WO2008032370A1 - Stent - Google Patents

Stent Download PDF

Info

Publication number
WO2008032370A1
WO2008032370A1 PCT/JP2006/318142 JP2006318142W WO2008032370A1 WO 2008032370 A1 WO2008032370 A1 WO 2008032370A1 JP 2006318142 W JP2006318142 W JP 2006318142W WO 2008032370 A1 WO2008032370 A1 WO 2008032370A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample
metal alloy
stent
noble metal
gold
Prior art date
Application number
PCT/JP2006/318142
Other languages
French (fr)
Japanese (ja)
Inventor
Kenichi Shimodaira
Akira Shinjo
Chiaki Abe
Takao Hanawa
Ikuo Kobayashi
Original Assignee
Homs Engineering, Inc.
National University Corporation Tokyo Medical And Dental University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Homs Engineering, Inc., National University Corporation Tokyo Medical And Dental University filed Critical Homs Engineering, Inc.
Priority to PCT/JP2006/318142 priority Critical patent/WO2008032370A1/en
Publication of WO2008032370A1 publication Critical patent/WO2008032370A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/02Inorganic materials
    • A61L31/022Metals or alloys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C5/00Alloys based on noble metals
    • C22C5/02Alloys based on gold

Definitions

  • the present invention relates to a stent.
  • Patent Document 1 a stent manufactured from a noble metal alloy containing gold and palladium has been disclosed (see, for example, Patent Document 1). O Since conventional stents are mainly composed of noble metals, MRI images Low turbulence, high radiopacity, high mechanical strength, excellent wettability, and good biocompatibility.
  • Patent Document 1 Japanese Translation of Special Publication 2004-505651
  • the present invention has been made in view of the circumstances as described above, and provides a stent with higher chemical stability and blood compatibility (antithrombogenicity) than conventional stents. With the goal.
  • the stent of the present invention is a stent in which a precious metal alloy force having both gold and palladium force is produced, and the precious metal alloy has a gold content (mol%) in the precious metal alloy of X
  • X1Z (X1 + X2) is 0.65 or more and the gold content is higher than that of the conventional stent.
  • Chemical stability It is possible to provide a stent with high blood compatibility and high blood compatibility (antithrombogenicity).
  • the weight ratio of gold to palladium is 3: 1 (gold 75% by weight, of palladium 25% by weight) to 0 5:. 1 (gold 33 wt%, palladium 67 wt 0/0 (See claim 3 of Patent Document 1) force If expressed in terms of mol ratio, the molar ratio of gold to palladium is 61.8: 38. 2-21. 3 : Noble metal alloy between 78.7 is used, indicating that the stent of the present invention has a higher gold content than the conventional stent.
  • the noble metal alloy preferably satisfies the following formula (2).
  • X1Z (X1 + X2) is 0.68 or more as described above, and the gold content is higher than that of the conventional stent. It is possible to provide a hemorrhoid stent that is highly stable and has high blood compatibility (antithrombogenicity).
  • the noble metal alloy preferably has a structure in which an Au Pd phase is precipitated in an alloy matrix composed of gold and palladium.
  • the noble metal alloy is preferably a noble metal alloy produced by performing an aging heat treatment.
  • the Au Pd phase is contained in the alloy matrix composed of gold and palladium.
  • the noble metal alloy preferably satisfies the following formula (3):
  • the noble metal alloy preferably satisfies the following formula (4).
  • XlZ (XI + X2) is 0.79 or less as described above.
  • the gold content is slightly lower than that of the stent described in (5) above, and a stent having higher mechanical strength than the stent described in (5) can be provided.
  • FIG. 1 is a phase diagram of a gold / palladium binary system.
  • FIG. 2 is a diagram showing the external appearance of a button-shaped ingot.
  • FIG. 3 is a view showing the appearance of a rolled body.
  • FIG. 4 is a diagram showing an external appearance after electric discharge machining of a rolled body.
  • FIG. 5 is a view showing dimensions of a dissolution test specimen, a blood compatibility (antithrombogenicity) test specimen, and a tensile test specimen.
  • FIG. 6 is a diagram for explaining an anodic polarization test apparatus.
  • FIG. 7 is a diagram showing the results of an anodic polarization test for Sample 5.
  • FIG. 1 is a gold / palladium binary phase diagram.
  • the stent according to Embodiment 1 is a stent in which a noble metal alloy force that also has gold and palladium forces is manufactured, and the noble metal alloy has a gold content (mol%) in the noble metal alloy of XI, When the palladium content (mol%) is X2, the following formula (3) Meet.
  • the stent according to Embodiment 1 is a stent manufactured with a noble metal alloy force in a range indicated by an arrow A in FIG.
  • the stent according to Embodiment 1 also has a conventional stent (noble metal alloy strength in the range indicated by arrow E in Fig. 1).
  • the conventional stent is exclusively a multi-element precious metal alloy. Therefore, the range cannot be determined on the binary system phase diagram as shown in Fig. 1.However, if the range is specified using the weight ratio of gold in the noble metal alloy, it is indicated by arrow E in Fig. 1. Since the gold content is higher than that of conventional stents, it has higher chemical stability and higher blood compatibility (antithrombogenicity) than conventional stents, resulting in a stent.
  • the stent according to Embodiment 1 has a higher gold content than the conventional stent, so that the mechanical strength may be reduced.
  • X1 / (X1 + Since X2) is 0.88 or less, the gold content does not become extremely high, and sufficient mechanical strength can be maintained.
  • the stent according to the second embodiment is a stent in which a precious metal alloy force having both gold and palladium force is produced, and the precious metal alloy has a gold content (mol%) in the precious metal alloy as XI, and the palladium content in the precious metal alloy.
  • the amount (mol%) is X2
  • the following formula (4) is satisfied.
  • the stent according to Embodiment 2 is a stent manufactured with a precious metal alloy force in a range indicated by an arrow B in FIG.
  • the stent according to the second embodiment has a higher gold content than the conventional stent, and therefore, as in the case of the stent according to the first embodiment, the chemical stability is higher than that of the conventional stent. It has high blood compatibility (antithrombogenicity) and is a stent.
  • the stent according to the third embodiment is a stent in which a precious metal alloy force having both gold and palladium force is produced, and the precious metal alloy has a gold content (mol%) in the precious metal alloy as XI, and the palladium content in the precious metal alloy.
  • the amount (mol%) is X2
  • the following formula (3) is satisfied.
  • the stent according to Embodiment 3 is a stent in which a precious metal alloy force in the range indicated by arrow A in Fig. 1 is also produced, as in the case of the stent according to Embodiment 1.
  • the stent according to Embodiment 3 differs from the stent according to Embodiment 1 in the structure of the noble metal alloy.
  • the noble metal alloy has a structure in which an Au Pd phase is precipitated in an alloy matrix composed of gold and palladium. And noble metal alloys
  • a noble metal alloy produced by performing an aging heat treatment is provided.
  • the stent according to the third embodiment is different from the stent according to the first embodiment in the structure of the noble metal alloy.
  • the noble metal alloy is a noble metal.
  • the gold content (mol%) in the metal alloy is XI
  • the palladium content (mol%) in the noble metal alloy is X2
  • the above formula (3) is satisfied and the gold content is higher than that of the conventional stent. Due to the high amount, the stent has higher chemical stability and higher blood compatibility (antithrombogenicity) than conventional stents.
  • the noble metal alloy has a structure in which an Au Pd phase is precipitated in an alloy matrix composed of gold and palladium. For this reason,
  • the stent according to the third embodiment has a mechanical strength that is higher than that of the stent according to the first embodiment because the mechanical strength of the noble metal alloy is improved.
  • the noble metal alloy is a noble metal alloy produced by performing an aging heat treatment
  • Au Pd is contained in the alloy matrix that also has gold and palladium power as described above. It becomes a noble metal alloy having a structure in which phases are precipitated.
  • the stent of the present invention is sufficiently high !, chemical stability, sufficiently high, blood compatibility (antithrombogenicity) and In order to show that it has a sufficiently high mechanical strength, the following experiment was conducted.
  • Table 1 is a table showing the composition of the noble metal alloy sample used in the examples.
  • Fig. 2 shows the appearance of the button-shaped ingot.
  • FIG. 3 is a diagram showing the appearance of the rolled body.
  • FIG. 4 is a view showing an external appearance after the rolled body is subjected to electric discharge machining.
  • FIG. 5 is a diagram showing dimensions of a dissolution test specimen, a blood compatibility (antithrombogenicity) test specimen, and a tensile test specimen.
  • test piece for dissolution test a test piece for blood compatibility (antithrombogenicity) test, and a test piece for tensile test were prepared by wire-cut electric discharge machining (see FIGS. 4 and 5). .
  • Example 1 is an example (dissolution test) for showing that the stent of the present invention has sufficiently high chemical stability.
  • the former is a material that is already on the market as a material for self-expanding stents, and the latter is a material that has been used in many ways as a biomaterial for orthopedics.
  • each sample (Sample 1 to Sample 5) was taken out from the solution, and the concentration of the metal ion dissolved in the remaining solution was measured by ICP emission spectroscopic analysis (PS-1000, Leeman Labs). . The measured ion concentration was compared in terms of the amount of elution per unit sample surface area. In addition, the surface condition of the sample taken out was observed.
  • Table 2 shows the results of a 3-week dissolution test in a 9% NaCl aqueous solution.
  • ND indicates that no elution was observed within the ICP detection limit range (approximately OOlmgZm 2 or more).
  • each of Comparative Sample 1 and Comparative Sample 2 is 8. 1. Force at which elution of metal ions of 1.8 mgZm 2 was observed From Sample 1 to Sample 5, elution within the detection limit range of ICP was not observed. In addition, Sample 1 to Sample 5 showed no signs of dissolution even in appearance.
  • Example 2 is an example (anodic polarization test) for showing that the stent of the present invention has sufficiently high chemical stability, as in Example 1.
  • FIG. 6 is a diagram for explaining the anodic polarization test apparatus.
  • FIG. 6 (a) is a diagram showing the external appearance of the anode polarization test apparatus, and
  • FIG. 6 (b) is a diagram for explaining the sample holder.
  • a dissolution test specimen (diameter 10 mm, thickness lmm) (see Fig. 5) similar to that used in Example 1 was used after mirror polishing.
  • the anodic polarization test was conducted in 0.9% NaCl aqueous solution at 37 ° C. N After degassing with gas bubble for 30 minutes, potentio
  • anodic polarization test was conducted at a sweep rate of 2 X 10 _3 Vs _1 .
  • a platinum electrode was used as the counter electrode, and a saturated calomel electrode (SCE) was used as the reference electrode.
  • SCE saturated calomel electrode
  • an anodic polarization test was also performed on gold (pure gold) (comparative sample 1) and copper (comparative sample 2).
  • FIG. 7 is a diagram showing the results of an anode polarization test for sample 5 having the highest palladium concentration content among samples 1 to 5.
  • 1. OV (vs. SCE) force was also swept to 1. OV (vs. SCE).
  • the anode current was not measured up to about 0.8 V (vs. SCE).
  • the corrosion potential of sample 5 is I could't evaluate it. Similar results were obtained for Sample 1 to Sample 4. The same result was obtained for Comparative Sample 1 (gold (pure gold)).
  • each sample has sufficiently high chemical stability as does comparative sample 1 (gold (pure gold)).
  • comparative sample 2 gold (pure gold)
  • the anode current increased at about ⁇ 0.3 V (vs. SCE), and this potential was recognized as the corrosion potential of copper.
  • Example 3 shows that the stent of the present invention is sufficiently high and has blood compatibility (antithrombogenicity). This is an example (blood compatibility (antithrombogenicity test)).
  • the platelet count is adjusted to 3.9 X 10 5 cells / 1 by mixing the appropriate amount of both, and 0.25 mol / l of salty calcium is added (to 2 ml of mixed solution) 0.1 7 ml of salted calcium was added to adjust the coagulation rate and used in the experiment.
  • a test piece (5 mm ⁇ 5 mm, thickness lmm) (see FIG. 5) was dropped on the test piece and stored in a 37 ° C. incubator for a predetermined time (5 minutes, 20 minutes). After a predetermined incubation time, wash with PBS (-), soak in dartalaldehyde and fix for 2 days, wash again with PBS (-), dry, and concentrate (50%, 70%, 90%) %, 100%), which was dehydrated sequentially with different alcohols, and gold deposited with a thickness of about 25 nm were observed by SEM to evaluate the amount of platelet adhesion.
  • Example 1 to sample 5 For comparison with each sample (sample 1 to sample 5), Ti-Ni superelastic alloy (comparative sample 1), 316L stainless steel (comparative sample 2), and biological Pure titanium (Comparative Sample 3) and Co—Cr alloy (Comparative Sample 4) used as alloys for the test were simultaneously subjected to the test.
  • Table 3 shows the results of SEM observation of the surface for each sample (Sample 1 to Sample 5) and each comparative sample (Comparative Sample 1 to Comparative Sample 5) after the test.
  • Sample 1 to Sample 3 have sufficiently high blood compatibility (antithrombogenicity).
  • Sample 4 and Sample 5 are not as good as Type 316 stainless steel (Comparative Sample 2)! / ⁇ , but the conventional Ti-Ni superelastic alloy (Comparative Sample 1) or Co-Cr alloy (Comparative Sample 4) ) And a sufficiently high blood compatibility (antithrombogenicity).
  • Type 316 stainless steel (Comparative Sample 2) has a sufficiently high blood compatibility (antithrombogenicity), but is poor in chemical stability.
  • a stent using the precious metal alloy of sample 1 to sample 3 but also in the case of a stent using the precious metal alloy of sample 4 or sample 5 Seems to be better.
  • Example 4 is an example (tensile test) to show that the stent of the present invention has a sufficiently high mechanical strength.
  • Table 4 shows the maximum tensile strength (UTS) and elongation at break ( ⁇ ) of each sample (Sample 1 to Sample 5).
  • the gold content (mol%) Xl in the noble metal alloy and the palladium content (mol%) X2 in the noble metal alloy are ⁇ 0. 79 ⁇ X1 / (X1 + X2) ⁇ 0.88 '' force
  • a noble metal alloy satisfying the following formula (3) is used, and in the stent according to the second embodiment, the gold content (mol%) XI in the noble metal alloy, Palladium content (mol%) X2 in the noble metal alloy is a noble metal alloy satisfying the formula (4) consisting of ⁇ 0.68 ⁇ XI / (X1 + X2) ⁇ 0.79 ''. Is not limited to this.
  • Gold content (mol%) Xl in noble metal alloy and palladium content (mol%) X2 in precious metal alloy and force “0.65 ⁇ X1 / (X1 + X2) ⁇ 0.95” force (1 ) can also provide a stent with higher blood compatibility (antithrombogenicity) than conventional stents, because the gold content is higher than that of conventional stents. Become.

Abstract

A stent made of a noble metal alloy comprising gold and palladium characterized in that the noble metal alloy satisfies the relationship represented by the following formula (1) wherein X1 stands for the content (mol %) of gold in the noble metal alloy and X2 stands for the content (mol %) of palladium in the noble metal alloy: 0.65≤X1/(X1+X2)≤0.95 (1) The above-described stent has a high gold content compared with the existing stents. Thus, it becomes possible to provide a stent which is superior in chemical stability and compatibility with blood (antithrombotic properties) to the existing stents.

Description

明 細 書  Specification
ステント  Stent
技術分野  Technical field
[0001] 本発明は、ステントに関する。  [0001] The present invention relates to a stent.
背景技術  Background art
[0002] 従来、金及びパラジウムを含有する貴金属合金から製造されるステントが開示され ている(例えば、特許文献 1参照。 ) o従来のステントは、貴金属を主体としたステント であるため、 MRI画像の乱れが少なぐ X線不透過性が高ぐ機械的強度が高ぐ濡 れ特性に優れ、さらには良好な生体適合性を有する。  [0002] Conventionally, a stent manufactured from a noble metal alloy containing gold and palladium has been disclosed (see, for example, Patent Document 1). O Since conventional stents are mainly composed of noble metals, MRI images Low turbulence, high radiopacity, high mechanical strength, excellent wettability, and good biocompatibility.
[0003] 特許文献 1 :特表 2004— 505651号公報  [0003] Patent Document 1: Japanese Translation of Special Publication 2004-505651
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0004] ところで、ステントは、長期間にわたって生体内で使用されるため、可能な限り化学 的安定性が高くかっ血液適合性 (抗血栓性)が高いことが望まれている。このため、 貴金属合金力 製造される従来のステントにおいても、さらに化学的安定性が高くか つ血液適合性 (抗血栓性)が高 、ことが望まれて 、る。 [0004] By the way, since a stent is used in a living body for a long period of time, it is desired to have a high chemical stability and a high blood compatibility (antithrombogenicity) as much as possible. For this reason, it is desired that a conventional stent produced by precious metal alloy strength has higher chemical stability and higher blood compatibility (antithrombogenicity).
[0005] そこで、本発明は、上記のような事情に鑑みてなされたもので、従来のステントよりも 化学的安定性が高くかっ血液適合性 (抗血栓性)が高 ヽステントを提供することを目 的とする。 [0005] Therefore, the present invention has been made in view of the circumstances as described above, and provides a stent with higher chemical stability and blood compatibility (antithrombogenicity) than conventional stents. With the goal.
課題を解決するための手段  Means for solving the problem
[0006] (1)本発明のステントは、金及びパラジウム力もなる貴金属合金力も製造されるステン トであって、前記貴金属合金は、前記貴金属合金における金の含有量 (mol%)を X[0006] (1) The stent of the present invention is a stent in which a precious metal alloy force having both gold and palladium force is produced, and the precious metal alloy has a gold content (mol%) in the precious metal alloy of X
1とし、前記貴金属合金におけるパラジウムの含有量 (mol%)を X2としたとき、以下 の式(1)を満たすことを特徴とする。 When the content of palladium in the noble metal alloy is 1 and X2 is X2, the following formula (1) is satisfied.
0. 65 ≤ X1/ (X1 +X2) ≤ 0. 95 · · · (1)  0. 65 ≤ X1 / (X1 + X2) ≤ 0. 95 (1)
[0007] このため、本発明のステントによれば、このように、 X1Z (X1 +X2)が 0. 65以上で あり、従来のステントよりも金の含有量が高いため、従来のステントよりも化学的安定 性が高くかっ血液適合性 (抗血栓性)が高 、ステントを提供することが可能となる。 [0007] For this reason, according to the stent of the present invention, X1Z (X1 + X2) is 0.65 or more and the gold content is higher than that of the conventional stent. Chemical stability It is possible to provide a stent with high blood compatibility and high blood compatibility (antithrombogenicity).
[0008] なお、従来のステントにおいては、金対パラジウムの重量比が 3 : 1 (金 75重量%、 パラジウム 25重量%)〜0. 5 : 1 (金33重量%、パラジウム 67重量0 /0)の間にある貴 金属合金を用いている(特許文献 1の請求項 3参照。)力 これを mol比で表せば、金 対パラジウムの mol比が 61. 8 : 38. 2-21. 3 : 78. 7の間にある貴金属合金を用い ていることとなり、本発明のステントの方が従来のステントよりも金の含有量が高いこと がわカゝる。 [0008] In the conventional stent, the weight ratio of gold to palladium is 3: 1 (gold 75% by weight, of palladium 25% by weight) to 0 5:. 1 (gold 33 wt%, palladium 67 wt 0/0 (See claim 3 of Patent Document 1) force If expressed in terms of mol ratio, the molar ratio of gold to palladium is 61.8: 38. 2-21. 3 : Noble metal alloy between 78.7 is used, indicating that the stent of the present invention has a higher gold content than the conventional stent.
[0009] ところで、本発明のステントにおいては、上記したように、従来のステントよりも金の 含有量が高いため、機械的強度が低下する可能性が考えられるが、上記のように、 X 1Z (X1 +X2)が 0. 95以下であるため、金の含有量が極端に高くなることがなくなり 、十分な機械的強度を維持することが可能となる。  [0009] By the way, in the stent of the present invention, as described above, since the gold content is higher than that of the conventional stent, there is a possibility that the mechanical strength may be reduced. However, as described above, X 1Z Since (X1 + X2) is 0.95 or less, the gold content does not become extremely high, and sufficient mechanical strength can be maintained.
[0010] (2)上記(1)に記載のステントにおいては、前記貴金属合金は、以下の式(2)を満た すことが好ましい。  [0010] (2) In the stent according to the above (1), the noble metal alloy preferably satisfies the following formula (2).
0. 68 ≤ X1/ (X1 +X2) ≤ 0. 88 · · · (2)  0. 68 ≤ X1 / (X1 + X2) ≤ 0. 88 (2)
[0011] 本発明のステントにおいては、このように、 X1Z (X1 +X2)が 0. 68以上であり、従 来のステントよりもさらに金の含有量が高いため、従来のステントよりもさらに化学的安 定性が高くかっ血液適合性 (抗血栓性)が高 ヽステントを提供することが可能となる。  [0011] In the stent of the present invention, X1Z (X1 + X2) is 0.68 or more as described above, and the gold content is higher than that of the conventional stent. It is possible to provide a hemorrhoid stent that is highly stable and has high blood compatibility (antithrombogenicity).
[0012] また、本発明のステントにおいては、上記のように、 X1Z (X1 +X2)が 0. 88以下 であるため、金の含有量が極端に高くなることがなくなり、十分な機械的強度を維持 することが可能となる。  [0012] Further, in the stent of the present invention, as described above, since X1Z (X1 + X2) is 0.88 or less, the gold content does not become extremely high, and sufficient mechanical strength is obtained. Can be maintained.
[0013] (3)上記(2)に記載のステントにおいては、前記貴金属合金は、金及びパラジウムか らなる合金母相中に Au Pd相が析出した組織を有することが好ま ヽ。  [0013] (3) In the stent according to (2), the noble metal alloy preferably has a structure in which an Au Pd phase is precipitated in an alloy matrix composed of gold and palladium.
3  Three
[0014] このように構成することにより、貴金属合金の機械的強度が向上し、さらに機械的強 度の高 、ステントを提供することが可能となる。  With this configuration, it is possible to improve the mechanical strength of the noble metal alloy and to provide a stent with high mechanical strength.
[0015] (4)上記(3)に記載のステントにおいては、前記貴金属合金は、時効熱処理を行うこ とにより製造される貴金属合金であることが好ましい。 [0015] (4) In the stent according to (3), the noble metal alloy is preferably a noble metal alloy produced by performing an aging heat treatment.
[0016] このように構成することにより、金及びパラジウムカゝらなる合金母相中に Au Pd相が With this configuration, the Au Pd phase is contained in the alloy matrix composed of gold and palladium.
3 析出した組織を有する貴金属合金を製造することが可能となる。 [0017] (5)上記(1)〜 (4)のいずれかに記載のステントにおいては、前記貴金属合金は、以 下の式(3)を満たすことが好ま U、。 3 It becomes possible to produce a noble metal alloy having a precipitated structure. [0017] (5) In the stent according to any one of (1) to (4), the noble metal alloy preferably satisfies the following formula (3):
0. 79 ≤ X1/ (X1 +X2) ≤ 0. 88 · · · (3)  0. 79 ≤ X1 / (X1 + X2) ≤ 0. 88 (3)
[0018] 本発明においては、このように、 X1Z (X1 +X2)が 0. 79以上であり、金の含有量 力 Sさらに高いため、さらに化学的安定性が高くかっ血液適合性 (抗血栓性)が高いス テントを提供することが可能となる。 In the present invention, since X1Z (X1 + X2) is 0.79 or more and gold content force S is higher in this way, the chemical stability is higher and the blood compatibility (antithrombosis) is higher. This makes it possible to provide a high-performance stent.
[0019] (6)上記(1)〜 (4)のいずれかに記載のステントにおいては、前記貴金属合金は、以 下の式 (4)を満たすことも好ま 、。 [0019] (6) In the stent according to any one of the above (1) to (4), the noble metal alloy preferably satisfies the following formula (4).
0. 68 ≤ X1/ (X1 +X2) ≤ 0. 79 · · · (4)  0. 68 ≤ X1 / (X1 + X2) ≤ 0. 79 (4)
[0020] 本発明のステントにおいては、このように、 XlZ (XI +X2)が 0. 79以下であるためIn the stent of the present invention, XlZ (XI + X2) is 0.79 or less as described above.
、上記(5)に記載のステントと比べて金の含有量が若干低くなり、上記(5)に記載の ステントよりも機械的強度の高いステントを提供することが可能となる。 The gold content is slightly lower than that of the stent described in (5) above, and a stent having higher mechanical strength than the stent described in (5) can be provided.
図面の簡単な説明  Brief Description of Drawings
[0021] [図 1]金'パラジウム二元系状態図である。 FIG. 1 is a phase diagram of a gold / palladium binary system.
[図 2]ボタン状インゴットの外観を示す図である。  FIG. 2 is a diagram showing the external appearance of a button-shaped ingot.
[図 3]圧延体の外観を示す図である。  FIG. 3 is a view showing the appearance of a rolled body.
[図 4]圧延体を放電加工した後の外観を示す図である。  FIG. 4 is a diagram showing an external appearance after electric discharge machining of a rolled body.
[図 5]溶出試験用試験片、血液適合性 (抗血栓性)試験用試験片及び引張試験用試 験片の寸法を示す図である。  FIG. 5 is a view showing dimensions of a dissolution test specimen, a blood compatibility (antithrombogenicity) test specimen, and a tensile test specimen.
[図 6]アノード分極試験装置を説明するために示す図である。  FIG. 6 is a diagram for explaining an anodic polarization test apparatus.
[図 7]試料 5についてのアノード分極試験の結果を示す図である。  FIG. 7 is a diagram showing the results of an anodic polarization test for Sample 5.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0022] 以下、本発明のステントを、図に示す実施の形態に基づいて説明する。  Hereinafter, the stent of the present invention will be described based on the embodiments shown in the drawings.
[0023] [実施形態 1]  [0023] [Embodiment 1]
図 1は、金'パラジウム二元系状態図である。  FIG. 1 is a gold / palladium binary phase diagram.
[0024] 実施形態 1に係るステントは、金及びパラジウム力もなる貴金属合金力も製造される ステントであって、貴金属合金は、貴金属合金における金の含有量 (mol%)を XIと し、貴金属合金におけるパラジウムの含有量 (mol%)を X2としたとき、以下の式(3) を満たす。 [0024] The stent according to Embodiment 1 is a stent in which a noble metal alloy force that also has gold and palladium forces is manufactured, and the noble metal alloy has a gold content (mol%) in the noble metal alloy of XI, When the palladium content (mol%) is X2, the following formula (3) Meet.
[0025] 0. 79 ≤ X1/ (X1 +X2) ≤ 0. 88 · · · (3)  [0025] 0. 79 ≤ X1 / (X1 + X2) ≤ 0. 88 · · · (3)
[0026] すなわち、実施形態 1に係るステントは、図 1における矢印 Aで示される範囲の貴金 属合金力 製造されるステントである。  That is, the stent according to Embodiment 1 is a stent manufactured with a noble metal alloy force in a range indicated by an arrow A in FIG.
[0027] このため、実施形態 1に係るステントは、従来のステント(図 1の矢印 Eで示される範 囲の貴金属合金力もなる。注:なお、従来のステントは、もっぱら多元系の貴金属合 金であるため、本来は図 1のような二元系状態図上で範囲を決めることはできないが 、貴金属合金における金の重量比を用いてあえて範囲を特定すれば、図 1の矢印 E で示される範囲となる。)よりも金の含有量が高いため、従来のステントよりも化学的安 定性が高くかっ血液適合性 (抗血栓性)が高 、ステントとなる。  [0027] Therefore, the stent according to Embodiment 1 also has a conventional stent (noble metal alloy strength in the range indicated by arrow E in Fig. 1). Note: The conventional stent is exclusively a multi-element precious metal alloy. Therefore, the range cannot be determined on the binary system phase diagram as shown in Fig. 1.However, if the range is specified using the weight ratio of gold in the noble metal alloy, it is indicated by arrow E in Fig. 1. Since the gold content is higher than that of conventional stents, it has higher chemical stability and higher blood compatibility (antithrombogenicity) than conventional stents, resulting in a stent.
[0028] なお、実施形態 1に係るステントにおいては、従来のステントよりも金の含有量が高 いため、機械的強度が低下する可能性が考えられるが、上記のように、 X1/ (X1 + X2)が 0. 88以下であるため、金の含有量が極端に高くなることがなくなり、十分な機 械的強度を維持することが可能となる。  [0028] It should be noted that the stent according to Embodiment 1 has a higher gold content than the conventional stent, so that the mechanical strength may be reduced. As described above, X1 / (X1 + Since X2) is 0.88 or less, the gold content does not become extremely high, and sufficient mechanical strength can be maintained.
[0029] [実施形態 2]  [0029] [Embodiment 2]
実施形態 2に係るステントは、金及びパラジウム力もなる貴金属合金力も製造される ステントであって、貴金属合金は、貴金属合金における金の含有量 (mol%)を XIと し、貴金属合金におけるパラジウムの含有量 (mol%)を X2としたとき、以下の式 (4) を満たす。  The stent according to the second embodiment is a stent in which a precious metal alloy force having both gold and palladium force is produced, and the precious metal alloy has a gold content (mol%) in the precious metal alloy as XI, and the palladium content in the precious metal alloy. When the amount (mol%) is X2, the following formula (4) is satisfied.
[0030] 0. 68 ≤ X1/ (X1 +X2) ≤ 0. 79 · · · (4)  [0030] 0. 68 ≤ X1 / (X1 + X2) ≤ 0. 79 (4)
[0031] すなわち、実施形態 2に係るステントは、図 1における矢印 Bで示される範囲の貴金 属合金力 製造されるステントである。  [0031] That is, the stent according to Embodiment 2 is a stent manufactured with a precious metal alloy force in a range indicated by an arrow B in FIG.
[0032] このため、実施形態 2に係るステントは、従来のステントよりも金の含有量が高いた め、実施形態 1に係るステントの場合と同様に、従来のステントよりも化学的安定性が 高くかっ血液適合性 (抗血栓性)が高 、ステントとなる。 [0032] For this reason, the stent according to the second embodiment has a higher gold content than the conventional stent, and therefore, as in the case of the stent according to the first embodiment, the chemical stability is higher than that of the conventional stent. It has high blood compatibility (antithrombogenicity) and is a stent.
[0033] また、実施形態 2に係るステントにおいては、 X1Z (X1 +X2)が 0. 79以下である ため、実施形態 1に係るステントと比べて金の含有量が若干低くなり、実施形態 1に 係るステントよりも機械的強度の高 、ステントとなる。 [0034] [実施形態 3] [0033] Further, in the stent according to the second embodiment, since X1Z (X1 + X2) is 0.79 or less, the gold content is slightly lower than that of the stent according to the first embodiment. The stent has higher mechanical strength than the related stent. [0034] [Embodiment 3]
実施形態 3に係るステントは、金及びパラジウム力もなる貴金属合金力も製造される ステントであって、貴金属合金は、貴金属合金における金の含有量 (mol%)を XIと し、貴金属合金におけるパラジウムの含有量 (mol%)を X2としたとき、以下の式(3) を満たす。  The stent according to the third embodiment is a stent in which a precious metal alloy force having both gold and palladium force is produced, and the precious metal alloy has a gold content (mol%) in the precious metal alloy as XI, and the palladium content in the precious metal alloy. When the amount (mol%) is X2, the following formula (3) is satisfied.
[0035] 0. 79 ≤ X1/ (X1 +X2) ≤ 0. 88 · · · (3)  [0035] 0. 79 ≤ X1 / (X1 + X2) ≤ 0. 88 · · · (3)
[0036] すなわち、実施形態 3に係るステントは、実施形態 1に係るステントの場合と同様に 、図 1における矢印 Aで示される範囲の貴金属合金力も製造されるステントである。実 施形態 3に係るステントが実施形態 1に係るステントと異なるのは、貴金属合金の構造 である。  [0036] That is, the stent according to Embodiment 3 is a stent in which a precious metal alloy force in the range indicated by arrow A in Fig. 1 is also produced, as in the case of the stent according to Embodiment 1. The stent according to Embodiment 3 differs from the stent according to Embodiment 1 in the structure of the noble metal alloy.
[0037] すなわち、実施形態 3に係るステントにおいては、貴金属合金は、金及びパラジゥ ムカゝらなる合金母相中に Au Pd相が析出した組織を有する。そして、貴金属合金は  [0037] That is, in the stent according to Embodiment 3, the noble metal alloy has a structure in which an Au Pd phase is precipitated in an alloy matrix composed of gold and palladium. And noble metal alloys
3  Three
、時効熱処理を行うことにより製造される貴金属合金である。  A noble metal alloy produced by performing an aging heat treatment.
[0038] このように、実施形態 3に係るステントは、貴金属合金の構造が実施形態 1に係るス テントの場合とは異なるが、実施形態 1に係るステントと同様に、貴金属合金は、貴金 属合金における金の含有量 (mol%)を XIとし、貴金属合金におけるパラジウムの含 有量 (mol%)を X2としたとき、上記の式(3)を満たし、従来のステントよりも金の含有 量が高いため、従来のステントよりも化学的安定性が高くかっ血液適合性 (抗血栓性 )が高いステントとなる。 [0038] As described above, the stent according to the third embodiment is different from the stent according to the first embodiment in the structure of the noble metal alloy. However, like the stent according to the first embodiment, the noble metal alloy is a noble metal. When the gold content (mol%) in the metal alloy is XI and the palladium content (mol%) in the noble metal alloy is X2, the above formula (3) is satisfied and the gold content is higher than that of the conventional stent. Due to the high amount, the stent has higher chemical stability and higher blood compatibility (antithrombogenicity) than conventional stents.
[0039] また、実施形態 3に係るステントにおいては、上述したように、貴金属合金は、金及 びパラジウムカゝらなる合金母相中に Au Pd相が析出した組織を有する。このため、実  [0039] In the stent according to Embodiment 3, as described above, the noble metal alloy has a structure in which an Au Pd phase is precipitated in an alloy matrix composed of gold and palladium. For this reason,
3  Three
施形態 3に係るステントは、貴金属合金の機械的強度が向上し、実施形態 1に係るス テントよりもさらに機械的強度の高いステントとなる。  The stent according to the third embodiment has a mechanical strength that is higher than that of the stent according to the first embodiment because the mechanical strength of the noble metal alloy is improved.
[0040] また、実施形態 3に係るステントにおいては、貴金属合金は、時効熱処理を行うこと により製造される貴金属合金であるため、上記したような、金及びパラジウム力もなる 合金母相中に Au Pd相が析出した組織を有する貴金属合金となる。 [0040] In the stent according to Embodiment 3, since the noble metal alloy is a noble metal alloy produced by performing an aging heat treatment, Au Pd is contained in the alloy matrix that also has gold and palladium power as described above. It becomes a noble metal alloy having a structure in which phases are precipitated.
3  Three
実施例  Example
[0041] 本発明のステントが十分高!、化学的安定性、十分高 、血液適合性 (抗血栓性)及 び十分高 、機械的強度を有することを示すために、以下のような実験を行った。 [0041] The stent of the present invention is sufficiently high !, chemical stability, sufficiently high, blood compatibility (antithrombogenicity) and In order to show that it has a sufficiently high mechanical strength, the following experiment was conducted.
[0042] [試料の調整]  [0042] [Sample preparation]
表 1は、実施例で用いる貴金属合金試料の組成を示す表である。図 2は、ボタン状 インゴットの外観を示す図である。図 3は、圧延体の外観を示す図である。図 4は、圧 延体を放電加工した後の外観を示す図である。図 5は、溶出試験用試験片、血液適 合性 (抗血栓性)試験用試験片及び引張試験用試験片の寸法を示す図である。  Table 1 is a table showing the composition of the noble metal alloy sample used in the examples. Fig. 2 shows the appearance of the button-shaped ingot. FIG. 3 is a diagram showing the appearance of the rolled body. FIG. 4 is a view showing an external appearance after the rolled body is subjected to electric discharge machining. FIG. 5 is a diagram showing dimensions of a dissolution test specimen, a blood compatibility (antithrombogenicity) test specimen, and a tensile test specimen.
[0043] [表 1] 含有量(mol%)  [0043] [Table 1] Content (mol%)
斗 4q  Doo 4q
式 4l 料^ 式 43 試料 4 試料 5 金 92 90 88 86 84 パラジウム 8 10 12 14 16  Formula 4l material ^ Formula 43 Sample 4 Sample 5 Gold 92 90 88 86 84 Palladium 8 10 12 14 16
[0044] 金地金 (純度 99. 99% (石福金属興業) )及びパラジウム地金 (石福金属興業)を 用いて、表 1に示すような貴金属合金試料 (試料 1〜試料 5)を溶製した。貴金属合金 の溶解は、非消耗電極式アルゴンアーク溶解炉を用いて行い、各試料 (試料 1〜試 料 5)とも lOOgのボタン状インゴット(図 2参照。)を 2個ずつ溶製した。そして、各イン ゴットを厚さ lmmまで冷間圧延し、面積約 50cm2の薄板(図 3参照。) 2枚を得た。さ らに、この薄板から、ワイヤーカット放電加工で、溶出試験用試験片、血液適合性 (抗 血栓性)試験用試験片及び引張試験用試験片を作製した (図 4及び図 5参照。 )。 [0044] Using noble metal (purity 99. 99% (Ishifuku Metal Industry)) and palladium ingot (Ishifuku Metal Industry), dissolve precious metal alloy samples (Sample 1 to Sample 5) as shown in Table 1. Made. The precious metal alloy was melted using a non-consumable electrode-type argon arc melting furnace, and two lOOg button-shaped ingots (see Fig. 2) were melted for each sample (sample 1 to sample 5). Each ingot was cold-rolled to a thickness of 1 mm to obtain two thin plates (see Fig. 3) with an area of about 50 cm 2 . Furthermore, from this thin plate, a test piece for dissolution test, a test piece for blood compatibility (antithrombogenicity) test, and a test piece for tensile test were prepared by wire-cut electric discharge machining (see FIGS. 4 and 5). .
[0045] [実施例 1]  [0045] [Example 1]
実施例 1は、本発明のステントが十分高い化学的安定性を有することを示すための 実施例 (溶出試験)である。  Example 1 is an example (dissolution test) for showing that the stent of the present invention has sufficiently high chemical stability.
[0046] 1.実験方法 [0046] 1. Experimental method
溶出試験は、各試料 (試料 1〜試料 5)についての溶出試験用試験片(直径 10mm ,厚さ lmm) (図 5参照。)を 10mlの 0. 9%NaCl水溶液とともにポリエチレン密封容 器中に入れ、 37°C恒温槽中で 3週間行った。試験期間中はポリエチレン容器を常時 振摇させた。いずれの試料も試料数は N = 5とした。各試料(試料 1〜試料 5)との比 較のため、同じ形状の Ti— Ni超弾性合金 (比較試料 1)と Ti— 6A1— 4V合金 (比較 試料 2)についての溶出試験も行った。前者は自己拡張型ステント用の素材としてす でに市販されて ヽる材料であり、後者は整形外科用生体材料として多くの使用実績 がある材料である。 In the dissolution test, a specimen for dissolution test (diameter 10 mm, thickness lmm) (see Fig. 5) for each sample (sample 1 to sample 5) was placed in a polyethylene sealed container together with 10 ml of 0.9% NaCl aqueous solution. And kept in a 37 ° C constant temperature bath for 3 weeks. During the test period, the polyethylene container was constantly shaken. In all samples, the number of samples was N = 5. Ratio to each sample (Sample 1 to Sample 5) For comparison, elution tests were also performed on Ti-Ni superelastic alloys (Comparative Sample 1) and Ti-6A1-4V alloys (Comparative Sample 2) of the same shape. The former is a material that is already on the market as a material for self-expanding stents, and the latter is a material that has been used in many ways as a biomaterial for orthopedics.
[0047] 3週間経過後、溶液から各試料 (試料 1〜試料 5)を取り出し、残った溶液に溶け出 した金属イオンの濃度を ICP発光分光分析(PS— 1000, Leeman Labs)で測定し た。測定したイオン濃度は、単位試料表面積あたりの溶出量に換算して比較した。ま た、取り出した試料の表面状態を観察した。  [0047] After 3 weeks, each sample (Sample 1 to Sample 5) was taken out from the solution, and the concentration of the metal ion dissolved in the remaining solution was measured by ICP emission spectroscopic analysis (PS-1000, Leeman Labs). . The measured ion concentration was compared in terms of the amount of elution per unit sample surface area. In addition, the surface condition of the sample taken out was observed.
[0048] 2.結果と考察  [0048] 2. Results and discussion
0. 9%NaCl水溶液中での 3週間溶出試験の結果を表 2に示す。なお、表 2中、 N Dは、 ICPの検出限界範囲内(約 0. OOlmgZm2以上。)での溶出が認められなかつ たことを示す。 Table 2 shows the results of a 3-week dissolution test in a 9% NaCl aqueous solution. In Table 2, ND indicates that no elution was observed within the ICP detection limit range (approximately OOlmgZm 2 or more).
[0049] [表 2] 試料名 試料 1 試料 2 試料 3 試料 4 試料 5 比較試料 1 比較試料 2 検出イオン  [0049] [Table 2] Sample name Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Comparative sample 1 Comparative sample 2 Detected ions
ND ND ND ND ND 8.7 1.8 ND ND ND ND ND 8.7 1.8
(mg/m') (mg / m ')
[0050] 表 2からわ力るように、比較試料 1及び比較試料 2からはそれぞれ 8.
Figure imgf000009_0001
1 . 8mgZm2の金属イオンの溶出が認められた力 試料 1〜試料 5からはいずれも IC Pの検出限界範囲内での溶出は認められな力つた。また、試料 1〜試料 5については 、外観上も溶解の痕跡は認められな力つた。
[0050] As shown in Table 2, each of Comparative Sample 1 and Comparative Sample 2 is 8.
Figure imgf000009_0001
1. Force at which elution of metal ions of 1.8 mgZm 2 was observed From Sample 1 to Sample 5, elution within the detection limit range of ICP was not observed. In addition, Sample 1 to Sample 5 showed no signs of dissolution even in appearance.
このことから、いずれの試料 (試料 1〜試料 5)も、 Ti— Ni超弾性合金 (比較試料 1) や Ti— 6A1— 4V合金 (比較試料 2)に比べて十分に高い化学的安定性を有し、ステ ント用合金として生体内で使用したときの安全性も高いと結論付けることができる。  Therefore, all samples (Sample 1 to Sample 5) have sufficiently high chemical stability compared to Ti-Ni superelastic alloy (Comparative sample 1) and Ti-6A1-4V alloy (Comparative sample 2). It can be concluded that it has a high safety when used in vivo as a stent alloy.
[0051] [実施例 2]  [0051] [Example 2]
実施例 2は、実施例 1と同様に、本発明のステントが十分高い化学的安定性を有す ることを示すための実施例(アノード分極試験)である。  Example 2 is an example (anodic polarization test) for showing that the stent of the present invention has sufficiently high chemical stability, as in Example 1.
[0052] 1.実験方法 図 6は、アノード分極試験装置を説明するために示す図である。図 6 (a)はアノード 分極試験装置の外観を示す図であり、図 6 (b)は試料ホルダを説明するために示す 図である。 [0052] 1. Experimental method FIG. 6 is a diagram for explaining the anodic polarization test apparatus. FIG. 6 (a) is a diagram showing the external appearance of the anode polarization test apparatus, and FIG. 6 (b) is a diagram for explaining the sample holder.
[0053] 貴金属合金試料としては、実施例 1で用いたものと同様の溶出試験用試験片 (直径 10mm,厚さ lmm) (図 5参照。)を鏡面研磨して使用した。アノード分極試験は、 37 °Cの 0. 9%NaCl水溶液中で行った。 Nガスバブルで 30分間の脱気後、ポテンショ  [0053] As the noble metal alloy sample, a dissolution test specimen (diameter 10 mm, thickness lmm) (see Fig. 5) similar to that used in Example 1 was used after mirror polishing. The anodic polarization test was conducted in 0.9% NaCl aqueous solution at 37 ° C. N After degassing with gas bubble for 30 minutes, potentio
2  2
スタツト(HZ 3000,北斗電工)を用い、掃引速度 2 X 10_3Vs_1でアノード分極試 験を行った。対極には白金電極、参照極には飽和カロメル電極(SCE)を用いた。各 試料 (試料 1〜試料 5)との比較のため、金 (純金)(比較試料 1)及び銅 (比較試料 2) についても、アノード分極試験を行った。 Using a stat (HZ 3000, Hokuto Denko), an anodic polarization test was conducted at a sweep rate of 2 X 10 _3 Vs _1 . A platinum electrode was used as the counter electrode, and a saturated calomel electrode (SCE) was used as the reference electrode. For comparison with each sample (sample 1 to sample 5), an anodic polarization test was also performed on gold (pure gold) (comparative sample 1) and copper (comparative sample 2).
[0054] 2.結果と考察 [0054] 2. Results and discussion
図 7は、試料 1〜試料 5のうち最もパラジウム濃度含有量が高い試料 5についてのァ ノード分極試験の結果を示す図である。試料 5を溶液に浸漬して、自然電極電位に 安定するのを確認した後、 1. OV(vs. SCE)力も 1. OV (vs. SCE)まで掃引したが、 図 7からわ力るように、およそ 0. 8V (vs. SCE)付近までアノード電流が計測されなか つた。 0. 8V (vs. SCE)付近力 急速に電流が増加している力 これは試料からの活 性溶解ではなく酸素の発生によるものであり、実施例 2の範囲では試料 5についての 腐食電位を評価することはできなカゝつた。試料 1〜試料 4の場合もほぼ同じ結果が得 られた。また、比較試料 1 (金 (純金))の場合もほぼ同じ結果が得られた。これは、各 試料 (試料 1〜試料 5)が比較試料 1 (金 (純金) )と同様に十分高 ヽ化学的安定性を 有することを意味している。なお、比較試料 2 (銅)の場合は、およそ—0. 3V (vs. SC E)でアノード電流が増加しており、この電位が銅の腐食電位であることが認められた  FIG. 7 is a diagram showing the results of an anode polarization test for sample 5 having the highest palladium concentration content among samples 1 to 5. After immersing Sample 5 in the solution and confirming that it was stabilized at the natural electrode potential, 1. 1. OV (vs. SCE) force was also swept to 1. OV (vs. SCE). In addition, the anode current was not measured up to about 0.8 V (vs. SCE). Force near 0.8 V (vs. SCE) Current rapidly increasing force This is due to generation of oxygen, not active dissolution from the sample. In the range of Example 2, the corrosion potential of sample 5 is I couldn't evaluate it. Similar results were obtained for Sample 1 to Sample 4. The same result was obtained for Comparative Sample 1 (gold (pure gold)). This means that each sample (sample 1 to sample 5) has sufficiently high chemical stability as does comparative sample 1 (gold (pure gold)). In the case of comparative sample 2 (copper), the anode current increased at about −0.3 V (vs. SCE), and this potential was recognized as the corrosion potential of copper.
[0055] 実施例 2の結果及び上述した実施例 1の結果を総合すれば、試料 1〜試料 5の貴 金属合金は、十分に高い化学的安定性を有しており、生体内で安全に使用できると 結論付けることができる。 [0055] By summarizing the results of Example 2 and the results of Example 1 described above, the noble metal alloys of Sample 1 to Sample 5 have sufficiently high chemical stability and are safe in vivo. It can be concluded that it can be used.
[0056] [実施例 3]  [0056] [Example 3]
実施例 3は、本発明のステントが十分高 、血液適合性 (抗血栓性)を有することを示 すための実施例 (血液適合性 (抗血栓性)試験)である。 Example 3 shows that the stent of the present invention is sufficiently high and has blood compatibility (antithrombogenicity). This is an example (blood compatibility (antithrombogenicity test)).
[0057] 1.実験方法 [0057] 1. Experimental method
健康な被験者から採取した血液 (45ml)に凝固防止剤(タエン酸ナトリウム)を 5ml 添加した後、遠心分離 (800rpm, 15分間)して血球成分を分離し、多血小板血漿( PRP : platelet rich plasma)を得た。残った血漿をさらに遠心分離機(2500rpm, 10 分間)に力 4ナ、血小板が少量浮遊する血漿(PPP : platelet poor plasma)とした。両者 の血小板数を計測した後、両者を適量混合することによって血小板数を 3. 9 X 105 個/ 1に調整し、 0. 25mol/lの塩ィ匕カルシウムを添加(混合溶液 2mlに対して 0. 1 7mlの塩ィ匕カルシウムを添加)して凝固速度を調整した血小板溶液を実験に用いた After adding 5 ml of anticoagulant (sodium taenoate) to blood (45 ml) collected from healthy subjects, the blood cell components are separated by centrifugation (800 rpm, 15 minutes), and platelet rich plasma (PRP) ) The remaining plasma was further applied to a centrifuge (2500 rpm, 10 minutes) with a force of 4 hours and plasma with a small amount of platelets suspended (PPP: platelet poor plasma). After measuring the platelet count of both, the platelet count is adjusted to 3.9 X 10 5 cells / 1 by mixing the appropriate amount of both, and 0.25 mol / l of salty calcium is added (to 2 ml of mixed solution) 0.1 7 ml of salted calcium was added to adjust the coagulation rate and used in the experiment.
[0058] この血小板溶液を、各試料 (試料 1〜試料 5)につ 、ての鏡面研磨した血液適合性 [0058] For each sample (Sample 1 to Sample 5), the blood compatibility of each sample (Sample 1 to Sample 5) was mirror-polished.
(抗血栓性)試験用試験片(5mm X 5mm,厚さ lmm) (図 5参照。)の上に滴下し、 3 7°Cのインキュベータ中に所定時間(5分間、 20分間)保存した。所定のインキュベー シヨン時間経過後、 PBS (―)で洗浄し、ダルタルアルデヒドに浸漬して 2日固定した ものを PBS ( -)で再び洗浄し、乾燥後、濃度(50%、 70%、 90%、 100%)の異なる アルコールで順次脱水したものに、厚さ約 25nmの金を蒸着したものを SEM観察し て、血小板の固着量を評価した。各試料 (試料 1〜試料 5)との比較のため、一般のス テント合金として使用されている Ti— Ni超弾性合金 (比較試料 1)及び 316L型のス テンレス鋼 (比較試料 2)並びに生体用合金として使用されている純チタン (比較試料 3)及び Co— Cr合金 (比較試料 4)を同時に試験に供した。  (Antithrombogenicity) A test piece (5 mm × 5 mm, thickness lmm) (see FIG. 5) was dropped on the test piece and stored in a 37 ° C. incubator for a predetermined time (5 minutes, 20 minutes). After a predetermined incubation time, wash with PBS (-), soak in dartalaldehyde and fix for 2 days, wash again with PBS (-), dry, and concentrate (50%, 70%, 90%) %, 100%), which was dehydrated sequentially with different alcohols, and gold deposited with a thickness of about 25 nm were observed by SEM to evaluate the amount of platelet adhesion. For comparison with each sample (sample 1 to sample 5), Ti-Ni superelastic alloy (comparative sample 1), 316L stainless steel (comparative sample 2), and biological Pure titanium (Comparative Sample 3) and Co—Cr alloy (Comparative Sample 4) used as alloys for the test were simultaneously subjected to the test.
[0059] 2.結果と考察  [0059] 2. Results and discussion
試験後の各試料 (試料 1〜試料 5)及び各比較試料 (比較試料 1〜比較試料 5)に つ 、ての表面の SEM観察の結果を表 3に示す。  Table 3 shows the results of SEM observation of the surface for each sample (Sample 1 to Sample 5) and each comparative sample (Comparative Sample 1 to Comparative Sample 5) after the test.
[0060] [表 3] 試料名 試料 1 試料 2 試料 3 試料 4 試料 5 血小板の固着量 少量 少量 少量 中程度 中程度 試料名 比較試料 1 比較試料 2 比較試料 3 比較試料 4 [0060] [Table 3] Sample name Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Platelet adhesion Small amount Small amount Small Medium Medium Sample name Comparison sample 1 Comparison sample 2 Comparison sample 3 Comparison sample 4
血小板の固着量 中程度 少量 多量 中程度  Platelet adhesion amount Medium Small amount Large amount Medium
[0061] 表 2からわ力るように、試料 1〜試料 3では、血小板の固着量は少量であった。試料 4及び試料 5では、血小板の固着量の増加が認められ、血小板の固着量は中程度で あった。なお、比較試料 1及び比較試料 4では、血小板の固着量は中程度であり、比 較試料 3では、血小板の固着量は多量であり、比較試料 2では、血小板の固着量は 少量であった。このように、試料 1〜試料 3では、従来より血液適合性 (抗血栓性)が 高いこととして知られている 316型のステンレス鋼 (比較試料 2)と同等の結果が得ら れた。また、試料 4及び試料 5では、 316型のステンレス鋼(比較試料 2)ほどではな いが、 Ti— Ni超弾性合金 (比較試料 1)又は Co— Cr合金 (比較試料 4)と同等の結 果が得られた (すなわち、純チタン (比較試料 3)よりは血小板の固着量が少ない。 ) 0 [0061] As shown in Table 2, in Samples 1 to 3, the amount of platelets adhered was small. In Sample 4 and Sample 5, an increase in the amount of platelet adhesion was observed, and the amount of platelet adhesion was moderate. In Comparative Sample 1 and Comparative Sample 4, the amount of platelets adhered was moderate, in Comparative Sample 3, the amount of platelets adhered was large, and in Comparative Sample 2, the amount of platelets adhered was small. . In this way, Sample 1 to Sample 3 obtained the same results as Type 316 stainless steel (Comparative Sample 2), which has been known to have higher blood compatibility (antithrombogenicity). In Samples 4 and 5, although not as good as Type 316 stainless steel (Comparative Sample 2), the same results as Ti-Ni superelastic alloy (Comparative Sample 1) or Co-Cr alloy (Comparative Sample 4). fruit is obtained (i.e., a small amount sticking of platelets than pure titanium (comparative sample 3).) 0
[0062] 以上のことから、試料 1〜試料 3は、十分に高い血液適合性 (抗血栓性)を有するこ とが明らかになった。また、試料 4及び試料 5は、 316型のステンレス鋼 (比較試料 2) ほどではな!/ヽが、従来の Ti— Ni超弾性合金 (比較試料 1)又は Co— Cr合金 (比較試 料 4)と同等の十分に高い血液適合性 (抗血栓性)を有することが明らかになった。な お、 316型のステンレス鋼 (比較試料 2)は、十分に高い血液適合性 (抗血栓性)を有 する反面、化学的安定性に劣るため、総合的に見れば、本発明のステントは、試料 1 〜試料 3の貴金属合金を用いたステントの場合はもちろんのこと、試料 4又は試料 5 の貴金属合金を用 ヽたステントの場合であつても、 316型のステンレス鋼力 なるス テントよりも優れていると思われる。 [0062] From the above, it was revealed that Sample 1 to Sample 3 have sufficiently high blood compatibility (antithrombogenicity). Sample 4 and Sample 5 are not as good as Type 316 stainless steel (Comparative Sample 2)! / ヽ, but the conventional Ti-Ni superelastic alloy (Comparative Sample 1) or Co-Cr alloy (Comparative Sample 4) ) And a sufficiently high blood compatibility (antithrombogenicity). Incidentally, Type 316 stainless steel (Comparative Sample 2) has a sufficiently high blood compatibility (antithrombogenicity), but is poor in chemical stability. Of course, in the case of a stent using the precious metal alloy of sample 1 to sample 3, but also in the case of a stent using the precious metal alloy of sample 4 or sample 5, Seems to be better.
[0063] [実施例 4]  [0063] [Example 4]
実施例 4は、本発明のステントが十分高い機械的強度を有することを示すための実 施例(引張試験)である。  Example 4 is an example (tensile test) to show that the stent of the present invention has a sufficiently high mechanical strength.
[0064] 1.実験方法 各試料 (試料 1〜試料 5)について、上述のように作製した引張試験用試験片 (平行 部の幅 4mm,同厚さ lmm,同長さ 14mm) (図 5参照。)を用いて、引張試験を行つ て力学的性質の評価を行った。引張試験は、モデル 858卓上型材料試験システム( MTS)を用いて、クロスヘッド速度 1. OmmZminで行った。歪みはァクチユエータか ら出力した変位より求めたものを用い、応力はロードセルの出力を試験片の断面積 で除したものを用いた。 [0064] 1. Experimental method For each sample (sample 1 to sample 5), using the tensile test specimens prepared as described above (parallel portion width 4 mm, thickness l mm, length 14 mm) (see Fig. 5) Tests were conducted to evaluate mechanical properties. Tensile tests were performed using a Model 858 Tabletop Material Test System (MTS) at a crosshead speed of 1. OmmZmin. The strain obtained from the displacement output from the actuator was used, and the stress obtained by dividing the load cell output by the cross-sectional area of the test piece was used.
[0065] 2.結果と考察 [0065] 2. Results and discussion
各試料 (試料 1〜試料 5)の最大引張強さ(UTS)及び破断伸び( ε )を表 4に示す  Table 4 shows the maximum tensile strength (UTS) and elongation at break (ε) of each sample (Sample 1 to Sample 5).
[0066] [表 4] iCi 1 料^ 試料 試料 4 料 5 最大引張強さ(Mpa) 300 318 329.6 353.2 372 破断伸び (%) 10.3 1 1.3 1 1.3 10.8 1 1.8 [0066] [Table 4] iCi 1 sample ^ Sample Sample 4 5 Maximum tensile strength (Mpa) 300 318 329.6 353.2 372 Elongation at break (%) 10.3 1 1.3 1 1.3 10.8 1 1.8
[0067] 表 4からわかるように、各試料 (試料 1〜試料 5)にお!/、ては、パラジウムの含有量が 高くなるのに従って、最大引張強さが約 300MPaから約 370MPaまで増加している 。また、各試料 (試料 1〜試料 5)のうち最も金の含有量が多い試料 1の場合であって も、最大引張強さが約 300MPa以上あり、十分高い機械的強度を有することが明ら カゝになった。 [0067] As can be seen from Table 4, for each sample (Sample 1 to Sample 5), the maximum tensile strength increased from about 300 MPa to about 370 MPa as the palladium content increased. ing . In addition, even in the case of Sample 1 with the highest gold content among the samples (Sample 1 to Sample 5), it is clear that the maximum tensile strength is about 300 MPa or more, and the mechanical strength is sufficiently high. I became addicted.
[0068] なお、今回の引張試験においては、各試料 (試料 1〜試料 5)として、表 1に示す組 成の貴金属合金を用いているが、ボタン状インゴットを溶製して、冷間圧延した後、時 効熱処理を行っていないため、各試料 (試料 1〜試料 5)は、金固溶体の圧延組織と なり、析出強化の影響は見込まれない。このことから、各試料 (試料 1〜試料 5)にお ける機械的強度の向上は主としてパラジウム添カ卩による固溶体強化によるものだと考 えられる。なお、パラジウム添カ卩による固溶体強化にともなう顕著な延性の低下は認 められなかった。  [0068] In this tensile test, noble metal alloys having the composition shown in Table 1 were used as the samples (Sample 1 to Sample 5), but a button-shaped ingot was melted and cold-rolled. After this, aging heat treatment was not performed, so each sample (Sample 1 to Sample 5) becomes a rolled structure of a gold solid solution, and the effect of precipitation strengthening is not expected. From this, it is considered that the improvement in mechanical strength of each sample (Sample 1 to Sample 5) is mainly due to solid solution strengthening by palladium-added soot. It should be noted that no significant decrease in ductility due to strengthening of the solid solution by the palladium-added iron was observed.
[0069] 以上、本発明のステントを上記の各実施形態に基づいて説明したが、本発明は上 記の各実施形態に限られるものではなぐその要旨を逸脱しない範囲において種々 の態様にぉ 、て実施することが可能である。 [0069] While the stent of the present invention has been described based on the above embodiments, the present invention is The present invention is not limited to the embodiments described above, and can be carried out in various modes without departing from the scope of the invention.
(1)上記実施形態 1に係るステントにおいては、貴金属合金における金の含有量 (m ol%)Xlと、貴金属合金におけるパラジウムの含有量 (mol%)X2とが、「0. 79 ≤ X1/ (X1 +X2) ≤ 0. 88」力 なる式(3)を満たす貴金属合金を用いており、上 記実施形態 2に係るステントにおいては、貴金属合金における金の含有量 (mol%) XIと、貴金属合金におけるパラジウムの含有量 (mol%)X2とが、「0. 68 ≤ XI/ (X1 +X2) ≤ 0. 79」からなる式 (4)を満たす貴金属合金を用いているが、本発明 はこれに限定されるものではない。貴金属合金における金の含有量 (mol%)Xlと、 貴金属合金におけるパラジウムの含有量 (mol%)X2と力 「0. 65 ≤ X1/ (X1 + X2) ≤ 0. 95」力もなる式(1)を満たす貴金属合金を用いることによつても、従来の ステントよりも金の含有量が高いため、従来のステントよりも血液適合性 (抗血栓性) の高 、ステントを提供することが可能となる。  (1) In the stent according to the first embodiment, the gold content (mol%) Xl in the noble metal alloy and the palladium content (mol%) X2 in the noble metal alloy are `` 0. 79 ≤ X1 / (X1 + X2) ≤ 0.88 '' force A noble metal alloy satisfying the following formula (3) is used, and in the stent according to the second embodiment, the gold content (mol%) XI in the noble metal alloy, Palladium content (mol%) X2 in the noble metal alloy is a noble metal alloy satisfying the formula (4) consisting of `` 0.68 ≤ XI / (X1 + X2) ≤ 0.79 ''. Is not limited to this. Gold content (mol%) Xl in noble metal alloy and palladium content (mol%) X2 in precious metal alloy and force “0.65 ≤ X1 / (X1 + X2) ≤ 0.95” force (1 ) Can also provide a stent with higher blood compatibility (antithrombogenicity) than conventional stents, because the gold content is higher than that of conventional stents. Become.

Claims

請求の範囲 The scope of the claims
[1] 金及びパラジウム力もなる貴金属合金力 製造されるステントであって、  [1] Noble metal alloy force with gold and palladium force
前記貴金属合金は、前記貴金属合金における金の含有量 (mol%)を XIとし、前 記貴金属合金におけるパラジウムの含有量 (mol%)を X2としたとき、以下の式(1)を 満たすことを特徴とするステント。  The noble metal alloy satisfies the following formula (1) when the gold content (mol%) in the noble metal alloy is XI and the palladium content (mol%) in the noble metal alloy is X2. Features a stent.
0.65 ≤ X1/(X1+X2) ≤ 0.95 ··· (1)  0.65 ≤ X1 / (X1 + X2) ≤ 0.95 (1)
[2] 請求項 1に記載のステントにおいて、 [2] The stent according to claim 1,
前記貴金属合金は、以下の式 (2)を満たすことを特徴とするステント。  The noble metal alloy satisfies the following formula (2):
0.68 ≤ X1/(X1+X2) ≤ 0.88 ··· (2)  0.68 ≤ X1 / (X1 + X2) ≤ 0.88 (2)
[3] 請求項 2に記載のステントにおいて、 [3] The stent according to claim 2,
前記貴金属合金は、金及びパラジウムカゝらなる合金母相中に Au Pd相が析出した  In the noble metal alloy, an Au Pd phase was precipitated in an alloy matrix composed of gold and palladium.
3  Three
組織を有することを特徴とするステント。  A stent characterized by having a tissue.
[4] 請求項 3に記載のステントにおいて、 [4] The stent according to claim 3,
前記貴金属合金は、時効熱処理を行うことにより製造される貴金属合金であること を特徴とするステント。  The stent according to claim 1, wherein the noble metal alloy is a noble metal alloy manufactured by performing an aging heat treatment.
[5] 請求項 1〜4のいずれかに記載のステントにおいて、 [5] The stent according to any one of claims 1 to 4,
前記貴金属合金は、以下の式 (3)を満たすことを特徴とするステント。  The noble metal alloy satisfies the following formula (3):
0.79 ≤ X1/(X1+X2) ≤ 0.88 ··· (3)  0.79 ≤ X1 / (X1 + X2) ≤ 0.88 (3)
[6] 請求項 1〜4のいずれかに記載のステントにおいて、 [6] In the stent according to any one of claims 1 to 4,
前記貴金属合金は、以下の式 (4)を満たすことを特徴とするステント。  The noble metal alloy satisfies the following formula (4):
0.68 ≤ X1/(X1+X2) ≤ 0.79 ··· (4)  0.68 ≤ X1 / (X1 + X2) ≤ 0.79 (4)
PCT/JP2006/318142 2006-09-13 2006-09-13 Stent WO2008032370A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/318142 WO2008032370A1 (en) 2006-09-13 2006-09-13 Stent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/318142 WO2008032370A1 (en) 2006-09-13 2006-09-13 Stent

Publications (1)

Publication Number Publication Date
WO2008032370A1 true WO2008032370A1 (en) 2008-03-20

Family

ID=39183444

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/318142 WO2008032370A1 (en) 2006-09-13 2006-09-13 Stent

Country Status (1)

Country Link
WO (1) WO2008032370A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021060314A1 (en) * 2019-09-26 2021-04-01 田中貴金属工業株式会社 Medical au-pt-pd alloy
WO2021060313A1 (en) * 2019-09-26 2021-04-01 田中貴金属工業株式会社 Medical au–pt–pd alloy

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02503759A (en) * 1988-04-07 1990-11-08 ヘレーウス エーデルメタレ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Method of manufacturing sintered metal denture components
JP2004505651A (en) * 1999-04-13 2004-02-26 エレファント デンタル ベー.フェー. Biomedical aids or implants
JP2006043199A (en) * 2004-08-05 2006-02-16 Homuzu Giken:Kk Stent and manufacturing method of the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02503759A (en) * 1988-04-07 1990-11-08 ヘレーウス エーデルメタレ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Method of manufacturing sintered metal denture components
JP2004505651A (en) * 1999-04-13 2004-02-26 エレファント デンタル ベー.フェー. Biomedical aids or implants
JP2006043199A (en) * 2004-08-05 2006-02-16 Homuzu Giken:Kk Stent and manufacturing method of the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TANAKA KIKINZOKU KOGYO KABUSHIKI KAISHA: "Kikinzoku no Ohanashi, 2nd print", 1989, pages: 40 - 46, XP003021717 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021060314A1 (en) * 2019-09-26 2021-04-01 田中貴金属工業株式会社 Medical au-pt-pd alloy
WO2021060313A1 (en) * 2019-09-26 2021-04-01 田中貴金属工業株式会社 Medical au–pt–pd alloy
JP2021050401A (en) * 2019-09-26 2021-04-01 田中貴金属工業株式会社 Au-Pt-Pd ALLOY FOR MEDICAL USE
JP2021050400A (en) * 2019-09-26 2021-04-01 田中貴金属工業株式会社 Au-Pt-Pd ALLOY FOR MEDICAL USE
US11453931B2 (en) 2019-09-26 2022-09-27 Tanaka Kikinzoku Kogyo K.K. Medical Au-Pt-Pd alloy

Similar Documents

Publication Publication Date Title
Abdel-Gawad et al. Corrosion studies and microstructure of Mg− Zn− Ca alloys for biomedical applications
JP6431957B2 (en) Biodegradable metal alloy
Jana et al. Effect of heat treatment on microstructure, mechanical, corrosion and biocompatibility of Mg-Zn-Zr-Gd-Nd alloy
Kuphasuk et al. Electrochemical corrosion of titanium and titanium-based alloys
Kirkland et al. In‐vitro dissolution of magnesium–calcium binary alloys: Clarifying the unique role of calcium additions in bioresorbable magnesium implant alloys
Kobayashi et al. Mechanical properties and corrosion resistance of Ti–6Al–7Nb alloy dental castings
Zhen et al. In vitro study on Mg–Sn–Mn alloy as biodegradable metals
Pan et al. The effects of β-TCP on mechanical properties, corrosion behavior and biocompatibility of β-TCP/Zn-Mg composites
CN101629260A (en) Medical absorbable Mg-Zn-Mn-Ca magnesium alloy
Cho et al. In vitro and in vivo assessment of squeeze-cast Mg-Zn-Ca-Mn alloys for biomedical applications
Yu et al. In-vitro evaluation of Mg-4.0 Zn-0.2 Ca alloy for biomedical application
AlOtaibi et al. Corrosion behavior of two cp titanium dental implants connected by cobalt chromium metal superstructure in artificial saliva and the influence of immersion time
Perets et al. In vitro behavior of bioactive hybrid implant composed of additively manufactured titanium alloy lattice infiltrated with Mg-based alloy
Cui et al. Pitting corrosion of biomedical titanium and titanium alloys: A brief review
Guo et al. Ti–Mo–Zr alloys for bone repair: mechanical properties, corrosion resistance, and biological performance
Bita et al. Potential use of Mg-Ca alloys for orthopedic applications
WO2008032370A1 (en) Stent
Takahashi et al. Corrosion resistance of dental Ti-Ag alloys in NaCl solution
WANG et al. Microstructure, mechanical properties and corrosion behavior of quaternary Mg− 1Zn− 0.2 Ca− xAg alloy wires applied as degradable anastomotic nails
CN101649407A (en) Medical absorbable Mg-Si alloy
CN101288776A (en) Medical high-strength anticorrosion magnesium alloy
JP2006348336A (en) Electrolytic polishing liquid, and method for producing metal product
Ji et al. Influence of heat treatment on biocorrosion and hemocompatibility of biodegradable Mg-35Zn-3Ca alloy
Kabir et al. Influence of scandium on mechanical properties, degradation behavior, and cytocompatibility of Zn-3Cu-0.4 Li-xSc alloys for implant applications
KR100393270B1 (en) Ti alloy composite

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06810099

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06810099

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP