WO2008035430A1 - Optical module - Google Patents

Optical module Download PDF

Info

Publication number
WO2008035430A1
WO2008035430A1 PCT/JP2006/318788 JP2006318788W WO2008035430A1 WO 2008035430 A1 WO2008035430 A1 WO 2008035430A1 JP 2006318788 W JP2006318788 W JP 2006318788W WO 2008035430 A1 WO2008035430 A1 WO 2008035430A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
optical module
substrate
fiber
light
Prior art date
Application number
PCT/JP2006/318788
Other languages
French (fr)
Japanese (ja)
Inventor
Tetsuo Takano
Seiichi Yokoyama
Original Assignee
Hoya Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corporation filed Critical Hoya Corporation
Priority to PCT/JP2006/318788 priority Critical patent/WO2008035430A1/en
Publication of WO2008035430A1 publication Critical patent/WO2008035430A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29346Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by wave or beam interference
    • G02B6/29361Interference filters, e.g. multilayer coatings, thin film filters, dichroic splitters or mirrors based on multilayers, WDM filters
    • G02B6/29362Serial cascade of filters or filtering operations, e.g. for a large number of channels
    • G02B6/29365Serial cascade of filters or filtering operations, e.g. for a large number of channels in a multireflection configuration, i.e. beam following a zigzag path between filters or filtering operations
    • G02B6/29367Zigzag path within a transparent optical block, e.g. filter deposited on an etalon, glass plate, wedge acting as a stable spacer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29346Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by wave or beam interference
    • G02B6/29361Interference filters, e.g. multilayer coatings, thin film filters, dichroic splitters or mirrors based on multilayers, WDM filters
    • G02B6/29362Serial cascade of filters or filtering operations, e.g. for a large number of channels
    • G02B6/29365Serial cascade of filters or filtering operations, e.g. for a large number of channels in a multireflection configuration, i.e. beam following a zigzag path between filters or filtering operations
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29379Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device
    • G02B6/2938Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device for multiplexing or demultiplexing, i.e. combining or separating wavelengths, e.g. 1xN, NxM

Definitions

  • the present invention relates to an optical add / drop multiplexer (optical wavelength multiplexing / demultiplexing device) for branching trunk signal light toward a relay station or inserting signal light from a relay station into the trunk line in the optical communication field. ) And gain equalizers.
  • Patent Document 1 discloses an apparatus used for branching a signal of a specific wavelength to a relay station or inserting a signal of a specific wavelength into a relay station. Is disclosed in! There are known optical add / drop devices (also called optical wavelength multiplexing / demultiplexing devices!).
  • this optical add / drop device includes an optical demultiplexer 3 that demultiplexes wavelength-multiplexed light input from the input optical transmission line 1 into light of each wavelength, and once demultiplexes. And an optical multiplexer 4 for multiplexing the transmitted light of each wavelength and sending it to the output transmission line 2.
  • This optical add / drop device also splits the light of each wavelength demultiplexed by the optical demultiplexer 3 to the receiver 7 of the relay station 8 and then transmits the signal transmitted from the transmitter 6 of the relay station 8.
  • An optical switch 5 for selecting whether to insert a new light or to transmit the light of each wavelength demultiplexed by the optical demultiplexer 3 as it is to the optical multiplexer 4 corresponds to the optical path of each wavelength. There are several.
  • the optical demultiplexer 3 or the optical multiplexer 4 has a wavelength selection filter, a lens, or the like fixed on the outgoing optical path from the optical fiber, and a single wavelength component from the multi-wavelength signal.
  • a filter module having a function of separating or a function of inserting a single wavelength component into a multi-wavelength signal is used.
  • Such a filter module has a configuration in which, as described in Patent Document 2 and Patent Document 3, for example, a collimator including a lens and an optical fiber is disposed facing each other with a wavelength selection filter interposed therebetween. Make it.
  • a filter module a wavelength selection filter, a lens, and an optical fiber are inserted and fixed in a common cylindrical casing with the optical axis adjusted.
  • Such a module is generally called an Add / Drop Multiplexer (ADM).
  • ADM Add / Drop Multiplexer
  • the optical demultiplexer 3 and the optical multiplexer 4 in the optical add / drop device of FIG. 18 need to perform similar multiplexing or demultiplexing for a plurality of wavelengths, and thus have different wavelength separation characteristics.
  • a plurality of filter modules are used, and the optical fibers at the signal input and output ends are connected by a method such as sequential fusion. Such modules are commonly called “Mux / DeMux”.
  • the light input to the optical demultiplexer 3 or the optical multiplexer 4 passes through a plurality of the filter modules in order, so that the light demultiplexed to each wavelength or the light of each wavelength is sequentially multiplexed. (See, for example, Patent Document 4).
  • a plurality of unit modules connected in series are mounted in a single case!
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2000-183816
  • Patent Document 2 Japanese Patent Publication No. 10-511476
  • Patent Document 3 Japanese Patent Laid-Open No. 10-311905
  • Patent Document 4 JP-A-11-337765
  • Patent Document 5 International Publication WO2006Z006197
  • optical modules are required to have high reliability with respect to temperature, humidity, shock, etc., and under general standards, such as temperature cycle test, high temperature and high humidity test, vibration shock test, etc. Evaluations are conducted by conducting various reliability tests.
  • an object of the present invention is to improve the reliability with respect to changes in temperature and humidity at a low price and in a simple manner in a surface mount optical module including the wavelength multiplexer / demultiplexer mentioned above.
  • a plurality of optical components are arranged on the upper surface of a single substrate, and the plurality of optical components are positioned so that light is spatially transmitted between them.
  • the upper surface of the optical component is covered with a connection member so as to cover at least two optical components, and the lower surface of the connection member Is bonded and fixed to the upper surface of the lower optical component.
  • An optical module according to a second aspect of the present invention is the optical module according to the first aspect, wherein a plate-like connecting member is placed on the upper surface of the optical component so as to cover all the optical components, and the connection is made.
  • the lower surface of the member is bonded and fixed to the upper surfaces of all the optical components below it.
  • An optical module according to a third aspect is the optical module according to the first aspect, wherein a fiber collimator is disposed in each of a plurality of positioning grooves formed on an upper surface of the substrate as a kind of the optical component.
  • a plurality of block-shaped optical elements are arranged on the upper surface of the substrate so that light is spatially transmitted between the plurality of fiber collimators through the optical component,
  • the connecting member is covered on the upper surface of at least two of these optical elements, and the lower surface of the connecting member is fixedly attached to the upper surface of the lower optical element.
  • An optical module according to a fourth aspect of the present invention is the optical module according to the third aspect of the present invention, wherein the same or different connecting member is also provided on the plurality of fiber collimators disposed in the positioning grooves. And the lower surface of the connecting member is adhesively fixed to the upper surfaces of the plurality of fiber collimators below it.
  • a plurality of optical components are arranged on an upper surface of a single substrate, and the plurality of optical components are positioned so that light is spatially transmitted between them.
  • an inverted L-shaped or gate-shaped support member having a column member and a beam member is arranged on the substrate, and the support is provided.
  • the lower surface of the pillar member of the member is bonded and fixed to the upper surface of the substrate, the beam member of the support member is covered on the upper surface of at least one optical component, and the lower surface of the beam member is disposed below the optical component. It is characterized in that it is bonded and fixed to the upper surface.
  • An optical module according to a sixth aspect of the present invention is the optical module according to the fifth aspect, wherein the column member and the beam member of the support member are configured as separate parts, and the lower surface of the column member is the substrate.
  • the beam member is covered and bonded and fixed to the upper surface of the column member and the upper surface of the at least one optical component.
  • An optical module according to a seventh aspect is the optical module according to the fifth aspect, wherein the column member and the beam member of the support member are configured in advance as an integral part, and the lower surface of the column member is formed. At the same time as being bonded and fixed to the upper surface of the substrate, the beam member is covered and fixed to the upper surface of the at least one optical component.
  • An optical module according to an eighth invention is the optical module according to any one of the fifth to seventh inventions, wherein a plurality of positioning grooves formed on an upper surface of the substrate as a kind of the optical component.
  • a block-shaped optical element is provided on the upper surface of the substrate so that light is spatially transmitted between the plurality of fiber collimators via itself.
  • At least one beam member is disposed, the beam member of the support member is placed on the upper surface of the at least one optical element, and the lower surface of the beam member is bonded and fixed to the upper surface of the lower optical element.
  • An optical module according to a ninth invention has a plurality of optical components arranged on the upper surface of a single substrate, and the plurality of optical components are positioned so that light is spatially transmitted between them.
  • a surface mount type optical module in which the lower surface of an optical component is bonded and fixed to the upper surface of the substrate, the height of the upper surface of at least one optical component of the plurality of optical components is on the substrate.
  • a member mounting surface is formed, and the lower surface of the connection member is bonded and fixed to the member mounting surface, and the lower surface of the connection member is set at the same level as the member mounting surface. Both are characterized by being attached and fixed on the top surface of one optical component.
  • An optical module according to a tenth invention is the optical module according to the ninth invention, wherein a plurality of positioning grooves are formed on a member mounting surface formed on the substrate, and In addition, a fiber collimator is disposed in each of the plurality of positioning grooves formed on the substrate, and light is spatially transmitted between the plurality of fiber collimators through itself as another type of the optical component.
  • connection member is placed on the upper surface of the fiber collimator and the upper surface of the optical element disposed in the positioning groove, and in this state, the lower surface of the connection member is placed on the member mounting surface, the upper surface of the fiber collimator, and the optical element. Characterized in that had adhered solid boss on the surface.
  • An optical module according to an eleventh aspect of the present invention is to form a peripheral wall that surrounds the entire periphery at the peripheral edge of the upper surface of one substrate, and to form a plurality of positioning holes in the peripheral wall, so that each positioning hole has a peripheral wall.
  • the external force also inserts and fixes the fiber collimator, and an optical element is disposed on the upper surface of the substrate on the inner side of the peripheral wall so that light can be spatially transmitted between the plurality of fiber collimators via the optical element.
  • the connecting member is covered so as to apply force, and the lower surface of the connecting member is bonded and fixed to the upper surface of the optical element below the connecting member.
  • An optical module according to a twelfth aspect of the present invention is the optical module according to the eleventh aspect of the present invention, wherein the cover member seals the space on the substrate inside the peripheral wall to the upper end surface of the peripheral wall of the substrate. It is characterized by mounting and fixing.
  • An optical module according to a thirteenth invention is the optical module according to any one of the third, fourth, tenth, eleventh, and twelfth inventions, wherein the fiber collimator includes a core in the center and One end face of a coreless fiber made of a material having a uniform refractive index that is substantially the same as the core is joined to an end face of the optical fiber having a clad on the outer periphery, and the other end of the coreless fiber is joined on the optical axis of the optical fiber. It is characterized by having a collimator lens on the end face side.
  • An optical module according to a fourteenth aspect is the optical module according to the thirteenth aspect, wherein the fiber collimator includes an end of the optical fiber in which a coreless fiber is bonded to an end surface, and the collimator lens.
  • the glass tube of the fiber collimator configured as the single optical component is disposed in the positioning groove or in the positioning hole. It is characterized by.
  • An optical module according to a fifteenth aspect of the present invention is the optical module according to any one of the third, fourth, tenth, eleventh, twelfth, and fourteenth aspects, and is incident as a kind of the optical element.
  • Demultiplexing function that transmits only light of a specific wavelength band and reflects light of other wavelengths, and transmits light of a specific wavelength that is incident on one side and transmitted, and is incident and reflected from the other side.
  • a wavelength selection filter having a multiplexing function for multiplexing reflected light of wavelengths is provided!
  • a module according to a sixteenth aspect of the invention is the optical module according to the eighth aspect of the invention, wherein the core is provided on an end face of an optical fiber having a core at the center of the fiber collimator force and a clad at the outer periphery thereof. And one end face of a coreless fiber made of a material having the same and uniform refractive index is joined, and a collimator lens is disposed on the other end face side of the coreless fiber on the optical axis of the optical fiber.
  • a module according to a seventeenth aspect is the optical module according to the sixteenth aspect, wherein the fiber collimator includes: an end of the optical fiber in which a coreless fiber is bonded to an end surface; and the collimator lens. It is configured as a single optical component by being disposed in a glass tube, and the glass tube of the fiber collimator configured as the single optical component is disposed in the positioning groove or the positioning hole. And
  • a module according to an eighteenth aspect of the invention is the optical module according to the eighth aspect of the invention, which transmits only light in a specific wavelength band of incident wavelength multiplexed light as one type of the optical element.
  • Wavelength having a demultiplexing function that reflects light of other wavelengths and a multiplexing function that combines transmitted light of a specific wavelength that is incident on and transmitted through one surface and reflected light of another wavelength that is incident from and reflected from the other surface A selection filter is provided.
  • a module according to a nineteenth aspect of the invention is the optical module according to the thirteenth aspect of the invention, wherein as a kind of the optical element, only light in a specific wavelength band of incident wavelength multiplexed light is transmitted.
  • a demultiplexing function that reflects light of other wavelengths, and a multiplexing function that combines transmitted light of a specific wavelength incident on one side and transmitted and reflected light of other wavelengths incident and reflected from the other side;
  • a wavelength selective filter having the above is provided.
  • a module according to a twentieth aspect of the invention is the optical module according to the sixteenth aspect of the invention, and transmits only light in a specific wavelength band of incident wavelength multiplexed light as one type of the optical element. It has a demultiplexing function that reflects light of other wavelengths, and a multiplexing function that combines the transmitted light of a specific wavelength that is incident on one side and transmitted and the reflected light of another wavelength that is incident and reflected from the other side. An additional wavelength selection filter is provided.
  • a module according to a twenty-first aspect is the optical module according to the seventeenth aspect, wherein, as one type of the optical element, only light in a specific wavelength band is transmitted among incident wavelength multiplexed light. It has a demultiplexing function that reflects light of other wavelengths, and a multiplexing function that combines the transmitted light of a specific wavelength that is incident on one side and transmitted and the reflected light of another wavelength that is incident and reflected from the other side. An additional wavelength selection filter is provided.
  • connection member is covered so as to be applied to the upper surfaces of at least two or more optical components positioned and bonded to the upper surface of one substrate, and the lower surfaces of the connection members are respectively applied.
  • the upper surface of the optical component can be connected with a connecting member.
  • the optical components support each other via the connection member, and the inclination of the optical components bonded and fixed on the substrate can be suppressed.
  • the attachment strength of optical components can be increased by increasing the adhesive surface.
  • connection member since the connection member is covered so as to apply force to all the optical components, it is easy to cover the temperature and humidity simply by covering and bonding one connection member on the optical component. Dependence performance can be improved.
  • the optical transmission performance can be improved with the minimum measures. In other words, since the block-shaped optical element is simply bonded to the upper surface of the substrate, there is a possibility that tilting is likely to occur due to a change in the bonding surface, but the upper surface of the optical element is covered with a connection member and bonded. As a result, the tilt of the optical element can be effectively suppressed. Therefore, it is possible to prevent a decrease in performance due to temperature and humidity changes.
  • connection member is also put on the fiber collimator and bonded, the stability of the fiber collimator can be improved, and the performance can be further improved.
  • the upper surface of even one optical component can be reliably secured. Therefore, it is possible to suppress the inclination of the optical component accompanying the change in temperature and humidity. Therefore, the same effect as the first invention can be obtained.
  • connection member is placed on the member placement surface provided on the substrate, whereby the connection member is placed on the upper surface of the optical component and bonded, and the connection member is placed on the substrate. Therefore, the inclination of the optical component can be effectively suppressed by the stably supported connecting member. Therefore, the same effect as the first invention can be obtained.
  • the positioning groove is provided on the member mounting surface, and the fiber collimator is positioned in the positioning groove, so that the connection is placed on the member mounting surface and bonded.
  • the stability of the fiber collimator can be enhanced by the member.
  • the fiber collimator is inserted and fixed in the positioning hole provided in the peripheral wall of the box-shaped substrate, the optical element is arranged on the upper surface of the substrate, and two or more optical elements are arranged. Since the upper surface is constrained by the connecting member in the same manner as described above, the tilt of the optical element can be suppressed, and the performance can be stabilized. Further, as in the twelfth aspect, by placing and fixing the cover member on the upper end surface of the peripheral wall, the space on the substrate can be sealed, so that the moisture resistance can be further improved.
  • a combination of an optical fiber terminal and a collimator lens capable of reducing the optical axis deviation and realizing a sufficient return loss by arranging a coreless fiber at the tip.
  • Fiber collimator making it easy to connect between fiber collimators
  • highly efficient optical coupling can be obtained.
  • a fiber collimator is configured by arranging an optical fiber terminal and a collimator lens in a glass tube in advance, and then, it is used as a positioning groove or a positioning hole on the substrate. Since it is arranged, easy assembly is possible.
  • the wavelength selection filter is used as the optical element having a filter function
  • the optical wavelength demultiplexing device, the multiplexing device, or the optical wavelength multiplexing / demultiplexing It can be used as a device (optical add / drop device).
  • FIG. 1 is a diagram showing an optical module according to the first embodiment
  • FIG. 2 is a diagram showing an optical module as a base
  • FIG. 3 is a diagram showing a configuration of a fiber collimator used in the optical module.
  • 4 is the second embodiment
  • FIG. 5 is the third embodiment
  • FIG. 6 is the fourth embodiment
  • FIG. 7 is the optical module of the fifth embodiment
  • FIG. 8 is the sixth embodiment
  • FIG. 10 is a diagram showing an optical module according to an eighth embodiment
  • FIG. 11 is a diagram showing a ninth embodiment
  • FIG. 12 is a diagram showing each optical module according to the tenth embodiment.
  • the optical module B3 (corresponding to the example described in Patent Document 5) serving as the base B3 should be referred to FIG. I will explain.
  • the optical module B3 in FIG. 2 has a function of branching light of a specific wavelength to the outside through the optical fibers 1002 to 1006 with respect to the wavelength multiplexed light input from the optical fiber 1001, that is, a function as an optical branching device.
  • optical fiber 1002 an optical module having a function of multiplexing light of a specific wavelength input from L006 and outputting the light to optical fiber 1001, that is, a function as a multiplexing device.
  • a plurality of optical components are arranged on the upper surface of a single substrate 50, the plurality of optical components are positioned so that light is transmitted in space between them, and the lower surface of each optical component is then mounted on the substrate. Adhered to the upper surface of 50.
  • the fiber collimators 101 to 106 are incorporated into a plurality of positioning grooves 61 to 66 horizontally cut on the substrate 50, and the signal light is spatially transmitted between the fiber collimators 101 to 106. 50 as multiple optical elements
  • the wavelength selection filters 71 to 74, the optical path correction members 81 and 82, and the optical path correction members 91 and 92 are positioned and arranged, and the lower surfaces thereof are bonded and fixed on the substrate 50.
  • the fiber collimators 101 to 106 include a fiber terminal 110 and a collimating lens 120.
  • the fiber terminal 110 and the collimating lens 120 may be assembled in advance into a glass capillaries or the like so as to be made into a single product, and the glass capillaries may be arranged in the positioning grooves 61 to 66.
  • the substrate 50 used here has a shape obtained by cutting positioning grooves 61 to 66 in a glass substrate, and all the positioning grooves 61 to 66 are parallel to each other and arranged on the same plane, and in particular, the positioning grooves. 61 and positioning groove 62, positioning groove 63 and positioning groove 66 are on the same axis.
  • the optical axes of the fiber collimators 101 to 106 arranged in the positioning grooves 61 to 66 on both ends and the optical elements (wavelength selection filters 71 to 74, optical path correction) arranged in the center part are provided.
  • the notches are processed so that the centers of the working members 81 and 82 and the optical path correcting members 91 and 92) are aligned.
  • an optical element arrangement surface (optical element arrangement space) 51 having an upper surface recessed by one step from the left and right sides is secured at the center of the rectangular substrate 50 in plan view.
  • the fiber collimator arrangement surfaces 52 and 53 that are left slightly higher than the optical element arrangement surface 51 are secured.
  • the fiber collimator arrangement surfaces 52 and 53 on both sides are in the same plane, and the optical element arrangement surface 51 and the fiber collimator arrangement surfaces 52 and 53 are both formed as flat parallel planes.
  • V grooves are formed as positioning grooves 61 to 66 on the upper surfaces of the fiber collimator arrangement surfaces 52 and 53.
  • the positioning grooves 61 to 66 are sometimes referred to as V grooves 61 to 66.
  • the fiber collimators 101 to 106 used in FIGS. 1 and 2 have the same structure, for example, as shown in FIG. That is, the optical fiber terminal 110 constituting the fiber collimators 101 to 106 has a core 11 la at the center and a clad 11 lb at the outer periphery, a standard mode outer diameter of 125 m, and an arbitrary length single mode optical fiber ( One end face of a coreless fiber (CL F) 112 made of a material having the same uniform refractive index as the core 11 la is fusion-bonded to the end face of the SMF) 111, and the length of the coreless fiber 112 is set to 350 m.
  • CL F coreless fiber
  • the other end surface of the coreless fiber 112 is ground and polished at 0 ° with respect to the surface perpendicular to the optical axis of the optical fiber 111, and this is further removed from the outer surface that is generally used for mounting an optical module.
  • Diameter 1 Adhered and fixed through a single core ferrule 115 of 249 mm and provided with an antireflection film.
  • the dimensions of the optical fiber 111 and the ferrule 115 are not limited to the above.
  • the collimator lens 120 is arranged on the other end surface side of the coreless fiber 112 on the optical axis of the optical fiber terminal 110, whereby the fiber collimators 101 to 106 are configured.
  • the collimator lens 120 When the collimator lens 120 is used on the light output side (when placed immediately after the optical fiber terminal), it serves to convert the diffused light emitted from the optical fiber terminal 110 into parallel light. When used on the side (incident side) (when placed in front of the optical fiber terminal), it is a lens designed to serve to combine the light that has propagated in space with the optical fiber terminal 110. is there.
  • the collimator lens 120 in this case is a so-called drum lens in which the outer periphery of the ball lens is cut into a cylindrical shape, and the external difference between the optical fiber terminal 110 and the phenolic lens 115 is 2 m so that the optical axis is not displaced.
  • the lens is designed to have a lens eccentricity of 1 ⁇ m or less, a focal length of 2.6 mm, and an outer diameter of 1.249 mm.
  • the collimator lens 120 is not limited to a drum-type lens, and a spherical lens, an aspheric lens, a ball lens, and a lens obtained by subjecting the exit side end surface of the refractive index distribution lens to curved surface processing, at least parallel light. Any lens can be used as long as one surface that emits or is incident is not a plane perpendicular to the optical axis.
  • the wavelength selection filters 71 to 74 transmit a light having a specific wavelength in incident light and reflect a light having a different wavelength, and a light having a specific wavelength that is incident and transmitted from one side. From the face Each of the wavelength selection filters 71 to 74 multiplexes and demultiplexes different wavelengths.
  • These wavelength selective filters 71-74 have an optical multilayer film (e.g., dielectric multilayer film) formed on a transparent substrate such as glass resin, and the filter characteristics depend on the material and layer structure of the optical multilayer film. This is to make it possible to demonstrate.
  • An optical multilayer film generally has a structure in which materials having a low refractive index and materials having a high refractive index are alternately laminated.
  • wavelength selective filters 71-74 for example, have dimensions of 1.4 X 1.4 X 1. Omm, and transmit light of wavelengths 1511, 1531, 1551, and 1571 nm, respectively, and reflect light of other wavelengths.
  • WDM filter designed for. WDM finoleta is an ITU-T (International Telecommunication
  • the optical path correcting members 81 and 82 are parallel flat glass substrates having antireflection films on both surfaces, and the materials and dimensions are the same as those of the wavelength selection filters 71 to 74. For example, 1260 to 1675 nm An antireflection film designed for light having a wavelength of 1 is provided.
  • the optical path correcting members 81 and 82 are provided for the following reason. That is, for example, when a parallel plate wavelength selection filter 71 is obliquely inserted between the optical paths of the opposing fiber collimators 101 and 102, the light is displaced in parallel with the original optical axis depending on the thickness of the glass substrate. Occurs. This deviation can be returned to the original optical axis using the same glass substrate, and low-loss coupling can be easily maintained. Therefore, optical path correcting members 81 and 82 are provided in a pair with the wavelength selection filter 70.
  • the optical path correction members 91 and 92 are used for changing the optical path and correcting the optical axis deviation caused by the external accuracy of the parts and the optical axis deviation when passing through the parts. Therefore, it is preferable to use a mirror having a Gimbal mechanism and a mirror having an adjustment mechanism according to the mirror force.
  • a mirror with a gimbal mechanism is a mirror whose tilt can be adjusted with one point (normal center) of the mirror as the center of rotation.
  • a metal mirror such as aluminum or gold because of excellent reflectivity and durability.
  • a glass substrate of size 2 X 5 X 1 mm is used. Using mirrors with aluminum and magnesium fluoride films.
  • optical path correction members 91 and 92 wedge-shaped prisms that are formed only by reflecting mirrors may be used.
  • the optical path can be bent by refraction or total reflection, and both can correct the optical path.
  • This optical module B3 is designed to be used exclusively for either the optical wavelength demultiplexing device for 4 channels (ch) or the optical wavelength demultiplexing device. It can be manufactured by such a method.
  • first and second V grooves 61 and 62 and the third and sixth V grooves 63 and 66 are formed on the same axis and in parallel with each other.
  • a substrate 50 in which a fifth V-groove 65 is formed in parallel and a fourth V-groove 64 is formed in parallel with the second and sixth V-grooves 62 and 66 is prepared.
  • an optical element placement surface 51 is formed which is recessed by one step from the left and right collimator placement surfaces 52, 53.
  • the size of the substrate 50 is 40 X 14 X 3 mm, and three V grooves 61 to 66 in parallel are arranged in parallel on the collimator arrangement surfaces 52 and 53 with a width of 9 mm on the left and right sides, respectively. And cut to the same depth.
  • the central optical element placement surface 51 is surface ground to a width of 21 mm.
  • the optical fiber terminal 110 and the collimator lens 120 are arranged in the first and second V-grooves 61 and 62, respectively, and the positions thereof are adjusted. Fabricate fiber collimators 101 and 102.
  • the first wavelength selection filter 71 and the second fiber are arranged on the optical path between the first fiber collimator 101 and the second fiber collimator 102 at a predesigned angle.
  • an optical path correcting member 81 that corrects an optical path shift by the first wavelength selection filter 71 is disposed at an angle symmetrical to the first wavelength selection filter 71.
  • the third fiber collimator 103 is temporarily assembled by disposing the optical fiber terminal 110 and the collimator lens 120 in the third V groove 63 adjacent to the first V groove 61.
  • the fiber terminal 110 and the collimator lens 120 are arranged in the V groove 64 and the fourth fiber collimator 104 is temporarily assembled.
  • the second wavelength selection filter 72 is disposed at a point where the optical axis of the reflected light reflected by the first wavelength selection filter 71 and the extension line of the axis of the fourth V groove 64 intersect. The light reflected by the first wavelength selection filter 71 and the second wavelength selection filter 72 one after another is made incident on the fourth fiber collimator 104.
  • a mirror (optical path correction member) 91 is disposed in front of the third fiber collimator 103, and in this state, is reflected on the first fiber collimator 101 by the first wavelength selection filter 71 and the second fiber collimator 103.
  • Light having a wavelength that passes through the second wavelength selection filter 72 is input, reflected by the first wavelength selection filter 71, transmitted through the second wavelength selection filter 72, and passed through the mirror 91 to the third fiber collimator 103.
  • the position and orientation of the mirror 91 and the distance between the fiber terminal 110 constituting the third fiber collimator 103 and the collimator lens 120 are determined and fixed while observing the amount of light coupled to.
  • the third wavelength selection filter 73 is arranged at a predesigned angle, An optical path correction member 82 that corrects an optical path shift by the third wavelength selection filter 73 is provided between the wavelength selection filter 73 and the fourth fiber collimator 104 at an angle symmetrical to the third wavelength selection filter 73. Arrange in degrees.
  • the fiber end 110 and the collimator lens 120 are disposed in the fifth V-groove 65 to temporarily assemble the fifth fiber collimator 105, and the fiber end 110 and the collimator lens are disposed in the sixth V-groove 66. 120 is arranged, and the sixth fiber collimator 106 is temporarily assembled.
  • a fourth wavelength selection filter 74 is arranged at a point where the optical axis of the reflected light reflected by the third wavelength selection filter 73 and the extension line of the axis of the sixth V groove 66 intersect. The light reflected by the first wavelength selection filter 71, the second wavelength selection filter 72, the third wavelength selection filter 73, and the fourth wavelength selection filter 74 is incident on the fiber collimator 106 one after another.
  • first, second, third, and fourth wavelength selection filters 71, 72, 73, 74 are input to the first fiber collimator 101, and the wavelength selection filter 71, 72, 73, 74
  • the position and orientation of the fourth wavelength selection filter 74 and the optical fiber terminal 110 constituting the sixth fiber collimator 106 are observed while observing the amount of light that is sequentially reflected and coupled to the optical fiber terminal 110 of the sixth fiber collimator 106. Determine the distance of the collimator lens 120 and fix it.
  • a mirror (optical path correction member) 92 is disposed in front of the fifth fiber collimator 105, and in this state, the first, second, and third wavelength selection filters 71 are placed in the first fiber collimator 101. , 72, and 73 are input together, and light having a wavelength that passes through the fourth wavelength selection filter 74 is input, reflected by the first, second, and third wavelength selection filters 71, 72, and 73 one after another.
  • the position and orientation of the mirror 92 and the fifth fiber collimator 105 are configured by checking the amount of light that passes through the wavelength selection filter 7 4 and is coupled to the fifth fiber collimator 105 via the mirror 92. Determine the distance between the optical fiber terminal 110 and the collimator lens 120 and fix it. Thereby, the optical module B3 is completed.
  • an optical module having the number of channels exceeding the force 4ch described in the case of manufacturing the optical module B3 for 4ch can be easily manufactured by repeating the same procedure. . Further, when manufacturing an optical module for 2ch, it may be completed in the middle of the above steps.
  • This optical module B3 can be used as a multi-channel optical demultiplexer or optical multiplexer.
  • the multi-wavelength multiplexer / demultiplexer which was normally manufactured by connecting multiple 1-channel multiplexers / demultiplexers, is integrated on the same substrate with components such as collimators and wavelength selection filters. Because it is configured to transmit light between components in space, it is possible to easily obtain a small and low-loss optical wavelength multiplexer / demultiplexer with the minimum volume without using unnecessary components. Can do.
  • a fiber collimator comprising a combination of an optical fiber terminal and a collimator lens, which is capable of realizing a sufficient return loss while reducing the optical axis deviation by arranging a coreless fiber at the tip. Since 101 to 106 are used, assembly is easy, a high efficiency optical coupling can be obtained between each fiber collimator 101 to 106, and a plurality of optical multiplexers / demultiplexers suitable for obtaining a low loss optical multiplexer / demultiplexer can be obtained.
  • a channel-type optical module can be provided.
  • the first fiber collimator 101 is an input light collimator (In) for making wavelength multiplexed light transmitted from an external input optical transmission line 1001 incident on the wavelength selection filter 71 as an input light
  • the sixth fiber collimator 106 is a wavelength.
  • the output collimator (Out) for sending the light reflected by the selection filter 74 to the external output optical transmission line 1006 is used, and the other second to fifth fiber collimators 102 to 105 are used as the wavelength selection filters. It is used as a collimator (Drop) for branching light for extracting the light transmitted through 71 to 74 to the external transmission lines 1002 to 1005.
  • the function of sequentially demultiplexing the wavelength multiplexed light can be exhibited by the action of the wavelength selection filters 71 to 74.
  • the fiber terminal 110 of the first fiber collimator 101 of the wavelength multiplexed signal power including wavelengths 1511, 1531, 1551, 1571, and 1591 when input to the fiber terminal 110 of the first fiber collimator 101 of the wavelength multiplexed signal power including wavelengths 1511, 1531, 1551, 1571, and 1591, only the light of the wavelength of 1511nm is selected as the first wavelength.
  • the light passes through the filter 71 and is coupled to the optical fiber terminal 110 of the second fiber collimator 102 for branching.
  • light having other wavelengths 1531, 1551, 1571, and 1591 nm is reflected toward the second wavelength selection filter 72.
  • the second wavelength selection filter 72 only light having a wavelength of 153 lnm is transmitted and coupled to the optical fiber terminal 110 of the third fiber collimator 103 for branching. , 1571 and 1591 nm are reflected toward the third wavelength selection filter 74.
  • the third wavelength selection filter 73 only light having a wavelength of 155 lnm is transmitted and coupled to the optical fiber terminal 110 of the fourth fiber collimator 104 for branching, and light having other wavelengths of 1571 and 1591 nm. Is reflected toward the fourth wavelength selective filter 74.
  • the fourth wavelength selection filter 74 only light having a wavelength of 1571 nm is transmitted and coupled to the optical fiber terminal 110 of the fifth fiber collimator 105 for branching, and other light having a wavelength of 1591 nm is output. Is reflected toward the sixth fiber collimator 106. As a result, light of each wavelength is demultiplexed sequentially.
  • the optical module B31 of the present embodiment is an optical component (a frame that is already arranged on the substrate 50). Cover the plate-shaped connecting members 311, 312, 371, 381, 391 on the upper surface of the Aiba collimators 101 to 106, wavelength selection filters 71 to 74, optical path correction members 81 and 82, optical path correction members 91 and 92) By connecting and fixing the lower surfaces of the connecting members 311, 312, 371, 381, 391 to the upper surface of the lower optical component, the upper portions of the optical components are connected.
  • the connecting member 311 is connected to an optical fiber terminal 110 of each of the fiber collimators 101, 103, and 105 and an upper part of the collimator lens 120 (or an upper part of the stirrer if these are accommodated in the stirrer). Then, these parts are connected and fixed.
  • the connecting member 312 connects and fixes these six parts via an adhesive applied to the optical terminals 212, 214, 216 and the lenses 222, 224, 226.
  • the connecting member 312 is formed by applying an adhesive applied to the optical fiber terminal 110 of each fiber collimator 102, 104, 106 and the upper part of the collimator lens 120 (the upper part of the capillaries when these forces are accommodated in the capillaries). Connect and fix these parts through.
  • the connecting member 371 connects and fixes these four parts via an adhesive applied to the upper part of the optical wavelength filters 71, 72, 73, 74.
  • the connecting member 381 connects and fixes these two parts via an adhesive applied to the upper portions of the optical path correcting members 81 and 82.
  • the connecting part 3 91 connects and fixes these two parts via an adhesive applied to the upper parts of the optical path correction members 91 and 92.
  • connection braces 311, 312, 371, 381, and 39 low-expansion Nyrex glass (trade name of Corning Co.) is used, and the size is large enough to connect each component. For example, 5 X 5mn! ⁇ 10 x 10mm, thickness is about lmm, which is about the same as substrate 50.
  • the connecting members 311, 312, 371, 381, and 391 can be made of quartz, silicon, various types of glass resin, metal, or the like according to the material of the substrate 50. However, a material having a thermal expansion coefficient similar to that of the substrate 50 is used. In order to connect and fix these components, it is desirable to use an adhesive having a thermal expansion coefficient comparable to that of the substrate 50 and each optical component fixed. It is also possible to bond using solder or low melting glass instead of the adhesive.
  • the optical module B31 is used as an index to judge the stability of the optical module against temperature.
  • the amount of change in insertion loss for each wavelength channel when exposed to temperature changes from 40 ° C to + 85 ° C is used.
  • Figure 13 shows the optical module from 40 ° C to + 85 ° C when there is no connection component (connection member) (optical module B3) and when there is a connection component (optical module B31). This is a comparison of the amount of change in insertion loss for each wavelength channel when exposed to temperature changes.
  • the first fiber collimator 101 is used as an input port for signal light of a plurality of wavelengths
  • the second fiber collimator 102 is used as an output port for the first wavelength channel
  • the third fiber collimator 103 is used as a second wavelength channel.
  • FIG. 14 shows the change in insertion loss of each wavelength channel when the optical module B3 without connection parts is exposed to a high temperature and high humidity atmosphere at a temperature of 85 ° C. and a humidity of 85%.
  • the insertion loss gradually increases immediately after exposure to high temperature and high humidity due to component misalignment due to expansion due to moisture absorption or a decrease in adhesive strength. It can be seen that there is a 5dB degradation in insertion loss.
  • FIG. 15 shows a change in insertion loss of each wavelength channel in the case of the optical module B31 with connection parts attached as shown in FIG. This maintains the same insertion loss as before the test even after 300 hours at high temperature and high humidity.
  • Fig. 16 shows the result of measuring the amount of change in insertion loss due to temperature change for optical module B3 without connection components, and the connection components (connection members) only for the wavelength selection filter of optical module B3. If the cover is connected, it is further connected to the mirror (optical path correction member). The result of measuring the amount of change in insertion loss due to temperature change when connecting with a connecting member is shown.
  • Fig. 17 shows the case where there is no connection component, the case where only the wavelength selection filter and mirror (optical path correction member) are connected with the connection component (connection member), and the wavelength selection filter and mirror (optical path correction member).
  • Figure 3 shows the results of investigation of the amount of change in insertion loss due to temperature changes (when connecting the connection parts (connection members) to the fiber collimator).
  • connection members 311, 312, 371, 381, 391 are covered so as to apply force to the upper surfaces of two or more optical components, and the lower surfaces of the connection members 311, 312, 371, 381, 391 are respectively attached to the upper surfaces of the optical components
  • the top surfaces of the optical components can be connected to each other with a connecting member.
  • the optical components support each other via the connecting members 311, 312, 371, 381, 391, and the inclination of the optical components bonded and fixed on the substrate 50 can be suppressed.
  • the attachment strength of optical components can be increased by increasing the adhesive surface.
  • block-shaped optical elements (wavelength selection filters 71 to 74, optical path correction members 81 and 82, optical path correction members 91 and 92) interposed between the fiber collimators 101 to 106 are simply provided on the substrate 50. Since it is only adhered to the upper surface, there is a possibility that tilting is likely to occur due to changes in the adhesion surface, but by attaching the connection members 371, 381, 391 on the upper surface of those optical elements, The tilt of the optical element can be effectively suppressed. Therefore, hot and humid It is possible to prevent a decrease in performance due to the change in the degree. Further, since the connection members 311 and 312 are also put on and bonded to the fiber collimator 101 to LO 6, the stability of the fiber collimators 101 to 106 can be improved, and further performance improvement can be achieved. .
  • connection member 321 shows that all optical components (fiber collimators 101 to 106, wavelength selection filters 71 to 74, optical path correction members 81 and 82, optical path correction members 91 and 92) on the substrate 50 are connected by the connection member 321.
  • connection member 321 when the connection member 321 is covered so as to cover all the optical components, it is possible to easily depend on temperature and humidity simply by covering and bonding one connection member 321 on the optical component. Improvements can be made.
  • FIG. 5 shows that optical components (fiber collimators 101 to 106, wavelength selection filters 71 to 74, optical path correction members 81 and 82, optical path correction members 91 and 92) on the substrate 50 and the substrate 50 are connected by a connecting member 325. It is an example of optical module B33.
  • the collimator arrangement surfaces 52 and 53 of the substrate 50 have deep positioning grooves 61 to 66 as compared to the first embodiment, and the collimator arrangement surfaces 52 and 53 on both sides are arranged.
  • the optical element mounted on the surface 51 (each wavelength selection filter 71 to 74, optical path correction members 81 and 82, optical path correction members 91 and 92) is designed to have the same height as the upper surface of the connection member 325. It is a surface.
  • the connecting member 325 is placed on the upper surfaces of the collimator arrangement surfaces 52 and 53, so that all optical components (fiber collimators 101 to 106, wavelength selection filters 71 to 74, and optical path correction on the same substrate 50 are provided.
  • the upper surfaces of the members 81 and 82 and the optical path correcting members 91 and 92) and the substrate 50 are connected via an adhesive.
  • connection member 325 since the reliable placement surface (collimator placement surfaces 52, 53) of the connection member 325 is set on the substrate 50, the inclination of the optical component can be reduced by the stably supported connection member 325. Yo Can be effectively suppressed.
  • FIG. 6 shows an example in which a box-shaped housing 55 having positioning holes 61H to 66H in the side wall (peripheral wall 54) is used instead of using the substrate 50 having the positioning groove cut on the upper surface as described above. is there.
  • the box-shaped housing 55 is formed by forming a peripheral wall 54 that surrounds the entire periphery at the peripheral edge of the upper surface of one substrate 50A, and a plurality of positioning holes 61H to 66H formed through the peripheral wall 54. I can think of it.
  • the positioning holes 61H to 66H correspond to the positioning grooves 61 to 66 in FIG. 1, and the upper surface of the substrate 50A inside the peripheral wall 54 is the optical element placement surface 51.
  • the fiber collimators 101 to 106 are inserted and fixed in the positioning holes 61H to 66H, and the wavelength selection filters 71 to 74, the optical path correction members 81 and 82, and the optical path correction members 91 and 92 are disposed on the optical element placement surface 51. After being mounted and positioned, it is bonded and fixed.
  • the optical elements wavelength selection filters 71 to 74, optical path correction members 81 and 82, optical path correction members 91 and 92 mounted on the optical element arrangement surface 51, the same as in the first embodiment Further, the upper parts of two or more optical components are connected by covering and bonding the connecting members 371, 381, and 391. In addition, when the entire assembly is completed, the upper surface opening of the housing 55 is sealed with the cover material 59! /.
  • the tilt of the optical element on the substrate 50A (the bottom plate of the casing 55) can be suppressed, and the performance can be stabilized. Further, by sealing with the cover material 59, it is possible to further improve the moisture resistance performance.
  • an optical element arrangement surface 51 is arranged at the center of the upper surface of the substrate 50, and collimator arrangement surfaces 52, 5 3 each having one positioning groove 61, 62 on each side thereof.
  • the fiber collimators 101 and 102 are disposed in the positioning grooves 61 and 62 so as to face each other in the axial direction, and the optical element 70 is disposed on the optical element disposition surface 51, whereby the fiber collimators 101 and 102.
  • the light is configured to be spatially transmitted through the optical element 70.
  • the lower surfaces of the fiber collimators 101 and 102 are bonded and fixed to the positioning grooves 61 and 62, and the lower surface of the optical element 70 is bonded and fixed to the upper surface of the substrate 50.
  • the optical element 70 for example, a gain equivalent filter or the like is arranged, so that this optical module A1 has a gain using the first fiber collimator 101 as an input port and the second fiber collimator 102 as an output port. Functions as an equalizer.
  • the gate-shaped support member 40 having the column member 401 and the beam member 402 as shown in (b) or (c) is disposed on the substrate 50, and the support is provided.
  • the bottom surface of the pillar member 401 of the member 400 is bonded and fixed to the top surface of the substrate 50, and the beam member 402 of the support member 400 is placed on the top surface of the optical element 70, and the bottom surface of the beam member 402 is placed on the top surface of the optical element 70.
  • the stability of the optical element 70 is enhanced by attaching and fixing.
  • the gate-shaped support member 400 on the substrate 50, the upper surface of even one optical element 70 can be reliably restrained. Therefore, the inclination of the optical element 70 accompanying the change in temperature and humidity can be suppressed, and the same effect as described above can be achieved.
  • the column member 401 and the beam member 402 are configured as separate parts in advance, and the lower surface of the column member 401 is bonded and fixed to the upper surface of the substrate 50.
  • a type in which the upper surface of the pillar member 401 and the upper surface of the optical element 70 are covered with a beam member 402 may be used, and as shown in FIG.
  • the beam member 402 is configured as an integral part in advance, and the lower surface of the column member 401 is bonded and fixed to the upper surface of the substrate 50, and at the same time, the beam member 402 is covered and bonded to the upper surface of the optical element 70. May be used.
  • the force shown in the case of using the gate-shaped support member 400 is used. Even if an inverted L-shaped support member made up of one column member 401 and one beam member 402 is used. Good.
  • the column member 401 of the support member 400 is a component having the same size as that of the optical element 70 and is preferably made of a material having a coefficient of thermal expansion similar to that of the optical element 70.
  • the configuration and material of the target optical module and the shape and material of the support member 400 can be arbitrarily selected.
  • FIG. 8 shows an optical module A2 of the sixth embodiment.
  • an optical path correcting member 80 is further arranged behind the optical element 70 of the fifth embodiment of FIG.
  • the upper surfaces of the components are connected by a connection member 410 similar to that of the first embodiment.
  • FIG. 9 is a view showing an optical module B11 of the seventh embodiment.
  • This optical module B11 is an optical module for use as an lch multiplexing or demultiplexing device.
  • Three optical elements 71, 81, 91 are arranged on a substrate 50, and the top surface thereof is the first one.
  • the connection member 410 is the same as that in the embodiment.
  • FIG. 10 is a diagram showing an optical module B21 according to the eighth embodiment.
  • This optical module B21 is an optical module for use as a 2-channel multiplexing or demultiplexing device.
  • Four optical elements 71, 72, 81, 91 are arranged on a substrate 50, and the upper surface thereof is the first one.
  • the connection member 410 is the same as that in the first embodiment.
  • FIG. 11 is a view showing an optical module D11 of the ninth embodiment.
  • This optical module D11 is an optical module for use as an lch multiplexer / demultiplexer.
  • Four optical elements 71 and 81 are arranged on a substrate 50, and the upper surface thereof is connected in the same manner as in the first embodiment. Connected with member 410.
  • FIG. 12 shows an optical module D21 according to the tenth embodiment.
  • This optical module D2 1 is an optical module for use as a 2-channel multiplexer / demultiplexer.
  • Eight optical elements 71, 72, 81, 82 are arranged on the substrate 50, and the upper surface thereof is used for the first implementation. It is connected by a connecting member 410 similar to the form.
  • FIG. 19 shows an optical module B33 of the eleventh embodiment.
  • the optical module B33 according to this embodiment is an example in which the optical module B32 (see FIG. 4) itself that works according to the above-described second embodiment is used as a connecting member instead of using a simple plate-like body. That is, first, as the base optical module, the optical module B3 (see FIG. 2) used as the base optical module in the first embodiment described above is used. All optical components (fiber collimators 101 to 106, wavelength selection filters 71 to 74, optical path correction members 81 and 82, optical path correction members 91 and 92) on the substrate 50 in this optical module B3 are connected to the optical module B32. The connection is made at the bottom of the board 50 (see Fig. 4).
  • an already assembled optical module is applied so that all optical components of the base optical module B3 (see Fig. 2) can be used.
  • the bottom surface of the substrate 50 in this optical module B32 is adhered and fixed to the top surfaces of all the optical components below it.
  • the upper surface of the optical component to be mounted is connected by the connecting member, so that reliability such as temperature stability and moisture resistance can be very easily achieved. Can be improved. Therefore, it is possible to adopt an easier and cheaper outer casing while maintaining high reliability, and it is possible to provide a small, low-loss and highly reliable optical module at a low price.
  • FIG. 1 is a diagram showing a configuration of an optical module according to a first embodiment of the present invention, where (a) is a plan view and (b) is a side view.
  • FIG. 2 shows an optical module serving as a base of the first embodiment of the present invention, where (a) is a plan view and (b) is a side view.
  • FIG. 3 is a diagram showing a configuration of a fiber collimator used in the optical module.
  • FIG. 4 is a diagram showing a configuration of an optical module according to a second embodiment of the present invention, where (a) is a plan view and (b) is a side view.
  • FIG. 5 is a diagram showing a configuration of an optical module according to a third embodiment of the present invention, where (a) is a plan view, (b) is a side view, and (c) is a view taken along the line Vc—Vc of (a). is there.
  • FIG. 6 is a diagram showing a configuration of an optical module according to a fourth embodiment of the present invention, where (a) is a plan view and (b) is a side sectional view.
  • FIG. 7 is a diagram showing a configuration of an optical module according to a fifth embodiment of the present invention, where (a) is a plan view, (b) is a perspective view showing a first example of a support member, and (c) is a diagram of the support member.
  • FIG. 6 is a perspective view showing a second example.
  • FIG. 8 is a diagram showing a configuration of an optical module according to a sixth embodiment of the present invention, where (a) is a plan view and (b) is a side view.
  • FIG. 9 is a diagram showing a configuration of an optical module according to a seventh embodiment of the present invention, where (a) is a plan view and (b) is a side view.
  • FIG. 10 is a diagram showing a configuration of an optical module according to an eighth embodiment of the present invention, where (a) is a plan view and (b) is a side view.
  • FIG. 11 is a diagram showing a configuration of an optical module according to a ninth embodiment of the present invention, where (a) is a plan view and (b) is a side view.
  • FIG. 12 is a diagram showing a configuration of an optical module according to a tenth embodiment of the present invention, in which (a) is a plan view and (b) is a side view.
  • FIG. 13 is a characteristic comparison diagram of the optical module of the first embodiment of FIG. 1 and the optical module of FIG.
  • FIG. 14 is a characteristic diagram of the optical module of FIG.
  • FIG. 15 is a characteristic diagram of the optical module in FIG. 1.
  • 16 is a performance comparison diagram according to the presence or absence of a connection member in the first embodiment of FIG.
  • FIG. 17 is still another comparative view of performance depending on the presence or absence of the connecting member in the first embodiment of FIG.
  • FIG. 18 is a diagram showing an example of a conventional optical add / drop multiplexer.
  • FIG. 19 is a diagram showing a configuration of an optical module according to an eleventh embodiment of the present invention, in which (a) is a plan view and (b) is a side view.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

In a surface mounting optical module, reliability to temperature and humidity changes is easily improved at low cost. Fiber collimators (101-106) are respectively arranged on a plurality of positioning grooves (61-66) formed on the upper surface of one common substrate (50). A plurality of block-shaped optical elements (wavelength selection filters (71-74), optical path correction members (81, 82) and optical path correcting members (91, 92)) are arranged on the upper surface of the substrate so that light transmits in spaces between the fiber collimators through the optical elements themselves. The upper surfaces of the optical elements and the fiber collimators are covered with connecting members (311, 312, 371, 381, 391), and the lower surfaces of the connecting members are adhered and fixed on the upper surfaces of an optical components below.

Description

明 細 書  Specification
光モシユール  Light Mossyur
技術分野  Technical field
[0001] 本発明は、光通信分野において、中継局に向けて幹線力 信号光を分岐したり、 中継局からの信号光を幹線に挿入したりする光分岐挿入装置 (光波長合分波装置) や利得等価器などに利用される光モジュールに関するものである。 背景技術  TECHNICAL FIELD [0001] The present invention relates to an optical add / drop multiplexer (optical wavelength multiplexing / demultiplexing device) for branching trunk signal light toward a relay station or inserting signal light from a relay station into the trunk line in the optical communication field. ) And gain equalizers. Background art
[0002] 波長分割多重 (WDM)を用いた光通信において、特定波長の信号を中継局に分 岐したり特定波長の信号を中継局力 挿入したりする目的で用いられる装置として、 特許文献 1に開示されて!ヽるような光分岐挿入装置 (光波長合分波装置とも!ヽぅ)が 知られている。  [0002] In optical communication using wavelength division multiplexing (WDM), Patent Document 1 discloses an apparatus used for branching a signal of a specific wavelength to a relay station or inserting a signal of a specific wavelength into a relay station. Is disclosed in! There are known optical add / drop devices (also called optical wavelength multiplexing / demultiplexing devices!).
[0003] この光分岐挿入装置は、図 18に示すように、入力用光伝送路 1から入力される波 長多重光を各波長の光に分波する光分波器 3と、一旦分波された各波長の光を合 波して出力伝送路 2へと送るための光合波器 4とを有して 、る。この光分岐挿入装置 には、また、光分波器 3で分波された各波長の光を中継局 8の受信機 7へ分岐した上 で中継局 8の送信機 6より送信された信号を新たに挿入するか、あるいは、光分波器 3で分波された各波長の光をそのまま光合波器 4に透過させるかを選択するための 光スィッチ 5が、各波長の光路に対応して複数個備えられている。  As shown in FIG. 18, this optical add / drop device includes an optical demultiplexer 3 that demultiplexes wavelength-multiplexed light input from the input optical transmission line 1 into light of each wavelength, and once demultiplexes. And an optical multiplexer 4 for multiplexing the transmitted light of each wavelength and sending it to the output transmission line 2. This optical add / drop device also splits the light of each wavelength demultiplexed by the optical demultiplexer 3 to the receiver 7 of the relay station 8 and then transmits the signal transmitted from the transmitter 6 of the relay station 8. An optical switch 5 for selecting whether to insert a new light or to transmit the light of each wavelength demultiplexed by the optical demultiplexer 3 as it is to the optical multiplexer 4 corresponds to the optical path of each wavelength. There are several.
[0004] このような分岐挿入装置において、光分波器 3あるいは光合波器 4には、波長選択 フィルタやレンズ等を光ファイバからの出射光路上に固定し、多波長信号から単波長 成分を分離する機能、あるいは、単波長成分を多波長信号に挿入する機能を持たせ たフィルタモジュールが使用されることが多い。  [0004] In such an add / drop device, the optical demultiplexer 3 or the optical multiplexer 4 has a wavelength selection filter, a lens, or the like fixed on the outgoing optical path from the optical fiber, and a single wavelength component from the multi-wavelength signal. In many cases, a filter module having a function of separating or a function of inserting a single wavelength component into a multi-wavelength signal is used.
[0005] このようなフィルタモジュールは、例えば、特許文献 2や特許文献 3に記載されてい るように、レンズと光ファイバからなるコリメータを、波長選択フィルタを挟んで、対向さ せて配置した構成をなして 、る。  [0005] Such a filter module has a configuration in which, as described in Patent Document 2 and Patent Document 3, for example, a collimator including a lens and an optical fiber is disposed facing each other with a wavelength selection filter interposed therebetween. Make it.
[0006] 一般には、このようなフィルタモジュールにお!/、ては、波長選択フィルタ、レンズ、及 び光ファイバが、光軸調整された状態で共通の筒状の筐体に挿入固定されて!、る。 このようなモジュールは、一般に、 Add/Drop Multiplexer(ADM)と呼ばれている。 [0006] Generally, in such a filter module, a wavelength selection filter, a lens, and an optical fiber are inserted and fixed in a common cylindrical casing with the optical axis adjusted. ! Such a module is generally called an Add / Drop Multiplexer (ADM).
[0007] 図 18の光分岐挿入装置における光分波器 3や光合波器 4は、複数の波長につい て同様の合波あるいは分波を行う必要があるため、異なる波長分離特性を有する上 記フィルタモジュール単体を複数個用い、これらの信号入出射端の光ファイバを順 次融着などの方法で接続することにより構成されている。このようなモジュールは一般 に「Mux/DeMux」と呼ばれて ヽる。光分波器 3あるいは光合波器 4に入力される光は 、上記フィルタモジュールの複数を順次通過することによって、各波長に分波される 力 あるいは、各波長の光が順次合波されるようになされている(例えば、特許文献 4 等参照)。なお、順次接続された複数個の上記単体モジュールは、単体のケースに 装着されて!、るのが一般的である。 The optical demultiplexer 3 and the optical multiplexer 4 in the optical add / drop device of FIG. 18 need to perform similar multiplexing or demultiplexing for a plurality of wavelengths, and thus have different wavelength separation characteristics. A plurality of filter modules are used, and the optical fibers at the signal input and output ends are connected by a method such as sequential fusion. Such modules are commonly called “Mux / DeMux”. The light input to the optical demultiplexer 3 or the optical multiplexer 4 passes through a plurality of the filter modules in order, so that the light demultiplexed to each wavelength or the light of each wavelength is sequentially multiplexed. (See, for example, Patent Document 4). In general, a plurality of unit modules connected in series are mounted in a single case!
[0008] ところで、上述したフィルタモジュールを用いた光分岐挿入装置にぉ 、ては、光通 信に使用するチャンネル数が多くなればなるほど、それに対応して単体のフィルタモ ジュールの使用個数を増やす必要がある。そのため、原材料部品価格が、単体のフ ィルタモジュール価格の倍数以上となってしまう。また、フィルタモジュールの入出力 端の光ファイバを融着する工程を有するため、工程が煩雑でコスト高になると共に、 融着接続時の軸ずれに起因する接続損失が生じてしまう。更に、単体のフィルタモジ ユールは筐体内に固定された構造をなしているため、機能部分以外の無駄な体積を 要し、チャンネルの増大に伴って必要な部品体積も同様に拡大する、等の問題があ つた o By the way, in the optical add / drop multiplexer using the above-described filter module, it is necessary to increase the number of single filter modules correspondingly as the number of channels used for optical communication increases. There is. As a result, the price of raw material parts is more than a multiple of the price of a single filter module. In addition, since the optical fiber at the input / output ends of the filter module is fused, the process is complicated and expensive, and connection loss due to misalignment during fusion splicing occurs. Furthermore, since a single filter module has a structure that is fixed in the housing, it requires a wasteful volume other than the functional part, and the required volume of parts increases as the number of channels increases. If there is a problem o
[0009] このような問題を解消するため、フィルタモジュールの筐体である外装体を無くし、 上述したような各構成部品を単一基板上に固定し、部品間を光が空間伝搬する構成 とすることにより、無駄な部品を使わず、必要最小限の体積で、光モジュールの低価 格化、小型化、低損失化を図ることを試みた技術が、本発明者らにより、特許文献 5と して提供されている。  [0009] In order to solve such a problem, the exterior body that is the housing of the filter module is eliminated, each component as described above is fixed on a single substrate, and light is spatially propagated between the components. Thus, the inventors have attempted to reduce the cost, size, and loss of optical modules with the minimum necessary volume without using unnecessary parts. It is provided as.
[0010] この技術では、同一基板上にコリメータ及び干渉フィルタ等の各光部品を配置した 小型で低挿入損失な光モジュールにおいて、実用上十分な反射減衰量を確保しな がら、煩雑なァライメントを減らし、良好な光結合が得られる光モジュールを提供する ことに成功している。 [0011] 特許文献 1 :特開 2000— 183816号公報 [0010] With this technology, in a small-sized and low insertion loss optical module in which optical components such as a collimator and an interference filter are arranged on the same substrate, a complicated alignment is ensured while ensuring a sufficient return loss in practice. We have succeeded in providing an optical module that can reduce and obtain good optical coupling. Patent Document 1: Japanese Patent Application Laid-Open No. 2000-183816
特許文献 2:特表平 10— 511476号公報  Patent Document 2: Japanese Patent Publication No. 10-511476
特許文献 3 :特開平 10— 311905号公報  Patent Document 3: Japanese Patent Laid-Open No. 10-311905
特許文献 4:特開平 11― 337765号公報  Patent Document 4: JP-A-11-337765
特許文献 5:国際公開 WO2006Z006197公報  Patent Document 5: International Publication WO2006Z006197
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0012] ところで、通常このような光モジュールの組立てには、接着剤、半田、溶接、融着な どの技術が用いられる。中でもエポキシ榭脂をはじめとする接着剤を用いることが、コ ストや作業性の点から広く用いられて 、る。 Incidentally, techniques such as adhesive, solder, welding, and fusion are usually used for assembling such an optical module. Among them, the use of an adhesive such as epoxy resin is widely used from the viewpoint of cost and workability.
[0013] また、このような光モジュールでは、温度、湿度や衝撃などに対する高 、信頼性が 要求されており、一般的な規格のもと、温度サイクル試験、高温高湿試験、振動衝撃 試験など、各種信頼性試験の実施による評価が行われて 、る。 [0013] In addition, such optical modules are required to have high reliability with respect to temperature, humidity, shock, etc., and under general standards, such as temperature cycle test, high temperature and high humidity test, vibration shock test, etc. Evaluations are conducted by conducting various reliability tests.
[0014] どの固定方法でも共通ではあるが、とりわけ接着剤においては、温度変化や湿度 変化時に、膨張率の不整合や内部歪みにより、位置ずれ (光路に対する角度ズレ)を 起こしてしまい、作製時の性能を損なってしまうことが問題となる。 [0014] Although it is common to all fixing methods, especially in adhesives, when temperature or humidity changes, misalignment of expansion coefficient or internal distortion causes misalignment (angle misalignment with respect to the optical path). The problem is that the performance of the system is impaired.
[0015] 温度変化に対しては、従来、構成部材及び接着剤の選定や接着剤の硬化方法、 ァニール条件など様々な製造上のノウハウが必要とされており、湿度変化に対しても[0015] Conventionally, various manufacturing know-how such as selection of components and adhesives, adhesive curing methods, annealing conditions, and the like have been required for temperature changes.
、同様な製造上のノウハウを用いる力、光モジュールを極めて厳重に封止した筐体で 覆う必要があり、どちらも高コストにつながるものであった。 The power to use similar manufacturing know-how and the optical module had to be covered with a very tightly sealed housing, both of which led to high costs.
[0016] 特に、特許文献 5に記載の光モジュールのように、同一基板の表面に光部品を実 装するタイプの光モジュールでは、光部品の一面(下面)のみを接着するため、光路 に対して垂直な面に対し傾きやすぐ温度や湿度の変化によって位置ずれ (光路に 対する角度ズレ)が生じやすいという問題がある。 [0016] In particular, in an optical module in which an optical component is mounted on the surface of the same substrate as the optical module described in Patent Document 5, only one surface (lower surface) of the optical component is bonded, so that the optical path In addition, there is a problem that a position shift (angle shift with respect to the optical path) is likely to occur due to an inclination or a change in temperature or humidity with respect to a vertical surface.
[0017] 因みに、従来の 3portOADMでは、筒状の筐体内に円柱状のレンズや円柱状のガ ラスキヤビラリを挿入し、外周を均等に固定する場合が多いため、接着部分の膨張の 不均等などは相殺され、角度ずれは生じ難い。 [0017] Incidentally, in the conventional 3portOADM, a cylindrical lens or a cylindrical glass shear is inserted into a cylindrical casing and the outer periphery is often fixed evenly. It is canceled out and it is difficult for an angle shift to occur.
[0018] しかし、同一基板の表面に光部品を実装するタイプの光モジュールでは、基板上 の光部品の 1つでも接着不良などが生じた場合には、その基板上の全ての光部品が 無駄になる危険があるため、位置ずれの問題は重要であると言える。 [0018] However, in an optical module of the type in which an optical component is mounted on the surface of the same substrate, If even one of these optical components fails to bond, all optical components on the board can be wasted, so the problem of misalignment can be said to be important.
[0019] このようなこと力ら、表面実装型の光モジュール力 従来型の 3portOADMを複数繋 げたモジュールと同等の歩留りを得るためには、部品 1つあたりの接着に高い信頼性 が要求される。  [0019] For these reasons, surface mount type optical module power In order to obtain the same yield as a module in which multiple conventional 3port OADMs are connected, high reliability is required for bonding per component. .
[0020] 従って、本発明では、先に挙げた波長合分波器を含む表面実装型の光モジュール において、温度や湿度の変化に対する信頼性を低価格かつ簡便に向上させることを 目的とする。  Accordingly, an object of the present invention is to improve the reliability with respect to changes in temperature and humidity at a low price and in a simple manner in a surface mount optical module including the wavelength multiplexer / demultiplexer mentioned above.
課題を解決するための手段  Means for solving the problem
[0021] 第 1の発明の光モジュールは、 1枚の基板の上面に複数の光部品を配置し、互い の間で光が空間伝送するように前記複数の光部品を位置決めした上で、各光部品 の下面を前記基板の上面に接着固定した表面実装型の光モジュールにおいて、前 記光部品の上面に、少なくとも 2個以上の光部品にかかるように接続部材を被せ、該 接続部材の下面を、その下側の光部品の上面に接着固定したことを特徴とする。  In the optical module of the first invention, a plurality of optical components are arranged on the upper surface of a single substrate, and the plurality of optical components are positioned so that light is spatially transmitted between them. In the surface-mount type optical module in which the lower surface of the optical component is bonded and fixed to the upper surface of the substrate, the upper surface of the optical component is covered with a connection member so as to cover at least two optical components, and the lower surface of the connection member Is bonded and fixed to the upper surface of the lower optical component.
[0022] 第 2の発明の光モジュールは、第 1の発明に記載の光モジュールであって、前記光 部品の上面に、全部の光部品にかかるように板状の接続部材を被せ、該接続部材の 下面を、その下側の全部の光部品の上面に接着固定したことを特徴とする。  [0022] An optical module according to a second aspect of the present invention is the optical module according to the first aspect, wherein a plate-like connecting member is placed on the upper surface of the optical component so as to cover all the optical components, and the connection is made. The lower surface of the member is bonded and fixed to the upper surfaces of all the optical components below it.
[0023] 第 3の発明の光モジュールは、第 1の発明に記載の光モジュールであって、前記光 部品の一種として、前記基板の上面に形成した複数の位置決め溝にそれぞれフアイ ノ コリメータを配置すると共に、前記光部品の他の一種として、自身を介して前記複 数のファイバコリメータの間で光が空間伝送するように、前記基板の上面にブロック形 状の複数の光学素子を配置し、これらのうちの少なくとも 2個以上の光学素子の上面 に前記接続部材を被せて、該接続部材の下面を、その下側の光学素子の上面に接 着固定したことを特徴とする。  [0023] An optical module according to a third aspect is the optical module according to the first aspect, wherein a fiber collimator is disposed in each of a plurality of positioning grooves formed on an upper surface of the substrate as a kind of the optical component. In addition, as another type of the optical component, a plurality of block-shaped optical elements are arranged on the upper surface of the substrate so that light is spatially transmitted between the plurality of fiber collimators through the optical component, The connecting member is covered on the upper surface of at least two of these optical elements, and the lower surface of the connecting member is fixedly attached to the upper surface of the lower optical element.
[0024] 第 4の発明の光モジュールは、第 3の発明に記載の光モジュールであって、前記各 位置決め溝に配置した複数のファイバコリメータの上にも、前記と同一または別の接 続部材を被せて、該接続部材の下面を、その下側の複数のファイバコリメータの上面 に接着固定したことを特徴とする。 [0025] 第 5の発明の光モジュールは、 1枚の基板の上面に複数の光部品を配置し、互い の間で光が空間伝送するように前記複数の光部品を位置決めした上で、各光部品 の下面を前記基板の上面に接着固定した表面実装型の光モジュールにおいて、前 記基板上に、柱部材と梁部材を有する逆 L字形または門形の支持部材を配置して、 その支持部材の柱部材の下面を前記基板の上面に接着固定し、該支持部材の梁部 材を少なくとも 1個の前記光部品の上面に被せて、該梁部材の下面を、その下側の 光部品の上面に接着固定したことを特徴とする。 [0024] An optical module according to a fourth aspect of the present invention is the optical module according to the third aspect of the present invention, wherein the same or different connecting member is also provided on the plurality of fiber collimators disposed in the positioning grooves. And the lower surface of the connecting member is adhesively fixed to the upper surfaces of the plurality of fiber collimators below it. [0025] In the optical module of the fifth invention, a plurality of optical components are arranged on an upper surface of a single substrate, and the plurality of optical components are positioned so that light is spatially transmitted between them. In a surface mount type optical module in which the lower surface of an optical component is bonded and fixed to the upper surface of the substrate, an inverted L-shaped or gate-shaped support member having a column member and a beam member is arranged on the substrate, and the support is provided. The lower surface of the pillar member of the member is bonded and fixed to the upper surface of the substrate, the beam member of the support member is covered on the upper surface of at least one optical component, and the lower surface of the beam member is disposed below the optical component. It is characterized in that it is bonded and fixed to the upper surface.
[0026] 第 6の発明の光モジュールは、第 5の発明に記載の光モジュールであって、前記支 持部材の柱部材と梁部材を別部品として構成し、前記柱部材の下面を前記基板の 上面に接着固定した上で、該柱部材の上面と前記少なくとも 1個の光部品の上面と に前記梁部材を被せて接着固定したことを特徴とする。  [0026] An optical module according to a sixth aspect of the present invention is the optical module according to the fifth aspect, wherein the column member and the beam member of the support member are configured as separate parts, and the lower surface of the column member is the substrate. The beam member is covered and bonded and fixed to the upper surface of the column member and the upper surface of the at least one optical component.
[0027] 第 7の発明の光モジュールは、第 5の発明に記載の光モジュールであって、前記支 持部材の柱部材と梁部材を予め一体の部品として構成し、前記柱部材の下面を前 記基板の上面に接着固定すると同時に、前記少なくとも 1個の光部品の上面に前記 梁部材を被せて接着固定したことを特徴とする。  [0027] An optical module according to a seventh aspect is the optical module according to the fifth aspect, wherein the column member and the beam member of the support member are configured in advance as an integral part, and the lower surface of the column member is formed. At the same time as being bonded and fixed to the upper surface of the substrate, the beam member is covered and fixed to the upper surface of the at least one optical component.
[0028] 第 8の発明の光モジュールは、第 5〜第 7の発明のいずれかに記載の光モジユー ルであって、前記光部品の一種として、前記基板の上面に形成した複数の位置決め 溝にそれぞれファイバコリメータを配置すると共に、前記光部品の他の一種として、 自 身を介して前記複数のファイバコリメータの間で光が空間伝送するように、前記基板 の上面にブロック形状の光学素子を少なくとも 1個配置し、前記支持部材の梁部材を 前記少なくとも 1個の光学素子の上面に被せて、該梁部材の下面を、その下側の光 学素子の上面に接着固定したことを特徴とする。  [0028] An optical module according to an eighth invention is the optical module according to any one of the fifth to seventh inventions, wherein a plurality of positioning grooves formed on an upper surface of the substrate as a kind of the optical component. In addition, as another type of the optical component, a block-shaped optical element is provided on the upper surface of the substrate so that light is spatially transmitted between the plurality of fiber collimators via itself. At least one beam member is disposed, the beam member of the support member is placed on the upper surface of the at least one optical element, and the lower surface of the beam member is bonded and fixed to the upper surface of the lower optical element. To do.
[0029] 第 9の発明の光モジュールは、 1枚の基板の上面に複数の光部品を配置し、互い の間で光が空間伝送するように前記複数の光部品を位置決めした上で、各光部品 の下面を前記基板の上面に接着固定した表面実装型の光モジュールにおいて、前 記基板上に、前記複数の光部品のうち、少なくとも 1個の光部品の上面高さと同レべ ルの部材載置面を形成し、その部材載置面に接続部材の下面を接着固定すると共 に、該接続部材の下面を、前記部材載置面と上面高さを同レベルに設定した少なく とも 1個の光部品の上面に被せて、接着固定したことを特徴とする。 [0029] An optical module according to a ninth invention has a plurality of optical components arranged on the upper surface of a single substrate, and the plurality of optical components are positioned so that light is spatially transmitted between them. In a surface mount type optical module in which the lower surface of an optical component is bonded and fixed to the upper surface of the substrate, the height of the upper surface of at least one optical component of the plurality of optical components is on the substrate. A member mounting surface is formed, and the lower surface of the connection member is bonded and fixed to the member mounting surface, and the lower surface of the connection member is set at the same level as the member mounting surface. Both are characterized by being attached and fixed on the top surface of one optical component.
[0030] 第 10の発明の光モジュールは、第 9の発明に記載の光モジュールであって、前記 基板上に形成した部材載置面に複数の位置決め溝を形成し、前記光部品の一種と して、前記基板上に形成した複数の位置決め溝にそれぞれファイバコリメータを配置 すると共に、前記光部品の他の一種として、自身を介して前記複数のファイバコリメ一 タの間で光が空間伝送するように、前記基板の上面に、上面高さを前記部材載置面 と同レベルに設定したブロック形状の光学素子を配置し、前記接続部材を前記部材 載置面に載置することにより、該接続部材を、前記位置決め溝に配置されたファイバ コリメータの上面と前記光学素子の上面に被せ、その状態で該接続部材の下面を、 前記部材載置面と前記ファイバコリメータの上面と前記光学素子の上面とに接着固 定したことを特徴とする。 [0030] An optical module according to a tenth invention is the optical module according to the ninth invention, wherein a plurality of positioning grooves are formed on a member mounting surface formed on the substrate, and In addition, a fiber collimator is disposed in each of the plurality of positioning grooves formed on the substrate, and light is spatially transmitted between the plurality of fiber collimators through itself as another type of the optical component. As described above, by placing a block-shaped optical element whose upper surface height is set at the same level as the member placement surface on the upper surface of the substrate, and placing the connection member on the member placement surface, A connection member is placed on the upper surface of the fiber collimator and the upper surface of the optical element disposed in the positioning groove, and in this state, the lower surface of the connection member is placed on the member mounting surface, the upper surface of the fiber collimator, and the optical element. Characterized in that had adhered solid boss on the surface.
[0031] 第 11の発明の光モジュールは、 1枚の基板の上面の周縁部に全周を囲む周壁を 形成し、該周壁に複数の位置決め孔を貫通形成して、各位置決め孔に周壁の外部 力もそれぞれファイバコリメータを挿入固定すると共に、前記周壁の内側の基板の上 面に光学素子を配置し、該光学素子を介して前記複数のファイバコリメータの間で互 いに光が空間伝送するように、前記光学素子を位置決めして、その上で、前記光学 素子の下面を前記基板の上面に接着固定した光モジュールであって、前記光学素 子の上面に、少なくとも 2個以上の光学素子に力かるように接続部材を被せ、該接続 部材の下面を、その下側の光学素子の上面に接着固定したことを特徴とする。 [0031] An optical module according to an eleventh aspect of the present invention is to form a peripheral wall that surrounds the entire periphery at the peripheral edge of the upper surface of one substrate, and to form a plurality of positioning holes in the peripheral wall, so that each positioning hole has a peripheral wall. The external force also inserts and fixes the fiber collimator, and an optical element is disposed on the upper surface of the substrate on the inner side of the peripheral wall so that light can be spatially transmitted between the plurality of fiber collimators via the optical element. And an optical module in which the optical element is positioned and the lower surface of the optical element is bonded and fixed to the upper surface of the substrate, and at least two or more optical elements are formed on the upper surface of the optical element. The connecting member is covered so as to apply force, and the lower surface of the connecting member is bonded and fixed to the upper surface of the optical element below the connecting member.
[0032] 第 12の発明の光モジュールは、第 11の発明に記載の光モジュールであって、前 記基板の周壁の上端面に、前記周壁の内側の基板上の空間を封止するカバー材を 載置固定したことを特徴とする。  [0032] An optical module according to a twelfth aspect of the present invention is the optical module according to the eleventh aspect of the present invention, wherein the cover member seals the space on the substrate inside the peripheral wall to the upper end surface of the peripheral wall of the substrate. It is characterized by mounting and fixing.
[0033] 第 13の発明の光モジュールは、第 3、第 4、第 10、第 11、第 12の発明のいずれか に記載の光モジュールであって、前記ファイバコリメータが、中心部のコア及びその 外周部のクラッドを有する光ファイバの端面に、前記コアと略同一で均一な屈折率を 有する材料よりなるコアレスファイバの一端面を接合し、前記光ファイバの光軸上で 前記コアレスファイバの他端面側にコリメータレンズを配置してなるものであることを特 徴とする。 [0034] 第 14の発明の光モジュールは、第 13の発明に記載の光モジュールであって、前 記ファイバコリメータが、端面にコアレスファイバを接合した前記光ファイバの端末と、 前記コリメータレンズとを、ガラス管内に配置することにより単体の光部品として構成さ れており、当該単体の光部品として構成されたファイバコリメータの前記ガラス管が、 前記位置決め溝内または位置決め孔内に配置されていることを特徴とする。 [0033] An optical module according to a thirteenth invention is the optical module according to any one of the third, fourth, tenth, eleventh, and twelfth inventions, wherein the fiber collimator includes a core in the center and One end face of a coreless fiber made of a material having a uniform refractive index that is substantially the same as the core is joined to an end face of the optical fiber having a clad on the outer periphery, and the other end of the coreless fiber is joined on the optical axis of the optical fiber. It is characterized by having a collimator lens on the end face side. An optical module according to a fourteenth aspect is the optical module according to the thirteenth aspect, wherein the fiber collimator includes an end of the optical fiber in which a coreless fiber is bonded to an end surface, and the collimator lens. The glass tube of the fiber collimator configured as the single optical component is disposed in the positioning groove or in the positioning hole. It is characterized by.
[0035] 第 15の発明の光モジュールは、第 3、第 4、第 10、第 11、第 12、第 14のいずれか に記載の光モジュールであって、前記光学素子の一種として、入射される波長多重 光のうち特定の波長帯域の光のみを透過し他波長の光を反射する分波機能と、片面 に入射されて透過する特定波長の透過光と他面から入射されて反射する他波長の 反射光を合波する合波機能と、を有する波長選択フィルタが設けられて!/ヽることを特 徴とする。  [0035] An optical module according to a fifteenth aspect of the present invention is the optical module according to any one of the third, fourth, tenth, eleventh, twelfth, and fourteenth aspects, and is incident as a kind of the optical element. Demultiplexing function that transmits only light of a specific wavelength band and reflects light of other wavelengths, and transmits light of a specific wavelength that is incident on one side and transmitted, and is incident and reflected from the other side. A wavelength selection filter having a multiplexing function for multiplexing reflected light of wavelengths is provided!
[0036] 第 16の発明のモジュールは、第 8の発明に記載の光モジュールであって、前記フ アイバコリメータ力 中心部のコア及びその外周部のクラッドを有する光ファイバの端 面に、前記コアと略同一で均一な屈折率を有する材料よりなるコアレスファイバの一 端面を接合し、前記光ファイバの光軸上で前記コアレスファイバの他端面側にコリメ ータレンズを配置してなるものであることを特徴とする。  [0036] A module according to a sixteenth aspect of the invention is the optical module according to the eighth aspect of the invention, wherein the core is provided on an end face of an optical fiber having a core at the center of the fiber collimator force and a clad at the outer periphery thereof. And one end face of a coreless fiber made of a material having the same and uniform refractive index is joined, and a collimator lens is disposed on the other end face side of the coreless fiber on the optical axis of the optical fiber. Features.
[0037] 第 17の発明のモジュールは、第 16の発明に記載の光モジュールであって、前記フ アイバコリメータが、端面にコアレスファイバを接合した前記光ファイバの端末と、前記 コリメータレンズとを、ガラス管内に配置することにより単体の光部品として構成されて おり、当該単体の光部品として構成されたファイバコリメータの前記ガラス管が、前記 位置決め溝内または位置決め孔内に配置されていることを特徴とする。  [0037] A module according to a seventeenth aspect is the optical module according to the sixteenth aspect, wherein the fiber collimator includes: an end of the optical fiber in which a coreless fiber is bonded to an end surface; and the collimator lens. It is configured as a single optical component by being disposed in a glass tube, and the glass tube of the fiber collimator configured as the single optical component is disposed in the positioning groove or the positioning hole. And
[0038] 第 18の発明のモジュールは、第 8の発明に記載の光モジュールであって、前記光 学素子の一種として、入射される波長多重光のうち特定の波長帯域の光のみを透過 し他波長の光を反射する分波機能と、片面に入射されて透過する特定波長の透過 光と他面から入射されて反射する他波長の反射光を合波する合波機能と、を有する 波長選択フィルタが設けられて 、ることを特徴とする。  [0038] A module according to an eighteenth aspect of the invention is the optical module according to the eighth aspect of the invention, which transmits only light in a specific wavelength band of incident wavelength multiplexed light as one type of the optical element. Wavelength having a demultiplexing function that reflects light of other wavelengths and a multiplexing function that combines transmitted light of a specific wavelength that is incident on and transmitted through one surface and reflected light of another wavelength that is incident from and reflected from the other surface A selection filter is provided.
[0039] 第 19の発明のモジュールは、第 13の発明に記載の光モジュールであって、前記 光学素子の一種として、入射される波長多重光のうち特定の波長帯域の光のみを透 過し他波長の光を反射する分波機能と、片面に入射されて透過する特定波長の透 過光と他面から入射されて反射する他波長の反射光を合波する合波機能と、を有す る波長選択フィルタが設けられて 、ることを特徴とする。 [0039] A module according to a nineteenth aspect of the invention is the optical module according to the thirteenth aspect of the invention, wherein as a kind of the optical element, only light in a specific wavelength band of incident wavelength multiplexed light is transmitted. A demultiplexing function that reflects light of other wavelengths, and a multiplexing function that combines transmitted light of a specific wavelength incident on one side and transmitted and reflected light of other wavelengths incident and reflected from the other side; A wavelength selective filter having the above is provided.
[0040] 第 20の発明のモジュールは、第 16の発明に記載の光モジュールであって、前記 光学素子の一種として、入射される波長多重光のうち特定の波長帯域の光のみを透 過し他波長の光を反射する分波機能と、片面に入射されて透過する特定波長の透 過光と他面から入射されて反射する他波長の反射光を合波する合波機能と、を有す る波長選択フィルタが設けられて 、ることを特徴とする。  [0040] A module according to a twentieth aspect of the invention is the optical module according to the sixteenth aspect of the invention, and transmits only light in a specific wavelength band of incident wavelength multiplexed light as one type of the optical element. It has a demultiplexing function that reflects light of other wavelengths, and a multiplexing function that combines the transmitted light of a specific wavelength that is incident on one side and transmitted and the reflected light of another wavelength that is incident and reflected from the other side. An additional wavelength selection filter is provided.
[0041] 第 21の発明のモジュールは、第 17の発明に記載の光モジュールであって、前記 光学素子の一種として、入射される波長多重光のうち特定の波長帯域の光のみを透 過し他波長の光を反射する分波機能と、片面に入射されて透過する特定波長の透 過光と他面から入射されて反射する他波長の反射光を合波する合波機能と、を有す る波長選択フィルタが設けられて 、ることを特徴とする。  [0041] A module according to a twenty-first aspect is the optical module according to the seventeenth aspect, wherein, as one type of the optical element, only light in a specific wavelength band is transmitted among incident wavelength multiplexed light. It has a demultiplexing function that reflects light of other wavelengths, and a multiplexing function that combines the transmitted light of a specific wavelength that is incident on one side and transmitted and the reflected light of another wavelength that is incident and reflected from the other side. An additional wavelength selection filter is provided.
発明の効果  The invention's effect
[0042] 第 1の発明によれば、 1枚の基板の上面に位置決めして接着した少なくとも 2個以 上の光部品の上面に力かるように接続部材を被せ、その接続部材の下面をそれぞれ 光部品の上面に接着固定していることにより、光部品の上面同士を接続部材で繋い だ形態にすることができる。このため、光部品が相互に接続部材を介して支え合う形 となり、基板上に接着固定された光部品の傾きを抑制することができる。また、接着面 の増加により、光部品の取付強度を高めることもできる。このように、温度や湿度の変 化に伴う接着剤の膨張 '収縮により生じる光部品の傾きを抑制できることから、それを 起因とする光部品の相互間の光伝送損失の変化を小さくすることができる。また、湿 度変化の影響を受けにくくなることから、耐湿用の外装筐体の中に基板を収容する 場合でも、外装筐体の耐湿性能のランクを落とすことができ、光伝送性能をあまり落と さずに、コストの低減に寄与することができる。  [0042] According to the first invention, the connection member is covered so as to be applied to the upper surfaces of at least two or more optical components positioned and bonded to the upper surface of one substrate, and the lower surfaces of the connection members are respectively applied. By bonding and fixing to the upper surface of the optical component, the upper surface of the optical component can be connected with a connecting member. For this reason, the optical components support each other via the connection member, and the inclination of the optical components bonded and fixed on the substrate can be suppressed. In addition, the attachment strength of optical components can be increased by increasing the adhesive surface. In this way, since the inclination of the optical components caused by the expansion and contraction of the adhesive accompanying changes in temperature and humidity can be suppressed, it is possible to reduce the change in optical transmission loss between the optical components due to this. it can. In addition, since it is less susceptible to changes in humidity, even when a substrate is housed in a moisture-resistant exterior housing, the moisture resistance performance rank of the exterior housing can be lowered, and the optical transmission performance is significantly reduced. In addition, it can contribute to cost reduction.
[0043] 第 2の発明によれば、接続部材を全部の光部品に力かるように被せたので、 1つの 接続部材を光部品の上に被せて接着するだけで簡単に、温度や湿度に対する依存 性能の改善を図ることができる。 [0044] 第 3の発明によれば、ファイバコリメータ間に介在された光学素子の温湿度変化に 伴う傾きを抑制することができるので、最小の対策で光伝送性能の向上が図れる。つ まり、ブロック形状の光学素子は、単に基板の上面に接着しているだけであるから、 接着面の変化により傾きが生じやすい可能性があるが、光学素子の上面に接続部材 を被せて接着したことにより、光学素子の傾きを有効に抑制することができる。従って 、温湿度変化に伴う性能の低下を防止することができる。 [0043] According to the second invention, since the connection member is covered so as to apply force to all the optical components, it is easy to cover the temperature and humidity simply by covering and bonding one connection member on the optical component. Dependence performance can be improved. [0044] According to the third invention, since the inclination of the optical element interposed between the fiber collimators due to the temperature and humidity change can be suppressed, the optical transmission performance can be improved with the minimum measures. In other words, since the block-shaped optical element is simply bonded to the upper surface of the substrate, there is a possibility that tilting is likely to occur due to a change in the bonding surface, but the upper surface of the optical element is covered with a connection member and bonded. As a result, the tilt of the optical element can be effectively suppressed. Therefore, it is possible to prevent a decrease in performance due to temperature and humidity changes.
[0045] 第 4の発明によれば、ファイバコリメータの上にも接続部材を被せて接着するので、 ファイバコリメータの安定性を高めることもでき、一層の性能向上を図ることができる。  [0045] According to the fourth aspect of the invention, since the connection member is also put on the fiber collimator and bonded, the stability of the fiber collimator can be improved, and the performance can be further improved.
[0046] 第 5〜第 8の発明によれば、逆 L字形または門形の支持部材を基板上に設けること によって、たとえ 1個の光部品(光学素子)であっても、その上面を確実に拘束するこ とができるので、温湿度変化に伴う光部品の傾きを抑制できる。従って、第 1の発明と 同様の効果を得ることができる。  [0046] According to the fifth to eighth inventions, by providing an inverted L-shaped or gate-shaped support member on the substrate, the upper surface of even one optical component (optical element) can be reliably secured. Therefore, it is possible to suppress the inclination of the optical component accompanying the change in temperature and humidity. Therefore, the same effect as the first invention can be obtained.
[0047] 第 9の発明によれば、基板上に設けた部材載置面に接続部材を載置することにより 、接続部材を光部品の上面に被せて接着しており、基板上に接続部材の確実な載 置面を設定して 、るので、安定支持された接続部材によって光部品の傾きを効果的 に抑制することができる。従って、第 1の発明と同様の効果を得ることができる。  [0047] According to the ninth invention, the connection member is placed on the member placement surface provided on the substrate, whereby the connection member is placed on the upper surface of the optical component and bonded, and the connection member is placed on the substrate. Therefore, the inclination of the optical component can be effectively suppressed by the stably supported connecting member. Therefore, the same effect as the first invention can be obtained.
[0048] 第 10の発明によれば、部材載置面上に位置決め溝を設けて、その位置決め溝に ファイバコリメータを位置決めしているので、部材載置面上に載置され接着される接 続部材によって、ファイバコリメータの安定性を高めることができる。  [0048] According to the tenth invention, the positioning groove is provided on the member mounting surface, and the fiber collimator is positioned in the positioning groove, so that the connection is placed on the member mounting surface and bonded. The stability of the fiber collimator can be enhanced by the member.
[0049] 第 11の発明によれば、箱形の基板の周壁に設けた位置決め孔にファイバコリメ一 タを挿入固定し、基板の上面に光学素子を配置して、 2個以上の光学素子の上面を 前記と同様に接続部材で拘束したので、光学素子の傾きを抑制することができ、性 能の安定ィ匕を図ることができる。また、第 12の発明のように、周壁の上端面にカバー 材を載置固定することにより、基板上の空間を封止できるので、耐湿性能の一層の向 上を図ることができる。 [0049] According to the eleventh invention, the fiber collimator is inserted and fixed in the positioning hole provided in the peripheral wall of the box-shaped substrate, the optical element is arranged on the upper surface of the substrate, and two or more optical elements are arranged. Since the upper surface is constrained by the connecting member in the same manner as described above, the tilt of the optical element can be suppressed, and the performance can be stabilized. Further, as in the twelfth aspect, by placing and fixing the cover member on the upper end surface of the peripheral wall, the space on the substrate can be sealed, so that the moisture resistance can be further improved.
[0050] 第 13、第 16の発明によれば、先端にコアレスファイバを配することで光軸ずれを少 なくし且つ十分な反射減衰量を実現できるようにした光ファイバ端末とコリメータレン ズを組み合わせてファイバコリメータを構成しているので、ファイバコリメータ間で容易 に高効率の光結合を得ることができる。 [0050] According to the thirteenth and sixteenth inventions, a combination of an optical fiber terminal and a collimator lens capable of reducing the optical axis deviation and realizing a sufficient return loss by arranging a coreless fiber at the tip. Fiber collimator, making it easy to connect between fiber collimators In addition, highly efficient optical coupling can be obtained.
[0051] 第 14、第 17の発明によれば、予め光ファイバ端末とコリメータレンズをガラス管内に 配置することでファイバコリメータを構成し、その上で、それを基板上の位置決め溝や 位置決め孔に配置するので、容易な組み立てが可能である。  [0051] According to the fourteenth and seventeenth inventions, a fiber collimator is configured by arranging an optical fiber terminal and a collimator lens in a glass tube in advance, and then, it is used as a positioning groove or a positioning hole on the substrate. Since it is arranged, easy assembly is possible.
[0052] 第 15、第 18〜第 21の発明によれば、フィルタ機能を有する光学素子として波長選 択フィルタを使用したので、光波長分波装置や合波装置、あるいは、光波長合分波 装置 (光分岐挿入装置)として使用することができる。 [0052] According to the fifteenth, eighteenth to twenty-first inventions, since the wavelength selection filter is used as the optical element having a filter function, the optical wavelength demultiplexing device, the multiplexing device, or the optical wavelength multiplexing / demultiplexing It can be used as a device (optical add / drop device).
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0053] 以下、本発明の実施形態を図面を参照しながら説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
図 1は第 1実施形態の光モジュールを示す図、図 2はそのベースとなる光モジユー ルを示す図、図 3は同光モジュールに使用されるファイバコリメータの構成を示す図 である。また、図 4は第 2実施形態、図 5は第 3実施形態、図 6は第 4実施形態、図 7は 第 5実施形態の光モジュール、図 8は第 6実施形態、図 9は第 7実施形態、図 10は第 8実施形態、図 11は第 9実施形態、図 12は第 10実施形態の各光モジュールを示す 図である。  FIG. 1 is a diagram showing an optical module according to the first embodiment, FIG. 2 is a diagram showing an optical module as a base, and FIG. 3 is a diagram showing a configuration of a fiber collimator used in the optical module. 4 is the second embodiment, FIG. 5 is the third embodiment, FIG. 6 is the fourth embodiment, FIG. 7 is the optical module of the fifth embodiment, FIG. 8 is the sixth embodiment, and FIG. FIG. 10 is a diagram showing an optical module according to an eighth embodiment, FIG. 11 is a diagram showing a ninth embodiment, and FIG. 12 is a diagram showing each optical module according to the tenth embodiment.
[0054] まず、図 1に示す第 1実施形態の光モジュール B31を説明する前に、そのベースと なる光モジュール (特許文献 5に記載された例に相当) B3について、図 2を参照しな がら説明する。  [0054] Before describing the optical module B31 of the first embodiment shown in FIG. 1, the optical module B3 (corresponding to the example described in Patent Document 5) serving as the base B3 should be referred to FIG. I will explain.
[0055] 図 2の光モジュール B3は、光ファイバ 1001から入力された波長多重光に対し、特 定波長の光を光ファイバ 1002〜 1006を通じて外部に分岐する機能、即ち光分岐装 置としての機能と、光ファイバ 1002〜: L006から入力された特定波長の光を合波して 、光ファイバ 1001に出力する機能、即ち合波装置としての機能と、を有する光モジュ ールである。  [0055] The optical module B3 in FIG. 2 has a function of branching light of a specific wavelength to the outside through the optical fibers 1002 to 1006 with respect to the wavelength multiplexed light input from the optical fiber 1001, that is, a function as an optical branching device. And optical fiber 1002: an optical module having a function of multiplexing light of a specific wavelength input from L006 and outputting the light to optical fiber 1001, that is, a function as a multiplexing device.
[0056] 構造としては、単一基板 50の上面に複数の光部品を配置し、互いの間で光が空間 伝送するように複数の光部品を位置決めした上で、各光部品の下面を基板 50の上 面に接着固定したものである。具体的には、基板 50上に水平に切られた複数の位置 決め溝 61〜66にファイバコリメータ 101〜106を組み込み、ファイバコリメータ 101〜 106の相互間で信号光が空間伝送するように、基板 50上に、複数の光学素子として 、波長選択フィルタ 71〜74、光路補正用部材 81、 82、及び、光路補正部材 91、 92 を位置決めして配置し、各下面を基板 50上に接着固定したものである。ここで、ファ ィバコリメータ 101〜106は、ファイバ端末 110及びコリメートレンズ 120からなる。な お、ファイバ端末 110及びコリメートレンズ 120は、予めガラスキヤビラリなどに組み込 んで単品化しておき、ガラスキヤビラリを位置決め溝 61〜66に配置するようにしても よい。 [0056] As a structure, a plurality of optical components are arranged on the upper surface of a single substrate 50, the plurality of optical components are positioned so that light is transmitted in space between them, and the lower surface of each optical component is then mounted on the substrate. Adhered to the upper surface of 50. Specifically, the fiber collimators 101 to 106 are incorporated into a plurality of positioning grooves 61 to 66 horizontally cut on the substrate 50, and the signal light is spatially transmitted between the fiber collimators 101 to 106. 50 as multiple optical elements The wavelength selection filters 71 to 74, the optical path correction members 81 and 82, and the optical path correction members 91 and 92 are positioned and arranged, and the lower surfaces thereof are bonded and fixed on the substrate 50. Here, the fiber collimators 101 to 106 include a fiber terminal 110 and a collimating lens 120. Note that the fiber terminal 110 and the collimating lens 120 may be assembled in advance into a glass capillaries or the like so as to be made into a single product, and the glass capillaries may be arranged in the positioning grooves 61 to 66.
[0057] ここで使用する基板 50は、ガラス基板に位置決め溝 61〜66を切った形状のもので 、全ての位置決め溝 61〜66は互いに平行で且つ同一平面上に並び、特に位置決 め溝 61と位置決め溝 62、位置決め溝 63と位置決め溝 66は同一軸線上にある。平 面視矩形の基板 50の中央には、両端の位置決め溝 61〜66に配置するファイバコリ メータ 101〜 106の光軸と、中央部に配置する光学素子(波長選択フィルタ 71〜 74 、光路補正用部材 81、 82、光路補正部材 91、 92)の中心が合うように、切り欠き状 の加工がなされている。  [0057] The substrate 50 used here has a shape obtained by cutting positioning grooves 61 to 66 in a glass substrate, and all the positioning grooves 61 to 66 are parallel to each other and arranged on the same plane, and in particular, the positioning grooves. 61 and positioning groove 62, positioning groove 63 and positioning groove 66 are on the same axis. In the center of the rectangular substrate 50 in plan view, the optical axes of the fiber collimators 101 to 106 arranged in the positioning grooves 61 to 66 on both ends and the optical elements (wavelength selection filters 71 to 74, optical path correction) arranged in the center part are provided. The notches are processed so that the centers of the working members 81 and 82 and the optical path correcting members 91 and 92) are aligned.
[0058] 即ち、平面視矩形状の基板 50の中央には、上面を左右両側よりも一段凹ませた光 学素子配置面 (光学素子配置スペース) 51が確保されており、その両側には、光学 素子配置面 51よりもやや高いままに残されたファイバコリメータ配置面 52、 53が確保 されている。両側のファイバコリメータ配置面 52、 53は同一面内にあり、光学素子配 置面 51とファイバコリメータ配置面 52、 53は、共に平坦な平行な平面として形成され ている。そして、各ファイバコリメータ配置面 52、 53の上面に、位置決め溝 61〜66と して V溝が加工されている。以下、位置決め溝 61〜66を V溝 61〜66ということもある  That is, an optical element arrangement surface (optical element arrangement space) 51 having an upper surface recessed by one step from the left and right sides is secured at the center of the rectangular substrate 50 in plan view. The fiber collimator arrangement surfaces 52 and 53 that are left slightly higher than the optical element arrangement surface 51 are secured. The fiber collimator arrangement surfaces 52 and 53 on both sides are in the same plane, and the optical element arrangement surface 51 and the fiber collimator arrangement surfaces 52 and 53 are both formed as flat parallel planes. Further, V grooves are formed as positioning grooves 61 to 66 on the upper surfaces of the fiber collimator arrangement surfaces 52 and 53. Hereinafter, the positioning grooves 61 to 66 are sometimes referred to as V grooves 61 to 66.
[0059] 例えば、寸法 40 X 14 X 3 (mm)のガラス基板 (低膨張なガラスとしてパイレックスガ ラス (コ一二ング社商標)等を採用)の左右 9mmの部分に、 3mm間隔で 3本ずつ、計 6本の位置決め溝 61〜66をそれぞれ平行且つ同じ深さに切り、中央部の幅 21mm の部分を平面研削している。対向する位置決め溝 61、 62及び位置決め溝 63、 66は 切り通しでカ卩ェすることが可能であるため、容易に高精度な力卩ェが可能である。 [0059] For example, three glass substrates with dimensions of 40 x 14 x 3 (mm) (using Pyrex glass (trade name) as low-expansion glass) on the left and right sides of 9 mm, 3 mm apart Each of the six positioning grooves 61 to 66 is cut in parallel and at the same depth, and the central portion having a width of 21 mm is surface ground. Since the opposing positioning grooves 61 and 62 and the positioning grooves 63 and 66 can be cut by cutting, high-accuracy force can be easily obtained.
[0060] なお、基板 50の材料としては、シリコン、セラミック、金属、榭脂などを用いることも可 能であり、位置決め溝 61〜66の形状としては、 V型だけでなぐ半円型、 U型、矩形 などでもよい。 [0060] It is also possible to use silicon, ceramic, metal, grease, etc. as the material of the substrate 50. As the shape of the positioning grooves 61 to 66, a semicircular shape that is not only V type, U Type, rectangle Etc.
[0061] 図 1、図 2に使用されているファイバコリメータ 101〜106は同じ構造のもので、例え ば図 3に示すように構成されている。即ち、ファイバコリメータ 101〜106を構成する 光ファイバ端末 110は、中心部のコア 11 la及びその外周部のクラッド 11 lbを有する 、 125 mの標準外径で、任意長さのシングルモード光ファイバ(SMF) 111の端面 に、前記コア 11 laと同一の均一な屈折率を有する材料よりなるコアレスファイバ(CL F) 112の一端面を融着接合し、そのコアレスファイバ 112の長さを 350 mに設定し た上で、コアレスファイバ 112の他端面を、光ファイバ 111の光軸と垂直な面に対して 0° に研削'研磨し、更に、これを光モジュールの実装で一般的に用いられる外径 1. 249mmの一芯フエルール 115に通して接着固定し、反射防止膜を設けたものであ る。但し、これらの光ファイバ 111やフエルール 115などの寸法は上記に限られるもの ではない。  [0061] The fiber collimators 101 to 106 used in FIGS. 1 and 2 have the same structure, for example, as shown in FIG. That is, the optical fiber terminal 110 constituting the fiber collimators 101 to 106 has a core 11 la at the center and a clad 11 lb at the outer periphery, a standard mode outer diameter of 125 m, and an arbitrary length single mode optical fiber ( One end face of a coreless fiber (CL F) 112 made of a material having the same uniform refractive index as the core 11 la is fusion-bonded to the end face of the SMF) 111, and the length of the coreless fiber 112 is set to 350 m. After setting, the other end surface of the coreless fiber 112 is ground and polished at 0 ° with respect to the surface perpendicular to the optical axis of the optical fiber 111, and this is further removed from the outer surface that is generally used for mounting an optical module. Diameter 1. Adhered and fixed through a single core ferrule 115 of 249 mm and provided with an antireflection film. However, the dimensions of the optical fiber 111 and the ferrule 115 are not limited to the above.
[0062] そして、光ファイバ端末 110の光軸上でコアレスファイバ 112の他端面側にコリメ一 タレンズ 120を配置することで、各ファイバコリメータ 101〜106が構成されている。  [0062] The collimator lens 120 is arranged on the other end surface side of the coreless fiber 112 on the optical axis of the optical fiber terminal 110, whereby the fiber collimators 101 to 106 are configured.
[0063] コリメータレンズ 120は、出光側に用いられた場合 (光ファイバ端末の直後に配置さ れる場合)は、光ファイバ端末 110から出射される拡散光を平行光に変換する役目を 果たし、受光側 (入光側)に用いられた場合 (光ファイバ端末の直前に配置される場 合)は、空間伝播してきた光を光ファイバ端末 110に結合する役目を果たすように設 計されたレンズである。この場合のコリメータレンズ 120は、ボールレンズの外周を円 筒形に削ったいわゆるドラム型レンズからなり、光ファイバ端末 110と光軸ずれが生じ ないように、フエノレ一ノレ 115との外形差 2 m以下、レンズ偏芯 1 μ m以下、焦点距離 2. 6mm、外径 1. 249mmとなるよう設計されている。  [0063] When the collimator lens 120 is used on the light output side (when placed immediately after the optical fiber terminal), it serves to convert the diffused light emitted from the optical fiber terminal 110 into parallel light. When used on the side (incident side) (when placed in front of the optical fiber terminal), it is a lens designed to serve to combine the light that has propagated in space with the optical fiber terminal 110. is there. The collimator lens 120 in this case is a so-called drum lens in which the outer periphery of the ball lens is cut into a cylindrical shape, and the external difference between the optical fiber terminal 110 and the phenolic lens 115 is 2 m so that the optical axis is not displaced. The lens is designed to have a lens eccentricity of 1 μm or less, a focal length of 2.6 mm, and an outer diameter of 1.249 mm.
[0064] 但し、これらのコリメータレンズ 120としては、ドラム型レンズに限らず、球面レンズ、 非球面レンズ、ボールレンズ、及び屈折率分布レンズの出射側端面に曲面加工を施 したレンズ、少なくとも平行光を出射または入射される片面が光軸と垂直な平面となら ないレンズであれば、用いることができる。  [0064] However, the collimator lens 120 is not limited to a drum-type lens, and a spherical lens, an aspheric lens, a ball lens, and a lens obtained by subjecting the exit side end surface of the refractive index distribution lens to curved surface processing, at least parallel light. Any lens can be used as long as one surface that emits or is incident is not a plane perpendicular to the optical axis.
[0065] また、波長選択フィルタ 71〜74は、入射光中の特定波長の光のみを透過し他波長 の光を反射する分波機能と、片面から入射されて透過する特定波長の光と他面から 入射されて反射する他波長の光を合波する合波機能とを有するもので、各波長選択 フィルタ 71〜74はそれぞれ異なった波長を合分波するものである。これらの波長選 択フィルタ 71〜74は、ガラスゃ榭脂等の透光性基板上に光学多層膜 (例:誘電体多 層膜)を形成し、光学多層膜の材料及び層構造によってフィルタ特性を発揮できるよ うにしたものである。光学多層膜は一般的に、屈折率の小さい材料と屈折率の大きい 材料を交互に積層した構造をなしている。これら波長選択フィルタ 71〜74は、例え ば寸法 1. 4 X 1. 4 X 1. Ommで、それぞれ波長 1511、 1531、 1551、 1571nmの 光を透過し、それ以外の波長の光を反射するように設計された WDMフィルタである 。 WDMフィノレタは、 ITU—T (International Telecommunication [0065] Further, the wavelength selection filters 71 to 74 transmit a light having a specific wavelength in incident light and reflect a light having a different wavelength, and a light having a specific wavelength that is incident and transmitted from one side. From the face Each of the wavelength selection filters 71 to 74 multiplexes and demultiplexes different wavelengths. These wavelength selective filters 71-74 have an optical multilayer film (e.g., dielectric multilayer film) formed on a transparent substrate such as glass resin, and the filter characteristics depend on the material and layer structure of the optical multilayer film. This is to make it possible to demonstrate. An optical multilayer film generally has a structure in which materials having a low refractive index and materials having a high refractive index are alternately laminated. These wavelength selective filters 71-74, for example, have dimensions of 1.4 X 1.4 X 1. Omm, and transmit light of wavelengths 1511, 1531, 1551, and 1571 nm, respectively, and reflect light of other wavelengths. WDM filter designed for. WDM finoleta is an ITU-T (International Telecommunication
Union— Telecommunication standardization sector)での WDlVrンスアムにおける使用 波長帯域で機能する波長選択フィルタである。  This is a wavelength selective filter that works in the wavelength band used by WDlVr SUNSUM in the Union—Telecommunication standardization sector.
[0066] また、光路補正用部材 81、 82は、両面に反射防止膜を施した平行平板のガラス基 板で、材料、寸法は前記波長選択フィルタ 71〜74と同様で、例えば 1260〜1675n mの波長の光に対して設計された反射防止膜を設けたものである。  [0066] The optical path correcting members 81 and 82 are parallel flat glass substrates having antireflection films on both surfaces, and the materials and dimensions are the same as those of the wavelength selection filters 71 to 74. For example, 1260 to 1675 nm An antireflection film designed for light having a wavelength of 1 is provided.
[0067] 光路補正用部材 81、 82を設けるのは、次の理由による。即ち、例えば、対向するフ アイバコリメータ 101、 102の光路間に平行平板の波長選択フィルタ 71を斜め挿入す ると、光はガラス基板の厚みに依存して、元の光軸と平行に位置ずれが発生する。こ のずれは、同様のガラス基板を用いて元の光軸に戻すことが可能で、容易に低損失 な結合を維持することができる。そのために、波長選択フィルタ 70と対にして光路補 正用部材 81、 82を設けているのである。  The optical path correcting members 81 and 82 are provided for the following reason. That is, for example, when a parallel plate wavelength selection filter 71 is obliquely inserted between the optical paths of the opposing fiber collimators 101 and 102, the light is displaced in parallel with the original optical axis depending on the thickness of the glass substrate. Occurs. This deviation can be returned to the original optical axis using the same glass substrate, and low-loss coupling can be easily maintained. Therefore, optical path correcting members 81 and 82 are provided in a pair with the wavelength selection filter 70.
[0068] また、光路補正部材 91、 92は 光路を変更すると共に、部品の外形精度によって 生じる光軸ずれ及び部品通過時の光軸ずれを補正するために用いられている。従つ て、ジンバル (Gimbal)機構を有したミラー力、それに準じた調整機構を持つミラーを 用いるのが好ましい。ジンバル機構を有したミラーとは、ミラーの 1点(通常中心)を回 転中心として、その傾きが調整可能なミラーをいう。これらのミラー 91、 92としては、 反射率や耐久性に優れて 、る点から、アルミニウムや金等の金属ミラーを用いるのが 好適であり、ここでは、サイズ 2 X 5 X 1mmのガラス基板にアルミニウム及びフッ化マ グネシゥムの膜を付加したミラーを用いて 、る。 [0069] なお、この光路補正部材 91、 92としては、反射ミラーだけでなぐ楔型プリズムを用 いることもできる。楔形プリズムの場合、屈折あるいは全反射によって光路を曲げるこ とが可能であり、両者とも光路補正を行うことができる。 In addition, the optical path correction members 91 and 92 are used for changing the optical path and correcting the optical axis deviation caused by the external accuracy of the parts and the optical axis deviation when passing through the parts. Therefore, it is preferable to use a mirror having a Gimbal mechanism and a mirror having an adjustment mechanism according to the mirror force. A mirror with a gimbal mechanism is a mirror whose tilt can be adjusted with one point (normal center) of the mirror as the center of rotation. As these mirrors 91 and 92, it is preferable to use a metal mirror such as aluminum or gold because of excellent reflectivity and durability. Here, a glass substrate of size 2 X 5 X 1 mm is used. Using mirrors with aluminum and magnesium fluoride films. [0069] As the optical path correction members 91 and 92, wedge-shaped prisms that are formed only by reflecting mirrors may be used. In the case of a wedge prism, the optical path can be bent by refraction or total reflection, and both can correct the optical path.
[0070] この光モジュール B3は、 4チャンネル (ch)用の光波長分波装置または光波長分波 装置のどちらか一方に専用に使用されることを想定して作られたもので、次のような 方法で製造が可能である。  [0070] This optical module B3 is designed to be used exclusively for either the optical wavelength demultiplexing device for 4 channels (ch) or the optical wavelength demultiplexing device. It can be manufactured by such a method.
[0071] まず、第 1、第 2の V溝 61、 62及び第 3、第 6の V溝 63、 66をそれぞれ同一軸線上 に且つ互いに平行に形成し、更に、第 3の V溝 63と平行に第 5の V溝 65を形成し、 第 2、第 6の V溝 62、 66との間にそれらと平行に第 4の V溝 64を形成した基板 50を準 備する。基板 50の中央部には、左右のコリメータ配置面 52、 53より一段凹んだ光学 素子配置面 51を形成してある。  First, the first and second V grooves 61 and 62 and the third and sixth V grooves 63 and 66 are formed on the same axis and in parallel with each other. A substrate 50 in which a fifth V-groove 65 is formed in parallel and a fourth V-groove 64 is formed in parallel with the second and sixth V-grooves 62 and 66 is prepared. At the center of the substrate 50, an optical element placement surface 51 is formed which is recessed by one step from the left and right collimator placement surfaces 52, 53.
[0072] この場合の基板 50の寸法は 40 X 14 X 3mmであり、左右幅 9mmのコリメータ配置 面 52、 53上に間隔的に 3本ずつ、計 6本の V溝 61〜66をそれぞれ平行且つ同じ深 さに切ってある。また、中央の光学素子配置面 51は、幅 21mmに平面研削してある 。ここでは、対向する V溝 61、 62及び V溝 63、 66は切り通しでカ卩ェすることが可能で あるため、容易に高精度な加工が可能である。  [0072] In this case, the size of the substrate 50 is 40 X 14 X 3 mm, and three V grooves 61 to 66 in parallel are arranged in parallel on the collimator arrangement surfaces 52 and 53 with a width of 9 mm on the left and right sides, respectively. And cut to the same depth. The central optical element placement surface 51 is surface ground to a width of 21 mm. Here, since the opposing V grooves 61 and 62 and the V grooves 63 and 66 can be cut by cutting, high-precision machining can be easily performed.
[0073] 基板 50を準備したら、次に、光ファイバ端末 110及びコリメータレンズ 120をそれぞ れ第 1、第 2の V溝 61、 62に配置して位置調整することにより、第 1、第 2のファイバコ リメータ 101、 102を作製する。次いで、第 1のファイバコリメータ 101と第 2のファイバ コリメータ 102間の光路上に、予め設計した角度で第 1の波長選択フィルタ 71を配置 すると共に、第 1の波長選択フィルタ 71と第 2のファイバコリメータ 102との間に、第 1 の波長選択フィルタ 71による光路ずれを補正する光路補正用部材 81を、第 1の波長 選択フィルタ 71と対称な角度で配置する。  [0073] After the substrate 50 is prepared, next, the optical fiber terminal 110 and the collimator lens 120 are arranged in the first and second V-grooves 61 and 62, respectively, and the positions thereof are adjusted. Fabricate fiber collimators 101 and 102. Next, the first wavelength selection filter 71 and the second fiber are arranged on the optical path between the first fiber collimator 101 and the second fiber collimator 102 at a predesigned angle. Between the collimator 102, an optical path correcting member 81 that corrects an optical path shift by the first wavelength selection filter 71 is disposed at an angle symmetrical to the first wavelength selection filter 71.
[0074] 次に、第 1の V溝 61に隣接する第 3の V溝 63に、光ファイバ端末 110及びコリメータ レンズ 120を配置して第 3のファイバコリメータ 103を仮組みすると共に、第 4の V溝 6 4にファイバ端末 110及びコリメータレンズ 120を配置して第 4のファイバコリメータ 10 4を仮組みする。また、第 1の波長選択フィルタ 71で反射された反射光の光軸と第 4 の V溝 64の軸線の延長線とが交差する点に、第 2の波長選択フィルタ 72を配置し、 第 4のファイバコリメータ 104に、第 1の波長選択フィルタ 71、第 2の波長選択フィルタ 72を次々に反射した光が入射するようにする。 [0074] Next, the third fiber collimator 103 is temporarily assembled by disposing the optical fiber terminal 110 and the collimator lens 120 in the third V groove 63 adjacent to the first V groove 61. The fiber terminal 110 and the collimator lens 120 are arranged in the V groove 64 and the fourth fiber collimator 104 is temporarily assembled. In addition, the second wavelength selection filter 72 is disposed at a point where the optical axis of the reflected light reflected by the first wavelength selection filter 71 and the extension line of the axis of the fourth V groove 64 intersect. The light reflected by the first wavelength selection filter 71 and the second wavelength selection filter 72 one after another is made incident on the fourth fiber collimator 104.
[0075] 次に、第 1のファイバコリメータ 101に、第 1、第 2の波長選択フィルタ 71、 72で共に 反射する波長の光を入力し、波長選択フィルタ 71、 72を経由して第 4のファイバコリ メータ 104の光ファイバ端末 110に結合する光量を見ながら、第 2の波長選択フィル タ 72の位置と向き、第 4のファイバコリメータ 104を構成する光ファイバ端末 110とコリ メータレンズ 120の距離を決定し固定する。  [0075] Next, light having a wavelength reflected by the first and second wavelength selection filters 71 and 72 is input to the first fiber collimator 101. While observing the amount of light coupled to the optical fiber terminal 110 of the fiber collimator 104, the position and orientation of the second wavelength selection filter 72, and the distance between the optical fiber terminal 110 constituting the fourth fiber collimator 104 and the collimator lens 120 Determine and fix.
[0076] 次に、第 3のファイバコリメータ 103の前にミラー(光路補正部材) 91を配置し、その 状態で第 1のファイバコリメータ 101に、第 1の波長選択フィルタ 71で反射し且つ第 2 の波長選択フィルタ 72を透過する波長の光を入力し、第 1の波長選択フィルタ 71で 反射され、第 2の波長選択フィルタ 72を透過し、ミラー 91を介して第 3のファイバコリメ ータ 103に結合される光量を見ながら、ミラー 91の位置と向き、及び、第 3のファイバ コリメータ 103を構成するファイバ端末 110とコリメータレンズ 120の距離を決定し固 定する。  Next, a mirror (optical path correction member) 91 is disposed in front of the third fiber collimator 103, and in this state, is reflected on the first fiber collimator 101 by the first wavelength selection filter 71 and the second fiber collimator 103. Light having a wavelength that passes through the second wavelength selection filter 72 is input, reflected by the first wavelength selection filter 71, transmitted through the second wavelength selection filter 72, and passed through the mirror 91 to the third fiber collimator 103. The position and orientation of the mirror 91 and the distance between the fiber terminal 110 constituting the third fiber collimator 103 and the collimator lens 120 are determined and fixed while observing the amount of light coupled to.
[0077] 次に、第 2の波長選択フィルタ 72で反射して第 4のファイバコリメータ 104に入射す る光路上に、予め設計した角度で第 3の波長選択フィルタ 73を配置し、第 3の波長選 択フィルタ 73と第 4のファイバコリメータ 104との間に、第 3の波長選択フィルタ 73によ る光路ずれを補正する光路補正用部材 82を、第 3の波長選択フィルタ 73と対称な角 度で配置する。  Next, on the optical path reflected by the second wavelength selection filter 72 and incident on the fourth fiber collimator 104, the third wavelength selection filter 73 is arranged at a predesigned angle, An optical path correction member 82 that corrects an optical path shift by the third wavelength selection filter 73 is provided between the wavelength selection filter 73 and the fourth fiber collimator 104 at an angle symmetrical to the third wavelength selection filter 73. Arrange in degrees.
[0078] 次に、第 5の V溝 65にファイバ端末 110及びコリメータレンズ 120を配置して第 5の ファイバコリメータ 105を仮組みすると共に、第 6の V溝 66にファイバ端末 110及びコ リメータレンズ 120を配置して第 6のファイバコリメータ 106を仮組みする。また、第 3 の波長選択フィルタ 73で反射された反射光の光軸と第 6の V溝 66の軸線の延長線と が交差する点に、第 4の波長選択フィルタ 74を配置し、第 6のファイバコリメータ 106 に、第 1の波長選択フィルタ 71、第 2の波長選択フィルタ 72、第 3の波長選択フィルタ 73、第 4の波長選択フィルタ 74を次々に反射した光が入射するようにする。  Next, the fiber end 110 and the collimator lens 120 are disposed in the fifth V-groove 65 to temporarily assemble the fifth fiber collimator 105, and the fiber end 110 and the collimator lens are disposed in the sixth V-groove 66. 120 is arranged, and the sixth fiber collimator 106 is temporarily assembled. In addition, a fourth wavelength selection filter 74 is arranged at a point where the optical axis of the reflected light reflected by the third wavelength selection filter 73 and the extension line of the axis of the sixth V groove 66 intersect. The light reflected by the first wavelength selection filter 71, the second wavelength selection filter 72, the third wavelength selection filter 73, and the fourth wavelength selection filter 74 is incident on the fiber collimator 106 one after another.
[0079] 次に、第 1のファイバコリメータ 101に、第 1、第 2、第 3、第 4の波長選択フィルタ 71 、 72、 73、 74で共に反射する波長の光を入力し、波長選択フィルタ 71、 72、 73、 74 を順次反射して第 6のファイバコリメータ 106の光ファイバ端末 110に結合する光量を 見ながら、第 4の波長選択フィルタ 74の位置と向き、第 6のファイバコリメータ 106を 構成する光ファイバ端末 110とコリメータレンズ 120の距離を決定し固定する。 Next, light having a wavelength reflected by the first, second, third, and fourth wavelength selection filters 71, 72, 73, 74 is input to the first fiber collimator 101, and the wavelength selection filter 71, 72, 73, 74 The position and orientation of the fourth wavelength selection filter 74 and the optical fiber terminal 110 constituting the sixth fiber collimator 106 are observed while observing the amount of light that is sequentially reflected and coupled to the optical fiber terminal 110 of the sixth fiber collimator 106. Determine the distance of the collimator lens 120 and fix it.
[0080] 次に、第 5のファイバコリメータ 105の前にミラー(光路補正部材) 92を配置し、その 状態で第 1のファイバコリメータ 101に、第 1、第 2、第 3の波長選択フィルタ 71、 72、 73で共に反射し、第 4の波長選択フィルタ 74を透過する波長の光を入力し、第 1、第 2、第 3の波長選択フィルタ 71、 72、 73で次々に反射され、第 4の波長選択フィルタ 7 4を透過し、ミラー 92を介して第 5のファイバコリメータ 105に結合される光量を見なが ら、ミラー 92の位置と向き、及び、第 5のファイバコリメータ 105を構成する光ファイバ 端末 110とコリメータレンズ 120の距離を決定し固定する。これにより、光モジュール B3が完成する。 Next, a mirror (optical path correction member) 92 is disposed in front of the fifth fiber collimator 105, and in this state, the first, second, and third wavelength selection filters 71 are placed in the first fiber collimator 101. , 72, and 73 are input together, and light having a wavelength that passes through the fourth wavelength selection filter 74 is input, reflected by the first, second, and third wavelength selection filters 71, 72, and 73 one after another. The position and orientation of the mirror 92 and the fifth fiber collimator 105 are configured by checking the amount of light that passes through the wavelength selection filter 7 4 and is coupled to the fifth fiber collimator 105 via the mirror 92. Determine the distance between the optical fiber terminal 110 and the collimator lens 120 and fix it. Thereby, the optical module B3 is completed.
[0081] 以上においては、 4ch用の光モジュール B3を製造する場合について述べた力 4c hを超える ch数を持つ光モジュールについても、同様の手順を繰り返すことにより、容 易に製造することができる。また、 2ch用の光モジュールを製造する場合は、以上の 工程の途中の段階で終了すればよい。  [0081] In the above, an optical module having the number of channels exceeding the force 4ch described in the case of manufacturing the optical module B3 for 4ch can be easily manufactured by repeating the same procedure. . Further, when manufacturing an optical module for 2ch, it may be completed in the middle of the above steps.
[0082] この光モジュール B3は、複数チャンネル型の光分波器または光合波器として利用 することができる。しカゝも、通常は 1チャンネル型の合分波器を複数連結することで作 製していた複数波長合分波器を、同一基板上にコリメータや波長選択フィルタ等の 各構成部品を集積配備し、部品間を光が空間伝搬するものとして構成しているので、 無駄な部品を使わずに、必要最小限の体積で、容易に小型且つ低損失な光波長合 分波器を得ることができる。  This optical module B3 can be used as a multi-channel optical demultiplexer or optical multiplexer. In addition, the multi-wavelength multiplexer / demultiplexer, which was normally manufactured by connecting multiple 1-channel multiplexers / demultiplexers, is integrated on the same substrate with components such as collimators and wavelength selection filters. Because it is configured to transmit light between components in space, it is possible to easily obtain a small and low-loss optical wavelength multiplexer / demultiplexer with the minimum volume without using unnecessary components. Can do.
[0083] また、各コリメータとして、先端にコアレスファイバを配することで光軸ずれを少なくし 且つ十分な反射減衰量を実現できるようにした光ファイバ端末とコリメータレンズの組 み合わせよりなるファイバコリメータ 101〜106を使用しているので、組み立てが容易 であり、各ファイバコリメータ 101〜106間で高効率の光結合を得ることができ、低損 失な光合分波器を得るのに適した複数チャンネル型の光モジュールを提供すること ができる。  [0083] Also, as each collimator, a fiber collimator comprising a combination of an optical fiber terminal and a collimator lens, which is capable of realizing a sufficient return loss while reducing the optical axis deviation by arranging a coreless fiber at the tip. Since 101 to 106 are used, assembly is easy, a high efficiency optical coupling can be obtained between each fiber collimator 101 to 106, and a plurality of optical multiplexers / demultiplexers suitable for obtaining a low loss optical multiplexer / demultiplexer can be obtained. A channel-type optical module can be provided.
[0084] この光モジュール B3を光分波装置として使用する場合は、第 1のファイバコリメータ 101を、外部の入力用光伝送路 1001から伝送されてくる波長多重光を波長選択フ ィルタ 71に対し入力光として入射させる入力光用コリメータ (In)とし、第 6のファイバ コリメータ 106を、波長選択フィルタ 74で反射した光を外部の出力用光伝送路 1006 へ送り出すための出力用コリメータ (Out)とし、それ以外の第 2〜第 5のファイバコリメ ータ 102〜105を、各波長選択フィルタ 71〜74で透過した光を外部の伝送路 1002 〜1005に取り出すための分岐光用コリメータ(Drop)として利用する。 [0084] When this optical module B3 is used as an optical demultiplexing device, the first fiber collimator 101 is an input light collimator (In) for making wavelength multiplexed light transmitted from an external input optical transmission line 1001 incident on the wavelength selection filter 71 as an input light, and the sixth fiber collimator 106 is a wavelength. The output collimator (Out) for sending the light reflected by the selection filter 74 to the external output optical transmission line 1006 is used, and the other second to fifth fiber collimators 102 to 105 are used as the wavelength selection filters. It is used as a collimator (Drop) for branching light for extracting the light transmitted through 71 to 74 to the external transmission lines 1002 to 1005.
[0085] こうすることで、波長選択フィルタ 71〜74の作用により、波長多重光を順次分波す る機能を発揮することができる。  Thus, the function of sequentially demultiplexing the wavelength multiplexed light can be exhibited by the action of the wavelength selection filters 71 to 74.
[0086] 例えば、波長 1511、 1531、 1551、 1571、 1591應を含む波長多重信号力第 1 のファイバコリメータ 101のファイバ端末 110に入力された場合、 1511nmの波長の 光のみが第 1の波長選択フィルタ 71を透過して、分岐用の第 2のファイバコリメータ 1 02の光ファイバ端末 110に結合される。また、その他の波長 1531、 1551、 1571、 1 591nmの光は、第 2の波長選択フィルタ 72に向けて反射される。  [0086] For example, when input to the fiber terminal 110 of the first fiber collimator 101 of the wavelength multiplexed signal power including wavelengths 1511, 1531, 1551, 1571, and 1591, only the light of the wavelength of 1511nm is selected as the first wavelength. The light passes through the filter 71 and is coupled to the optical fiber terminal 110 of the second fiber collimator 102 for branching. In addition, light having other wavelengths 1531, 1551, 1571, and 1591 nm is reflected toward the second wavelength selection filter 72.
[0087] 同様に、第 2の波長選択フィルタ 72では、 153 lnmの波長の光のみが透過して、 分岐用の第 3のファイバコリメータ 103の光ファイバ端末 110に結合され、その他の波 長 1551、 1571、 1591nmの光は、第 3の波長選択フィルタ 74に向けて反射される。  Similarly, in the second wavelength selection filter 72, only light having a wavelength of 153 lnm is transmitted and coupled to the optical fiber terminal 110 of the third fiber collimator 103 for branching. , 1571 and 1591 nm are reflected toward the third wavelength selection filter 74.
[0088] 第 3の波長選択フィルタ 73では、 155 lnmの波長の光のみが透過して、分岐用の 第 4のファイバコリメータ 104の光ファイバ端末 110に結合され、その他の波長 1571 、 1591nmの光は、第 4の波長選択フィルタ 74に向けて反射される。  [0088] In the third wavelength selection filter 73, only light having a wavelength of 155 lnm is transmitted and coupled to the optical fiber terminal 110 of the fourth fiber collimator 104 for branching, and light having other wavelengths of 1571 and 1591 nm. Is reflected toward the fourth wavelength selective filter 74.
[0089] 第 4の波長選択フィルタ 74では、 1571nmの波長の光のみが透過して、分岐用の 第 5のファイバコリメータ 105の光ファイバ端末 110に結合され、その他の波長 1591 nmの光は出力用の第 6のファイバコリメータ 106に向けて反射される。これにより、各 波長の光が順次分波される。  [0089] In the fourth wavelength selection filter 74, only light having a wavelength of 1571 nm is transmitted and coupled to the optical fiber terminal 110 of the fifth fiber collimator 105 for branching, and other light having a wavelength of 1591 nm is output. Is reflected toward the sixth fiber collimator 106. As a result, light of each wavelength is demultiplexed sequentially.
[0090] <第 1実施形態 >  [0090] <First embodiment>
次に、上記の構成の光モジュール B3をベースにした、本発明の第 1実施形態の光 モジュール B31について、図 1を参照しながら説明する。図中の部品番号は、図 2の ものと共通である。  Next, an optical module B31 according to the first embodiment of the present invention based on the optical module B3 having the above configuration will be described with reference to FIG. The part numbers in the figure are the same as those in Figure 2.
[0091] 本実施形態の光モジュール B31は、基板 50の上に既に配置されている光部品(フ アイバコリメータ 101〜106、波長選択フィルタ 71〜74、光路補正用部材 81、 82、 光路補正部材 91、 92)の上面に板状の接続部材 311、 312、 371、 381、 391を被 せ、各接続部材 311、 312、 371、 381、 391の下面を、その下側の光部品の上面に 接着固定することにより、光部品の上部間を接続したものである。 [0091] The optical module B31 of the present embodiment is an optical component (a frame that is already arranged on the substrate 50). Cover the plate-shaped connecting members 311, 312, 371, 381, 391 on the upper surface of the Aiba collimators 101 to 106, wavelength selection filters 71 to 74, optical path correction members 81 and 82, optical path correction members 91 and 92) By connecting and fixing the lower surfaces of the connecting members 311, 312, 371, 381, 391 to the upper surface of the lower optical component, the upper portions of the optical components are connected.
[0092] 接続部材 311は、各ファイバコリメータ 101、 103、 105の光ファイバ端末 110及び コリメータレンズ 120の上部(これらがキヤビラリに収容されている場合はキヤビラリの 上部)に塗布された接着剤を介して、これらの部品を接続固定する。接続部材 312は 、光ファイノく端末 212、 214, 216及びレンズ 222、 224, 226の上咅 こ塗布された 接着剤を介してこれら 6つの部品を接続固定する。接続部材 312は、各ファイバコリメ ータ 102、 104、 106の光ファイバ端末 110及びコリメータレンズ 120の上部(これら 力 Sキヤビラリに収容されて ヽる場合はキヤビラリの上部)に塗布された接着剤を介して 、これらの部品を接続固定する。  [0092] The connecting member 311 is connected to an optical fiber terminal 110 of each of the fiber collimators 101, 103, and 105 and an upper part of the collimator lens 120 (or an upper part of the stirrer if these are accommodated in the stirrer). Then, these parts are connected and fixed. The connecting member 312 connects and fixes these six parts via an adhesive applied to the optical terminals 212, 214, 216 and the lenses 222, 224, 226. The connecting member 312 is formed by applying an adhesive applied to the optical fiber terminal 110 of each fiber collimator 102, 104, 106 and the upper part of the collimator lens 120 (the upper part of the capillaries when these forces are accommodated in the capillaries). Connect and fix these parts through.
[0093] 接続部材 371は、光波長フィルタ 71、 72、 73、 74の上部に塗布された接着剤を介 して、これら 4つの部品を接続固定する。接続部材 381は、光路補正用部材 81、 82 の上部に塗布された接着剤を介して、これら 2つの部品を接続固定する。接続部品 3 91は、光路補正部材 91、 92の上部に塗布された接着剤を介して、これら 2つの部品 を接続固定する。  [0093] The connecting member 371 connects and fixes these four parts via an adhesive applied to the upper part of the optical wavelength filters 71, 72, 73, 74. The connecting member 381 connects and fixes these two parts via an adhesive applied to the upper portions of the optical path correcting members 81 and 82. The connecting part 3 91 connects and fixes these two parts via an adhesive applied to the upper parts of the optical path correction members 91 and 92.
[0094] これらの接続咅材 311、 312、 371、 381、 391としては、低膨張のノ ィレックスガラ ス (コ一-ング社商標)などを用い、大きさは各々の部品を接続するに足る大きさとし て、例えば 5 X 5mn!〜 10 X 10mm、厚さは基板 50と同程度の lmmとする。なお、 接続部材 311、 312、 371、 381、 391の材料は、基板 50の材質に合わせて石英や シリコン、各種ガラスゃ榭脂、金属などを用いることができる。但し、基板 50と同程度 の熱膨張率を持つ材料を用いる。また、これらの部品を接続固定するには、基板 50 と各光部品を固定したものと同程度の熱膨張率を持つ接着剤を使用するのが望まし い。また、接着剤の代わりに、半田や低融点ガラスなどを用いて接着することも可能 である。  [0094] As these connection braces 311, 312, 371, 381, and 391, low-expansion Nyrex glass (trade name of Corning Co.) is used, and the size is large enough to connect each component. For example, 5 X 5mn! ~ 10 x 10mm, thickness is about lmm, which is about the same as substrate 50. Note that the connecting members 311, 312, 371, 381, and 391 can be made of quartz, silicon, various types of glass resin, metal, or the like according to the material of the substrate 50. However, a material having a thermal expansion coefficient similar to that of the substrate 50 is used. In order to connect and fix these components, it is desirable to use an adhesive having a thermal expansion coefficient comparable to that of the substrate 50 and each optical component fixed. It is also possible to bond using solder or low melting glass instead of the adhesive.
[0095] 次に、図 1の光モジュール B31の効果を説明する。  Next, effects of the optical module B31 in FIG. 1 will be described.
光モジュールの温度に対する安定性を判断する指標として、光モジュール B31を 40°Cから + 85°Cまでの温度変化に晒した場合の各波長チャンネルの挿入損失の 変化量を用いる。 The optical module B31 is used as an index to judge the stability of the optical module against temperature. The amount of change in insertion loss for each wavelength channel when exposed to temperature changes from 40 ° C to + 85 ° C is used.
[0096] また、光モジュールの湿度に対する安定性を判断する指標として、光モジュール B 31を温度 85°C、湿度 85%の高温高湿雰囲気に晒した場合の各波長チャンネルの 挿入損失の変化量を用いる。  [0096] As an index for judging the stability of the optical module against humidity, the amount of change in the insertion loss of each wavelength channel when the optical module B 31 is exposed to a high-temperature, high-humidity atmosphere at a temperature of 85 ° C and a humidity of 85%. Is used.
[0097] 図 13は、接続部品(接続部材)が無しの場合 (光モジュール B3)と、接続部品が有 りの場合(光モジュール B31)で、光モジュールを 40°Cから + 85°Cまでの温度変 化に晒した場合の各波長チャンネルの挿入損失の変化量を比較したものである。  [0097] Figure 13 shows the optical module from 40 ° C to + 85 ° C when there is no connection component (connection member) (optical module B3) and when there is a connection component (optical module B31). This is a comparison of the amount of change in insertion loss for each wavelength channel when exposed to temperature changes.
[0098] この場合、第 1のファイバコリメータ 101を複数波長の信号光の入力ポートとし、第 2 のファイバコリメータ 102を第 1波長チャンネルの出力ポート、第 3のファイバコリメータ 103を第 2波長チャンネルの出力ポート、第 4のファイバコリメータ 104を第 3波長チヤ ンネルの出力ポート、第 5のファイバコリメータ 105を第 4波長チャンネルの出力ポー ト、第 6のファイバコリメータ 106を第 5波長チャンネルの出力ポートとしている。  [0098] In this case, the first fiber collimator 101 is used as an input port for signal light of a plurality of wavelengths, the second fiber collimator 102 is used as an output port for the first wavelength channel, and the third fiber collimator 103 is used as a second wavelength channel. Output port, 4th fiber collimator 104 as 3rd wavelength channel output port, 5th fiber collimator 105 as 4th wavelength channel output port, 6th fiber collimator 106 as 5th wavelength channel output port Yes.
[0099] 図 13から分力ゝるように、接続部材を付加した光モジュールの場合、接続部材がない 場合に比較して、温度変化に伴う挿入損失の変動量は明らかに減少すると言える。  [0099] As can be seen from FIG. 13, in the case of an optical module to which a connecting member is added, it can be said that the amount of change in insertion loss due to a temperature change is clearly reduced compared to the case without a connecting member.
[0100] 次に、図 14は、接続部品無しの光モジュール B3を、温度 85°C、湿度 85%の高温 高湿雰囲気に晒した場合の各波長チャンネルの挿入損失の変化を表す。  Next, FIG. 14 shows the change in insertion loss of each wavelength channel when the optical module B3 without connection parts is exposed to a high temperature and high humidity atmosphere at a temperature of 85 ° C. and a humidity of 85%.
[0101] 図 14によれば、高温高湿に晒された直後から吸湿による膨張や接着強度の低下 などによる部品の位置ずれによって徐々に挿入損失が増大してゆき、 300時間経過 後には最大 3. 5dBの挿入損失の劣化があることがわかる。  [0101] According to Fig. 14, the insertion loss gradually increases immediately after exposure to high temperature and high humidity due to component misalignment due to expansion due to moisture absorption or a decrease in adhesive strength. It can be seen that there is a 5dB degradation in insertion loss.
[0102] 図 15は、図 1のように接続部品を付カ卩した光モジュール B31の場合の各波長チヤ ンネルの挿入損失の変化を表す。こちらは、高温高湿下で 300時間経過の後も、ほ ぼ試験前と同等の挿入損失を維持している。  FIG. 15 shows a change in insertion loss of each wavelength channel in the case of the optical module B31 with connection parts attached as shown in FIG. This maintains the same insertion loss as before the test even after 300 hours at high temperature and high humidity.
[0103] 図 14、図 15の違いより分力るように、本発明のように接続部品 (接続部材)を付カロ することで、湿度に対する挿入損失の変動量は明らかに減少すると言える。  As shown in FIG. 14 and FIG. 15, it can be said that the amount of variation in the insertion loss with respect to the humidity is clearly reduced by attaching the connecting component (connecting member) as in the present invention.
[0104] 図 16は、接続部品無しの光モジュール B3に対して温度変化による挿入損失の変 動量を測定した結果、及び、その光モジュール B3の波長選択フィルタにだけ接続部 品 (接続部材)を被せて接続した場合、更に、ミラー (光路補正部材)に接続部品 (接 続部材)を被せて接続した場合の温度変化による挿入損失の変動量を測定した結果 を示す。 [0104] Fig. 16 shows the result of measuring the amount of change in insertion loss due to temperature change for optical module B3 without connection components, and the connection components (connection members) only for the wavelength selection filter of optical module B3. If the cover is connected, it is further connected to the mirror (optical path correction member). The result of measuring the amount of change in insertion loss due to temperature change when connecting with a connecting member is shown.
[0105] 図 16から分力るように、光部品の上部を接続部品で接続することにより、挿入損失 の変動量が明らかに減少すると言うことができる。特に、できるだけ多くの光部品を接 続することで、効果が更に上がることが分かる。  As shown in FIG. 16, it can be said that the amount of fluctuation of the insertion loss is clearly reduced by connecting the upper part of the optical component with the connecting component. In particular, it can be seen that the effect is further improved by connecting as many optical components as possible.
[0106] 図 17は、接続部品無しの場合と、波長選択フィルタとミラー (光路補正部材)にだけ 接続部品 (接続部材)を被せて接続した場合と、波長選択フィルタとミラー (光路補正 部材)とファイバコリメータに接続部品(接続部材)を被せて接続した場合とにつ ヽて 、温度変化による挿入損失の変動量を調べた結果 (3台分)を示す。  [0106] Fig. 17 shows the case where there is no connection component, the case where only the wavelength selection filter and mirror (optical path correction member) are connected with the connection component (connection member), and the wavelength selection filter and mirror (optical path correction member). Figure 3 shows the results of investigation of the amount of change in insertion loss due to temperature changes (when connecting the connection parts (connection members) to the fiber collimator).
[0107] 図 17からも、同様のことが分かる。即ち、できるだけ多くの光部品を接続することで 、効果が更に上がると言うことができる。  [0107] The same can be seen from FIG. That is, it can be said that the effect is further improved by connecting as many optical components as possible.
[0108] 以上のことから次のことが言える。即ち、 2個以上の光部品の上面に力かるように接 続部材 311、 312、 371、 381、 391を被せ、その接続部材 311、 312、 371、 381、 391の下面をそれぞれ光部品の上面に接着固定していることにより、光部品の上面 同士を接続部材で繋いだ形態にすることができる。このため、光部品が相互に接続 部材 311、 312、 371、 381、 391を介して支え合う形となり、基板 50上に接着固定さ れた光部品の傾きを抑制することができる。また、接着面の増加により、光部品の取 付強度を高めることもできる。このように、温度や湿度の変化に伴う接着剤の膨張'収 縮により生じる光部品の傾きを抑制できることから、それを起因とする光部品の相互 間の光伝送損失の変化を小さくすることができる。また、湿度変化の影響を受けに《 なることから、耐湿用の外装筐体の中に基板を収容する場合でも、外装筐体の耐湿 性能のランクを落とすことができ、光伝送性能をあまり落とさずに、コストの低減に寄 与することができる。  [0108] From the above, the following can be said. That is, the connection members 311, 312, 371, 381, 391 are covered so as to apply force to the upper surfaces of two or more optical components, and the lower surfaces of the connection members 311, 312, 371, 381, 391 are respectively attached to the upper surfaces of the optical components By adhering and fixing to each other, the top surfaces of the optical components can be connected to each other with a connecting member. For this reason, the optical components support each other via the connecting members 311, 312, 371, 381, 391, and the inclination of the optical components bonded and fixed on the substrate 50 can be suppressed. In addition, the attachment strength of optical components can be increased by increasing the adhesive surface. In this way, since the inclination of the optical component caused by the expansion and contraction of the adhesive accompanying changes in temperature and humidity can be suppressed, the change in the optical transmission loss between the optical components caused by it can be reduced. it can. In addition, because it is affected by humidity changes, even when a substrate is housed in a moisture-resistant outer casing, the moisture resistance performance rank of the outer casing can be lowered, and the optical transmission performance is greatly reduced. Without reducing costs.
[0109] 特に、ファイバコリメータ 101〜106間に介在されたブロック形状の光学素子(波長 選択フィルタ 71〜74、光路補正用部材 81、 82、光路補正部材 91、 92)は、単に基 板 50の上面に接着しているだけであるから、接着面の変化により傾きが生じやすい 可能性があるが、それらの光学素子の上面に接続部材 371、 381、 391を被せて接 着していることにより、光学素子の傾きを有効に抑制することができる。従って、温湿 度変化に伴う性能の低下を防止することができる。また、ファイバコリメータ 101〜: LO 6の上にも接続部材 311、 312を被せて接着しているので、ファイバコリメータ 101〜 106の安定性を高めることもでき、一層の性能向上を図ることができる。 In particular, block-shaped optical elements (wavelength selection filters 71 to 74, optical path correction members 81 and 82, optical path correction members 91 and 92) interposed between the fiber collimators 101 to 106 are simply provided on the substrate 50. Since it is only adhered to the upper surface, there is a possibility that tilting is likely to occur due to changes in the adhesion surface, but by attaching the connection members 371, 381, 391 on the upper surface of those optical elements, The tilt of the optical element can be effectively suppressed. Therefore, hot and humid It is possible to prevent a decrease in performance due to the change in the degree. Further, since the connection members 311 and 312 are also put on and bonded to the fiber collimator 101 to LO 6, the stability of the fiber collimators 101 to 106 can be improved, and further performance improvement can be achieved. .
[0110] <第 2実施形態 > [0110] <Second Embodiment>
次に図 4を用いて本発明の第 2実施形態を説明する。  Next, a second embodiment of the present invention will be described with reference to FIG.
図 4は、基板 50上の全ての光部品(ファイバコリメータ 101〜106、波長選択フィル タ 71〜74、光路補正用部材 81、 82、光路補正部材 91、 92)を、接続部材 321で接 続した光モジュール B32の例である。即ち、全部の光部品にかかるように板状の接続 部材 321を被せ、接続部材 321の下面を、その下側の全部の光部品の上面に接着 固定している。  4 shows that all optical components (fiber collimators 101 to 106, wavelength selection filters 71 to 74, optical path correction members 81 and 82, optical path correction members 91 and 92) on the substrate 50 are connected by the connection member 321. This is an example of the optical module B32. That is, the plate-like connection member 321 is covered so as to cover all the optical components, and the lower surface of the connection member 321 is bonded and fixed to the upper surfaces of all the lower optical components.
[0111] このように、接続部材 321を全部の光部品にかかるように被せた場合、 1つの接続 部材 321を光部品の上に被せて接着するだけで簡単に温度や湿度に対する依存性 能の改善を図ることができる。  [0111] In this way, when the connection member 321 is covered so as to cover all the optical components, it is possible to easily depend on temperature and humidity simply by covering and bonding one connection member 321 on the optical component. Improvements can be made.
[0112] <第 3実施形態 >  [0112] <Third Embodiment>
次に、図 5を用いて本発明の第 3実施形態を説明する。  Next, a third embodiment of the present invention will be described with reference to FIG.
図 5は、基板 50上の光部品(ファイバコリメータ 101〜106、波長選択フィルタ 71〜 74、光路補正用部材 81、 82、光路補正部材 91、 92)と基板 50とを接続部材 325で 接続した光モジュール B33の例である。  FIG. 5 shows that optical components (fiber collimators 101 to 106, wavelength selection filters 71 to 74, optical path correction members 81 and 82, optical path correction members 91 and 92) on the substrate 50 and the substrate 50 are connected by a connecting member 325. It is an example of optical module B33.
[0113] この場合、基板 50のコリメータ配置面 52、 53には、第 1実施形態と比べて深い位 置決め溝 61〜66が切ってあり、両側のコリメータ配置面 52、 53力 光学素子配置面 51に搭載される光学素子 (各波長選択フィルタ 71〜74、光路補正用部材 81、 82、 光路補正部材 91、 92)の上面と同じ高さになるように設計され、接続部材 325の載 置面となっている。そして、接続部材 325は、コリメータ配置面 52、 53の上面に載置 されることで、同一基板 50上の全ての光部品(ファイバコリメータ 101〜106、波長選 択フィルタ 71〜74、光路補正用部材 81、 82、光路補正部材 91、 92)の上面と基板 50とを接着剤を介して接続して 、る。  [0113] In this case, the collimator arrangement surfaces 52 and 53 of the substrate 50 have deep positioning grooves 61 to 66 as compared to the first embodiment, and the collimator arrangement surfaces 52 and 53 on both sides are arranged. The optical element mounted on the surface 51 (each wavelength selection filter 71 to 74, optical path correction members 81 and 82, optical path correction members 91 and 92) is designed to have the same height as the upper surface of the connection member 325. It is a surface. The connecting member 325 is placed on the upper surfaces of the collimator arrangement surfaces 52 and 53, so that all optical components (fiber collimators 101 to 106, wavelength selection filters 71 to 74, and optical path correction on the same substrate 50 are provided. The upper surfaces of the members 81 and 82 and the optical path correcting members 91 and 92) and the substrate 50 are connected via an adhesive.
[0114] このように、基板 50上に接続部材 325の確実な載置面 (コリメータ配置面 52、 53) を設定していることにより、安定支持された接続部材 325によって光部品の傾きを、よ り効果的に抑制することができる。 [0114] As described above, since the reliable placement surface (collimator placement surfaces 52, 53) of the connection member 325 is set on the substrate 50, the inclination of the optical component can be reduced by the stably supported connection member 325. Yo Can be effectively suppressed.
[0115] <第 4実施形態 >  [0115] <Fourth embodiment>
次に図 6を用いて本発明の第 4実施形態を説明する。  Next, a fourth embodiment of the present invention will be described with reference to FIG.
図 6は、前述のように上面に位置決め溝を切った基板 50を使用する代わりに、側壁 (周壁 54)に位置決め孔 61H〜66Hを開けた箱型の筐体 55を用いた場合の例であ る。この場合、箱型の筐体 55は、 1枚の基板 50Aの上面の周縁部に全周を囲む周 壁 54を形成し、該周壁 54に複数の位置決め孔 61H〜66Hを貫通形成したものと考 えることができる。位置決め孔 61H〜66Hは、図 1の位置決め溝 61〜66に相当し、 周壁 54の内側の基板 50Aの上面が光学素子配置面 51となっている。また、各位置 決め孔 61H〜66Hにファイバコリメータ 101〜106が挿入固定され、光学素子配置 面 51上に波長選択フィルタ 71〜74、光路補正用部材 81、 82、光路補正部材 91、 9 2が搭載され、位置決めされた上で接着固定されている。  FIG. 6 shows an example in which a box-shaped housing 55 having positioning holes 61H to 66H in the side wall (peripheral wall 54) is used instead of using the substrate 50 having the positioning groove cut on the upper surface as described above. is there. In this case, the box-shaped housing 55 is formed by forming a peripheral wall 54 that surrounds the entire periphery at the peripheral edge of the upper surface of one substrate 50A, and a plurality of positioning holes 61H to 66H formed through the peripheral wall 54. I can think of it. The positioning holes 61H to 66H correspond to the positioning grooves 61 to 66 in FIG. 1, and the upper surface of the substrate 50A inside the peripheral wall 54 is the optical element placement surface 51. The fiber collimators 101 to 106 are inserted and fixed in the positioning holes 61H to 66H, and the wavelength selection filters 71 to 74, the optical path correction members 81 and 82, and the optical path correction members 91 and 92 are disposed on the optical element placement surface 51. After being mounted and positioned, it is bonded and fixed.
[0116] そして、光学素子配置面 51上に搭載された光学素子 (波長選択フィルタ 71〜74、 光路補正用部材 81、 82、光路補正部材 91、 92)の上面に、第 1実施形態と同様に、 接続部材 371、 381、 391が被せられて接着されることで、 2個以上の光部品の上部 が接続されている。また、全部の組み付けが終わった段階で、筐体 55の上面開口が カバー材 59で封止されて!/、る。  [0116] Then, on the upper surface of the optical elements (wavelength selection filters 71 to 74, optical path correction members 81 and 82, optical path correction members 91 and 92) mounted on the optical element arrangement surface 51, the same as in the first embodiment Further, the upper parts of two or more optical components are connected by covering and bonding the connecting members 371, 381, and 391. In addition, when the entire assembly is completed, the upper surface opening of the housing 55 is sealed with the cover material 59! /.
[0117] この場合も、基板 50A (筐体 55の底板)上の光学素子の傾きを抑制することができ 、性能の安定ィ匕を図ることができる。また、カバー材 59で封止したことにより、耐湿性 能の一層の向上を図ることができる。  Also in this case, the tilt of the optical element on the substrate 50A (the bottom plate of the casing 55) can be suppressed, and the performance can be stabilized. Further, by sealing with the cover material 59, it is possible to further improve the moisture resistance performance.
[0118] <第 5実施形態 >  [0118] <Fifth Embodiment>
次に図 7を用いて本発明の第 5実施形態を説明する。  Next, a fifth embodiment of the present invention will be described with reference to FIG.
図 7 (a)に示す光モジュール A1では、基板 50の上面の中央に光学素子配置面 51 が配置され、その両側に各 1本の位置決め溝 61、 62を有したコリメータ配置面 52、 5 3が配置され、各位置決め溝 61、 62に、軸線方向に対向させてファイバコリメータ 10 1、 102が配置され、光学素子配置面 51に光学素子 70が配置され、それにより、ファ ィバコリメータ 101、 102の間で、光学素子 70を介して光が空間伝送するように構成 されている。 [0119] ファイバコリメータ 101、 102の下面は位置決め溝 61、 62に接着固定され、光学素 子 70は、基板 50の上面に位置決めされた状態でその下面が接着固定されている。 光学素子 70としては、例えば、利得等価フィルタなどが配されており、それによりこの 光モジユーノレ A1は、第 1のファイバコリメータ 101を入力ポート、第 2のファイバコリメ ータ 102を出力ポートとした利得等価器として機能する。 In the optical module A1 shown in FIG. 7 (a), an optical element arrangement surface 51 is arranged at the center of the upper surface of the substrate 50, and collimator arrangement surfaces 52, 5 3 each having one positioning groove 61, 62 on each side thereof. The fiber collimators 101 and 102 are disposed in the positioning grooves 61 and 62 so as to face each other in the axial direction, and the optical element 70 is disposed on the optical element disposition surface 51, whereby the fiber collimators 101 and 102. In the meantime, the light is configured to be spatially transmitted through the optical element 70. [0119] The lower surfaces of the fiber collimators 101 and 102 are bonded and fixed to the positioning grooves 61 and 62, and the lower surface of the optical element 70 is bonded and fixed to the upper surface of the substrate 50. As the optical element 70, for example, a gain equivalent filter or the like is arranged, so that this optical module A1 has a gain using the first fiber collimator 101 as an input port and the second fiber collimator 102 as an output port. Functions as an equalizer.
[0120] そして、この光モジュール A1では、基板 50上に、 (b)または(c)に示すような、柱部 材 401と梁部材 402を有する門形の支持部材 40を配置し、その支持部材 400の柱 部材 401の下面を基板 50の上面に接着固定すると共に、支持部材 400の梁部材 4 02を光学素子 70の上面に被せて、該梁部材 402の下面を光学素子 70の上面に接 着固定し、光学素子 70の安定性を高めている。  In this optical module A1, the gate-shaped support member 40 having the column member 401 and the beam member 402 as shown in (b) or (c) is disposed on the substrate 50, and the support is provided. The bottom surface of the pillar member 401 of the member 400 is bonded and fixed to the top surface of the substrate 50, and the beam member 402 of the support member 400 is placed on the top surface of the optical element 70, and the bottom surface of the beam member 402 is placed on the top surface of the optical element 70. The stability of the optical element 70 is enhanced by attaching and fixing.
[0121] このように、門形の支持部材 400を基板 50上に設けることによって、 1個の光学素 子 70であっても、その上面を確実に拘束することができるようになる。従って、温湿度 変化に伴う光学素子 70の傾きを抑制でき、前記と同様の効果を奏することができる。  Thus, by providing the gate-shaped support member 400 on the substrate 50, the upper surface of even one optical element 70 can be reliably restrained. Therefore, the inclination of the optical element 70 accompanying the change in temperature and humidity can be suppressed, and the same effect as described above can be achieved.
[0122] なお、支持部材 400としては、(b)に示すように、柱部材 401と梁部材 402を予め別 部品として構成しておき、柱部材 401の下面を基板 50の上面に接着固定した上で、 該柱部材 401の上面と光学素子 70の上面とに梁部材 402を被せて接着するタイプ のものを使用してもよいし、(c)に示すように、最初力も柱部材 401と梁部材 402を予 め一体の部品として構成しておき、柱部材 401の下面を基板 50の上面に接着固定 すると同時に、光学素子 70の上面に梁部材 402を被せて接着固定するタイプのもの を使用してもよい。  [0122] As shown in (b), as the support member 400, the column member 401 and the beam member 402 are configured as separate parts in advance, and the lower surface of the column member 401 is bonded and fixed to the upper surface of the substrate 50. In the above, a type in which the upper surface of the pillar member 401 and the upper surface of the optical element 70 are covered with a beam member 402 may be used, and as shown in FIG. The beam member 402 is configured as an integral part in advance, and the lower surface of the column member 401 is bonded and fixed to the upper surface of the substrate 50, and at the same time, the beam member 402 is covered and bonded to the upper surface of the optical element 70. May be used.
[0123] また、図示例では、門形の支持部材 400を用いた場合を示した力 1本の柱部材 4 01と 1本の梁部材 402からなる逆 L字形の支持部材を使用してもよい。  [0123] In the illustrated example, the force shown in the case of using the gate-shaped support member 400 is used. Even if an inverted L-shaped support member made up of one column member 401 and one beam member 402 is used. Good.
[0124] 支持部材 400の特に柱部材 401は、光学素子 70と同程度の大きさの部品で、光学 素子 70と同程度の熱膨張率を持つ材料で構成してあるのが望ましい。なお、対象と する光モジュールの構成や材料、支持部材 400の形状や材料は任意に選定可能で ある。  [0124] In particular, the column member 401 of the support member 400 is a component having the same size as that of the optical element 70 and is preferably made of a material having a coefficient of thermal expansion similar to that of the optical element 70. The configuration and material of the target optical module and the shape and material of the support member 400 can be arbitrarily selected.
[0125] <他の実施形態 >  [0125] <Other Embodiments>
次にその他の実施形態について簡単に説明する。 図 8は第 6実施形態の光モジュール A2を示す図で、この光モジュール A2では、図 7の第 5実施形態の光学素子 70の背後に光路補正用部材 80を更に配置し、これら 2 つの光部品の上面を、第 1実施形態と同様の接続部材 410で接続して 、る。 Next, other embodiments will be briefly described. FIG. 8 shows an optical module A2 of the sixth embodiment. In this optical module A2, an optical path correcting member 80 is further arranged behind the optical element 70 of the fifth embodiment of FIG. The upper surfaces of the components are connected by a connection member 410 similar to that of the first embodiment.
[0126] 図 9は第 7実施形態の光モジュール B11を示す図である。この光モジュール B11は 、 lchの合波装置または分波装置として使用するための光モジュールであり、基板 5 0上に 3個の光学素子 71、 81、 91を配置し、その上面を、第 1実施形態と同様の接 続部材 410で接続して ヽる。  FIG. 9 is a view showing an optical module B11 of the seventh embodiment. This optical module B11 is an optical module for use as an lch multiplexing or demultiplexing device. Three optical elements 71, 81, 91 are arranged on a substrate 50, and the top surface thereof is the first one. The connection member 410 is the same as that in the embodiment.
[0127] 図 10は第 8実施形態の光モジュール B21を示す図である。この光モジュール B21 は、 2chの合波装置または分波装置として使用するための光モジュールであり、基板 50上に 4個の光学素子 71、 72、 81、 91を配置し、その上面を、第 1実施形態と同様 の接続部材 410で接続して 、る。  FIG. 10 is a diagram showing an optical module B21 according to the eighth embodiment. This optical module B21 is an optical module for use as a 2-channel multiplexing or demultiplexing device. Four optical elements 71, 72, 81, 91 are arranged on a substrate 50, and the upper surface thereof is the first one. The connection member 410 is the same as that in the first embodiment.
[0128] 図 11は第 9実施形態の光モジュール D11を示す図である。この光モジュール D11 は、 lchの合分波装置として使用するための光モジュールであり、基板 50上に 4個の 光学素子 71、 81を配置し、その上面を、第 1実施形態と同様の接続部材 410で接続 している。  FIG. 11 is a view showing an optical module D11 of the ninth embodiment. This optical module D11 is an optical module for use as an lch multiplexer / demultiplexer. Four optical elements 71 and 81 are arranged on a substrate 50, and the upper surface thereof is connected in the same manner as in the first embodiment. Connected with member 410.
[0129] 図 12は第 10実施形態の光モジュール D21を示す図である。この光モジュール D2 1は、 2chの合分波装置として使用するための光モジュールであり、基板 50上に 8個 の光学素子 71、 72、 81、 82を配置し、その上面を、第 1実施形態と同様の接続部材 410で接続している。  FIG. 12 shows an optical module D21 according to the tenth embodiment. This optical module D2 1 is an optical module for use as a 2-channel multiplexer / demultiplexer. Eight optical elements 71, 72, 81, 82 are arranged on the substrate 50, and the upper surface thereof is used for the first implementation. It is connected by a connecting member 410 similar to the form.
[0130] 図 19は第 11実施形態の光モジュール B33を示す図である。この実施形態にかか る光モジュール B33は、接続部材として、単なる板状体を用いる代わりに、上述の第 2実施形態に力かる光モジュール B32 (図 4参照)自体を用いる例である。すなわち、 まず、ベースとなる光モジュールとしては、上述の第 1実施例でベースとなる光モジュ ールとして用いた光モジュール B3 (図 2参照)を用いる。この光モジュール B3におけ る基板 50上の全ての光部品(ファイバコリメータ 101〜106、波長選択フィルタ 71〜 74、光路補正用部材 81、 82、光路補正部材 91、 92)を、光モジュール B32におけ る基板 50 (図 4参照)の底面で接続するものである。換言すると、ベースとなる光モジ ユール B3 (図 2参照)の全部の光部品に力かるように、すでに組立済みの光モジユー ル B32を被せ、この光モジュール B32における基板 50の下面を、その下側の全部の 光部品の上面に接着固定している。このように、接続部材として、同じ光モジュール の底面を用いた場合、同一外装筐体の中により多くの機能を詰め込むことが可能で あり、コストの低減に寄与することができる。 FIG. 19 shows an optical module B33 of the eleventh embodiment. The optical module B33 according to this embodiment is an example in which the optical module B32 (see FIG. 4) itself that works according to the above-described second embodiment is used as a connecting member instead of using a simple plate-like body. That is, first, as the base optical module, the optical module B3 (see FIG. 2) used as the base optical module in the first embodiment described above is used. All optical components (fiber collimators 101 to 106, wavelength selection filters 71 to 74, optical path correction members 81 and 82, optical path correction members 91 and 92) on the substrate 50 in this optical module B3 are connected to the optical module B32. The connection is made at the bottom of the board 50 (see Fig. 4). In other words, an already assembled optical module is applied so that all optical components of the base optical module B3 (see Fig. 2) can be used. The bottom surface of the substrate 50 in this optical module B32 is adhered and fixed to the top surfaces of all the optical components below it. Thus, when the bottom surface of the same optical module is used as the connection member, more functions can be packed in the same exterior casing, which can contribute to cost reduction.
[0131] なお、これらの実施形態においても、図 1に示すように、 2個以上の単位で光学素 子の上面を接続部材で接続すれば、有効な効果を奏することができる。 [0131] In these embodiments as well, as shown in Fig. 1, if the upper surface of the optical element is connected by a connecting member in two or more units, an effective effect can be obtained.
産業上の利用可能性  Industrial applicability
[0132] 以上説明したように、本発明によれば、表面実装型の光モジュールにおいて、搭載 する光部品の上面を接続部材で接続することにより、極めて容易に温度安定性、耐 湿性などの信頼性を向上することができる。よって、高い信頼性を保ちながらも、より 容易で安価な外装筐体が採用可能となり、小型で低損失で信頼性の高い光モジュ ールを低価格で提供することが可能となる。 [0132] As described above, according to the present invention, in the surface mount type optical module, the upper surface of the optical component to be mounted is connected by the connecting member, so that reliability such as temperature stability and moisture resistance can be very easily achieved. Can be improved. Therefore, it is possible to adopt an easier and cheaper outer casing while maintaining high reliability, and it is possible to provide a small, low-loss and highly reliable optical module at a low price.
図面の簡単な説明  Brief Description of Drawings
[0133] [図 1]本発明の第 1実施形態の光モジュールの構成を示す図で、(a)は平面図、(b) は側面図である。  FIG. 1 is a diagram showing a configuration of an optical module according to a first embodiment of the present invention, where (a) is a plan view and (b) is a side view.
[図 2]本発明の第 1実施形態のベースとなる光モジュールを示す図で、 (a)は平面図 、 (b)は側面図である。  FIG. 2 shows an optical module serving as a base of the first embodiment of the present invention, where (a) is a plan view and (b) is a side view.
[図 3]同光モジュールに使用されるファイバコリメータの構成を示す図である。  FIG. 3 is a diagram showing a configuration of a fiber collimator used in the optical module.
[図 4]本発明の第 2実施形態の光モジュールの構成を示す図で、(a)は平面図、(b) は側面図である。  FIG. 4 is a diagram showing a configuration of an optical module according to a second embodiment of the present invention, where (a) is a plan view and (b) is a side view.
[図 5]本発明の第 3実施形態の光モジュールの構成を示す図で、(a)は平面図、(b) は側面図、(c)は (a)の Vc— Vc矢視図である。  FIG. 5 is a diagram showing a configuration of an optical module according to a third embodiment of the present invention, where (a) is a plan view, (b) is a side view, and (c) is a view taken along the line Vc—Vc of (a). is there.
[図 6]本発明の第 4実施形態の光モジュールの構成を示す図で、(a)は平面図、(b) は側断面図である。  FIG. 6 is a diagram showing a configuration of an optical module according to a fourth embodiment of the present invention, where (a) is a plan view and (b) is a side sectional view.
[図 7]本発明の第 5実施形態の光モジュールの構成を示す図で、(a)は平面図、(b) は支持部材の第 1例を示す斜視図、(c)は支持部材の第 2例を示す斜視図である。  FIG. 7 is a diagram showing a configuration of an optical module according to a fifth embodiment of the present invention, where (a) is a plan view, (b) is a perspective view showing a first example of a support member, and (c) is a diagram of the support member. FIG. 6 is a perspective view showing a second example.
[図 8]本発明の第 6実施形態の光モジュールの構成を示す図で、(a)は平面図、(b) は側面図である。 [図 9]本発明の第 7実施形態の光モジュールの構成を示す図で、(a)は平面図、(b) は側面図である。 FIG. 8 is a diagram showing a configuration of an optical module according to a sixth embodiment of the present invention, where (a) is a plan view and (b) is a side view. FIG. 9 is a diagram showing a configuration of an optical module according to a seventh embodiment of the present invention, where (a) is a plan view and (b) is a side view.
[図 10]本発明の第 8実施形態の光モジュールの構成を示す図で、(a)は平面図、(b) は側面図である。  FIG. 10 is a diagram showing a configuration of an optical module according to an eighth embodiment of the present invention, where (a) is a plan view and (b) is a side view.
[図 11]本発明の第 9実施形態の光モジュールの構成を示す図で、(a)は平面図、(b) は側面図である。  FIG. 11 is a diagram showing a configuration of an optical module according to a ninth embodiment of the present invention, where (a) is a plan view and (b) is a side view.
[図 12]本発明の第 10実施形態の光モジュールの構成を示す図で、(a)は平面図、( b)は側面図である。  FIG. 12 is a diagram showing a configuration of an optical module according to a tenth embodiment of the present invention, in which (a) is a plan view and (b) is a side view.
[図 13]図 1の第 1実施形態の光モジュールと図 2の光モジュールの特性比較図である  13 is a characteristic comparison diagram of the optical module of the first embodiment of FIG. 1 and the optical module of FIG.
[図 14]図 2の光モジュールの特性図である。 FIG. 14 is a characteristic diagram of the optical module of FIG.
[図 15]図 1の光モジュールの特性図である。 FIG. 15 is a characteristic diagram of the optical module in FIG. 1.
[図 16]図 1の第 1実施形態における接続部材の有無による性能の比較図である。  16 is a performance comparison diagram according to the presence or absence of a connection member in the first embodiment of FIG.
[図 17]図 1の第 1実施形態における接続部材の有無による性能の更に別の比較図で ある。 FIG. 17 is still another comparative view of performance depending on the presence or absence of the connecting member in the first embodiment of FIG.
[図 18]従来の光分岐挿入装置の例を示す図である。  FIG. 18 is a diagram showing an example of a conventional optical add / drop multiplexer.
[図 19]本発明の第 11実施形態の光モジュールの構成を示す図で、(a)は平面図、( b)は側面図である。  FIG. 19 is a diagram showing a configuration of an optical module according to an eleventh embodiment of the present invention, in which (a) is a plan view and (b) is a side view.
符号の説明 Explanation of symbols
B3, B31, B32, B33, B34, Dl l, D12 光モジュール  B3, B31, B32, B33, B34, Dl l, D12 Optical module
50, 50A 基板  50, 50A board
51 光学素子配置面  51 Optical element placement surface
52, 53 コリメータ配置面 (部材載置面)  52, 53 Collimator placement surface (component placement surface)
54 周壁  54 Perimeter wall
55 筐体底板  55 Case bottom plate
59 カバー材  59 Cover material
61〜66 V溝 (位置決め溝)  61 to 66 V groove (positioning groove)
61〜66 位置決め孔 光学素子 61-66 Positioning hole Optical element
〜74 波長選択フィルタ (光学素子)~ 74 Wavelength selection filter (optical element)
, 82 光路補正用部材, 82 Optical path correction member
, 92 光路補正部材, 92 Optical path correction member
1〜: 106 ファイノくコリメータ1 ~: 106 fino-collimator
0 光ファイバ端末0 Optical fiber terminal
1 光ファイバ1 Optical fiber
1a コア1a core
1b クラッド1b cladding
2 コアレスファイノ2 Coreless Fino
5 一芯フエルール 5 Single core ferrule
コリメータレンズ Collimator lens
1, 312, 325, 371, 381, 391, 410 接続部材 支持部材1, 312, 325, 371, 381, 391, 410 Connection member Support member
1 柱部材1 Column member
2 梁部材2 Beam members
1〜1006 ファイバ伝送路  1 to 1006 Fiber transmission line

Claims

請求の範囲 The scope of the claims
[1] 1枚の基板の上面に複数の光部品を配置し、互いの間で光が空間伝送するように 前記複数の光部品を位置決めした上で、各光部品の下面を前記基板の上面に接着 固定した表面実装型の光モジュールにお!/、て、  [1] A plurality of optical components are arranged on the upper surface of a single substrate, and the plurality of optical components are positioned so that light is spatially transmitted between them, and the lower surface of each optical component is placed on the upper surface of the substrate. Adhered to a fixed surface mount optical module! /
前記光部品の上面に、少なくとも 2個以上の光部品にかかるように接続部材を被せ 、該接続部材の下面を、その下側の光部品の上面に接着固定したことを特徴とする 光モジユーノレ。  An optical module, wherein an upper surface of the optical component is covered with a connecting member so as to cover at least two optical components, and a lower surface of the connecting member is bonded and fixed to an upper surface of the lower optical component.
[2] 請求項 1に記載の光モジュールであって、 [2] The optical module according to claim 1,
前記光部品の上面に、全部の光部品にかかるように板状の接続部材を被せ、該接 続部材の下面を、その下側の全部の光部品の上面に接着固定したことを特徴とする 光モジユーノレ。  A plate-like connection member is placed on the upper surface of the optical component so as to cover all the optical components, and the lower surface of the connection member is adhesively fixed to the upper surfaces of all the lower optical components. Light module.
[3] 請求項 1に記載の光モジュールであって、 [3] The optical module according to claim 1,
前記光部品の一種として、前記基板の上面に形成した複数の位置決め溝にそれぞ れフアイバコリメータを配置すると共に、前記光部品の他の一種として、自身を介して 前記複数のファイバコリメータの間で光が空間伝送するように、前記基板の上面にブ ロック形状の複数の光学素子を配置し、  As one type of the optical component, a fiber collimator is disposed in each of a plurality of positioning grooves formed on the upper surface of the substrate, and as another type of the optical component, between the plurality of fiber collimators via itself. A plurality of block-shaped optical elements are arranged on the upper surface of the substrate so that light is transmitted in space,
これらのうちの少なくとも 2個以上の光学素子の上面に前記接続部材を被せて、該 接続部材の下面を、その下側の光学素子の上面に接着固定したことを特徴とする光 モジユーノレ。  An optical module characterized in that the connecting member is covered on the upper surface of at least two of these optical elements, and the lower surface of the connecting member is bonded and fixed to the upper surface of the lower optical element.
[4] 請求項 3に記載の光モジュールであって、  [4] The optical module according to claim 3,
前記各位置決め溝に配置した複数のファイバコリメータの上にも、前記と同一また は別の接続部材を被せて、該接続部材の下面を、その下側の複数のファイバコリメ ータの上面に接着固定したことを特徴とする光モジュール。  A plurality of fiber collimators arranged in the positioning grooves are also covered with the same or different connection members as described above, and the lower surfaces of the connection members are bonded to the upper surfaces of the lower fiber collimators. An optical module characterized by being fixed.
[5] 1枚の基板の上面に複数の光部品を配置し、互いの間で光が空間伝送するように 前記複数の光部品を位置決めした上で、各光部品の下面を前記基板の上面に接着 固定した表面実装型の光モジュールにお!/、て、 [5] A plurality of optical components are arranged on the upper surface of a single substrate, and the plurality of optical components are positioned so that light is spatially transmitted between them, and the lower surface of each optical component is placed on the upper surface of the substrate. Adhered to a fixed surface mount optical module! /
前記基板上に、柱部材と梁部材を有する逆 L字形または門形の支持部材を配置し て、その支持部材の柱部材の下面を前記基板の上面に接着固定し、該支持部材の 梁部材を少なくとも 1個の前記光部品の上面に被せて、該梁部材の下面を、その下 側の光部品の上面に接着固定したことを特徴とする光モジュール。 An inverted L-shaped or gate-shaped support member having a column member and a beam member is disposed on the substrate, and the lower surface of the column member of the support member is bonded and fixed to the upper surface of the substrate. An optical module characterized in that a beam member is placed on the upper surface of at least one optical component, and the lower surface of the beam member is bonded and fixed to the upper surface of the lower optical component.
[6] 請求項 5に記載の光モジュールであって、  [6] The optical module according to claim 5,
前記支持部材の柱部材と梁部材を別部品として構成し、前記柱部材の下面を前記 基板の上面に接着固定した上で、該柱部材の上面と前記少なくとも 1個の光部品の 上面とに前記梁部材を被せて接着固定したことを特徴とする光モジュール。  The pillar member and the beam member of the support member are configured as separate parts, and the bottom surface of the pillar member is bonded and fixed to the top surface of the substrate, and then the top surface of the pillar member and the top surface of the at least one optical component An optical module characterized by covering and fixing the beam member.
[7] 請求項 5に記載の光モジュールであって、 [7] The optical module according to claim 5,
前記支持部材の柱部材と梁部材を予め一体の部品として構成し、前記柱部材の下 面を前記基板の上面に接着固定すると同時に、前記少なくとも 1個の光部品の上面 に前記梁部材を被せて接着固定したことを特徴とする光モジュール。  The column member and the beam member of the support member are configured in advance as an integral part, and the lower surface of the column member is bonded and fixed to the upper surface of the substrate, and at the same time, the beam member is covered on the upper surface of the at least one optical component. An optical module characterized by being bonded and fixed.
[8] 請求項 5〜7の!、ずれかに記載の光モジュールであって、 [8] The optical module according to any one of claims 5 to 7, wherein
前記光部品の一種として、前記基板の上面に形成した複数の位置決め溝にそれぞ れフアイバコリメータを配置すると共に、前記光部品の他の一種として、自身を介して 前記複数のファイバコリメータの間で光が空間伝送するように、前記基板の上面にブ ロック形状の光学素子を少なくとも 1個配置し、  As one type of the optical component, a fiber collimator is disposed in each of a plurality of positioning grooves formed on the upper surface of the substrate, and as another type of the optical component, between the plurality of fiber collimators via itself. At least one block-shaped optical element is arranged on the upper surface of the substrate so that light is transmitted in space,
前記支持部材の梁部材を前記少なくとも 1個の光学素子の上面に被せて、該梁部 材の下面を、その下側の光学素子の上面に接着固定したことを特徴とする光モジュ 一ノレ。  An optical module according to claim 1, wherein the beam member of the support member is placed on the upper surface of the at least one optical element, and the lower surface of the beam member is bonded and fixed to the upper surface of the lower optical element.
[9] 1枚の基板の上面に複数の光部品を配置し、互いの間で光が空間伝送するように 前記複数の光部品を位置決めした上で、各光部品の下面を前記基板の上面に接着 固定した表面実装型の光モジュールにお!/、て、  [9] A plurality of optical components are arranged on the upper surface of a single substrate, the optical components are positioned so that light is transmitted in space between each other, and the lower surface of each optical component is placed on the upper surface of the substrate. Adhered to a fixed surface mount optical module! /
前記基板上に、前記複数の光部品のうち、少なくとも 1個の光部品の上面高さと同 レベルの部材載置面を形成し、その部材載置面に接続部材の下面を接着固定する と共に、該接続部材の下面を、前記部材載置面と上面高さを同レベルに設定した少 なくとも 1個の光部品の上面に被せて、接着固定したことを特徴とする光モジュール。  On the substrate, a member mounting surface having the same level as the upper surface height of at least one of the plurality of optical components is formed, and the lower surface of the connection member is bonded and fixed to the member mounting surface. An optical module, characterized in that the lower surface of the connecting member is put on and bonded to the upper surface of at least one optical component whose upper surface height is set to the same level as the member mounting surface.
[10] 請求項 9に記載の光モジュールであって、  [10] The optical module according to claim 9,
前記基板上に形成した部材載置面に複数の位置決め溝を形成し、前記光部品の 一種として、前記基板上に形成した複数の位置決め溝にそれぞれファイバコリメータ を配置すると共に、前記光部品の他の一種として、自身を介して前記複数のファイバ コリメータの間で光が空間伝送するように、前記基板の上面に、上面高さを前記部材 載置面と同レベルに設定したブロック形状の光学素子を配置し、 A plurality of positioning grooves are formed on a member mounting surface formed on the substrate, and a fiber collimator is provided in each of the plurality of positioning grooves formed on the substrate as one type of the optical component. As another type of the optical component, the upper surface height of the substrate is set to the upper surface of the substrate so that light is spatially transmitted between the plurality of fiber collimators through the optical component. Place block-shaped optical elements set at the same level,
前記接続部材を前記部材載置面に載置することにより、該接続部材を、前記位置 決め溝に配置されたファイバコリメータの上面と前記光学素子の上面に被せ、その状 態で該接続部材の下面を、前記部材載置面と前記ファイバコリメータの上面と前記 光学素子の上面とに接着固定したことを特徴とする光モジュール。  By placing the connection member on the member placement surface, the connection member is placed on the upper surface of the fiber collimator and the upper surface of the optical element disposed in the positioning groove, and in this state, the connection member An optical module comprising a lower surface bonded and fixed to the member mounting surface, the upper surface of the fiber collimator, and the upper surface of the optical element.
[11] 1枚の基板の上面の周縁部に全周を囲む周壁を形成し、該周壁に複数の位置決 め孔を貫通形成して、各位置決め孔に周壁の外部カゝらそれぞれファイバコリメータを 挿入固定すると共に、前記周壁の内側の基板の上面に光学素子を配置し、該光学 素子を介して前記複数のファイバコリメータの間で互いに光が空間伝送するように、 前記光学素子を位置決めして、その上で、前記光学素子の下面を前記基板の上面 に接着固定した光モジュールであって、  [11] A peripheral wall that surrounds the entire periphery is formed at the peripheral edge of the upper surface of one substrate, and a plurality of positioning holes are formed through the peripheral wall, and a fiber collimator is provided in each positioning hole from the outer cover of the peripheral wall. The optical element is disposed on the upper surface of the substrate inside the peripheral wall, and the optical element is positioned so that light can be spatially transmitted between the plurality of fiber collimators via the optical element. And an optical module in which the lower surface of the optical element is bonded and fixed to the upper surface of the substrate,
前記光学素子の上面に、少なくとも 2個以上の光学素子にかかるように接続部材を 被せ、該接続部材の下面を、その下側の光学素子の上面に接着固定したことを特徴 とする光モジュール。  An optical module, wherein a top surface of the optical element is covered with a connection member so as to cover at least two or more optical elements, and a bottom surface of the connection member is bonded and fixed to a top surface of the lower optical element.
[12] 請求項 11に記載の光モジュールであって、 [12] The optical module according to claim 11,
前記基板の周壁の上端面に、前記周壁の内側の基板上の空間を封止するカバー 材を載置固定したことを特徴とする光モジュール。  An optical module, wherein a cover material for sealing a space on the substrate inside the peripheral wall is placed and fixed on an upper end surface of the peripheral wall of the substrate.
[13] 請求項 3、 4、 10、 11、 12のいずれかに記載の光モジュールであって、 [13] The optical module according to any one of claims 3, 4, 10, 11, and 12,
前記ファイバコリメータが、  The fiber collimator is
中心部のコア及びその外周部のクラッドを有する光ファイバの端面に、前記コアと 略同一で均一な屈折率を有する材料よりなるコアレスファイバの一端面を接合し、前 記光ファイバの光軸上で前記コアレスファイバの他端面側にコリメータレンズを配置し てなるものであることを特徴とする光モジュール。  One end face of a coreless fiber made of a material having a uniform refractive index substantially the same as the core is bonded to the end face of the optical fiber having a core at the center and a clad at the outer periphery of the optical fiber. An optical module comprising a collimator lens disposed on the other end surface side of the coreless fiber.
[14] 請求項 13に記載の光モジュールであって、 [14] The optical module according to claim 13,
前記ファイバコリメータ力 端面にコアレスファイバを接合した前記光ファイバの端末 と、前記コリメータレンズとを、ガラス管内に配置することにより単体の光部品として構 成されており、当該単体の光部品として構成されたファイバコリメータの前記ガラス管 力 前記位置決め溝内または位置決め孔内に配置されていることを特徴とする光モ ジュール。 The fiber collimator force The end of the optical fiber with a coreless fiber bonded to the end face and the collimator lens are arranged in a glass tube as a single optical component. An optical module comprising: a glass tube force of a fiber collimator configured as the single optical component, and disposed in the positioning groove or the positioning hole.
[15] 請求項 3、 4、 10、 11、 12、 14のいずれかに記載の光モジュールであって、  [15] The optical module according to any one of claims 3, 4, 10, 11, 12, and 14,
前記光学素子の一種として、入射される波長多重光のうち特定の波長帯域の光の みを透過し他波長の光を反射する分波機能と、片面に入射されて透過する特定波 長の透過光と他面から入射されて反射する他波長の反射光を合波する合波機能と、 を有する波長選択フィルタが設けられていることを特徴とする光モジュール。  As one type of the optical element, a demultiplexing function that transmits only light of a specific wavelength band and reflects light of other wavelengths among incident wavelength multiplexed light, and transmission of a specific wavelength that is incident on and transmitted through one side. An optical module, comprising: a wavelength selecting filter having a multiplexing function for multiplexing reflected light of another wavelength incident and reflected from the other surface.
[16] 請求項 8に記載の光モジュールであって、 [16] The optical module according to claim 8,
前記ファイバコリメータが、  The fiber collimator is
中心部のコア及びその外周部のクラッドを有する光ファイバの端面に、前記コアと 略同一で均一な屈折率を有する材料よりなるコアレスファイバの一端面を接合し、前 記光ファイバの光軸上で前記コアレスファイバの他端面側にコリメータレンズを配置し てなるものであることを特徴とする光モジュール。  One end face of a coreless fiber made of a material having a uniform refractive index substantially the same as the core is bonded to the end face of the optical fiber having a core at the center and a clad at the outer periphery of the optical fiber. An optical module comprising a collimator lens disposed on the other end surface side of the coreless fiber.
[17] 請求項 16に記載の光モジュールであって、 [17] The optical module according to claim 16,
前記ファイバコリメータ力 端面にコアレスファイバを接合した前記光ファイバの端末 と、前記コリメータレンズとを、ガラス管内に配置することにより単体の光部品として構 成されており、当該単体の光部品として構成されたファイバコリメータの前記ガラス管 力 前記位置決め溝内または位置決め孔内に配置されていることを特徴とする光モ ジュール。  The fiber collimator force is configured as a single optical component by arranging the end of the optical fiber having a coreless fiber bonded to the end face and the collimator lens in a glass tube, and is configured as the single optical component. The glass tube force of the optical fiber collimator is arranged in the positioning groove or the positioning hole.
[18] 請求項 8に記載の光モジュールであって、  [18] The optical module according to claim 8,
前記光学素子の一種として、入射される波長多重光のうち特定の波長帯域の光の みを透過し他波長の光を反射する分波機能と、片面に入射されて透過する特定波 長の透過光と他面から入射されて反射する他波長の反射光を合波する合波機能と、 を有する波長選択フィルタが設けられていることを特徴とする光モジュール。  As one type of the optical element, a demultiplexing function that transmits only light of a specific wavelength band and reflects light of other wavelengths among incident wavelength multiplexed light, and transmission of a specific wavelength that is incident on and transmitted through one side. An optical module, comprising: a wavelength selecting filter having a multiplexing function for multiplexing reflected light of another wavelength incident and reflected from the other surface.
[19] 請求項 13に記載の光モジュールであって、 [19] The optical module according to claim 13,
前記光学素子の一種として、入射される波長多重光のうち特定の波長帯域の光の みを透過し他波長の光を反射する分波機能と、片面に入射されて透過する特定波 長の透過光と他面から入射されて反射する他波長の反射光を合波する合波機能と、 を有する波長選択フィルタが設けられていることを特徴とする光モジュール。 As one type of the optical element, a demultiplexing function that transmits only light of a specific wavelength band and reflects light of other wavelengths among incident wavelength multiplexed light, and a specific wave that is incident on and transmitted through one side. An optical module, comprising: a wavelength selection filter having a multiplexing function for combining long transmitted light and reflected light of another wavelength incident and reflected from the other surface.
[20] 請求項 16に記載の光モジュールであって、  [20] The optical module according to claim 16,
前記光学素子の一種として、入射される波長多重光のうち特定の波長帯域の光の みを透過し他波長の光を反射する分波機能と、片面に入射されて透過する特定波 長の透過光と他面から入射されて反射する他波長の反射光を合波する合波機能と、 を有する波長選択フィルタが設けられていることを特徴とする光モジュール。  As one type of the optical element, a demultiplexing function that transmits only light of a specific wavelength band and reflects light of other wavelengths among incident wavelength multiplexed light, and transmission of a specific wavelength that is incident on and transmitted through one side. An optical module, comprising: a wavelength selecting filter having a multiplexing function for multiplexing reflected light of another wavelength incident and reflected from the other surface.
[21] 請求項 17に記載の光モジュールであって、  [21] The optical module according to claim 17,
前記光学素子の一種として、入射される波長多重光のうち特定の波長帯域の光の みを透過し他波長の光を反射する分波機能と、片面に入射されて透過する特定波 長の透過光と他面から入射されて反射する他波長の反射光を合波する合波機能と、 を有する波長選択フィルタが設けられていることを特徴とする光モジュール。  As one type of the optical element, a demultiplexing function that transmits only light of a specific wavelength band and reflects light of other wavelengths among incident wavelength multiplexed light, and transmission of a specific wavelength that is incident on and transmitted through one side. An optical module, comprising: a wavelength selecting filter having a multiplexing function for multiplexing reflected light of another wavelength incident and reflected from the other surface.
PCT/JP2006/318788 2006-09-21 2006-09-21 Optical module WO2008035430A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/318788 WO2008035430A1 (en) 2006-09-21 2006-09-21 Optical module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/318788 WO2008035430A1 (en) 2006-09-21 2006-09-21 Optical module

Publications (1)

Publication Number Publication Date
WO2008035430A1 true WO2008035430A1 (en) 2008-03-27

Family

ID=39200263

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/318788 WO2008035430A1 (en) 2006-09-21 2006-09-21 Optical module

Country Status (1)

Country Link
WO (1) WO2008035430A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015210529A (en) * 2014-04-24 2015-11-24 ジートラン インコーポレイテッド Wavelength-division multiplexer (wdm) and de-multiplexer (wddm)
JP2017090741A (en) * 2015-11-12 2017-05-25 日本電気硝子株式会社 Optical component unit
CN114815027A (en) * 2021-01-29 2022-07-29 波若威科技股份有限公司 Optical device

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6330806A (en) * 1986-07-25 1988-02-09 Mitsubishi Electric Corp Optical multiplexer/demultiplexer
JPS6338907A (en) * 1986-08-04 1988-02-19 Oki Electric Ind Co Ltd Optical multiplexing/demultiplexing module
JPS6360409A (en) * 1986-09-01 1988-03-16 Fujitsu Ltd Protecting method for optical parts
JPH01246511A (en) * 1988-03-29 1989-10-02 Toshiba Corp Optical circuit parts
JPH07174933A (en) * 1993-11-02 1995-07-14 Sumitomo Electric Ind Ltd Optical branching and multiplexing module and casing
JP2003177272A (en) * 2001-12-12 2003-06-27 Alps Electric Co Ltd Optical multiplexer/demultiplexer, method of manufacturing the same and optical multiplexing/ demultiplexing module
JP2003273393A (en) * 2002-03-15 2003-09-26 Sharp Corp Optical communication device
JP2004094242A (en) * 2002-08-15 2004-03-25 Hoya Corp Optical module
WO2004053547A1 (en) * 2002-12-12 2004-06-24 Hoya Corp Optical fiber terminal, manufacturing method thereof, optical coupler, and optical part
WO2006006197A1 (en) * 2004-05-26 2006-01-19 Hoya Corporation Optical module and optical wavelength multiplexer/demultiplexer

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6330806A (en) * 1986-07-25 1988-02-09 Mitsubishi Electric Corp Optical multiplexer/demultiplexer
JPS6338907A (en) * 1986-08-04 1988-02-19 Oki Electric Ind Co Ltd Optical multiplexing/demultiplexing module
JPS6360409A (en) * 1986-09-01 1988-03-16 Fujitsu Ltd Protecting method for optical parts
JPH01246511A (en) * 1988-03-29 1989-10-02 Toshiba Corp Optical circuit parts
JPH07174933A (en) * 1993-11-02 1995-07-14 Sumitomo Electric Ind Ltd Optical branching and multiplexing module and casing
JP2003177272A (en) * 2001-12-12 2003-06-27 Alps Electric Co Ltd Optical multiplexer/demultiplexer, method of manufacturing the same and optical multiplexing/ demultiplexing module
JP2003273393A (en) * 2002-03-15 2003-09-26 Sharp Corp Optical communication device
JP2004094242A (en) * 2002-08-15 2004-03-25 Hoya Corp Optical module
WO2004053547A1 (en) * 2002-12-12 2004-06-24 Hoya Corp Optical fiber terminal, manufacturing method thereof, optical coupler, and optical part
WO2006006197A1 (en) * 2004-05-26 2006-01-19 Hoya Corporation Optical module and optical wavelength multiplexer/demultiplexer

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015210529A (en) * 2014-04-24 2015-11-24 ジートラン インコーポレイテッド Wavelength-division multiplexer (wdm) and de-multiplexer (wddm)
JP2017090741A (en) * 2015-11-12 2017-05-25 日本電気硝子株式会社 Optical component unit
CN114815027A (en) * 2021-01-29 2022-07-29 波若威科技股份有限公司 Optical device
CN114815027B (en) * 2021-01-29 2024-06-25 波若威科技股份有限公司 Optical device

Similar Documents

Publication Publication Date Title
US11460641B2 (en) Free-space optical collimator
JP4311579B2 (en) Optical module and optical wavelength multiplexer / demultiplexer
US6396980B1 (en) Multi-port fiber optic device with V-groove dual fiber collimator for WDM application
KR20030009765A (en) Packaging device for waveguide element
CN109212680B (en) Receiver optical assembly employing optical attenuator
JPWO2006134675A1 (en) Optical multiplexer / demultiplexer and assembly apparatus therefor
US11474299B2 (en) Wavelength-division multiplexing devices with modified angles of incidence
US7808705B2 (en) Wavelength-selective switch
JP3866585B2 (en) Manufacturing method of filter module
US6961496B2 (en) Optical package with cascaded filtering
KR20040016406A (en) Optical module
WO2001067146A2 (en) Improved optical add/drop filter and method of making same
WO2008035430A1 (en) Optical module
JP5324371B2 (en) Optical connection component and optical connection method
US7103246B1 (en) Cost-effective packaging of fiber optical devices
US7184620B1 (en) 3-port optical add-drop multiplexer (OADM)
US7295730B2 (en) Glass package for optical device
JP3985576B2 (en) Optical connector, optical wiring system, and optical connector manufacturing method
US20030077044A1 (en) Optical multiplexer/demultiplexer module and production method therefor
JP4319067B2 (en) Optical multiplexer / demultiplexer
JP2865789B2 (en) Optical transmission module
JP2001108873A (en) Optical transmission module
JP2019139147A (en) Optical module
JP2009139861A (en) Array-type optical element
JP2005173213A (en) Optical collimator and optical component using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06798227

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06798227

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP