WO2008032430A1 - Motor-integrated magnetic bearing device - Google Patents

Motor-integrated magnetic bearing device Download PDF

Info

Publication number
WO2008032430A1
WO2008032430A1 PCT/JP2007/000898 JP2007000898W WO2008032430A1 WO 2008032430 A1 WO2008032430 A1 WO 2008032430A1 JP 2007000898 W JP2007000898 W JP 2007000898W WO 2008032430 A1 WO2008032430 A1 WO 2008032430A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
cooling
magnetic bearing
coil
air
Prior art date
Application number
PCT/JP2007/000898
Other languages
French (fr)
Japanese (ja)
Inventor
Takayoshi Ozaki
Hiroyuki Yamada
Kenichi Suzuki
Nobuyuki Suzuki
Original Assignee
Ntn Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2006247882A external-priority patent/JP2008072812A/en
Priority claimed from JP2006247881A external-priority patent/JP2008072811A/en
Priority claimed from JP2006247880A external-priority patent/JP2008072810A/en
Priority claimed from JP2006247879A external-priority patent/JP2008072809A/en
Application filed by Ntn Corporation filed Critical Ntn Corporation
Publication of WO2008032430A1 publication Critical patent/WO2008032430A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B11/00Compression machines, plants or systems, using turbines, e.g. gas turbines
    • F25B11/02Compression machines, plants or systems, using turbines, e.g. gas turbines as expanders
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/19Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
    • F02C6/04Gas-turbine plants providing heated or pressurised working fluid for other apparatus, e.g. without mechanical power output
    • F02C6/10Gas-turbine plants providing heated or pressurised working fluid for other apparatus, e.g. without mechanical power output supplying working fluid to a user, e.g. a chemical process, which returns working fluid to a turbine of the plant
    • F02C6/12Turbochargers, i.e. plants for augmenting mechanical power output of internal-combustion piston engines by increase of charge pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/36Power transmission arrangements between the different shafts of the gas turbine plant, or between the gas-turbine plant and the power user
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/05Shafts or bearings, or assemblies thereof, specially adapted for elastic fluid pumps
    • F04D29/056Bearings
    • F04D29/059Roller bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C37/00Cooling of bearings
    • F16C37/005Cooling of bearings of magnetic bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C39/00Relieving load on bearings
    • F16C39/06Relieving load on bearings using magnetic means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/24Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets axially facing the armatures, e.g. hub-type cycle dynamos
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K29/00Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices
    • H02K29/06Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with position sensing devices
    • H02K29/08Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with position sensing devices using magnetic effect devices, e.g. Hall-plates, magneto-resistors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/24Windings characterised by the conductor shape, form or construction, e.g. with bar conductors with channels or ducts for cooling medium between the conductors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/46Fastening of windings on the stator or rotor structure
    • H02K3/47Air-gap windings, i.e. iron-free windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/08Structural association with bearings
    • H02K7/09Structural association with bearings with magnetic bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2362/00Apparatus for lighting or heating
    • F16C2362/52Compressors of refrigerators, e.g. air-conditioners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2380/00Electrical apparatus
    • F16C2380/26Dynamo-electric machines or combinations therewith, e.g. electro-motors and generators

Definitions

  • the present invention relates to a magnetic bearing device used for an air cycle refrigeration cooling turbine unit or the like, and in particular, a rolling bearing and a magnetic bearing are used in combination, and the magnetic bearing performs either one or both of an axial load and a bearing preload.
  • the present invention relates to a motor-type magnetic bearing device that is supported.
  • the air cycle refrigeration cooling system uses air as a refrigerant, and thus is less energy efficient than using chlorofluorocarbon, ammonia gas, or the like, but is preferable in terms of environmental protection. Also, in facilities that can directly inject refrigerant air, such as refrigerated warehouses, there is a possibility that the total cost may be reduced due to omission of internal fans and defrosters, etc.
  • An air cycle refrigeration cooling system as shown in Japanese Patent No. 2 6 2 3 2 0 2 has been proposed.
  • a turbine unit in which a compressor wheel and an expansion turbine wheel are attached to a common main shaft is used as a compressor and an expansion turbine. This turbine unit improves the efficiency of the air cycle refrigerator by driving the compressor wheel with the power generated by the expansion turbine.
  • JP-A-7_9 1 7 60 a turbine compressor for process gas processing, not for refrigeration and cooling, has a turbine impeller at one end of a main shaft and a compressor impeller at the other end.
  • magnetic bearing type turbine compressors that are mounted and supported by journals and thrust bearings in which the main shaft is controlled by electromagnet current.
  • Tokuhei Hei 8 _ 2 6 1 2 3 7 discloses that a thrust load acting on a rolling bearing for supporting a main shaft does not lead to shortening of the bearing life. It has been proposed to reduce the thrust load acting on the rolling bearing with a thrust magnetic bearing.
  • This motor-type magnetic bearing device is used in an air cycle refrigeration cooling turbine unit in which a compressor impeller 4 6a of a compressor 4 6 and a turbine impeller 4 7a of an expansion turbine 4 7 are attached to both ends of a main shaft 53.
  • the radial load of the main shaft 5 3 is supported by the rolling bearings 5 5 and 5 6, and the axial load is supported by the electromagnet 5 7, and the driving force by the motor 6 8 provided coaxially with the main shaft 5 3 and the turbine impeller 4 7 a
  • the compressor impeller 4 6a is driven to rotate with the driving force of.
  • the electromagnet 5 7 that supports the axial load is arranged so as to face the thrust plate 5 3 a that is perpendicular and coaxial with the main shaft 53 without contact, and outputs the sensor 5 8 that detects the axial force.
  • the motor 68 is of an axial gap type, and a motor rotor 6 8 a is formed on another thrust plate 53 b provided perpendicularly to the main shaft 53 and on the same axis, and the motor rotor 68 is formed in the axial direction.
  • the motor stators 6 8 b are arranged so as to face each other.
  • the thruster applied to the main shaft 53 is supported by the electromagnet 57.
  • the acting thrust force can be reduced.
  • the small gaps between the impellers 4 6 a and 4 7 a and the housings 4 6 b and 4 7 b are unified.
  • the long-term durability of the rolling bearings 5 5 and 5 6 against the thrust load can be improved.
  • the thrust plate 5 3 a for the electromagnet 5 7 and the thrust plate 5 3 b for the motor 6 8 are provided separately on the main shaft 53, the shaft length of the main shaft 53 is longer. There is a problem that the compactness of the entire device is insufficient, and the natural frequency is lowered, making high-speed rotation difficult.
  • the present invention can improve the long-term durability of a rolling bearing against a thrust load, can cope with compaction and high-speed rotation, and can provide a sufficient motor cooling effect.
  • the object is to provide a bearing device.
  • a motor-type magnetic bearing device of the present invention uses a rolling bearing and a magnetic bearing in combination, the rolling bearing supports a radial load, the magnetic bearing supports one or both of an axial load and a bearing preload,
  • the electromagnet constituting the magnetic bearing is attached to the spindle housing so as to face the flange-shaped thrust plate made of a ferromagnetic material provided on the main shaft in a non-contact manner, and the motor rotor of the axial gear motor is connected to the thrust gear.
  • a motor stator having a motor coil is installed in the spindle housing, and a cooling passage is provided in the motor to cool the motor by supplying a cooling medium.
  • the rolling bearing supports the radial load, and the magnetic bearing supports one or both of the axial load and the bearing preload. It can be supported with high accuracy and long-term durability of the rolling bearing can be secured, and damage when the power supply is stopped in the case of supporting only the magnetic bearing can be avoided.
  • the permanent magnet of the motor rotor is provided on the thrust plate facing the electromagnet of the magnetic bearing, the spindle length is shortened by the combined use of the thrust plate of the magnetic bearing and the motor port, resulting in compactness and natural vibration. The decrease in the number can be avoided, and low-vibration rotation during high-speed rotation is possible.
  • the motor is an axial gap type and generates a large amount of heat at the motor stage, so that it cannot be cooled sufficiently by indirect cooling from the outside of the motor case, as is done with ordinary motors.
  • the motor is directly cooled by the cooling medium supplied in the motor, an excellent cooling effect can be obtained. As a result, a decrease in motor efficiency and a deterioration in safety due to insufficient cooling can be avoided.
  • the cooling medium is a cooling liquid, and it is preferable to provide the cooling passage through which the cooling liquid flows into the motor stator so that the cooling liquid contacts the winding of the motor coil. According to this configuration, the necessary motor cooling effect can be obtained with a simple configuration in which only a cooling passage for flowing the cooling liquid into the motor stator is provided.
  • the motor stage includes a motor coil accommodated in a case made of a polymer material, the cooling passage is provided in the case, and the cooling passage is provided in the motor coil. It may have a coolant passage groove that faces and opens. According to this configuration, an excellent cooling effect can be obtained because the cooling passage for flowing the coolant into the motor stator is provided so that the coolant contacts the windings of the motor coil.
  • the circulation path is a cold opening facing the motor coil. Since it has a reject liquid passage groove and the path cross section is made smaller, the same amount of coolant flows and the coolant flows at a high speed, further improving the cooling efficiency.
  • the motor case is made of a polymer material, it is easy to form a cooling passage such as a coolant passage groove, and because it is non-magnetic, it does not affect the magnetic field.
  • the cooling passage is provided in the case and is supplied with an inlet through which coolant is supplied from the outside of the case, and an in-case cooling path provided in the case that communicates with the inlet.
  • One or a plurality of discharge ports provided in the cooling path in the case may be provided.
  • a sensor for detecting the passage of the permanent magnet of the motor rotor may be arranged outside the case in order to take a timing for switching the current to the motor coil.
  • the sensor is necessary for controlling the motor, but if this sensor comes into contact with the coolant, there is a risk of deterioration or short-circuiting.
  • by disposing the sensor outside the case it is possible to avoid the coolant from touching the sensor.
  • a plurality of the motor coils may be arranged in a common case on the same circumference, and a plurality of the cooling liquid passage grooves may be provided so as to face the end surfaces of the coils.
  • a plurality of cooling liquid passage grooves are provided facing the end face of each coil, the cooling liquid flows at a high speed into each cooling liquid passage groove, so that the cooling effect on the motor coil can be further enhanced.
  • the motor coil is a coreless coil having a hollow inside
  • the motor stator is provided with a cooling passage for flowing a coolant into the hollow portion of the motor coil. May be.
  • the cooling passage for flowing the coolant in the hollow portion of the motor coil is provided, a sufficient cooling effect can be obtained. This reduces motor efficiency and safety due to insufficient cooling. Can be avoided.
  • the cooling passage can be made compact, and the motor stator can be prevented from being enlarged due to the formation of the cooling passage. If the coolant flows directly in contact with the coil winding in the hollow portion of the motor coil, the cooling effect is further improved.
  • the motor coil is divided into a plurality of coil divided bodies arranged in the axial direction, and a hollow portion that allows coolant to flow into the hollow portion of the coil from the outer periphery of the coil between the coil divided bodies
  • An inflow path may be provided.
  • a compressor side impeller is attached to the main shaft on the main shaft, and either one or both of motor power and dynamic force generated by the turbine side impeller are used. It may be applied to a compression / expansion turbine system for driving the compressor. In this configuration, a stable high-speed rotation of the main shaft can be obtained while maintaining an appropriate clearance between the impellers, and long-term durability and life of the bearing can be improved.
  • the cooling medium is air
  • the cooling passage is supplied to the motor section cooling air introduction path for supplying cooling air into the motor from the outside, and is supplied. It may have a discharge path for exhausting the air outside the motor.
  • the necessary motor cooling can be performed with a simple configuration in which a cooling air introduction path and a discharge path are provided.
  • the motor part cooling air introduction path may introduce a part of the air flowing into the turbine blade or the air discharged from the turbine blade into the motor.
  • the air that flows into or out of the turbine blades is used, so cooling air can be forcibly circulated without the need for a dedicated air supply source such as fans. Good motor cooling.
  • the motor part cooling air introduction path is a path for supplying air to the inner diameter part of the motor rotor, and the discharge path is exhausted from the outer diameter part of the motor rotor.
  • a route is preferred.
  • the motor rotor becomes large in the radial direction, and the centrifugal force due to the rotation of the motor rotor affects the air in the motor. Therefore, the axial gearup motor is introduced from the inner diameter portion of the motor rotor and discharged from the outer diameter portion. By doing so, an efficient flow of cooling air can be obtained, and a more excellent cooling effect can be obtained.
  • the motor-integrated magnetic bearing device may be used in an air cycle refrigeration cooling system that uses air to perform air conditioning or refrigeration. Since the air cycle refrigeration cooling system uses air with a small specific heat as a refrigerant, it requires high-speed rotation. Therefore, motor cooling and other effects are effectively exhibited by the motor body type magnetic bearing device of the present invention.
  • the above air cycle refrigeration cooling system can, for example, compress the incoming air by a compressor of a turbine unit, cool by another heat exchanger, adiabatic expansion by an expansion turbine of the turbine unit, or compress by a precompression means. , Cooling by a heat exchanger, compression by a compressor of a turbine unit, cooling by another heat exchanger, and adiabatic expansion by an expansion turbine of the turbine unit.
  • FIG. 1 is a longitudinal sectional view of a turbine unit incorporating a motor-integrated magnetic bearing device according to a first embodiment of the present invention.
  • FIG. 2 is an exploded front view of a motor stator in the turbine unit.
  • FIG. 3 is a block diagram showing an example of a magnetic bearing controller used in a motor type magnetic bearing device.
  • FIG. 4 is a block diagram showing an example of a motor controller used in a motor type magnetic bearing device.
  • FIG. 5 is a longitudinal sectional view showing a motor in a motor type magnetic bearing device.
  • FIG. 6 is a cross-sectional view showing a partial module of the motor stator.
  • FIG. 7 is a front view of a partial module of the motor stator.
  • FIG. 8 is a cross-sectional view of the motor along the line V I 1 1—V I 1 1 in FIG.
  • FIG. 9 is a longitudinal sectional view showing a motor in a motor type magnetic bearing device according to a second embodiment of the present invention.
  • FIG. 10 is a cross-sectional view showing a part of the module of the motor stator.
  • FIG. 11 is a sectional view of the motor taken along line XI—XI in FIG.
  • FIG. 12 is a longitudinal sectional view of a turbine unit in which a motor type magnetic bearing device according to a third embodiment of the present invention is incorporated.
  • FIG. 13 is a longitudinal sectional view showing a motor in a motor type magnetic bearing device according to a fourth embodiment of the present invention.
  • FIG. 14 is a transverse sectional view showing a part of the motor stator module.
  • FIG. 15 is a longitudinal sectional view of a turbine unit in which a motor type magnetic bearing device according to a fifth embodiment of the present invention is incorporated.
  • FIG. 16 is a longitudinal sectional view of a turbine unit in which a motor type magnetic bearing device according to a sixth embodiment of the present invention is incorporated.
  • FIG. 17 is a system diagram of an air cycle refrigeration cooling system to which the turbine unit of FIG. 1 is applied.
  • FIG. 18 is a longitudinal sectional view of the proposed example.
  • FIG. 1 is a longitudinal sectional view of a turbine unit 5 incorporating the motor-integrated magnetic bearing device of the first embodiment.
  • This turbine unit 5 constitutes a compression / expansion turbine system, and includes a compressor 6 and an expansion turbine 7, and a compressor impeller 6a of the compressor 6 and a turbine impeller 7a of the expansion turbine 7 are main shafts. 1 Fits to both ends of 3. Low carbon steel with good magnetic properties is used as the material for the main shafts 13.
  • the compressor 6 is connected to the compressor impeller 6 a and a minute gap d.
  • the expansion turbine 7 has a turbine housing 7 b that is opposed to the turbine impeller 7 a via a minute gap d 2, and the air sucked from the outer periphery as indicated by an arrow 7 c is received by the turbine impeller 7 a. Adiabatic expansion and exhaust in the axial direction from the central outlet 7d.
  • the motor-integrated magnetic bearing device in the turbine unit 5 is configured such that the main shaft 13 is supported by a plurality of bearings 15 and 16 in the radial direction, and either the axial load applied to the main shaft 13 or the bearing preload is applied. One or both are supported by an electromagnet 17 that constitutes a part of the magnetic bearing, and an axial gap type motor 28 that rotationally drives the main shaft 13 is provided.
  • the turbine unit 5 includes a sensor 18 that detects a thrust force acting on the main shaft 13, and a magnetic bearing controller 1 9 that controls the supporting force of the electromagnet 17 according to the output of the sensor 18. And a motor controller 29 for controlling the motor 28 independently of the electromagnet 17.
  • the electromagnet 17 is composed of two flange-shaped slurries made of a ferromagnetic material which is provided perpendicularly and coaxially to the main shaft 13 so as to be aligned in the axial direction at the axial intermediate portion of the main shaft 13.
  • a pair of support plates 1 3 a and 1 3 b are installed on the spindle housing 14 so as to face each side in a non-contact manner.
  • one of the electromagnets 17 constituting the magnetic bearing unit is opposed to the one surface of the thrust plate 13 a located near the expansion turbine 7 toward the expansion turbine 7 as an electromagnet target without contact.
  • the other electromagnet 17 constituting the magnetic bearing unit has one surface facing the compressor 6 side of the thrust plate 13 b positioned near the compressor 6 as an electromagnet target, and is opposed to this one surface in a non-contact manner. Is installed in the spindle housing 14.
  • the magnetic bearing is constituted by the electromagnets 17 and 17 and the thrust plates 13a and 13b.
  • the motor 28 is composed of a motor unit 2 8a provided on the main shaft 13 alongside the electromagnet 17 and a motor unit 2 8b facing the motor rotor 28a in the axial direction. It is. Specifically, the motor rotor 28a constituting one part of the motor unit is provided on each side of the main shaft 13 opposite to the side on which the electromagnets 17 of the thrust plates 13a, 13b are opposed. By arranging the permanent magnets 28 aa arranged at equal pitches in the circumferential direction, a pair of left and right is configured. Thus, between the permanent magnets 28 a a arranged opposite to each other in the axial direction, the magnetic poles are set to be different from each other.
  • the thrust plates 1 3 a and 1 3 b provided so as to be integrated with the main shaft 1 3 are replaced with permanent magnets 2 8 Can also be used as aa back yoke and electromagnet target.
  • the motor stator 28 b which is another part of the motor unit, faces the surfaces of both motor rotors 28 a in a non-contact manner at the center position in the axial direction between the pair of left and right motor rotors 28 a.
  • a plurality of concentrated winding motor coils 2 8 ba arranged without a core are installed in the spindle housing 14.
  • the motor stator 28 b includes a plurality of motor coils 28 ba arranged in the circumferential direction and integrated with each other (two here).
  • Modules 2 8 b 1, 2 8 b It is divided into two parts. As a result, it can be incorporated as a part of a motor teeter 2 8 b force motor unit disposed between two thrust plates 1 3 a and 13 b integral with the main shaft 13.
  • the motor 28 rotates the main shaft 13 by a mouth-lens force acting between the motor rotor 28a and the motor stator 28b.
  • this axial gap type motor 28 is a coreless motor, the negative rigidity due to the magnetic force pulling between the motor rotor 28a and the motor stator 28b is zero. ing.
  • the bearings 15 and 16 that support the main shaft 13 are rolling bearings and have a function of regulating the axial direction position.
  • deep groove ball bearings are used as an anguilla ball bearing. Deep groove ball bearings have a thrust support function in both directions, and return the inner and outer rings in the axial position to the neutral position.
  • These two bearings 15 and 16 are arranged in the vicinity of the compressor wheel 6a and the turbine wheel 7a in the spindle housing 14 respectively, and electromagnets 17 and thrust plates 13a and 13b. Since the rolling bearings 15 and 16 that support the radial load of the main shaft 1 3 sandwiched between them are positioned apart from each other in the axial direction, the main shaft 13 can be stably supported.
  • the main shaft 13 is a stepped shaft having a large-diameter portion 13c at an intermediate portion and small-diameter portions 13d at both ends.
  • the bearings 15 and 16 on both sides have their inner rings 15 a and 16 a fitted into the small-diameter portion 13 d in a press-fit state, and one of the width surfaces is between the large-diameter portion 13 c and the small-diameter portion 13 d Engage with the step surface.
  • the bearings 6 a and 7 a side of the bearings 15 and 16 on both sides of the spindle housing 14 are formed so that the inner diameter surface is close to the main shaft 13 and the non-contact seal 2 is provided on the inner diameter surface. 1 and 2 2 are formed.
  • the non-contact seals 2 1 and 2 2 are labyrinth seals in which a plurality of circumferential grooves are arranged in the axial direction on the inner diameter surface of the spiddle housing 14, but other non-contact seal means But it ’s okay.
  • the sensor 18 is a stationary side near the bearing 16 on the turbine impeller 7a side. That is, it is provided on the spindle housing 14 side.
  • a bearing 16 provided with the sensor 18 in the vicinity thereof has an outer ring 16 b fitted in a fixed state in the bearing housing 23.
  • the bearing housing 2 3 is formed in a ring shape and has an inner flange 2 3 a that engages with the width surface of the outer ring 16 b of the bearing 16 at one end, and an inner diameter surface provided on the spindle housing 14 2 4 is movably fitted in the axial direction.
  • the inner flange 2 3 a is provided at the center end in the axial direction.
  • the sensors 1 8 are distributed and arranged at a plurality of circumferential locations around the main shaft 1 3 (for example, 2 locations), fixed to the inner flange 2 3 a side of the bearing housing 2 3 and the spindle housing 1 4 It is interposed between one of the electromagnets 17 which is the formed member.
  • the sensor 18 is preloaded by a sensor preload spring 25.
  • the sensor preload spring 25 is housed in a housing recess provided in the spindle housing 14 to urge the outer ring 16 b of the bearing 16 in the axial direction.
  • the outer ring 16 b and the bearing housing 2 3 Preload sensor 1 8 via.
  • the sensor preload spring 25 is composed of, for example, coil springs provided at a plurality of locations in the circumferential direction around the main shaft 13.
  • the preload by the sensor preload spring 25 is to detect any movement of the main shaft 13 in the axial direction by detecting the thrust force by pressing force. It is larger than the average thruster acting on the main shaft 13 in the normal operation state of 5.
  • the bearing 15 on the non-arrangement side of the sensor 18 is installed so as to be movable in the axial direction with respect to the spindle housing 14, and is elastically supported by a bearing preload spring 26.
  • the outer ring 1 5 b of the bearing 15 is fitted to the inner surface of the spindle housing 14 4 so as to be movable in the axial direction.
  • the bearing preload spring 2 6 is formed between the outer ring 15 b and the spindle housing 14. Is intervening.
  • the bearing preload spring 26 is configured to urge the outer ring 15 b facing the step surface of the main shaft 13 with which the width surface of the inner ring 15 a is engaged, and applies a preload to the bearing 15.
  • the bearing preloading spring 26 is composed of coil springs and the like provided at a plurality of locations around the main shaft 13 in the circumferential direction, and is accommodated in receiving recesses provided in the spindle housing 14 respectively. It is.
  • the bearing preload spring 26 is assumed to have a smaller spring constant than the sensor preload spring 25.
  • the dynamic model of the motor-integrated magnetic bearing device in the turbine unit 5 can be constituted by a simple panel system. That is, this panel system includes a synthetic panel formed by bearings 15 and 16 and a support system for these bearings (sensor preload spring 25, bearing preload spring 26, bearing housing 23, etc.), and a motor unit ( This is a configuration in which a synthetic panel formed by the electromagnet 17 and the motor 28) is arranged in parallel.
  • this spring system the composite panel formed by the bearings 15 and 16 and the support system of these bearings has rigidity that acts in proportion to the amount of displacement in the direction opposite to the displaced direction.
  • the composite panel formed by the electromagnet 17 and the motor 28 has a negative stiffness that acts in proportion to the amount of displacement in the direction of displacement.
  • Synthetic panel stiffness due to bearings, etc. ⁇ Electromagnet ⁇ Negative stiffness value of synthetic panel due to motor ...
  • (1) the phase of the mechanical system is delayed by 180 °, resulting in an unstable system.
  • the magnetic bearing controller 19 that controls 17 it is necessary to add a phase compensation circuit in advance, and the configuration of the controller 19 becomes complicated.
  • the phase of the mechanical system can be prevented from being delayed by 180 ° in the control band, so that the magnetic bearing controller 19 can be controlled even when the motor 28 is operating at a high load and an excessive axial load is applied.
  • the circuit configuration of controller 19 can be configured as simple as using proportional or proportional integration.
  • the detection outputs P 1 and P 2 of the sensors 18 are added and subtracted by the sensor output calculation circuit 30 and the calculation results are compared by the comparator 31. Deviation is calculated by comparing with the reference value of the reference value setting means 3 2, and the calculated deviation is proportionally integrated (or appropriately set by the PI compensation circuit (or P compensation circuit) 3 3 according to the turbine unit 5 (or Proportional) By processing, the control signal of the electromagnet 17 is calculated.
  • the output of PI compensation circuit (or P compensation circuit) 3 3 3 is input to power circuits 3 6 and 3 7 that drive electromagnets 1 7 1 and 1 7 2 in each direction via diodes 3 4 and 3 5.
  • the magnet stones 17 1 and 17 2 are a pair of magnet stones 17 facing the thrust plate 13 a shown in FIG. 1 and only the attractive force acts on them.
  • the two electromagnets 1 7 1 and 1 7 2 are selectively driven.
  • the phase adjustment circuit 38 can adjust the phase of the motor drive current using the rotation angle of the motor rotor 28 a as a feedback signal based on the rotation synchronization command signal. Constant rotation control is performed by supplying the motor drive current corresponding to the adjustment result from the motor drive circuit 39 to the motor coil 28 ba of the motor stator 28 b.
  • the timing of switching the supply of motor drive current to the motor coil 2 8 ba is the output of the position detection sensor 40 that detects the passage of the permanent magnet 2 8 aa of the motor rotor 2 8 a provided in the motor stator 28 b Is determined by the phase adjustment circuit 38.
  • the rotation synchronization command signal is calculated according to the output of a rotation angle detection sensor (not shown) provided in the motor rotor 28 a.
  • FIG. 5 is a longitudinal sectional view showing the motor 28, and FIG. 6 is a transverse sectional view of a partial module 2 8 b 1 of the motor stator 2 8 b.
  • the motor stator 28b includes the plurality of motor coils 28b and the polymer material case 28b that is an insulating material containing the motor coils 28ba therein.
  • Case 2 8 bb is provided for each of the modules 2 8 b 1 and 2 8 b 2 as described above.
  • This case 28 bb is provided with a cooling passage 41 that allows the coolant 20 to flow into the motor stator 28 b so that the coolant 20 contacts the winding of the motor coil 28 ba as a coolant. ing.
  • the cooling passage 4 1 includes an inlet 4 1 a to which the coolant 20 is supplied from the outside of the case 2 8 bb, and an in-case cooling provided in the case 2 8 bb in communication with the inlet 4 1 a. And a path 4 1 b and one or a plurality of discharge ports 4 1 c provided in the cooling path 4 1 b in the case.
  • the remaining space excluding the space occupied by the motor coil 2 8 ba in the case 2 8 bb is defined as the cooling path 4 1 b in the case, and the inlet 4 1 a and the outlet in the outer periphery 4 1 c is arranged.
  • Pump P is installed outside the bearing device, pump P and inlet 41a are connected by supply path 61, and pump P and outlet 41c are connected by recovery path 62.
  • the recovery path 62 is provided with a radiator R, and a reservoir / tank T for replenishing the coolant 20 to the radiator R is connected.
  • Coolant 20 from the pump P passes through the supply path 61 and enters the cooling path 4 1 b in the case from the inlet 4 1 a to cool the motor 2 8.
  • the coolant 20 after cooling the motor returns to the pump P from the discharge port 4 1 c through the recovery path 6 2, dissipates heat in the radiator R, and returns to a low temperature.
  • FIG. 7 shows a front view of a partial module 28 b 1 of the motor stator 28 b
  • FIG. 8 shows a cross-sectional view of the motor 28 along the line VIII-VIII in FIG.
  • the motor rotor 2 8 a on the outer surface of the case 2 8 bb in the motor stator 2 8 b A position detection sensor 40 for detecting the passage of the permanent magnet 28 aa is provided.
  • the position detection sensor 40 outside the case 28 bb of the motor stator 28 b, it is possible to avoid the position detection sensor 40 from touching the coolant 20.
  • FIG. 9 is a longitudinal sectional view showing a motor in the motor-integrated magnetic bearing device according to the second embodiment of the present invention.
  • FIG. 10 shows a portion module 2 8 of the motor stator 2 8 b.
  • FIG. 11 shows a cross-sectional view of the motor 28 along the line XI-XI in FIG.
  • the cooling path 4 1 b in the case has a plurality of cooling liquid passage grooves 4 1 ba that open facing each motor coil 2 8 ba and are arranged radially in the radial direction of the case 2 8 bb.
  • the cooling path in the case 4 1 b includes an outer periphery of the cooling path 4 1 bb positioned on the outer periphery of the motor coil 2 8 ba and extending in an arc shape, and the motor from the outer periphery of the cooling path 4 1 bb Coil 2 8 Ba
  • the coolant passage groove 4 1 ba along the both end faces of each motor coil 2 8 b is opened along the surface of the motor coil 2 8 ba, and the coolant flowing in the groove is transferred to the motor coil 2 8 ba. Touch the coil winding directly.
  • a plurality of cooling path outer peripheral parts 4 1 bb are provided side by side in the arc direction, and an inlet 4 1 a is provided in one of the cooling path outer peripheral parts 4 1 bb (one in the center in the illustrated example).
  • a discharge port 4 1 c is formed in the outer peripheral portion 4 1 bb of the remaining cooling path (two on both sides in the illustrated example).
  • Other configurations are the same as those of the first embodiment shown in FIGS.
  • the turbine unit 5 having this configuration is applied to, for example, an air cycle refrigeration cooling system so that air as a cooling medium can be efficiently heat-exchanged by a subsequent heat exchanger (not shown here).
  • the temperature is increased by compressing at 6 and the air cooled by the heat exchanger in the subsequent stage is further insulated by the expansion turbine 7 to a target temperature, for example, a very low temperature of about 30 ° C. to about 60 ° C. Used to cool and discharge by expansion.
  • the turbine unit 5 is fitted to the main shaft 1 3 common to the thrust plate 1 3 a and the motor rotor 2 8 a, and the motor 2 8
  • the compressor impeller 6a is driven by one or both of the power of the turbine and the power generated by the turbine impeller 7a.
  • stable high-speed rotation of the main shaft 13 can be obtained while maintaining appropriate gaps d 1 and d 2 between the impellers 6 a and 7 a, and the long-term durability of the bearings 15 and 16 can be improved. Improved lifespan is obtained.
  • a thrust force is applied to the main shaft 13 of the turbine unit 5 by the air pressure acting on the impellers 6 a and 7 a.
  • the turbine unit 5 used in the air cooling system rotates at a very high speed of, for example, about 80,000 to 100,000 revolutions per minute.
  • the thrust force acts on the rolling bearings 15 and 16 that rotatably support the main shaft 13, the long-term durability of the bearings 15 and 16 decreases.
  • the thrust force is supported by the electromagnet 17, it is applied to the rolling bearings 15 and 16 for supporting the spindle 13 while suppressing an increase in torque without contact.
  • the thrust force used can be reduced.
  • a sensor 18 for detecting the thrust force acting on the main shaft 13 and a magnetic bearing controller 19 for controlling the supporting force by the electromagnet 17 according to the output of the sensor 18 are provided. Therefore, the rolling bearings 15 and 16 can be used in an optimum state with respect to the thrust force according to the bearing specifications.
  • a magnetic bearing unit is constructed by arranging two electromagnets 17 on the outer side in the axial direction of two thrust plates 13a, 13b arranged on the main shaft 13 in the axial direction.
  • an axial gap type motor 28 By arranging an axial gap type motor 28 at a position between the plates 1 3 a and 1 3 b to form a motor unit, the magnetic bearing unit and the motor unit are made into a compact and integrated structure.
  • the shaft length of 3 can be shortened, and the natural frequency of the main shaft 13 can be increased accordingly, so that the main shaft 13 can be rotated at high speed.
  • the motor 28 is of an axial gap type and generates a large amount of heat at the motor stator 28 b, and is performed by a general motor.
  • Such indirect cooling from the outside of the motor case does not provide sufficient cooling.
  • the cooling passage 4 1 is provided so that the coolant 20 flows into the motor stator 28 b so that the coolant 20 contacts the winding of the motor coil 28 ba. Cooling takes place.
  • the cooling passage 4 1 flows through the cooling passage groove 4 1 ba that opens to face the motor coil 2 8 ba. Therefore, if the overall flow rate is the same, the cooling passage 41 will flow in a narrow channel cross section. The flow rate becomes high. As a result, a decrease in motor efficiency and a deterioration in safety due to insufficient cooling can be avoided.
  • FIG. 12 is a cross-sectional view of a turbine unit incorporating a motor-integrated magnetic bearing device according to a third embodiment of the present invention.
  • this turbine unit 5 has only one flange-like thrust plate made of a ferromagnetic material that is provided perpendicularly and coaxially to the main shaft 13 and is used as a thrust plate 13 a.
  • a pair of left and right electromagnets 17 and 17 are installed on the spindle housing 14 so as to face both surfaces in a non-contact manner.
  • the motor 28 includes a motor rotor 28a provided on the main shaft 13 and a motor stator 28b that faces the motor rotor 28a in the axial direction.
  • the motor rotor 28 a is arranged by arranging permanent magnets 28 aa arranged at equal pitches in the circumferential direction on the outer diameter side of the thrust plate 13 a on the both sides of the electromagnet 17 facing each other. A pair is constructed. Thus, between the permanent magnets 28 aa arranged opposite to each other in the axial direction, the magnetic poles are set to be different from each other.
  • the thrust plate 1 3 a doubles as the back yoke of the permanent magnet 2 8 aa.
  • the motor stabilizer 28 b is a ferromagnetic material (for example, low carbon steel and key) installed in the spindle housing 14 so as to face the motor rotor 28 a on both sides of the thrust plate 13 a without contact.
  • a pair of left and right coils are formed by winding a motor coil ba around a pair of stator yokes 2 8 bb made of a steel plate.
  • the two left and right motors 28 configured with the thrust plate 1 3 a sandwiched between them are driven by the magnetic force acting between the motor rotor 2 8 a and the motor stator 2 8 b. Rotate.
  • the position of the motor rotor 28 b on the thrust plate 13 a is on the outer diameter side with respect to the position facing the electromagnet 17, a larger torque can be obtained with a small motor driving current.
  • Other configurations are the same as those of the first embodiment in FIG. 1, and the description thereof is omitted here.
  • FIG. 13 the motor coil 28 ba in the fourth embodiment is divided into a plurality of (here, two) coil division bodies 2 8 ba 1 and 2 8 ba 2 arranged in the axial direction.
  • the in-case cooling path 4 1 b is formed between the coil divided bodies 2 8 ba 1 and 2 8 ba 2 arranged in the axial direction, and the hollow of the coil 2 8 ba from the outer periphery of the coil 2 8 ba.
  • the part 2 8 baa has a hollow part inflow passage 4 1 ba through which the coolant 20 flows. As shown in FIG.
  • the cooling path 4 1 b in the case includes an arc-shaped outer peripheral path portion 4 1 bb along the outer peripheral portion of the case 28 bb, and a plurality of branches branched from the outer peripheral path portion 4 1 bb.
  • Hollow part inflow path 4 1 ba, motor coil 2 8 ba hollow part 2 8 baa, case 2 8 bb inner circumference part of motor coil 2 8 ba axially on both sides in axial direction than motor coil 2 8 ba From the inner peripheral path part 4 1 bc between the inner peripheral path part 4 1 bc and the adjacent motor coil 2 8 ba. It consists of a plurality of discharge path portions 4 1 bd extending to the outer diameter side.
  • the inlet 4 1 a is provided in the outer peripheral passage portion 4 1 bb, and the outlet 4 1 c is provided at the tip of each discharge passage portion 4 1 bd.
  • the motor 28 is of an axial gear type and has a large amount of heat generated by the motor stator 28b, so that the motor case can be operated by a general motor. Indirect cooling from the outside of the door does not provide sufficient cooling.
  • the cooling passage 41 through which the cooling liquid 20 flows is provided in the hollow portion 28 baa of the motor coil 28ba, a sufficient cooling effect can be obtained. As a result, a decrease in motor efficiency and a deterioration in safety due to insufficient cooling can be avoided.
  • the coolant 20 flowing from the inlet 4 1 a of the cooling passage 4 1 into the cooling passage 4 1 b in the case passes through the hollow portion inflow passage 4 1 ba and the hollow portion of each motor coil 2 8 ba 2 8 baa Therefore, the coolant 20 can be efficiently brought into contact with the coil winding, and the cooling effect on the motor coil 28 ba can be enhanced.
  • the coolant 20 that flows into the hollow portion 2 8 baa of each motor coil 2 8 ba and contributes to the cooling of the motor coil 2 8 ba is discharged from the discharge port 4 1 c to the outside of the case 2 8 bb. .
  • the cooling passage 41 can be configured in a compact manner, so that the cooling passage 41 can be formed. It is possible to avoid an increase in the size of the motor stabilizer 2 8 b.
  • This fourth embodiment can also be applied to the configuration of FIG.
  • air is used as a cooling medium.
  • the motor part cooling air introduction path 4 2 A for supplying cooling air into the motor 28 from the outside, and the supplied air is exhausted to the outside of the motor 28.
  • Cooling passage consisting of a discharge path 4 2 B 4 1 A force is provided in the spindle housing 14.
  • the discharge path 4 2 B is opened from the outer diameter portion of the motor rotor 28 a in the space inside the motor 28 to the outer diameter surface of the spindle / housing 14.
  • the motor part cooling air introduction path 4 2 A is for introducing a part of the air flowing into the turbine impeller 7 a into the motor 28, and sucking in the space inside the turbine housing 7 b
  • a path inlet 45 is opened between the opening and the turbine impeller 7a.
  • the passage inlet 43 may be opened to the discharge port 7 d in the turbine housing 7 b, and in that case, a part of the air discharged from the turbine blade 7 a is introduced into the motor 28.
  • Motor section cooling air introduction path 4 2 A is branched into two branch paths 4 2 A a, 4 2 A b, and the motor side that becomes the path exit at the end of each branch path 4 2 A a, 4 2 A b Opening from the opening 4 4 to the space around the motor rotor in the motor 28.
  • the two branch paths 4 2 A a and 4 2 A b respectively pass through the yokes of the electromagnets 17 of the magnetic bearings on both sides, and the motor side opening 4 4 is located at the inner peripheral portion of the motor rotor 28 a is doing.
  • the motor part cooling air introduction path 4 2 A for supplying cooling air into the motor 28 from the outside, and the air is supplied. Since a discharge path 4 2 B for exhausting the air outside the motor is provided, the required motor can be obtained with a simple configuration simply by providing the cooling path 4 1 A consisting of the introduction path 4 2 A and the discharge path 4 2 B. Cooling is possible.
  • the motor air supply path 4 2 A uses the air that flows into or discharges from the turbine blade 7 a, so that a dedicated air supply source such as a fan is not required. Efficient motor cooling can be performed with a simple configuration.
  • the motor 28 is an axial gap motor
  • the main shaft 1 3 can be configured to be short, and the main shaft 28 can be rotated at high speed without causing a resonance problem.
  • the motor 28 can be efficiently cooled. Difficult to do. Force, and as above Since a part of the air flowing into the turbine blade 7a or the air discharged from the turbine blade 7a is introduced into the motor 28, an excellent cooling effect by forced circulation of the cooling air can be obtained with a simple configuration.
  • the motor rotor 28a is large in the radial direction, and the centrifugal force due to the rotation of the motor rotor 28a affects the air in the motor 28.
  • 2 A and the discharge path 4 2 B are introduced from the inner diameter part of the motor rotor 2 8 a and discharged from the outer diameter part, so that an efficient flow of cooling air can be obtained and a more excellent cooling effect can be obtained. can get.
  • the turbine unit 5 shown in FIG. 15 has only one flange-like thrust plate made of a ferromagnetic material that is perpendicular to the main shaft 1 3 and coaxial with the thrust plate.
  • a pair of left and right electromagnets 17 and 17 are installed on the spindle housing 14 so that 1 3 a is an electromagnet target and faces both surfaces in a non-contact manner.
  • the motor section cooling air introduction path 4 2 A is branched into two branch paths 4 2 A a and 4 2 Ab, but in this sixth embodiment, the motor Partial cooling air introduction path 4 2 D is not branched and is one.
  • the motor part cooling air introduction path 4 2 D and the discharge path 4 2 B form a cooling path 4 1 B.
  • the other configuration is the same as that of the fifth embodiment in FIG. 15, and the description thereof is omitted here.
  • the motor part cooling air introduction path 4 2 D has one structure without branching, thereby simplifying the structure as compared with the fifth embodiment.
  • This sixth embodiment is also applicable to the configuration of FIG.
  • FIG. 17 shows the overall configuration of an air cycle refrigeration cooling system using the turbine unit 5 according to each of the above embodiments.
  • This air cycle refrigeration cooling system is a system that directly cools the air in the space to be cooled 10 such as a refrigeration warehouse as a refrigerant, and discharges air from the air intake 1 a that opens in the space to be cooled 10.
  • Air circulation path 1 leading to b In this air circulation path 1, pre-compression means 2, first heat exchanger 3, compressor 6 of turbine unit 5 for air cycle refrigeration cooling, second heat exchanger 3, intermediate heat exchanger 9, and the turbine
  • the expansion turbine 7 of the unit 5 is provided in order.
  • the intermediate heat exchanger 9 exchanges heat between the inflow air in the vicinity of the intake 1a in the same air circulation path 1 and the air that has been heated by the subsequent compression and cooled. Air near inlet 1a passes through heat exchanger 9a.
  • the pre-compression means 2 comprises a blower or the like, and is driven by a motor 2a.
  • the first heat exchanger 3 and the second heat exchanger 8 have heat exchangers 3 a and 8 a for circulating a cooling medium, respectively, and a cooling medium such as water in the heat exchangers 3 a and 8 a Heat exchange with the air in the air circulation path 1.
  • Each of the heat exchangers 3 a and 8 a is connected to the cooling tower 11 by piping, and the cooling medium heated by the heat exchange is cooled by the cooling tower 11.
  • An air cycle refrigeration cooling system having a configuration not including the pre-compression means 2 may be used.
  • This air cycle refrigeration cooling system is a system that keeps the cooled space 10 at about 0 ° C to -60 ° C, and is 0 ° from the cooled space 10 to the inlet 1a of the air circulation path 1.
  • C ⁇ -Air of 1 atm flows at around 60 ° C.
  • the air flowing into the intake 1a is used to cool the air in the latter stage in the air circulation path 1 by the intermediate heat exchanger 9, and the temperature is raised to 30 ° C.
  • This heated air remains at 1 atm, but is compressed to 1.4 atm by pre-compression means 2, and the temperature is raised to 70 ° C by the compression.
  • the first heat exchanger 3 only needs to cool the heated air at 70 ° C, so it can be cooled efficiently even with cold water at room temperature, and it is cooled to 40 ° C.
  • Air at 40 ° C and 1.4 atm cooled by heat exchange is compressed to 1.8 atm by the compressor 6 of the turbine unit 5, and is heated to about 70 ° C by this compression. Cooled to 40 ° C by the second heat exchanger 8. This 40 ° C air is cooled to –20 ° C by –30 ° C air in the intermediate heat exchanger 9. The atmospheric pressure is maintained at 1.8 atm which is discharged from the compressor 6. The air cooled to 20 ° C in the intermediate heat exchanger 9 is adiabatically expanded by the expansion turbine 7 of the turbine unit 5, cooled to _55 ° C, and discharged from the outlet 1b. Are discharged to the cooled space 10. This air cycle refrigeration cooling system performs such a refrigeration cycle.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Abstract

A motor-integrated magnetic bearing device in which rolling bearings have improved long term durability against a thrust load and in which a sufficient motor cooling effect is achieved. The motor-integrated magnetic bearing device uses rolling bearings (15, 16) and a magnetic bearing together, where the rolling bearings (15, 16) support a radial load and the magnetic bearing supports either of both of an axial load and bearing preload. An electromagnet (17) of the magnetic bearing is installed on a spindle housing (14) so that the electromagnet face, without contact, flange-like thrust plates (13a, 13b) made of a ferromagnetic material and provided on a main shaft (13). Motor rotors (28a) of an axial gap motor (28) are made up of the thrust plates (13a, 13b) and permanent magnets (28aa) arranged at circumferentially equal spacing on the thrust plates. A motor stator (28b) has a motor coil (28ba) and is placed in the spindle housing (14) so as to face the motor rotors (28a). In the motor stator (28b), there is formed a cooling path (41) for causing cooling liquid to flow to the inside of the motor stator (28b), and the cooling path (41) is formed such that the cooling liquid is in contact with a winding wire of the motor coil (28ba).

Description

明 細 書  Specification
モーター体型の磁気軸受装置  Motor type magnetic bearing device
技術分野  Technical field
[0001 ] この発明は、 空気サイクル冷凍冷却用タービンュニット等に用いられる磁 気軸受装置に関し、 特に、 転がり軸受と磁気軸受を併用し、 磁気軸受がアキ シアル負荷と軸受予圧のどちらか一方または両方を支持するようにしたモー ター体型の磁気軸受装置に関する。  TECHNICAL FIELD [0001] The present invention relates to a magnetic bearing device used for an air cycle refrigeration cooling turbine unit or the like, and in particular, a rolling bearing and a magnetic bearing are used in combination, and the magnetic bearing performs either one or both of an axial load and a bearing preload. The present invention relates to a motor-type magnetic bearing device that is supported.
背景技術  Background art
[0002] 空気サイクル冷凍冷却システムは、 冷媒として空気を用いるため、 フロン やアンモニアガス等を用いる場合に比べてエネルギー効率が不足するが、 環 境保護の面では好ましい。 また、 冷凍倉庫等のように、 冷媒空気を直接に吹 き込むことができる施設では、 庫内ファンやデフロス卜の省略等によってト —タルコストを引下げられる可能性があり、 このような用途で特許第 2 6 2 3 2 0 2号公報に示すような空気サイクル冷凍冷却システムが提案されてい る。 この空気サイクル冷凍冷却システムでは、 圧縮機, 膨張タービンとして 、 コンプレッサ翼車および膨張タービン翼車を共通の主軸に取付けたタービ ンユニットが用いられている。 このタービンユニットは、 膨張タ一ビンの生 じる動力によりコンプレッサ翼車を駆動できることで空気サイクル冷凍機の 効率を向上させている。  [0002] The air cycle refrigeration cooling system uses air as a refrigerant, and thus is less energy efficient than using chlorofluorocarbon, ammonia gas, or the like, but is preferable in terms of environmental protection. Also, in facilities that can directly inject refrigerant air, such as refrigerated warehouses, there is a possibility that the total cost may be reduced due to omission of internal fans and defrosters, etc. An air cycle refrigeration cooling system as shown in Japanese Patent No. 2 6 2 3 2 0 2 has been proposed. In this air cycle refrigeration cooling system, a turbine unit in which a compressor wheel and an expansion turbine wheel are attached to a common main shaft is used as a compressor and an expansion turbine. This turbine unit improves the efficiency of the air cycle refrigerator by driving the compressor wheel with the power generated by the expansion turbine.
[0003] なお、 特開平 7 _ 9 1 7 6 0号公報には、 冷凍冷却用ではなく、 プロセス ガス処理用のタービン■ コンプレッサとして、 主軸の一端にタービン翼車、 他端にコンプレッサ翼車を取付け、 前記主軸を電磁石の電流で制御するジャ ーナルおよびスラスト軸受で支承した磁気軸受式タービン■ コンプレッサが 提案されている。 また、 ガスタービンエンジンにおける提案ではあるが、 特 開平 8 _ 2 6 1 2 3 7公報には、 主軸支持用の転がり軸受に作用するスラス ト荷重が軸受寿命の短縮を招くことを回避するため、 転がり軸受に作用する スラスト荷重をスラスト磁気軸受により低減することが提案されている。 [0004] しかし、 上記特許第 2 6 2 3 2 0 2号公報に開示の技術は、 この高速回転 下におけるスラスト荷重の負荷に対する軸受の長期耐久性の低下については 解決されるに至っていない。 [0003] In JP-A-7_9 1 7 60, a turbine compressor for process gas processing, not for refrigeration and cooling, has a turbine impeller at one end of a main shaft and a compressor impeller at the other end. There have been proposed magnetic bearing type turbine compressors that are mounted and supported by journals and thrust bearings in which the main shaft is controlled by electromagnet current. In addition, although it is a proposal for a gas turbine engine, Tokuhei Hei 8 _ 2 6 1 2 3 7 discloses that a thrust load acting on a rolling bearing for supporting a main shaft does not lead to shortening of the bearing life. It has been proposed to reduce the thrust load acting on the rolling bearing with a thrust magnetic bearing. [0004] However, the technique disclosed in the above-mentioned Japanese Patent No. 2 6 2 3 2 0 2 has not yet been solved with respect to the deterioration of the long-term durability of the bearing against the load of the thrust load under the high speed rotation.
[0005] 前記特開平 7 _ 9 1 7 6 0号公報の磁気軸受式タービン■ コンプレッサの ように、 主軸を磁気軸受からなるジャーナル軸受およびスラスト軸受で支承 したものでは、 ジャーナル軸受にアキシアル方向の規制機能がない。 そのた め、 スラスト軸受の制御の不安定要因等があると、 上記翼車とディフューザ 間の微小隙間を保って安定した高速回転を行うことが難しい。 磁気軸受の場 合は、 電源停止時における接触の問題もある。  [0005] Magnetic bearing type turbines disclosed in Japanese Patent Application Laid-Open No. 7_9 1 7 60 There is no function. For this reason, if there is an instability factor in the control of the thrust bearing, it is difficult to perform stable high-speed rotation with a minute gap between the impeller and the diffuser. In the case of magnetic bearings, there is also a problem of contact when the power is stopped.
[0006] そこで、 本発明者等は、 上記課題を解決するものとして、 図 1 8に示すよ うなモーター体型の磁気軸受装置を開発した。 このモーター体型の磁気軸受 装置は、 主軸 5 3の両端にコンプレッサ 4 6のコンプレッサ翼車 4 6 aおよ び膨張タービン 4 7のタービン翼車 4 7 aを取付けた空気サイクル冷凍冷却 用タービンュニッ卜において、 主軸 5 3のラジアル負荷を転がり軸受 5 5 , 5 6で、 アキシアル負荷を電磁石 5 7でそれぞれ支持すると共に、 主軸 5 3 に同軸に設けたモータ 6 8による駆動力とタービン翼車 4 7 aの駆動力とで コンプレッサ翼車 4 6 aを回転駆動するようにしたものである。 アキシアル 負荷を支持する電磁石 5 7は、 主軸 5 3に垂直かつ同軸に設けられたスラス ト板 5 3 aに非接触で対向するように配置され、 アキシアル方向の力を検出 するセンサ 5 8の出力に応じて磁気軸受用コントロ一ラ 5 9で制御される。 モータ 6 8はアキシアルギャップ型のものであって、 主軸 5 3に垂直かつ同 軸に設けた別のスラスト板 5 3 bにモータロータ 6 8 aを形成すると共に、 このモータロータ 6 8 aと軸方向に対向するようにモ一タステ一タ 6 8 bを 配置して構成される。  [0006] Therefore, the present inventors have developed a motor-type magnetic bearing device as shown in FIG. 18 as a solution to the above-mentioned problems. This motor-type magnetic bearing device is used in an air cycle refrigeration cooling turbine unit in which a compressor impeller 4 6a of a compressor 4 6 and a turbine impeller 4 7a of an expansion turbine 4 7 are attached to both ends of a main shaft 53. The radial load of the main shaft 5 3 is supported by the rolling bearings 5 5 and 5 6, and the axial load is supported by the electromagnet 5 7, and the driving force by the motor 6 8 provided coaxially with the main shaft 5 3 and the turbine impeller 4 7 a The compressor impeller 4 6a is driven to rotate with the driving force of. The electromagnet 5 7 that supports the axial load is arranged so as to face the thrust plate 5 3 a that is perpendicular and coaxial with the main shaft 53 without contact, and outputs the sensor 5 8 that detects the axial force. Depending on the control, it is controlled by the magnetic bearing controller 59. The motor 68 is of an axial gap type, and a motor rotor 6 8 a is formed on another thrust plate 53 b provided perpendicularly to the main shaft 53 and on the same axis, and the motor rotor 68 is formed in the axial direction. The motor stators 6 8 b are arranged so as to face each other.
[0007] 上記構成のモータ一体型の磁気軸受装置によると、 主軸 5 3にかかるスラ ストカを電磁石 5 7で支持するため、 非接触でトルクの増大を抑えながら、 転がり軸受 5 5 , 5 6に作用するスラスト力を軽減することができる。 その 結果、 各翼車 4 6 a , 4 7 aとハウジング 4 6 b , 4 7 bとの微小隙間を一 定に保つことができ、 スラスト荷重の負荷に対する転がり軸受 5 5 , 5 6の 長期耐久性を向上させることができる。 [0007] According to the motor-integrated magnetic bearing device having the above-described configuration, the thruster applied to the main shaft 53 is supported by the electromagnet 57. The acting thrust force can be reduced. As a result, the small gaps between the impellers 4 6 a and 4 7 a and the housings 4 6 b and 4 7 b are unified. The long-term durability of the rolling bearings 5 5 and 5 6 against the thrust load can be improved.
し力、し、 主軸 5 3に、 電磁石 5 7用のスラスト板 5 3 aとモータ 6 8用の スラスト板 5 3 bとを別々に設けているため、 主軸 5 3の軸長が長くなつて 装置全体のコンパク ト化が不十分であり、 また固有振動数が低下して高速回 転が困難になるという課題がある。  Since the thrust plate 5 3 a for the electromagnet 5 7 and the thrust plate 5 3 b for the motor 6 8 are provided separately on the main shaft 53, the shaft length of the main shaft 53 is longer. There is a problem that the compactness of the entire device is insufficient, and the natural frequency is lowered, making high-speed rotation difficult.
このような課題を解消するものとして、 同じスラスト板を磁気軸受の電磁 石ターゲッ卜とモータロータ用の永久磁石の取付に用いるものを試みた。 こ れにより、 主軸長さが短くなつて、 より一層コンパク ト化され、 また固有振 動数の低下が回避できて、 高速回転が可能となる。  To solve this problem, we tried to use the same thrust plate for mounting the magnet bearing target of the magnetic bearing and the permanent magnet for the motor rotor. As a result, the length of the spindle is shortened, making it more compact and avoiding a decrease in the natural frequency, enabling high-speed rotation.
[0008] し力、し、 図 1 8の提案例においても、 また同じスラスト板を磁気軸受の電 磁石ターゲッ卜とモータロータ用の永久磁石の取付に用いる形式のものであ つても、 モ一タステ一タ 6 8 bでの発熱量が非常に多くなる。 そのため、 一 般のモータで行われるようなモータケースの外側からの間接的な冷却では十 分に冷却できない。 冷却不足は、 モータ効率を下げ回転速度を制限するばか りか、 安全性にも係わるので、 効果的な冷却対策が求められる。 [0008] In the proposed example of FIG. 18, even if the same thrust plate is used for mounting the electromagnetic target of the magnetic bearing and the permanent magnet for the motor rotor, The amount of heat generated in one table 6 8 b is very large. For this reason, indirect cooling from the outside of the motor case, which is performed by a general motor, cannot be sufficiently cooled. Insufficient cooling not only reduces the motor efficiency but limits the rotation speed, but also relates to safety, so effective cooling measures are required.
発明の開示  Disclosure of the invention
[0009] この発明は、 スラスト荷重の負荷に対する転がり軸受の長期耐久性を向上 させることができ、 コンパク ト化、 高速回転化に対応でき、 かつ十分なモー タ冷却効果が得られるモーター体型の磁気軸受装置を提供することを目的と する。  [0009] The present invention can improve the long-term durability of a rolling bearing against a thrust load, can cope with compaction and high-speed rotation, and can provide a sufficient motor cooling effect. The object is to provide a bearing device.
[0010] この発明のモーター体型の磁気軸受装置は、 転がり軸受と磁気軸受を併用 し、 転がり軸受がラジアル負荷を支持し、 磁気軸受がアキシアル負荷と軸受 予圧のどちらか一方または両方を支持し、 前記磁気軸受を構成する電磁石は 主軸に設けられた強磁性体からなるフランジ状のスラスト板に非接触で対向 するように、 スピンドルハウジングに取付けられており、 アキシアルギヤッ プモータのモータロータが、 前記スラスト板とこのスラスト板に周方向に等 ピッチで設けられた複数個の永久磁石とで構成され、 前記モータロータと対 向してモータコイルを有するモ一タステ一タが前記スピンドルハウジングに 設置され、 前記モータ内に冷却媒体を供給してモータを冷却する冷却通路が 設けられている。 [0010] A motor-type magnetic bearing device of the present invention uses a rolling bearing and a magnetic bearing in combination, the rolling bearing supports a radial load, the magnetic bearing supports one or both of an axial load and a bearing preload, The electromagnet constituting the magnetic bearing is attached to the spindle housing so as to face the flange-shaped thrust plate made of a ferromagnetic material provided on the main shaft in a non-contact manner, and the motor rotor of the axial gear motor is connected to the thrust gear. A plate and a plurality of permanent magnets provided at equal pitch in the circumferential direction on the thrust plate, A motor stator having a motor coil is installed in the spindle housing, and a cooling passage is provided in the motor to cool the motor by supplying a cooling medium.
この構成によると、 転がり軸受と磁気軸受を併用し、 転がり軸受がラジア ル負荷を支持し、 磁気軸受がアキシアル負荷と軸受予圧のどちらか一方また は両方を支持するものであるため、 アキシアル方向の精度の良い支持が行え 、 また転がり軸受の長期耐久性が確保でき、 磁気軸受のみの支持の場合にお ける電源停止時の損傷も回避される。 また、 磁気軸受の電磁石に対向させる スラスト板にモータロータの永久磁石を設けたため、 磁気軸受とモータ口一 タとのスラスト板の兼用によって主軸長さが短くなり、 コンパク ト化される と共に、 固有振動数の低下が回避できて、 高速回転時の低振動の回転が可能 になる。  According to this configuration, since the rolling bearing and the magnetic bearing are used together, the rolling bearing supports the radial load, and the magnetic bearing supports one or both of the axial load and the bearing preload. It can be supported with high accuracy and long-term durability of the rolling bearing can be secured, and damage when the power supply is stopped in the case of supporting only the magnetic bearing can be avoided. In addition, because the permanent magnet of the motor rotor is provided on the thrust plate facing the electromagnet of the magnetic bearing, the spindle length is shortened by the combined use of the thrust plate of the magnetic bearing and the motor port, resulting in compactness and natural vibration. The decrease in the number can be avoided, and low-vibration rotation during high-speed rotation is possible.
上記モータは、 アキシャルギャップ形であって、 モ一タステ一タでの発熱 量が多く、 一般のモータで行われるようなモータケースの外側からの間接的 な冷却では十分に冷却できない。 しかし、 モータ内に供給された冷却媒体に よりモータが直接に冷却されるため、 優れた冷却効果が得られる。 これによ り、 冷却不足によるモータ効率の低下や安全性悪化を回避できる。  The motor is an axial gap type and generates a large amount of heat at the motor stage, so that it cannot be cooled sufficiently by indirect cooling from the outside of the motor case, as is done with ordinary motors. However, since the motor is directly cooled by the cooling medium supplied in the motor, an excellent cooling effect can be obtained. As a result, a decrease in motor efficiency and a deterioration in safety due to insufficient cooling can be avoided.
[001 1 ] この発明において、 前記冷却媒体は冷却液であり、 前記モータコイルの巻 線に冷却液が接するように、 冷却液を前記モータステータ内に流す前記冷却 通路を設けるのが好ましい。 この構成によると、 冷却液をモ一タステ一タ内 に流す冷却通路を設けるだけの簡単な構成で、 必要なモータ冷却効果が得ら れる。  [001 1] In this invention, the cooling medium is a cooling liquid, and it is preferable to provide the cooling passage through which the cooling liquid flows into the motor stator so that the cooling liquid contacts the winding of the motor coil. According to this configuration, the necessary motor cooling effect can be obtained with a simple configuration in which only a cooling passage for flowing the cooling liquid into the motor stator is provided.
[0012] この発明において、 前記モータステ一タは、 高分子材料からなるケース内 にモータコイルを収容したものであり、 前記ケース内に、 前記冷却通路を設 け、 この冷却通路は、 モータコイルに面して開口した冷却液通過溝を有する ものであってもよい。 この構成によると、 モータコイルの巻線に冷却液が接 するように、 冷却液をモータステータ内に流す冷却通路を設けたので、 優れ た冷却効果が得られる。 上記循環経路は、 モータコイルに面して開口した冷 却液通過溝を有するものとし、 経路断面を小さくしたため、 同じ量の冷却液 を流すにっき、 冷却液が高速で流れることになり、 より一層冷却効率が向上 する。 これにより、 冷却不足によるモータ効率の低下や安全性悪化を回避で きる。 モータのケースは高分子材料からなるため、 冷却液通過溝等の冷却通 路の形成が容易であり、 また非磁性体のため、 磁界への影響が生じない。 [0012] In the present invention, the motor stage includes a motor coil accommodated in a case made of a polymer material, the cooling passage is provided in the case, and the cooling passage is provided in the motor coil. It may have a coolant passage groove that faces and opens. According to this configuration, an excellent cooling effect can be obtained because the cooling passage for flowing the coolant into the motor stator is provided so that the coolant contacts the windings of the motor coil. The circulation path is a cold opening facing the motor coil. Since it has a reject liquid passage groove and the path cross section is made smaller, the same amount of coolant flows and the coolant flows at a high speed, further improving the cooling efficiency. As a result, it is possible to avoid a decrease in motor efficiency and a deterioration in safety due to insufficient cooling. Since the motor case is made of a polymer material, it is easy to form a cooling passage such as a coolant passage groove, and because it is non-magnetic, it does not affect the magnetic field.
[0013] この発明において、 前記冷却通路は、 前記ケースに設けられてケース外部 から冷却液が供給される注入口と、 この注入口に連通してケース内に設けら れたケース内冷却経路と、 このケース内冷却経路に設けられた一つまたは複 数の排出口とを有するものとしてもよい。 このような冷却通路の構成とする ことで、 効率の良い冷却が可能になる。 注入口および排出口は、 ステータの 外径部に設けることが好ましく、 これにより注入口および排出口に接続する 外部の冷却液経路の配置が容易となる。  [0013] In this invention, the cooling passage is provided in the case and is supplied with an inlet through which coolant is supplied from the outside of the case, and an in-case cooling path provided in the case that communicates with the inlet. One or a plurality of discharge ports provided in the cooling path in the case may be provided. By adopting such a cooling passage structure, efficient cooling becomes possible. The inlet and outlet are preferably provided in the outer diameter portion of the stator, which facilitates the arrangement of the external coolant path connected to the inlet and outlet.
[0014] この発明において、 前記モータコイルへの電流切替えのタイミングを取る ために前記モータロータの永久磁石の通過を検出するセンサを、 前記ケース の外側に配置してもよい。 前記センサは、 モータの制御上必要となるが、 こ のセンサが冷却液に接すると、 劣化や短絡の問題が生じる恐れがある。 しか し、 前記センサを前記ケースの外側に配置することにより、 センサに冷却液 が触れることが回避される。  [0014] In the present invention, a sensor for detecting the passage of the permanent magnet of the motor rotor may be arranged outside the case in order to take a timing for switching the current to the motor coil. The sensor is necessary for controlling the motor, but if this sensor comes into contact with the coolant, there is a risk of deterioration or short-circuiting. However, by disposing the sensor outside the case, it is possible to avoid the coolant from touching the sensor.
[0015] この発明において、 前記モータコイルは、 同一円周上に複数個並べて共通 のケース内に設け、 前記冷却液通過溝を、 それぞれ前記各コイルの端面に面 して複数設けてもよい。 このように、 冷却液通過溝を、 各コイルの端面に面 して複数設けると、 冷却液が各冷却液通過溝に高速で流れることになるので 、 モータコイルに対する冷却効果をより高めることができる。  [0015] In the present invention, a plurality of the motor coils may be arranged in a common case on the same circumference, and a plurality of the cooling liquid passage grooves may be provided so as to face the end surfaces of the coils. Thus, if a plurality of cooling liquid passage grooves are provided facing the end face of each coil, the cooling liquid flows at a high speed into each cooling liquid passage groove, so that the cooling effect on the motor coil can be further enhanced. .
[001 6] この発明において、 前記モータコイルは、 コイルの内側が中空部となった コアレスコイルであり、 前記モータステ一タに、 前記モータコイルの前記中 空部内に冷却液を流す冷却通路を設けてもよい。 この構成によると、 モータ コイルの中空部に冷却液を流す冷却通路を設けているので、 十分な冷却効果 が得られる。 これにより、 冷却不足によるモータ効率の低下や安全性悪化を 回避できる。 さらに、 モータコイルの中空部に冷却液を流すことから、 冷却 通路をコンパク 卜に構成でき、 冷却通路の形成のためにモータステ一タが大 型化するのを回避できる。 モータコイルの中空部内で冷却液がコイル巻線に 直接に接して流れるようにした場合は、 より一層冷却効果が向上する。 [001 6] In the present invention, the motor coil is a coreless coil having a hollow inside, and the motor stator is provided with a cooling passage for flowing a coolant into the hollow portion of the motor coil. May be. According to this configuration, since the cooling passage for flowing the coolant in the hollow portion of the motor coil is provided, a sufficient cooling effect can be obtained. This reduces motor efficiency and safety due to insufficient cooling. Can be avoided. Furthermore, since the cooling liquid is allowed to flow through the hollow portion of the motor coil, the cooling passage can be made compact, and the motor stator can be prevented from being enlarged due to the formation of the cooling passage. If the coolant flows directly in contact with the coil winding in the hollow portion of the motor coil, the cooling effect is further improved.
[001 7] この発明において、 前記モータコイルを、 軸方向に並ぶ複数のコイル分割 体に分割し、 これらコイル分割体の間に、 コイルの外周からコイルの中空部 に冷却液を流入させる中空部流入路を設けてもよい。 このように軸方向に並 ぶ複数のコィル分割体に分割した構成とすることで、 コィルの外周からコィ ルの中空部に冷却液を流入させる中空部流入路が簡単に形成できる。  [001 7] In the present invention, the motor coil is divided into a plurality of coil divided bodies arranged in the axial direction, and a hollow portion that allows coolant to flow into the hollow portion of the coil from the outer periphery of the coil between the coil divided bodies An inflow path may be provided. By thus dividing the coil into a plurality of coil segments arranged in the axial direction, it is possible to easily form a hollow portion inflow passage through which the cooling liquid flows from the outer periphery of the coil into the hollow portion of the coil.
[0018] この発明において、 前記主軸には、 コンプレッサ側翼車およびタービン側 翼車が、 前記主軸に取付けられ、 モータ動力とタービン側翼車で発生した動 力のどちらか一方または両方により、 コンプレッサ側翼車を駆動させる、 圧 縮膨張タービンシステムに適用されたものであってもよい。 この構成の場合 、 各翼車の適切な隙間を保って主軸の安定した高速回転が得られ、 かつ軸受 の長期耐久性、 寿命の向上が得られる。  [0018] In the present invention, a compressor side impeller is attached to the main shaft on the main shaft, and either one or both of motor power and dynamic force generated by the turbine side impeller are used. It may be applied to a compression / expansion turbine system for driving the compressor. In this configuration, a stable high-speed rotation of the main shaft can be obtained while maintaining an appropriate clearance between the impellers, and long-term durability and life of the bearing can be improved.
[001 9] この発明において、 前記冷却媒体は空気であり、 前記冷却通路が、 前記モ ータ内に外部から冷却用の空気を給気するモータ部冷却エア導入経路、 およ び給気された空気をモータ外に排気する排出経路を有するものであってもよ い。  [001 9] In the present invention, the cooling medium is air, and the cooling passage is supplied to the motor section cooling air introduction path for supplying cooling air into the motor from the outside, and is supplied. It may have a discharge path for exhausting the air outside the motor.
[0020] この構成によると、 冷却用の空気の導入経路および排出経路を設けただけ の簡単な構成で、 必要なモータ冷却が行える。  [0020] According to this configuration, the necessary motor cooling can be performed with a simple configuration in which a cooling air introduction path and a discharge path are provided.
[0021 ] この発明において、 前記モータ部冷却エア導入経路は、 前記タービン翼に 流入する空気またはタービン翼から吐出される空気の一部を前記モータに導 入するものであってもよい。 この構成の場合、 タービン翼への流入または吐 出空気を利用するため、 ファン類等の専用の空気供給源を必要とせずに、 冷 却空気の強制循環が行え、 簡単な構成で、 効率の良いモータ冷却が行える。  [0021] In the present invention, the motor part cooling air introduction path may introduce a part of the air flowing into the turbine blade or the air discharged from the turbine blade into the motor. In this configuration, the air that flows into or out of the turbine blades is used, so cooling air can be forcibly circulated without the need for a dedicated air supply source such as fans. Good motor cooling.
[0022] この発明において、 前記モータ部冷却エア導入経路はモータロータの内径 部に給気する経路とし、 前記排出経路はモータロータの外径部から排気する 経路とすることが好ましい。 この発明で用いるアキシアルギヤップモータは 、 モータロータが半径方向に大きなものとなり、 またモータロータの回転に よる遠心力がモータ内の空気に影響するため、 モーターロータの内径部から 導入して外径部から排出することで、 冷却空気の効率の良い流れが得られ、 より優れた冷却効果が得られる。 In this invention, the motor part cooling air introduction path is a path for supplying air to the inner diameter part of the motor rotor, and the discharge path is exhausted from the outer diameter part of the motor rotor. A route is preferred. In the axial gearup motor used in the present invention, the motor rotor becomes large in the radial direction, and the centrifugal force due to the rotation of the motor rotor affects the air in the motor. Therefore, the axial gearup motor is introduced from the inner diameter portion of the motor rotor and discharged from the outer diameter portion. By doing so, an efficient flow of cooling air can be obtained, and a more excellent cooling effect can be obtained.
[0023] この発明において、 前記モータ一体型磁気軸受装置は、 空気を使用して空 調または冷凍する空気サイクル冷凍冷却システムに使用されるものであって もよい。 空気サイクル冷凍冷却システムは、 比熱の小さな空気を冷媒として 用いるため、 高速回転が必要であり、 そのため、 この発明のモーター体型磁 気軸受装置によるモータ冷却やその他の各効果が有効に発揮される。  [0023] In the present invention, the motor-integrated magnetic bearing device may be used in an air cycle refrigeration cooling system that uses air to perform air conditioning or refrigeration. Since the air cycle refrigeration cooling system uses air with a small specific heat as a refrigerant, it requires high-speed rotation. Therefore, motor cooling and other effects are effectively exhibited by the motor body type magnetic bearing device of the present invention.
上記空気サイクル冷凍冷却システムは、 例えば、 流入空気に対して、 ター ビンユニットのコンプレッサによる圧縮、 他の熱交換器による冷却、 前記タ —ビンュニッ卜の膨張タービンによる断熱膨張、 もしくは予圧縮手段による 圧縮、 熱交換器による冷却、 タービンユニットのコンプレッサによる圧縮、 他の熱交換器による冷却、 前記タービンュニッ卜の膨張タービンによる断熱 膨張、 を順次行う構成のものである。  The above air cycle refrigeration cooling system can, for example, compress the incoming air by a compressor of a turbine unit, cool by another heat exchanger, adiabatic expansion by an expansion turbine of the turbine unit, or compress by a precompression means. , Cooling by a heat exchanger, compression by a compressor of a turbine unit, cooling by another heat exchanger, and adiabatic expansion by an expansion turbine of the turbine unit.
このような空気サイクル冷凍冷却システムに適用した場合、 圧縮膨張ター ビンシステムにおいて、 各翼車の適切な隙間を保って主軸の安定した高速回 転が得られ、 かつ軸受の長期耐久性の向上、 寿命の向上が得られることから 、 圧縮膨張タービンシステムの全体として、 しいては空気サイクル冷凍冷却 システムの全体としても信頼性が向上する。 また、 空気サイクル冷凍冷却シ ステムのネックとなっている圧縮膨張タービンシステムの主軸軸受の安定し た高速回転、 長期耐久性、 信頼性が向上することから、 空気サイクル冷凍冷 却システムの実用化が可能となる。  When applied to such an air cycle refrigeration cooling system, in the compression / expansion turbine system, stable high-speed rotation of the main shaft can be obtained while maintaining an appropriate gap between the impellers, and the long-term durability of the bearing is improved. Since the improvement of the service life is obtained, the reliability of the entire compression / expansion turbine system is improved as well as the entire air cycle refrigeration cooling system. In addition, the high-speed rotation, long-term durability, and reliability of the main shaft bearing of the compression / expansion turbine system, which has become the bottleneck of the air cycle refrigeration cooling system, are improved. It becomes possible.
図面の簡単な説明  Brief Description of Drawings
[0024] この発明は、 添付の図面を参考にした以下の好適な実施形態の説明からよ り明瞭に理解されるであろう。 しかしながら、 実施形態および図面は単なる 例示および説明のためのものであり、 この発明の範囲は添付の特許請求の範 囲によって定まる。 添付図面において、 複数の図面における同一の部品番号 は、 同一部分を示す。 The present invention will be more clearly understood from the following description of preferred embodiments with reference to the accompanying drawings. However, the embodiments and drawings are for illustration and description only, and the scope of the present invention is defined in the appended claims. Determined by the enclosure. In the accompanying drawings, the same part number in a plurality of drawings indicates the same part.
[図 1 ]この発明の第 1実施形態にかかるモータ一体型の磁気軸受装置が組み込 まれたタービンュニッ卜の縦断面図である。 FIG. 1 is a longitudinal sectional view of a turbine unit incorporating a motor-integrated magnetic bearing device according to a first embodiment of the present invention.
[図 2]同タービンュニッ卜におけるモータステータの分解正面図である。  FIG. 2 is an exploded front view of a motor stator in the turbine unit.
[図 3]モーター体型の磁気軸受装置に用いられる磁気軸受用コントローラの一 例を示すブロック図である。  FIG. 3 is a block diagram showing an example of a magnetic bearing controller used in a motor type magnetic bearing device.
[図 4]モーター体型の磁気軸受装置に用いられるモータ用コントローラの一例 を示すブロック図である。  FIG. 4 is a block diagram showing an example of a motor controller used in a motor type magnetic bearing device.
[図 5]モーター体型の磁気軸受装置におけるモータを示す縦断面図である。  FIG. 5 is a longitudinal sectional view showing a motor in a motor type magnetic bearing device.
[図 6]モータステータの一部モジュールを示す横断面図である。  FIG. 6 is a cross-sectional view showing a partial module of the motor stator.
[図 7]モータステータの一部モジュールの正面図である。  FIG. 7 is a front view of a partial module of the motor stator.
[図 8]図 7の V I 1 1—V I 1 1線に沿ったモータの断面図である。  8 is a cross-sectional view of the motor along the line V I 1 1—V I 1 1 in FIG.
[図 9]この発明の第 2実施形態にかかるモーター体型の磁気軸受装置における モータを示す縦断面図である。  FIG. 9 is a longitudinal sectional view showing a motor in a motor type magnetic bearing device according to a second embodiment of the present invention.
[図 10]同じくモータステータの一部モジュールを示す横断面図である。  FIG. 10 is a cross-sectional view showing a part of the module of the motor stator.
[図 11 ]図 1 0の X I—X I線に沿ったモータの断面図である。 FIG. 11 is a sectional view of the motor taken along line XI—XI in FIG.
[図 12]この発明の第 3実施形態にかかるモーター体型の磁気軸受装置が組み 込まれたタービンュニッ卜の縦断面図である。 FIG. 12 is a longitudinal sectional view of a turbine unit in which a motor type magnetic bearing device according to a third embodiment of the present invention is incorporated.
[図 13]この発明の第 4実施形態にかかるモーター体型の磁気軸受装置におけ るモータを示す縦断面図である。  FIG. 13 is a longitudinal sectional view showing a motor in a motor type magnetic bearing device according to a fourth embodiment of the present invention.
[図 14]同じくモータステータの一部モジュールを示す横断面図である。  FIG. 14 is a transverse sectional view showing a part of the motor stator module.
[図 15]この発明の第 5実施形態にかかるモーター体型の磁気軸受装置が組み 込まれたタービンュニッ卜の縦断面図である。  FIG. 15 is a longitudinal sectional view of a turbine unit in which a motor type magnetic bearing device according to a fifth embodiment of the present invention is incorporated.
[図 16]この発明の第 6実施形態にかかるモーター体型の磁気軸受装置が組み 込まれたタービンュニッ卜の縦断面図である。  FIG. 16 is a longitudinal sectional view of a turbine unit in which a motor type magnetic bearing device according to a sixth embodiment of the present invention is incorporated.
[図 17]図 1のタービンュニッ卜を適用した空気サイクル冷凍冷却システムの 系統図である。 [図 18]提案例の縦断面図である。 FIG. 17 is a system diagram of an air cycle refrigeration cooling system to which the turbine unit of FIG. 1 is applied. FIG. 18 is a longitudinal sectional view of the proposed example.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0026] この発明の第 1実施形態を図 1ないし図 8と共に説明する。 図 1は、 この 第 1実施形態のモータ一体型の磁気軸受装置を組み込んだタービンュニット 5の縦断面図を示す。 このタービンュニット 5は圧縮膨張タービンシステム を構成するものであり、 コンプレッサ 6および膨張タービン 7を有し、 コン プレッサ 6のコンプレツサ翼車 6 aおよび膨張タ一ビン 7のタ一ビン翼車 7 aが主軸 1 3の両端にそれぞれ嵌合している。 主軸 1 3の材料には、 磁気特 性の良好な低炭素鋼が使用される。  [0026] A first embodiment of the present invention will be described with reference to Figs. FIG. 1 is a longitudinal sectional view of a turbine unit 5 incorporating the motor-integrated magnetic bearing device of the first embodiment. This turbine unit 5 constitutes a compression / expansion turbine system, and includes a compressor 6 and an expansion turbine 7, and a compressor impeller 6a of the compressor 6 and a turbine impeller 7a of the expansion turbine 7 are main shafts. 1 Fits to both ends of 3. Low carbon steel with good magnetic properties is used as the material for the main shafts 13.
[0027] 図 1において、 コンプレッサ 6は、 コンプレッサ翼車 6 aと微小の隙間 d  In FIG. 1, the compressor 6 is connected to the compressor impeller 6 a and a minute gap d.
1を介して対向するコンプレッサハウジング 6 bを有し、 中心部の吸込口 6 cから軸方向に吸入した空気を、 コンプレッサ翼車 6 aで圧縮し、 外周部の 出口 (図示せず) から矢印 6 dで示すように排出する。  1 has a compressor housing 6b facing through 1 and the air sucked in the axial direction from the suction port 6c at the center is compressed by the compressor wheel 6a, and an arrow from the outlet (not shown) at the outer periphery 6 Discharge as shown in d.
膨張タービン 7は、 タービン翼車 7 aと微小の隙間 d 2を介して対向する タービンハウジング 7 bを有し、 外周部から矢印 7 cで示すように吸い込ん だ空気を、 タービン翼車 7 aで断熱膨張させ、 中心部の排出口 7 dから軸方 向に排出する。  The expansion turbine 7 has a turbine housing 7 b that is opposed to the turbine impeller 7 a via a minute gap d 2, and the air sucked from the outer periphery as indicated by an arrow 7 c is received by the turbine impeller 7 a. Adiabatic expansion and exhaust in the axial direction from the central outlet 7d.
[0028] このタービンユニット 5におけるモータ一体型の磁気軸受装置は、 主軸 1 3をラジアル方向に対し複数の軸受 1 5 , 1 6で支持し、 主軸 1 3にかかる アキシアル負荷と軸受予圧のどちらか一方または両方を磁気軸受の一部を構 成する電磁石 1 7により支持すると共に、 主軸 1 3を回転駆動するアキシァ ルギャップ型のモータ 2 8を設けたものである。 このタービンュニット 5は 、 主軸 1 3に作用するスラスト力を検出するセンサ 1 8と、 このセンサ 1 8 の出力に応じて前記電磁石 1 7による支持力を制御する磁気軸受用コント口 —ラ 1 9と、 電磁石 1 7とは独立に前記モータ 2 8を制御するモータ用コン トローラ 2 9とを有している。  [0028] The motor-integrated magnetic bearing device in the turbine unit 5 is configured such that the main shaft 13 is supported by a plurality of bearings 15 and 16 in the radial direction, and either the axial load applied to the main shaft 13 or the bearing preload is applied. One or both are supported by an electromagnet 17 that constitutes a part of the magnetic bearing, and an axial gap type motor 28 that rotationally drives the main shaft 13 is provided. The turbine unit 5 includes a sensor 18 that detects a thrust force acting on the main shaft 13, and a magnetic bearing controller 1 9 that controls the supporting force of the electromagnet 17 according to the output of the sensor 18. And a motor controller 29 for controlling the motor 28 independently of the electromagnet 17.
電磁石 1 7は、 主軸 1 3の軸方向中間部において軸方向に並ぶように主軸 1 3に垂直かつ同軸に設けられた強磁性体からなるフランジ状の 2つのスラ スト板 1 3 a , 1 3 bの各片面に非接触で対向するように、 一対のものがス ピンドルハウジング 1 4に設置されている。 具体的には、 磁気軸受ュニット を構成する一方の電磁石 1 7は、 膨張タービン 7寄りに位置するスラスト板 1 3 aの膨張タービン 7側に向く片面を電磁石ターゲットとして、 この片面 に非接触で対向するようにスピンドルハウジング 1 4に設置される。 また、 磁気軸受ユニットを構成する他方の電磁石 1 7は、 コンプレッサ 6寄りに位 置するスラスト板 1 3 bのコンプレッサ 6側に向く片面を電磁石タ一ゲット して、 この片面に非接触で対向するようにスピンドルハウジング 1 4に設置 される。 こうして、 磁気軸受が電磁石 1 7 , 1 7とスラスト板 1 3 a , 1 3 bとにより構成される。 The electromagnet 17 is composed of two flange-shaped slurries made of a ferromagnetic material which is provided perpendicularly and coaxially to the main shaft 13 so as to be aligned in the axial direction at the axial intermediate portion of the main shaft 13. A pair of support plates 1 3 a and 1 3 b are installed on the spindle housing 14 so as to face each side in a non-contact manner. Specifically, one of the electromagnets 17 constituting the magnetic bearing unit is opposed to the one surface of the thrust plate 13 a located near the expansion turbine 7 toward the expansion turbine 7 as an electromagnet target without contact. To be installed in the spindle housing 14. In addition, the other electromagnet 17 constituting the magnetic bearing unit has one surface facing the compressor 6 side of the thrust plate 13 b positioned near the compressor 6 as an electromagnet target, and is opposed to this one surface in a non-contact manner. Is installed in the spindle housing 14. Thus, the magnetic bearing is constituted by the electromagnets 17 and 17 and the thrust plates 13a and 13b.
モータ 2 8は、 前記電磁石 1 7と並んで主軸 1 3に設けられたモータ口一 タ 2 8 aと、 このモータロータ 2 8 aに対し軸方向に対向するモータステ一 タ 2 8 bとでなるモータュニットである。 具体的には、 モータュニッ卜の一 部品を構成するモータロータ 2 8 aは、 主軸 1 3における前記各スラスト板 1 3 a , 1 3 bの電磁石 1 7が対向する側とは反対側の各片面に、 円周方向 に等ピッチで並ぶ永久磁石 2 8 a aを配置することで左右一対のものが構成 される。 このように軸方向に対向配置される永久磁石 2 8 a aの間では、 そ の磁極が互いに異極となるように設定される。 主軸 1 3には磁気特性の良好 な低炭素鋼を使用しているので、 主軸 1 3と一体構造となるように設けられ る前記各スラスト板 1 3 a , 1 3 bを、 永久磁石 2 8 a aのバックヨークお よび電磁石ターゲッ卜に兼用できる。  The motor 28 is composed of a motor unit 2 8a provided on the main shaft 13 alongside the electromagnet 17 and a motor unit 2 8b facing the motor rotor 28a in the axial direction. It is. Specifically, the motor rotor 28a constituting one part of the motor unit is provided on each side of the main shaft 13 opposite to the side on which the electromagnets 17 of the thrust plates 13a, 13b are opposed. By arranging the permanent magnets 28 aa arranged at equal pitches in the circumferential direction, a pair of left and right is configured. Thus, between the permanent magnets 28 a a arranged opposite to each other in the axial direction, the magnetic poles are set to be different from each other. Since the low-carbon steel with good magnetic properties is used for the main shaft 1 3, the thrust plates 1 3 a and 1 3 b provided so as to be integrated with the main shaft 1 3 are replaced with permanent magnets 2 8 Can also be used as aa back yoke and electromagnet target.
モータュニッ卜の他の部品であるモータステ一タ 2 8 bは、 前記左右一対 のモータロータ 2 8 aに挟まれる軸方向中央の位置において、 これら両モ一 タロータ 2 8 aの各面に非接触で対向するようにコアの無い状態で配置した 集中巻き方式の複数個のモータコイル 2 8 b aを、 スピンドルハウジング 1 4に設置して構成される。 具体的には、 モータステ一タ 2 8 bは、 分解した 平面図で示す図 2のように、 前記モータコイル 2 8 b aが周方向に複数並び 互いに一体化された複数個 (ここでは 2個) のモジュール 2 8 b 1 , 2 8 b 2に分けて構成される。 これにより、 主軸 1 3と一体である 2つのスラスト 板 1 3 a , 1 3 bに挟まれて配置されるモータテ一タ 2 8 b力 モータュニ ッ卜の一部品として組み込み可能とされる。 The motor stator 28 b, which is another part of the motor unit, faces the surfaces of both motor rotors 28 a in a non-contact manner at the center position in the axial direction between the pair of left and right motor rotors 28 a. In this way, a plurality of concentrated winding motor coils 2 8 ba arranged without a core are installed in the spindle housing 14. Specifically, as shown in FIG. 2 which is an exploded plan view, the motor stator 28 b includes a plurality of motor coils 28 ba arranged in the circumferential direction and integrated with each other (two here). Modules 2 8 b 1, 2 8 b It is divided into two parts. As a result, it can be incorporated as a part of a motor teeter 2 8 b force motor unit disposed between two thrust plates 1 3 a and 13 b integral with the main shaft 13.
このモータ 2 8は、 前記モータロータ 2 8 aとモ一タステ一タ 2 8 b間に 作用する口一レンツ力により、 主軸 1 3を回転させる。 このように、 このァ キシアルギャップ型のモータ 2 8はコアレスモータとされていることから、 モータロータ 2 8 aとモ一タステ一タ 2 8 b間の磁気力ップリングによる負 の剛性はゼロとなっている。  The motor 28 rotates the main shaft 13 by a mouth-lens force acting between the motor rotor 28a and the motor stator 28b. Thus, since this axial gap type motor 28 is a coreless motor, the negative rigidity due to the magnetic force pulling between the motor rotor 28a and the motor stator 28b is zero. ing.
[0030] 主軸 1 3を支持する軸受 1 5 , 1 6は転がり軸受であって、 アキシアル方 向位置の規制機能を有するものであり、 例えば深溝玉軸受ゃアンギユラ玉軸 受が用いられる。 深溝玉軸受の場合、 両方向のスラスト支持機能を有し、 内 外輪のアキシアル方向位置を中立位置に戻す作用を持つ。 これら 2個の軸受 1 5 , 1 6は、 それぞれスピンドルハウジング 1 4におけるコンプレッサ翼 車 6 aおよびタービン翼車 7 aの近傍に配置されて、 電磁石 1 7 , スラスト 板 1 3 a , 1 3 bを挟んで主軸 1 3のラジアル負荷を支持する転がり軸受 1 5 , 1 6が軸方向に離間して位置するので、 主軸 1 3が安定して支持できる The bearings 15 and 16 that support the main shaft 13 are rolling bearings and have a function of regulating the axial direction position. For example, deep groove ball bearings are used as an anguilla ball bearing. Deep groove ball bearings have a thrust support function in both directions, and return the inner and outer rings in the axial position to the neutral position. These two bearings 15 and 16 are arranged in the vicinity of the compressor wheel 6a and the turbine wheel 7a in the spindle housing 14 respectively, and electromagnets 17 and thrust plates 13a and 13b. Since the rolling bearings 15 and 16 that support the radial load of the main shaft 1 3 sandwiched between them are positioned apart from each other in the axial direction, the main shaft 13 can be stably supported.
[0031 ] 主軸 1 3は、 中間部の大径部 1 3 cと、 両端部の小径部 1 3 dとを有する 段付き軸とされている。 両側の軸受 1 5 , 1 6は、 その内輪 1 5 a , 1 6 a が小径部 1 3 dに圧入状態に嵌合し、 片方の幅面が大径部 1 3 cと小径部 1 3 d間の段差面に係合する。 [0031] The main shaft 13 is a stepped shaft having a large-diameter portion 13c at an intermediate portion and small-diameter portions 13d at both ends. The bearings 15 and 16 on both sides have their inner rings 15 a and 16 a fitted into the small-diameter portion 13 d in a press-fit state, and one of the width surfaces is between the large-diameter portion 13 c and the small-diameter portion 13 d Engage with the step surface.
スピンドルハウジング 1 4における両側の軸受 1 5 , 1 6よりも各翼車 6 a , 7 a側の部分は、 内径面が主軸 1 3に近接する径に形成され、 この内径 面に非接触シール 2 1 , 2 2が形成されている。 この実施形態では、 非接触 シール 2 1 , 2 2は、 スピドルハウジング 1 4の内径面に複数の円周溝を軸 方向に並べて形成したラビリンスシールとしているが、 その他の非接触シ一 ル手段でも良い。  The bearings 6 a and 7 a side of the bearings 15 and 16 on both sides of the spindle housing 14 are formed so that the inner diameter surface is close to the main shaft 13 and the non-contact seal 2 is provided on the inner diameter surface. 1 and 2 2 are formed. In this embodiment, the non-contact seals 2 1 and 2 2 are labyrinth seals in which a plurality of circumferential grooves are arranged in the axial direction on the inner diameter surface of the spiddle housing 14, but other non-contact seal means But it ’s okay.
[0032] 前記センサ 1 8は、 タービン翼車 7 a側の軸受 1 6の近傍における静止側 、 つまりスピンドルハウジング 1 4側に設けられている。 このセンサ 1 8を 近傍に設けた軸受 1 6は、 その外輪 1 6 bが軸受ハウジング 2 3内に固定状 態に嵌合している。 軸受ハウジング 2 3は、 リング状に形成されて一端に軸 受 1 6の外輪 1 6 bの幅面に係合する内鍔 2 3 aを有しており、 スピンドル ハウジング 1 4に設けられた内径面 2 4にアキシアル方向に移動自在に嵌合 している。 内鍔 2 3 aは、 アキシアル方向の中央側端に設けられている。 [0032] The sensor 18 is a stationary side near the bearing 16 on the turbine impeller 7a side. That is, it is provided on the spindle housing 14 side. A bearing 16 provided with the sensor 18 in the vicinity thereof has an outer ring 16 b fitted in a fixed state in the bearing housing 23. The bearing housing 2 3 is formed in a ring shape and has an inner flange 2 3 a that engages with the width surface of the outer ring 16 b of the bearing 16 at one end, and an inner diameter surface provided on the spindle housing 14 2 4 is movably fitted in the axial direction. The inner flange 2 3 a is provided at the center end in the axial direction.
[0033] センサ 1 8は主軸 1 3の回りの円周方向複数箇所 (例えば 2箇所) に分配 配置され、 軸受ハウジング 2 3の内鍔 2 3 a側の幅面と、 スピンドルハウジ ング 1 4に固定された部材である片方の電磁石 1 7との間に介在させてある 。 また、 センサ 1 8は、 センサ予圧ばね 2 5により予圧が印加されている。 センサ予圧ばね 2 5は、 スピンドルハウジング 1 4に設けられた収容凹部内 に収容されて軸受 1 6の外輪 1 6 bをアキシアル方向に付勢するものとされ 、 外輪 1 6 bおよび軸受ハウジング 2 3を介してセンサ 1 8を予圧する。 セ ンサ予圧ばね 2 5は、 例えば主軸 1 3の回りの円周方向複数箇所に設けられ たコイルばね等からなる。  [0033] The sensors 1 8 are distributed and arranged at a plurality of circumferential locations around the main shaft 1 3 (for example, 2 locations), fixed to the inner flange 2 3 a side of the bearing housing 2 3 and the spindle housing 1 4 It is interposed between one of the electromagnets 17 which is the formed member. The sensor 18 is preloaded by a sensor preload spring 25. The sensor preload spring 25 is housed in a housing recess provided in the spindle housing 14 to urge the outer ring 16 b of the bearing 16 in the axial direction. The outer ring 16 b and the bearing housing 2 3 Preload sensor 1 8 via. The sensor preload spring 25 is composed of, for example, coil springs provided at a plurality of locations in the circumferential direction around the main shaft 13.
[0034] センサ予圧ばね 2 5による予圧は、 押し付け力によってスラスト力を検出 するセンサ 1 8力 主軸 1 3のアキシアル方向のいずれの向きの移動に対し ても検出できるようにするためであり、 タービンュニット 5の通常の運転状 態で主軸 1 3に作用する平均的なスラストカ以上の大きさとされる。  [0034] The preload by the sensor preload spring 25 is to detect any movement of the main shaft 13 in the axial direction by detecting the thrust force by pressing force. It is larger than the average thruster acting on the main shaft 13 in the normal operation state of 5.
[0035] センサ 1 8の非配置側の軸受 1 5は、 スピンドルハウジング 1 4に対して アキシアル方向に移動自在に設置され、 かつ軸受予圧ばね 2 6によって弾性 支持されている。 この例では軸受 1 5の外輪 1 5 b力 スピンドルハウジン グ 1 4の内径面にアキシアル方向移動自在に嵌合していて、 軸受予圧ばね 2 6は、 外輪 1 5 bとスピンドルハウジング 1 4との間に介在している。 軸受 予圧ばね 2 6は、 内輪 1 5 aの幅面が係合した主軸 1 3の段面に対向して外 輪 1 5 bを付勢するものとされ、 軸受 1 5に予圧を与えている。 軸受予圧ば ね 2 6は、 主軸 1 3回りの円周方向複数箇所に設けられたコイルばね等から なり、 それぞれスピンドルハウジング 1 4に設けられた収容凹部内に収容さ れている。 軸受予圧ばね 2 6は、 センサ予圧ばね 2 5よりもばね定数が小さ いものとされる。 The bearing 15 on the non-arrangement side of the sensor 18 is installed so as to be movable in the axial direction with respect to the spindle housing 14, and is elastically supported by a bearing preload spring 26. In this example, the outer ring 1 5 b of the bearing 15 is fitted to the inner surface of the spindle housing 14 4 so as to be movable in the axial direction. The bearing preload spring 2 6 is formed between the outer ring 15 b and the spindle housing 14. Is intervening. The bearing preload spring 26 is configured to urge the outer ring 15 b facing the step surface of the main shaft 13 with which the width surface of the inner ring 15 a is engaged, and applies a preload to the bearing 15. The bearing preloading spring 26 is composed of coil springs and the like provided at a plurality of locations around the main shaft 13 in the circumferential direction, and is accommodated in receiving recesses provided in the spindle housing 14 respectively. It is. The bearing preload spring 26 is assumed to have a smaller spring constant than the sensor preload spring 25.
[0036] 上記タービンュニット 5におけるモータ一体型の磁気軸受装置の力学モデ ルは簡単なパネ系で構成することができる。 すなわち、 このパネ系は、 軸受 1 5 , 1 6とこれら軸受の支持系 (センサ予圧ばね 2 5、 軸受予圧ばね 2 6 、 軸受ハウジング 2 3など) とで形成される合成パネと、 モータ部 (電磁石 1 7とモータ 2 8 ) で形成される合成パネとが並列となった構成である。 こ のバネ系において、 軸受 1 5 , 1 6とこれら軸受の支持系とで形成される合 成パネは、 変位した方向と逆の方向に変位量に比例して作用する剛性となる のに対し、 電磁石 1 7とモータ 2 8とで形成される合成パネは、 変位した方 向に変位量に比例して作用する負の剛性となる。  [0036] The dynamic model of the motor-integrated magnetic bearing device in the turbine unit 5 can be constituted by a simple panel system. That is, this panel system includes a synthetic panel formed by bearings 15 and 16 and a support system for these bearings (sensor preload spring 25, bearing preload spring 26, bearing housing 23, etc.), and a motor unit ( This is a configuration in which a synthetic panel formed by the electromagnet 17 and the motor 28) is arranged in parallel. In this spring system, the composite panel formed by the bearings 15 and 16 and the support system of these bearings has rigidity that acts in proportion to the amount of displacement in the direction opposite to the displaced direction. The composite panel formed by the electromagnet 17 and the motor 28 has a negative stiffness that acts in proportion to the amount of displacement in the direction of displacement.
このため、 上記した両合成パネの剛性の大小関係を、  For this reason, the magnitude relationship between the rigidity of both composite panels described above is
軸受等による合成パネの剛性値 <電磁石■モータによる合成パネの負の剛 性値… (1 ) とした場合、 機械システムの位相は 1 8 0 ° 遅れとなり不安定 な系となることから、 電磁石 1 7を制御する磁気軸受用コントローラ 1 9に おいて、 予め位相補償回路を付加する必要が生じ、 コントローラ 1 9の構成 が複雑なものになる。  Synthetic panel stiffness due to bearings, etc. <Electromagnet ■ Negative stiffness value of synthetic panel due to motor ... When (1) is assumed, the phase of the mechanical system is delayed by 180 °, resulting in an unstable system. In the magnetic bearing controller 19 that controls 17, it is necessary to add a phase compensation circuit in advance, and the configuration of the controller 19 becomes complicated.
[0037] そこで、 この第 1実施形態のモータ一体型の磁気軸受装置では、 上記した 両合成パネの剛性の大小関係を、  [0037] Therefore, in the motor-integrated magnetic bearing device of the first embodiment, the above-described rigidity relationship between the two composite panels is expressed as follows.
軸受等による合成パネの剛性値 >電磁石■モータによる合成パネの負の剛 性値… (2 ) としている。 とくに、 このモータ一体型の磁気軸受装置では、 上記したようにアキシアルギャップ型のモータ 2 8をコアレスモータとして いるので、 モータ 2 8に作用する負の剛性値をゼロとすることができ、 モー タ 2 8が高負荷動作し過大なアキシアル荷重が作用した状態においても上記 ( 2 ) 式の大小関係を保つことができる。  Rigidity value of composite panel by bearings, etc.> Electromagnet ■ Negative stiffness value of synthetic panel by motor… (2). In particular, in this motor-integrated magnetic bearing device, since the axial gap motor 28 is a coreless motor as described above, the negative stiffness acting on the motor 28 can be reduced to zero. Even when 28 is operated at a high load and an excessive axial load is applied, the relationship of the above equation (2) can be maintained.
その結果、 制御帯域において、 機械システムの位相が 1 8 0 ° 遅れとなる ことを防止できるので、 モータ 2 8が高負荷動作し過大なアキシアル荷重が 作用した状態でも磁気軸受用コントローラ 1 9の制御対象を安定なものとで き、 コントローラ 1 9の回路構成を図 3のように比例もしくは比例積分を用 いた簡単なものに構成できる。 As a result, the phase of the mechanical system can be prevented from being delayed by 180 ° in the control band, so that the magnetic bearing controller 19 can be controlled even when the motor 28 is operating at a high load and an excessive axial load is applied. With a stable object As shown in Fig. 3, the circuit configuration of controller 19 can be configured as simple as using proportional or proportional integration.
[0038] ブロック図で示す図 3の磁気軸受用コントローラ 1 9では、 各センサ 1 8 の検出出力 P 1 , P 2をセンサ出力演算回路 3 0で加減算し、 その演算結果 を比較器 3 1で基準値設定手段 3 2の基準値と比較して偏差を演算し、 さら に演算した偏差を P I補償回路 (もしくは P補償回路) 3 3によりタービン ユニット 5に応じて適宜設定される比例積分 (もしくは比例) 処理を行うこ とで、 電磁石 1 7の制御信号を演算するようにしている。 P I補償回路 (も しくは P補償回路) 3 3の出力は、 ダイオード 3 4 , 3 5を介して各方向の 電磁石 1 7 1 , 1 7 2 を駆動するパワー回路 3 6 , 3 7に入力される。 電磁 石 1 7 1 , 1 7 2 は、 図 1に示したスラスト板 1 3 aに対向する一対の電磁 石 1 7であり、 吸引力しか作用しないため、 予めダイオード 3 4 , 3 5で電 流の向きを決め、 2個の電磁石 1 7 1 , 1 7 2 を選択的に駆動するようにし ている。 [0038] In the magnetic bearing controller 19 shown in the block diagram of FIG. 3, the detection outputs P 1 and P 2 of the sensors 18 are added and subtracted by the sensor output calculation circuit 30 and the calculation results are compared by the comparator 31. Deviation is calculated by comparing with the reference value of the reference value setting means 3 2, and the calculated deviation is proportionally integrated (or appropriately set by the PI compensation circuit (or P compensation circuit) 3 3 according to the turbine unit 5 (or Proportional) By processing, the control signal of the electromagnet 17 is calculated. The output of PI compensation circuit (or P compensation circuit) 3 3 is input to power circuits 3 6 and 3 7 that drive electromagnets 1 7 1 and 1 7 2 in each direction via diodes 3 4 and 3 5. The The magnet stones 17 1 and 17 2 are a pair of magnet stones 17 facing the thrust plate 13 a shown in FIG. 1 and only the attractive force acts on them. The two electromagnets 1 7 1 and 1 7 2 are selectively driven.
[0039] 同じくブロック図で示す図 4のモータ用コントローラ 2 9では、 回転同期 指令信号を基に、 モータロータ 2 8 aの回転角をフィードバック信号として 位相調整回路 3 8でモータ駆動電流の位相調整が行われ、 その調整結果に応 じたモータ駆動電流をモータ駆動回路 3 9からモータステ一タ 2 8 bのモー タコイル 2 8 b aに供給することによって、 定回転制御が行われる。 モータ コイル 2 8 b aへのモータ駆動電流の供給切替えのタイミングは、 モータス テ一タ 2 8 bに設けられモータロータ 2 8 aの永久磁石 2 8 a aの通過を検 出する位置検出センサ 4 0の出力に基づき、 位相調整回路 3 8で決定される 。 前記回転同期指令信号は、 モータロータ 2 8 aに設けられた回転角度検出 センサ (図示せず) の出力に応じて演算される。  In the motor controller 29 in FIG. 4 also shown in the block diagram, the phase adjustment circuit 38 can adjust the phase of the motor drive current using the rotation angle of the motor rotor 28 a as a feedback signal based on the rotation synchronization command signal. Constant rotation control is performed by supplying the motor drive current corresponding to the adjustment result from the motor drive circuit 39 to the motor coil 28 ba of the motor stator 28 b. The timing of switching the supply of motor drive current to the motor coil 2 8 ba is the output of the position detection sensor 40 that detects the passage of the permanent magnet 2 8 aa of the motor rotor 2 8 a provided in the motor stator 28 b Is determined by the phase adjustment circuit 38. The rotation synchronization command signal is calculated according to the output of a rotation angle detection sensor (not shown) provided in the motor rotor 28 a.
[0040] 図 5は前記モータ 2 8を示す縦断面図を示し、 図 6はモ一タステ一タ 2 8 bの一部モジュール 2 8 b 1の横断面図を示す。 モ一タステ一タ 2 8 bは、 前記した複数個のモータコイル 2 8 b aと、 これらモータコイル 2 8 b aを 内部に収容した絶縁材である高分子材料のケース 2 8 b bとでなる。 ケース 2 8 b bは、 上記のようにモジュール 2 8 b 1 , 2 8 b 2毎に設けられる。 このケース 2 8 b bには、 モータコイル 2 8 b aの巻線に冷却媒体として 冷却液 2 0が接するように、 冷却液 2 0をモータステータ 2 8 b内に流す冷 却通路 4 1が設けられている。 冷却媒体である冷却液 2 0としては、 例えば 、 オイルまたはエチレングリコールが用いられる。 冷却通路 4 1は、 ケース 2 8 b bの外部から冷却液 2 0が供給される注入口 4 1 aと、 この注入口 4 1 aに連通してケース 2 8 b b内に設けられたケース内冷却経路 4 1 bと、 このケース内冷却経路 4 1 bに設けられた一つまたは複数の排出口 4 1 cと を有する。 図 6に示すように、 ケース 2 8 b b内におけるモータコイル 2 8 b aの占有空間を除いた残余空間がケース内冷却経路 4 1 bとされ、 その外 周部に注入口 4 1 aおよび排出口 4 1 cが配置されている。 軸受装置の外部 にポンプ Pが設置されて、 ポンプ Pと注入口 4 1 aが供給経路 6 1で接続され 、 ポンプ Pと排出口 4 1 cが回収経路 6 2で接続されている。 回収経路 6 2 にはラジェ一タ Rが設けられ、 このラジェ一タ Rに冷却液 2 0を補充するた めのリザ一/くタンク Tが接続されている。 ポンプ Pからの冷却液 2 0が供給 経路 6 1を経て注入口 4 1 aからケース内冷却経路 4 1 bに入ってモータ 2 8 を冷却する。 モータ冷却後の冷却液 2 0は、 排出口 4 1 cから回収経路 6 2 を通ってポンプ Pに戻り、 その途中のラジェ一タ Rで放熱して低温に戻る。 なお、 ケース 2 8 b bにおける各モータコイル 2 8 b aの間に、 モ一タコ ィル 2 8 b aをケース 2 8 b bに固定するためのコイル支持部分 (図示せず ) を設けるようにし、 その場合に、 隣合うモータコイル 2 8 b aの間にステ ータ半径方向に沿うケース内冷却経路部分が確保されるように、 前記コイル 支持部分を設けても良い。 また、 このような隣合うモータコイル 2 8 b aの 間のコイル支持部分を設けずに、 モータコイル 2 8 b aの空芯となる内部に 嵌まり込むコイル支持部分 (図示せず) をケース 2 8 b bに設けても良い。 図 7はモ一タステ一タ 2 8 bの一部モジュール 2 8 b 1の正面図を示し、 図 8は図 7の V I I I—V I I I線に沿ったモータ 2 8の断面図を示す。 モ一タステ —タ 2 8 bにおけるケース 2 8 b bの外側の片面には、 モータロータ 2 8 a の永久磁石 2 8 a aの通過を検出する位置検出センサ 4 0が設けられている 。 このように、 モ一タステ一タ 2 8 bのケース 2 8 b bの外側に位置検出セ ンサ 4 0を設けることにより、 位置検出センサ 4 0が冷却液 2 0に触れるの を回避できる。 FIG. 5 is a longitudinal sectional view showing the motor 28, and FIG. 6 is a transverse sectional view of a partial module 2 8 b 1 of the motor stator 2 8 b. The motor stator 28b includes the plurality of motor coils 28b and the polymer material case 28b that is an insulating material containing the motor coils 28ba therein. Case 2 8 bb is provided for each of the modules 2 8 b 1 and 2 8 b 2 as described above. This case 28 bb is provided with a cooling passage 41 that allows the coolant 20 to flow into the motor stator 28 b so that the coolant 20 contacts the winding of the motor coil 28 ba as a coolant. ing. As the cooling liquid 20 as the cooling medium, for example, oil or ethylene glycol is used. The cooling passage 4 1 includes an inlet 4 1 a to which the coolant 20 is supplied from the outside of the case 2 8 bb, and an in-case cooling provided in the case 2 8 bb in communication with the inlet 4 1 a. And a path 4 1 b and one or a plurality of discharge ports 4 1 c provided in the cooling path 4 1 b in the case. As shown in Fig. 6, the remaining space excluding the space occupied by the motor coil 2 8 ba in the case 2 8 bb is defined as the cooling path 4 1 b in the case, and the inlet 4 1 a and the outlet in the outer periphery 4 1 c is arranged. Pump P is installed outside the bearing device, pump P and inlet 41a are connected by supply path 61, and pump P and outlet 41c are connected by recovery path 62. The recovery path 62 is provided with a radiator R, and a reservoir / tank T for replenishing the coolant 20 to the radiator R is connected. Coolant 20 from the pump P passes through the supply path 61 and enters the cooling path 4 1 b in the case from the inlet 4 1 a to cool the motor 2 8. The coolant 20 after cooling the motor returns to the pump P from the discharge port 4 1 c through the recovery path 6 2, dissipates heat in the radiator R, and returns to a low temperature. In addition, a coil support part (not shown) for fixing the motor coil 2 8 ba to the case 2 8 bb is provided between the motor coils 2 8 ba in the case 2 8 bb. In addition, the coil support portion may be provided so that an in-case cooling path portion along the stator radial direction is secured between the adjacent motor coils 28 ba. In addition, a coil support portion (not shown) that fits inside the air core of the motor coil 2 8 ba is provided without a coil support portion between the adjacent motor coils 2 8 ba. You may provide in bb. FIG. 7 shows a front view of a partial module 28 b 1 of the motor stator 28 b, and FIG. 8 shows a cross-sectional view of the motor 28 along the line VIII-VIII in FIG. The motor rotor 2 8 a on the outer surface of the case 2 8 bb in the motor stator 2 8 b A position detection sensor 40 for detecting the passage of the permanent magnet 28 aa is provided. Thus, by providing the position detection sensor 40 outside the case 28 bb of the motor stator 28 b, it is possible to avoid the position detection sensor 40 from touching the coolant 20.
図 9はこの発明の第 2実施形態にかかるモータ一体型の磁気軸受装置にお けるモータを示す縦断面図であり、 同じく図 1 0はモ一タステ一タ 2 8 bの —部モジュール 2 8 b 1を示す横断面図を示し、 図 1 1は図 1 0の X I— X I線に沿ったモータ 2 8の断面図を示す。 この第 2実施形態におけるケース 内冷却経路 4 1 bは、 各モータコイル 2 8 b aに面して開口しケース 2 8 b bの径方向に向け放射状に配置される複数の冷却液通過溝 4 1 b aを有する 。 具体的には、 ケース内冷却経路 4 1 bは、 モータコイル 2 8 b aよりも外 周に位置して円弧状に延びる冷却経路外周部 4 1 b bと、 この冷却経路外周 部 4 1 b bからモータコイル 2 8 b aの両側の端面におけるステ一タ半径方 向に延びる部分に沿ってそれぞれ設けられた複数の放射状配置の冷却液通過 溝 4 1 b aと、 モータコイル両面の各冷却液通過溝 4 1 b aのステ一タ半径 方向の内端を連通させた連通部 4 1 b eとでなる。 各モータコイル 2 8 bの 両端面に沿う冷却液通過溝 4 1 b aは、 モータコイル 2 8 b aの表面に沿つ て開口しており、 溝内を流れる冷却液が、 モータコイル 2 8 b aのコイル巻 線に直接に接触する。 冷却経路外周部 4 1 b bは、 円弧方向に並んで複数設 けられ、 そのうちのいずれか (図示の例では中央の 1つ) の冷却経路外周部 4 1 b bに注入口 4 1 aが設けられ、 残りの (図示の例では両側の 2つ) の 冷却経路外周部 4 1 b bに排出口 4 1 cが形成されている。 その他の構成は 、 図 5〜図 8に示す第 1実施形態の場合と同様である。  FIG. 9 is a longitudinal sectional view showing a motor in the motor-integrated magnetic bearing device according to the second embodiment of the present invention. Similarly, FIG. 10 shows a portion module 2 8 of the motor stator 2 8 b. FIG. 11 shows a cross-sectional view of the motor 28 along the line XI-XI in FIG. In this second embodiment, the cooling path 4 1 b in the case has a plurality of cooling liquid passage grooves 4 1 ba that open facing each motor coil 2 8 ba and are arranged radially in the radial direction of the case 2 8 bb. Have Specifically, the cooling path in the case 4 1 b includes an outer periphery of the cooling path 4 1 bb positioned on the outer periphery of the motor coil 2 8 ba and extending in an arc shape, and the motor from the outer periphery of the cooling path 4 1 bb Coil 2 8 Ba The cooling fluid passage grooves 4 1 ba of a plurality of radial arrangements provided along the portions extending in the radial direction of the stator on both end faces of the ba, and the respective coolant passage grooves 4 1 on both sides of the motor coil It is composed of a communication part 4 1 be that connects the inner ends of ba in the direction of the stator radius. The coolant passage groove 4 1 ba along the both end faces of each motor coil 2 8 b is opened along the surface of the motor coil 2 8 ba, and the coolant flowing in the groove is transferred to the motor coil 2 8 ba. Touch the coil winding directly. A plurality of cooling path outer peripheral parts 4 1 bb are provided side by side in the arc direction, and an inlet 4 1 a is provided in one of the cooling path outer peripheral parts 4 1 bb (one in the center in the illustrated example). A discharge port 4 1 c is formed in the outer peripheral portion 4 1 bb of the remaining cooling path (two on both sides in the illustrated example). Other configurations are the same as those of the first embodiment shown in FIGS.
このように、 冷却通路 4 1のケース内冷却経路 4 1 b力 各モータコイル 2 8 b aの両端面に面して開口する複数の冷却液通過溝 4 1 b aを有するも のとした場合、 冷却液 2 0を各冷却液通過溝 4 1 b aに高速で流すことにな るので、 モータコイル 2 8 b aに対する冷却効果をより高めることができる [0043] この構成のタービンユニット 5は、 例えば空気サイクル冷凍冷却システム に適用されて、 冷却媒体となる空気を後段の熱交換器 (ここでは図示せず) により効率良く熱交換できるように、 コンプレッサ 6で圧縮して温度上昇さ せ、 さらに後段の前記熱交換器で冷却された空気を、 膨張タービン 7により 、 目標温度、 例えば— 3 0 °C〜一 6 0 °C程度の極低温まで断熱膨張により冷 却して排出するように使用される。 In this way, the cooling passage 4 1 in the case cooling path 4 1 b force When each of the motor coils 2 8 ba has a plurality of cooling liquid passage grooves 4 1 ba opened facing both end faces, Since the liquid 20 is allowed to flow through each cooling liquid passage groove 4 1 ba at a high speed, the cooling effect on the motor coil 28 ba can be further enhanced. [0043] The turbine unit 5 having this configuration is applied to, for example, an air cycle refrigeration cooling system so that air as a cooling medium can be efficiently heat-exchanged by a subsequent heat exchanger (not shown here). The temperature is increased by compressing at 6 and the air cooled by the heat exchanger in the subsequent stage is further insulated by the expansion turbine 7 to a target temperature, for example, a very low temperature of about 30 ° C. to about 60 ° C. Used to cool and discharge by expansion.
このような使用例において、 このタービンユニット 5は、 コンプレッサ翼 車 6 aおよびタービン翼車 7 a力 前記スラスト板 1 3 aとモータロータ 2 8 aと共通の主軸 1 3に嵌合し、 モータ 2 8の動力とタービン翼車 7 aで発 生した動力のどちらか一方または両方によりコンプレッサ翼車 6 aを駆動す るものとしている。 このため、 各翼車 6 a , 7 aの適切な隙間 d 1 , d 2を 保って主軸 1 3の安定した高速回転が得られ、 かつ軸受 1 5 , 1 6の長期耐 久性の向上、 寿命の向上が得られる。  In such an example of use, the turbine unit 5 is fitted to the main shaft 1 3 common to the thrust plate 1 3 a and the motor rotor 2 8 a, and the motor 2 8 The compressor impeller 6a is driven by one or both of the power of the turbine and the power generated by the turbine impeller 7a. For this reason, stable high-speed rotation of the main shaft 13 can be obtained while maintaining appropriate gaps d 1 and d 2 between the impellers 6 a and 7 a, and the long-term durability of the bearings 15 and 16 can be improved. Improved lifespan is obtained.
[0044] すなわち、 タービンユニット 5の圧縮, 膨張の効率を確保するためには、 各翼車 6 a , 7 aとハウジング 6 b , 7 13との隙間01 1 , d 2を微小に保つ 必要がある。 例えば、 このタービンユニット 5を空気サイクル冷凍冷却シス テムに適用する場合には、 この効率確保が重要となる。 これに対して、 主軸 1 3を転がり形式の軸受 1 5 , 1 6により支持するため、 転がり軸受の持つ アキシアル方向位置の規制機能により、 主軸 1 3のアキシアル方向位置があ る程度規制され、 各翼車 6 a , 7 aとハウジング 6 b , 7 bとの微小隙間 d 1 , d 2を一定に保つことができる。  That is, in order to ensure the efficiency of compression and expansion of the turbine unit 5, it is necessary to keep the gaps 01 1 and d 2 between the impellers 6 a and 7 a and the housings 6 b and 7 13 minute. is there. For example, when this turbine unit 5 is applied to an air cycle refrigeration cooling system, ensuring this efficiency is important. On the other hand, since the main shaft 13 is supported by rolling type bearings 15 and 16, the axial position control function of the rolling bearing restricts the axial direction position of the main shaft 13 to some extent. The minute gaps d 1 and d 2 between the impellers 6 a and 7 a and the housings 6 b and 7 b can be kept constant.
[0045] しかし、 タービンユニット 5の主軸 1 3には、 各翼車 6 a , 7 aに作用す る空気の圧力でスラスト力がかかる。 また、 空気冷却システムで使用するタ —ビンュニット 5では、 1分間に例えば 8万〜 1 0万回転程度の非常に高速 の回転となる。 そのため、 主軸 1 3を回転支持する転がり軸受 1 5 , 1 6に 上記スラスト力が作用すると、 軸受 1 5 , 1 6の長期耐久性が低下する。 この実施形態は、 上記スラスト力を電磁石 1 7で支持するため、 非接触で トルクの増大を抑えながら、 主軸 1 3の支持用の転がり軸受 1 5 , 1 6に作 用するスラスト力を軽減することができる。 この場合に、 主軸 1 3に作用す るスラスト力を検出するセンサ 1 8と、 このセンサ 1 8の出力に応じて前記 電磁石 1 7による支持力を制御する磁気軸受用コントローラ 1 9とを設けた ため、 転がり軸受 1 5 , 1 6を、 その軸受仕様に応じてスラスト力に対し最 適な状態で使用することができる。 However, a thrust force is applied to the main shaft 13 of the turbine unit 5 by the air pressure acting on the impellers 6 a and 7 a. In addition, the turbine unit 5 used in the air cooling system rotates at a very high speed of, for example, about 80,000 to 100,000 revolutions per minute. For this reason, when the above thrust force acts on the rolling bearings 15 and 16 that rotatably support the main shaft 13, the long-term durability of the bearings 15 and 16 decreases. In this embodiment, since the thrust force is supported by the electromagnet 17, it is applied to the rolling bearings 15 and 16 for supporting the spindle 13 while suppressing an increase in torque without contact. The thrust force used can be reduced. In this case, a sensor 18 for detecting the thrust force acting on the main shaft 13 and a magnetic bearing controller 19 for controlling the supporting force by the electromagnet 17 according to the output of the sensor 18 are provided. Therefore, the rolling bearings 15 and 16 can be used in an optimum state with respect to the thrust force according to the bearing specifications.
特に、 軸方向に並べて主軸 1 3に設けられた 2つのスラスト板 1 3 a , 1 3 bの軸方向外側に 2つの電磁石 1 7を配置して磁気軸受ュニットを構成す ると共に、 前記両スラスト板 1 3 a , 1 3 bで挟まれる位置にアキシアルギ ヤップ型のモータ 2 8を配置してモータュニットを構成することにより、 磁 気軸受ュニッ卜とモータュニットをコンパク 卜な一体構造としているため、 主軸 5 3の軸長を短くでき、 それだけ主軸 1 3の固有振動数が高くなつて、 主軸 1 3を高速回転させることができる。  In particular, a magnetic bearing unit is constructed by arranging two electromagnets 17 on the outer side in the axial direction of two thrust plates 13a, 13b arranged on the main shaft 13 in the axial direction. By arranging an axial gap type motor 28 at a position between the plates 1 3 a and 1 3 b to form a motor unit, the magnetic bearing unit and the motor unit are made into a compact and integrated structure. The shaft length of 3 can be shortened, and the natural frequency of the main shaft 13 can be increased accordingly, so that the main shaft 13 can be rotated at high speed.
[0046] また、 このモータ一体型の磁気軸受装置では、 モータ 2 8は、 アキシャル ギャップ形であって、 モ一タステ一タ 2 8 bでの発熱量が多く、 一般のモ一 タで行われるようなモータケースの外側からの間接的な冷却では十分に冷却 できない。 し力、し、 モータコイル 2 8 b aの巻線に冷却液 2 0が接するよう に、 冷却液 2 0をモータステ一タ 2 8 b内に流す冷却通路 4 1を設けている ため、 効果的な冷却が行われる。 また、 冷却通路 4 1は、 モータコイル 2 8 b aに面して開口する冷却通過溝 4 1 b aを流すようにしているため、 全体 流量が同じ場合、 狭い流路断面内を流れることになつて流速が高速となる。 これにより、 冷却不足によるモータ効率の低下や安全性悪化を回避できる。  Further, in this motor-integrated magnetic bearing device, the motor 28 is of an axial gap type and generates a large amount of heat at the motor stator 28 b, and is performed by a general motor. Such indirect cooling from the outside of the motor case does not provide sufficient cooling. Since the cooling passage 4 1 is provided so that the coolant 20 flows into the motor stator 28 b so that the coolant 20 contacts the winding of the motor coil 28 ba. Cooling takes place. In addition, the cooling passage 4 1 flows through the cooling passage groove 4 1 ba that opens to face the motor coil 2 8 ba. Therefore, if the overall flow rate is the same, the cooling passage 41 will flow in a narrow channel cross section. The flow rate becomes high. As a result, a decrease in motor efficiency and a deterioration in safety due to insufficient cooling can be avoided.
[0047] 図 1 2は、 この発明の第 3実施形態にかかるモータ一体型の磁気軸受装置 が組み込まれたタービンュニッ卜の断面図を示す。 このタービンュニット 5 は、 図 1に示す第 1実施形態において、 主軸 1 3に垂直かつ同軸に設けられ た強磁性体からなるフランジ状のスラスト板を 1つだけとして、 このスラス ト板 1 3 aを電磁石ターゲットとして、 その両面に非接触で対向するように 、 左右一対の電磁石 1 7 , 1 7がスピンドルハウジング 1 4に設置されたも のである。 [0048] モータ 2 8は、 主軸 1 3に設けられたモータロータ 2 8 aと、 このモータ ロータ 2 8 aに対し軸方向に対向するモ一タステ一タ 2 8 bとでなる。 モー タロータ 2 8 aは、 前記スラスト板 1 3 aの両面における前記電磁石 1 7の 対向位置よりも外径側に、 円周方向に等ピッチで並ぶ永久磁石 2 8 a aを配 置することで左右一対のものが構成される。 このように軸方向に対向配置さ れる永久磁石 2 8 a aの間では、 その磁極が互いに異極となるように設定さ れる。 スラスト板 1 3 aは永久磁石 2 8 a aのバックヨークを兼ねる。 モ一タステ一タ 2 8 bは、 前記スラスト板 1 3 aの両面のモータロータ 2 8 aに非接触で対向するように、 スピンドルハウジング 1 4に設置される強 磁性体 (例えば低炭素鋼およびケィ素鋼板) からなる一対のステータヨーク 2 8 b bに、 それぞれモータコイル b aを巻回することで左右一対のものが 構成される。 このようにして前記スラスト板 1 3 aを挟んで構成される左右 2個のモータ 2 8は、 前記モータロータ 2 8 aとモ一タステ一タ 2 8 b間に 作用する磁気力により、 主軸 1 3を回転させる。 この場合、 スラスト板 1 3 aにおけるモータロータ 2 8 bの位置を、 電磁石 1 7の対向位置よりも外径 側としているので、 少ないモータ駆動電流でより大きいトルクを得ることが できる。 その他の構成は図 1の第 1実施形態の場合と同様であり、 ここでは その説明を省略する。 FIG. 12 is a cross-sectional view of a turbine unit incorporating a motor-integrated magnetic bearing device according to a third embodiment of the present invention. In the first embodiment shown in FIG. 1, this turbine unit 5 has only one flange-like thrust plate made of a ferromagnetic material that is provided perpendicularly and coaxially to the main shaft 13 and is used as a thrust plate 13 a. As the electromagnet target, a pair of left and right electromagnets 17 and 17 are installed on the spindle housing 14 so as to face both surfaces in a non-contact manner. [0048] The motor 28 includes a motor rotor 28a provided on the main shaft 13 and a motor stator 28b that faces the motor rotor 28a in the axial direction. The motor rotor 28 a is arranged by arranging permanent magnets 28 aa arranged at equal pitches in the circumferential direction on the outer diameter side of the thrust plate 13 a on the both sides of the electromagnet 17 facing each other. A pair is constructed. Thus, between the permanent magnets 28 aa arranged opposite to each other in the axial direction, the magnetic poles are set to be different from each other. The thrust plate 1 3 a doubles as the back yoke of the permanent magnet 2 8 aa. The motor stabilizer 28 b is a ferromagnetic material (for example, low carbon steel and key) installed in the spindle housing 14 so as to face the motor rotor 28 a on both sides of the thrust plate 13 a without contact. A pair of left and right coils are formed by winding a motor coil ba around a pair of stator yokes 2 8 bb made of a steel plate. In this way, the two left and right motors 28 configured with the thrust plate 1 3 a sandwiched between them are driven by the magnetic force acting between the motor rotor 2 8 a and the motor stator 2 8 b. Rotate. In this case, since the position of the motor rotor 28 b on the thrust plate 13 a is on the outer diameter side with respect to the position facing the electromagnet 17, a larger torque can be obtained with a small motor driving current. Other configurations are the same as those of the first embodiment in FIG. 1, and the description thereof is omitted here.
[0049] この発明の第 4実施形態について図 1 3ないし図 1 4を参照しながら説明 する。 図 1 3に示すように、 第 4実施形態におけるモータコイル 2 8 b aは 、 軸方向に並ぶ複数 (ここで 2つ) のコイル分割体 2 8 b a 1 , 2 8 b a 2 に分割されている。 この第 4実施形態の場合、 ケース内冷却経路 4 1 bは、 軸方向に並ぶコイル分割体 2 8 b a 1 , 2 8 b a 2の間に、 コイル 2 8 b a の外周からコイル 2 8 b aの中空部 2 8 b a aに冷却液 2 0を流入させる中 空部流入路 4 1 b aを有する。 この中空部流入路 4 1 b aは、 図 1 4のよう に各モータコイル 2 8 b aに対応付けて複数のものが軸心に対して放射状に 配置される。 前記排出口 4 1 cは、 周方向に隣接して並ぶモータコイル 2 8 b a間にそれぞれ配置される。 [0050] ケース内冷却経路 4 1 bは、 より具体的には、 ケース 2 8 b bの外周部に 沿う円弧状の外周経路部 4 1 b bと、 この外周経路部 4 1 b bから分岐した 複数の中空部流入路 4 1 b aと、 モータコイル 2 8 b aの中空部 2 8 b a a と、 ケース 2 8 b bの内周部におけるモータコイル 2 8 b aの軸方向両側で モータコイル 2 8 b aよりもケース内径側に渡って設けられて各中空部 2 8 b a aのケース内径側端付近に連通する内周経路部 4 1 b cと、 隣合う各モ ータコイル 2 8 b aの間で内周経路部 4 1 b cから外径側へ延びる複数の排 出経路部 4 1 b dとでなる。 外周経路部 4 1 b bに上記注入口 4 1 aが設け られ、 各排出経路部 4 1 b dの先端に上記排出口 4 1 cが設けられている。 A fourth embodiment of the present invention will be described with reference to FIGS. 13 to 14. As shown in FIG. 13, the motor coil 28 ba in the fourth embodiment is divided into a plurality of (here, two) coil division bodies 2 8 ba 1 and 2 8 ba 2 arranged in the axial direction. In the case of the fourth embodiment, the in-case cooling path 4 1 b is formed between the coil divided bodies 2 8 ba 1 and 2 8 ba 2 arranged in the axial direction, and the hollow of the coil 2 8 ba from the outer periphery of the coil 2 8 ba. The part 2 8 baa has a hollow part inflow passage 4 1 ba through which the coolant 20 flows. As shown in FIG. 14, a plurality of hollow inflow passages 41 ba are arranged in a radial pattern with respect to the shaft center in association with each motor coil 28 ba. The discharge ports 4 1 c are respectively arranged between motor coils 28 ba arranged adjacent to each other in the circumferential direction. [0050] More specifically, the cooling path 4 1 b in the case includes an arc-shaped outer peripheral path portion 4 1 bb along the outer peripheral portion of the case 28 bb, and a plurality of branches branched from the outer peripheral path portion 4 1 bb. Hollow part inflow path 4 1 ba, motor coil 2 8 ba hollow part 2 8 baa, case 2 8 bb inner circumference part of motor coil 2 8 ba axially on both sides in axial direction than motor coil 2 8 ba From the inner peripheral path part 4 1 bc between the inner peripheral path part 4 1 bc and the adjacent motor coil 2 8 ba. It consists of a plurality of discharge path portions 4 1 bd extending to the outer diameter side. The inlet 4 1 a is provided in the outer peripheral passage portion 4 1 bb, and the outlet 4 1 c is provided at the tip of each discharge passage portion 4 1 bd.
[0051 ] このモータ一体型の磁気軸受装置では、 モータ 2 8は、 アキシャルギヤッ プ形であって、 モータステ一タ 2 8 bでの発熱量が多く、 一般のモータで行 われるようなモータケースの外側からの間接的な冷却では十分に冷却できな しゝ。 し力、し、 この第 4実施形態では、 モータコイル 2 8 b aの中空部 2 8 b a aに冷却液 2 0を流す冷却通路 4 1を設けているので、 十分な冷却効果が 得られる。 これにより、 冷却不足によるモータ効率の低下や安全性悪化を回 避できる。 すなわち、 冷却通路 4 1の注入口 4 1 aからケース内冷却経路 4 1 bに流入した冷却液 2 0は、 中空部流入路 4 1 b aを経て各モータコイル 2 8 b aの中空部 2 8 b a aに流入するので、 冷却液 2 0を効率良くコイル 巻線に触れさせることができ、 モータコイル 2 8 b aに対する冷却効果を上 げることができる。 各モータコイル 2 8 b aの中空部 2 8 b a aに流入して モータコイル 2 8 b aの冷却に寄与した冷却液 2 0は、 排出口 4 1 cからケ —ス 2 8 b bの外部に排出される。 さらに、 この第 4実施形態では、 モータ コイル 2 8 b aの中空部 2 8 b a aに冷却液 2 0を流すことから、 冷却通路 4 1をコンパク 卜に構成でき、 冷却通路 4 1の形成のためにモ一タステ一タ 2 8 bが大型化するのを回避できる。 この第 4実施形態は、 図 1 2の構成に も適用可能である。  [0051] In this motor-integrated magnetic bearing device, the motor 28 is of an axial gear type and has a large amount of heat generated by the motor stator 28b, so that the motor case can be operated by a general motor. Indirect cooling from the outside of the door does not provide sufficient cooling. In the fourth embodiment, since the cooling passage 41 through which the cooling liquid 20 flows is provided in the hollow portion 28 baa of the motor coil 28ba, a sufficient cooling effect can be obtained. As a result, a decrease in motor efficiency and a deterioration in safety due to insufficient cooling can be avoided. That is, the coolant 20 flowing from the inlet 4 1 a of the cooling passage 4 1 into the cooling passage 4 1 b in the case passes through the hollow portion inflow passage 4 1 ba and the hollow portion of each motor coil 2 8 ba 2 8 baa Therefore, the coolant 20 can be efficiently brought into contact with the coil winding, and the cooling effect on the motor coil 28 ba can be enhanced. The coolant 20 that flows into the hollow portion 2 8 baa of each motor coil 2 8 ba and contributes to the cooling of the motor coil 2 8 ba is discharged from the discharge port 4 1 c to the outside of the case 2 8 bb. . Furthermore, in this fourth embodiment, since the coolant 20 flows through the hollow portion 28 baa of the motor coil 28 ba, the cooling passage 41 can be configured in a compact manner, so that the cooling passage 41 can be formed. It is possible to avoid an increase in the size of the motor stabilizer 2 8 b. This fourth embodiment can also be applied to the configuration of FIG.
[0052] 次に、 この発明の第 5実施形態について図 1 5を参照しながら説明する。  Next, a fifth embodiment of the present invention will be described with reference to FIG.
同図に示す第 5実施形態は、 冷却媒体として空気を用いるもので、 前記第 1 実施形態におけるモータ 2 8の冷却手段として、 モータ 2 8内に外部から冷 却用の空気を給気するモータ部冷却エア導入経路 4 2 A、 および給気された 空気をモータ 2 8外に排気する排出経路 4 2 Bからなる冷却通路 4 1 A力 スピンドルハウジング 1 4に設けられたものである。 前記排出経路 4 2 Bは 、 モータ 2 8内の空間における、 モータロータ 2 8 aの外径部から、 スピン ドル/、ウジング 1 4の外径面に開通している。 In the fifth embodiment shown in the figure, air is used as a cooling medium. As a cooling means for the motor 28 in the embodiment, the motor part cooling air introduction path 4 2 A for supplying cooling air into the motor 28 from the outside, and the supplied air is exhausted to the outside of the motor 28. Cooling passage consisting of a discharge path 4 2 B 4 1 A force is provided in the spindle housing 14. The discharge path 4 2 B is opened from the outer diameter portion of the motor rotor 28 a in the space inside the motor 28 to the outer diameter surface of the spindle / housing 14.
[0053] 前記モータ部冷却エア導入経路 4 2 Aは、 タービン翼車 7 aに流入する空 気の一部をモータ 2 8内に導入するものであり、 タービンハウジング 7 bの 内の空間における吸い込み口とタービン翼車 7 aとの間に経路入口 4 5が開 口している。 経路入口 4 3は、 タービンハウジング 7 bにおける排出口 7 d に開口させても良く、 その場合、 タービン翼 7 aから吐出される空気の一部 がモータ 2 8内に導入される。 モータ部冷却エア導入経路 4 2 Aは、 2本の 分岐経路 4 2 A a , 4 2 A bに分岐され、 各分岐経路 4 2 A a , 4 2 A bの 先端の経路出口となるモータ側開口 4 4から、 モータ 2 8内のモータロータ 周辺空間に開口している。 2本の分岐経路 4 2 A a , 4 2 A bは、 それぞれ 両側の磁気軸受の電磁石 1 7におけるヨーク内を通っており、 モータ側開口 4 4は、 モータロータ 2 8 aの内周部に位置している。  The motor part cooling air introduction path 4 2 A is for introducing a part of the air flowing into the turbine impeller 7 a into the motor 28, and sucking in the space inside the turbine housing 7 b A path inlet 45 is opened between the opening and the turbine impeller 7a. The passage inlet 43 may be opened to the discharge port 7 d in the turbine housing 7 b, and in that case, a part of the air discharged from the turbine blade 7 a is introduced into the motor 28. Motor section cooling air introduction path 4 2 A is branched into two branch paths 4 2 A a, 4 2 A b, and the motor side that becomes the path exit at the end of each branch path 4 2 A a, 4 2 A b Opening from the opening 4 4 to the space around the motor rotor in the motor 28. The two branch paths 4 2 A a and 4 2 A b respectively pass through the yokes of the electromagnets 17 of the magnetic bearings on both sides, and the motor side opening 4 4 is located at the inner peripheral portion of the motor rotor 28 a is doing.
[0054] この第 5実施形態によると、 モータ 2 8の冷却手段として、 モータ 2 8内 に外部から冷却用の空気を給気するモータ部冷却エア導入経路 4 2 A、 およ び給気された空気をモータ外に排気する排出経路 4 2 Bを設けたため、 これ ら導入経路 4 2 Aおよび排出経路 4 2 Bからなる冷却通路 4 1 Aを設けただ けの簡単な構成で、 必要なモータ冷却が行える。 この場合に、 モータ部冷却 エア導入経路 4 2 Aは、 タービン翼 7 aへの流入または吐出空気を利用する ため、 ファン類等の専用の空気供給源を必要とせずに、 冷却空気の強制循環 が行え、 簡単な構成で、 効率の良いモータ冷却が行える。  [0054] According to the fifth embodiment, as a cooling means for the motor 28, the motor part cooling air introduction path 4 2 A for supplying cooling air into the motor 28 from the outside, and the air is supplied. Since a discharge path 4 2 B for exhausting the air outside the motor is provided, the required motor can be obtained with a simple configuration simply by providing the cooling path 4 1 A consisting of the introduction path 4 2 A and the discharge path 4 2 B. Cooling is possible. In this case, the motor air supply path 4 2 A uses the air that flows into or discharges from the turbine blade 7 a, so that a dedicated air supply source such as a fan is not required. Efficient motor cooling can be performed with a simple configuration.
[0055] モータ 2 8はアキシアルギャップモータであるため、 主軸 1 3を短く構成 できて、 共振上の問題を生じることなく主軸 2 8を高速回転でき反面、 モー タ 2 8の効率の良い冷却を行うことが難しい。 し力、し、 上記のようにタ一ビ ン翼 7 aに流入する空気またはタービン翼 7 aから吐出される空気の一部を モータ 2 8に導入するため、 簡単な構成で、 冷却空気の強制循環による優れ た冷却効果が得られる。 また、 アキシアルギャップモータは、 モータロータ 2 8 aが半径方向に大きなものとなり、 またモータロータ 2 8 aの回転によ る遠心力がモータ 2 8内の空気に影響するが、 モータ部冷却エア導入経路 4 2 Aおよび排出経路 4 2 Bは、 モータ一ロータ 2 8 aの内径部から導入して 外径部から排出するようにしたため、 冷却空気の効率の良い流れが得られ、 より優れた冷却効果が得られる。 [0055] Since the motor 28 is an axial gap motor, the main shaft 1 3 can be configured to be short, and the main shaft 28 can be rotated at high speed without causing a resonance problem. On the other hand, the motor 28 can be efficiently cooled. Difficult to do. Force, and as above Since a part of the air flowing into the turbine blade 7a or the air discharged from the turbine blade 7a is introduced into the motor 28, an excellent cooling effect by forced circulation of the cooling air can be obtained with a simple configuration. In addition, in the axial gap motor, the motor rotor 28a is large in the radial direction, and the centrifugal force due to the rotation of the motor rotor 28a affects the air in the motor 28. 2 A and the discharge path 4 2 B are introduced from the inner diameter part of the motor rotor 2 8 a and discharged from the outer diameter part, so that an efficient flow of cooling air can be obtained and a more excellent cooling effect can be obtained. can get.
[0056] この発明の第 6実施形態について図 1 6を参照しながら説明する。 同図に 示すタービンユニット 5は、 図 1 5に示す第 5実施形態において、 主軸 1 3 に垂直かつ同軸に設けられた強磁性体からなるフランジ状のスラスト板を 1 つだけとして、 このスラスト板 1 3 aを電磁石ターゲットとして、 その両面 に非接触で対向するように、 左右一対の電磁石 1 7 , 1 7がスピンドルハウ ジング 1 4に設置されている。 前記第 5実施形態のものは、 モータ部冷却ェ ァ導入経路 4 2 Aを、 2本の分岐経路 4 2 A a , 4 2 A bに分岐させていた が、 この第 6実施形態では、 モータ部冷却エア導入経路 4 2 Dは、 分岐させ ずに 1本としてある。 モータ部冷却エア導入経路 4 2 Dと排出経路 4 2 Bと が冷却通路 4 1 Bを形成している。 その他の構成は図 1 5の第 5実施形態の 場合と同様であり、 ここではその説明を省略する。 モータ部冷却エア導入経 路 4 2 Dは、 分岐させずに 1本とすることで、 第 5実施形態のものに比べ、 構造が簡素化する。 この第 6実施形態も図 1 1の構成に適用可能である。  A sixth embodiment of the present invention will be described with reference to FIG. In the fifth embodiment shown in FIG. 15, the turbine unit 5 shown in FIG. 15 has only one flange-like thrust plate made of a ferromagnetic material that is perpendicular to the main shaft 1 3 and coaxial with the thrust plate. A pair of left and right electromagnets 17 and 17 are installed on the spindle housing 14 so that 1 3 a is an electromagnet target and faces both surfaces in a non-contact manner. In the fifth embodiment, the motor section cooling air introduction path 4 2 A is branched into two branch paths 4 2 A a and 4 2 Ab, but in this sixth embodiment, the motor Partial cooling air introduction path 4 2 D is not branched and is one. The motor part cooling air introduction path 4 2 D and the discharge path 4 2 B form a cooling path 4 1 B. The other configuration is the same as that of the fifth embodiment in FIG. 15, and the description thereof is omitted here. The motor part cooling air introduction path 4 2 D has one structure without branching, thereby simplifying the structure as compared with the fifth embodiment. This sixth embodiment is also applicable to the configuration of FIG.
[0057] 図 1 7は、 前記各実施形態にかかるタービンュニット 5を用いた空気サイ クル冷凍冷却システムの全体の構成を示す。 この空気サイクル冷凍冷却シス テムは、 冷凍倉庫等の被冷却空間 1 0の空気を直接に冷媒として冷却するシ ステムであり、 被冷却空間 1 0にそれぞれ開口した空気の取入口 1 aから排 出口 1 bに至る空気循環経路 1を有している。 この空気循環経路 1に、 予圧 縮手段 2、 第 1の熱交換器 3、 空気サイクル冷凍冷却用タービンユニット 5 のコンプレッサ 6、 第 2の熱交換器 3、 中間熱交換器 9、 および前記タービ ンュニット 5の膨張タービン 7が順に設けられている。 中間熱交換器 9は、 同じ空気循環経路 1内で取入口 1 aの付近の流入空気と、 後段の圧縮で昇温 し、 冷却された空気との間で熱交換を行うものであり、 取入口 1 aの付近の 空気は熱交換器 9 a内を通る。 FIG. 17 shows the overall configuration of an air cycle refrigeration cooling system using the turbine unit 5 according to each of the above embodiments. This air cycle refrigeration cooling system is a system that directly cools the air in the space to be cooled 10 such as a refrigeration warehouse as a refrigerant, and discharges air from the air intake 1 a that opens in the space to be cooled 10. 1 Air circulation path 1 leading to b. In this air circulation path 1, pre-compression means 2, first heat exchanger 3, compressor 6 of turbine unit 5 for air cycle refrigeration cooling, second heat exchanger 3, intermediate heat exchanger 9, and the turbine The expansion turbine 7 of the unit 5 is provided in order. The intermediate heat exchanger 9 exchanges heat between the inflow air in the vicinity of the intake 1a in the same air circulation path 1 and the air that has been heated by the subsequent compression and cooled. Air near inlet 1a passes through heat exchanger 9a.
[0058] 予圧縮手段 2はブロア等からなり、 モータ 2 aにより駆動される。 第 1の 熱交換器 3および第 2の熱交換器 8は、 冷却媒体を循環させる熱交換器 3 a , 8 aをそれぞれ有し、 熱交換器 3 a, 8 a内の水等の冷却媒体と空気循環 経路 1の空気との間で熱交換を行う。 各熱交換器 3 a, 8 aは、 冷却塔 1 1 に配管接続されており、 熱交換で昇温した冷却媒体が冷却塔 1 1で冷却され る。 なお、 前記予圧縮手段 2を含まない構成の空気サイクル冷凍冷却システ ムでもよい。 [0058] The pre-compression means 2 comprises a blower or the like, and is driven by a motor 2a. The first heat exchanger 3 and the second heat exchanger 8 have heat exchangers 3 a and 8 a for circulating a cooling medium, respectively, and a cooling medium such as water in the heat exchangers 3 a and 8 a Heat exchange with the air in the air circulation path 1. Each of the heat exchangers 3 a and 8 a is connected to the cooling tower 11 by piping, and the cooling medium heated by the heat exchange is cooled by the cooling tower 11. An air cycle refrigeration cooling system having a configuration not including the pre-compression means 2 may be used.
[0059] この空気サイクル冷凍冷却システムは、 被冷却空間 1 0を 0°C〜― 60°C 程度に保つシステムであり、 被冷却空間 1 0から空気循環経路 1の取入口 1 aに 0°C〜― 60°C程度で 1気圧の空気が流入する。 なお、 以下に示す温度 および気圧の数値は、 一応の目安となる一例である。 取入口 1 aに流入した 空気は、 中間熱交換器 9により、 空気循環経路 1中の後段の空気の冷却に使 用され、 30°Cまで昇温する。 この昇温した空気は 1気圧のままであるが、 予圧縮手段 2により 1. 4気圧に圧縮させられ、 その圧縮により、 70°Cま で昇温する。 第 1の熱交換器 3は、 昇温した 70°Cの空気を冷却すれば良い ため、 常温程度の冷水であっても効率良く冷却することができ、 40°Cに冷 却する。  [0059] This air cycle refrigeration cooling system is a system that keeps the cooled space 10 at about 0 ° C to -60 ° C, and is 0 ° from the cooled space 10 to the inlet 1a of the air circulation path 1. C ~-Air of 1 atm flows at around 60 ° C. Note that the temperature and pressure values shown below are just examples. The air flowing into the intake 1a is used to cool the air in the latter stage in the air circulation path 1 by the intermediate heat exchanger 9, and the temperature is raised to 30 ° C. This heated air remains at 1 atm, but is compressed to 1.4 atm by pre-compression means 2, and the temperature is raised to 70 ° C by the compression. The first heat exchanger 3 only needs to cool the heated air at 70 ° C, so it can be cooled efficiently even with cold water at room temperature, and it is cooled to 40 ° C.
[0060] 熱交換により冷却された 40°C, 1. 4気圧の空気が、 タービンユニット 5のコンプレッサ 6により、 1. 8気圧まで圧縮され、 この圧縮により 70 °C程度に昇温した状態で、 第 2の熱交換器 8により 40°Cに冷却される。 こ の 40°Cの空気は、 中間熱交換器 9で— 30°Cの空気により— 20°Cまで冷 却される。 気圧はコンプレッサ 6から排出された 1. 8気圧が維持される。 中間熱交換器 9で一 20°Cまで冷却された空気は、 タービンュニット 5の 膨張タービン 7により断熱膨張され、 _55°Cまで冷却されて排出口 1 bか ら被冷却空間 1 0に排出される。 この空気サイクル冷凍冷却システムは、 こ のような冷凍サイクルを行う。 [0060] Air at 40 ° C and 1.4 atm cooled by heat exchange is compressed to 1.8 atm by the compressor 6 of the turbine unit 5, and is heated to about 70 ° C by this compression. Cooled to 40 ° C by the second heat exchanger 8. This 40 ° C air is cooled to –20 ° C by –30 ° C air in the intermediate heat exchanger 9. The atmospheric pressure is maintained at 1.8 atm which is discharged from the compressor 6. The air cooled to 20 ° C in the intermediate heat exchanger 9 is adiabatically expanded by the expansion turbine 7 of the turbine unit 5, cooled to _55 ° C, and discharged from the outlet 1b. Are discharged to the cooled space 10. This air cycle refrigeration cooling system performs such a refrigeration cycle.
[0061 ] この空気サイクル冷凍冷却システムでは、 タービンユニット 5において、 各翼車 6 a , 7 aの適切な隙間 d 1 , d 2を保って主軸 1 3の安定した高速 回転が得られ、 かつ軸受 1 5 , 1 6の長期耐久性の向上、 寿命の向上が得ら れることで、 軸受 1 5 , 1 6の長期耐久性が向上することから、 タービンュ ニット 5の全体として、 しいては空気サイクル冷凍冷却システムの全体とし ての信頼性が向上する。 このように、 空気サイクル冷凍冷却システムのネッ クとなっているタービンュニット 5の主軸軸受 1 5 , 1 6の安定した高速回 転、 長期耐久性、 信頼性が向上するため、 空気サイクル冷凍冷却システムの 実用化が可能となる。  [0061] In this air cycle refrigeration cooling system, in the turbine unit 5, stable high-speed rotation of the main shaft 13 can be obtained while maintaining appropriate gaps d1 and d2 between the impellers 6a and 7a, and bearings. By improving the long-term durability and life of 1 5 and 16, the long-term durability of the bearings 15 and 16 is improved, so the turbine unit 5 as a whole and the air cycle The reliability of the entire refrigeration / cooling system is improved. As described above, stable high-speed rotation, long-term durability, and reliability of the turbine unit 5 main shaft bearings 15 and 16 that form the network of the air cycle refrigeration cooling system are improved. Commercialization is possible.
[0062] 以上のとおり、 図面を参照しながら好適な実施形態を説明したが、 当業者 であれば、 本件明細書を見て、 自明な範囲内で種々の変更および修正を容易 に想定するであろう。 したがって、 そのような変更および修正は、 添付のク レームから定まるこの発明の範囲内のものものと解釈される。  [0062] As described above, the preferred embodiments have been described with reference to the drawings. However, those skilled in the art can easily assume various changes and modifications within the obvious range by looking at the present specification. I will. Accordingly, such changes and modifications are to be construed as within the scope of the present invention as determined from the appended claims.

Claims

請求の範囲 The scope of the claims
[1 ] 転がり軸受と磁気軸受を併用し、 転がり軸受がラジアル負荷を支持し、 磁 気軸受がアキシアル負荷と軸受予圧のどちらか一方または両方を支持し、 前記磁気軸受を構成する電磁石は主軸に設けられた強磁性体からなるフラ ンジ状のスラスト板に非接触で対向するように、 スピンドルハウジングに取 付けられており、  [1] A rolling bearing and a magnetic bearing are used in combination, the rolling bearing supports a radial load, the magnetic bearing supports one or both of an axial load and a bearing preload, and the electromagnet constituting the magnetic bearing is attached to the main shaft. It is attached to the spindle housing so as to face the flanged thrust plate made of ferromagnetic material without contact.
アキシアルギャップモータのモータロータが、 前記スラスト板とこのスラ スト板に周方向に等ピツチで設けられた複数個の永久磁石とで構成され、 前記モータロータと対向してモータコイルを有するモータステータが前記 スピンドルハウジングに設置され、  A motor rotor of an axial gap motor is composed of the thrust plate and a plurality of permanent magnets provided on the thrust plate with equal pitch in the circumferential direction, and a motor stator having a motor coil facing the motor rotor is the spindle. Installed in the housing,
前記モータ内に冷却媒体を供給してモータを冷却する冷却通路が設けられ たモーター体型の磁気軸受装置。  A motor-type magnetic bearing device provided with a cooling passage for supplying a cooling medium into the motor to cool the motor.
[2] 請求項 1において、 前記冷却媒体は冷却液であり、 前記モータコイルの巻 線に冷却液が接するように、 冷却液を前記モータステータ内に流す前記冷却 通路を設けたモーター体型の磁気軸受装置。  [2] In Claim 1, the cooling medium is a cooling liquid, and the motor-type magnetic field is provided with the cooling passage through which the cooling liquid flows into the motor stator so that the cooling liquid contacts the winding of the motor coil. Bearing device.
[3] 請求項 2において、 前記モータステ一タは、 高分子材料からなるケース内 にモータコイルを収容したものであり、 前記ケース内に、 前記冷却通路を設 け、 この冷却通路は、 モータコイルに面して開口した冷却液通過溝を有する モーター体型の磁気軸受装置。  [3] In Claim 2, the motor stage includes a motor coil accommodated in a case made of a polymer material, the cooling passage is provided in the case, and the cooling passage includes a motor coil. Motor-type magnetic bearing device having a coolant passage groove that opens facing the motor.
[4] 請求項 3において、 前記冷却通路は、 前記ケースに設けられてケース外部 から冷却液が供給される注入口と、 この注入口に連通してケース内に設けら れたケース内冷却経路と、 このケース内冷却経路に設けられた一つまたは複 数の排出口とを有するモータ一体型の磁気軸受装置。  [4] The cooling passage according to claim 3, wherein the cooling passage is provided in the case and supplied with coolant from outside the case, and an in-case cooling path provided in the case that communicates with the inlet. And a motor-integrated magnetic bearing device having one or a plurality of discharge ports provided in the cooling path in the case.
[5] 請求項 3において、 前記モータコイルへの電流切替えのタイミングを取る ために前記モータロータの永久磁石の通過を検出するセンサを、 前記ケース の外側に配置したモーター体型の磁気軸受装置。  5. The motor-type magnetic bearing device according to claim 3, wherein a sensor for detecting the passage of the permanent magnet of the motor rotor is arranged outside the case in order to take a timing for switching the current to the motor coil.
[6] 請求項 2において、 前記モータコイルは、 同一円周上に複数個並べて共通 のケース内に設け、 前記冷却液通過溝を、 それぞれ前記各コイルの端面に面 して複数設けたモータ一体型の磁気軸受装置。 [6] In Claim 2, a plurality of the motor coils are arranged on the same circumference and provided in a common case, and the coolant passage grooves are respectively provided on end faces of the coils. And a plurality of motor-integrated magnetic bearing devices.
[7] 請求項 1において、 前記モータコイルは、 コイルの内側が中空部となった コアレスコイルであり、 前記モータステ一タに、 前記モータコイルの前記中 空部内に冷却液を流す冷却通路を設けたモーター体型の磁気軸受装置。  7. The motor coil according to claim 1, wherein the motor coil is a coreless coil having a hollow inside, and the motor stage is provided with a cooling passage through which a coolant flows in the hollow portion of the motor coil. Motor-type magnetic bearing device.
[8] 請求項 6において、 前記モータコイルを、 軸方向に並ぶ複数のコイル分割 体に分割し、 これらコイル分割体の間に、 コイルの外周からコイルの中空部 に冷却液を流入させる中空部流入路を設けたモーター体型の磁気軸受装置。  [8] The hollow part according to claim 6, wherein the motor coil is divided into a plurality of coil divided bodies arranged in the axial direction, and a coolant flows between the coil divided bodies from the outer periphery of the coil to the hollow part of the coil. A motor-type magnetic bearing device with an inflow channel.
[9] 請求項 1において、 前記冷却媒体は空気であり、 前記冷却通路が、 前記モ ータ内に外部から冷却用の空気を給気するモータ部冷却エア導入経路、 およ び給気された空気をモータ外に排気する排出経路を有するモーター体型の磁 気軸受装置。  [9] The cooling medium according to claim 1, wherein the cooling medium is air, and the cooling passage is supplied to the motor unit cooling air introduction path for supplying cooling air into the motor from outside. Motor-type magnetic bearing device having a discharge path for exhausting the air outside the motor.
[10] 請求項 9において、 前記モータ部冷却エア導入経路は、 前記タービン翼に 流入する空気またはタービン翼から吐出される空気の一部を前記モータに導 入するものであるモータ一体型の磁気軸受装置。  [10] The motor-integrated magnet according to claim 9, wherein the motor part cooling air introduction path introduces a part of the air flowing into the turbine blade or the air discharged from the turbine blade into the motor. Bearing device.
[1 1 ] 請求項 9において、 前記モータ部冷却エア導入経路はモータロータの内径 部に給気する経路とし、 前記排出経路はモータロータの外径部から排気する 経路としたモーター体型の磁気軸受装置。 [11] The motor type magnetic bearing device according to claim 9, wherein the motor part cooling air introduction path is a path for supplying air to an inner diameter part of the motor rotor, and the discharge path is a path for exhausting from an outer diameter part of the motor rotor.
[12] 請求項 1 1において、 前記モータ一体型磁気軸受装置は、 空気を使用して 空調または冷凍する空気サイクル冷凍冷却システムに使用されるものである モーター体型の磁気軸受装置。 12. The motor-integrated magnetic bearing device according to claim 11, wherein the motor-integrated magnetic bearing device is used in an air cycle refrigeration cooling system that uses air to air-condition or refrigerate.
[13] 請求項 1において、 前記主軸には、 コンプレッサ側翼車およびタービン側 翼車が、 前記主軸に取付けられ、 モータ動力とタービン側翼車で発生した動 力のどちらか一方または両方により、 コンプレッサ側翼車を駆動させる、 圧 縮膨張タービンシステムに適用されたものであるモータ一体型の磁気軸受装 置。  [13] The compressor-side blade according to claim 1, wherein a compressor-side impeller and a turbine-side impeller are attached to the main shaft, and one or both of motor power and dynamic force generated in the turbine-side impeller are attached to the main shaft. A motor-integrated magnetic bearing device that is applied to a compression / expansion turbine system that drives a car.
[14] 請求項 1 3において、 前記モータ一体型の磁気軸受装置を適用した圧縮膨 張タービンシステムが、 流入空気に対して、 タービンユニットのコンプレツ サによる圧縮、 熱交換器による圧縮、 他の熱交換器による冷却、 前記タービ ンュニッ卜の膨張タービンによる断熱膨張、 もしくは予圧縮手段による冷却 、 前記タービンユニットのコンプレッサによる圧縮、 他の熱交換器による冷 却、 前記タービンユニットの膨張タービンによる断熱膨張、 を順次行う空気 サイクル冷凍冷却システムに適用されたものであるモーター体型の磁気軸受 装置。 [14] The compression / expansion turbine system according to claim 13 to which the motor-integrated magnetic bearing device is applied, compresses the inflow air by a compressor of a turbine unit, compression by a heat exchanger, and other heat. Cooling by exchanger, Air cycle refrigeration cooling that sequentially performs adiabatic expansion by a turbine expansion turbine, cooling by pre-compression means, compression by a compressor of the turbine unit, cooling by another heat exchanger, adiabatic expansion of the turbine unit by an expansion turbine. A motor-type magnetic bearing device applied to the system.
PCT/JP2007/000898 2006-09-13 2007-08-23 Motor-integrated magnetic bearing device WO2008032430A1 (en)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2006-247881 2006-09-13
JP2006247882A JP2008072812A (en) 2006-09-13 2006-09-13 Magnetic bearing device integral with motor, and motor apparatus
JP2006-247882 2006-09-13
JP2006-247879 2006-09-13
JP2006247881A JP2008072811A (en) 2006-09-13 2006-09-13 Motor-integrated magnetic bearing device
JP2006247880A JP2008072810A (en) 2006-09-13 2006-09-13 Magnetic bearing arrangement integrated with motor
JP2006247879A JP2008072809A (en) 2006-09-13 2006-09-13 Magnetic bearing arrangement integral with motor
JP2006-247880 2006-09-13

Publications (1)

Publication Number Publication Date
WO2008032430A1 true WO2008032430A1 (en) 2008-03-20

Family

ID=39183499

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/000898 WO2008032430A1 (en) 2006-09-13 2007-08-23 Motor-integrated magnetic bearing device

Country Status (1)

Country Link
WO (1) WO2008032430A1 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2186996A2 (en) * 2008-11-12 2010-05-19 Atlas Copco Energas Gmbh Rotor for a turbomachine
GB2468018A (en) * 2009-02-13 2010-08-25 Isis Innovation Cooling a permanent magnet electrical machine with wound stator bars
EP2412630A1 (en) * 2010-07-27 2012-02-01 Siemens Aktiengesellschaft Drive for a tail rotor of a helicopter
CN102434587A (en) * 2011-09-19 2012-05-02 北京航空航天大学 Permanent-magnetic passive axial magnetic suspension bearing with passive damping effect
US8581455B2 (en) 2009-04-14 2013-11-12 Isis Innovation Ltd. Electric machine—evaporative cooling
US9071117B2 (en) 2009-02-13 2015-06-30 Isis Innovation Ltd. Electric machine—flux
US9287755B2 (en) 2010-08-19 2016-03-15 Yasa Motors Limited Electric machine—over-moulding construction
US9318938B2 (en) 2009-02-13 2016-04-19 Isis Innovation Ltd. Electric machine-modular
GB2559854A (en) * 2015-10-16 2018-08-22 Yasa Ltd Axial flux machine
CN108775342A (en) * 2018-06-12 2018-11-09 尹苑苑 A method of improving compressor of air conditioner service life
CN111288726A (en) * 2020-02-28 2020-06-16 佛山格尼斯磁悬浮技术有限公司 Temperature monitoring system, method and device of magnetic suspension internal thread copper pipe processing equipment
WO2021032236A1 (en) * 2019-08-20 2021-02-25 Schaeffler Technologies AG & Co. KG Disc rotor machine for a motor vehicle drive
US11835088B2 (en) 2021-05-28 2023-12-05 Rolls-Royce North American Technologies, Inc. Thrust bearing for a rotating machine

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08242557A (en) * 1995-03-01 1996-09-17 Sawafuji Electric Co Ltd Structure for cooling high-speed rotary machine
JPH08261237A (en) * 1995-03-17 1996-10-08 Aisin Seiki Co Ltd Gas turbine engine
JPH11503223A (en) * 1995-04-05 1999-03-23 ロートフロー・コーポレイション Cooling system
JP2002095209A (en) * 2000-09-14 2002-03-29 Mitsubishi Heavy Ind Ltd Flywheel apparatus for storing electric power
JP2003065621A (en) * 2001-08-24 2003-03-05 Shimadzu Corp Cooling system
JP2005261083A (en) * 2004-03-11 2005-09-22 Nissan Motor Co Ltd Cooling structure of rotating electric machine
JP2006014564A (en) * 2004-06-29 2006-01-12 Nissan Motor Co Ltd Stator cooling structure for disc-shaped rotary electric machine

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08242557A (en) * 1995-03-01 1996-09-17 Sawafuji Electric Co Ltd Structure for cooling high-speed rotary machine
JPH08261237A (en) * 1995-03-17 1996-10-08 Aisin Seiki Co Ltd Gas turbine engine
JPH11503223A (en) * 1995-04-05 1999-03-23 ロートフロー・コーポレイション Cooling system
JP2002095209A (en) * 2000-09-14 2002-03-29 Mitsubishi Heavy Ind Ltd Flywheel apparatus for storing electric power
JP2003065621A (en) * 2001-08-24 2003-03-05 Shimadzu Corp Cooling system
JP2005261083A (en) * 2004-03-11 2005-09-22 Nissan Motor Co Ltd Cooling structure of rotating electric machine
JP2006014564A (en) * 2004-06-29 2006-01-12 Nissan Motor Co Ltd Stator cooling structure for disc-shaped rotary electric machine

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2186996A3 (en) * 2008-11-12 2011-04-20 Atlas Copco Energas Gmbh Rotor for a turbomachine
EP2186996A2 (en) * 2008-11-12 2010-05-19 Atlas Copco Energas Gmbh Rotor for a turbomachine
US9071117B2 (en) 2009-02-13 2015-06-30 Isis Innovation Ltd. Electric machine—flux
GB2468018A (en) * 2009-02-13 2010-08-25 Isis Innovation Cooling a permanent magnet electrical machine with wound stator bars
US9318938B2 (en) 2009-02-13 2016-04-19 Isis Innovation Ltd. Electric machine-modular
KR101747975B1 (en) 2009-02-13 2017-06-27 옥스포드 유니버시티 이노베이션 리미티드 Electric machine - cooling
JP2012518376A (en) * 2009-02-13 2012-08-09 アイシス イノベイシヨン リミテツド Electromechanical-cooling
US9496776B2 (en) 2009-02-13 2016-11-15 Oxford University Innovation Limited Cooled electric machine
CN102396134A (en) * 2009-02-13 2012-03-28 Isis创新有限公司 Electric machine - cooling
GB2468018B (en) * 2009-02-13 2014-06-04 Isis Innovation Electric machine - cooling
WO2010092400A3 (en) * 2009-02-13 2011-06-23 Isis Innovation Ltd Electric machine - cooling
US9054566B2 (en) 2009-04-14 2015-06-09 Isis Innovation Ltd Electric machine—evaporative cooling
US8581455B2 (en) 2009-04-14 2013-11-12 Isis Innovation Ltd. Electric machine—evaporative cooling
EP2412630A1 (en) * 2010-07-27 2012-02-01 Siemens Aktiengesellschaft Drive for a tail rotor of a helicopter
RU2526331C1 (en) * 2010-07-27 2014-08-20 Сименс Акциенгезелльшафт Helicopter anti-torque rotor
CN103108803A (en) * 2010-07-27 2013-05-15 西门子公司 Drive of a tail rotor of a helicopter
WO2012019864A3 (en) * 2010-07-27 2012-10-11 Siemens Aktiengesellschaft Drive of a tail rotor of a helicopter
US9631516B2 (en) 2010-07-27 2017-04-25 Siemens Aktiengesellschaft Drive of a tail rotor of a helicopter
US9287755B2 (en) 2010-08-19 2016-03-15 Yasa Motors Limited Electric machine—over-moulding construction
CN102434587A (en) * 2011-09-19 2012-05-02 北京航空航天大学 Permanent-magnetic passive axial magnetic suspension bearing with passive damping effect
GB2559854A (en) * 2015-10-16 2018-08-22 Yasa Ltd Axial flux machine
GB2559854B (en) * 2015-10-16 2020-04-29 Yasa Ltd Axial flux machine
CN108775342A (en) * 2018-06-12 2018-11-09 尹苑苑 A method of improving compressor of air conditioner service life
CN108775342B (en) * 2018-06-12 2020-09-08 浏阳市明诚竹业有限公司 Method for prolonging service life of air conditioner compressor
WO2021032236A1 (en) * 2019-08-20 2021-02-25 Schaeffler Technologies AG & Co. KG Disc rotor machine for a motor vehicle drive
CN114207994A (en) * 2019-08-20 2022-03-18 舍弗勒技术股份两合公司 Disk rotor machine for motor vehicle drive
CN111288726A (en) * 2020-02-28 2020-06-16 佛山格尼斯磁悬浮技术有限公司 Temperature monitoring system, method and device of magnetic suspension internal thread copper pipe processing equipment
US11835088B2 (en) 2021-05-28 2023-12-05 Rolls-Royce North American Technologies, Inc. Thrust bearing for a rotating machine

Similar Documents

Publication Publication Date Title
WO2008032430A1 (en) Motor-integrated magnetic bearing device
JP2007162723A (en) Motor integrated magnetic bearing device
JP2008283813A (en) Motor-integrated magnetic bearing device
JP2008190376A (en) Turbine unit for air cycle refrigerating machine
WO2008018167A1 (en) Motor-integrated type magnetic bearing device
JP2007162726A (en) Motor integrated magnetic bearing device
WO2008015776A1 (en) Magnetic bearing device integral with motor
JP2008072809A (en) Magnetic bearing arrangement integral with motor
JP2007162725A (en) Motor integrated magnetic bearing device
JP2007162493A (en) Compression expansion turbine system
WO2008015777A1 (en) Air cycle refrigerating machine turbine unit
JP2009062848A (en) Motor integrated type magnetic bearing device
JP2009050066A (en) Motor-integrated magnetic bearing apparatus
JP2010043780A (en) Air cycle refrigeration unit
JP2008082216A (en) Compression expansion turbine system
JP2008072810A (en) Magnetic bearing arrangement integrated with motor
JP2007162492A (en) Compression expansion turbine system
JP2008039228A (en) Turbine unit for air cycle refrigerating machine
JP2008082426A (en) Magnetic bearing device
JP4799159B2 (en) Motor-integrated magnetic bearing device
JP4969272B2 (en) Motor-integrated magnetic bearing device
JP2008072812A (en) Magnetic bearing device integral with motor, and motor apparatus
JP2007162491A (en) Compression expansion turbine system
JP2008072808A (en) Magnetic bearing arrangement integrated with motor
JP2008072811A (en) Motor-integrated magnetic bearing device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07790383

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07790383

Country of ref document: EP

Kind code of ref document: A1