム、樹脂、プラスチック、塗料、化粧品、医薬品等の添加剤として、また誘電 セラミック材料や高温超伝導体材料の原材料、光学フィルムの無機ドープ材料等とし て広範囲の工業分野で利用されている。  [0002] Alkaline earth metal carbonates such as calcium carbonate, strontium carbonate, and barium carbonate are used as additives for paper, rubber, resin, plastic, paint, cosmetics, pharmaceuticals, and dielectric ceramic materials and high-temperature superconductor materials. It is used in a wide range of industrial fields as a raw material for these materials and as an inorganic dope material for optical films.
[0003] アルカリ土類金属炭酸塩は、その物理的な性状によって発現する機能や特性が異 なることが知られており、例えば、低光沢でウエットインキ着肉性等に優れた塗料の製 造には紡錘状炭酸カルシウムが適し、高光沢で不透明性、インキ着肉性及びインキ セット性に優れた塗料の製造には針状炭酸カルシウムが適するとされて!/、る。また、 チタン酸ストロンチウムの製造原料に炭酸ストロンチウムを用いる場合に、平均粒径 0 . 8 in以下の粒子を用いると電気特性が改善されることが報告されている。更に透 明な樹脂やプラスチック材料に適用する場合には、透明性を損なわないために m オーダー以下の小さな粒子が求められる。  [0003] Alkaline earth metal carbonates are known to have different functions and properties depending on their physical properties. For example, alkaline earth metal carbonates can be used to produce paints with low gloss and excellent wet ink fillability. Spindle-like calcium carbonate is suitable for use, and acicular calcium carbonate is suitable for the production of paints with high glossiness, opacity, ink inking properties, and ink setting! In addition, when strontium carbonate is used as a raw material for producing strontium titanate, it has been reported that electrical characteristics are improved by using particles having an average particle size of 0.8 in or less. In addition, when applied to transparent resins and plastic materials, small particles of m order or less are required in order not to impair transparency.
[0004] このように目的に応じて粒子形状や粒径を選択する必要があるため、形態が制御さ れたアルカリ土類金属炭酸塩粒子の工業的な利用価値は高い。それ故、特に工業 的用途が広い針状や柱状等の異方性形状を有する粒子の形態を精密に制御し、且 つ目的とする機能を十分に発現させるため、より均一な粒子、即ち粒径分布に優れ た粒子を製造できる技術が求められている。  [0004] As described above, since it is necessary to select the particle shape and particle size according to the purpose, the industrial utility value of the alkaline earth metal carbonate particles with controlled morphology is high. Therefore, in order to precisely control the morphology of particles having anisotropic shapes such as needles and columns that have a wide range of industrial applications and to fully express the intended function, more uniform particles, that is, particles. There is a need for technology that can produce particles with excellent diameter distribution.
[0005] 一般にアルカリ土類金属炭酸塩粒子の製造方法は、炭酸ガス法と称されるアルカリ 土類金属イオンを含む溶液に炭酸ガスを反応させて調製する「液一気」法と、アル力 リ土類金属イオンを含む溶液と炭酸イオンを含む溶液を反応させて調製する「液 液」法に大別される。現在、工業的に行われているのは主に「液一気」法であり、アル カリ土類金属イオンを含む溶液としてはアルカリ土類金属水酸化物、具体的には Ca (OH) 、Sr (OH) 、Ba (OH) が使用されることが多いが、これらの水酸化物は溶解 度が低いため、通常スラリーとして用いられる。 [0005] In general, a method for producing alkaline earth metal carbonate particles includes a “liquid-at-a-time” method in which carbon dioxide gas is reacted with a solution containing an alkaline earth metal ion, which is referred to as a carbon dioxide gas method. Prepared by reacting a solution containing earth metal ions with a solution containing carbonate ions Broadly divided into “liquid” methods. Currently, the “liquid-at-a-time” method is mainly used industrially, and alkaline earth metal hydroxides such as Ca (OH), Sr are used as solutions containing alkali earth metal ions. (OH) and Ba (OH) are often used, but these hydroxides are usually used as slurries because of their low solubility.
[0006] 「液一気」法においては、水酸化カルシウムスラリーの温度と炭酸ガスの導入速度を  [0006] In the "liquid at once" method, the temperature of the calcium hydroxide slurry and the introduction rate of carbon dioxide gas are determined.
3段階に変化させて 1〜2 mの柱状炭酸カルシウムを製造する方法 (例えば、特許 文献 1参照。)や、炭酸化反応が 30%に達する前に水溶性の単糖類ゃ少糖類を水 酸化カルシウムスラリーに添加し、 1〜2 mの紡錘状炭酸カルシウムを製造する方 法 (例えば、特許文献 2参照。)、水酸化ストロンチウムスラリーの温度と炭酸ガスの導 入速度を規定し、 0. 72 inの針状炭酸ストロンチウムを製造する方法 (例えば、特 許文献 3参照。)などが提案されている。  A method of producing 1 to 2 m of columnar calcium carbonate in three stages (see, for example, Patent Document 1), and water-soluble monosaccharides and oligosaccharides are hydrolyzed before the carbonation reaction reaches 30%. A method of adding 1 to 2 m of spindle-shaped calcium carbonate added to the calcium slurry (see, for example, Patent Document 2), the temperature of the strontium hydroxide slurry and the introduction rate of carbon dioxide gas are defined. A method for producing ac needle-shaped strontium carbonate (for example, see Patent Document 3) has been proposed.
[0007] しかし、「液一気」法では、 i)反応過程におけるスラリー中のアルカリ土類金属水酸 化物の溶解速度や炭酸ガスのスラリーへの溶解速度を厳密に制御することが難しい 、 ii)反応過程において核形成と粒子成長が並行して進行する、 iii)核形成を水酸化 ストロンチウムスラリー中で行うために、反応液を均一に攪拌することが困難で反応液 内でのイオン濃度や過飽和度の不均化が生ずる、更に高い塩濃度の影響により生 成した核が直ちに凝集する等の課題によって、調製できるアルカリ土類金属炭酸塩 粒子は粒径分布の広!/、ものであった。  [0007] However, in the “liquid at once” method, i) it is difficult to strictly control the dissolution rate of alkaline earth metal hydroxide in the slurry and the dissolution rate of carbon dioxide gas in the slurry during the reaction process, ii) In the reaction process, nucleation and particle growth proceed in parallel. Iii) Since nucleation is performed in a strontium hydroxide slurry, it is difficult to stir the reaction solution uniformly, and the ion concentration and supersaturation in the reaction solution are difficult. Alkaline earth metal carbonate particles that can be prepared have a wide particle size distribution due to problems such as disproportionation of the degree, and the nuclei generated due to the influence of higher salt concentration immediately aggregate. .
[0008] 上記 i)の課題に対しては、例えば、炭酸イオンを含む水溶液とカルシウム化合物の 水溶液とを超音波照射下に直接反応させて炭酸カルシウム結晶を製造する方法 (例 えば、特許文献 4参照。)や、ノ リウム塩の水溶液と炭酸アルカリの水溶液を別々の 供給口から同時に反応容器に添加することにより針状の炭酸バリウムを製造する方 法 (例えば、特許文献 5参照。)、同様にストロンチウム、カルシウム、ノ リウム、亜鉛、 鉛の各イオンから選択される少なくとも 1種を含む金属イオン源と炭酸源をダブルジェ ット法により、液中で反応させて針状及び棒状の炭酸塩を製造する方法 (例えば、特 許文献 6参照。 )等の「液 液」法を用いた方法が提案されて!/、る。  [0008] To solve the above problem i), for example, a method of producing a calcium carbonate crystal by directly reacting an aqueous solution containing carbonate ions and an aqueous solution of a calcium compound under ultrasonic irradiation (for example, Patent Document 4) And a method of producing acicular barium carbonate by simultaneously adding an aqueous solution of a sodium salt and an aqueous solution of an alkali carbonate to reaction vessels through separate supply ports (see, for example, Patent Document 5), and the like. In addition, a metal ion source containing at least one selected from strontium, calcium, norlium, zinc, and lead and a carbonate source are reacted in a liquid by a double jet method to form needle-like and rod-like carbonates. A method using a “liquid-liquid” method such as a manufacturing method (for example, see Patent Document 6) has been proposed!
[0009] しかし、これらの方法も ii)項に示した課題を解決し得る技術手段を有して!/、な!/、た め、製造できる粒子の粒径分布は依然として満足できるものではな力、つた。 [0010] 前記 ii)項に記載の課題に対しては、ストロンチウム、カルシウム、ノ リウム、亜鉛、鉛 の各イオン力 選択される少なくとも 1種を含む金属イオン源の液中で炭酸源を反応 させる製造方法で、粒子数増加工程と粒子体積増加工程を含み、且つ炭酸源の添 加速度及び時間を制御して反応させ、アスペクト比が 1より大きい形状を有する炭酸 塩の製造方法が提案されている(例えば、特許文献 7参照。)。 [0009] However, these methods also have technical means that can solve the problem shown in section ii)! / ,! and, therefore, the particle size distribution of the particles that can be produced is still not satisfactory. Power, ivy. [0010] For the problem described in item ii), a carbonic acid source is reacted in a liquid of a metal ion source containing at least one selected from the ionic forces of strontium, calcium, norlium, zinc, and lead. A production method has been proposed that includes a step of increasing the number of particles and a step of increasing the volume of a particle, and reacting by controlling the acceleration rate and time of the carbonic acid source, and having a shape with an aspect ratio greater than 1. (For example, see Patent Document 7).
[0011] し力、し、この方法はイオン源の添加方法がシングルジェット法であるため、 i)項に記 載の課題を内包する製造方法であり、また反応容器内に溜められた金属イオン源の 中へ炭酸源を添加するため、 iii)項に記載の課題が不可避となり、粒径分布の劣化を 改良する技術としては不十分であった。 [0011] Since this method uses a single jet method as an ion source addition method, it is a manufacturing method that includes the problem described in item i), and metal ions stored in a reaction vessel. Since the carbonic acid source was added to the source, the problem described in item iii) was unavoidable, and it was insufficient as a technique for improving the deterioration of the particle size distribution.
[0012] また、「液一気」法で製造されるアルカリ土類金属炭酸塩は、元来一次粒子 (核粒 子)間の凝集力が非常に強いものであり、一次粒子が多数凝集して大きな二次粒子( 一次粒子の粗大凝集体)を形成しており、この二次粒子のスラリーは、長時間強力に 攪拌を続けても、一次粒子の状態まで解膠することは不可能であるとされている。  [0012] Alkaline earth metal carbonates produced by the “liquid at once” method are inherently very strong in cohesion between primary particles (nuclear particles), and many primary particles are aggregated. It forms large secondary particles (coarse aggregates of primary particles), and this secondary particle slurry cannot be peptized to the state of primary particles even if it is vigorously stirred for a long time. It is said that.
[0013] 例えば、このような一次粒子の凝集体を多数含有する炭酸カルシウムを、ゴム、ブラ スチック、紙、塗料等の填料あるいは顔料として使用した場合、二次粒子があたかも 一次粒子のような挙動を示すため、分散不良、強度の低下、光沢の低下、流動性の 悪化等を招き、一次粒子を配合した場合に発現する本来の効果が得られなくなる。 また、同様にこのように多数の凝集体を含有する炭酸カルシウムに無機系または有 機系の表面処理を施しても、二次粒子表面のみが処理されるにすぎず、十分な効果 を引き出すことは難しい。  [0013] For example, when calcium carbonate containing a large number of aggregates of such primary particles is used as a filler or pigment for rubber, plastic, paper, paint, etc., the secondary particles behave as if they were primary particles. As a result, poor dispersion, reduced strength, reduced gloss, deteriorated fluidity, etc. are caused, and the original effects that are manifested when primary particles are blended cannot be obtained. Similarly, even if calcium carbonate containing a large number of aggregates is subjected to an inorganic or organic surface treatment, only the surface of the secondary particles is treated, and a sufficient effect can be obtained. Is difficult.
[0014] このようなアルカリ土類金属炭酸塩粒子における一次粒子凝集体を分散させる方 法は多数報告されており、工業的には凝集体として形成されたアルカリ土類金属炭 酸塩粒子を、ボールミル、サンドグラインダーミル等により強力に粉砕する方法が採 用されている。  [0014] A number of methods for dispersing primary particle aggregates in such alkaline earth metal carbonate particles have been reported. Industrially, alkaline earth metal carbonate particles formed as aggregates are A powerful grinding method using a ball mill, sand grinder mill, or the like is used.
[0015] しかしながら、このような方法は強大なエネルギーを使用した摩砕粉砕であるため、 凝集体の分散が行われると同時に一次粒子の破壊も行われ、その結果、粒子の表 面状態は不安定化し、加えて希望する一次粒子径より更に小さな粒子と分散が不完 全な二次凝集粒子とが混在し、粒度の分布が幅広くなつてしまうため、好ましい方法 であるとは言い難い。 [0015] However, since such a method is grinding and grinding using strong energy, the aggregates are dispersed and the primary particles are destroyed at the same time. As a result, the surface state of the particles is not good. This is a preferred method because it stabilizes, and in addition, particles that are smaller than the desired primary particle size and secondary agglomerated particles that are incompletely dispersed are mixed, resulting in a wide distribution of particle sizes. It is hard to say.
[0016] また、このようなサンドグラインダー等の湿式粉砕機には、粉砕用メディアとして微小 なガラスビーズが用いられる場合がある力 アルカリ土類金属炭酸塩粒子の粉砕プロ セスにおいて、これらガラスビーズ表面も破壊されるため、分散処理後のアルカリ土 類金属炭酸塩粒子中に数 m以上の粗大ガラス片が多数混入することもあり、好ま しレ、方法であるとは言レ、難!/、のが現状である。  [0016] Further, in such a wet grinder such as a sand grinder, fine glass beads may be used as a grinding medium. In the grinding process of alkaline earth metal carbonate particles, the surface of these glass beads As a result, a large number of coarse glass pieces of several meters or more may be mixed in the alkaline earth metal carbonate particles after the dispersion treatment, which is preferable and difficult! is the current situation.
[0017] 従って、アルカリ土類金属炭酸塩粒子製造後の粉砕プロセスの必要がなぐ凝集 粒子の少ないアルカリ土類金属炭酸塩粒子を安定に製造できる方法が求められて いる。  [0017] Therefore, there is a need for a method that can stably produce alkaline earth metal carbonate particles with few aggregated particles that do not require a pulverization process after the production of alkaline earth metal carbonate particles.
特許文献 1 :特公昭 55— 51852号公報  Patent Document 1: Japanese Patent Publication No. 55-51852
特許文献 2:特開 2001— 139328号公幸  Patent Document 2: JP 2001-139328 Koyuki
特許文献 3:特開 2006— 124199号公報  Patent Document 3: Japanese Unexamined Patent Publication No. 2006-124199
特許文献 4 :特開昭 59— 203728号公報  Patent Document 4: Japanese Patent Application Laid-Open No. 59-203728
特許文献 5:特開平 5— 155615号公報  Patent Document 5: JP-A-5-155615
特許文献 6 :特開 2006— 21988号公報  Patent Document 6: Japanese Unexamined Patent Publication No. 2006-21988
特許文献 7:特開 2006— 169038号公報  Patent Document 7: Japanese Unexamined Patent Application Publication No. 2006-169038
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0018] 本発明は、上記課題に鑑みなされたものであり、その目的は、アルカリ土類金属炭 酸塩粒子の形態や凝集性の制御が可能で、針状の形態を有する粒径分布の改良さ れたアルカリ土類金属炭酸塩粒子の製造方法及び該製造方法で製造されたアル力 リ土類金属炭酸塩粒子を提供することにある。  [0018] The present invention has been made in view of the above problems, and its purpose is to control the morphology and cohesiveness of alkaline earth metal carbonate particles, and to provide a particle size distribution having a needle-like morphology. An object of the present invention is to provide an improved method for producing alkaline earth metal carbonate particles and an alkaline earth metal carbonate particle produced by the production method.
課題を解決するための手段  Means for solving the problem
[0019] 本発明者は前記課題を解決すべく鋭意研究を重ねた結果、アルカリ土類金属の炭 酸塩粒子の核形成工程と粒子成長工程を分離して各工程毎に最適な条件を付与し 、且つ少なくともいずれかの工程終了後に分散処理を施すことによって、粒子凝集に 原因する粒径分布の劣化や形状の不均化を防止し、針状の形態を有する粒子の平 均アスペクト比や平均粒径、及び粒径分布を制御できることを見出すに至った。本発 明はこのような検討から得られた知見に基づき導かれたものである。なお、本発明に おいて、針状の形態とは柱状、棒状の形態をも含むものである。 [0019] As a result of intensive studies to solve the above problems, the present inventors have separated the nucleation step and the particle growth step of alkaline earth metal carbonate particles, and provided optimum conditions for each step. In addition, by performing a dispersion treatment after the completion of at least one of the steps, particle size distribution deterioration and shape disproportionation due to particle aggregation are prevented, and the average aspect ratio of particles having a needle-like shape is reduced. It has been found that the average particle size and particle size distribution can be controlled. Main departure Akira is based on the knowledge obtained from such studies. In the present invention, the needle-like form includes a columnar form and a bar-like form.
[0020] 即ち、本発明の上記目的は、以下の構成により達成される。 That is, the above object of the present invention is achieved by the following configuration.
[0021] 1.凝集防止剤を含む溶液中でダブルジェット法を用いてアルカリ土類金属塩溶液 と炭酸塩溶液とを反応させ、平均アスペクト比が 2以上の針状の形態を有する粒子を 形成するアルカリ土類金属炭酸塩粒子の製造方法であって、核形成工程後に粒子 成長工程を有し、核形成工程終了以降に分散操作を行うことを特徴とするアルカリ土 類金属炭酸塩粒子の製造方法。  [0021] 1. By using a double jet method in a solution containing an anti-agglomeration agent, an alkaline earth metal salt solution and a carbonate solution are reacted to form needle-shaped particles having an average aspect ratio of 2 or more. A method for producing alkaline earth metal carbonate particles, comprising: a particle growth step after the nucleation step, and performing a dispersion operation after the nucleation step is completed. Method.
[0022] 2.前記分散操作が核形成工程終了後から粒子成長工程開始までの間に行われ ることを特徴とする前記 1に記載のアルカリ土類金属炭酸塩粒子の製造方法。  [0022] 2. The method for producing alkaline earth metal carbonate particles according to 1 above, wherein the dispersing operation is performed between the end of the nucleation step and the start of the particle growth step.
[0023] 3.前記分散操作が粒子成長工程終了後に行われることを特徴とする前記 1に記載 のアルカリ土類金属炭酸塩粒子の製造方法。  [0023] 3. The method for producing alkaline earth metal carbonate particles according to 1 above, wherein the dispersing operation is performed after completion of the particle growth step.
[0024] 4.前記分散操作が核形成工程終了後から粒子成長工程開始までの間と粒子成 長工程終了後に行われることを特徴とする前記 1に記載のアルカリ土類金属炭酸塩 粒子の製造方法。  [0024] 4. Production of alkaline earth metal carbonate particles according to 1 above, wherein the dispersing operation is performed from the end of the nucleation step to the start of the particle growth step and after the end of the particle growth step. Method.
[0025] 5.前記分散操作をメディア分散機、超音波分散機、高速攪拌型分散機の中から 少なくとも 1種類を用いて行うことを特徴とする前記 1〜4のいずれ力、 1項に記載のァ ルカリ土類金属炭酸塩粒子の製造方法。  [0025] 5. The force according to any one of 1 to 4, wherein the dispersion operation is performed using at least one of a media disperser, an ultrasonic disperser, and a high-speed stirring disperser. A method for producing alkaline earth metal carbonate particles.
[0026] 6.前記凝集防止剤を含む溶液、アルカリ土類金属塩溶液及び炭酸塩溶液の溶媒 が実質的に水であることを特徴とする前記 1〜5のいずれ力、 1項に記載のアルカリ土 類金属炭酸塩粒子の製造方法。 [0026] 6. The power according to any one of 1 to 5 above, wherein the solvent of the solution containing the aggregation inhibitor, the alkaline earth metal salt solution, and the carbonate solution is substantially water. A method for producing alkaline earth metal carbonate particles.
[0027] 7.前記凝集防止剤がアミド基を有する水溶性ポリマーであることを特徴とする前記[0027] 7. The above-mentioned aggregation inhibitor is a water-soluble polymer having an amide group
;!〜 6のいずれ力、 1項に記載のアルカリ土類金属炭酸塩粒子の製造方法。 Any one power of! -6, The manufacturing method of the alkaline-earth metal carbonate particle | grains of 1.
[0028] 8.前記アルカリ土類金属炭酸塩粒子の長軸径の変動係数力 0%未満であること を特徴とする前記 1〜7のいずれ力、 1項に記載のアルカリ土類金属炭酸塩粒子の製 造方法。 [0028] 8. The alkaline earth metal carbonate according to any one of 1 to 7 above, wherein the coefficient of variation of the long axis diameter of the alkaline earth metal carbonate particles is less than 0%. How to make particles.
[0029] 9.前記アルカリ土類金属炭酸塩粒子の短軸径の変動係数が 35%未満であること を特徴とする前記 1〜8のいずれ力、 1項に記載のアルカリ土類金属炭酸塩粒子の製 造方法。 [0029] 9. The alkaline earth metal carbonate according to any one of 1 to 8 above, wherein the coefficient of variation of the minor axis diameter of the alkaline earth metal carbonate particles is less than 35%. Made of particles Manufacturing method.
[0030] 10.前記粒子成長工程終了後に限外濾過膜を用いて前記凝集防止剤を除去する ことを特徴とする前記 1〜9のいずれ力、 1項に記載のアルカリ土類金属炭酸塩粒子の 製造方法。  [0030] 10. The alkaline earth metal carbonate particles according to any one of 1 to 9 above, wherein the aggregation inhibitor is removed using an ultrafiltration membrane after completion of the particle growth step. The manufacturing method.
[0031] 11.前記核形成工程終了時の該アルカリ土類金属炭酸塩粒子の長軸径と短軸径 の平均値を各々 a、 b、粒子成長工程終了時の該アルカリ土類金属炭酸塩粒子の  [0031] 11. Average values of major axis and minor axis diameter of the alkaline earth metal carbonate particles at the end of the nucleation step are a and b, respectively, and the alkaline earth metal carbonate at the end of the particle growth step. Particulate
1 1  1 1
長軸径と短軸径の平均値を各々 a、 bとし、該粒子成長工程終了時における長軸径 と短軸径の成長速度比を V = (a - a ) / (b b )で表したとき、 V力 ¾以上であるこ とを特徴とする前記 1〜; 10のいずれ力、 1項に記載のアルカリ土類金属炭酸塩粒子の 製造方法。  The average value of the major axis diameter and the minor axis diameter is a and b, respectively, and the growth rate ratio between the major axis diameter and the minor axis diameter at the end of the grain growth process is expressed as V = (a-a) / (bb) The method for producing alkaline earth metal carbonate particles according to any one of 1 to 10 above, wherein the V force is ¾ or more.
[0032] 12.前記核形成工程または前記粒子成長工程の少なくとも一部が、反応容器内の 液がアルカリ土類金属イオン過剰な条件下で行われることを特徴とする前記 1〜 11 のいずれ力、 1項に記載のアルカリ土類金属炭酸塩粒子の製造方法。  [0032] 12. At least one part of the nucleation step or the particle growth step is performed under a condition in which the liquid in the reaction vessel is in excess of alkaline earth metal ions. The method for producing alkaline earth metal carbonate particles according to 1 above.
[0033] 13.前記核形成工程または粒子成長工程の少なくとも一部が、反応容器内の液が pH9以上の条件下で行われることを特徴とする前記 1〜; 12のいずれか 1項に記載の アルカリ土類金属炭酸塩粒子の製造方法。  [0033] 13. The method according to any one of 1 to 12 above, wherein at least a part of the nucleation step or the particle growth step is performed under a condition that a liquid in a reaction vessel has a pH of 9 or more. A method for producing alkaline earth metal carbonate particles.
[0034] 14.前記核形成工程または粒子成長工程の少なくとも一部が、形態制御剤の存在 下に行われることを特徴とする前記 1〜; 13のいずれ力、 1項に記載のアルカリ土類金 属炭酸塩粒子の製造方法。  [0034] 14. The alkaline earth according to any one of 1 to 13 above, wherein at least a part of the nucleation step or the particle growth step is performed in the presence of a form control agent. A method for producing metal carbonate particles.
[0035] 15.前記核形成工程におけるアルカリ土類金属塩溶液及び炭酸塩溶液の添加速 度力 該核形成工程で形成されるアルカリ土類金属炭酸塩 1モル当たり 0. 1モル/ min以上であることを特徴とする前記 1〜; 14のいずれか 1項に記載のアルカリ土類金 属炭酸塩粒子の製造方法。  [0035] 15. Rate of addition of alkaline earth metal salt solution and carbonate solution in the nucleation step 0.1 mol / min or more per mol of alkaline earth metal carbonate formed in the nucleation step 15. The method for producing alkaline earth metal carbonate particles according to any one of 1 to 14 above, wherein the alkaline earth metal carbonate particles are present.
[0036] 16.前記反応における液力 メタノール、エタノール、 n プロピルアルコール及び i  [0036] 16. Fluidity in the reaction Methanol, ethanol, n-propyl alcohol and i
プロピルアルコールから選ばれる少なくとも 1種を含むことを特徴とする前記 1〜; 15 のいずれ力、 1項に記載のアルカリ土類金属炭酸塩粒子の製造方法。  15. The method for producing alkaline earth metal carbonate particles according to any one of 1 to 15 above, comprising at least one selected from propyl alcohol.
[0037] 17.前記粒子成長工程終了時のアルカリ土類金属炭酸塩粒子に対して、前記核 形成工程で形成されるアルカリ土類金属炭酸塩のモル比が 50モル%以下であること を特徴とする前記 1〜; 16のいずれ力、 1項に記載のアルカリ土類金属炭酸塩粒子の製 造方法。 [0037] 17. The molar ratio of the alkaline earth metal carbonate formed in the nucleation step to the alkaline earth metal carbonate particles at the end of the particle growth step is 50 mol% or less. 16. The method for producing alkaline earth metal carbonate particles according to any one of 1 to 16 above, characterized by the following:
[0038] 18.前記粒子成長工程の少なくとも一部が、炭酸ガスを炭酸イオン源として用いる ことを特徴とする前記 1〜; 17のいずれ力、 1項に記載のアルカリ土類金属炭酸塩粒子 の製造方法。  [0038] 18. The alkaline earth metal carbonate particle according to any one of 1 to 17 above, wherein at least a part of the particle growth step uses carbon dioxide as a carbonate ion source. Production method.
[0039] 19.前記 1〜; 18のいずれ力、 1項に記載のアルカリ土類金属炭酸塩粒子の製造方 法で製造されたことを特徴とするアルカリ土類金属炭酸塩粒子。  [0039] 19. Alkaline earth metal carbonate particles produced by the method for producing alkaline earth metal carbonate particles according to 1 above, wherein any one of 1 to 18 above is used.
発明の効果  The invention's effect
[0040] 本発明により、アルカリ土類金属炭酸塩粒子形成時の凝集に起因する悪影響を排 除することが可能となり、針状の形態を有する粒径分布の改良されたアルカリ土類金 属炭酸塩粒子の製造方法及び該製造方法で製造されたアルカリ土類金属炭酸塩粒 子を提供すること力できる。  [0040] According to the present invention, it is possible to eliminate an adverse effect caused by aggregation during the formation of alkaline earth metal carbonate particles, and an alkaline earth metal carbonate having an acicular shape and an improved particle size distribution. It is possible to provide a salt particle production method and alkaline earth metal carbonate particles produced by the production method.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0041] 以下に本発明の実施形態及びその詳細について説明する力 本発明はそれらに よって限定されるものではなぐ特許請求の範囲の記載によって特定されるものであ [0041] The power of describing the embodiments of the present invention and the details thereof The present invention is specified by the description of the claims, not limited thereto.
[0042] 本発明において、アルカリ土類金属炭酸塩粒子の製造工程における核形成工程と は、核粒子を発生させるためのプロセスであり、粒子成長工程とは新たな核粒子の発 生を殆ど伴わずに粒子を成長させるプロセスを意味する。 [0042] In the present invention, the nucleation step in the production process of alkaline earth metal carbonate particles is a process for generating nuclei particles, and the particle growth step is almost accompanied by the generation of new nuclei particles. Means the process of growing particles without
[0043] 換言すれば、核形成工程では粒子数は増加し、粒子成長工程では粒子数は実質 的に増加しな!/、 (ォストワルド熟成を施すと粒子数は減少する場合もある)。従って、 両工程は新たな核粒子の発生の有無によって区別することができる。ここで、粒子数 が実質的に増加しないとは、粒子成長工程終了時の粒子数が粒子成長工程開始時 (熟成工程を含む場合には熟成工程終了時)の 125%以内であることを意味する。  In other words, the number of particles increases in the nucleation step, and the number of particles does not increase substantially in the particle growth step! / (The number of particles may decrease when subjected to Ostwald ripening). Therefore, both processes can be distinguished by the presence or absence of new nuclear particles. Here, the fact that the number of particles does not substantially increase means that the number of particles at the end of the particle growth process is within 125% at the start of the particle growth process (or at the end of the ripening process when the ripening process is included). To do.
[0044] 本発明に係るアルカリ土類金属炭酸塩は、アルカリ土類金属イオンと炭酸イオンと を反応させて形成することができる。アルカリ土類金属イオン源としては、例えば、 Ca 2+、 Sr2+、 Ba2+、 Ra2+であり、 Ca2+の場合の具体的な化合物としては、 CaCl、 Ca (NO[0044] The alkaline earth metal carbonate according to the present invention can be formed by reacting an alkaline earth metal ion and a carbonate ion. Examples of the alkaline earth metal ion source, for example, Ca 2 +, Sr 2+, Ba 2+, is Ra 2+, As the specific compound for the case of Ca 2+, CaCl, Ca (NO
) 、 CaSO、 Ca (OH) 、 Ca (CH COO) 、及びそれらの水和物等を挙げることがで きる。また、
Figure imgf000009_0001
Ba2+、 Ra2+の場合の具体的な化合物も同様である。炭酸イオン源と して用いることができる化合物としては、例えば、 Na CO、 NaHCO、 K CO、 KH
), CaSO, Ca (OH), Ca (CH COO), and their hydrates. wear. Also,
Figure imgf000009_0001
The same applies to specific compounds in the case of Ba 2+ and Ra 2+ . Examples of compounds that can be used as the carbonate ion source include Na CO, NaHCO, K CO, and KH.
CO、 (NH ) NO、 NH HCO、 (NH ) CO等力《挙げられる。 CO, (NH 2) NO, NH 2 HCO, (NH 2) CO, etc.
[0045] 本発明にお!/、ては、アルカリ土類金属イオン源と炭酸イオン源の!/、ずれも溶媒に対 する溶解度が高ぐ濃度の高い溶液を調製できる化合物がより好適である。  [0045] In the present invention, it is more preferable to use a compound capable of preparing a high-concentration solution with high solubility in a solvent, and between the alkaline earth metal ion source and the carbonate ion source! .
[0046] 前述のように、アルカリ土類金属の炭酸塩を製造する方法としては、炭酸ガス法と 称されるアルカリ土類金属塩の溶液に炭酸ガスを導入して反応させる方法(「液一気 」法)や、アルカリ土類金属塩の溶液と炭酸イオンを含む溶液を反応させる方法(「液 液」法)が知られている。いずれの方法においても、アルカリ土類金属イオンと炭酸 イオンとが反応するとアルカリ土類金属炭酸塩の析出が直ちに生じる。  [0046] As described above, as a method for producing an alkaline earth metal carbonate, a method of introducing a carbon dioxide gas into a solution of an alkaline earth metal salt called a carbon dioxide method and reacting the solution ("liquid at once" And a method of reacting a solution of an alkaline earth metal salt with a solution containing carbonate ions (“liquid-liquid” method) is known. In any method, when alkaline earth metal ions and carbonate ions react with each other, precipitation of alkaline earth metal carbonates occurs immediately.
[0047] 反応により生じたアルカリ土類金属炭酸塩粒子は、核粒子の生成直後から粒子成 長を始めるため、早く発生した核粒子ほど成長しやすぐ後から発生した核粒子ほど 成長しにくい。この結果、核形成工程中の粒子成長は核粒子の粒径分布を増大させ 、粒子成長終了後の粒径分布の劣化を招くため好ましくない。  [0047] Alkaline earth metal carbonate particles generated by the reaction begin to grow immediately after the generation of the core particles, and therefore grow faster as the core particles are generated earlier and more difficult to grow as the core particles are generated soon after. As a result, particle growth during the nucleation step is not preferable because it increases the particle size distribution of the nucleus particles and causes deterioration of the particle size distribution after the completion of particle growth.
[0048] 核形成工程中に起こる核粒子の粒径分布の広がりには、核形成時間と核形成温度 に大きく依存する。即ち、核形成工程の時間が長いと早く発生した核粒子の成長に よって粒径分布が劣化し、また核形成工程の温度が高!/、と核粒子の成長速度が増 大し、早く発生した核粒子と後から発生した核粒子との粒径差が増幅される。  [0048] The broadening of the particle size distribution of the nuclei that occurs during the nucleation step largely depends on the nucleation time and the nucleation temperature. That is, if the time of the nucleation process is long, the particle size distribution deteriorates due to the early growth of the nucleation particles, and the temperature of the nucleation process is high! The particle size difference between the generated core particles and the core particles generated later is amplified.
[0049] 本発明では核形成工程の時間を任意に設定できるが、粒径分布の劣化を防止す るために 1800秒以内で終了することが好ましぐ 300秒以内がより好ましぐ 120秒 以内が更に好ましい。  [0049] In the present invention, the time of the nucleation step can be arbitrarily set, but it is preferable to end within 1800 seconds in order to prevent the deterioration of the particle size distribution, and within 300 seconds is more preferable 120 seconds. Within is more preferable.
[0050] また、同様に核形成工程の温度も任意に設定できるが、核形成工程中の核粒子の 成長を抑制するため、なるべく低い温度で行うことが好ましぐ具体的には— 10〜40 °Cの間で行うことが好ましい。更に低い温度では反応容器内の液が凍結したり、温度 制御のために特殊な設備が必要となり生産コストが増大する。  [0050] Similarly, the temperature of the nucleation step can be arbitrarily set, but in order to suppress the growth of nuclei particles during the nucleation step, it is preferable to perform at a temperature as low as possible. It is preferably carried out between 40 ° C. At lower temperatures, the liquid in the reaction vessel freezes, and special equipment is required for temperature control, increasing production costs.
[0051] アルカリ土類金属炭酸塩粒子の製造方法には、炭酸ガス法と称されるアルカリ土類 金属塩の溶液に炭酸ガスを導入して反応させる方法(「液一気」法)と、シングルジェ ット法やダブルジェット法のような、アルカリ土類金属塩の溶液と炭酸イオンを含む溶 液を反応させる方法(「液 液」法)があるが、本発明においては、核形成及び粒子 成長の!/、ずれの工程にお!/、てもダブルジェット法を使用することが好まし!/、。 [0051] Alkaline earth metal carbonate particles can be produced by introducing carbon dioxide gas into a solution of an alkaline earth metal salt called "carbon dioxide gas method" and reacting it ("liquid at once" method) Solutions containing alkaline earth metal salts and carbonate ions, such as the jet and double jet methods There is a method of reacting a liquid (“liquid-liquid” method). In the present invention, it is preferable to use a double jet method for nucleation and particle growth! ! /
[0052] 核形成工程にダブルジェット法を適用することにより、撹拌混合装置内の過飽和度 を高めて単位時間当たりの核発生数を増大することができるため、核形成工程の時 間短縮が可能となり、核形成工程における分布劣化の改善が期待できる。また、粒 子成長工程にダブルジェット法を適用することにより、撹拌混合装置内の過飽和度を 精度良くコントロールすることができるため、粒子形状の制御や分布の改良が期待で きる。 [0052] By applying the double jet method to the nucleation process, it is possible to increase the number of nuclei generated per unit time by increasing the degree of supersaturation in the stirring and mixing device. Thus, improvement of distribution deterioration in the nucleation process can be expected. In addition, by applying the double jet method to the particle growth process, it is possible to control the degree of supersaturation in the stirring and mixing apparatus with high accuracy, so that control of the particle shape and improvement of the distribution can be expected.
[0053] 本発明においては、粒子成長工程の一部に炭酸ガス法を適用することもできる。具 体的な態様として、核形成工程及び熟成工程終了後の反応液にアル力リ土類金属 の水酸化物を添加してスラリーを形成し、該スラリー中に炭酸ガスを導入して粒子を 成長させる方法を挙げることができる。この方法ではアルカリ土類金属塩のスラリーを 用いるため、実効的に高濃度の溶液を用いることができ生産性の向上に有効である  In the present invention, the carbon dioxide method can be applied to a part of the particle growth process. As a specific embodiment, a slurry of an alkaline earth metal hydroxide is added to the reaction solution after completion of the nucleation step and the aging step to form a slurry, and carbon dioxide gas is introduced into the slurry to form particles. The growth method can be mentioned. Since this method uses an alkaline earth metal salt slurry, it is possible to effectively use a high-concentration solution, which is effective in improving productivity.
[0054] 本発明に係るダブルジェット法とは、 2種類の溶液を必要に応じて適当な送液装置 等を用いて各々反応容器内の液の液面上または液中に滴下または噴射、あるいは 注入することにより該容器内の液中で反応させる方法であり、本発明においてはアル カリ土類金属塩溶液及び炭酸塩溶液を添加液として用いることにより実施できる。 [0054] The double jet method according to the present invention is a method in which two kinds of solutions are dropped or jetted onto the liquid surface of the liquid in the reaction vessel or into the liquid, respectively, using an appropriate liquid delivery device or the like, if necessary. This is a method of reacting in the liquid in the container by pouring, and in the present invention, it can be carried out by using an alkaline earth metal salt solution and a carbonate solution as additive liquids.
[0055] また、本発明にお!/、ては、凝集防止剤を含む溶液やアルカリ土類金属塩溶液及び 炭酸塩溶液の溶媒は実質的に水であることが好ましい。ここで、本発明において溶 媒が実質的に水であるとは、水以外の溶媒の含有率が 10体積%以下であることを意 味する。水以外の溶媒、特に有機溶媒を 10体積%以上含有する場合には、粒子凝 集性が劣化する懸念がある。  [0055] In addition, in the present invention, it is preferable that the solvent of the solution containing the aggregation inhibitor, the alkaline earth metal salt solution, and the carbonate solution is substantially water. Here, in the present invention, the solvent is substantially water means that the content of a solvent other than water is 10% by volume or less. When a solvent other than water, particularly an organic solvent, is contained in an amount of 10% by volume or more, there is a concern that the particle aggregation property is deteriorated.
[0056] ダブルジェット法では、送液装置等で添加液の添加速度を変更することによって、 モル添加速度を任意に設定したり変更したりすることができる力 S、モル添加速度が小 さい場合には、単位時間当たりに形成される核粒子数が減少するため生産効率が低 下し、添加時間を長くして形成される核粒子数を増やすと、生成した核粒子の成長が 並行して生じるため粒径分布が劣化する。 [0057] 従って、本発明では前記核形成工程におけるモル添加速度を、該工程で形成され るアルカリ土類金属炭酸塩 1モル当たり 0. 1モル/ min以上に設定することが好まし い。更に 0· 2〜4モル/ minが好ましぐ 0. 5〜2モル/ minがより好ましい。モル添 加速度が 4モル/ minより大きい場合には、反応容器内の攪拌効率が相対的に低下 し、不均一な核粒子が生成したり、局所的な核粒子密度の増加による凝集発生の懸 念が増大する。 [0056] In the double jet method, the force S can be arbitrarily set or changed by changing the addition rate of the additive solution using a liquid delivery device, etc. In this case, the production efficiency decreases because the number of core particles formed per unit time decreases, and if the number of core particles formed is increased by increasing the addition time, the generated core particles grow in parallel. As a result, the particle size distribution deteriorates. Therefore, in the present invention, it is preferable to set the molar addition rate in the nucleation step to be 0.1 mol / min or more per 1 mol of the alkaline earth metal carbonate formed in the step. Furthermore, 0.2-4 mol / min is preferable, and 0.5-2 mol / min is more preferable. When the mole addition acceleration is higher than 4 mol / min, the stirring efficiency in the reaction vessel is relatively lowered, and non-uniform core particles are generated, or aggregation due to an increase in local core particle density is suspended. The mind increases.
[0058] 本発明における粒子成長工程では、新たな核粒子が発生しないようにアルカリ土 類金属イオンと炭酸イオンを反応させることが重要である。そのためには、粒子成長 工程をダブルジェット法で実施する場合には、アルカリ土類金属塩の溶液と炭酸ィォ ンを含む溶液の添加速度の調整が必要であり、炭酸ガス法で実施する場合には炭 酸ガス導入速度の調整が必要である。  [0058] In the particle growth step in the present invention, it is important to react alkaline earth metal ions and carbonate ions so that no new core particles are generated. To this end, when the particle growth process is carried out by the double jet method, it is necessary to adjust the addition rate of the alkaline earth metal salt solution and the solution containing carbonate ion. Therefore, it is necessary to adjust the carbon dioxide gas introduction rate.
[0059] なお、本発明では核形成工程終了後に、必要に応じて反応容器内の液温を核形 成工程より高く保持する(熟成工程)こともできる。通常、熟成工程では粒径の小さな 粒子が溶解し粒径の大きな粒子が成長する現象 (ォストワルド熟成)が起こる。従って 、本発明においては熟成工程を粒子成長工程の一部と見なすことができる。粒子成 長工程は、粒子の成長速度を高めるために核形成工程と同等以上の温度で行うこと が好ましぐ具体的には 0〜60°Cの間で行うことが好ましい。 0°Cより低い温度では十 分な粒子成長速度が得られな!/、ため粒子成長工程に長時間を要し、 60°C以上では 針状粒子の直径が大きくなりアスペクト比を高めることが難しくなる。  [0059] In the present invention, after completion of the nucleation step, the liquid temperature in the reaction vessel can be maintained higher than the nucleation step as necessary (aging step). Usually, in the aging process, a phenomenon occurs in which particles with a small particle size dissolve and particles with a large particle size grow (ostwald ripening). Therefore, in the present invention, the ripening step can be regarded as a part of the particle growth step. The particle growth step is preferably performed at a temperature equal to or higher than that of the nucleation step in order to increase the growth rate of the particles. Specifically, it is preferably performed between 0 to 60 ° C. At a temperature lower than 0 ° C, a sufficient particle growth rate cannot be obtained! / Therefore, it takes a long time for the particle growth process, and at 60 ° C or more, the diameter of the acicular particles increases and the aspect ratio increases. It becomes difficult.
[0060] 本発明は、核形成工程終了後及び/または粒子成長工程終了後に分散操作を行 うことを特徴とする。分散操作は、核形成工程終了後及び/または粒子成長工程で 発生した凝集粒子を一次粒子に解膠することを目的として実施され、少なくとも核形 成工程終了後から該粒子成長工程開始までの間に行われることが好ましぐ核形成 工程終了後から粒子成長工程開始までの間と粒子成長工程終了後の両方で実施さ れること力 り好ましい。更に、必要に応じて核形成工程や粒子成長工程の途中で実 施することも可能である。  [0060] The present invention is characterized in that the dispersion operation is performed after the nucleation step and / or after the grain growth step. The dispersion operation is performed for the purpose of peptizing aggregated particles generated in the nucleation process and / or particle growth process into primary particles, and at least from the end of the nucleation process to the start of the particle growth process. It is preferable to be carried out both after the completion of the nucleation step and after the start of the particle growth step and after the end of the particle growth step. Furthermore, it can be carried out in the middle of the nucleation step and the particle growth step as necessary.
[0061] また、分散操作は反応容器内で実施することもできるし、反応液を分散操作の間一 時的に別の容器に移して実施することもできる。本発明のように核形成工程終了以 降において、凝集防止剤共存下の溶液状態で分散操作を行うことにより、一次粒子 が破壊されるような過度な分散や解膠後の粒子の再凝集を防止することができる。 [0061] Further, the dispersing operation can be performed in a reaction vessel, or the reaction solution can be temporarily transferred to another vessel during the dispersing operation. After the nucleation step is completed as in the present invention. In descending, by carrying out the dispersion operation in a solution state in the presence of an anti-agglomeration agent, it is possible to prevent excessive dispersion such that the primary particles are destroyed and reaggregation of the particles after peptization.
[0062] 分散操作に要する時間は、粒子の凝集状態や使用する分散機のパワーによって 異なるため、解膠状態を確認して決定することが好ましい。凝集粒子の解膠状態を 確認するために、例えば、粒径測定装置や濁度計を用いることができる。粒径測定 装置や濁度計で分散過程の粒径や濁度の時間変化を測定した場合、粒径や濁度 は凝集粒子が解膠されるに従い低下し、殆どの粒子が一次粒子化されると一定の値 に収斂する。 [0062] Since the time required for the dispersion operation varies depending on the aggregation state of the particles and the power of the disperser to be used, it is preferable to determine by confirming the peptization state. In order to confirm the peptization state of the aggregated particles, for example, a particle size measuring device or a turbidimeter can be used. Particle size measurement When measuring the change in particle size and turbidity during the dispersion process with an instrument or turbidimeter, the particle size and turbidity decrease as the agglomerated particles are peptized, and most of the particles become primary particles. Then it converges to a certain value.
[0063] 本発明にお!/、ては、分散操作によって殆どの粒子が一次粒子まで解膠されて!/、る こと、即ち上記の確認方法によれば、測定値が収斂した状態まで分散操作を実施す ること力 S好ましい。分散操作の時間が長くなるほど、粒子間でのォストワルド熟成によ る粒径分布の劣化が懸念されるため、分散操作時間を短縮するために適切な凝集 防止剤や分散機を選択すること、またォストワルド熟成の影響を軽減するために、分 散操作時の反応溶液の温度を低く維持することは重要である。  [0063] According to the present invention, most of the particles have been peptized to the primary particles by the dispersion operation! In other words, according to the above confirmation method, the measured values are dispersed until they converge. Power to carry out the operation S Preferred. As the time of the dispersion operation becomes longer, there is a concern about the deterioration of the particle size distribution due to Ostwald ripening between particles.Therefore, in order to shorten the dispersion operation time, it is necessary to select an appropriate coagulation inhibitor and a disperser. In order to mitigate the effects of Ostwald ripening, it is important to keep the temperature of the reaction solution low during the dispersion operation.
[0064] 本発明における分散操作では、メディア分散機、超音波分散機、高速攪拌型分散 機の!/、ずれか、またはそれらを組み合わせて使用することができる。  [0064] In the dispersion operation of the present invention, media dispersers, ultrasonic dispersers, and high-speed agitating dispersers can be used! Or, or they can be used in combination.
[0065] メディア式分散機は装置内にビーズ等を投入し、その衝突やビーズ粒子間のせん 断により粒子を分散するものであり、本発明で用いることができる具体的な装置例とし て、寿工業ァペックスミルゃァシザヮ工業 LMZなどが挙げられる。一次粒子を粉砕 することなく凝集を解砕するためには、小粒径のビーズを用いることが好ましい場合 が多ぐ具体的には平均粒径が 0. 3mm以下のビーズを用いることが好ましぐ更に 好ましくは平均粒径 0. 1mm以下のビーズを用いることが好ましい。ビーズ種としては ガラス、チタニア、アルミナ、ジルコユアなどを用いることができる。  [0065] A media-type disperser is one in which beads or the like are introduced into an apparatus, and the particles are dispersed by collision or breakage between bead particles. As a specific example of an apparatus that can be used in the present invention, Kotobuki Industries Apex Mill, Yashaza Industries LMZ, etc. In order to break up the agglomeration without crushing the primary particles, it is often preferable to use beads having a small particle size. Specifically, it is preferable to use beads having an average particle size of 0.3 mm or less. More preferably, it is preferable to use beads having an average particle diameter of 0.1 mm or less. As the bead type, glass, titania, alumina, zircoua or the like can be used.
[0066] 超音波分散機は超音波によって発生したキヤビテーシヨン (真空泡)力 S潰れるときに 発生するエネルギーを用いて分散を行うもので、本発明で用いることができる具体的 な装置例として、 SMT社 UH150や日本精機製作所 US— 300Tなどが挙げられる。  [0066] An ultrasonic disperser performs dispersion using the vibration (vacuum bubble) force generated by ultrasonic waves S. As a specific example of a device that can be used in the present invention, SMT The company UH150 and Nippon Seiki Seisakusho US-300T.
[0067] 高速攪拌型分散機は高速攪拌している攪拌羽根近傍のせん断力により粒子を分 散させるもので、本発明で用いることができる具体的な装置例として、プライミクス社 T Kホモミクサ一 MARKIIや Mテクニッククレアミックス CLM— 3. 7などが挙げられる。 [0067] The high-speed agitation type disperser disperses particles by the shearing force in the vicinity of the agitation blades that are agitated at high speed. As a specific example of an apparatus that can be used in the present invention, Primix Corporation T K homomixer MARKII and M technique Clare mix CLM-3.7.
[0068] 本発明にお!/、て、アスペクト比とは針状の形態を有する粒子の長さ(長軸径)と直径  [0068] In the present invention, the aspect ratio is the length (major axis diameter) and diameter of particles having an acicular shape.
(短軸径)との比(長軸径/短軸径)であり、平均アスペクト比とは、 300個以上の粒 子について個々のアスペクト比を求めて得られた算術平均の値を意味する。ァスぺク ト比は、電子顕微鏡写真の粒子像から個々の粒子の長軸径ゃ短軸径を測定し求め ること力 Sできる。平均アスペクト比を計算する際に長軸径ゃ短軸径の平均値も求める こと力 Sできる。本発明は、平均アスペクト比が 2以上の針状の形態を有するアルカリ土 類金属炭酸塩の製造に特に有用であり、本発明に係るアルカリ土類金属炭酸塩粒 子においては、平均アスペクト比が 2以上であることが好ましぐ 5以上であることがよ り好ましぐ 5以上、 50以下であることが更に好ましい。  (Minor axis diameter) is the ratio (major axis diameter / minor axis diameter), and the average aspect ratio means the arithmetic average value obtained by obtaining individual aspect ratios for 300 or more particles. . The aspect ratio can be determined by measuring the major axis diameter and minor axis diameter of each particle from the particle image of the electron micrograph. When calculating the average aspect ratio, it is possible to obtain the average value of the major axis diameter and the minor axis diameter. The present invention is particularly useful for producing an alkaline earth metal carbonate having an acicular shape having an average aspect ratio of 2 or more. In the alkaline earth metal carbonate particles according to the present invention, the average aspect ratio is It is preferably 2 or more, more preferably 5 or more, and further preferably 5 or more and 50 or less.
[0069] アスペクト比の高い針状粒子を得るためには、核形成工程でアスペクト比の高い核 粒子を形成する方法と、粒子成長工程でアスペクト比を高める方法があるが、核形成 段階でアスペクト比を高めようとすると粒径分布の劣化を伴う場合が多い。  [0069] To obtain acicular particles having a high aspect ratio, there are a method of forming nuclei particles having a high aspect ratio in the nucleation step and a method of increasing the aspect ratio in the particle growth step. An attempt to increase the ratio often involves deterioration of the particle size distribution.
[0070] 本発明にお!/、ては、核形成工程にお!/、て得られる核粒子の特性として、アスペクト 比よりも粒径分布がより重要である。これは、核形成段階でより均一な核粒子を形成 することが粒子成長後の粒径分布の向上に大きく寄与するためである。そのため、本 発明にお!/、ては、(I)核形成の段階では粒径分布が劣化しにくい低アスペクト比粒 子であること力 S好ましく、(Π)粒子成長工程で短軸径の成長を抑制しつつ長軸径を選 択的に成長させて、高アスペクト比粒子を形成することが好ましい。  [0070] In the present invention, the particle size distribution is more important than the aspect ratio as a characteristic of the core particles obtained in the nucleation step. This is because the formation of more uniform nuclei at the nucleation stage greatly contributes to the improvement of the particle size distribution after particle growth. Therefore, according to the present invention, it is preferable that (I) the particle size distribution is not deteriorated at the nucleation stage. It is preferable to form a high aspect ratio particle by selectively growing the major axis diameter while suppressing the growth.
[0071] 上記 (I)の観点から、本発明に係るアルカリ土類金属炭酸塩粒子は、核形成工程 終了時の核粒子の平均アスペクト比を AR ( = a /b )、粒子成長工程終了時の粒子  [0071] From the viewpoint of (I) above, the alkaline earth metal carbonate particles according to the present invention have an average aspect ratio of nuclei particles at the end of the nucleation step of AR (= a / b), and at the end of the particle growth step. Particles of
1 1 1  1 1 1
の平均アスペクト比を AR ( = a /b )としたとき、 AR力 以上、 2以下であることが好 ましぐ 1以上、 1. 5以下がであることがより好ましい。同時に AR /ARは 2以上であ  When the average aspect ratio of AR is AR (= a / b), it is preferably not less than AR force and not more than 2, more preferably not less than 1 and not more than 1.5. At the same time, AR / AR is 2 or more
2 1  twenty one
ること力 S好ましく、 3以上がより好ましぐ 5以上が更に好ましい。ここで、 a、 bは各々  Power S is preferable, 3 or more is more preferable, and 5 or more is more preferable. Where a and b are each
1 1 核形成工程終了時の粒子の長軸径平均値と短軸径平均値であり、 a、 bは各々粒 子成長工程終了時の粒子の長軸径平均値と短軸径平均値である。尚、核形成工程 終了後や粒子成長工程終了後に分散操作を行う場合には、 a  1 1 Average major axis diameter and minor axis average value of particles at the end of the nucleation process, a and b are the average major axis diameter and minor axis diameter of the particles at the end of the grain growth process, respectively. is there. In the case of performing the dispersion operation after the nucleation process or after the grain growth process, a
1、 b 1, b
1、 a 1, a
2、 bは其々分 2 散操作終了時の値とする。 [0072] また、上記 (Π)の観点から、粒子成長工程における長軸径と短軸径の成長速度比 を V = (a -a ) / (b b )で表したとき、本発明に係るアルカリ土類金属炭酸塩粒 子の製造方法においては V力 ¾以上であることが好ましい。より好ましくは 5以上であ り、更に好ましくは 5以上、 50以下であり、特に好ましくは 5以上、 10以下である。 2 and b are the values at the end of the two-split operation. [0072] Further, from the viewpoint of the above (ii), when the growth rate ratio of the major axis diameter to the minor axis diameter in the grain growth process is expressed as V = (a -a) / (bb), the alkali according to the present invention In the method for producing the earth metal carbonate particles, it is preferable that the V force is 3 or more. More preferably, it is 5 or more, more preferably 5 or more and 50 or less, and particularly preferably 5 or more and 10 or less.
[0073] 本発明において、粒径はアルカリ土類金属炭酸塩粒子の投影面積に等しい面積を 有する円の直径で表し、平均粒径とは 300個以上の粒子について個々の粒径を求 めて得られた算術平均の値を意味する。粒径分布は、平均粒径を求める際に用いた 個々の粒径の標準偏差を平均粒径で除した値に 100を乗じた値で表す。  [0073] In the present invention, the particle diameter is represented by the diameter of a circle having an area equal to the projected area of the alkaline earth metal carbonate particles, and the average particle diameter is obtained by obtaining individual particle diameters of 300 or more particles. Means the arithmetic average value obtained. The particle size distribution is expressed as the value obtained by dividing the standard deviation of each particle size used to determine the average particle size by the average particle size and multiplying by 100.
[0074] 粒径分布(% ) =粒径の標準偏差/平均粒径粒子 X 100  [0074] Particle size distribution (%) = standard deviation of particle size / average particle size particle X 100
粒子の投影面積や平均粒径は、電子顕微鏡写真の粒子像から画像解析装置を用 いて求めることができる。  The projected area and average particle diameter of the particles can be obtained from the particle image of the electron micrograph using an image analyzer.
[0075] 本発明は、粒径分布に優れたアルカリ土類金属炭酸塩粒子の製造に有用である。  [0075] The present invention is useful for producing alkaline earth metal carbonate particles having an excellent particle size distribution.
本発明に係るアルカリ土類金属炭酸塩粒子は、粒径分布が 35%以下であることが好 ましぐ 30%以下であることがより好ましい。また、平均粒径は 60〜220nm以下が好 ましぐ 70〜200nm以下がより好ましい。上記の平均アスペクト比や平均粒径の算 出に必要となる個々の粒子の長軸や短軸、投影面積は、電子顕微鏡像から測定す ることができ、必要に応じて画像解析装置を用いて求めることもできる。  The alkaline earth metal carbonate particles according to the present invention preferably have a particle size distribution of 35% or less, more preferably 30% or less. The average particle size is preferably 60 to 220 nm or less, more preferably 70 to 200 nm or less. The long axis, short axis, and projected area of each particle required for calculating the above average aspect ratio and average particle diameter can be measured from an electron microscope image, and an image analyzer can be used if necessary. Can also be requested.
[0076] 針状の形態を有するアルカリ土類金属炭酸塩粒子においては、核形成時には長 軸方向に接合した粒子凝集が発生する場合が多いため長軸径の分布劣化の原因と なる。一方、粒子成長時には短軸方向に接合した粒子凝集が発生する場合が多い ため短軸径の分布劣化を招く。本発明の製造方法によって粒子凝集性を改良すると 、長軸径と短軸径双方の分布向上が期待できる。具体的には、核形成工程終了後 力 粒子成長工程開始までの間に分散操作を行う(分散操作 A)ことによって主に長 軸径の分布を、粒子成長工程終了後に分散操作を行う(分散操作 B)ことによって主 に短軸径の分布を改良できる。即ち、分散操作 Aと分散操作 Bを組み合わせて実施 することによって、長軸径と短軸径双方の分布改良効果が得られる。  [0076] Alkaline earth metal carbonate particles having an acicular shape often cause aggregation of particles joined in the major axis direction during nucleation, which causes deterioration in distribution of the major axis diameter. On the other hand, since particle aggregation often occurs in the minor axis direction during grain growth, the distribution of minor axis diameter is deteriorated. When the particle cohesiveness is improved by the production method of the present invention, it is expected that both the major axis diameter and the minor axis diameter are improved. Specifically, after the nucleation process is completed, the dispersion operation is performed before the start of the particle growth process (dispersion operation A). Operation B) mainly improves the distribution of the short axis diameter. That is, by carrying out the combination of the dispersion operation A and the dispersion operation B, the effect of improving the distribution of both the major axis diameter and the minor axis diameter can be obtained.
[0077] 粒径分布と同様の方法で長軸径の分布を定義した場合、本発明に係るアルカリ土 類金属炭酸塩粒子においては、長軸径の分布は 40%以下が好ましぐ 30%以下で あることがより好ましい。長軸径の平均値は 150〜450nmであることが好ましぐ 200 〜450nm力 Sより好ましく、 200〜400nm以下力 S更に好ましい。同様に短軸径の分布 は 35%以下が好ましぐ 30%以下であることがより好ましい。また、短軸径の平均値 (ま 20〜80nmカ好ましく、 20〜70nmカより好ましく、 20〜60nmカ更に好まし!/、。 [0077] When the distribution of the major axis diameter is defined in the same manner as the particle size distribution, in the alkaline earth metal carbonate particles according to the present invention, the major axis diameter distribution is preferably 40% or less, preferably 30% In More preferably. The average value of the major axis diameter is preferably from 150 to 450 nm, more preferably from 200 to 450 nm, and more preferably from 200 to 400 nm. Similarly, the minor axis diameter distribution is preferably 35% or less, more preferably 30% or less. In addition, the average value of the minor axis diameter (20-20 nm is preferable, 20-70 nm is more preferable, 20-60 nm is more preferable! / ,.
[0078] 本発明においては、核形成工程と粒子成長工程で消費される原料 (アルカリ土類 金属塩及び炭酸塩)のモル比を任意に変えることができる力 平均アスペクト比が 2 以上の針状粒子を形成するには、粒子形成終了時のアルカリ土類金属炭酸塩に対 する核形成工程で形成されるアルカリ土類金属炭酸塩のモル比を少なくする方が有 利である。これは、針状粒子の異方形状の形成には粒子成長工程の寄与が大きい ためである。従って、本発明では核形成工程で形成されるアルカリ土類金属炭酸塩 のモル比を 50モル%以下に設定することが好ましぐ更には 30モル%以下が好まし く、 20モル0 /0以下がより好ましい。 [0078] In the present invention, a force that can arbitrarily change the molar ratio of the raw materials (alkaline earth metal salt and carbonate) consumed in the nucleation step and the particle growth step is an acicular shape having an average aspect ratio of 2 or more. In order to form particles, it is advantageous to reduce the molar ratio of the alkaline earth metal carbonate formed in the nucleation process to the alkaline earth metal carbonate at the end of particle formation. This is because the particle growth process greatly contributes to the formation of the anisotropic shape of the acicular particles. Accordingly, the present invention in the configuration it is preferred instrument further that the molar ratio of alkaline earth metal carbonate is formed in the nucleus formation step below 50 mol% is rather preferably 30 mol% or less, 20 mole 0/0 The following is more preferable.
[0079] 本発明においては、粒子凝集を防止するために核形成工程開始前に少なくとも反 応容器内の液に凝集防止剤を添加しておくことが必要であるカ、アルカリ土類金属 塩溶液や炭酸塩溶液に凝集防止剤を添加することもできる。本発明で用いることが できる凝集防止剤は、アルカリ土類金属炭酸塩粒子に対して吸着性を有し、立体障 害として作用し、粒子間の凝集を防止することができる化合物であり、天然物と合成 化合物のレ、ずれであってもよレ、。  [0079] In the present invention, it is necessary to add an aggregation inhibitor to at least the liquid in the reaction vessel before the start of the nucleation step in order to prevent particle aggregation. In addition, an agglomeration inhibitor may be added to the carbonate solution. The aggregation inhibitor that can be used in the present invention is a compound that has an adsorptivity to alkaline earth metal carbonate particles, acts as a steric hindrance, and can prevent aggregation between the particles. Things and synthesis.
[0080] 本発明において好ましく用いることができる凝集防止剤の例として、ポリアミド、ポリ エチレンィミン、ポリビュルピロリドンなどの窒素含有ポリマー、ポリビュルブチラール 、ポリビュルアルコールなどの中性ポリマー、カルボキシメチルセルロース、メチルセ ノレロース、ヒドロキシェチルセルロースなどのセルロース系ポリマー等の水溶性ポリマ 一を用いること力 Sできる。中でも好ましい化合物として、アミド基を有するポリマーが挙 げられる。ポリマーの平均分子量に制限はないが、分子量が小さいと凝集抑制効果 カ小さぐ大きいと反応液の増粘を引き起こす。本発明で用いられる凝集防止剤の平 均分子量は好ましくは 1万〜 100万、より好ましくは 3万〜 50万、更に好ましくは 5万 〜30万である。  [0080] Examples of the aggregation inhibitor that can be preferably used in the present invention include nitrogen-containing polymers such as polyamide, polyethylenimine, and polybulurpyrrolidone, neutral polymers such as polybulbutyral and polybulal alcohol, carboxymethylcellulose, and methylcellulose. It is possible to use water-soluble polymers such as cellulose polymers such as hydroxyethyl cellulose. Among them, a polymer having an amide group is a preferable compound. There is no restriction on the average molecular weight of the polymer, but if the molecular weight is small, the aggregation inhibiting effect is too small. The average molecular weight of the aggregation inhibitor used in the present invention is preferably 10,000 to 1,000,000, more preferably 30,000 to 500,000, and still more preferably 50,000 to 300,000.
[0081] また、上記凝集防止剤の添加量としては、反応容器内の液や添加溶液に対して 0. ;!〜 15質量%が好ましぐ 0. ;!〜 10質量%がより好ましぐ 0. 5〜; 10質量%が更に 好ましい。 [0081] The addition amount of the anti-aggregation agent is about 0. ! ~ 15% by weight is preferred 0.;! ~ 10% by weight is more preferred 0.5 ~; 10% by weight is more preferred.
[0082] 使用した凝集防止剤は、最終製品が疎水性塗料やプラスチックの場合等、製品性 能に悪影響を与える可能性がある場合には、粒子形成後の脱塩工程及び水洗処理 工程、あるいは溶媒置換の工程等で取り除くこともできる。  [0082] The anti-aggregation agent used may have a negative effect on product performance, such as when the final product is a hydrophobic paint or plastic. It can also be removed by a solvent replacement step or the like.
[0083] 本発明では、粒子凝集性を改良するため核形成工程、粒子成長工程の少なくとも 一部を、反応容器内の液がアルカリ土類金属イオン過剰となる条件下で行うことがで きる。反応容器内の液がアルカリ土類金属イオン過剰となるように操作する方法に特 に制限はないが、ダブルジェット法で添加されるアルカリ土類金属塩溶液とは別に必 要量のアルカリ土類金属塩またはその溶液を反応容器内に添加する方法や、ダブ ルジェット法で添加されるアルカリ土類金属塩溶液と炭酸塩溶液の流量のバランスで 調整する方法が好ましい。  [0083] In the present invention, in order to improve particle aggregation, at least a part of the nucleation step and the particle growth step can be performed under the condition that the liquid in the reaction vessel is in excess of alkaline earth metal ions. There is no particular limitation on the method of operating the liquid in the reaction vessel so that the alkaline earth metal ions are excessive, but a necessary amount of alkaline earth metal is added separately from the alkaline earth metal salt solution added by the double jet method. A method of adding a metal salt or a solution thereof into the reaction vessel or a method of adjusting the balance between the flow rate of the alkaline earth metal salt solution and the carbonate solution added by the double jet method is preferable.
[0084] アルカリ土類金属イオンの過剰量としては、反応容器内の液に溶解しているアル力 リ土類金属ィ才ンのモノレ濃度として 0. 001—0. 5モノレ/: Lカ好ましく、 0. 0;!〜 0. 5 モル/ Lがより好ましぐ 0. 01-0. 2モル/ Lが更に好ましい。この範囲をはずれる と凝集発生の懸念が増大する。  [0084] The excess amount of alkaline earth metal ions is preferably 0.001 to 0.5 monolayer /: L in terms of monolith concentration of alkaline earth metal dissolved in the liquid in the reaction vessel. 0.0 to 0.5 mol / L is more preferable. 0.01-0.2 mol / L is more preferable. Beyond this range, the risk of agglomeration increases.
[0085] 本発明においては、反応容器内の液の pHを任意に設定することができる力 S、粒子 の凝集抑制及び針状粒子を形成するための異方成長性の観点から、核形成工程ま たは粒子成長工程の少なくとも一部を pH9以上の条件下で行うことが好ましい。更に は pH値 9〜; 13. 5が好ましぐ pH値 10〜; 13が特に好ましい。これより高い pH値にし ても、凝集抑制ゃ異方成長性に対する効果は変わらない。  [0085] In the present invention, from the viewpoint of force S that can arbitrarily set the pH of the liquid in the reaction vessel, suppression of particle aggregation, and anisotropic growth for forming acicular particles, a nucleation step Alternatively, it is preferable to carry out at least a part of the particle growth step under conditions of pH 9 or higher. Furthermore, a pH value of 9 to 13.5 is preferred. A pH value of 10 to 13 is particularly preferred. Even if the pH value is higher than this, the effect on anisotropic growth will not change if aggregation is suppressed.
[0086] 本発明では、針状粒子を形成するために、核形成工程または粒子成長工程の少な くとも一部を形態制御剤の存在下で実施することができる。形態制御剤に用いること ができる化合物としてはアミン類を挙げることができ、その中でも、一級アミン類ゃアミ ノアルコール類は本発明で好ましく用いることができる。  In the present invention, in order to form acicular particles, at least a part of the nucleation step or the particle growth step can be carried out in the presence of a form control agent. Examples of the compound that can be used for the form control agent include amines. Among them, primary amines and amino alcohols can be preferably used in the present invention.
[0087] 本発明に適用可能な形態制御剤としては、例えば、ジァミン化合物やアミノアルコ ール化合物等があり、具体的にはエチレンジァミン、ジエチレントリァミン、トリエチレ ンテトラミン、プロピレンジァミン、 N, N—ジメチルエタノールァミン、 N, N—ジェチル エタノールァミン、 2—(2—アミノエチルァミノ)エタノール、 N—メチルジェタノールァ ミン、 N—メチルエタノールァミン、 2—アミノエタノール等を挙げること力 Sできる。 [0087] Examples of the form control agent applicable to the present invention include diamine compounds and amino alcohol compounds. Specifically, ethylene diamine, diethylene triamine, triethylene tetramine, propylene diamine, N, N —Dimethylethanolamine, N, N—Jetyl Examples include ethanolamine, 2- (2-aminoethylamino) ethanol, N-methylethanolamine, N-methylethanolamine, 2-aminoethanol and the like.
[0088] 本発明では、反応容器内の液がアルコールを含んでいてもよい。反応容器内の液 にアルコールを添加するのは核形成工程、粒子成長工程のいずれの時点でもよい 力 少なくとも粒子成長工程開始前に添加することが好ましぐ核形成工程開始前に 反応容器内の液にアルコールを含有させておくことがより好ましい。  [0088] In the present invention, the liquid in the reaction vessel may contain alcohol. The alcohol may be added to the liquid in the reaction vessel at any point in the nucleation step or particle growth step. At least before the start of the particle growth step, it is preferable to add alcohol before the start of the nucleation step. More preferably, the liquid contains alcohol.
[0089] 本発明で用いるアルコールは水と任意の比率で混じり合うことができるものであり、 具体的にはメタノール、エタノール、 n—プロピルアルコール、 i—プロピルアルコール の内少なくとも 1種を使用することが好ましい。  [0089] The alcohol used in the present invention can be mixed with water at an arbitrary ratio. Specifically, at least one of methanol, ethanol, n-propyl alcohol, and i-propyl alcohol should be used. Is preferred.
[0090] 形態制御剤やアルコールを使用する場合には、これら溶剤の総量として反応容器 内の液の 10体積%を超えない範囲で用いることが好ましい。  [0090] When a form control agent or alcohol is used, it is preferable that the total amount of these solvents is used in a range not exceeding 10% by volume of the liquid in the reaction vessel.
[0091] 本発明においては、粒子成長工程終了後に限外濾過膜を用いて凝集防止剤を除 去すること力 Sできる。即ち、形成した粒子の粒径と凝集防止剤の分子量を考慮して適 切な濾別特性を有する限外濾過膜を選択し、粒子成長工程終了後に限外濾過膜を 用いて濃縮 ·希釈操作を行うことにより凝集防止剤を除去することが可能である。  In the present invention, it is possible to remove the coagulation inhibitor using an ultrafiltration membrane after completion of the particle growth step. In other words, an ultrafiltration membrane having appropriate filtration characteristics is selected in consideration of the particle size of the formed particles and the molecular weight of the anti-aggregation agent, and concentration / dilution operations are performed using the ultrafiltration membrane after the particle growth process is completed. By doing so, it is possible to remove the aggregation inhibitor.
[0092] また、凝集防止剤を除去すると同時に脱塩'水洗処理を施したり、種種の目的から 適当な溶媒への置換処理を行うこともできる。例えば、アルカリ土類金属炭酸塩粒子 を分散液として保存する際に、溶媒を粒子成長工程の溶媒よりも溶解度の低!、溶媒 に置換することによって、より好ましくはアルコール等のアルカリ土類金属炭酸塩粒子 の貧溶媒に置換することによって、保存時のォストワルド熟成による粒径や形状の変 化を防止することができる。  [0092] Further, at the same time as removing the anti-aggregation agent, a desalting and washing treatment can be performed, or a substitution treatment with an appropriate solvent can be performed for various purposes. For example, when the alkaline earth metal carbonate particles are stored as a dispersion, the solvent is less soluble than the solvent in the particle growth step, and more preferably by replacing the solvent with an alkaline earth metal carbonate such as alcohol. By substituting the salt particles with a poor solvent, it is possible to prevent changes in particle size and shape due to Ostwald ripening during storage.
[0093] また、製造したアルカリ土類金属炭酸塩粒子をゴムやプラスチック、塗料等の填料 または顔料として使用する場合に、乾燥工程を経ることなく適切な溶媒に対する分散 液を得ることができるため、乾燥後の固形物を粉砕する工程を省略できるだけでなく 、粒子を乾燥させることによって発生する乾固凝集を回避でき、一次粒子を配合した 場合に得られる効果を有効に発現させることができる。  [0093] In addition, when the produced alkaline earth metal carbonate particles are used as fillers or pigments for rubber, plastic, paint, etc., a dispersion in an appropriate solvent can be obtained without passing through a drying step. Not only can the step of pulverizing the solid after drying be omitted, but also agglomeration generated by drying the particles can be avoided, and the effect obtained when the primary particles are blended can be effectively expressed.
[0094] 本発明に用いることができる限外濾過膜としては、アルカリ土類金属炭酸塩粒子を 濾別できる分画分子量を有し、溶媒に対する耐性を有するものである限り特に制限 はない。 [0094] The ultrafiltration membrane that can be used in the present invention is not particularly limited as long as it has a fractional molecular weight capable of filtering out alkaline earth metal carbonate particles and has resistance to a solvent. There is no.
実施例  Example
[0095] 以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定され るものではない。以下の実施態様における各種条件は、本発明の特徴や趣旨を逸 脱しない限り適宜変更することができ、本発明の範囲は以下の実施例により限定的 に解釈されるべきものではなレ、。  Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto. Various conditions in the following embodiments can be appropriately changed without departing from the features and spirit of the present invention, and the scope of the present invention should not be construed as being limited by the following examples.
[0096] 実施例 1 [0096] Example 1
〔アルカリ土類金属炭酸塩粒子の製造〕  [Production of alkaline earth metal carbonate particles]
《粒子 1の製造:本発明》  <Manufacture of particles 1: the present invention>
塩化ストロンチウム 6水和物 5. 3gと凝集防止剤としてポリビュルピロリドン (分子量: 13万) 19. 2gとを含む 640mlの水溶液(溶液 A1)と、塩化ストロンチウム 6水和物 3· 4gとポリビュルピロリドン(分子量: 13万) 12· 8gとを含む 140mlの水溶液 (溶液 A2) を準備した。また、塩化ストロンチウム 6水和物から 1. 0モル/ L濃度の水溶液 200m 1 (溶液 B1)と、炭酸ナトリウムから 1. 0モル/ L濃度の水溶液 200ml (溶液 C1)を調 640 ml of an aqueous solution (solution A1) containing 5.3 g of strontium chloride hexahydrate and polybulpyrrolidone (molecular weight: 130,000) 19.2 g as an aggregation inhibitor, 3.4 g of strontium chloride hexahydrate and polybule A 140 ml aqueous solution (solution A2) containing 12.8 g of pyrrolidone (molecular weight: 130,000) was prepared. Also prepared was 200 ml 1 (solution B1) of a 1.0 mol / L aqueous solution from strontium chloride hexahydrate and 200 ml (solution C1) of a 1.0 mol / L aqueous solution from sodium carbonate.
; ^^し/ ; ^^
[0097] (核形成工程)  [0097] (Nucleation process)
溶液 A1を容量 2Lのステンレス製の反応容器に入れて 5°Cに保持し、 lOOOrpmで 攪拌しながら 5%の水酸化ナトリウム水溶液で pHを 11. 5に調整した。続いて、 4°Cに 冷却した各々 40mlの溶液 B1と溶液 C1とを、ダブルジェット法を用いて等し!/、添加 速度、且つ一定の流速で溶液 A1の液中に 30秒間で添加した。  Solution A1 was placed in a 2 L stainless steel reaction vessel and maintained at 5 ° C, and the pH was adjusted to 11.5 with 5% aqueous sodium hydroxide solution while stirring at lOOOrpm. Subsequently, 40 ml each of the solution B1 and the solution C1 cooled to 4 ° C were equalized using the double jet method! /, Added at a rate of addition, and a constant flow rate into the solution A1 for 30 seconds. .
[0098] (分散操作) [0098] (Distributed operation)
核形成工程終了後の反応液を 5°Cに保持したまま、超音波分散機(SMT社 UH15 0)を用いて分散操作を施した。分散操作は反応液の濁度が減少して一定の値に収 斂するまで行った。  While maintaining the reaction liquid after completion of the nucleation step at 5 ° C., a dispersion operation was performed using an ultrasonic disperser (SMT UH150). The dispersion operation was performed until the turbidity of the reaction solution decreased and converged to a certain value.
[0099] (粒子成長工程) [0099] (Particle growth process)
次いで、上記反応液を攪拌しながら 5°Cに冷却した溶液 A2を添加し、 5%の水酸 化ナトリウム水溶液で pHを 11. 5に調整した。引き続き、 5°Cに保持した溶液 B1と溶 液 C1の残量 160mlを等しい添加速度で、粒子成長に伴う表面積の増加に合わせて 流量を加速しながらダブルジェット法を用レ、て反応容器内の液中に 160分間で添加 した。 Next, solution A2 cooled to 5 ° C. was added while stirring the reaction solution, and the pH was adjusted to 11.5 with 5% aqueous sodium hydroxide solution. Subsequently, the remaining amount of 160 ml of solution B1 and solution C1 held at 5 ° C was added at the same rate to match the increase in surface area accompanying particle growth. Using the double jet method while accelerating the flow rate, it was added to the liquid in the reaction vessel over 160 minutes.
[0100] 粒子成長工程終了後に限外濾過膜を用いて水洗処理を施し、更に限外濾過膜を 用いてエタノール溶媒への置換を行レ、、粒子 1を製造した。  [0100] After completion of the particle growth step, the membrane was washed with water using an ultrafiltration membrane, and further replaced with an ethanol solvent using the ultrafiltration membrane to produce particles 1.
[0101] なお、粒子成長工程の途中及び工程終了後に反応液を採取し、電子顕微鏡を用 いて確認した力 s、粒子成長工程での新たな核粒子の生成は認められなかった。また [0101] It should be noted that the reaction solution was collected during and after the particle growth step, and the force s confirmed using an electron microscope was not observed, and the generation of new core particles in the particle growth step was not observed. Also
、得られた粒子 1の電子顕微鏡観察及び X線回折スペクトルから、粒子 1が針状 形状を有する炭酸ストロンチウムであることが同定された。 From the electron microscope observation and X-ray diffraction spectrum of the obtained particle 1, it was identified that the particle 1 was strontium carbonate having a needle-like shape.
[0102] 《粒子 2の製造:本発明》  [0102] << Production of Particle 2: Present Invention >>
上記粒子 1の製造において、核形成工程終了後の分散操作を行わず、代わりに 粒子成長工程終了後に超音波分散機(SMT社 UH150)を用いて分散操作を行つ たこと以外は、粒子 1の製造と同様にして粒子ー2を製造した。  In the production of Particle 1 above, the dispersion operation after the completion of the nucleation process was not performed, but instead the dispersion operation was performed using an ultrasonic disperser (SMT UH150) after the completion of the particle growth process. Particles-2 were produced in the same manner as in Example 1.
[0103] 《粒子 3の製造:本発明》 [0103] <Production of Particle 3: Present Invention>
上記粒子 1の製造において、粒子成長工程終了後にも超音波分散機(SMT社 In the production of particle 1 above, the ultrasonic disperser (SMT Co., Ltd.)
UH150)を用いて分散操作を行ったこと以外は、粒子 1の製造と同様にして粒子 3を製造した。 Particle 3 was produced in the same manner as Particle 1 except that the dispersion operation was performed using UH150).
[0104] 《粒子 4の製造:本発明》 [0104] <Production of Particle 4: Present Invention>
上記粒子 3の製造において、溶液 A1の代わりに以下の様に調製した溶液 A3を 使用したこと以外は、粒子 3の製造と同様にして粒子 4を製造した。  In the production of Particle 3, Particle 4 was produced in the same manner as Particle 3 except that Solution A3 prepared as follows was used instead of Solution A1.
[0105] 溶液 A3:塩化ストロンチウム 6水和物 5. 3gと凝集防止剤としてポリビュルピロリドン [0105] Solution A3: Strontium Chloride Hexahydrate
(平均分子量 13万) 19· 2g、エチレンジァミン 4ml、エチルアルコール 28mlを含む 6 (Average molecular weight 130,000) 19.2g, including ethylenediamine 4ml, ethyl alcohol 28ml 6
40mlの水溶液。 40 ml aqueous solution.
[0106] 《粒子 5の製造:本発明》 << Production of Particle 5: Present Invention >>
上記粒子 3の製造において、溶液 A1の代わりに以下の様に調製した溶液 A4を 使用したこと以外は、粒子 3の製造と同様にして粒子 5を製造した。  In the production of Particle 3, Particle 5 was produced in the same manner as Particle 3 except that Solution A4 prepared as follows was used instead of Solution A1.
[0107] 溶液 A4:塩化ストロンチウム 6水和物 5. 3gと凝集防止剤としてポリビュルピロリドン [0107] Solution A4: Strontium Chloride Hexahydrate 5.3g and polybulurpyrrolidone as anti-agglomeration agent
(平均分子量 13万) 19· 2g、エチレンジァミン 4ml、エチルアルコール 92mlを含む 6 (Average molecular weight 130,000) 19.2g, including ethylenediamine 4ml, ethyl alcohol 92ml 6
40mlの水溶液。 [0108] 《粒子 6の製造:比較》 40 ml aqueous solution. [0108] <Production of Particle 6: Comparison>
上記粒子 1の製造にお!/、て、溶液 A1及び溶液 A2を凝集防止剤のポリビュルピ 口リドンを除いて調製し使用したこと以外は、粒子 1の製造と同様にして粒子 6を 製造した。  Particle 6 was produced in the same manner as Particle 1 except that Solution A1 and Solution A2 were prepared and used except for the anti-aggregation agent polybulpyridone.
[0109] 《粒子 7の製造:比較》  [0109] <Production of Particle 7: Comparison>
上記粒子 1の製造において、核形成工程終了後の分散操作を行わないこと以外 は、粒子 1の製造と同様にして粒子 7を製造した。  In the production of Particle 1, Particle 7 was produced in the same manner as in the production of Particle 1 except that the dispersion operation after completion of the nucleation step was not performed.
[0110] 《粒子 8の製造:比較》  [0110] <Production of Particle 8: Comparison>
核形成工程と粒子成長工程を分離せずに、以下の様にして粒子 8を製造した。  Particles 8 were produced as follows without separating the nucleation step and the particle growth step.
[0111] 塩化ストロンチウム 6水和物 8. 7gと凝集防止剤としてポリビュルピロリドン(分子量:  [0111] Strontium chloride hexahydrate 8.7g and polybulurpyrrolidone (molecular weight:
13万) 32. Ogとを含む 780mlの水溶液 (溶液 A3)を準備した。また、上記粒子— 1の 製造と同様に溶液 B 1及び溶液 C 1を準備した。  130,000) 32. A 780 ml aqueous solution (solution A3) containing Og was prepared. Further, a solution B 1 and a solution C 1 were prepared in the same manner as in the production of the particle-1.
[0112] 溶液 A3を容量 2Lのステンレス製の反応容器に入れて 5°Cに保持し、 lOOOrpmで 攪拌しながら 5%の水酸化ナトリウム水溶液で pHを 12に調整した。続いて、 5°Cに保 持した溶液 B1と溶液 C1を等し!/、添加速度で、且つ一定の流速でダブルジェット法を 用いて反応容器内の液中に 200分間で添加した。次いで、超音波分散機(SMT社 UH150)を用いて分散操作を行った後、限外濾過膜を用いて水洗処理を施し、更 に限外濾過膜を用いてエタノール溶媒へ置換し粒子— 8を製造した。  [0112] Solution A3 was placed in a 2 L stainless steel reaction vessel and maintained at 5 ° C, and the pH was adjusted to 12 with 5% aqueous sodium hydroxide solution while stirring at lOOOrpm. Subsequently, Solution B1 kept at 5 ° C. and Solution C1 were equalized! /, And added to the liquid in the reaction vessel for 200 minutes at the addition rate and at a constant flow rate using the double jet method. Next, after performing dispersion operation using an ultrasonic disperser (SMT UH150), washing with water using an ultrafiltration membrane, and further substituting with an ethanol solvent using an ultrafiltration membrane, the particles are used. Manufactured.
[0113] 〔アルカリ土類金属炭酸塩粒子の評価〕  [0113] [Evaluation of alkaline earth metal carbonate particles]
(粒子形状の観察)  (Particle shape observation)
上記のように製造した各粒子について、走査型電子顕微鏡にて少なくとも 300個の 粒子を撮影してその形状を観察し、主体を占める粒子の形状を針状粒子、球状粒子 、不定形のィガダリ状粒子に分類した。  For each particle produced as described above, at least 300 particles were photographed with a scanning electron microscope and the shape thereof was observed. The shape of the particles occupying the main body was acicular particles, spherical particles, and irregularly shaped irregular shapes. Classified into particles.
[0114] (粒径及び分布の測定) [0114] (Measurement of particle size and distribution)
上記走査型電子顕微鏡にて観察した個々の粒子について、短軸径及び長軸径を 測定し、前述の方法でそれらの平均値及び分布を求めた。  About each particle | grain observed with the said scanning electron microscope, the short axis diameter and the long axis diameter were measured, and those average values and distribution were calculated | required by the above-mentioned method.
[0115] 以上により得られた結果を表 1に示す。なお、粒子 6は粒子凝集が激しぐ短軸 径及び長軸径を測定することができな力、つた。 [0116] [表 1] [0115] Table 1 shows the results obtained as described above. Note that the particle 6 has a force that cannot measure the short axis diameter and the long axis diameter at which particle aggregation is intense. [0116] [Table 1]
Figure imgf000021_0001
Figure imgf000021_0001
[0117] 表 1に記載した各粒子の解析結果より明らかなように、本発明が規定する製造方法 によって短軸径分布及び長軸径分布に優れた針状粒子を製造できる。 [0117] As is clear from the analysis results of each particle described in Table 1, acicular particles excellent in the short axis diameter distribution and the long axis diameter distribution can be produced by the production method defined by the present invention.
[0118] 本発明の粒子一 1と比較例の粒子一 6〜粒子一 8を比較すると、本発明の構成要 件、即ち「凝集防止剤を含む溶液中でダブルジェット法を用いてアルカリ土類金属塩 溶液と炭酸塩溶液とを反応させる製造方法であって、該製造方法が核形成工程後に 粒子成長工程を有し、且つ該核形成工程終了以降に分散操作を行うこと」が針状粒 子の分布改良のために必要な条件であることが判る。  [0118] Comparing the particles 1 of the present invention with the particles 1 to 8 of the comparative example, the constituent requirement of the present invention, that is, "alkaline earths using the double jet method in a solution containing an anti-aggregation agent" It is a production method in which a metal salt solution and a carbonate solution are reacted, wherein the production method includes a particle growth step after the nucleation step, and the dispersion operation is performed after the nucleation step is completed. It can be seen that this is a necessary condition for improving the child distribution.
[0119] 粒子一 1〜粒子一 3の比較から、核形成工程終了後に分散操作を実施する方が粒 子成長工程終了後に実施するより分布改良への効果が大きいため好ましぐ核形成 工程終了後と粒子成長工程終了後の両方で分散操作を実施することがより好ましい ことが判る。  [0119] From the comparison of Particle 1 to Particle 1, it is preferable to perform the dispersion operation after the completion of the nucleation process because the effect of improving the distribution is greater than that performed after the completion of the particle growth process. It can be seen that it is more preferable to carry out the dispersion operation both later and after the grain growth step.
[0120] また、粒子一 3〜粒子一 5の比較から、形態制御剤やアルコールを使用する場合に は、これら溶剤の総量として反応容器内の液の 10体積%を超えな!/、範囲で用いるこ と力 S好ましいこと力半 IJる。  [0120] From the comparison of particle 1 to particle 1 5, when using a form control agent or alcohol, the total amount of these solvents should not exceed 10% by volume of the liquid in the reaction vessel! Use force within the range.
[0121] 実施例 2  [0121] Example 2
実施例 1の粒子一 3の製造方法において、核形成工程終了後と粒子成長工程終 了後の分散操作の方法を、超音波分散機からメディア分散機 (寿工業アベックスミノレ )または高速攪拌型分散機 (プライミクス社 ΤΚホモミクサ一 MARKII)に変更したこと 以外は、粒子― 3の製造と同様にして粒子一 9と粒子― 10を製造した。 [0122] メディア分散機または高速攪拌型分散機による分散操作も、反応液の濁度が一定 の値に収斂するまで行った。粒子— 9及び粒子— 10を解析したところ、粒子— 3同様 に分布に優れる粒子であることが確認できた。 In the method for producing particles 1 in Example 1, the dispersion operation method after completion of the nucleation step and after the completion of the particle growth step is changed from an ultrasonic disperser to a media disperser (Kotobuki Industries Avex Minore) or a high-speed stirring dispersion. Particles 1-9 and Particles 10 were produced in the same manner as Particles 3 except that the machine was changed to a machine (Primics Co., Ltd. ΤΚ Homomixer MARKII). [0122] Dispersion operation using a media disperser or a high-speed stirring disperser was also performed until the turbidity of the reaction solution converged to a constant value. Analysis of Particle-9 and Particle-10 confirmed that the particles were excellent in distribution as in Particle-3.
[0123] 実施例 3  [0123] Example 3
実施例 1の粒子 3の製造にお!/、て、溶液 A1及び溶液 A2で使用した凝集防止剤 のポリビュルピロリドンに代えて、ポリビュルアルコール(重合度: 1700)、ポリエチレ ンィミン(分子量: 7万)、ヒドロキシェチルセルロース(分子量: 12万)の水溶性ポリマ 一を用いて粒子を調製し、分布の良好な粒子を調製できることを確認した。また、そ れら粒子の比較から、粒子ー3の製造で使用したポリビュルピロリドンのようにアミド基 を有する水溶性ポリマーで特に好ましい結果が得られた。  For the production of the particles 3 of Example 1 !, instead of the polybulurpyrrolidone used in the solution A1 and the solution A2, polybulur alcohol (degree of polymerization: 1700), polyethyleneimine (molecular weight: 7 The particles were prepared using a water-soluble polymer of hydroxyethyl cellulose (molecular weight: 120,000), and it was confirmed that particles with good distribution could be prepared. Further, from the comparison of these particles, a particularly preferable result was obtained with a water-soluble polymer having an amide group, such as polybylpyrrolidone used in the production of Particle-3.
[0124] 実施例 4 [0124] Example 4
実施例 1の粒子 3の製造方法において、粒子成長工程終了後の限外濾過膜を 用いた水洗処理の代わりに、フィルターを用いて濾過、水洗、乾燥した後にエタノー ル中に分散して粒子 11を製造した。  In the method for producing Particle 3 in Example 1, instead of washing with an ultrafiltration membrane after the completion of the particle growth step, the solution was filtered, washed with water, dried and then dispersed in ethanol. Manufactured.
[0125] 粒子— 11につ!/、て、実施例 1と同様の方法で各特性の測定を行った結果、乾燥プ ロセスにおレ、て発生した粒子凝集に起因して、短軸径及び長軸径分布の劣化が認 められた。即ち、本発明のアルカリ土類金属炭酸塩粒子の製造方法において、過剰 な凝集防止剤や形態制御剤、塩等の除去を目的に水洗処理を施す場合には、限外 濾過膜を用いることが粒子の凝集を防止する上で好ましレ、ことが確認された。  [0125] Particles—As a result of measurement of each property by the same method as in Example 1, the minor axis diameter was attributed to particle aggregation that occurred in the drying process. In addition, deterioration of the long axis diameter distribution was observed. That is, in the method for producing alkaline earth metal carbonate particles of the present invention, an ultrafiltration membrane may be used when a water washing treatment is performed for the purpose of removing excess anti-aggregation inhibitor, shape control agent, salt, and the like. It was confirmed that this was preferable in preventing the aggregation of particles.
[0126] 実施例 5  [0126] Example 5
実施例 1の粒子 1〜粒子 8の製造で使用した塩化ストロンチウム 6水和物を、塩 化バリウム、塩化カルシウムにそれぞれ変更して、各々塩化バリウムと炭酸カルシウム を調製した。  Barium chloride and calcium carbonate were prepared by changing the strontium chloride hexahydrate used in the production of the particles 1 to 8 of Example 1 to barium chloride and calcium chloride, respectively.
[0127] 得られたアルカリ土類金属炭酸塩粒子について、実施例 1と同様の方法で各特性 の測定を行った結果、本発明の製造方法で製造したアルカリ土類金属炭酸塩粒子 は、実施例 1に記載の本発明に係る炭酸ストロンチウム粒子と同様に針状の形状を 示し、且つ粒径分布に優れることが確認された。  [0127] As a result of measuring the characteristics of the obtained alkaline earth metal carbonate particles by the same method as in Example 1, the alkaline earth metal carbonate particles produced by the production method of the present invention were Similar to the strontium carbonate particles according to the present invention described in Example 1, it was confirmed to have a needle-like shape and an excellent particle size distribution.
[0128] 実施例 6 《アルカリ土類金属炭酸塩粒子の調製》 [0128] Example 6 << Preparation of alkaline earth metal carbonate particles >>
〔粒子 21の調製:本発明〕  (Preparation of particles 21: the present invention)
容量 8Lのステンレス製の反応容器に、エタノール 200mlと凝集防止剤としてポリビ ニルピロリドン(分子量: 13万) 120gを含む 4000mlの水溶液 (溶液 A1)を調製した。 また、塩化ストロンチウム 6水和物から調製した 1. 0モル/ L水溶液 1000ml (溶液 B 1)と、炭酸ナトリウムから調製した 1. 0モル/ L水溶液 1000ml (溶液 C1)を準備した  A 4000 ml aqueous solution (solution A1) containing 200 ml of ethanol and 120 g of polyvinyl pyrrolidone (molecular weight: 130,000) as an anti-aggregation agent was prepared in a 8 L stainless steel reaction vessel. In addition, 1000 ml of 1.0 mol / L aqueous solution prepared from strontium chloride hexahydrate (solution B 1) and 1000 ml of 1.0 mol / L aqueous solution prepared from sodium carbonate (solution C1) were prepared.
[0129] 〈核形成工程〉 <Nucleation process>
反応容器内の溶液 A1を 5°Cに保持し 800rpmで攪拌しながら、 5°Cに冷却した各 々 250mlの溶液 B1と溶液 C1とを、ダブルジェット法を用いて等し!/、添加速度で溶液 A1の液中に 1分間かけて添加した。核形成工程で形成されるアルカリ土類金属炭酸 塩 1モル当たりのモル添加速度としては、 1モル/ minに相当する。  While maintaining the solution A1 in the reaction vessel at 5 ° C and stirring at 800 rpm, each 250 ml of solution B1 and solution C1 cooled to 5 ° C were equalized using the double jet method! /, Addition speed The solution was added to the solution A1 over 1 minute. The molar addition rate per mole of alkaline earth metal carbonate formed in the nucleation step corresponds to 1 mole / min.
[0130] (分散操作 1) [0130] (Distributed operation 1)
核形成工程終了後の反応液を 5°Cに保持したまま、超音波分散機(SMT社 UH15 0)を用いて分散操作を施した。分散操作は反応液の濁度が減少して一定の値に収 斂するまで行った。  While maintaining the reaction liquid after completion of the nucleation step at 5 ° C., a dispersion operation was performed using an ultrasonic disperser (SMT UH150). The dispersion operation was performed until the turbidity of the reaction solution decreased and converged to a certain value.
[0131] 〈熟成工程〉 [0131] <Aging process>
続いて、上記反応容器内の反応液を攪拌しながら 30分間で 30°Cに昇温し、そのま ま 10分間保持した。  Subsequently, while stirring the reaction solution in the reaction vessel, the temperature was raised to 30 ° C. over 30 minutes, and kept for 10 minutes.
[0132] 〈粒子成長工程〉 [0132] <Grain growth process>
引き続き、 30°Cに保持した反応液を攪拌しながら、 30°Cに保持した溶液 B1と溶液 C1の残量 750mlを、添加終了時の添加速度が添加開始時の 2· 1倍となるようにダ ブルジェット法を用レ、て反応容器内の液中に 180分間で添加した。  Subsequently, stirring the reaction solution maintained at 30 ° C, the addition rate of 750 ml of solution B1 and solution C1 maintained at 30 ° C was increased to 2.1 times the addition rate at the end of addition. The double jet method was added to the liquid in the reaction vessel over 180 minutes.
[0133] (分散操作 2) [0133] (Distributed operation 2)
粒子成長工程終了後の反応液を 30°Cに保持したまま、超音波分散機(SMT社 U HI 50)を用いて分散操作を施した。分散操作は反応液の濁度が減少して一定の値 に収斂するまで行った。  While maintaining the reaction liquid after completion of the particle growth step at 30 ° C., a dispersion operation was performed using an ultrasonic disperser (SMT U HI 50). The dispersion operation was performed until the turbidity of the reaction solution decreased and converged to a certain value.
分散操作 1終了時、粒子成長工程間と分散操作 2終了後に、それぞれ反応液を 採取し電子顕微鏡を用いて確認したところ、粒子成長工程での新たな核の生成は認 められなかった。また、粒子成長工程における成長速度比は 7. 9であった。 At the end of dispersion operation 1 and between the particle growth process and after dispersion operation 2 When collected and confirmed using an electron microscope, the formation of new nuclei during the grain growth process was not observed. The growth rate ratio in the grain growth process was 7.9.
[0134] 分散操作 2終了後に限外濾過膜を用いて水洗処理を施し、更に限外濾過膜を 用いてエタノール溶媒への置換を行い、粒子— 21を製造した。得られた反応物の X 線回折スペクトルを測定し、反応物が炭酸ストロンチウムであることを同定した。  [0134] After the dispersion operation 2 was completed, the membrane was washed with water using an ultrafiltration membrane, and further replaced with an ethanol solvent using the ultrafiltration membrane to produce particles-21. The X-ray diffraction spectrum of the obtained reaction product was measured, and it was identified that the reaction product was strontium carbonate.
[0135] 〔粒子 22の調製:本発明〕  [Preparation of particles 22: the present invention]
反応容器に、エタノール 200mlと塩化ストロンチウム 6水和物 0. 1モル、凝集防止 剤としてポリビュルピロリドン(分子量: 13万) 120gを含む 4000mlの水溶液(溶液 A 2)を調製した。また、塩化ストロンチウム 6水和物から調製した 1. 0モル/ L水溶液 9 00ml (溶液 B2)と、炭酸ナトリウムから調製した 1 · 0モル/ L水溶液 1000ml (溶液 C 2)を準備した。  In a reaction vessel, 4000 ml of an aqueous solution (solution A 2) containing 200 ml of ethanol, 0.1 mol of strontium chloride hexahydrate and 120 g of polybulurpyrrolidone (molecular weight: 130,000) as an aggregation inhibitor was prepared. Moreover, 900 ml (solution B2) of 1.0 mol / L aqueous solution prepared from strontium chloride hexahydrate and 1000 ml (solution C2) of 1.0 mol / L aqueous solution prepared from sodium carbonate were prepared.
[0136] 〈核形成工程、分散操作 1、熟成工程〉  <Nucleation process, dispersion operation 1, aging process>
上記粒子— 21の調製において、溶液 Al、溶液 Bl、溶液 C1の代わりに、溶液 A2 、溶液 B2、溶液 C2を用いた以外は同様にして、核形成工程、分散操作 1、熟成 工程を行った。  In the preparation of Particle-21, the nucleation step, dispersion operation 1, and ripening step were performed in the same manner except that Solution A2, Solution B2, and Solution C2 were used instead of Solution Al, Solution Bl, and Solution C1. .
[0137] 〈粒子成長工程〉  <Grain growth process>
熟成工程に引き続き、 30°Cに保持した反応液を攪拌しながら、 30°Cに保持した溶 液 B2の残量 650mlと溶液 C2の残量 750mlを、溶液 C2の添加終了時の添加速度 が添加開始時の 2. 1倍となるように、ダブルジェット法を用いて反応容器内の液中に 180分間で添加した。溶液 B2も溶液 C2と同じ流速で添加し、溶液 C2に先立ち添加 を終了した。  Following the aging step, stirring the reaction solution maintained at 30 ° C, the addition rate of 650 ml of the remaining solution B2 and 750 ml of the solution C2 held at 30 ° C was increased at the end of the addition of the solution C2. It was added to the liquid in the reaction vessel in 180 minutes using the double jet method so that it was 2.1 times the start of addition. Solution B2 was also added at the same flow rate as solution C2, and the addition was completed prior to solution C2.
[0138] (分散操作 2)  [0138] (Distributed operation 2)
粒子成長工程終了後の反応液を 30°Cに保持したまま、超音波分散機(SMT社 U HI 50)を用いて分散操作を施した。分散操作は反応液の濁度が減少して一定の値 に収斂するまで行った。  While maintaining the reaction liquid after completion of the particle growth step at 30 ° C., a dispersion operation was performed using an ultrasonic disperser (SMT U HI 50). The dispersion operation was performed until the turbidity of the reaction solution decreased and converged to a certain value.
[0139] 分散操作 1終了時、粒子成長工程間と分散操作 2終了後に、それぞれ反応液 を採取し電子顕微鏡を用いて確認したところ、粒子成長工程での新たな核の生成は 認められなかった。また、粒子成長工程における成長速度比は 8. 8であった。 [0140] 分散操作 2終了後に限外濾過膜を用いて水洗処理を施し、更に限外濾過膜を 用いてエタノール溶媒への置換を行い、粒子— 22を製造した。得られた反応物の X 線回折スペクトルを測定し、反応物が炭酸ストロンチウムであることを同定した。 [0139] At the end of dispersion operation 1 and between particle growth steps and after the completion of dispersion operation 2, the reaction solution was collected and confirmed using an electron microscope, and no new nuclei were observed in the particle growth step. . The growth rate ratio in the grain growth process was 8.8. [0140] After the dispersion operation 2 was completed, the membrane was washed with water using an ultrafiltration membrane, and further replaced with an ethanol solvent using the ultrafiltration membrane to produce particles-22. The X-ray diffraction spectrum of the obtained reaction product was measured, and it was identified that the reaction product was strontium carbonate.
[0141] 〔粒子 23の調製:本発明〕 [0141] Preparation of particle 2 3: Present Invention
上記粒子— 22の調製において、溶液 A2の代わりに、以下に示す溶液 A3を使用し た以外は同様にして、粒子 23を調製した。  Particles 23 were prepared in the same manner as in the preparation of Particles 22 except that instead of Solution A2, Solution A3 shown below was used.
[0142] 分散操作 1終了時、粒子成長工程間と分散操作 2終了後に、それぞれ反応液 を採取し電子顕微鏡を用いて確認したところ、粒子成長工程での新たな核の生成は 認められなかった。また、粒子成長工程における成長速度比は 14. 5であった。  [0142] At the end of dispersion operation 1 and between the particle growth process and after dispersion operation 2, the reaction solution was collected and confirmed using an electron microscope. As a result, generation of new nuclei in the particle growth process was not observed. . The growth rate ratio in the grain growth process was 14.5.
[0143] 〈溶液 A3の調製〉  <Preparation of solution A3>
形態制御剤としてエチレンジァミンを 0. 3モル含むエタノール 200mlと、塩化スト口 ンチウム 6水和物 0. 1モル、凝集防止剤としてポリビュルピロリドン(分子量: 13万) 1 20gを含む 4000mlの水溶液を調製し、これを溶液 A3とした。溶液 A3の pH値は約 12であった。  Prepare 4000 ml of aqueous solution containing 200 ml of ethanol containing 0.3 mol of ethylenediamine as the shape control agent, 0.1 mol of stannous chloride hexahydrate, and 20 g of polybutyrrolidone (molecular weight: 130,000) as anti-aggregation agent. This was designated as Solution A3. Solution A3 had a pH value of about 12.
[0144] 〔粒子 24の調製:本発明〕  [Preparation of particles 24: the present invention]
上記粒子— 23の調製において、核形成工程及び粒子成長工程を下記に示す条 件に変更した以外は同様にして、粒子— 24を調製した。  Particle-24 was prepared in the same manner as in the preparation of the particle-23 except that the nucleation step and the particle growth step were changed to the conditions shown below.
[0145] 分散操作 1終了時、粒子成長工程間と分散操作 2終了後に、それぞれ反応液 を採取し電子顕微鏡を用いて確認したところ、粒子成長工程での新たな核の生成は 認められなかった。また、粒子成長工程における成長速度比は 5. 3であった。  [0145] At the end of the dispersion operation 1, between the particle growth process and after the dispersion operation 2, the reaction liquid was collected and confirmed using an electron microscope. As a result, no new nuclei were formed in the particle growth process. . The growth rate ratio in the grain growth process was 5.3.
[0146] 〈核形成工程〉  <Nucleation process>
反応容器内の溶液 A3を 5°Cに保持し 800rpmで攪拌しながら、 5°Cに冷却した各 々 500mlの溶液 B2と溶液 C2とを、ダブルジェット法を用いて等し!/、添加速度で溶液 A3の液中に 2分間で添加した。  While maintaining the solution A3 in the reaction vessel at 5 ° C and stirring at 800 rpm, each 500 ml of solution B2 and solution C2 cooled to 5 ° C are equalized using the double jet method! /, Addition speed The solution was added to the solution A3 in 2 minutes.
[0147] 〈粒子成長工程〉  <Grain growth process>
熟成工程に引き続き、 30°Cに保持した反応液を攪拌しながら、 30°Cに保持した溶 液 B2の残量 400mlと溶液 C2の残量 500mlを、溶液 C2の添加終了時の添加速度 が添加開始時の 2. 3倍となるようにダブルジェット法を用いて反応容器内の液中に 8 5分間で添加した。溶液 B2も溶液 C2と同じ流速で添加し、溶液 C2に先立ち添加を 終了した。 Following the aging process, while stirring the reaction solution maintained at 30 ° C, the remaining amount of solution B2 held at 30 ° C and the remaining amount of solution C2 of 500 ml were added at the rate of addition at the end of the addition of solution C2. Into the liquid in the reaction vessel using the double jet method so that it is 2.3 times that at the start of addition. Added over 5 minutes. Solution B2 was also added at the same flow rate as solution C2, and the addition was completed prior to solution C2.
[0148] 〔粒子 25の調製:本発明〕 [0148] [Preparation of particles 2 5: Present Invention
上記粒子— 23の調製において、核形成工程及び粒子成長工程を下記に示す条 件に変更した以外は同様にして、粒子— 25を調製した。  Particle-25 was prepared in the same manner as in the preparation of the particle-23 except that the nucleation step and the particle growth step were changed to the conditions shown below.
[0149] 分散操作 1終了時、粒子成長工程間と分散操作 2終了後に、それぞれ反応液 を採取し電子顕微鏡を用いて確認したところ、粒子成長工程での新たな核の生成は 認められなかった。また、粒子成長工程における成長速度比は 34. 8であった。 [0149] At the end of the dispersion operation 1, between the particle growth process and after the dispersion operation 2, the reaction solution was collected and confirmed using an electron microscope. As a result, no new nuclei were formed in the particle growth process. . The growth rate ratio in the grain growth process was 34.8.
[0150] 〈核形成工程〉 <Nucleation process>
反応容器内の溶液 A3を 5°Cに保持し 800rpmで攪拌しながら、 5°Cに冷却した各 々 125mlの溶液 B2と溶液 C2を、ダブルジェット法を用いて等しい添加速度で溶液 While maintaining the solution A3 in the reaction vessel at 5 ° C and stirring at 800 rpm, 125 ml each of solution B2 and solution C2 cooled to 5 ° C were added at the same rate using the double jet method.
A3の液中に 30秒間で添加した。 It was added to the A3 solution in 30 seconds.
[0151] 〈粒子成長工程〉 [0151] <Grain growth process>
熟成工程に引き続き、 30°Cに保持した反応液を攪拌しながら、 30°Cに保持した溶 液 B2の残量 775mlと溶液 C2の残量 875mlを、溶液 C2の添加終了時の添加速度 が添加開始時の 3. 6倍となるようにダブルジェット法を用いて反応容器内の液中に 2 Following the aging step, stirring the reaction solution held at 30 ° C, the addition rate of 775 ml of solution B2 and 875 ml of solution C2 held at 30 ° C was increased at the end of the addition of solution C2. Into the liquid in the reaction vessel using the double jet method so that it is 3.6 times that at the start of addition.
40分間で添加した。溶液 B2も溶液 C2と同じ流速で添加し、溶液 C2に先立ち添加を 終了した。 Added in 40 minutes. Solution B2 was also added at the same flow rate as solution C2, and the addition was completed prior to solution C2.
[0152] 〔粒子 26の調製:比較例〕 [0152] [Preparation of Particle 26: Comparative Example]
前記粒子 21の調製にお!/、て、核形成工程における溶液 B 1と溶液 C 1の添加時 間を 20分間とした以外は同様にして、粒子— 26を調製した。核形成工程で形成され るアルカリ土類金属炭酸塩 1モル当たりのモル添加速度は 0. 05モル/ minに相当 する。  In preparation of the particles 21, particles 26 were prepared in the same manner except that the addition time of the solution B 1 and the solution C 1 in the nucleation step was 20 minutes. The molar addition rate per mol of alkaline earth metal carbonate formed in the nucleation process corresponds to 0.05 mol / min.
[0153] 〔粒子 27の調製:比較例〕  [Preparation of Particle 27: Comparative Example]
前記粒子— 21の調製において、下記の核形成工程に変更した以外は同様にして 、粒子— 27を調製した。  Particle-27 was prepared in the same manner except that the preparation of the particle-21 was changed to the following nucleation step.
[0154] 〈核形成工程〉 <Nucleation process>
反応容器内の溶液 A1を 5°Cに保持し 800rpmで攪拌しながら、 5°Cに保持した各 々 1000mlの溶液 Blと溶液 CIを、ダブルジェット法を用いて等し!/、添加速度で溶液 A1の液中に 100分間で添加した。核形成工程で形成されるアルカリ土類金属炭酸 塩 1モル当たりのモル添加速度としては 0. 01モル/ minに相当する。 While maintaining the solution A1 in the reaction vessel at 5 ° C and stirring at 800 rpm, 1000 ml of solution Bl and solution CI were equalized using the double jet method! /, Added at a rate of addition into solution A1 in 100 minutes. The molar addition rate per mol of alkaline earth metal carbonate formed in the nucleation step corresponds to 0.01 mol / min.
[0155] 〔粒子 28の調製:比較例〕 [0155] [Preparation of particles 2 8: Comparative Example]
前記粒子 21の調製にお!/、て、粒子成長工程における溶液 B 1と溶液 C 1の添カロ 時間を 40分間に短縮した以外は同様にして、粒子— 28を調製した。分散操作— 1 終了時、粒子成長工程間と分散操作 2終了後に反応液を採取し電子顕微鏡を用 V、て確認したところ、粒子成長と並行して新たな核が生成されて!/、ること力 S確認され た。  For the preparation of the particles 21, particles 28 were prepared in the same manner except that the addition time of the solution B 1 and the solution C 1 in the particle growth step was shortened to 40 minutes. Dispersion operation—1 At the end of the particle growth process and after the dispersion operation 2 After collecting the reaction solution and using an electron microscope V, it was confirmed that new nuclei were generated in parallel with the particle growth! / That power S was confirmed.
[0156] 〔粒子 29の調製:比較例〕  [Preparation of Particle 29: Comparative Example]
前記粒子—21の調製において、核形成工程に先立ち反応容器内の溶液 A1に溶 液 B 1を全量添加し、以降の核形成工程と粒子形成工程は溶液 C 1だけをシングルジ エツト法で添加した以外は同様にして、粒子— 29を調製した。  Prior to the nucleation step, the entire amount of solution B1 was added to solution A1 in the reaction vessel in the preparation of particle-21, and only solution C1 was added by the single jet method in the subsequent nucleation step and particle formation step. Particle 29 was prepared in the same manner except that.
[0157] 《アル力リ土類金属炭酸塩粒子の特性値の測定》 [0157] <Measurement of characteristic values of Al-rich earth metal carbonate particles>
〔粒子形状の観察〕  [Observation of particle shape]
上記調製した各アルカリ土類金属炭酸塩粒子について、走査型電子顕微鏡にて 少なくとも 300個の粒子を撮影し、その形状を観察し、主体を占める粒子の形状を、 針状粒子、球状粒子、不定形のィガダリ状粒子に分類した。  For each of the alkaline earth metal carbonate particles prepared above, photograph at least 300 particles with a scanning electron microscope, observe the shape, and determine the shape of the occupying particles as acicular particles, spherical particles, irregular particles, etc. It was classified into regular shaped particles.
[0158] 〔平均アスペクト比の測定〕  [Measurement of average aspect ratio]
上記調製した各アルカリ土類金属炭酸塩粒子 300個について、走査型電子顕微 鏡を用いて粒子の長さ(長軸径)と直径 (短軸径)を測定し、その比 (長軸径/短軸径 )をアスペクト比として算出し、その平均値を求め、これを平均アスペクト比とした。  For each of the 300 alkaline earth metal carbonate particles prepared above, the length (major axis diameter) and diameter (minor axis diameter) of the particles were measured using a scanning electron microscope, and the ratio (major axis diameter / The minor axis diameter) was calculated as the aspect ratio, and the average value was obtained, which was used as the average aspect ratio.
[0159] 〔成長速度比 Vの測定〕  [Measurement of growth rate ratio V]
走査型電子顕微鏡を用いて、各アルカリ土類金属炭酸塩粒子調製時の分散操作 1終了時 (核形成工程終了時に相当)の粒子の長軸径平均値と短軸径平均値 a , b  Dispersion operation at the time of preparation of each alkaline earth metal carbonate particle using a scanning electron microscope 1 The major axis diameter average value and the minor axis diameter average value a, b at the end (corresponding to the end of the nucleation process)
1 1 と、分散操作 2終了時 (粒子成長工程終了時に相当)の粒子の長軸径平均値と短 軸径平均値 a , bを、それぞれ粒子 300個について測定し、下式に従って、成長速 度比 Vを測定した。 [0160] 成長速度比 = (a2— a^ / O^— ) 1 1 and the average value of the long axis diameter and the average value of the short axis diameter a and b of the particles at the end of dispersion operation 2 (equivalent to the end of the particle growth process) were measured for 300 particles, and the growth rate was The degree ratio V was measured. [0160] Growth rate ratio = (a 2 — a ^ / O ^ —)
〔平均粒径の測定〕  (Measurement of average particle size)
上記調製した各アルカリ土類金属炭酸塩粒子を走査型電子顕微鏡を用いて撮影 し、粒子の投影面積に等しい面積を有する円の直径を粒径と定義し、 300個の粒子 について測定した個々の粒径の算術平均値を求め、これを平均粒径とした。  Each of the alkaline earth metal carbonate particles prepared above was photographed using a scanning electron microscope, the diameter of a circle having an area equal to the projected area of the particles was defined as the particle size, and each of the individual particles measured for 300 particles was measured. The arithmetic average value of the particle diameter was determined and used as the average particle diameter.
[0161] 〔粒径分布の測定〕 [0161] [Measurement of particle size distribution]
上記平均粒径の測定で求めた個々の粒径の標準偏差を平均粒径で除した値に 1 00を乗じた値を求め、これを粒径分布とした。  A value obtained by dividing the standard deviation of the individual particle sizes obtained by the measurement of the average particle size by the average particle size was multiplied by 100 to obtain a particle size distribution.
[0162] 粒径分布 [%] =粒径の標準偏差/平均粒径粒子 X 100 [0162] Particle size distribution [%] = standard deviation of particle size / average particle size particle X 100
以上により得られた結果を、表 2に示す、なお、粒子 28、 29は不均一な粒子形 状を呈しているため、平均アスペクト比や V、平均粒径、粒径分布の測定を行うこと ができなかった。また、粒子 27は、核形成工程で粒子成長も並行して生じており、 実質的に粒子成長工程が分離されてレ、な!/、ため、 Vを求めることができな!/、。  The results obtained as described above are shown in Table 2. Since particles 28 and 29 have a non-uniform particle shape, the average aspect ratio, V, average particle size, and particle size distribution should be measured. I could not. In addition, particle 27 also has particle growth in parallel with the nucleation process, so the particle growth process is substantially separated, so it is impossible to obtain V! /.
[0163] [表 2] [0163] [Table 2]
Figure imgf000029_0001
表 2に記載の結果より明らかなように、本発明で規定する条件に従って調製した粒 子 21は、アスペクト比が高ぐ粒径分布に優れたアルカリ土類金属炭酸塩であるこ とが分かる。これに対し、比較例である粒子—26は、核形成工程におけるモル添加 速度が 0· 05モル /minと低ぐ添加に時間を要している(20分間)ため、核形成ェ 程で生成された核の成長が並行して生じており、 Vカ小さいために平均ァスぺ々ト比 が低ぐさらに粒径分布の劣化も招いている。また、粒子 27は、核形成工程と粒子 成長工程が分離されてレ、な!/、ため、針状粒子と球状粒子が混在した不均一な粒子 形状となり、加えて粒径分布の劣化を引き起こしている。また、粒子 28は、粒子成 長工程における添加速度を適切に制御していないために粒子成長工程でも核の生 成が起こり、柱状粒子と球状粒子が混在した不均一な粒子形状となり、加えて粒径分 布の劣化を引き起こしている。
Figure imgf000029_0001
As is apparent from the results shown in Table 2, it can be seen that the particles 21 prepared according to the conditions specified in the present invention are alkaline earth metal carbonates having a high aspect ratio and excellent particle size distribution. On the other hand, Particle-26, which is a comparative example, is formed in the nucleation process because it takes time (20 minutes) to add the molar addition rate as low as 0 · 05 mol / min in the nucleation process. Nuclei grown in parallel, and the average ratio is small because V is small In addition, the particle size distribution is deteriorated. In addition, since the nucleation process and the particle growth process are separated, the particle 27 has a non-uniform particle shape in which acicular particles and spherical particles are mixed, and in addition, the particle size distribution is deteriorated. ing. In addition, since the addition rate in the particle growth process is not appropriately controlled, the particle 28 also generates nuclei in the particle growth process, resulting in an uneven particle shape in which columnar particles and spherical particles are mixed. This causes deterioration of the particle size distribution.
[0165] 以上の結果は、粒径分布の改良には核形成工程と粒子成長工程をその目的通り に明確に機能分離することが重要性であることを示している。  [0165] The above results indicate that it is important to clearly separate the functions of the nucleation step and the particle growth step according to the purpose in order to improve the particle size distribution.
[0166] 粒子 29は、粒子 21のダブルジェット法をシングルジェット法に変更して粒子調 製を行ったものである力 S、成長後の粒子は粒子 21のものとは異なり、針状粒子に ィガダリ状の粒子が混在したものであった。ィガダリ状の粒子は、核形成工程で核の 凝集が発生し、この凝集体が粒子成長工程で針状成長したものと思われる。粒子 29における核形成工程での核の凝集発生は、反応溶液内に予め塩化ストロンチウム を全量添加したために、核形成が塩濃度の高い条件下で行われたことが原因と推定 される。  [0166] The particle 29 is a force S, which is a particle preparation by changing the double jet method of the particle 21 to the single jet method, and the grown particle is a needle-like particle unlike the particle 21. It was a mixture of negative particles. It is probable that the icidal particles were agglomerated during the nucleation process, and the aggregates were acicularly grown during the particle growth process. It is presumed that the nucleation of particles 29 in the nucleation step was caused by the fact that nucleation was performed under a high salt concentration condition because strontium chloride was added in advance to the reaction solution.
[0167] 本発明である粒子— 21と 22の比較から、粒子調製をアルカリ土類金属イオン過剰 な条件下で行うことにより、粒子凝集性が改良され小粒径化及び粒径分布の改良に 結びついていることが理解できる。また、粒子— 21と 23の比較から、本発明の製造 方法に形態制御剤を適用することにより、アスペクト比を顕著に高められることが判る 。またこの場合、高アスペクト比化に伴う粒径分布の劣化は殆ど認められない。  [0167] From the comparison of the particles 21 and 22 according to the present invention, the particle preparation is carried out under an excess of alkaline earth metal ions, so that the particle cohesiveness is improved and the particle size is reduced and the particle size distribution is improved. I can understand that they are connected. In addition, it can be seen from the comparison of particles 21 and 23 that the aspect ratio can be remarkably increased by applying the form control agent to the production method of the present invention. In this case, the deterioration of the particle size distribution accompanying the increase in the aspect ratio is hardly observed.
[0168] 粒子— 21、 24及び 25の比較では、本発明の製造方法においては、核形成工程と 粒子成長工程のモル比の配分により、アスペクト比の調整が可能であることが示され ている。尚、実施例 4のように、核形成工程のモル比が 50%を超えるような場合には 粒子成長後のアスペクト比が低下し、針状または柱状粒子に期待される特性を十分 に得ること力小難しくなる。  [0168] The comparison of particles 21, 24 and 25 shows that the aspect ratio can be adjusted by the distribution of the molar ratio between the nucleation step and the particle growth step in the production method of the present invention. . As in Example 4, when the molar ratio in the nucleation step exceeds 50%, the aspect ratio after grain growth decreases, and the characteristics expected for acicular or columnar particles can be sufficiently obtained. It becomes difficult and difficult.
[0169] 実施例 7  [0169] Example 7
〔粒子 30の調製〕  (Preparation of particles 30)
〈核形成工程及び熟成工程〉 粒子— 21の調製と同様に実施した。 <Nucleation process and aging process> Similar to the preparation of Particle-21.
[0170] 〈粒子成長工程〉  <Grain growth process>
熟成工程に引き続き、 30°Cに保持した反応液を攪拌しながら、水酸化ストロンチウ ム 8水和物 0. 75モルを反応容器に添加した。反応液は炭酸ストロンチウム粒子と水 酸化ストロンチウムの未溶解物を含むスラリーとなった。この反応液を攪拌しながら、 炭酸ガスと窒素ガスの混合ガス(CO: N = 3 : 7)を一定の流速でスラリー中に導入し 炭酸化反応を行った。粒子成長工程終了後に反応液を採取し電子顕微鏡を用いて 確認したところ、形成された粒子の形態は実施例 1の粒子と同等であり、粒子成長ェ 程で新たな核が生成されて!/、な!/、ことが確認された。  Subsequent to the aging step, 0.75 mol of strontium hydroxide octahydrate was added to the reaction vessel while stirring the reaction solution maintained at 30 ° C. The reaction solution became a slurry containing strontium carbonate particles and undissolved strontium hydroxide. While stirring this reaction solution, a mixed gas of carbon dioxide gas and nitrogen gas (CO: N = 3: 7) was introduced into the slurry at a constant flow rate to perform a carbonation reaction. When the reaction solution was collected after the completion of the particle growth process and confirmed using an electron microscope, the form of the formed particles was the same as that of Example 1, and new nuclei were generated during the particle growth process! / That was confirmed!
[0171] 粒子成長工程終了後の反応液の体積は、実施例 1に記載の粒子 21に対して減 少しており、同一の製造装置で粒子形成を行う場合、得られる粒子の特性を変えるこ となぐ生産性を 30%向上できることが確認された。  [0171] The volume of the reaction liquid after completion of the particle growth step is reduced with respect to the particles 21 described in Example 1, and when the particles are formed by the same production apparatus, the characteristics of the obtained particles can be changed. It was confirmed that productivity could be improved by 30%.
[0172] 〔粒子 31の調製〕  [Preparation of Particle 31]
上記粒子— 30の調製において、使用した塩化ストロンチウム 6水和物を、塩化バリ ゥムまたは塩化カルシウムに変更して、各々塩化バリウムと炭酸カルシウムを調製し た。得られた粒子は、上記炭酸ストロンチウム粒子である粒子— 30と同様に針状また は柱状の形状を示し、かつ粒径分布に優れることが確認された。  In the preparation of the above particles-30, barium chloride and calcium carbonate were prepared by changing the strontium chloride hexahydrate used to barium chloride or calcium chloride, respectively. The obtained particles were confirmed to have a needle-like or columnar shape as in the case of the above-mentioned strontium carbonate particles—30 and excellent in particle size distribution.

Claims

請求の範囲 The scope of the claims
[1] 凝集防止剤を含む溶液中でダブルジェット法を用いてアルカリ土類金属塩溶液と炭 酸塩溶液とを反応させ、平均アスペクト比が 2以上の針状の形態を有する粒子を形 成するアルカリ土類金属炭酸塩粒子の製造方法であって、核形成工程後に粒子成 長工程を有し、核形成工程終了以降に分散操作を行うことを特徴とするアルカリ土類 金属炭酸塩粒子の製造方法。  [1] Using a double jet method in a solution containing an anti-agglomeration agent, an alkaline earth metal salt solution and a carbonate solution are reacted to form particles having an acicular shape with an average aspect ratio of 2 or more. A method for producing alkaline earth metal carbonate particles, comprising: a particle growth step after a nucleation step, and performing a dispersion operation after the completion of the nucleation step. Production method.
[2] 前記分散操作が核形成工程終了後から粒子成長工程開始までの間に行われること を特徴とする請求の範囲第 1項に記載のアルカリ土類金属炭酸塩粒子の製造方法。 [2] The method for producing alkaline earth metal carbonate particles according to [1], wherein the dispersing operation is performed after the nucleation step is completed and before the particle growth step is started.
[3] 前記分散操作が粒子成長工程終了後に行われることを特徴とする請求の範囲第 1 項に記載のアルカリ土類金属炭酸塩粒子の製造方法。 [3] The method for producing alkaline earth metal carbonate particles according to [1], wherein the dispersion operation is performed after the particle growth step.
[4] 前記分散操作が核形成工程終了後から粒子成長工程開始までの間と粒子成長ェ 程終了後に行われることを特徴とする請求の範囲第 1項に記載のアルカリ土類金属 炭酸塩粒子の製造方法。 [4] The alkaline earth metal carbonate particles according to claim 1, wherein the dispersing operation is performed from the end of the nucleation step to the start of the particle growth step and after the end of the particle growth step. Manufacturing method.
[5] 前記分散操作をメディア分散機、超音波分散機、高速攪拌型分散機の中から少なく とも 1種類を用いて行うことを特徴とする請求の範囲第 1項乃至第 4項のいずれか 1項 に記載のアルカリ土類金属炭酸塩粒子の製造方法。 [5] Any one of claims 1 to 4, wherein the dispersion operation is performed using at least one of a media disperser, an ultrasonic disperser, and a high-speed stirring disperser. The method for producing alkaline earth metal carbonate particles according to 1 above.
[6] 前記凝集防止剤を含む溶液、アルカリ土類金属塩溶液及び炭酸塩溶液の溶媒が実 質的に水であることを特徴とする請求の範囲第 1項乃至第 5項のいずれか 1項に記 載のアルカリ土類金属炭酸塩粒子の製造方法。 [6] The solvent according to any one of claims 1 to 5, wherein the solvent of the aggregation-preventing agent, the alkaline earth metal salt solution, and the carbonate solution is substantially water. The manufacturing method of alkaline-earth metal carbonate particle | grains as described in an item.
[7] 前記凝集防止剤がアミド基を有する水溶性ポリマーであることを特徴とする請求の範 囲第 1項乃至第 6項のいずれか 1項に記載のアルカリ土類金属炭酸塩粒子の製造方 法。 [7] The production of alkaline earth metal carbonate particles according to any one of [1] to [6], wherein the aggregation inhibitor is a water-soluble polymer having an amide group. Method.
[8] 前記アルカリ土類金属炭酸塩粒子の長軸径の変動係数が 40%未満であることを特 徴とする請求の範囲第 1項乃至第 7項のいずれ力、 1項に記載のアルカリ土類金属炭 酸塩粒子の製造方法。  [8] The force according to any one of claims 1 to 7, characterized in that the coefficient of variation of the major axis diameter of the alkaline earth metal carbonate particles is less than 40%. A method for producing earth metal carbonate particles.
[9] 前記アルカリ土類金属炭酸塩粒子の短軸径の変動係数が 35%未満であることを特 徴とする請求の範囲第 1項乃至第 8項のいずれ力、 1項に記載のアルカリ土類金属炭 酸塩粒子の製造方法。 [9] The alkali according to any one of claims 1 to 8, wherein the coefficient of variation in minor axis diameter of the alkaline earth metal carbonate particles is less than 35%. A method for producing earth metal carbonate particles.
[10] 前記粒子成長工程終了後に限外濾過膜を用いて前記凝集防止剤を除去することを 特徴とする請求の範囲第 1項乃至第 9項のいずれ力、 1項に記載のアルカリ土類金属 炭酸塩粒子の製造方法。 [10] The alkaline earth according to any one of [1] to [9], wherein the anti-aggregation agent is removed using an ultrafiltration membrane after completion of the particle growth step. Method for producing metal carbonate particles.
[11] 前記核形成工程終了時の該アルカリ土類金属炭酸塩粒子の長軸径と短軸径の平均 値を各々 a、 b、粒子成長工程終了時の該アルカリ土類金属炭酸塩粒子の長軸径と  [11] The average values of the major axis diameter and the minor axis diameter of the alkaline earth metal carbonate particles at the end of the nucleation step are a and b, respectively, and the alkaline earth metal carbonate particles at the end of the particle growth step Long axis diameter and
1 1  1 1
短軸径の平均値を各々 a、 bとし、該粒子成長工程終了時における長軸径と短軸径 の成長速度比を V = (a - a ) / (b -b )で表したとき、 Vが 2以上であることを特徴 とする請求の範囲第 1項乃至第 10項のいずれ力、 1項に記載のアルカリ土類金属炭 酸塩粒子の製造方法。  When the average value of the minor axis diameter is a and b, respectively, and the growth rate ratio between the major axis diameter and the minor axis diameter at the end of the grain growth process is expressed as V = (a-a) / (b -b), The method for producing alkaline earth metal carbonate particles according to any one of claims 1 to 10, wherein V is 2 or more.
[12] 前記核形成工程または前記粒子成長工程の少なくとも一部が、反応容器内の液が アルカリ土類金属イオン過剰な条件下で行われることを特徴とする請求の範囲第 1項 乃至第 11項のいずれか 1項に記載のアルカリ土類金属炭酸塩粒子の製造方法。  12. The method according to any one of claims 1 to 11, wherein at least a part of the nucleation step or the particle growth step is performed under a condition in which a liquid in a reaction vessel is excessive in alkaline earth metal ions. The method for producing alkaline earth metal carbonate particles according to any one of the items.
[13] 前記核形成工程または粒子成長工程の少なくとも一部力 反応容器内の液が pH9 以上の条件下で行われることを特徴とする請求の範囲第 1項乃至第 12項のいずれ 力、 1項に記載のアルカリ土類金属炭酸塩粒子の製造方法。  [13] At least partial force of the nucleation step or particle growth step, wherein the liquid in the reaction vessel is performed under a condition of pH 9 or higher. The method for producing alkaline earth metal carbonate particles according to Item.
[14] 前記核形成工程または粒子成長工程の少なくとも一部が、形態制御剤の存在下に 行われることを特徴とする請求の範囲第 1項乃至第 13項のいずれか 1項に記載のァ ルカリ土類金属炭酸塩粒子の製造方法。  [14] The method according to any one of claims 1 to 13, wherein at least a part of the nucleation step or the particle growth step is performed in the presence of a shape control agent. A method for producing rucal earth metal carbonate particles.
[15] 前記核形成工程におけるアルカリ土類金属塩溶液及び炭酸塩溶液の添加速度が、 該核形成工程で形成されるアル力リ土類金属炭酸塩 1モル当たり 0. 1モル/ min以 上であることを特徴とする請求の範囲第 1項乃至第 14項のいずれ力、 1項に記載のァ ルカリ土類金属炭酸塩粒子の製造方法。  [15] The addition rate of the alkaline earth metal salt solution and the carbonate solution in the nucleation step is 0.1 mol / min or more per mol of the alkaline earth metal carbonate formed in the nucleation step. 15. The method for producing alkaline earth metal carbonate particles according to claim 1, wherein the power is any one of claims 1 to 14.
[16] 前記反応における液が、メタノール、エタノール、 n—プロピルアルコール及び iープ 口ピルアルコールから選ばれる少なくとも 1種を含むことを特徴とする請求の範囲第 1 項乃至第 15項のいずれか 1項に記載のアルカリ土類金属炭酸塩粒子の製造方法。  [16] The liquid according to any one of claims 1 to 15, wherein the liquid in the reaction contains at least one selected from methanol, ethanol, n-propyl alcohol, and i-pilled pill alcohol. 2. A method for producing alkaline earth metal carbonate particles according to item 1.
[17] 前記粒子成長工程終了時のアルカリ土類金属炭酸塩粒子に対して、前記核形成ェ 程で形成されるアルカリ土類金属炭酸塩のモル比が 50モル%以下であることを特徴 とする請求の範囲第 1項乃至第 16項のいずれ力、 1項に記載のアルカリ土類金属炭 酸塩粒子の製造方法。 [17] The molar ratio of the alkaline earth metal carbonate formed in the nucleation step to the alkaline earth metal carbonate particles at the end of the particle growth step is 50 mol% or less. The alkaline earth metal charcoal according to any one of claims 1 to 16, Method for producing acid salt particles.
[18] 前記粒子成長工程の少なくとも一部が、炭酸ガスを炭酸イオン源として用いることを 特徴とする請求の範囲第 1項乃至第 17項のいずれ力、 1項に記載のアルカリ土類金 属炭酸塩粒子の製造方法。  [18] The alkaline earth metal according to any one of [1] to [17], wherein at least a part of the particle growth step uses carbon dioxide as a carbonate ion source. A method for producing carbonate particles.
[19] 請求の範囲第 1項乃至第 18項のいずれ力、 1項に記載のアルカリ土類金属炭酸塩粒 子の製造方法で製造されたことを特徴とするアルカリ土類金属炭酸塩粒子。  [19] Alkaline earth metal carbonate particles produced by the method for producing alkaline earth metal carbonate particles according to any one of [1] to [18].
PCT/JP2007/066447 2006-09-19 2007-08-24 Process for producing particle of alkaline earth metal carbonate and particle of alkaline earth metal carbonate WO2008035538A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006252438A JP2008074634A (en) 2006-09-19 2006-09-19 Manufacturing process of alkaline earth metal carbonate particle and alkaline earth metal carbonate particle
JP2006-252438 2006-09-19
JP2007004404A JP2008169086A (en) 2007-01-12 2007-01-12 Manufacturing process of alkaline earth metal carbonate particle
JP2007-004404 2007-01-12

Publications (1)

Publication Number Publication Date
WO2008035538A1 true WO2008035538A1 (en) 2008-03-27

Family

ID=39200367

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/066447 WO2008035538A1 (en) 2006-09-19 2007-08-24 Process for producing particle of alkaline earth metal carbonate and particle of alkaline earth metal carbonate

Country Status (1)

Country Link
WO (1) WO2008035538A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5551852B2 (en) * 1977-09-30 1980-12-26
JPS59203728A (en) * 1983-05-06 1984-11-17 Earth Chem Corp Ltd Preparation of calcium carbonate crystal
JPH05155615A (en) * 1991-12-06 1993-06-22 Shin Etsu Chem Co Ltd Production of acicular barium carbonate
JP2001139328A (en) * 1999-11-10 2001-05-22 Nittetsu Mining Co Ltd Method for manufacturing bobbin-like calcium carbonate having excellent dispersibility
JP2006021988A (en) * 2004-06-08 2006-01-26 Fuji Photo Film Co Ltd Method for production of carbonate
JP2006124199A (en) * 2004-10-26 2006-05-18 Ube Material Industries Ltd Acicular strontium carbonate particle
JP2006169038A (en) * 2004-12-15 2006-06-29 Fuji Photo Film Co Ltd Method for producing carbonate
JP2006176367A (en) * 2004-12-22 2006-07-06 Fuji Photo Film Co Ltd Method for producing carbonate crystal

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5551852B2 (en) * 1977-09-30 1980-12-26
JPS59203728A (en) * 1983-05-06 1984-11-17 Earth Chem Corp Ltd Preparation of calcium carbonate crystal
JPH05155615A (en) * 1991-12-06 1993-06-22 Shin Etsu Chem Co Ltd Production of acicular barium carbonate
JP2001139328A (en) * 1999-11-10 2001-05-22 Nittetsu Mining Co Ltd Method for manufacturing bobbin-like calcium carbonate having excellent dispersibility
JP2006021988A (en) * 2004-06-08 2006-01-26 Fuji Photo Film Co Ltd Method for production of carbonate
JP2006124199A (en) * 2004-10-26 2006-05-18 Ube Material Industries Ltd Acicular strontium carbonate particle
JP2006169038A (en) * 2004-12-15 2006-06-29 Fuji Photo Film Co Ltd Method for producing carbonate
JP2006176367A (en) * 2004-12-22 2006-07-06 Fuji Photo Film Co Ltd Method for producing carbonate crystal

Similar Documents

Publication Publication Date Title
US11958116B2 (en) Stable dispersions of monocrystalline nanometric silver particles
JP5350232B2 (en) Method for producing aluminum hydroxide
Wu et al. Magnesium hydroxide nanoparticles synthesized in water-in-oil microemulsions
WO2007088707A1 (en) Micropore forming agent for porous resin film and composition for porous resin film containing the agent
JP3058255B2 (en) Method for producing precipitated calcium carbonate
JP5387809B2 (en) Vaterite-type spherical calcium carbonate and method for producing the same
KR101474041B1 (en) Highly dispersible fine powder of alkaline earth metal carbonate and process for producing the same
CN108137345B (en) Iron oxyhydroxide nanodispersion
JP2003063818A (en) Method for producing crystals of hydrotalcite compounds
Schlomach et al. Investigation of precipitation of calcium carbonate at high supersaturations
JPS62202817A (en) Production of fine particle of calcium carbonate
JP5019556B2 (en) Porous particles and method for producing the same
KR101378470B1 (en) Method of synthesizing metal composite oxide and metal composite oxide obtained by same
JP7085325B2 (en) Aragonite-type light calcium carbonate and its manufacturing method
JP5474310B2 (en) Granular barium carbonate composition powder
WO2008035538A1 (en) Process for producing particle of alkaline earth metal carbonate and particle of alkaline earth metal carbonate
JPH054929B2 (en)
JP5096028B2 (en) Slurry containing light calcium carbonate-silica composite and aluminum-based water-soluble inorganic compound
JP2008169086A (en) Manufacturing process of alkaline earth metal carbonate particle
Mikami et al. Polyelectrolyte‐Assisted Reactive Crystallization of SrSO4 to Obtain Monodispersed Nano/Micro‐Particles
JP2008110885A (en) Manufacturing process of alkali earth metal carbonate particle
JP2008074634A (en) Manufacturing process of alkaline earth metal carbonate particle and alkaline earth metal carbonate particle
JP2008144010A (en) Method for producing resin composition and resin composition film
TWI427038B (en) Process for the production of aluminum hydroxide
JP6363138B2 (en) Stable dispersion of single-crystal nanosilver particles

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07792976

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07792976

Country of ref document: EP

Kind code of ref document: A1