WO2008029852A1 - Optical device, exposure apparatus, and method for manufacturing device - Google Patents

Optical device, exposure apparatus, and method for manufacturing device Download PDF

Info

Publication number
WO2008029852A1
WO2008029852A1 PCT/JP2007/067324 JP2007067324W WO2008029852A1 WO 2008029852 A1 WO2008029852 A1 WO 2008029852A1 JP 2007067324 W JP2007067324 W JP 2007067324W WO 2008029852 A1 WO2008029852 A1 WO 2008029852A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
space
optical element
optical device
substrate
Prior art date
Application number
PCT/JP2007/067324
Other languages
French (fr)
Japanese (ja)
Inventor
Takaya Okada
Original Assignee
Nikon Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corporation filed Critical Nikon Corporation
Priority to JP2008533188A priority Critical patent/JP5182093B2/en
Publication of WO2008029852A1 publication Critical patent/WO2008029852A1/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70808Construction details, e.g. housing, load-lock, seals or windows for passing light in or out of apparatus
    • G03F7/70825Mounting of individual elements, e.g. mounts, holders or supports
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70341Details of immersion lithography aspects, e.g. exposure media or control of immersion liquid supply
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70808Construction details, e.g. housing, load-lock, seals or windows for passing light in or out of apparatus
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/14Optical objectives specially designed for the purposes specified below for use with infrared or ultraviolet radiation
    • G02B13/143Optical objectives specially designed for the purposes specified below for use with infrared or ultraviolet radiation for use with ultraviolet radiation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/12Fluid-filled or evacuated lenses

Definitions

  • the present invention relates to an optical apparatus, an exposure apparatus, and a device manufacturing method.
  • Patent Document 1 discloses an example of a technique related to a holding member that holds an optical element of a projection optical system in an immersion exposure apparatus.
  • Patent Document 1 International Publication No. 2005/054955 Pamphlet
  • An object of the present invention is to provide an optical device that can satisfactorily hold an optical element. It is another object of the present invention to provide an exposure apparatus that can satisfactorily expose a substrate through an optical element, and a device manufacturing method using the exposure apparatus. Means for solving the problem
  • the present invention adopts the following configuration associated with each drawing shown in the embodiment.
  • the reference numerals with parentheses attached to each element are merely examples of the element and do not limit each element.
  • the holding member (3A) having the facing surface (31) facing the first surface (11) of the optical element (2A), and the facing surface (31) and the first surface (11) are joined.
  • An optical device (1) is provided.
  • the optical element can be satisfactorily held.
  • the exposure apparatus (the exposure apparatus that exposes the substrate (P) in EU includes the optical apparatus (1) of the above-described aspect), and the optical apparatus (1) Exposure light (exposure apparatus (EX) for irradiating EU) is provided on a substrate (P) through an element.
  • Exposure light Exposure apparatus (EX) for irradiating EU
  • the substrate can be exposed satisfactorily through the optical element.
  • a device can be manufactured using an exposure apparatus that can satisfactorily expose the substrate.
  • the optical element can be favorably held. Further, according to the present invention, the substrate can be satisfactorily exposed through the optical element. Further, according to the present invention, a device having a desired performance can be manufactured.
  • FIG. 1 is a schematic configuration diagram showing an optical device according to a first embodiment.
  • FIG. 2 is an enlarged cross-sectional view of a part of FIG.
  • FIG. 3 is a cross-sectional view taken along line AA in FIG.
  • FIG. 4 is an enlarged view of a part of FIG.
  • FIG. 5 is a perspective view of a part of FIG.
  • FIG. 6 is a perspective view of a part of an optical device according to a second embodiment.
  • FIG. 7 is a perspective view of a part of an optical device according to a third embodiment.
  • FIG. 8 is an enlarged cross-sectional view of a part of an optical device according to a fourth embodiment.
  • FIG. 9 is an enlarged cross-sectional view of a part of an optical device according to a fifth embodiment.
  • FIG. 10 is a perspective view of a part of an optical device according to a sixth embodiment.
  • FIG. 11 is an enlarged cross-sectional view of a part of an optical device according to a seventh embodiment.
  • FIG. 12 is a partial perspective view of an optical device according to a seventh embodiment.
  • FIG. 13 is an enlarged cross-sectional view of a part of an optical device according to an eighth embodiment.
  • FIG. 14 is an enlarged cross-sectional view of a part of an optical device according to a ninth embodiment.
  • FIG. 15 is an enlarged cross-sectional view of a part of an optical device according to a tenth embodiment.
  • FIG. 16 is an enlarged cross-sectional view of a part of an optical device according to an eleventh embodiment.
  • FIG. 17 is an enlarged cross-sectional view of a part of an optical device according to a twelfth embodiment.
  • FIG. 18 is a schematic block diagram that shows an exposure apparatus according to a thirteenth embodiment.
  • FIG. 19 is an enlarged cross-sectional view of a part of FIG.
  • FIG. 20 is a flowchart showing an example of a microdevice manufacturing process.
  • an XYZ orthogonal coordinate system is set, and the positional relationship of each member will be described with reference to this XYZ orthogonal coordinate system.
  • the predetermined direction in the horizontal plane is the X-axis direction
  • the direction orthogonal to the X-axis direction in the horizontal plane is the Y-axis direction
  • the direction orthogonal to each of the X-axis direction and the Y-axis direction is the Z-axis direction.
  • the rotation (tilt) directions around the X, Y, and Z axes are the ⁇ X, ⁇ Y, and ⁇ ⁇ ⁇ ⁇ directions, respectively.
  • FIG. 1 is a schematic configuration diagram showing an optical device 1 according to the first embodiment.
  • an optical device 1 includes a plurality of optical elements 2A to 2E, holding members 3A to 3E for holding the plurality of optical elements 2A to 2E, and an internal space 4, and includes a plurality of optical elements 2A.
  • ⁇ 2E is held in the internal space 4 via holding members 3A-3E.
  • the optical device 1 can project an image of the object plane Os onto the image plane Is.
  • the optical axis AX of the plurality of optical elements 2A to 2E of the optical device 1 is parallel to the Z axis.
  • Each of the object plane Os and the image plane Is is parallel to the XY plane.
  • the object plane Os is arranged on the + Z side of the optical device 1 in the drawing, and the image plane Is is arranged on the Z side.
  • the optical element 2 A closest to the image plane Is of the optical device 1 is an internal space 4 of the lens barrel 5 and an external space different from the internal space 4 Arranged at the boundary with 6.
  • the optical element 2A disposed at the boundary between the internal space 4 and the external space 6 of the lens barrel 5 is appropriately used as the terminal optical element 2A, Called.
  • the inner space 4 of the lens barrel 5 is filled with gas.
  • the outer space 6 of the lens barrel 5 includes an immersion space LS filled with liquid LQ.
  • the immersion space LS is formed in the vicinity of the terminal optical element 2A on the image plane Is side of the optical device 1.
  • the optical device 1 can project the image of the first object B1 arranged on the object plane Os onto the second object B2 arranged on the image plane Is via the liquid LQ in the immersion space LS.
  • the immersion space LS is formed between the terminal optical element 2A and the second object B2 disposed on the image plane Is.
  • the optical device 1 of the present embodiment includes an air supply port 61 formed in the lens barrel 5, and a first gas supply device 60 that supplies gas to the internal space 4 via the air supply port 61 and the air supply pipe 61P. And.
  • the first gas supply device 60 supplies dry inert gas to the internal space 4.
  • the first gas supply device 60 is chemically purified and delivers nitrogen gas having a concentration of approximately 100%. Note that the gas supplied to the internal space 4
  • the active gas may be helium or a mixed gas of nitrogen and helium.
  • the first gas supply device 60 may supply dry air (dry air) to the internal space 4.
  • FIG. 2 is a side sectional view showing the vicinity of the terminal optical element 2A disposed at the boundary between the internal space 4 and the external space 6 of the lens barrel 5 and the holding member 3A for holding the terminal optical element 2A.
  • 3 is a cross-sectional view taken along line AA in FIG. 4 is an enlarged view of a part of FIG. 2
  • FIG. 5 is a perspective view of a part of FIG.
  • the terminal optical element 2A includes an incident surface 7 on which light from the object surface Os is incident, and an exit surface 8 that emits light incident from the incident surface 7.
  • the outer peripheral surface 9 connecting the outer periphery of the incident surface 7 and the outer periphery of the exit surface 8 is provided.
  • the incident surface 7 is disposed in the internal space 4 so as to face the object surface Os.
  • the exit surface 8 is disposed in the external space 6 so as to face the image surface Is. At least a part of the outer peripheral surface 9 is disposed in the external space 6.
  • the internal space 4 of the lens barrel 5 is filled with gas, and the incident surface 7 of the final optical element 2A disposed in the internal space 4 is in contact with the gas.
  • the external space 6 of the lens barrel 5 includes an immersion space LS filled with the liquid LQ, and the emission surface 8 disposed in the external space 6 is in contact with the liquid LQ. Note that Figure 2 does not show liquid LQ.
  • the entrance surface 7 of the terminal optical element 2A is a convex curved surface that swells toward the object plane Os, and the exit surface 8 of the terminal optical element 2A is substantially parallel to the XY plane. It is a plane.
  • the outer peripheral surface 9 of the last optical element 2A is disposed so as to surround the exit surface 8 and the inclined surface 9S inclined to the entrance surface 9 side with respect to the exit surface 8, and the inclined surface 9S, and is substantially flat with the XY plane.
  • the plane 9F facing the Z side In the following description, of the outer peripheral surface 9 of the last optical element 2A, a plane 9F facing the Z side that is substantially parallel to the XY plane is appropriately referred to as a flange surface 9F.
  • the optical device 1 includes a holding member 3A having a facing surface 31 facing the first surface 11 of the flange surface 9F, and the holding member 3A facing.
  • a gas flow is generated between the joint 40 that joins the surface 31 and the first surface 11 and the second surface 12 on the outer space 6 side of the flange surface 9F with respect to the first surface 11, and And a gas seal mechanism 20 that suppresses the gas in the external space 6 from being brought to the joint 40.
  • the first surface 11 is set to at least a part of the outer edge region (first region) of the flange surface 9F, and the second surface 12 is more external than the first surface 11.
  • the second surface 12 is set on the flange surface 9F so as to surround the immersion space LS and the injection surface 8 arranged in the external space 6, and the first surface 11 is an external surface including the immersion space LS and the injection surface 8. It is set at a position farther from the second surface 12 with respect to the space 6.
  • the holding member 3A has a facing surface 31 that faces the first surface 11 of the flange surface 9F of the terminal optical element 2A.
  • the holding member 3A is disposed so as to face the flange surface 9F of the last optical element 2A, and has an upper surface 30 facing the + Z side substantially parallel to the XY plane.
  • the facing surface 31 is set as a part of the upper surface 30.
  • the upper surface 30 of the holding member 3A facing the flange surface 9F of the terminal optical element 2A is formed in an annular shape so as to surround the immersion space LS and the exit surface 8 disposed in the external space 6.
  • the facing surface 31 is set to at least a part of the outer edge region of the upper surface 30 so as to face the first surface 11 of the flange surface 9F.
  • the flange surface 9F of the terminal optical element 2A and the upper surface 30 of the holding member 3A are separated by a predetermined distance!
  • the facing surface 31 is a surface on which the joint portion 40 is formed and includes the joint portion 40.
  • the first surface 11 is a surface on which the joint portion 40 is formed and is a surface including the joint portion 40.
  • each of the first surface 11 of the terminal optical element 2A and the facing surface 31 of the holding member 3A that are joined via the joint portion 40 has an optical axis AX It is set in each of a plurality of predetermined areas in the surrounding rotation direction.
  • the joint portion 40 (region where the adhesive is disposed) is set in a plurality of islands in the rotation direction around the optical axis AX.
  • the terminal optical element 2A is made of, for example, quartz (silica).
  • the terminal optical element 2A is a single crystal material of a fluoride compound such as calcium fluoride (fluorite), barium fluoride, strontium fluoride, lithium fluoride, and sodium fluoride. It may be formed. Further, the optical elements 2B to 2E can be formed of the above-described materials.
  • the holding member 3A is formed of a material having the same or similar linear expansion coefficient as that of the optical element 2A, for example, an inorganic material such as ceramics or glass, or a metal.
  • the holding member 3A may contain boron or may be formed of glass.
  • an adhesive for joining the first surface 11 of the terminal optical element 2A and the facing surface 31 of the holding member 3A for example, a metal as disclosed in International Publication No. 2005/054955 pamphlet, What contains inorganic materials, such as ceramics and glass, can be used.
  • the adhesive that bonds the first surface 11 and the opposing surface 31 may include an organic material such as an epoxy resin.
  • the adhesive may include a UV curable resin material that is cured by irradiation with ultraviolet light.
  • the first surface 11 and the facing surface 31 may be bonded with a metal solder containing indium or the like.
  • the holding member 3A and the terminal optical element 2A are bonded using an adhesive, an increase in size and complexity of a mechanism for holding the terminal optical element 2A is suppressed. ing.
  • the gas seal mechanism 20 can generate a gas flow with the second surface 12 of the last optical element 2A.
  • the gas seal mechanism 20 has a facing surface 32 that is arranged with a predetermined distance from the second surface 12 of the last optical element 2A.
  • the gas seal mechanism 20 is provided on the holding member 3A that holds the terminal optical element 2A.
  • the opposing surface 32 of the gas seal mechanism 20 is formed on the holding member 3A.
  • the opposed surface 32 of the gas seal mechanism 20 is set as a part of the upper surface 30 of the holding member 3A.
  • the upper surface 30 of the holding member 3A has a facing surface 31 that faces the first surface 11 of the terminal optical element 2A and a facing surface that faces the second surface 12 of the terminal optical element 2A. Includes 32 each.
  • the facing surface 31 is set to at least a part of the outer edge region of the upper surface 30, and the facing surface 32 is closer to the external space 6 side than the facing surface 31 (the optical axis side of the terminal optical element 2A). Is set to at least a part of the inner edge region.
  • the upper surface 30 is set so as to surround the immersion space LS and the injection surface 8 arranged in the external space 6.
  • the facing surface 31 is set at a position farther than the facing surface 32 with respect to the external space 6 including the immersion space LS and the exit surface 8! /.
  • the gas seal mechanism 20 is a second surface formed on the flange surface 9F.
  • a flow of gas can be generated between 12 and the opposing surface 32 that is arranged with a predetermined distance from the second surface 12.
  • an interval (gap) between the second surface 12 and the facing surface 32 is set to 1 ⁇ m to 100 ⁇ m, for example.
  • the gas seal mechanism 20 includes a gas supply port 21 formed in the facing surface 32 and a second gas supply device 22 that supplies gas to the gas supply port 21. ing.
  • the second gas supply device 22 and the gas supply port 21 are connected via a supply channel 23 formed inside the supply pipe 23P and the holding member 3A.
  • the second gas supply device 22 can supply the dried gas to the gas supply port 21.
  • the gas seal mechanism 20 supplies the gas sent from the second gas supply device 22 to the gap between the second surface 12 and the facing surface 32 through the gas supply port 21.
  • the gas seal mechanism 20 supplies a dry inert gas from the gas supply port 21.
  • the second gas supply device 22 sends out nitrogen gas that is chemically purified and has a concentration of approximately 100%.
  • the gas seal mechanism 20 supplies dry nitrogen gas from the gas supply port 21.
  • the gas (inert gas) supplied from the gas supply port 21 may be helium, carbon dioxide (CO 2), argon (Ar),
  • Krypton (Cr), a mixed gas of them and nitrogen, or a mixed gas of nitrogen and helium may be used.
  • the gas seal mechanism 20 may supply dry air (dry air) from the gas supply port 21.
  • the gas supplied into the lens barrel 5 may be reused.
  • the gas supplied from the gas scenery mechanism 20 via the gas supply port 21 may be the same as the gas supplied from the first gas supply device 60 to the internal space 4.
  • the gas supply port 21 is formed on the facing surface 32, and is formed on the external space 6 side with respect to the joint portion 40 formed on the facing surface 31. Yes. In other words, the gas supply port 21 is disposed between the outer space 6 and the joint 40, and is formed closer to the outer space 6 than the joint 40. As shown in FIG. 3, in the present embodiment, a plurality of gas supply ports 21 are formed on the facing surface 32 so as to correspond to each of the plurality of joints 40 formed in an island shape. Yes. In other words, each of the plurality of gas supply ports 21 is disposed at a position close to each of the plurality of joints 40. Each of the plurality of gas supply ports 21 is disposed on the outer space 6 side with respect to the joint portion 40.
  • a gas (dry gas) is sent from the second gas supply device 22 of the gas seal mechanism 20, and the gas is supplied to the gas supply port 21.
  • the gas supply port 21 is formed on a facing surface 32 that is arranged at a predetermined distance from the second surface 12 of the last optical element 2A, and the gas supplied from the second gas supply device 22 Supply to the gap between 12 and facing surface 32. Gas is supplied to the gap between the second surface 12 and the facing surface 32 from a gas supply port 21 disposed on the outer space 6 side of the joint 40.
  • Gas is supplied from the gas supply port 21 to the gap between the second surface 12 of the terminal optical element 2A and the facing surface 32 of the holding member 3A, whereby the second surface 12 and the facing surface 32 are In the meantime, a predetermined gas flow is generated.
  • the gas seal mechanism 20 supplies gas from the gas supply port 21 to the gap between the second surface 12 and the facing surface 32. As a result, it is possible to generate a gas flow between the second surface 12 and the facing surface 32 from the joint 40 side to the external space 6 side.
  • the second gas supply device 22 can send a gas having a humidity lower than that of the gas in the external space 6, and the gas seal mechanism 20 is opposed to the second surface 12. In between, the humidity is lower than the gas in the external space 6! / And a gas flow is generated.
  • the gap between the second surface 12 and the facing surface 32 is set to a predetermined value (for example, 1 H 111 to 100 m), and gas is supplied to the gap.
  • the gas seal mechanism 20 can increase the pressure between the second surface 12 and the facing surface 32 at least higher than the pressure (for example, atmospheric pressure) in the external space 6. That is, in the present embodiment, the gas seal mechanism 20 positively pressures the space between the second surface 12 and the opposed surface 32 at least with respect to the adjacent space.
  • the external space 6 includes the immersion space LS, and the gas in the external space 6 may have high humidity. When gas in the external space 6 with high humidity is brought to the joint 40, the joint 40 may deteriorate.
  • the properties of the joint 40 including the adhesive may change.
  • the adhesive when humid gas is brought into the adhesive at the joint 40, for example, the adhesive may swell, the volume of the adhesive may change, or the properties of the adhesive may change.
  • the position of the last optical element 2A may fluctuate or at least one of the entrance surface 7 and the exit surface 8 may be deformed.
  • the bonding strength of the bonding portion 40 is lowered. Then, the optical characteristics of the optical device 1 may change (deteriorate).
  • the gas seal mechanism 20 may generate a predetermined gas flow between the second surface 12 and the facing surface 32, so that the external space 6 may have moisture. A certain gas force can be prevented from being introduced into the joint 40.
  • the gas seal mechanism 20 generates a flow of gas and gas force between the second surface 12 and the opposed surface 32 from the joint 40 side to the external space 6 side. Therefore, it is necessary to use the force S to suppress that the gas in the external space 6 that may be humid is applied to the joint 40 from the external space 6 side.
  • the gas seal mechanism 20 generates a positive pressure between the second surface 12 and the opposing surface 32 by supplying a gas to the gap between the second surface 12 and the opposing surface 32. Therefore, it is possible to suppress the gas in the external space 6 from entering the gap and being brought to the joint 40.
  • the gas seal mechanism 20 supplies a gas having a humidity lower than that of at least the gas in the external space 6 between the second surface 12 and the facing surface 32, and the humidity is reduced. Since the low gas flow is generated, it is possible to prevent the joint 40 from being deteriorated by moisture.
  • the facing surface 31 of the holding member 30 and the first surface 11 of the flange surface 9F are joined by a plurality of separated joints 40 in the rotational direction around the optical axis.
  • the holding member 3 ⁇ and the last optical element 2 ⁇ are joined by a plurality of joints 40, so that a gap 26 communicating the inner space 4 and the outer space 6 is formed between the last optical element 2A and the holding member 3A. 27 is formed.
  • gear 26 is formed between the facing surface 31 and the first surface 11, and the gap 27 is formed between the side surface 9T of the terminal optical element 2A and the inner surface of the holding member 3A facing the side surface 9T. Formed.
  • the entire circumference is provided between the side surface 9T of the terminal optical element 2A and the inner side surface 3T of the holding member 3A.
  • the gap 27 is filled with grease.
  • the supply amount of the gas supplied from the first gas supply device 60 is adjusted instead of filling the gap 27 with a dull.
  • the pressure in the inner space 4 may be higher than the pressure in the outer space 6 (for example, atmospheric pressure).
  • the gas seal mechanism 20 in a state where the gas flow between the internal space 4 and the external space 6 is blocked by grease, the gas seal mechanism 20 generates a predetermined gas flow to generate a joint portion. Deterioration of 40 can be suppressed.
  • the gas flow and the gas flow of the gas seal mechanism 20 Due to the synergistic effect, deterioration of the joint 40 can be suppressed.
  • the holding member 3A and the terminal optical element 2A are bonded using an adhesive, the mechanism for holding the terminal optical element 2A is increased in size and complexity. This has been suppressed. As described above, in the present embodiment, the force S for holding the terminal optical element 2A in a desired state is suppressed while suppressing an increase in size and complexity of the mechanism for holding the terminal optical element 2A.
  • the incident surface 7 has a convex shape so that light incident from the object surface Os side can reach the image surface Is through the liquid LQ satisfactorily.
  • the entire optical device 1 including the terminal optical element 2A may need to be enlarged.
  • the mechanism for holding the terminal optical element 2A is enlarged, The optical device 1 as a whole may be further increased in size.
  • the incident surface 7 (curved surface) becomes large or the terminal optical element 2A is enlarged, the arrangement and structure of the mechanism for holding the terminal optical element 2A may be restricted.
  • the terminal optical element 2A having a curved surface cannot be satisfactorily held and the position of the terminal optical element 2A having the curved surface varies, the optical characteristics of the optical device 1 may greatly vary.
  • the holding member 3A and the last optical element 2A are joined by the joint 40, and deterioration of the joint 40 is suppressed using the gas seal mechanism 20, so that the optical device 1 as a whole
  • the optical characteristics of the optical device 1 can be maintained while suppressing the increase in size and complexity.
  • the external space 6 includes the immersion space LS in order to suppress the gas on the external space 6 side that may be humid from being brought to the joint 40.
  • the force that generates the predetermined gas flow by the gas seal mechanism 20 The immersion space LS is formed in the external space 6! /, Or not! /. In the case where the immersion space LS is formed! /, Na! /,
  • the gas seal mechanism 20 prevents the gas in the outer space 6 from being brought into the joint 40. However, it can be prevented from being deteriorated by the low-purity gas or the gas in the external space 6 flowing into the internal space 4.
  • FIG. 6 is an enlarged perspective view of a part of the optical device 1 according to the second embodiment.
  • the optical device 1 includes a holding member 3A having a facing surface 31 facing the first surface 11 and a facing surface 32 facing the second surface 12 of the terminal optical element 2A.
  • a gas supply port 21 for supplying gas is formed in the facing surface 32.
  • a plurality of gas supply ports 21 are formed on the facing surface 32 so as to correspond to each of the plurality of joints 40. Yes.
  • the gas seal mechanism 20A of the present embodiment has a groove 24 formed in the facing surface 32.
  • the gas supply port 21 is formed inside the groove 24.
  • a plurality of grooves 24 are formed so as to correspond to the gas supply ports 21.
  • the circumferential length of the groove 24 is longer than the circumferential length of the joint 40.
  • the groove 24 is formed in a substantially arc shape in the XY plane, and the gas supply port 21 is formed substantially at the center in the axial direction of the groove 24.
  • a groove 24 and a gas supply port 21 are formed, and a facing surface 32 that faces the second surface 12 is formed with an adhesive portion 40 and is disposed closer to the outer space 6 than the facing surface 31 that faces the first surface 11. Has been.
  • the groove 24 can be formed in the facing surface 32, and the gas supply port 21 can be disposed inside the groove 24.
  • the gas seal mechanism 20A can generate a predetermined gas flow between the second surface 12 on the external space 6 side and the facing surface 32 with respect to the joint portion 40.
  • at least a part of the gas supplied from the gas supply port 21 flows so as to expand along the groove 24 and then flows from the joint 40 toward the external space 6 side. As a result, the ability S to control that the gas in the outer space 6 is brought to the joint 40 is reduced.
  • FIG. 7 is an enlarged perspective view of a part of the optical device 1 according to the third embodiment. Similar to the first embodiment described above, a plurality of joints 40 are set in the rotation direction around the optical axis AX.
  • the gas seal mechanism 20B of the present embodiment has a groove 25 formed in an annular shape in the XY plane on the upper surface 30 of the holding member 3A.
  • a plurality of grooves 25 are formed on the upper surface 30 so as to surround the joint portion 40 (region where the adhesive is disposed). That is, in the present embodiment, the groove 25 is formed on the upper surface 30 so as to surround the facing surface 31 on which the joint portion 40 is formed.
  • the gas supply port 21 is formed at a predetermined position inside the groove 25! /.
  • the gas supply port 21 is disposed on the inner space 4 side of the joint 40 inside the groove 25. That is, in the present embodiment, the facing surface 31 on which the joint 40 is formed is disposed between the external space 6 and the gas supply port 21.
  • At least a part of the groove 25 is formed on the outer space 6 side with respect to the facing surface 31. Change In other words, a part of the groove 25 is formed on the facing surface 32 on the outer space 6 side with respect to the joint portion 40 in the upper surface 30.
  • the gas seal mechanism 20B can generate a gas flow according to the shape of the groove 25 between the flange surface 9F and the facing surface 31 by the gas supplied from the gas supply port 21. At least a part of the gas supplied from the gas supply port 21 flows along the groove 25. As described above, at least a part of the groove 25 is formed on the facing surface 32 on the external space 6 side with respect to the facing surface 31 including the joint 40, and the gas seal mechanism 20B is supplied from the gas supply port 21. In addition, a predetermined gas flow can be generated between the second surface 12 on the outer space 6 side and the facing surface 32 with respect to the joint portion 40 by the gas flowing according to the shape of the groove 25.
  • FIG. 8 is a side sectional view showing a part of the optical device 1 according to the fourth embodiment.
  • gaps 26 and 27 are formed between the inner space 4 and the outer space 6 between the terminal optical element 2A and the holding member 3A.
  • the gas seal mechanism 20C of the present embodiment includes a gas supply port on the facing surface 32! /,! /.
  • the gas seal mechanism 20C of the present embodiment is formed between the facing surface 31 and the first surface 11 so as to communicate the inner space 4 and the outer space 6, and the gas in the inner space 4 faces the second surface 12. It includes gaps 26 and 27 between the surface 32 and a first gas supply device 60 for supplying gas to the internal space 4.
  • the gas seal mechanism 20C supplies gas from the first gas supply device 60 to the internal space 4A, and makes the pressure of the internal space 4 higher than at least the pressure of the external space 6 (for example, atmospheric pressure).
  • the gas seal mechanism 20 ⁇ / b> C uses the first gas supply device 60 to supply gas to the internal space 4 to positively pressure the internal space 4.
  • the internal space 4 By positively pressurizing the internal space 4, the internal space 4 can be moved through the gaps 26 and 27.
  • Gas is supplied to the gap between the second surface 12 and the opposing surface 32, and the internal space 4 force is also directed between the second surface 12 and the opposing surface 32 via the gaps 26 and 27, generating a gas flow. Is done.
  • the gas supplied between the second surface 12 and the opposing surface 32 from the gaps 26 and 27 flows toward the external space 6. That is, when the internal space 4 is positively pressurized, a flow of gas and gas is generated from the internal space 4 through the gaps 26 and 27 to the external space 6, and the second surface 12 and the opposing surface 32 are in contact with each other. In the middle, a gas flow is generated from the periphery of the joint 40 toward the external space 6 side. Gassi The mechanism 20C suppresses that the gas in the external space 6 is brought to the joint 40 by this gas flow.
  • FIG. 9 is a side sectional view showing a part of the optical device 1 according to the fifth embodiment.
  • the present embodiment is a modification of the first to third embodiments.
  • the gas seal mechanism 20D according to this embodiment includes a gas suction mechanism 50 that sucks the gas between the second surface 12 and the facing surface 32.
  • the gas suction mechanism 50 includes a gas suction port 51 formed in the holding member 3, and a gas suction device 52 including a vacuum system that can suck gas through the gas suction port 51.
  • the gas suction device 52 and the gas suction port 51 are connected to each other through a suction channel 53 formed inside the suction pipe 53 and the holding member 3.
  • the gas suction port 51 is formed on the facing surface 32 on the external space 6 side of the upper surface 30 of the holding member 3 ⁇ ⁇ ⁇ ⁇ with respect to the facing surface 31, and between the second surface 12 and the facing surface 32. Gas can be sucked. As in the above-described embodiment, gaps 26 and 27 are formed between the second surface 12 and the facing surface 32.
  • a gap 26 is formed between the facing surface 31 and the first surface 11 so as to communicate the internal space 4 and the external space 6.
  • the gap 26 allows gas to flow between the internal space 4 and the external space 6, and the gas in the internal space 4 flows between the second surface 12 and the facing surface 32.
  • the gas suction device 52 When the gas suction device 52 is driven, the gas between the second surface 12 and the facing surface 32 is sucked by the gas suction port 51. As shown in FIG. 9, when the gas suction port 51 sucks the gas, the gas is sucked from the inner space 4 of the lens barrel 5 through the gap 26 to the gas suction port 51 from around the joint 40. A flow of is generated.
  • the gas suction port 51 is disposed on the outer space 6 side from the joint 40, and a gas flow is generated from the joint 40 side toward the outer space 6 side.
  • the gas suction port 51 sucks the gas
  • the gas flow from the external space 6 to the gas suction port 51 is generated.
  • the gas suction port 51 is disposed on the outer space 6 side with respect to the joint portion 40, and the gas from the outer space 6 absorbs the gas almost without reaching the joint portion 40. It is sucked into the outlet 51.
  • the gas seal mechanism 20D generates a gas flow from the joining portion 40 side toward the outer space 6 side, and travels from the outer space 6 toward the joining portion 40.
  • the gas can be sucked at the gas suction port 51 before being brought to the joint 40. This suppresses the gas in the external space 6 from being brought to the joint 40.
  • a concave portion may be formed on the second surface 12 so as to face the gas suction port 51.
  • a circumferential groove may be formed on the second surface 12.
  • FIG. 10 is an enlarged perspective view of a part of the optical device 1 according to the sixth embodiment.
  • the gas seal mechanism 20E of the present embodiment includes a gas supply port 21 for supplying a gas and a gas suction port 51 for sucking the gas.
  • a groove 24 is formed in the facing surface 32 of the holding member 3A.
  • a plurality of grooves 24 are formed on the upper surface 30A so as to correspond to the plurality of joints 40.
  • the circumferential length of the groove 24 is longer than the circumferential length of the joint 40.
  • the groove 24 is formed in a substantially arc shape in the XY plane.
  • the gas supply port 21 is formed at a first position in the circumferential direction of the groove 24, and the gas suction port 51 is formed at a second position in the circumferential direction of the groove 24.
  • a gas supply port 21 is formed at one end of the substantially arc-shaped groove 24 in the circumferential direction, and a gas suction port 51 is formed at the other end.
  • the groove 24 is disposed closer to the external space 6 than the facing surface 31. That is, the groove 24 including the gas supply port 21 and the gas suction port 51 is formed on the facing surface 32 disposed on the outer space 6 side with respect to the facing surface 31 including the joint portion 40.
  • the gas seal mechanism 20E performs the gas supply operation using the gas supply port 21 and the gas suction operation using the gas suction port 51 in parallel.
  • a predetermined gas flow is generated between the second surface 12 and the opposing surface 32 on the outer space 6 side from 40.
  • both the gas supply port 21 and the gas suction port 51 can be formed on the facing surface 32.
  • the gas flow between the second surface 12 and the opposing surface 32 can be controlled.
  • the gas seal mechanism 20E is removed from the gap between the second surface 12 and the opposing surface 32. It is possible to suppress an excessive flow of gas to the partial space 6 side. If excessive gas flows to the external space 6 side, the liquid LQ in the immersion space LS is easily vaporized, or bubbles are generated in the liquid LQ. May be affected.
  • the gas flow is controlled by appropriately performing the gas supply operation using the gas supply port 21 and the gas suction operation using the gas suction port 51, thereby generating the desired gas flow. be able to.
  • the positional relationship and the number of the gas supply port 21 and the gas suction port 51 shown in FIG. 10 are examples, and the positional relationship and the number are between the second surface 12 and the opposing surface 32. Is appropriately set so that a desired gas flow can be generated.
  • FIG. 11 is an enlarged side sectional view of a part of the optical device 1 according to the seventh embodiment
  • FIG. 12 is a perspective view.
  • the gas seal mechanism 20F of the present embodiment includes a gas supply port 21 disposed on the inner space 4 side with respect to the opposing surface 31 including the joint 40, and an opposing surface 31.
  • a gas suction port 51 arranged on the external space 6 side is provided.
  • a plurality of joints 40 are formed in the rotational direction around the optical axis AX.
  • the first groove 28 formed on the inner space 4 side with respect to the facing surface 31 is formed on the upper surface 30 of the holding member 3A, and the outer space 6 side is formed with respect to the facing surface 31.
  • a second groove 29 is formed.
  • Each of the first groove 28 and the second groove 29 is formed on the upper surface 30 so as to sandwich a plurality of joint portions 40 (regions where the adhesive is disposed) disposed in an island shape.
  • the gas supply port 21 is formed inside the first groove 28.
  • the first groove 28 is formed in a substantially arc shape in the XY plane, and the gas supply port 21 is formed substantially at the center in the axial direction of the first groove 28.
  • the gas supply port 21 is formed in the vicinity of the joint 40.
  • the gas suction port 51 is formed inside the second groove 29.
  • the second groove 29 is formed in a substantially arc shape in the XY plane, and the gas suction port 51 is formed in each of one end and the other end of the arc-shaped second groove 29. ing.
  • the gas seal mechanism 20F performs the gas supply operation using the gas supply port 21 and the gas suction operation using the gas suction port 51 in parallel, and the second surface on the external space 6 side from the joint 40. A predetermined gas flow is generated between 12 and the opposite surface 32.
  • the gas seal mechanism 20F supplies gas from the gas supply port 21 disposed on the inner space 4 side with respect to the facing surface 31, and is disposed on the outer space 6 side with respect to the facing surface 31.
  • the gas suction port 51 By sucking the gas from the gas suction port 51, it is possible to generate a flow of gas and gas from the joint 40 side to the external space 6 side.
  • the gas suction port 51 is disposed on the outer space 6 side with respect to the joint portion 40, and the gas from the outer space 6 is sucked into the gas suction port 51 without almost reaching the joint portion 40.
  • the gas seal mechanism 20F generates a flow of gas and gas flowing from the joint 40 side to the external space 6 side, and travels from the external space 6 to the joint 40.
  • the gas can be sucked at the gas suction port 51 before being brought to the joint 40. This suppresses the gas in the external space 6 from being brought to the joint 40.
  • the second groove 29 is formed in a substantially arc shape in the XY plane, but may be a short straight line.
  • FIG. 13 is an enlarged side view of a part of the optical device 1 according to the eighth embodiment.
  • the facing surface 31 and the facing surface 32 are the force S formed on the upper surface 30 facing the + Z side of the holding member 3A, as shown in FIG.
  • the surface 31 and the opposing surface 32 may be formed on surfaces facing different directions.
  • the facing surface 31 of the holding member 3A is formed so as to face the side surface 9T of the terminal optical element 2A, and the facing surface 32 faces a part of the flange surface 9F of the terminal optical element 2A. It is formed as follows.
  • the first surface 11 of the surface of the terminal optical element 2A is set to the side surface 9T, and the second surface 12 on the outer space 6 side with respect to the first surface 11 is the flange surface 9F. Is set.
  • the gas supply port 21 of the gas seal mechanism 20G is formed on the opposing surface 32, and the gas seal mechanism 20G By supplying gas from the port 21, a predetermined gas flow is generated between the second surface 12 and the facing surface 32. Also in the present embodiment, deterioration of the joint 40 can be suppressed by the flow of gas generated by the gas seal mechanism 20G.
  • FIG. 14 is an enlarged side view of a part of the optical device 1 according to the ninth embodiment.
  • the facing surface 31 of the holding member 3A is formed to face the side surface 9T of the terminal optical element 2A, and the facing surface 32 is also formed to face the side surface 9T of the terminal optical element 2A.
  • the first surface 11 of the surface of the terminal optical element 2A is set to the side surface 9T, and the second surface 12 on the external space 6 side is also set to the side surface 9T with respect to the first surface 11.
  • the gas supply port 21 of the gas seal mechanism 20H is formed on the facing surface 32.
  • the gas seal mechanism 20H supplies the gas from the gas supply port 21 to the second surface 12 and the facing surface 32. During this period, a predetermined gas flow is generated. Also in the present embodiment, deterioration of the joint 40 can be suppressed by the flow of gas generated by the gas seal mechanism 20H.
  • FIG. 15 is an enlarged side view of a part of the optical device 1 according to the tenth embodiment.
  • an upper surface 9U facing the + Z side and substantially parallel to the XY plane is formed on the edge of the terminal optical element 2A.
  • the facing surface 31 of the holding member 3A is formed to face the upper surface 9U of the terminal optical element 2A, and the facing surface 32 is formed to face the side surface 9T of the terminal optical element 2A. That is, in this embodiment, the first surface 11 of the surface of the terminal optical element 2A is set to the upper surface 9U, and the second surface 12 on the external space 6 side is set to the side surface 9T with respect to the first surface 11. Has been.
  • the gas supply port 21 of the gas seal mechanism 201 is formed in the facing surface 32, and the gas seal mechanism 201 supplies the gas from the gas supply port 21 to thereby form the second surface 12 and the facing surface 32. In the meantime, a predetermined gas flow is generated. Also in the present embodiment, deterioration of the joint 40 can be suppressed by the flow of gas generated by the gas seal mechanism 201.
  • the opposing surface 32 of the gas seal mechanism is formed on the holding member 3A having the opposing surface 31. 1S
  • the characteristic part of this embodiment is that the opposing surface 32 is different from the holding member 3A having the opposing surface 31. It is in the point formed in the member.
  • FIG. 16 is a side sectional view showing a part of the optical device 1 according to the eleventh embodiment.
  • the facing surface 32 of the gas seal mechanism 20J is formed on a member 32B different from the holding member 3A. Further, a gas supply port 21 is formed in the facing surface 32. A supply flow path 23 connected to the gas supply port 21 is formed inside the member 32B. Also in the present embodiment, deterioration of the joint 40 can be suppressed by the flow of gas generated by the gas seal mechanism 20J.
  • the configuration of the eleventh embodiment can also be applied to the above-described first to tenth embodiments.
  • the bonding portion has the first surface 11 and the opposing surface 31 bonded with an adhesive, but as shown in FIG. Surface 11 and opposing surface 31 can be bonded by direct bonding
  • Direct bonding includes an optical contact and joins two well-cleaned surfaces by adhering them without adhesive.
  • the holding member 3A is formed of the same glass (quartz or the like) as the terminal optical element 2A, and the first surface 11 of the terminal optical element 2A and the opposing surface 31 of the holding member 3A have no adhesive. The opposing surface 31 and the first surface 11 are joined together by bringing them into close contact with each other.
  • the gas seal mechanism 20L is configured so that the opposing surface 31 (first surface 11) joined by direct bonding is opposed to the second surface 12 on the external space 6 side and the opposing surface. A gas flow is generated between the two. Even in the joint 40 'for direct bonding, if the gas force is wet or the gas force S is low in purity, the joint 40' may deteriorate or the joint strength may be reduced. .
  • the gas seal mechanism 20L can suppress deterioration of the joint portion 40 ′ by generating a gas flow in order to prevent the gas in the outer space 6 from being brought to the joint portion 40 ′.
  • the joint 40 including the adhesive may be provided in an annular shape so as to surround the force-termination optical element 2A provided in an island shape. Good.
  • the gas supply port 21 or the groove in which the gas supply port 21 is formed may be formed in an annular shape.
  • the gas suction port 51 or the groove in which the gas suction port 51 is formed may be formed in an annular shape. That is, the groove may be formed over the entire circumference of the facing surface 32 of the holding member 3A! /.
  • the terminal optical element 2A may be a parallel plate.
  • the joint 40 may be provided on the optical surface of the terminal optical element 2A.
  • the gap 27 may be filled with grease.
  • an air bearing system (a configuration in which a gas recovery port is provided adjacent to the gas supply port 21) may be used.
  • the upper surface 9U is not formed.
  • the holding member 3A may be opposed to a part of the optical surface of the last optical element 2A so as not to block the optical path.
  • the optical apparatus 1 described in the first to twelfth embodiments is the projection optical system PL of the exposure apparatus EX as an example.
  • FIG. 18 is a schematic block diagram that shows an exposure apparatus EX according to the thirteenth embodiment.
  • the exposure apparatus EX illuminates the mask stage 71 that can move while holding the mask M, the substrate stage 72 that can move while holding the substrate P, and the pattern of the mask M with the exposure light EL.
  • the substrate P here is a substrate in which a photosensitive material (photoresist) is applied on a base material such as a semiconductor wafer such as a silicon wafer, or a protective film (top coat film) in addition to the photosensitive material.
  • the mask M includes a reticle on which a device pattern to be projected on the substrate P is formed.
  • a force reflection type mask using a transmission type mask as a mask may be used.
  • the transmission type mask is not limited to a binary mask in which a pattern is formed by a light shielding film, and also includes, for example, a phase shift mask such as a halftone type or a spatial frequency modulation type.
  • the exposure apparatus EX of the present embodiment is an immersion exposure apparatus to which the immersion method is applied in order to substantially shorten the exposure wavelength and improve the resolution, and to substantially increase the depth of focus.
  • a nozzle member 80 capable of forming a predetermined immersion space LS so that the optical path space of the exposure light EL is filled with the liquid LQ.
  • the immersion space LS is a space filled with the liquid LQ
  • the optical path space of the exposure light EL is a space including the optical path through which the exposure light EL travels.
  • decalin (C H) is used as the liquid LQ for forming the immersion space LS.
  • liquid LQ water (pure water), a fluorinated liquid, or the like can be used.
  • the nozzle member 80 includes a liquid supply port 81 (not shown in FIG. 18) capable of supplying the liquid LQ for forming the immersion space LS, and a liquid recovery port 82 (FIG. 18) capable of recovering the liquid LQ. And the liquid supply operation using the liquid supply port 81 and at least a part of the liquid recovery operation using the liquid recovery port 82 are performed in parallel.
  • the predetermined immersion space LS can be formed so that the optical path space is filled with the liquid LQ.
  • the nozzle member 80 is disposed so as to face the surface of the substrate P, and can hold the liquid LQ between the surface of the substrate P and the surface of the substrate P.
  • the immersion space LS can be formed.
  • the terminal optical element 2A closest to the image plane of the projection optical system PL among the plurality of optical elements of the projection optical system PL is arranged.
  • the terminal optical element 2A is arranged so as to face the surface of the substrate P, can hold the liquid LQ with the surface of the substrate P, and can form an immersion space LS with the surface of the substrate P. It is.
  • the exposure apparatus EX uses the nozzle member 80 to immerse the surface of the substrate P between the nozzle member 80 facing the surface of the substrate P and the terminal optical element 2A. Between form LS. Thereby, the optical path space of the exposure light EL between the terminal optical element 2A of the projection optical system PL and the surface of the substrate P is filled with the liquid LQ.
  • the immersion space LS is formed so that a part of the region on the substrate P including the projection region of the projection optical system PL is covered with the liquid LQ. That is, this embodiment employs a local liquid immersion method in which a liquid immersion area is formed on a part of the substrate P including the projection area of the projection optical system PL.
  • the illumination system IL illuminates a predetermined illumination area on the mask M with the exposure light EL having a uniform illuminance distribution.
  • the exposure light EL emitted from the illumination system IL includes, for example, bright ultraviolet rays (g-line, h-line, i-line) emitted from a mercury lamp and far ultraviolet light (DU V light) such as KrF excimer laser light (wavelength 248 nm). Or ArF excimer laser light (wavelength 193nm), F laser light (wavelength 157nm)
  • Vacuum ultraviolet light VUV light
  • ArF excimer laser light is used.
  • the mask stage 71 is movable in the X axis, Y axis, and ⁇ Z directions while holding the mask M by driving a mask stage driving device 71D including an actuator such as a linear motor.
  • Position information of the mask stage 71 (and thus the mask M) is measured by a laser interferometer 71L.
  • the laser interferometer 71L measures position information of the mask stage 71 using a measurement mirror 71R provided on the mask stage 71.
  • the control device 73 drives the mask stage driving device 71D based on the measurement result of the laser interferometer 71L, and controls the position of the mask M held by the mask stage 71 !.
  • the projection optical system PL can project the pattern image of the mask M onto the substrate P at a predetermined projection magnification, and includes the optical device 1 described in the first to thirteenth embodiments.
  • the projection optical system PL projects an image of the pattern of the mask M onto the substrate P via the liquid LQ in the immersion space LS.
  • the projection optical system PL of this embodiment is a reduction system whose projection magnification is, for example, 1/4, 1/5, 1/8 or the like.
  • the projection optical system PL may be any of a reduction system, a unity magnification system, and an enlargement system.
  • the projection optical system PL may be any of a refractive system that does not include a reflective optical element, a reflective system that does not include a refractive optical element, and a catadioptric system that includes a reflective optical element and a refractive optical element. Further, the projection optical system PL may form either an inverted image or an erect image.
  • the substrate stage 72 has a substrate holder 72H that holds the substrate P. The substrate stage 72 is held in a state in which the substrate P is held on the substrate holder 72H by driving a substrate stage driving device 72D including an actuator such as a linear motor.
  • the substrate holder 72 ⁇ of the substrate stage 72 holds the substrate ⁇ ⁇ so that the surface of the substrate ⁇ is substantially parallel to the ⁇ ⁇ plane.
  • the position information of the substrate stage 72 (H! /) Is measured by the laser interferometer 72L.
  • the laser interferometer 72L measures positional information of the substrate stage 72 in the X axis, vertical axis, and ⁇ vertical directions using a measurement mirror 72R provided on the substrate stage 72.
  • the exposure apparatus ⁇ is capable of detecting surface position information (position information on the ⁇ axis, ⁇ X, and ⁇ ⁇ directions) of the surface of the substrate ⁇ held by the substrate stage 72.
  • a detection system is provided.
  • the control device 73 drives the substrate stage driving device 72D based on the measurement result of the laser interferometer 72L and the detection result of the focus leveling detection system, and is held by the substrate stage 72! / Perform position control.
  • a recess 72C is provided on the substrate stage 72, and the substrate holder 72 ⁇ is disposed in the recess 72C.
  • the upper surface 72F of the substrate stage 2 other than the recess 72C is substantially flat, and the upper surface 72F of the substrate stage 2 and the surface of the substrate substrate held by the substrate holder 72 ⁇ are substantially the same height (level).
  • the nozzle member 80 can also form the immersion space LS between the nozzle stage 80 and the upper surface 72F of the substrate stage 72.
  • FIG. 19 is a side sectional view showing the vicinity of the nozzle member 80.
  • the nozzle member 80 has a liquid supply port 81 for supplying the liquid LQ for forming the liquid immersion space LS and a liquid recovery port 82 for recovering the liquid LQ.
  • the nozzle member 80 is disposed in the vicinity of the last optical element 2 and so as to face the surface of the substrate surface (and / or the upper surface 2F of the substrate stage 2).
  • the nozzle member 80 is an annular member, and is disposed above the base plate (substrate stage 2) so as to surround the optical path space of the exposure light EL.
  • the nozzle member 80 has a bottom plate 83 having a lower surface 90 mm that can face the surface of the substrate surface. In the center of the bottom plate 83, an opening 84 through which the exposure light EL can pass is formed.
  • the liquid supply port 81 supplies liquid LQ between the upper surface of the bottom plate 83 and the exit surface 8 of the last optical element 2 mm.
  • the liquid supply port 81 is connected to the liquid supply device 86 via a liquid supply channel 85 and a liquid supply pipe 85P formed inside the nozzle member 80.
  • the liquid supply device 86 can deliver a clean liquid LQ whose temperature is adjusted.
  • the liquid supply device 86 can supply the liquid LQ for forming the immersion space LS via the liquid supply pipe 85P, the liquid supply channel 85, and the liquid supply port 81.
  • the operation of the liquid supply device 86 is controlled by the control device 73.
  • the liquid recovery port 82 is provided so as to surround the lower surface 90A of the bottom plate 83, and a porous member 87 is disposed in the liquid recovery port 82.
  • the lower surface 90B of the porous member 87 and the lower surface 90A of the bottom plate 83 are substantially flush.
  • the liquid recovery port 82 is connected to the liquid recovery device 89 via a liquid recovery flow path 88 and a liquid recovery pipe 88P formed inside the nozzle member 80.
  • the liquid recovery device 89 includes a vacuum system and can recover the liquid LQ.
  • the liquid recovery device 89 can recover the liquid LQ in the immersion space LS via the liquid recovery port 82, the liquid recovery flow path 88, and the liquid recovery pipe 88P.
  • the operation of the liquid recovery device 89 is controlled by the control device 73.
  • At least part of the lower surface 90A of the bottom plate 83 of the nozzle member 80 and the lower surface 90B of the porous member 87 can hold the liquid LQ between the surface of the substrate P and the liquid between the surface of the substrate P.
  • LQ immersion space LS can be formed.
  • the control device 73 drives the liquid supply device 86 and the liquid recovery device 89, and uses the liquid supply operation using the liquid supply port 81 and the liquid recovery port 82. Perform each liquid recovery operation.
  • the liquid LQ delivered from the liquid supply device 86 flows through the liquid supply channel 85 of the nozzle member 80, and then passes through the liquid supply port 81 between the exit surface 8 of the terminal optical element 2A and the upper surface of the bottom plate 83. Supplied in between.
  • the liquid LQ supplied between the exit surface 8 of the last optical element 2A and the upper surface of the bottom plate 83 passes through the opening 84 formed in the approximate center of the bottom plate 83 and the lower surfaces 90A and 90B of the nozzle member 80.
  • An immersion space LS is formed so as to flow into the space between the substrate P (substrate stage 2) and fill the optical path space K of the exposure light EL.
  • the control device 73 supplies a predetermined amount of liquid LQ per unit time to the optical path space K of the exposure light EL from the liquid supply port 81, and supplies a predetermined amount of liquid LQ per unit time to the liquid collection port 82.
  • the immersion space LS is formed so that the optical path space K of the exposure light EL between the terminal optical element 2A and the surface of the substrate P is filled with the liquid LQ.
  • the exposure apparatus EX forms the immersion space LS using the nozzle member 80 at least while the pattern image of the mask M is projected onto the substrate P.
  • the exposure apparatus EX irradiates the exposure light EL emitted from the illumination system IL and passed through the mask M onto the substrate P through the projection optical system PL and the liquid LQ in the immersion space LS. As a result, an image of the pattern of the mask M is projected onto the substrate P, and the substrate P is exposed.
  • the control device 73 At least while the immersion space LS is formed, the control device 73 generates a predetermined gas flow using the gas seal mechanism 20 (20A to 20U), and the external space 6 Is prevented from being introduced to the joint 40 between the last optical element 2A and the holding member 3A.
  • the configuration in which the terminal optical element 2A is held by the lens barrel 5 has been described.
  • the terminal optical element 2A may be held by the nozzle member 80. That is, the configuration of the holding member 3A in the present embodiment may be provided in the nozzle member 80.
  • the exposure apparatus EX can satisfactorily expose the substrate P by using the projection optical system PL that maintains desired optical characteristics.
  • the force with which the optical path space on the projection surface side of the terminal optical element of the projection optical system (optical device) is filled with the liquid is disclosed in, for example, WO 2004/019128 pamphlet.
  • the optical path space on the object plane side of the last optical element may be filled with liquid.
  • the optical element close to the image plane of the projection optical system after the terminal optical element includes a first space including an immersion space, and a second space different from the first space. Placed on the border.
  • the substrate P of the above-described embodiment includes not only a semiconductor wafer for manufacturing a semiconductor device, but also a glass substrate for a display device and a ceramic for a thin film magnetic head. Wafers, masks or reticle masters (synthetic quartz, silicon wafers) used in exposure apparatuses, film members, etc. are applied. Also, the substrate can be in other shapes, such as a rectangle, which is not limited to a circular shape.
  • the exposure apparatus EX in addition to the step-and-scanning-type scanning exposure apparatus (scanning stepper) that moves the mask M and the substrate P synchronously to scan and expose the pattern of the mask M,
  • the present invention can also be applied to a step-and-repeat projection exposure apparatus (steno) in which the pattern of the mask M is collectively exposed while the mask M and the substrate P are stationary, and the substrate P is sequentially moved stepwise.
  • steno step-and-repeat projection exposure apparatus
  • a reduced image of the first pattern is projected with the first pattern and the substrate P substantially stationary (for example, a refraction without a reflective element at a 1/8 reduction magnification). It can also be applied to an exposure apparatus that performs batch exposure on the substrate P using a mold projection optical system. In this case, after that, with the second pattern and the substrate P almost stationary, a reduced image of the second pattern is collectively exposed on the substrate P by partially overlapping the first pattern using the projection optical system. It can also be applied to a stitch type batch exposure apparatus. Further, the stitch type exposure apparatus can be applied to a step-and-stitch type exposure apparatus in which at least two patterns are partially overlapped and transferred on the substrate P, and the substrate P is sequentially moved.
  • the optical elements (such as the final optical element 2A) of the projection optical system PL are not limited to single crystal materials of fluoride compounds.
  • the optical element may be formed of a material having a higher refractive index than quartz and fluorite (eg, 1.6 or more).
  • materials having a refractive index of 1.6 or more include sapphire and germanium dioxide disclosed in International Publication No. 2005/059617, or potassium chloride disclosed in International Publication No. 2005/059618. (Refractive index is about 1.75) can be used.
  • a thin film having a lyophilic property and / or a dissolution preventing function may be formed on a part of the surface of the optical element (including at least a contact surface with the liquid) or all of the surface.
  • Quartz has a high affinity with liquid and does not require a dissolution preventing film, but fluorite can form at least a dissolution preventing film.
  • Liquid LQ with a refractive index higher than that of pure water includes, for example, C-H such as isopropanol having a refractive index of about 1 ⁇ 50 and glycerol (glycerin) having a refractive index of about 1 ⁇ 61.
  • Predetermined liquid having a bond or O—H bond predetermined liquid (organic solvent) such as hexane, heptane, decane, etc. Or decalin (Decalin: Decahydronaphthalene) with a refractive index of about 1 ⁇ 60.
  • the liquid LQ may be a mixture of any two or more of these liquids, or a liquid obtained by adding (mixing) at least one of these liquids to pure water.
  • the liquid was added (mixed) to a pure water with a base or acid such as H + , Cs + , K +, Cl—, SO 2 —, PO 2 etc.
  • Liquid LQ includes a projection optical system with a small light absorption coefficient and a low temperature dependence, and / or a photosensitive material (or topcoat film or antireflection film, etc.) that is applied to the surface of the substrate! It is preferable that it is stable with respect to).
  • the substrate can be provided with a top coat film for protecting the photosensitive material or the base material from the liquid.
  • the present invention relates to JP-A-10-163099 and JP-A-10-214783 (corresponding to US Pat. Nos. 6,341,007, 6,400,441, 6,549,269 and 6,590,634),
  • the present invention can also be applied to a multistage exposure apparatus having a plurality of substrate stages as disclosed in Table 2000-505958 (corresponding US Pat. No. 5,969,441).
  • a substrate stage for holding a substrate and a reference mark are disclosed.
  • the present invention can also be applied to an exposure apparatus that includes a measurement member equipped with a measuring member capable of performing measurement related to exposure, such as a reference member on which is formed, and various photoelectric sensors.
  • a force that employs an exposure apparatus that locally fills a liquid between the projection optical system PL and the substrate P relates to Japanese Patent Application Laid-Open No. 6-124873.
  • an immersion exposure apparatus that performs exposure in a state where the entire surface of a substrate to be exposed is immersed in a liquid as disclosed in Japanese Patent Application Laid-Open No. 10-303114 and US Pat. No. 5,825,043. Is also applicable.
  • the type of exposure apparatus EX is not limited to an exposure apparatus for manufacturing a semiconductor element that exposes a semiconductor element pattern onto a substrate P, but an exposure apparatus for manufacturing a liquid crystal display element or a display, a thin film magnetic head, Widely applied to exposure devices for manufacturing imaging devices (CCD), micromachines, MEMS, DNA chips, or reticles or masks it can.
  • CCD imaging devices
  • MEMS micromachines
  • DNA chips DNA chips
  • a light transmission type mask in which a predetermined light shielding pattern (or phase pattern 'dimming pattern) is formed on a light transmission substrate is used instead of this mask.
  • a predetermined light shielding pattern or phase pattern 'dimming pattern
  • a transmission pattern or a reflection pattern there is a light emission pattern!
  • Electronic masks also called variable shaped masks, including DMD (Digital Micro-mirror Device), which is a kind of non-light emitting image display element (also called Spatial Light Modulator (SLM)
  • SLM Spatial Light Modulator
  • an exposure apparatus that exposes a line “and” space pattern on the substrate P by forming interference fringes on the substrate P.
  • the present invention can also be applied to (lithography system).
  • two mask patterns are formed on a substrate via a projection optical system.
  • the present invention can also be applied to an exposure apparatus that combines and double-exposes one shot area on the substrate almost simultaneously by one scanning exposure.
  • the present invention can also be applied to proximity type exposure apparatuses, mirror projection aligners, and the like.
  • the exposure apparatus EX of the above embodiment is manufactured by assembling various subsystems including each component so as to maintain predetermined mechanical accuracy, electrical accuracy, and optical accuracy.
  • various optical systems! /, Adjustments to achieve optical accuracy, various mechanical systems! /, Mechanical accuracy Adjustments to achieve this and various electrical systems are adjusted to achieve electrical accuracy.
  • the assembly process from the various subsystems to the exposure apparatus includes mechanical connections, electrical circuit wiring connections, and pneumatic circuit piping connections between the various subsystems. Before the assembly process from the various subsystems to the exposure equipment, Needless to say, there is an individual assembly process. When the assembly process of the various subsystems to the exposure apparatus is completed, comprehensive adjustments are performed to ensure various accuracies for the exposure apparatus as a whole. It is desirable to manufacture the exposure equipment in a tailored room where the temperature and cleanliness are controlled!
  • a microdevice such as a semiconductor device has a function-performance design step 201, a mask (reticle) production step 202 based on the design step, and a device substrate.
  • Step 203 for manufacturing a substrate substrate processing step 204 including substrate processing (exposure processing) for exposing a mask pattern to the substrate and developing the exposed substrate according to the above-described embodiment, device assembly step (dicing process) Manufacturing process such as bonding process, packaging process, etc.) 205, inspection step 206, etc.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Lens Barrels (AREA)

Abstract

An optical device holds an optical element arranged at the boundary between a first space and a second space different from the first space. The optical device comprises a holding member having a facing surface which faces a first surface of the optical element, a bonding unit for bonding the facing surface and the first surface, and a gas sealing mechanism for suppressing approach of at least one of the gas of the first space and the gas of the second space to the bonding unit by generating a gas flow between a facing surface and a surface of the optical element.

Description

明 細 書  Specification
光学装置、露光装置、並びにデバイス製造方法  Optical apparatus, exposure apparatus, and device manufacturing method
技術分野  Technical field
[0001] 本発明は、光学装置、露光装置、並びにデバイス製造方法に関する。  The present invention relates to an optical apparatus, an exposure apparatus, and a device manufacturing method.
本願は、 2006年 9月 6日に出願された特願 2006— 241969号に基づき優先権を 主張し、その内容をここに援用する。  This application claims priority based on Japanese Patent Application No. 2006-241969 filed on Sep. 6, 2006, the contents of which are incorporated herein by reference.
背景技術  Background art
[0002] 半導体デバイス等のマイクロデバイスの製造工程の一つであるフォトリソグラフイエ 程では、マスクのパターンの像を投影光学系を介して感光性の基板に投影する露光 装置が用いられる。マイクロデバイスの製造においては、デバイスの高密度化のため に、基板上に形成されるパターンの微細化が要求される。この要求に応えるために、 露光装置の更なる高解像度化が望まれている。その高解像度化を実現するための 手段の一つとして、投影光学系の光学素子と基板との間の露光光の光路空間を液 体で満たし、その投影光学系と液体とを介して基板を露光する液浸露光装置が案出 されている。下記特許文献 1には、液浸露光装置における投影光学系の光学素子を 保持する保持部材に関する技術の一例が開示されている。  In the photolithography process, which is one of the manufacturing processes of microdevices such as semiconductor devices, an exposure apparatus that projects an image of a mask pattern onto a photosensitive substrate via a projection optical system is used. In the manufacture of microdevices, miniaturization of patterns formed on a substrate is required in order to increase the density of devices. In order to meet this demand, it is desired to further increase the resolution of the exposure apparatus. As one of the means for realizing the high resolution, the optical path space of the exposure light between the optical element of the projection optical system and the substrate is filled with a liquid, and the substrate is filled via the projection optical system and the liquid. An immersion exposure apparatus for exposure has been devised. Patent Document 1 below discloses an example of a technique related to a holding member that holds an optical element of a projection optical system in an immersion exposure apparatus.
特許文献 1:国際公開第 2005/054955号パンフレット  Patent Document 1: International Publication No. 2005/054955 Pamphlet
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0003] 光学素子を保持部材に接合する場合、例えば周囲の環境 (温度、湿度、化学反応 等を含む)によって接合部が劣化する可能性がある。接合部が劣化すると、例えば光 学素子の位置が変動する等、光学素子を良好に保持できなくなる可能性がある。そ の場合、投影光学系の光学特性が変動し、基板を良好に露光できなくなる可能性が ある。 [0003] When an optical element is bonded to a holding member, there is a possibility that the bonded portion may deteriorate due to, for example, the surrounding environment (including temperature, humidity, chemical reaction, etc.). When the joint is deteriorated, there is a possibility that the optical element cannot be satisfactorily held, for example, the position of the optical element changes. In that case, the optical characteristics of the projection optical system may fluctuate, and the substrate may not be exposed well.
[0004] 本発明は、光学素子を良好に保持できる光学装置を提供することを目的とする。ま た、光学素子を介して基板を良好に露光できる露光装置、及びその露光装置を用い るデバイス製造方法を提供することを目的とする。 課題を解決するための手段 [0004] An object of the present invention is to provide an optical device that can satisfactorily hold an optical element. It is another object of the present invention to provide an exposure apparatus that can satisfactorily expose a substrate through an optical element, and a device manufacturing method using the exposure apparatus. Means for solving the problem
[0005] 本発明は実施の形態に示す各図に対応付けした以下の構成を採用している。但し 、各要素に付した括弧付き符号はその要素の例示に過ぎず、各要素を限定するもの ではない。 [0005] The present invention adopts the following configuration associated with each drawing shown in the embodiment. However, the reference numerals with parentheses attached to each element are merely examples of the element and do not limit each element.
[0006] 本発明の第 1の態様に従えば、第 1空間(6)と、第 1空間(6)とは異なる第 2空間(4 )との境界に配置される光学素子(2A)と、光学素子(2A)の第 1の面(11)と対向す る対向面(31)を有する保持部材(3A)と、対向面(31)と第 1の面(11)とを接合する 接合部 (40)と、第 1空間(6)の気体及び第 2空間 (4)の気体の少なくとも一方が接合 部(40)へもたらされることを抑制するガス流れを生成するガスシール機構(20)と、を 備えた光学装置(1)が提供される。  [0006] According to the first aspect of the present invention, the optical element (2A) disposed at the boundary between the first space (6) and the second space (4) different from the first space (6) The holding member (3A) having the facing surface (31) facing the first surface (11) of the optical element (2A), and the facing surface (31) and the first surface (11) are joined. And a gas seal mechanism (20) that generates a gas flow that suppresses at least one of the gas in the first space (6) and the gas in the second space (4) from being brought into the joint (40). An optical device (1) is provided.
[0007] 本発明の第 1の態様によれば、光学素子を良好に保持できる。 [0007] According to the first aspect of the present invention, the optical element can be satisfactorily held.
[0008] 本発明の第 2の態様に従えば、露光光(EUで基板 (P)を露光する露光装置にお いて、上記態様の光学装置(1)を備え、光学装置(1)の光学素子を介して基板 (P) 上に露光光(EUを照射する露光装置 (EX)が提供される。 [0008] According to the second aspect of the present invention, the exposure apparatus (the exposure apparatus that exposes the substrate (P) in EU includes the optical apparatus (1) of the above-described aspect), and the optical apparatus (1) Exposure light (exposure apparatus (EX) for irradiating EU) is provided on a substrate (P) through an element.
[0009] 本発明の第 2の態様によれば、光学素子を介して基板を良好に露光できる。 According to the second aspect of the present invention, the substrate can be exposed satisfactorily through the optical element.
[0010] 本発明の第 3の態様に従えば、上記態様の露光装置 (EX)を用いるデバイス製造 方法が提供される。 According to the third aspect of the present invention, there is provided a device manufacturing method using the exposure apparatus (EX) of the above aspect.
[0011] 本発明の第 3の態様によれば、基板を良好に露光できる露光装置を用いてデバイ スを製造できる。  [0011] According to the third aspect of the present invention, a device can be manufactured using an exposure apparatus that can satisfactorily expose the substrate.
発明の効果  The invention's effect
[0012] 本発明によれば、光学素子を良好に保持できる。また本発明によれば、光学素子 を介して基板を良好に露光できる。また本発明によれば、所望の性能を有するデバ イスを製造できる。  [0012] According to the present invention, the optical element can be favorably held. Further, according to the present invention, the substrate can be satisfactorily exposed through the optical element. Further, according to the present invention, a device having a desired performance can be manufactured.
図面の簡単な説明  Brief Description of Drawings
[0013] [図 1]第 1実施形態に係る光学装置を示す概略構成図である。  FIG. 1 is a schematic configuration diagram showing an optical device according to a first embodiment.
[図 2]図 1の一部を拡大した断面図である。  FIG. 2 is an enlarged cross-sectional view of a part of FIG.
[図 3]図 2の A— A線断面矢視図である。  FIG. 3 is a cross-sectional view taken along line AA in FIG.
[図 4]図 2の一部を拡大した図である。 [図 5]図 4の一部の斜視図である。 FIG. 4 is an enlarged view of a part of FIG. FIG. 5 is a perspective view of a part of FIG.
[図 6]第 2実施形態に係る光学装置の一部の斜視図である。  FIG. 6 is a perspective view of a part of an optical device according to a second embodiment.
[図 7]第 3実施形態に係る光学装置の一部の斜視図である。  FIG. 7 is a perspective view of a part of an optical device according to a third embodiment.
[図 8]第 4実施形態に係る光学装置の一部を拡大した断面図である。  FIG. 8 is an enlarged cross-sectional view of a part of an optical device according to a fourth embodiment.
[図 9]第 5実施形態に係る光学装置の一部を拡大した断面図である。  FIG. 9 is an enlarged cross-sectional view of a part of an optical device according to a fifth embodiment.
[図 10]第 6実施形態に係る光学装置の一部の斜視図である。  FIG. 10 is a perspective view of a part of an optical device according to a sixth embodiment.
[図 11]第 7実施形態に係る光学装置の一部を拡大した断面図である。  FIG. 11 is an enlarged cross-sectional view of a part of an optical device according to a seventh embodiment.
[図 12]第 7実施形態に係る光学装置の一部の斜視図である。  FIG. 12 is a partial perspective view of an optical device according to a seventh embodiment.
[図 13]第 8実施形態に係る光学装置の一部を拡大した断面図である。  FIG. 13 is an enlarged cross-sectional view of a part of an optical device according to an eighth embodiment.
[図 14]第 9実施形態に係る光学装置の一部を拡大した断面図である。  FIG. 14 is an enlarged cross-sectional view of a part of an optical device according to a ninth embodiment.
[図 15]第 10実施形態に係る光学装置の一部を拡大した断面図である。  FIG. 15 is an enlarged cross-sectional view of a part of an optical device according to a tenth embodiment.
[図 16]第 11実施形態に係る光学装置の一部を拡大した断面図である。  FIG. 16 is an enlarged cross-sectional view of a part of an optical device according to an eleventh embodiment.
[図 17]第 12実施形態に係る光学装置の一部を拡大した断面図である。  FIG. 17 is an enlarged cross-sectional view of a part of an optical device according to a twelfth embodiment.
[図 18]第 13実施形態に係る露光装置を示す概略構成図である。  FIG. 18 is a schematic block diagram that shows an exposure apparatus according to a thirteenth embodiment.
[図 19]図 18の一部を拡大した断面図である。  FIG. 19 is an enlarged cross-sectional view of a part of FIG.
[図 20]マイクロデバイスの製造工程の一例を示すフローチャート図である。  FIG. 20 is a flowchart showing an example of a microdevice manufacturing process.
符号の説明  Explanation of symbols
[0014] 1 · · ·光学装置、 2Α· · ·終端光学素子、 3Α· · ·保持部材、 4· · ·内部空間、 5· · ·鏡筒、 6 …外部空間、 11…第 1面、 12…第 2面、 20…ガスシール機構、 21…ガス供給口、 2 6…ギャップ、 31…対向面、 32…対向面、 40…接合部、 50…ガス吸引機構、 51 · · · ガス吸引口、 EL…露光装置、 ΕΧ· · ·露光装置、 LS…液浸空間、 Ρ· · ·基板、 PL…投 影光学系  [0014] 1 · · · Optical device, 2Α · · · Termination optical element, 3Α · · Holding member, 4 · · · Internal space, 5 · · · Lens barrel, 6 ... External space, 11 ... First surface, 12 ... second surface, 20 ... gas seal mechanism, 21 ... gas supply port, 2 6 ... gap, 31 ... opposite surface, 32 ... opposite surface, 40 ... joint, 50 ... gas suction mechanism, 51 ... gas suction Mouth, EL ... Exposure device, ΕΧ ... Exposure device, LS ... Immersion space, 基板 ... Substrate, PL ... Projection optical system
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0015] 以下、本発明の実施形態について図面を参照しながら説明する力 本発明はこれ に限定されない。なお、以下の説明においては、 XYZ直交座標系を設定し、この XY Z直交座標系を参照しつつ各部材の位置関係について説明する。そして、水平面内 の所定方向を X軸方向、水平面内において X軸方向と直交する方向を Y軸方向、 X 軸方向及び Y軸方向のそれぞれに直交する方向(すなわち鉛直方向)を Z軸方向と する。また、 X軸、 Y軸、及び Z軸まわりの回転 (傾斜)方向をそれぞれ、 Θ X、 Θ Y、及 び Θ Ζ方向とする。 [0015] Hereinafter, embodiments of the present invention will be described with reference to the drawings. The present invention is not limited to this. In the following description, an XYZ orthogonal coordinate system is set, and the positional relationship of each member will be described with reference to this XYZ orthogonal coordinate system. The predetermined direction in the horizontal plane is the X-axis direction, the direction orthogonal to the X-axis direction in the horizontal plane is the Y-axis direction, and the direction orthogonal to each of the X-axis direction and the Y-axis direction (that is, the vertical direction) is the Z-axis direction. To do. In addition, the rotation (tilt) directions around the X, Y, and Z axes are the Θ X, Θ Y, and Θ そ れ ぞ れ directions, respectively.
[0016] <第 1実施形態〉  <First Embodiment>
第 1実施形態について説明する。図 1は、第 1実施形態に係る光学装置 1を示す概 略構成図である。図 1において、光学装置 1は、複数の光学素子 2A〜2Eと、それら 複数の光学素子 2A〜2Eのそれぞれを保持する保持部材 3A〜3Eと、内部空間 4を 有し、複数の光学素子 2A〜2Eを内部空間 4内で保持部材 3A〜3Eを介して保持す る鏡筒 5とを備えている。  A first embodiment will be described. FIG. 1 is a schematic configuration diagram showing an optical device 1 according to the first embodiment. In FIG. 1, an optical device 1 includes a plurality of optical elements 2A to 2E, holding members 3A to 3E for holding the plurality of optical elements 2A to 2E, and an internal space 4, and includes a plurality of optical elements 2A. ˜2E is held in the internal space 4 via holding members 3A-3E.
[0017] 光学装置 1は、物体面 Osの像を像面 Isに投影可能である。本実施形態においては 、光学装置 1の複数の光学素子 2A〜2Eの光軸 AXは Z軸と平行である。物体面 Os 及び像面 Isのそれぞれは XY平面と平行である。物体面 Osは、図中、光学装置 1の + Z側に配置され、像面 Isは、 Z側に配置される。  The optical device 1 can project an image of the object plane Os onto the image plane Is. In the present embodiment, the optical axis AX of the plurality of optical elements 2A to 2E of the optical device 1 is parallel to the Z axis. Each of the object plane Os and the image plane Is is parallel to the XY plane. The object plane Os is arranged on the + Z side of the optical device 1 in the drawing, and the image plane Is is arranged on the Z side.
[0018] 光学装置 1の複数の光学素子 2A〜2Eのうち、光学装置 1の像面 Isに最も近い光 学素子 2Aは、鏡筒 5の内部空間 4と、内部空間 4とは異なる外部空間 6との境界に配 置される。以下の説明においては、光学装置 1の複数の光学素子 2A〜2Eのうち、 鏡筒 5の内部空間 4と外部空間 6との境界に配置される光学素子 2Aを適宜、終端光 学素子 2A、と称する。  Among the plurality of optical elements 2 A to 2 E of the optical device 1, the optical element 2 A closest to the image plane Is of the optical device 1 is an internal space 4 of the lens barrel 5 and an external space different from the internal space 4 Arranged at the boundary with 6. In the following description, among the plurality of optical elements 2A to 2E of the optical device 1, the optical element 2A disposed at the boundary between the internal space 4 and the external space 6 of the lens barrel 5 is appropriately used as the terminal optical element 2A, Called.
[0019] 本実施形態においては、鏡筒 5の内部空間 4は気体で満たされる。鏡筒 5の外部空 間 6は液体 LQで満たされた液浸空間 LSを含む。液浸空間 LSは、光学装置 1の像 面 Is側における終端光学素子 2Aの近傍に形成される。光学装置 1は、物体面 Osに 配置された第 1物体 B1の像を、液浸空間 LSの液体 LQを介して、像面 Isに配置され た第 2物体 B2に投影可能である。本実施形態においては、液浸空間 LSは、終端光 学素子 2Aと像面 Isに配置された第 2物体 B2との間に形成される。  In the present embodiment, the inner space 4 of the lens barrel 5 is filled with gas. The outer space 6 of the lens barrel 5 includes an immersion space LS filled with liquid LQ. The immersion space LS is formed in the vicinity of the terminal optical element 2A on the image plane Is side of the optical device 1. The optical device 1 can project the image of the first object B1 arranged on the object plane Os onto the second object B2 arranged on the image plane Is via the liquid LQ in the immersion space LS. In the present embodiment, the immersion space LS is formed between the terminal optical element 2A and the second object B2 disposed on the image plane Is.
[0020] 本実施形態の光学装置 1は、鏡筒 5に形成された給気口 61と、内部空間 4に給気 口 61及び給気管 61Pを介してガスを供給する第 1ガス供給装置 60とを備えている。 本実施形態においては、第 1ガス供給装置 60は、内部空間 4に、乾燥した不活性ガ スを供給する。本実施形態においては、第 1ガス供給装置 60は、化学的に精製され 、濃度がほぼ 100%の窒素ガスを送出する。なお、内部空間 4に供給されるガス(不 活性ガス)としては、ヘリウムでもよいし、窒素とヘリウムとの混合ガスでもよい。また、 第 1ガス供給装置 60は、内部空間 4に、乾燥した空気(ドライエア)を供給するように してもよい。 [0020] The optical device 1 of the present embodiment includes an air supply port 61 formed in the lens barrel 5, and a first gas supply device 60 that supplies gas to the internal space 4 via the air supply port 61 and the air supply pipe 61P. And. In the present embodiment, the first gas supply device 60 supplies dry inert gas to the internal space 4. In the present embodiment, the first gas supply device 60 is chemically purified and delivers nitrogen gas having a concentration of approximately 100%. Note that the gas supplied to the internal space 4 The active gas) may be helium or a mixed gas of nitrogen and helium. The first gas supply device 60 may supply dry air (dry air) to the internal space 4.
[0021] 図 2は、鏡筒 5の内部空間 4と外部空間 6との境界に配置される終端光学素子 2A 及びその終端光学素子 2Aを保持する保持部材 3Aの近傍を示す側断面図、図 3は 、図 2の A— A線断面矢視図である。また、図 4は、図 2の一部の拡大図、図 5は、図 4 の一部の斜視図である。  FIG. 2 is a side sectional view showing the vicinity of the terminal optical element 2A disposed at the boundary between the internal space 4 and the external space 6 of the lens barrel 5 and the holding member 3A for holding the terminal optical element 2A. 3 is a cross-sectional view taken along line AA in FIG. 4 is an enlarged view of a part of FIG. 2, and FIG. 5 is a perspective view of a part of FIG.
[0022] 図 2に示すように、本実施形態においては、終端光学素子 2Aは、物体面 Osからの 光が入射する入射面 7と、入射面 7から入射した光を射出する射出面 8と、入射面 7の 外周と射出面 8の外周とを結ぶ外周面 9とを備えている。入射面 7は、物体面 Osを向 くように内部空間 4に配置されている。射出面 8は、像面 Isと対向するように外部空間 6に配置されている。外周面 9の少なくとも一部は、外部空間 6に配置されている。  As shown in FIG. 2, in this embodiment, the terminal optical element 2A includes an incident surface 7 on which light from the object surface Os is incident, and an exit surface 8 that emits light incident from the incident surface 7. The outer peripheral surface 9 connecting the outer periphery of the incident surface 7 and the outer periphery of the exit surface 8 is provided. The incident surface 7 is disposed in the internal space 4 so as to face the object surface Os. The exit surface 8 is disposed in the external space 6 so as to face the image surface Is. At least a part of the outer peripheral surface 9 is disposed in the external space 6.
[0023] 上述のように、鏡筒 5の内部空間 4は気体で満たされ、内部空間 4に配置された終 端光学素子 2Aの入射面 7は気体と接する。鏡筒 5の外部空間 6は液体 LQで満たさ れた液浸空間 LSを含み、外部空間 6に配置された射出面 8は液体 LQと接する。な お、図 2には液体 LQを図示していない。  [0023] As described above, the internal space 4 of the lens barrel 5 is filled with gas, and the incident surface 7 of the final optical element 2A disposed in the internal space 4 is in contact with the gas. The external space 6 of the lens barrel 5 includes an immersion space LS filled with the liquid LQ, and the emission surface 8 disposed in the external space 6 is in contact with the liquid LQ. Note that Figure 2 does not show liquid LQ.
[0024] 本実施形態においては、終端光学素子 2Aの入射面 7は、物体面 Osに向かって膨 らむ凸状の曲面であり、終端光学素子 2Aの射出面 8は、 XY平面とほぼ平行な平面 である。また、終端光学素子 2Aの外周面 9は、射出面 8を囲むように射出面 8に対し て入射面 9側に傾斜した斜面 9Sと、斜面 9Sを囲むように配置され、 XY平面とほぼ平 行な Z側を向く平面 9Fとを含む。以下の説明においては、終端光学素子 2Aの外 周面 9のうち、 XY平面とほぼ平行な Z側を向く平面 9Fを適宜、フランジ面 9F、と称 する。  In the present embodiment, the entrance surface 7 of the terminal optical element 2A is a convex curved surface that swells toward the object plane Os, and the exit surface 8 of the terminal optical element 2A is substantially parallel to the XY plane. It is a plane. Further, the outer peripheral surface 9 of the last optical element 2A is disposed so as to surround the exit surface 8 and the inclined surface 9S inclined to the entrance surface 9 side with respect to the exit surface 8, and the inclined surface 9S, and is substantially flat with the XY plane. And the plane 9F facing the Z side. In the following description, of the outer peripheral surface 9 of the last optical element 2A, a plane 9F facing the Z side that is substantially parallel to the XY plane is appropriately referred to as a flange surface 9F.
[0025] 図 2、図 3、図 4、及び図 5において、光学装置 1は、フランジ面 9Fの第 1面 11と対 向する対向面 31を有する保持部材 3 Aと、保持部材 3Aの対向面 31と第 1面 11とを 接合する接合部 40と、フランジ面 9Fのうち第 1面 11に対して外部空間 6側の第 2面 1 2との間にガスの流れを生成して、外部空間 6の気体が接合部 40へもたらされること を抑制するガスシール機構 20とを備えている。 [0026] 本実施形態においては、第 1面 11は、フランジ面 9Fの外縁領域 (第 1の領域)の少 なくとも一部に設定され、第 2面 12は、第 1面 11よりも外部空間 6側のフランジ面 9F の内縁領域 (第 2の領域)の少なくとも一部に設定されている。第 2面 12は、外部空 間 6に配置された液浸空間 LS及び射出面 8を囲むようにフランジ面 9Fに設定され、 第 1面 11は、液浸空間 LS及び射出面 8を含む外部空間 6に対して第 2面 12よりも遠 い位置に設定されている。 [0025] In FIG. 2, FIG. 3, FIG. 4, and FIG. 5, the optical device 1 includes a holding member 3A having a facing surface 31 facing the first surface 11 of the flange surface 9F, and the holding member 3A facing. A gas flow is generated between the joint 40 that joins the surface 31 and the first surface 11 and the second surface 12 on the outer space 6 side of the flange surface 9F with respect to the first surface 11, and And a gas seal mechanism 20 that suppresses the gas in the external space 6 from being brought to the joint 40. [0026] In the present embodiment, the first surface 11 is set to at least a part of the outer edge region (first region) of the flange surface 9F, and the second surface 12 is more external than the first surface 11. It is set to at least a part of the inner edge region (second region) of the flange surface 9F on the space 6 side. The second surface 12 is set on the flange surface 9F so as to surround the immersion space LS and the injection surface 8 arranged in the external space 6, and the first surface 11 is an external surface including the immersion space LS and the injection surface 8. It is set at a position farther from the second surface 12 with respect to the space 6.
[0027] 保持部材 3Aは、終端光学素子 2Aのフランジ面 9Fの第 1面 11と対向する対向面 3 1を有している。本実施形態においては、保持部材 3Aは、終端光学素子 2Aのフラン ジ面 9Fと対向するように配置され、 XY平面とほぼ平行な + Z側を向く上面 30を有し ている。対向面 31は、上面 30の一部に設定されている。  [0027] The holding member 3A has a facing surface 31 that faces the first surface 11 of the flange surface 9F of the terminal optical element 2A. In the present embodiment, the holding member 3A is disposed so as to face the flange surface 9F of the last optical element 2A, and has an upper surface 30 facing the + Z side substantially parallel to the XY plane. The facing surface 31 is set as a part of the upper surface 30.
[0028] 終端光学素子 2Aのフランジ面 9Fと対向する保持部材 3Aの上面 30は、外部空間 6に配置された液浸空間 LS及び射出面 8を囲むように環状に形成されている。本実 施形態においては、対向面 31は、フランジ面 9Fの第 1面 11と対向するように、上面 3 0の外縁領域の少なくとも一部に設定されている。また、本実施形態においては、終 端光学素子 2Aのフランジ面 9Fと、保持部材 3Aの上面 30とは所定距離離れて!/、る  [0028] The upper surface 30 of the holding member 3A facing the flange surface 9F of the terminal optical element 2A is formed in an annular shape so as to surround the immersion space LS and the exit surface 8 disposed in the external space 6. In the present embodiment, the facing surface 31 is set to at least a part of the outer edge region of the upper surface 30 so as to face the first surface 11 of the flange surface 9F. In the present embodiment, the flange surface 9F of the terminal optical element 2A and the upper surface 30 of the holding member 3A are separated by a predetermined distance!
[0029] 保持部材 3Aの対向面 31と終端光学素子 2Aの第 1面 11とを接合する接合部 40は 、第 1面 11と対向面 31とを接着剤で接着する。対向面 31は、接合部 40が形成され る面であり、接合部 40を含む面である。同様に、第 1面 11も、接合部 40が形成される 面であり、接合部 40を含む面である。 [0029] The joint 40 that joins the facing surface 31 of the holding member 3A and the first surface 11 of the last optical element 2A bonds the first surface 11 and the facing surface 31 with an adhesive. The facing surface 31 is a surface on which the joint portion 40 is formed and includes the joint portion 40. Similarly, the first surface 11 is a surface on which the joint portion 40 is formed and is a surface including the joint portion 40.
[0030] 図 3に示すように、本実施形態においては、接合部 40を介して接合される終端光 学素子 2Aの第 1面 11及び保持部材 3Aの対向面 31のそれぞれは、光軸 AX周りの 回転方向における複数の所定領域のそれぞれに設定されている。換言すれば、接 合部 40 (接着剤が配置される領域)は、光軸 AX周りの回転方向において複数島状 に設定されている。  As shown in FIG. 3, in the present embodiment, each of the first surface 11 of the terminal optical element 2A and the facing surface 31 of the holding member 3A that are joined via the joint portion 40 has an optical axis AX It is set in each of a plurality of predetermined areas in the surrounding rotation direction. In other words, the joint portion 40 (region where the adhesive is disposed) is set in a plurality of islands in the rotation direction around the optical axis AX.
[0031] 本実施形態においては、終端光学素子 2Aは、例えば石英 (シリカ)で形成されて いる。なお、終端光学素子 2Aは、フッ化カルシウム(蛍石)、フッ化バリウム、フッ化ス トロンチウム、フッ化リチウム、及びフッ化ナトリウム等のフッ化化合物の単結晶材料で 形成されてもよい。また、光学素子 2B〜2Eを、上述の材料で形成することができる。 In the present embodiment, the terminal optical element 2A is made of, for example, quartz (silica). The terminal optical element 2A is a single crystal material of a fluoride compound such as calcium fluoride (fluorite), barium fluoride, strontium fluoride, lithium fluoride, and sodium fluoride. It may be formed. Further, the optical elements 2B to 2E can be formed of the above-described materials.
[0032] 本実施形態においては、保持部材 3Aは、光学素子 2Aとの線膨張係数が同じか又 は近い材質、例えばセラミックス、ガラス等の無機材料、金属で形成されている。なお 、保持部材 3Aは、ボロンを含むものであってもよいし、ガラスで形成されていてもよいIn the present embodiment, the holding member 3A is formed of a material having the same or similar linear expansion coefficient as that of the optical element 2A, for example, an inorganic material such as ceramics or glass, or a metal. The holding member 3A may contain boron or may be formed of glass.
Yes
[0033] 終端光学素子 2Aの第 1面 11と保持部材 3Aの対向面 31とを接合するための接着 剤としては、例えば国際公開第 2005/054955号パンフレットに開示されているよう な、金属、セラミックス、ガラス等の無機材料を含むものを用いることができる。また、 第 1面 11と対向面 31とを接着する接着剤としては、エポキシ樹脂等の有機材料を含 むものであってもよい。また、接着剤としては、紫外光の照射によって硬化する UV硬 化樹脂材料を含むものであってもよい。また、接合部 40は、第 1面 11と対向面 31とを 、インジウム等を含む金属の半田で接着してもよい。  [0033] As an adhesive for joining the first surface 11 of the terminal optical element 2A and the facing surface 31 of the holding member 3A, for example, a metal as disclosed in International Publication No. 2005/054955 pamphlet, What contains inorganic materials, such as ceramics and glass, can be used. Further, the adhesive that bonds the first surface 11 and the opposing surface 31 may include an organic material such as an epoxy resin. In addition, the adhesive may include a UV curable resin material that is cured by irradiation with ultraviolet light. In the joint portion 40, the first surface 11 and the facing surface 31 may be bonded with a metal solder containing indium or the like.
[0034] 本実施形態においては、保持部材 3Aと終端光学素子 2Aとは接着剤を用いて接 合されているので、終端光学素子 2Aを保持する機構の大型化、複雑化等が抑制さ れている。  In the present embodiment, since the holding member 3A and the terminal optical element 2A are bonded using an adhesive, an increase in size and complexity of a mechanism for holding the terminal optical element 2A is suppressed. ing.
[0035] ガスシール機構 20は、終端光学素子 2Aの第 2面 12との間にガスの流れを生成可 能である。本実施形態においては、ガスシール機構 20は、終端光学素子 2Aの第 2 面 12に対して所定間隔離して配置される対向面 32を有している。  The gas seal mechanism 20 can generate a gas flow with the second surface 12 of the last optical element 2A. In the present embodiment, the gas seal mechanism 20 has a facing surface 32 that is arranged with a predetermined distance from the second surface 12 of the last optical element 2A.
[0036] 本実施形態においては、ガスシール機構 20の少なくとも一部は、終端光学素子 2 Aを保持する保持部材 3Aに設けられている。また、本実施形態においては、ガスシ ール機構 20の対向面 32は、保持部材 3Aに形成されている。本実施形態において は、ガスシール機構 20の対向面 32は、保持部材 3Aの上面 30の一部に設定されて いる。  In the present embodiment, at least a part of the gas seal mechanism 20 is provided on the holding member 3A that holds the terminal optical element 2A. In the present embodiment, the opposing surface 32 of the gas seal mechanism 20 is formed on the holding member 3A. In the present embodiment, the opposed surface 32 of the gas seal mechanism 20 is set as a part of the upper surface 30 of the holding member 3A.
[0037] すなわち、本実施形態においては、保持部材 3Aの上面 30が、終端光学素子 2A の第 1面 11と対向する対向面 31、及び終端光学素子 2Aの第 2面 12と対向する対向 面 32のそれぞれを含む。本実施形態においては、対向面 31は、上面 30の外縁領 域の少なくとも一部に設定され、対向面 32は、対向面 31よりも外部空間 6側(終端光 学素子 2Aの光軸側)の内縁領域の少なくとも一部に設定されている。対向面 32は、 外部空間 6に配置された液浸空間 LS及び射出面 8を囲むように上面 30に設定され ている。対向面 31は、液浸空間 LS及び射出面 8を含む外部空間 6に対して対向面 3 2よりも遠!/、位置に設定されて!/、る。 That is, in the present embodiment, the upper surface 30 of the holding member 3A has a facing surface 31 that faces the first surface 11 of the terminal optical element 2A and a facing surface that faces the second surface 12 of the terminal optical element 2A. Includes 32 each. In the present embodiment, the facing surface 31 is set to at least a part of the outer edge region of the upper surface 30, and the facing surface 32 is closer to the external space 6 side than the facing surface 31 (the optical axis side of the terminal optical element 2A). Is set to at least a part of the inner edge region. Opposing surface 32 The upper surface 30 is set so as to surround the immersion space LS and the injection surface 8 arranged in the external space 6. The facing surface 31 is set at a position farther than the facing surface 32 with respect to the external space 6 including the immersion space LS and the exit surface 8! /.
[0038] 本実施形態においては、ガスシール機構 20は、フランジ面 9Fに形成された第 2面  [0038] In the present embodiment, the gas seal mechanism 20 is a second surface formed on the flange surface 9F.
12と、その第 2面 12に対して所定間隔離して配置される対向面 32との間にガスを流 れを生成可能である。本実施形態においては、第 2面 12と対向面 32との間の間隔( ギャップ)は、例えば 1 μ m〜100 μ mに設定される。  A flow of gas can be generated between 12 and the opposing surface 32 that is arranged with a predetermined distance from the second surface 12. In the present embodiment, an interval (gap) between the second surface 12 and the facing surface 32 is set to 1 μm to 100 μm, for example.
[0039] 本実施形態におレ、ては、ガスシール機構 20は、対向面 32に形成されたガス供給 口 21と、ガス供給口 21にガスを供給する第 2ガス供給装置 22とを備えている。第 2ガ ス供給装置 22とガス供給口 21とは、供給管 23P及び保持部材 3Aの内部に形成さ れた供給流路 23を介して接続されている。第 2ガス供給装置 22は、乾燥したガスを ガス供給口 21に供給可能である。ガスシール機構 20は、第 2ガス供給装置 22から 送出されたガスを、ガス供給口 21より、第 2面 12と対向面 32との間のギャップに供給 する。  In this embodiment, the gas seal mechanism 20 includes a gas supply port 21 formed in the facing surface 32 and a second gas supply device 22 that supplies gas to the gas supply port 21. ing. The second gas supply device 22 and the gas supply port 21 are connected via a supply channel 23 formed inside the supply pipe 23P and the holding member 3A. The second gas supply device 22 can supply the dried gas to the gas supply port 21. The gas seal mechanism 20 supplies the gas sent from the second gas supply device 22 to the gap between the second surface 12 and the facing surface 32 through the gas supply port 21.
[0040] 本実施形態にお!/、ては、ガスシール機構 20は、ガス供給口 21より、乾燥した不活 性ガスを供給する。本実施形態においては、第 2ガス供給装置 22は、化学的に精製 され、濃度がほぼ 100%の窒素ガスを送出する。これにより、ガスシール機構 20は、 ガス供給口 21より、乾燥した窒素ガスを供給する。なお、ガス供給口 21から供給され るガス(不活性ガス)としては、ヘリウムでもよいし、炭酸ガス(CO )、アルゴン (Ar)、  In this embodiment, the gas seal mechanism 20 supplies a dry inert gas from the gas supply port 21. In the present embodiment, the second gas supply device 22 sends out nitrogen gas that is chemically purified and has a concentration of approximately 100%. As a result, the gas seal mechanism 20 supplies dry nitrogen gas from the gas supply port 21. The gas (inert gas) supplied from the gas supply port 21 may be helium, carbon dioxide (CO 2), argon (Ar),
2  2
クリプトン (Cr)、それらと窒素との混合ガス、窒素とヘリウムの混合ガスでもよい。また 、ガスシール機構 20は、ガス供給口 21より、乾燥した空気(ドライエア)を供給するよ うにしてもよい。また、鏡筒 5内に供給されたガスを再利用してもよい。なお、ガスシー ノレ機構 20がガス供給口 21を介して供給するガスは、第 1ガス供給装置 60が内部空 間 4に供給するガスと同じにしてもよい。  Krypton (Cr), a mixed gas of them and nitrogen, or a mixed gas of nitrogen and helium may be used. Further, the gas seal mechanism 20 may supply dry air (dry air) from the gas supply port 21. Further, the gas supplied into the lens barrel 5 may be reused. The gas supplied from the gas scenery mechanism 20 via the gas supply port 21 may be the same as the gas supplied from the first gas supply device 60 to the internal space 4.
[0041] 上述のように、本実施形態においては、ガス供給口 21は対向面 32に形成されてお り、対向面 31に形成される接合部 40に対して外部空間 6側に形成されている。換言 すれば、ガス供給口 21は、外部空間 6と接合部 40との間に配置されており、接合部 40よりも外部空間 6に近!/、位置に形成されて!/、る。 [0042] 図 3に示すように、本実施形態においては、ガス供給口 21は、島状に形成された複 数の接合部 40のそれぞれと対応するように、対向面 32に複数形成されている。すな わち、複数のガス供給口 21のそれぞれは、複数の接合部 40のそれぞれに近い位置 に配置されている。そして、複数のガス供給口 21のそれぞれは、接合部 40に対して 外部空間 6側に配置されている。 [0041] As described above, in the present embodiment, the gas supply port 21 is formed on the facing surface 32, and is formed on the external space 6 side with respect to the joint portion 40 formed on the facing surface 31. Yes. In other words, the gas supply port 21 is disposed between the outer space 6 and the joint 40, and is formed closer to the outer space 6 than the joint 40. As shown in FIG. 3, in the present embodiment, a plurality of gas supply ports 21 are formed on the facing surface 32 so as to correspond to each of the plurality of joints 40 formed in an island shape. Yes. In other words, each of the plurality of gas supply ports 21 is disposed at a position close to each of the plurality of joints 40. Each of the plurality of gas supply ports 21 is disposed on the outer space 6 side with respect to the joint portion 40.
[0043] 次に、光学装置 1の動作について、主にガスシール機構 20の動作について説明す る。ガスシール機構 20の第 2ガス供給装置 22からガス(乾燥したガス)が送出され、 そのガスがガス供給口 21に供給される。ガス供給口 21は、終端光学素子 2Aの第 2 面 12に対して所定間隔離して配置される対向面 32に形成されており、第 2ガス供給 装置 22から供給されたガスを、第 2面 12と対向面 32との間のギャップに供給する。 第 2面 12と対向面 32との間のギャップには、接合部 40よりも外部空間 6側に配置さ れたガス供給口 21からガスが供給される。  Next, the operation of the optical device 1 will be described mainly about the operation of the gas seal mechanism 20. A gas (dry gas) is sent from the second gas supply device 22 of the gas seal mechanism 20, and the gas is supplied to the gas supply port 21. The gas supply port 21 is formed on a facing surface 32 that is arranged at a predetermined distance from the second surface 12 of the last optical element 2A, and the gas supplied from the second gas supply device 22 Supply to the gap between 12 and facing surface 32. Gas is supplied to the gap between the second surface 12 and the facing surface 32 from a gas supply port 21 disposed on the outer space 6 side of the joint 40.
[0044] 終端光学素子 2Aの第 2面 12と保持部材 3Aの対向面 32との間のギャップにガス供 給口 21からガスが供給されることによって、第 2面 12と対向面 32との間に、所定のガ スの流れが生成される。  [0044] Gas is supplied from the gas supply port 21 to the gap between the second surface 12 of the terminal optical element 2A and the facing surface 32 of the holding member 3A, whereby the second surface 12 and the facing surface 32 are In the meantime, a predetermined gas flow is generated.
[0045] 本実施形態においては、図 4及び図 5に示すように、ガスシール機構 20は、ガス供 給口 21から第 2面 12と対向面 32との間のギャップにガスを供給することによって、第 2面 12と対向面 32との間に、接合部 40側から外部空間 6側に向力、うガスの流れを生 成可能である。  In the present embodiment, as shown in FIGS. 4 and 5, the gas seal mechanism 20 supplies gas from the gas supply port 21 to the gap between the second surface 12 and the facing surface 32. As a result, it is possible to generate a gas flow between the second surface 12 and the facing surface 32 from the joint 40 side to the external space 6 side.
[0046] また、本実施形態においては、第 2ガス供給装置 22は、外部空間 6の気体よりも湿 度が低いガスを送出可能であり、ガスシール機構 20は、第 2面 12と対向面 32との間 に、外部空間 6の気体よりも湿度が低!/、ガスの流れを生成する。  In the present embodiment, the second gas supply device 22 can send a gas having a humidity lower than that of the gas in the external space 6, and the gas seal mechanism 20 is opposed to the second surface 12. In between, the humidity is lower than the gas in the external space 6! / And a gas flow is generated.
[0047] また、本実施形態においては、第 2面 12と対向面 32との間のギャップは所定の値( 例えば 1 H 111〜100 m)に設定されており、そのギャップにガスを供給することによ つて、ガスシール機構 20は、第 2面 12と対向面 32との間の圧力を、少なくとも外部空 間 6の圧力(例えば大気圧)よりも高めることができる。すなわち、本実施形態におい ては、ガスシール機構 20は、第 2面 12と対向面 32との間の空間を少なくともその隣 接空間に対して陽圧化する。 [0048] 上述のように、本実施形態においては、外部空間 6は液浸空間 LSを含み、外部空 間 6の気体は、高い湿度を有している可能性がある。湿度が高い外部空間 6の気体 が接合部 40へもたらされると、その接合部 40が劣化する可能性がある。例えば、湿 度が高い気体 (湿気を帯びた気体)が接合部 40へもたらされると、接着剤を含む接 合部 40の特性が変化する可能性がある。具体的には、湿気を帯びた気体が接合部 40の接着剤へもたらされると、例えば接着剤が膨潤したり、接着剤の体積が変化した り、接着剤の性質が変化したりする可能性がある。その場合、終端光学素子 2Aの位 置が変動したり、入射面 7及び射出面 8の少なくとも一方が変形したりする不具合が 生じる可能性がある。また、接合部 40の接合強度が低下する不具合が生じる可能性 もある。すると、光学装置 1の光学特性が変化 (劣化)する可能性がある。 In the present embodiment, the gap between the second surface 12 and the facing surface 32 is set to a predetermined value (for example, 1 H 111 to 100 m), and gas is supplied to the gap. As a result, the gas seal mechanism 20 can increase the pressure between the second surface 12 and the facing surface 32 at least higher than the pressure (for example, atmospheric pressure) in the external space 6. That is, in the present embodiment, the gas seal mechanism 20 positively pressures the space between the second surface 12 and the opposed surface 32 at least with respect to the adjacent space. [0048] As described above, in the present embodiment, the external space 6 includes the immersion space LS, and the gas in the external space 6 may have high humidity. When gas in the external space 6 with high humidity is brought to the joint 40, the joint 40 may deteriorate. For example, when a gas with high humidity (moist gas) is introduced to the joint 40, the properties of the joint 40 including the adhesive may change. Specifically, when humid gas is brought into the adhesive at the joint 40, for example, the adhesive may swell, the volume of the adhesive may change, or the properties of the adhesive may change. There is. In that case, there is a possibility that the position of the last optical element 2A may fluctuate or at least one of the entrance surface 7 and the exit surface 8 may be deformed. In addition, there is a possibility that the bonding strength of the bonding portion 40 is lowered. Then, the optical characteristics of the optical device 1 may change (deteriorate).
[0049] 本実施形態においては、ガスシール機構 20によって、第 2面 12と対向面 32との間 に所定のガスの流れを生成することによって、外部空間 6の湿気を帯びている可能性 がある気体力 接合部 40へもたらされることを抑制できる。  [0049] In the present embodiment, the gas seal mechanism 20 may generate a predetermined gas flow between the second surface 12 and the facing surface 32, so that the external space 6 may have moisture. A certain gas force can be prevented from being introduced into the joint 40.
[0050] すなわち、本実施形態においては、ガスシール機構 20は、第 2面 12と対向面 32と の間に、接合部 40側から外部空間 6側に向力、うガスの流れを生成しているので、湿 気を帯びている可能性がある外部空間 6の気体が、その外部空間 6側から接合部 40 にあたらされることを ί卬制すること力 Sでさる。  In other words, in the present embodiment, the gas seal mechanism 20 generates a flow of gas and gas force between the second surface 12 and the opposed surface 32 from the joint 40 side to the external space 6 side. Therefore, it is necessary to use the force S to suppress that the gas in the external space 6 that may be humid is applied to the joint 40 from the external space 6 side.
[0051] また、ガスシール機構 20は、第 2面 12と対向面 32との間のギャップにガスを供給す ることによって、第 2面 12と対向面 32との間を陽圧化しているので、外部空間 6の気 体がギャップに浸入し、接合部 40へもたらされることを抑制することができる。  [0051] In addition, the gas seal mechanism 20 generates a positive pressure between the second surface 12 and the opposing surface 32 by supplying a gas to the gap between the second surface 12 and the opposing surface 32. Therefore, it is possible to suppress the gas in the external space 6 from entering the gap and being brought to the joint 40.
[0052] また、本実施形態においては、ガスシール機構 20は、第 2面 12と対向面 32との間 に、少なくとも外部空間 6の気体よりも湿度が低いガスを供給して、その湿度が低いガ スの流れを生成しているので、接合部 40が湿気によって劣化することを抑制すること ができる。  In the present embodiment, the gas seal mechanism 20 supplies a gas having a humidity lower than that of at least the gas in the external space 6 between the second surface 12 and the facing surface 32, and the humidity is reduced. Since the low gas flow is generated, it is possible to prevent the joint 40 from being deteriorated by moisture.
[0053] 保持部材 30の対向面 31とフランジ面 9Fの第 1面 11とは、光軸 ΑΧ周りの回転方向 において、離隔した複数の接合部 40で接合される。保持部材 3Αと終端光学素子 2 Αとが複数の接合部 40で接合されることによって、終端光学素子 2Aと保持部材 3A との間には、内部空間 4と外部空間 6とを連通するギャップ 26、 27が形成される。ギヤ ップ 26は、対向面 31と第 1面 11との間に形成され、また、ギャップ 27は、終端光学 素子 2Aの側面 9Tと、その側面 9Tに対向する保持部材 3Aの内側面との間に形成さ れる。 [0053] The facing surface 31 of the holding member 30 and the first surface 11 of the flange surface 9F are joined by a plurality of separated joints 40 in the rotational direction around the optical axis. The holding member 3Α and the last optical element 2 接合 are joined by a plurality of joints 40, so that a gap 26 communicating the inner space 4 and the outer space 6 is formed between the last optical element 2A and the holding member 3A. 27 is formed. gear 26 is formed between the facing surface 31 and the first surface 11, and the gap 27 is formed between the side surface 9T of the terminal optical element 2A and the inner surface of the holding member 3A facing the side surface 9T. Formed.
[0054] そこで、本実施形態では、内部空間 4と外部空間 6とのガス流通を抑制するために 、終端光学素子 2Aの側面 9Tと、保持部材 3Aの内側面 3Tとの間に全周にわたって 、言い換えれば、ギャップ 27にグリースを充填している。  [0054] Therefore, in the present embodiment, in order to suppress the gas flow between the internal space 4 and the external space 6, the entire circumference is provided between the side surface 9T of the terminal optical element 2A and the inner side surface 3T of the holding member 3A. In other words, the gap 27 is filled with grease.
[0055] また、内部空間 4と外部空間 6とのガス流通を抑制するために、ギャップ 27にダリー スを充填する代わりに、第 1ガス供給装置 60から供給されるガスの供給量を調整し、 内部空間 4の圧力を外部空間 6の圧力(例えば大気圧)よりも高くしてもよい。  [0055] Further, in order to suppress the gas flow between the internal space 4 and the external space 6, the supply amount of the gas supplied from the first gas supply device 60 is adjusted instead of filling the gap 27 with a dull. The pressure in the inner space 4 may be higher than the pressure in the outer space 6 (for example, atmospheric pressure).
[0056] すなわち、内部空間 4を陽圧化することによって、ギャップ 26、 27を介して、内部空 間 4から外部空間 6への向力、うガスの流れを生成することができる。このガスの流れと ガスシール機構 20との相乗効果によって、接合部 40の劣化を防止することが可能と なる。  That is, by generating positive pressure in the internal space 4, it is possible to generate a gas flow or gas flow from the internal space 4 to the external space 6 through the gaps 26 and 27. The synergistic effect of the gas flow and the gas seal mechanism 20 can prevent the joint 40 from being deteriorated.
[0057] 以上説明したように、本実施形態において、内部空間 4と外部空間 6とのガス流通 をグリースによって遮断した状態では、ガスシール機構 20によって所定のガスの流れ を生成することによって接合部 40の劣化を抑制することができる。また、内部空間 4と 外部空間 6との間に、内部空間 4から外部空間 6側に向けてガスの流れを生成した状 態では、このガスの流れとガスシール機構 20のガスの流れとの相乗効果によって、接 合部 40の劣化を抑制することができる。  As described above, in the present embodiment, in a state where the gas flow between the internal space 4 and the external space 6 is blocked by grease, the gas seal mechanism 20 generates a predetermined gas flow to generate a joint portion. Deterioration of 40 can be suppressed. In addition, in a state in which a gas flow is generated between the internal space 4 and the external space 6 from the internal space 4 toward the external space 6, the gas flow and the gas flow of the gas seal mechanism 20 Due to the synergistic effect, deterioration of the joint 40 can be suppressed.
[0058] また、本実施形態にぉレ、ては、保持部材 3Aと終端光学素子 2Aとは接着剤を用い て接合されているので、その終端光学素子 2Aを保持する機構の大型化、複雑化等 が抑制されている。このように、本実施形態においては、終端光学素子 2Aを保持す る機構の大型化、複雑化を抑制しつつ、その終端光学素子 2Aを所望状態で保持す ること力 Sでさる。  [0058] In addition, since the holding member 3A and the terminal optical element 2A are bonded using an adhesive, the mechanism for holding the terminal optical element 2A is increased in size and complexity. This has been suppressed. As described above, in the present embodiment, the force S for holding the terminal optical element 2A in a desired state is suppressed while suppressing an increase in size and complexity of the mechanism for holding the terminal optical element 2A.
[0059] 光学装置 1の高い開口数を実現しょうとする場合、例えば物体面 Os側から入射し た光を液体 LQを介して像面 Isに良好に到達させるために、入射面 7を凸状の曲面に したり、終端光学素子 2Aを含む光学装置 1全体を大型化する必要が生じる可能性 がある。そのような場合において、終端光学素子 2Aを保持する機構が大型化すると 、光学装置 1全体の更なる大型化を招く可能性がある。また、入射面 7 (曲面)が大き くなつたり、終端光学素子 2Aが大型化すると、その終端光学素子 2Aを保持する機 構の配置、構造などが制約を受ける可能性もある。また、曲面を有する終端光学素 子 2Aを良好に保持できず、その曲面を有する終端光学素子 2Aの位置が変動する と、光学装置 1の光学特性が大きく変動してしまう可能性がある。 [0059] When trying to realize a high numerical aperture of the optical device 1, for example, the incident surface 7 has a convex shape so that light incident from the object surface Os side can reach the image surface Is through the liquid LQ satisfactorily. Or the entire optical device 1 including the terminal optical element 2A may need to be enlarged. In such a case, if the mechanism for holding the terminal optical element 2A is enlarged, The optical device 1 as a whole may be further increased in size. In addition, when the incident surface 7 (curved surface) becomes large or the terminal optical element 2A is enlarged, the arrangement and structure of the mechanism for holding the terminal optical element 2A may be restricted. In addition, if the terminal optical element 2A having a curved surface cannot be satisfactorily held and the position of the terminal optical element 2A having the curved surface varies, the optical characteristics of the optical device 1 may greatly vary.
[0060] 本実施形態においては、保持部材 3Aと終端光学素子 2Aとを接合部 40で接合し、 その接合部 40の劣化をガスシール機構 20を用いて抑制しているので、光学装置 1 全体の大型化、複雑化を抑制しつつ、その光学装置 1の光学特性を維持することが できる。 In the present embodiment, the holding member 3A and the last optical element 2A are joined by the joint 40, and deterioration of the joint 40 is suppressed using the gas seal mechanism 20, so that the optical device 1 as a whole The optical characteristics of the optical device 1 can be maintained while suppressing the increase in size and complexity.
[0061] なお、本実施形態においては、外部空間 6は液浸空間 LSを含み、湿気を帯びてい る可能性がある外部空間 6側の気体が接合部 40にもたらされることを抑制するため に、ガスシール機構 20によって所定のガスの流れを生成している力 外部空間 6に は液浸空間 LSが形成されて!/、なくてもよ!/、。液浸空間 LSが形成されて!/、な!/、場合 においても、例えば外部空間 6が内部空間 4よりも不純物(化学物質、パーティクル等 を含む)を多く含んでいる場合、換言すれば、外部空間 6の気体の純度が、内部空間 4の気体の純度よりも低い場合、ガスシール機構 20によって、外部空間 6の気体が接 合部 40へもたらされることを抑制することによって、接合部 40が、その純度の低い気 体によって劣化したり、内部空間 4に外部空間 6の気体が流入することを抑制すること ができる。  [0061] In the present embodiment, the external space 6 includes the immersion space LS in order to suppress the gas on the external space 6 side that may be humid from being brought to the joint 40. The force that generates the predetermined gas flow by the gas seal mechanism 20 The immersion space LS is formed in the external space 6! /, Or not! /. In the case where the immersion space LS is formed! /, Na! /, For example, if the external space 6 contains more impurities (including chemical substances, particles, etc.) than the internal space 4, in other words, When the purity of the gas in the outer space 6 is lower than the purity of the gas in the inner space 4, the gas seal mechanism 20 prevents the gas in the outer space 6 from being brought into the joint 40. However, it can be prevented from being deteriorated by the low-purity gas or the gas in the external space 6 flowing into the internal space 4.
[0062] <第 2実施形態〉  <Second Embodiment>
次に、第 2実施形態について説明する。以下の説明において、上述の実施形態と 同一又は同等の構成部分については同一の符号を付し、その説明を簡略若しくは 省略する。  Next, a second embodiment will be described. In the following description, components that are the same as or equivalent to those in the above-described embodiment are given the same reference numerals, and descriptions thereof are simplified or omitted.
[0063] 図 6は、第 2実施形態に係る光学装置 1の一部を拡大した斜視図である。図 6にお いて、光学装置 1は、終端光学素子 2Aの第 1面 11と対向する対向面 31と、第 2面 1 2と対向する対向面 32とを有する保持部材 3Aを備えている。対向面 32には、ガスを 供給するガス供給口 21が形成されている。上述の第 1実施形態と同様、ガス供給口 21は、複数の接合部 40のそれぞれと対応するように、対向面 32に複数形成されて いる。 FIG. 6 is an enlarged perspective view of a part of the optical device 1 according to the second embodiment. In FIG. 6, the optical device 1 includes a holding member 3A having a facing surface 31 facing the first surface 11 and a facing surface 32 facing the second surface 12 of the terminal optical element 2A. A gas supply port 21 for supplying gas is formed in the facing surface 32. As in the first embodiment described above, a plurality of gas supply ports 21 are formed on the facing surface 32 so as to correspond to each of the plurality of joints 40. Yes.
[0064] 本実施形態のガスシール機構 20Aは、対向面 32に形成された溝 24を有している。  [0064] The gas seal mechanism 20A of the present embodiment has a groove 24 formed in the facing surface 32.
ガス供給口 21は溝 24の内側に形成されている。溝 24は、ガス供給口 21に対応する ように複数形成されている。溝 24の円周方向の長さは、接合部 40の円周方向の長さ よりも長い。本実施形態においては、溝 24は XY平面内において略円弧状に形成さ れており、ガス供給口 21は溝 24の軸方向ほぼ中央に形成されている。溝 24及びガ ス供給口 21が形成され、第 2面 12と対向する対向面 32は、接着部 40が形成され、 第 1面 1 1と対向する対向面 31よりも外部空間 6側に配置されている。  The gas supply port 21 is formed inside the groove 24. A plurality of grooves 24 are formed so as to correspond to the gas supply ports 21. The circumferential length of the groove 24 is longer than the circumferential length of the joint 40. In the present embodiment, the groove 24 is formed in a substantially arc shape in the XY plane, and the gas supply port 21 is formed substantially at the center in the axial direction of the groove 24. A groove 24 and a gas supply port 21 are formed, and a facing surface 32 that faces the second surface 12 is formed with an adhesive portion 40 and is disposed closer to the outer space 6 than the facing surface 31 that faces the first surface 11. Has been.
[0065] このように、対向面 32に溝 24を形成することができ、その溝 24の内側にガス供給 口 21を配置することができる。本実施形態においても、ガスシール機構 20Aは、接 合部 40に対して外部空間 6側の第 2面 12と対向面 32との間に、所定のガスの流れ を生成すること力 Sできる。本実施形態においては、ガス供給口 21から供給されたガス の少なくとも一部は、溝 24に沿って拡がるように流れた後、接合部 40から外部空間 6 側に向かって流れる。これにより、外部空間 6の気体が接合部 40にもたらされることを 才卬制すること力 Sでさる。  As described above, the groove 24 can be formed in the facing surface 32, and the gas supply port 21 can be disposed inside the groove 24. Also in the present embodiment, the gas seal mechanism 20A can generate a predetermined gas flow between the second surface 12 on the external space 6 side and the facing surface 32 with respect to the joint portion 40. In the present embodiment, at least a part of the gas supplied from the gas supply port 21 flows so as to expand along the groove 24 and then flows from the joint 40 toward the external space 6 side. As a result, the ability S to control that the gas in the outer space 6 is brought to the joint 40 is reduced.
[0066] <第 3実施形態〉  [0066] <Third embodiment>
次に、第 3実施形態について説明する。図 7は、第 3実施形態に係る光学装置 1の 一部を拡大した斜視図である。上述の第 1実施形態と同様、接合部 40は、光軸 AX 周りの回転方向において複数に設定されている。  Next, a third embodiment will be described. FIG. 7 is an enlarged perspective view of a part of the optical device 1 according to the third embodiment. Similar to the first embodiment described above, a plurality of joints 40 are set in the rotation direction around the optical axis AX.
[0067] 本実施形態のガスシール機構 20Bは、保持部材 3Aの上面 30に、 XY平面内にお いて環状に形成された溝 25を有している。溝 25は、接合部 40 (接着剤が配置される 領域)を囲むように上面 30に複数形成される。すなわち、本実施形態においては、溝 25は、接合部 40が形成される対向面 31を囲むように、上面 30に形成されている。ガ ス供給口 21は、溝 25の内側の所定位置に形成されて!/、る。  [0067] The gas seal mechanism 20B of the present embodiment has a groove 25 formed in an annular shape in the XY plane on the upper surface 30 of the holding member 3A. A plurality of grooves 25 are formed on the upper surface 30 so as to surround the joint portion 40 (region where the adhesive is disposed). That is, in the present embodiment, the groove 25 is formed on the upper surface 30 so as to surround the facing surface 31 on which the joint portion 40 is formed. The gas supply port 21 is formed at a predetermined position inside the groove 25! /.
[0068] 本実施形態においては、ガス供給口 21は、溝 25の内側において、接合部 40よりも 内部空間 4側に配置されている。すなわち、本実施形態においては、接合部 40が形 成される対向面 31は、外部空間 6とガス供給口 21との間に配置されている。  In the present embodiment, the gas supply port 21 is disposed on the inner space 4 side of the joint 40 inside the groove 25. That is, in the present embodiment, the facing surface 31 on which the joint 40 is formed is disposed between the external space 6 and the gas supply port 21.
[0069] 溝 25の少なくとも一部は、対向面 31に対して外部空間 6側に形成されている。換 言すれば、上面 30のうち、接合部 40に対して外部空間 6側の対向面 32に、溝 25の 一部が形成されている。 [0069] At least a part of the groove 25 is formed on the outer space 6 side with respect to the facing surface 31. Change In other words, a part of the groove 25 is formed on the facing surface 32 on the outer space 6 side with respect to the joint portion 40 in the upper surface 30.
[0070] ガスシール機構 20Bは、ガス供給口 21から供給したガスによって、フランジ面 9Fと 対向面 31との間において、溝 25の形状に応じたガスの流れを生成することができる 。ガス供給口 21から供給されたガスの少なくとも一部は、溝 25に沿って流れる。上述 のように、溝 25の少なくとも一部は、接合部 40を含む対向面 31に対して外部空間 6 側の対向面 32に形成されており、ガスシール機構 20Bは、ガス供給口 21から供給さ れ、溝 25の形状に応じて流れるガスによって、接合部 40に対して外部空間 6側の第 2面 12と対向面 32との間に、所定のガスの流れを生成することができる。  [0070] The gas seal mechanism 20B can generate a gas flow according to the shape of the groove 25 between the flange surface 9F and the facing surface 31 by the gas supplied from the gas supply port 21. At least a part of the gas supplied from the gas supply port 21 flows along the groove 25. As described above, at least a part of the groove 25 is formed on the facing surface 32 on the external space 6 side with respect to the facing surface 31 including the joint 40, and the gas seal mechanism 20B is supplied from the gas supply port 21. In addition, a predetermined gas flow can be generated between the second surface 12 on the outer space 6 side and the facing surface 32 with respect to the joint portion 40 by the gas flowing according to the shape of the groove 25.
[0071] <第 4実施形態〉  [0071] <Fourth embodiment>
次に、第 4実施形態について説明する。図 8は、第 4実施形態に係る光学装置 1の 一部を示す側断面図である。上述の実施形態と同様、終端光学素子 2Aと保持部材 3Aとの間には、内部空間 4と外部空間 6との間にギャップ 26、 27が形成されている。  Next, a fourth embodiment will be described. FIG. 8 is a side sectional view showing a part of the optical device 1 according to the fourth embodiment. As in the above-described embodiment, gaps 26 and 27 are formed between the inner space 4 and the outer space 6 between the terminal optical element 2A and the holding member 3A.
[0072] 本実施形態のガスシール機構 20Cは、対向面 32にガス供給口を備えて!/、な!/、。本 実施形態のガスシール機構 20Cは、内部空間 4と外部空間 6とを連通するように対向 面 31と第 1面 11との間に形成され、内部空間 4のガスを第 2面 12と対向面 32との間 のギャップ 26、 27と、内部空間 4にガスを供給する第 1ガス供給装置 60とを含む。  [0072] The gas seal mechanism 20C of the present embodiment includes a gas supply port on the facing surface 32! /,! /. The gas seal mechanism 20C of the present embodiment is formed between the facing surface 31 and the first surface 11 so as to communicate the inner space 4 and the outer space 6, and the gas in the inner space 4 faces the second surface 12. It includes gaps 26 and 27 between the surface 32 and a first gas supply device 60 for supplying gas to the internal space 4.
[0073] ガスシール機構 20Cは、第 1ガス供給装置 60から内部空間 4Aにガスを供給し、内 部空間 4の圧力を、少なくとも外部空間 6の圧力(例えば大気圧)よりも高くする。換言 すれば、ガスシール機構 20Cは、第 1ガス供給装置 60を用いて、内部空間 4にガス を供給することによって、その内部空間 4を陽圧化する。  [0073] The gas seal mechanism 20C supplies gas from the first gas supply device 60 to the internal space 4A, and makes the pressure of the internal space 4 higher than at least the pressure of the external space 6 (for example, atmospheric pressure). In other words, the gas seal mechanism 20 </ b> C uses the first gas supply device 60 to supply gas to the internal space 4 to positively pressure the internal space 4.
[0074] 内部空間 4が陽圧化されることによって、内部空間 4からギャップ 26、 27を介して第  [0074] By positively pressurizing the internal space 4, the internal space 4 can be moved through the gaps 26 and 27.
2面 12と対向面 32との間のギャップにガスが供給され、内部空間 4力もギャップ 26、 27を介して第 2面 12と対向面 32との間に向力、うガスの流れが生成される。ギャップ 2 6、 27から第 2面 12と対向面 32との間に供給されたガスは、外部空間 6に向かって流 れる。すなわち、内部空間 4が陽圧化されることによって、内部空間 4からギャップ 26 、 27を介して外部空間 6に向力、うガスの流れが生成され、第 2面 12と対向面 32との 間には、接合部 40の周りから外部空間 6側に向力、うガスの流れが生成される。ガスシ ール機構 20Cは、このガスの流れによって、外部空間 6の気体が接合部 40にもたら されることを ί卬制する。 Gas is supplied to the gap between the second surface 12 and the opposing surface 32, and the internal space 4 force is also directed between the second surface 12 and the opposing surface 32 via the gaps 26 and 27, generating a gas flow. Is done. The gas supplied between the second surface 12 and the opposing surface 32 from the gaps 26 and 27 flows toward the external space 6. That is, when the internal space 4 is positively pressurized, a flow of gas and gas is generated from the internal space 4 through the gaps 26 and 27 to the external space 6, and the second surface 12 and the opposing surface 32 are in contact with each other. In the middle, a gas flow is generated from the periphery of the joint 40 toward the external space 6 side. Gassi The mechanism 20C suppresses that the gas in the external space 6 is brought to the joint 40 by this gas flow.
[0075] <第 5実施形態〉 [0075] <Fifth embodiment>
次に、第 5実施形態について説明する。図 9は、第 5実施形態に係る光学装置 1の 一部を示す側断面図である。本実施形態は、第 1〜第 3実施形態の変形例である。 図 9に示すように、本実施形態に係るガスシール機構 20Dは、第 2面 12と対向面 32 との間のガスを吸引するガス吸引機構 50を備えている。ガス吸引機構 50は、保持部 材 3Αに形成されたガス吸引口 51と、ガス吸引口 51を介してガスを吸引可能な真空 系等を含むガス吸引装置 52とを備えている。ガス吸引装置 52とガス吸引口 51とは、 吸引管 53Ρ及び保持部材 3Αの内部に形成された吸引流路 53を介して接続されて いる。  Next, a fifth embodiment will be described. FIG. 9 is a side sectional view showing a part of the optical device 1 according to the fifth embodiment. The present embodiment is a modification of the first to third embodiments. As shown in FIG. 9, the gas seal mechanism 20D according to this embodiment includes a gas suction mechanism 50 that sucks the gas between the second surface 12 and the facing surface 32. The gas suction mechanism 50 includes a gas suction port 51 formed in the holding member 3, and a gas suction device 52 including a vacuum system that can suck gas through the gas suction port 51. The gas suction device 52 and the gas suction port 51 are connected to each other through a suction channel 53 formed inside the suction pipe 53 and the holding member 3.
[0076] ガス吸引口 51は、保持部材 3Αの上面 30のうち、対向面 31に対して外部空間 6側 の対向面 32に形成されており、第 2面 12と対向面 32との間のガスを吸引可能である 。上述の実施形態と同様、第 2面 12と対向面 32との間にはギャップ 26、 27が形成さ れている。  The gas suction port 51 is formed on the facing surface 32 on the external space 6 side of the upper surface 30 of the holding member 3 に 対 し て with respect to the facing surface 31, and between the second surface 12 and the facing surface 32. Gas can be sucked. As in the above-described embodiment, gaps 26 and 27 are formed between the second surface 12 and the facing surface 32.
[0077] また、上述の実施形態と同様、対向面 31と第 1面 11との間には、内部空間 4と外部 空間 6とを連通するようにギャップ 26が形成されている。ギャップ 26は、内部空間 4と 外部空間 6との間でガスの流通を可能にし、内部空間 4のガスは第 2面 12と対向面 3 2との間に流れる。  Further, as in the above-described embodiment, a gap 26 is formed between the facing surface 31 and the first surface 11 so as to communicate the internal space 4 and the external space 6. The gap 26 allows gas to flow between the internal space 4 and the external space 6, and the gas in the internal space 4 flows between the second surface 12 and the facing surface 32.
[0078] ガス吸引装置 52が駆動されると、第 2面 12と対向面 32との間のガスは、ガス吸引 口 51によって吸引される。図 9に示すように、ガス吸引口 51がガスを吸引することに よって、鏡筒 5の内部空間 4からギャップ 26を介して、接合部 40の周りからガス吸引 口 51に向力、うガスの流れが生成される。ガス吸引口 51は、接合部 40より外部空間 6 側に配置されており、接合部 40側から外部空間 6側に向力、うガスの流れが生成され  When the gas suction device 52 is driven, the gas between the second surface 12 and the facing surface 32 is sucked by the gas suction port 51. As shown in FIG. 9, when the gas suction port 51 sucks the gas, the gas is sucked from the inner space 4 of the lens barrel 5 through the gap 26 to the gas suction port 51 from around the joint 40. A flow of is generated. The gas suction port 51 is disposed on the outer space 6 side from the joint 40, and a gas flow is generated from the joint 40 side toward the outer space 6 side.
[0079] また、ガス吸引口 51がガスを吸引することによって、外部空間 6からガス吸引口 51 に向力、うガスの流れが生成される。ガス吸引口 51は、接合部 40より外部空間 6側に 配置されており、外部空間 6からのガスは、接合部 40にほぼ到達することなぐガス吸 引口 51に吸引される。 [0079] Further, when the gas suction port 51 sucks the gas, the gas flow from the external space 6 to the gas suction port 51 is generated. The gas suction port 51 is disposed on the outer space 6 side with respect to the joint portion 40, and the gas from the outer space 6 absorbs the gas almost without reaching the joint portion 40. It is sucked into the outlet 51.
[0080] このように、本実施形態においては、ガスシール機構 20Dは、接合部 40側から外 部空間 6側に向かうガスの流れを生成するとともに、外部空間 6から接合部 40に向か うガスを、接合部 40にもたらされる前に、ガス吸引口 51で吸引することができる。これ により、外部空間 6の気体が接合部 40にもたらされることが抑制される。  As described above, in the present embodiment, the gas seal mechanism 20D generates a gas flow from the joining portion 40 side toward the outer space 6 side, and travels from the outer space 6 toward the joining portion 40. The gas can be sucked at the gas suction port 51 before being brought to the joint 40. This suppresses the gas in the external space 6 from being brought to the joint 40.
[0081] なお、第 2面 12には、ガス吸引口 51に対向させて、凹部を形成してもよい。また、 第 2面 12には円周状の溝を形成してもよい。  Note that a concave portion may be formed on the second surface 12 so as to face the gas suction port 51. In addition, a circumferential groove may be formed on the second surface 12.
[0082] <第 6実施形態〉  <Sixth Embodiment>
次に、第 6実施形態について説明する。図 10は、第 6実施形態に係る光学装置 1 の一部を拡大した斜視図である。図 10に示すように、本実施形態のガスシール機構 20Eは、ガスを供給するガス供給口 21とガスを吸引するガス吸引口 51とを備えてい  Next, a sixth embodiment will be described. FIG. 10 is an enlarged perspective view of a part of the optical device 1 according to the sixth embodiment. As shown in FIG. 10, the gas seal mechanism 20E of the present embodiment includes a gas supply port 21 for supplying a gas and a gas suction port 51 for sucking the gas.
[0083] 図 10において、保持部材 3Aの対向面 32には溝 24が形成されている。溝 24は、 複数の接合部 40に対応するように上面 30Aに複数形成されている。溝 24の円周方 向の長さは、接合部 40の円周方向の長さよりも長い。溝 24は XY平面内において略 円弧状に形成されている。ガス供給口 21は、溝 24の円周方向における第 1の位置 に形成され、ガス吸引口 51は、溝 24の円周方向における第 2の位置に形成されてい る。本実施形態においては、略円弧状の溝 24の円周方向における一端にガス供給 口 21が形成され、他端にガス吸引口 51が形成されている。 In FIG. 10, a groove 24 is formed in the facing surface 32 of the holding member 3A. A plurality of grooves 24 are formed on the upper surface 30A so as to correspond to the plurality of joints 40. The circumferential length of the groove 24 is longer than the circumferential length of the joint 40. The groove 24 is formed in a substantially arc shape in the XY plane. The gas supply port 21 is formed at a first position in the circumferential direction of the groove 24, and the gas suction port 51 is formed at a second position in the circumferential direction of the groove 24. In the present embodiment, a gas supply port 21 is formed at one end of the substantially arc-shaped groove 24 in the circumferential direction, and a gas suction port 51 is formed at the other end.
[0084] 、溝 24は、対向面 31よりも外部空間 6側に配置されている。すなわち、ガス供給口 2 1及びガス吸引口 51を含む溝 24は、接合部 40を含む対向面 31に対して外部空間 6 側に配置された対向面 32に形成されている。  [0084] The groove 24 is disposed closer to the external space 6 than the facing surface 31. That is, the groove 24 including the gas supply port 21 and the gas suction port 51 is formed on the facing surface 32 disposed on the outer space 6 side with respect to the facing surface 31 including the joint portion 40.
[0085] 本実施形態におレ、ては、ガスシール機構 20Eは、ガス供給口 21を用いたガス供給 動作と、ガス吸引口 51を用いたガス吸引動作とを並行して行い、接合部 40より外部 空間 6側の第 2面 12と対向面 32との間に、所定のガスの流れを生成する。  [0085] In this embodiment, the gas seal mechanism 20E performs the gas supply operation using the gas supply port 21 and the gas suction operation using the gas suction port 51 in parallel. A predetermined gas flow is generated between the second surface 12 and the opposing surface 32 on the outer space 6 side from 40.
[0086] このように、ガス供給口 21とガス吸引口 51との両方を対向面 32に形成することがで きる。これにより、第 2面 12と対向面 32との間におけるガスの流れを制御することがで きる。例えば、ガスシール機構 20Eは、第 2面 12と対向面 32との間のギャップから外 部空間 6側にガスが過剰に流れることを抑制することができる。外部空間 6側にガスが 過剰に流れると、液浸空間 LSの液体 LQが気化しやすくなつたり、あるいは液体 LQ 中に気泡が生成される等、外部空間 6に流れたガスが液浸空間 LSに影響を与える 可能性がある。本実施形態においては、ガス供給口 21を用いたガス供給動作とガス 吸引口 51を用いたガス吸引動作とを適宜行うことによって、ガスの流れを制御し、所 望のガスの流れを生成することができる。 Thus, both the gas supply port 21 and the gas suction port 51 can be formed on the facing surface 32. As a result, the gas flow between the second surface 12 and the opposing surface 32 can be controlled. For example, the gas seal mechanism 20E is removed from the gap between the second surface 12 and the opposing surface 32. It is possible to suppress an excessive flow of gas to the partial space 6 side. If excessive gas flows to the external space 6 side, the liquid LQ in the immersion space LS is easily vaporized, or bubbles are generated in the liquid LQ. May be affected. In the present embodiment, the gas flow is controlled by appropriately performing the gas supply operation using the gas supply port 21 and the gas suction operation using the gas suction port 51, thereby generating the desired gas flow. be able to.
[0087] なお、図 10に示したガス供給口 21とガス吸引口 51との位置関係、数などは一例で あり、それら位置関係及び数などは、第 2面 12と対向面 32との間において所望のガ スの流れを生成できるように適宜設定される。  Note that the positional relationship and the number of the gas supply port 21 and the gas suction port 51 shown in FIG. 10 are examples, and the positional relationship and the number are between the second surface 12 and the opposing surface 32. Is appropriately set so that a desired gas flow can be generated.
[0088] <第 7実施形態〉  [0088] <Seventh embodiment>
次に、第 7実施形態について説明する。図 11は、第 7実施形態に係る光学装置 1 の一部を拡大した側断面図、図 12は斜視図である。図 11及び図 12に示すように、 本実施形態のガスシール機構 20Fは、接合部 40を含む対向面 31に対して内部空 間 4側に配置されたガス供給口 21と、対向面 31に対して外部空間 6側に配置された ガス吸引口 51とを備えている。  Next, a seventh embodiment will be described. FIG. 11 is an enlarged side sectional view of a part of the optical device 1 according to the seventh embodiment, and FIG. 12 is a perspective view. As shown in FIGS. 11 and 12, the gas seal mechanism 20F of the present embodiment includes a gas supply port 21 disposed on the inner space 4 side with respect to the opposing surface 31 including the joint 40, and an opposing surface 31. In contrast, a gas suction port 51 arranged on the external space 6 side is provided.
[0089] 上述の第 1実施形態と同様、接合部 40は、光軸 AX周りの回転方向において複数 形成されている。本実施形態においては、保持部材 3Aの上面 30には、対向面 31に 対して内部空間 4側に形成された第 1の溝 28と、対向面 31に対して外部空間 6側に 形成された第 2の溝 29とが形成されている。第 1の溝 28及び第 2の溝 29のそれぞれ は、上面 30において、島状に配置された複数の接合部 40 (接着剤が配置される領 域)を挟むように形成される。  [0089] As in the first embodiment described above, a plurality of joints 40 are formed in the rotational direction around the optical axis AX. In the present embodiment, the first groove 28 formed on the inner space 4 side with respect to the facing surface 31 is formed on the upper surface 30 of the holding member 3A, and the outer space 6 side is formed with respect to the facing surface 31. A second groove 29 is formed. Each of the first groove 28 and the second groove 29 is formed on the upper surface 30 so as to sandwich a plurality of joint portions 40 (regions where the adhesive is disposed) disposed in an island shape.
[0090] ガス供給口 21は、第 1の溝 28の内側に形成されている。本実施形態においては、 第 1の溝 28は XY平面内において略円弧状に形成されており、ガス供給口 21は第 1 の溝 28の軸方向ほぼ中央に形成されている。ガス供給口 21は、接合部 40の近傍に 形成されている。  The gas supply port 21 is formed inside the first groove 28. In the present embodiment, the first groove 28 is formed in a substantially arc shape in the XY plane, and the gas supply port 21 is formed substantially at the center in the axial direction of the first groove 28. The gas supply port 21 is formed in the vicinity of the joint 40.
[0091] ガス吸引口 51は、第 2の溝 29の内側に形成されている。本実施形態においては、 第 2の溝 29は XY平面内において略円弧状に形成されており、ガス吸引口 51は、円 弧状の第 2の溝 29の一端と他端とのそれぞれに形成されている。 [0092] ガスシール機構 20Fは、ガス供給口 21を用いたガス供給動作と、ガス吸引口 51を 用いたガス吸引動作とを並行して行い、接合部 40より外部空間 6側の第 2面 12と対 向面 32との間に、所定のガスの流れを生成する。 The gas suction port 51 is formed inside the second groove 29. In the present embodiment, the second groove 29 is formed in a substantially arc shape in the XY plane, and the gas suction port 51 is formed in each of one end and the other end of the arc-shaped second groove 29. ing. [0092] The gas seal mechanism 20F performs the gas supply operation using the gas supply port 21 and the gas suction operation using the gas suction port 51 in parallel, and the second surface on the external space 6 side from the joint 40. A predetermined gas flow is generated between 12 and the opposite surface 32.
[0093] すなわち、ガスシール機構 20Fは、対向面 31に対して内部空間 4側に配置された ガス供給口 21よりガスを供給するとともに、対向面 31に対して外部空間 6側に配置さ れたガス吸引口 51よりガスを吸引することによって、接合部 40側から外部空間 6側に 向力、うガスの流れを生成することができる。  That is, the gas seal mechanism 20F supplies gas from the gas supply port 21 disposed on the inner space 4 side with respect to the facing surface 31, and is disposed on the outer space 6 side with respect to the facing surface 31. By sucking the gas from the gas suction port 51, it is possible to generate a flow of gas and gas from the joint 40 side to the external space 6 side.
[0094] また、ガス吸引口 51よりガスを吸引することによって、外部空間 6からガス吸引口 51 に向力、うガスの流れが生成される。ガス吸引口 51は、接合部 40より外部空間 6側に 配置されており、外部空間 6からのガスは、接合部 40にほぼ到達することなぐガス吸 引口 51に吸引される。  Further, by sucking the gas from the gas suction port 51, a directional force and gas flow is generated from the external space 6 to the gas suction port 51. The gas suction port 51 is disposed on the outer space 6 side with respect to the joint portion 40, and the gas from the outer space 6 is sucked into the gas suction port 51 without almost reaching the joint portion 40.
[0095] このように、本実施形態においても、ガスシール機構 20Fは、接合部 40側から外部 空間 6側に向力、うガスの流れを生成するとともに、外部空間 6から接合部 40に向かう ガスを、接合部 40にもたらされる前に、ガス吸引口 51で吸引することができる。これ により、外部空間 6の気体が接合部 40にもたらされることが抑制される。  As described above, also in the present embodiment, the gas seal mechanism 20F generates a flow of gas and gas flowing from the joint 40 side to the external space 6 side, and travels from the external space 6 to the joint 40. The gas can be sucked at the gas suction port 51 before being brought to the joint 40. This suppresses the gas in the external space 6 from being brought to the joint 40.
[0096] なお、本実施形態においては、第 2の溝 29は XY平面内において略円弧状に形成 されているが、短い直線状でもよい。  In the present embodiment, the second groove 29 is formed in a substantially arc shape in the XY plane, but may be a short straight line.
[0097] <第 8実施形態〉  <Eighth Embodiment>
次に、第 8実施形態について説明する。図 13は、第 8実施形態に係る光学装置 1 の一部を拡大した側面図である。上述の第 1〜第 7実施形態においては、対向面 31 及び対向面 32は、保持部材 3Aのうち + Z側を向く上面 30に形成されている力 S、図 1 3に示すように、対向面 31と対向面 32とが互いに異なる方向を向く面に形成されても よい。本実施形態においては、保持部材 3Aの対向面 31は、終端光学素子 2Aの側 面 9Tと対向するように形成され、対向面 32は、終端光学素子 2Aのフランジ面 9Fの 一部と対向するように形成されている。すなわち、本実施形態においては、終端光学 素子 2Aの表面のうち第 1面 11は側面 9Tに設定され、その第 1面 11に対して外部空 間 6側の第 2面 12はフランジ面 9Fに設定されている。そして、ガスシール機構 20G のガス供給口 21が対向面 32に形成されており、ガスシール機構 20Gは、ガス供給 口 21からガスを供給することによって、第 2面 12と対向面 32との間に所定のガスの 流れを生成する。本実施形態においても、ガスシール機構 20Gによって生成される ガスの流れによって、接合部 40の劣化を抑制することができる。 Next, an eighth embodiment will be described. FIG. 13 is an enlarged side view of a part of the optical device 1 according to the eighth embodiment. In the first to seventh embodiments described above, the facing surface 31 and the facing surface 32 are the force S formed on the upper surface 30 facing the + Z side of the holding member 3A, as shown in FIG. The surface 31 and the opposing surface 32 may be formed on surfaces facing different directions. In the present embodiment, the facing surface 31 of the holding member 3A is formed so as to face the side surface 9T of the terminal optical element 2A, and the facing surface 32 faces a part of the flange surface 9F of the terminal optical element 2A. It is formed as follows. That is, in the present embodiment, the first surface 11 of the surface of the terminal optical element 2A is set to the side surface 9T, and the second surface 12 on the outer space 6 side with respect to the first surface 11 is the flange surface 9F. Is set. The gas supply port 21 of the gas seal mechanism 20G is formed on the opposing surface 32, and the gas seal mechanism 20G By supplying gas from the port 21, a predetermined gas flow is generated between the second surface 12 and the facing surface 32. Also in the present embodiment, deterioration of the joint 40 can be suppressed by the flow of gas generated by the gas seal mechanism 20G.
[0098] <第 9実施形態〉  [0098] <Ninth embodiment>
次に、第 9実施形態について説明する。図 14は、第 9実施形態に係る光学装置 1 の一部を拡大した側面図である。本実施形態においては、保持部材 3Aの対向面 31 は、終端光学素子 2Aの側面 9Tと対向するように形成され、対向面 32も、終端光学 素子 2Aの側面 9Tと対向するように形成されている。すなわち、本実施形態において は、終端光学素子 2Aの表面のうち第 1面 11は側面 9Tに設定され、その第 1面 11に 対して外部空間 6側の第 2面 12も側面 9Tに設定されている。そして、ガスシール機 構 20Hのガス供給口 21が対向面 32に形成されており、ガスシール機構 20Hは、ガ ス供給口 21からガスを供給することによって、第 2面 12と対向面 32との間に所定の ガスの流れを生成する。本実施形態においても、ガスシール機構 20Hによって生成 されるガスの流れによって、接合部 40の劣化を抑制することができる。  Next, a ninth embodiment will be described. FIG. 14 is an enlarged side view of a part of the optical device 1 according to the ninth embodiment. In the present embodiment, the facing surface 31 of the holding member 3A is formed to face the side surface 9T of the terminal optical element 2A, and the facing surface 32 is also formed to face the side surface 9T of the terminal optical element 2A. Yes. That is, in the present embodiment, the first surface 11 of the surface of the terminal optical element 2A is set to the side surface 9T, and the second surface 12 on the external space 6 side is also set to the side surface 9T with respect to the first surface 11. ing. The gas supply port 21 of the gas seal mechanism 20H is formed on the facing surface 32. The gas seal mechanism 20H supplies the gas from the gas supply port 21 to the second surface 12 and the facing surface 32. During this period, a predetermined gas flow is generated. Also in the present embodiment, deterioration of the joint 40 can be suppressed by the flow of gas generated by the gas seal mechanism 20H.
[0099] <第 10実施形態〉  [0099] <Tenth embodiment>
次に、第 10実施形態について説明する。図 15は、第 10実施形態に係る光学装置 1の一部を拡大した側面図である。本実施形態においては、終端光学素子 2Aのエツ ジには、 +Z側を向き、 XY平面とほぼ平行な上面 9Uが形成されている。保持部材 3 Aの対向面 31は、終端光学素子 2Aの上面 9Uと対向するように形成され、対向面 3 2は、終端光学素子 2Aの側面 9Tと対向するように形成されている。すなわち、本実 施形態においては、終端光学素子 2Aの表面のうち第 1面 11は上面 9Uに設定され、 その第 1面 11に対して外部空間 6側の第 2面 12は側面 9Tに設定されている。そして 、ガスシール機構 201のガス供給口 21が対向面 32に形成されており、ガスシール機 構 201は、ガス供給口 21からガスを供給することによって、第 2面 12と対向面 32との 間に所定のガスの流れを生成する。本実施形態においても、ガスシール機構 201に よって生成されるガスの流れによって、接合部 40の劣化を抑制することができる。  Next, a tenth embodiment will be described. FIG. 15 is an enlarged side view of a part of the optical device 1 according to the tenth embodiment. In the present embodiment, an upper surface 9U facing the + Z side and substantially parallel to the XY plane is formed on the edge of the terminal optical element 2A. The facing surface 31 of the holding member 3A is formed to face the upper surface 9U of the terminal optical element 2A, and the facing surface 32 is formed to face the side surface 9T of the terminal optical element 2A. That is, in this embodiment, the first surface 11 of the surface of the terminal optical element 2A is set to the upper surface 9U, and the second surface 12 on the external space 6 side is set to the side surface 9T with respect to the first surface 11. Has been. The gas supply port 21 of the gas seal mechanism 201 is formed in the facing surface 32, and the gas seal mechanism 201 supplies the gas from the gas supply port 21 to thereby form the second surface 12 and the facing surface 32. In the meantime, a predetermined gas flow is generated. Also in the present embodiment, deterioration of the joint 40 can be suppressed by the flow of gas generated by the gas seal mechanism 201.
[0100] <第 11実施形態〉  [0100] <Eleventh Embodiment>
次に、第 11実施形態について説明する。上述の第 1〜第 10実施形態においては 、ガスシール機構の対向面 32は、対向面 31を有する保持部材 3Aに形成されている 1S 本実施形態の特徴的な部分は、対向面 32が、対向面 31を有する保持部材 3A とは別の部材に形成されている点にある。 Next, an eleventh embodiment will be described. In the above first to tenth embodiments, The opposing surface 32 of the gas seal mechanism is formed on the holding member 3A having the opposing surface 31. 1S The characteristic part of this embodiment is that the opposing surface 32 is different from the holding member 3A having the opposing surface 31. It is in the point formed in the member.
[0101] 図 16は、第 11実施形態に係る光学装置 1の一部を示す側断面図である。図 16に 示すように、本実施形態においては、ガスシール機構 20Jの対向面 32は、保持部材 3Aとは別の部材 32Bに形成されている。また、対向面 32にはガス供給口 21が形成 されている。部材 32Bの内部には、ガス供給口 21に接続する供給流路 23が形成さ れている。本実施形態においても、ガスシール機構 20Jによって生成されるガスの流 れによって、接合部 40の劣化を抑制することができる。  FIG. 16 is a side sectional view showing a part of the optical device 1 according to the eleventh embodiment. As shown in FIG. 16, in the present embodiment, the facing surface 32 of the gas seal mechanism 20J is formed on a member 32B different from the holding member 3A. Further, a gas supply port 21 is formed in the facing surface 32. A supply flow path 23 connected to the gas supply port 21 is formed inside the member 32B. Also in the present embodiment, deterioration of the joint 40 can be suppressed by the flow of gas generated by the gas seal mechanism 20J.
[0102] なお、第 11実施形態の構成を、上述の第 1〜第 10実施形態に適用することも可能 である。  [0102] The configuration of the eleventh embodiment can also be applied to the above-described first to tenth embodiments.
[0103] <第 12実施形態〉  <Twelfth Embodiment>
次に、第 12実施形態について説明する。上述の第 1〜第 11実施形態においては 、接合部は、第 1面 11と対向面 31とを接着剤で接着しているが、図 17に示すように、 接合部 40 'は、第 1面 11と対向面 31とをダイレクトボンディングで接着することができ  Next, a twelfth embodiment will be described. In the first to eleventh embodiments described above, the bonding portion has the first surface 11 and the opposing surface 31 bonded with an adhesive, but as shown in FIG. Surface 11 and opposing surface 31 can be bonded by direct bonding
[0104] ダイレクトボンディングは、オプティカルコンタクトを含み、十分に清掃された二つの 面どうしを接着剤無しで密着させることによって接合する。本実施形態においては、 保持部材 3Aは、終端光学素子 2Aと同様のガラス (石英など)で形成され、その終端 光学素子 2Aの第 1面 11と保持部材 3Aの対向面 31とを接着剤無しで密着させること によって、対向面 31と第 1面 11とが接合される。 [0104] Direct bonding includes an optical contact and joins two well-cleaned surfaces by adhering them without adhesive. In the present embodiment, the holding member 3A is formed of the same glass (quartz or the like) as the terminal optical element 2A, and the first surface 11 of the terminal optical element 2A and the opposing surface 31 of the holding member 3A have no adhesive. The opposing surface 31 and the first surface 11 are joined together by bringing them into close contact with each other.
[0105] 本実施形態にぉレ、ては、ガスシール機構 20Lは、ダイレクトボンディングで接合さ れた対向面 31 (第 1面 11)に対して外部空間 6側の第 2面 12と対向面 32との間に、 ガスの流れを生成する。ダイレクトボンディングの接合部 40'においても、湿気を帯び た気体力あたらされたり、純度が低い気体力 Sもたらされた場合、接合部 40'が劣化し たり、接合強度が低下する可能性がある。ガスシール機構 20Lは、外部空間 6の気 体が接合部 40'へもたらされることを抑制するためにガスの流れを生成することによつ て、接合部 40'の劣化を抑制することができる。 [0106] なお、上述の第 1〜第 12実施形態においては、接着剤を含む接合部 40は、島状 に設けられている力 終端光学素子 2Aを囲むように、環状に設けられていてもよい。 [0105] In the present embodiment, the gas seal mechanism 20L is configured so that the opposing surface 31 (first surface 11) joined by direct bonding is opposed to the second surface 12 on the external space 6 side and the opposing surface. A gas flow is generated between the two. Even in the joint 40 'for direct bonding, if the gas force is wet or the gas force S is low in purity, the joint 40' may deteriorate or the joint strength may be reduced. . The gas seal mechanism 20L can suppress deterioration of the joint portion 40 ′ by generating a gas flow in order to prevent the gas in the outer space 6 from being brought to the joint portion 40 ′. . [0106] In the first to twelfth embodiments described above, the joint 40 including the adhesive may be provided in an annular shape so as to surround the force-termination optical element 2A provided in an island shape. Good.
[0107] なお、上述の第 1〜第 12実施形態において、ガス供給口 21、あるいはそのガス供 給口 21が形成される溝が環状に形成されていてもよい。同様に、ガス吸引口 51、あ るいはそのガス吸引口 51が形成される溝が環状に形成されてもよい。すなわち、溝 は、保持部材 3Aの対向面 32の全周にわたつて形成されてもよ!/、。  [0107] In the first to twelfth embodiments described above, the gas supply port 21 or the groove in which the gas supply port 21 is formed may be formed in an annular shape. Similarly, the gas suction port 51 or the groove in which the gas suction port 51 is formed may be formed in an annular shape. That is, the groove may be formed over the entire circumference of the facing surface 32 of the holding member 3A! /.
[0108] なお、上述の第 1〜第 12実施形態において、終端光学素子 2Aは、平行平板であ つてもよい。  [0108] In the first to twelfth embodiments described above, the terminal optical element 2A may be a parallel plate.
[0109] なお、上述の図 13、図 14を参照して説明した実施形態においては、終端光学素 子 2Aの光学面に接合部 40を設けてもよい。  In the embodiment described with reference to FIG. 13 and FIG. 14 described above, the joint 40 may be provided on the optical surface of the terminal optical element 2A.
[0110] なお、上述の第 2、第 6、第 7実施形態において、ギャップ 27にグリースを充填して あよい。 [0110] In the second, sixth, and seventh embodiments described above, the gap 27 may be filled with grease.
[0111] なお、上述の第 9、第 11実施形態において、エアベアリング方式 (ガス供給口 21に 隣接して、ガス回収口を設けた構成)であってもよ!/、。  [0111] In the ninth and eleventh embodiments, an air bearing system (a configuration in which a gas recovery port is provided adjacent to the gas supply port 21) may be used.
[0112] なお、上述の図 15を参照して説明した実施形態において、上面 9Uを形成せずに[0112] In the embodiment described with reference to Fig. 15, the upper surface 9U is not formed.
、光路を遮らないように、保持部材 3Aを終端光学素子 2Aの光学面の一部に対向さ せてもよい。 The holding member 3A may be opposed to a part of the optical surface of the last optical element 2A so as not to block the optical path.
[0113] なお、上述の各実施形態の構成を、任意に組み合わせることはもちろん可能である  [0113] Of course, the configurations of the above-described embodiments can be arbitrarily combined.
[0114] <第 13実施形態〉 [0114] <Thirteenth embodiment>
次に、第 13実施形態について説明する。本実施形態においては、上述の第 1〜第 12実施形態で説明した光学装置 1が、露光装置 EXの投影光学系 PLである場合を 例にして説明する。  Next, a thirteenth embodiment will be described. In the present embodiment, the case where the optical apparatus 1 described in the first to twelfth embodiments is the projection optical system PL of the exposure apparatus EX will be described as an example.
[0115] 図 18は、第 13実施形態に係る露光装置 EXを示す概略構成図である。図 18にお いて、露光装置 EXは、マスク Mを保持して移動可能なマスクステージ 71と、基板 Pを 保持して移動可能な基板ステージ 72と、マスク Mのパターンを露光光 ELで照明する 照明系 ILと、露光光 ELで照明されたマスク Mのパターンの像を基板 Pに投影する投 影光学系 PLと、露光装置 EX全体の動作を制御する制御装置 73とを備えて!/、る。 [0116] なお、ここでいう基板 Pは、例えばシリコンウェハのような半導体ウェハ等の基材上 に感光材 (フォトレジスト)を塗布したもの、あるいは感光材に加えて保護膜(トップコ ート膜)などの各種の膜を塗布したものを含み、マスク Mは、基板 P上に縮小投影さ れるデバイスパターンが形成されたレチクルを含む。また、本実施形態においては、 マスクとして透過型のマスクを用いる力 反射型のマスクを用いてもよい。透過型マス クは、遮光膜でパターンが形成されるバイナリーマスクに限られず、例えばハーフトー ン型、あるいは空間周波数変調型などの位相シフトマスクも含む。 FIG. 18 is a schematic block diagram that shows an exposure apparatus EX according to the thirteenth embodiment. In FIG. 18, the exposure apparatus EX illuminates the mask stage 71 that can move while holding the mask M, the substrate stage 72 that can move while holding the substrate P, and the pattern of the mask M with the exposure light EL. Illumination system IL, projection optical system PL that projects an image of the pattern of mask M illuminated by exposure light EL onto substrate P, and control device 73 that controls the overall operation of exposure apparatus EX! /, The [0116] The substrate P here is a substrate in which a photosensitive material (photoresist) is applied on a base material such as a semiconductor wafer such as a silicon wafer, or a protective film (top coat film) in addition to the photosensitive material. The mask M includes a reticle on which a device pattern to be projected on the substrate P is formed. In this embodiment, a force reflection type mask using a transmission type mask as a mask may be used. The transmission type mask is not limited to a binary mask in which a pattern is formed by a light shielding film, and also includes, for example, a phase shift mask such as a halftone type or a spatial frequency modulation type.
[0117] 本実施形態の露光装置 EXは、露光波長を実質的に短くして解像度を向上するとと もに焦点深度を実質的に広くするために液浸法を適用した液浸露光装置であって、 露光光 ELの光路空間を液体 LQで満たすように所定の液浸空間 LSを形成可能なノ ズノレ部材 80を備えている。液浸空間 LSは、液体 LQで満たされた空間であり、露光 光 ELの光路空間は、露光光 ELが進行する光路を含む空間である。本実施形態に おいては、液浸空間 LSを形成するための液体 LQとして、デカリン(C H )を用いる  [0117] The exposure apparatus EX of the present embodiment is an immersion exposure apparatus to which the immersion method is applied in order to substantially shorten the exposure wavelength and improve the resolution, and to substantially increase the depth of focus. In addition, there is provided a nozzle member 80 capable of forming a predetermined immersion space LS so that the optical path space of the exposure light EL is filled with the liquid LQ. The immersion space LS is a space filled with the liquid LQ, and the optical path space of the exposure light EL is a space including the optical path through which the exposure light EL travels. In the present embodiment, decalin (C H) is used as the liquid LQ for forming the immersion space LS.
10 18 10 18
。なお、液体 LQとしては、水(純水)、フッ素系液体等を用いることもできる。 . As the liquid LQ, water (pure water), a fluorinated liquid, or the like can be used.
[0118] ノズル部材 80は、液浸空間 LSを形成するための液体 LQを供給可能な液体供給 口 81 (図 18には不図示)と、液体 LQを回収可能な液体回収口 82 (図 18には不図示 )とを有しており、液体供給口 81を用いた液体供給動作と液体回収口 82を用いた液 体回収動作の少なくとも一部とを並行して行うことによって、露光光 ELの光路空間を 液体 LQで満たすように、所定の液浸空間 LSを形成可能である。  [0118] The nozzle member 80 includes a liquid supply port 81 (not shown in FIG. 18) capable of supplying the liquid LQ for forming the immersion space LS, and a liquid recovery port 82 (FIG. 18) capable of recovering the liquid LQ. And the liquid supply operation using the liquid supply port 81 and at least a part of the liquid recovery operation using the liquid recovery port 82 are performed in parallel. The predetermined immersion space LS can be formed so that the optical path space is filled with the liquid LQ.
[0119] 本実施形態においては、ノズル部材 80は、基板 Pの表面と対向するように配置され 、基板 Pの表面との間で液体 LQを保持可能であり、その基板 Pの表面との間に液浸 空間 LSを形成可能である。  In the present embodiment, the nozzle member 80 is disposed so as to face the surface of the substrate P, and can hold the liquid LQ between the surface of the substrate P and the surface of the substrate P. In addition, the immersion space LS can be formed.
[0120] また、ノズル部材 80の近傍に、投影光学系 PLの複数の光学素子のうち、投影光学 系 PLの像面に最も近い終端光学素子 2Aが配置される。終端光学素子 2Aは、基板 Pの表面と対向するように配置され、基板 Pの表面との間で液体 LQを保持可能であり 、その基板 Pの表面との間に液浸空間 LSを形成可能である。  Further, in the vicinity of the nozzle member 80, the terminal optical element 2A closest to the image plane of the projection optical system PL among the plurality of optical elements of the projection optical system PL is arranged. The terminal optical element 2A is arranged so as to face the surface of the substrate P, can hold the liquid LQ with the surface of the substrate P, and can form an immersion space LS with the surface of the substrate P. It is.
[0121] 本実施形態においては、露光装置 EXは、ノズル部材 80を用いて、基板 Pの表面と 、その基板 Pの表面と対向するノズル部材 80及び終端光学素子 2Aとの間に液浸空 間 LSを形成する。これにより、投影光学系 PLの終端光学素子 2Aと基板 Pの表面と の間の露光光 ELの光路空間が液体 LQで満たされる。 In the present embodiment, the exposure apparatus EX uses the nozzle member 80 to immerse the surface of the substrate P between the nozzle member 80 facing the surface of the substrate P and the terminal optical element 2A. Between form LS. Thereby, the optical path space of the exposure light EL between the terminal optical element 2A of the projection optical system PL and the surface of the substrate P is filled with the liquid LQ.
[0122] また、本実施形態においては、投影光学系 PLの投影領域を含む基板 P上の一部 の領域が液体 LQで覆われるように、液浸空間 LSが形成される。すなわち、本実施 形態にお!/、ては、投影光学系 PLの投影領域を含む基板 P上の一部に液浸領域が 形成される局所液浸方式が採用されている。  In the present embodiment, the immersion space LS is formed so that a part of the region on the substrate P including the projection region of the projection optical system PL is covered with the liquid LQ. That is, this embodiment employs a local liquid immersion method in which a liquid immersion area is formed on a part of the substrate P including the projection area of the projection optical system PL.
[0123] 照明系 ILは、マスク M上の所定の照明領域を均一な照度分布の露光光 ELで照明 する。照明系 ILから射出される露光光 ELとしては、例えば水銀ランプから射出される 輝線(g線、 h線、 i線)及び KrFエキシマレーザ光(波長 248nm)等の遠紫外光(DU V光)、あるいは ArFエキシマレーザ光(波長 193nm)、 Fレーザ光(波長 157nm)  [0123] The illumination system IL illuminates a predetermined illumination area on the mask M with the exposure light EL having a uniform illuminance distribution. The exposure light EL emitted from the illumination system IL includes, for example, bright ultraviolet rays (g-line, h-line, i-line) emitted from a mercury lamp and far ultraviolet light (DU V light) such as KrF excimer laser light (wavelength 248 nm). Or ArF excimer laser light (wavelength 193nm), F laser light (wavelength 157nm)
2  2
等の真空紫外光 (VUV光)などが用いられる。本実施形態においては ArFエキシマ レーザ光が用いられる。  Vacuum ultraviolet light (VUV light), etc. are used. In this embodiment, ArF excimer laser light is used.
[0124] マスクステージ 71は、リニアモータ等のァクチユエータを含むマスクステージ駆動装 置 71Dの駆動により、マスク Mを保持した状態で、 X軸、 Y軸、及び θ Z方向に移動 可能である。マスクステージ 71 (ひいてはマスク M)の位置情報はレーザ干渉計 71L によって計測される。レーザ干渉計 71Lは、マスクステージ 71上に設けられた計測ミ ラー 71Rを用いてマスクステージ 71の位置情報を計測する。制御装置 73は、レーザ 干渉計 71Lの計測結果に基づいてマスクステージ駆動装置 71Dを駆動し、マスクス テージ 71に保持されて!/、るマスク Mの位置制御を行う。  The mask stage 71 is movable in the X axis, Y axis, and θ Z directions while holding the mask M by driving a mask stage driving device 71D including an actuator such as a linear motor. Position information of the mask stage 71 (and thus the mask M) is measured by a laser interferometer 71L. The laser interferometer 71L measures position information of the mask stage 71 using a measurement mirror 71R provided on the mask stage 71. The control device 73 drives the mask stage driving device 71D based on the measurement result of the laser interferometer 71L, and controls the position of the mask M held by the mask stage 71 !.
[0125] 投影光学系 PLは、マスク Mのパターンの像を所定の投影倍率で基板 Pに投影可 能であり、上述の第 1〜第 13実施形態で説明した光学装置 1を含む。本実施形態に おいては、投影光学系 PLは、マスク Mのパターンの像を液浸空間 LSの液体 LQを 介して基板 P上に投影する。本実施形態の投影光学系 PLは、その投影倍率が例え ば 1/4、 1/5、 1/8等の縮小系である。なお、投影光学系 PLは縮小系、等倍系及 び拡大系のいずれでもよい。また、投影光学系 PLは、反射光学素子を含まない屈折 系、屈折光学素子を含まない反射系、反射光学素子と屈折光学素子とを含む反射 屈折系のいずれであってもよい。また、投影光学系 PLは、倒立像と正立像とのいず れを形成してもよい。 [0126] 基板ステージ 72は、基板 Pを保持する基板ホルダ 72Hを有しており、リニアモータ 等のァクチユエータを含む基板ステージ駆動装置 72Dの駆動により、基板ホルダ 72 Hに基板 Pを保持した状態で、ベース部材 BP上において、 X軸、 Y軸、 Z軸、 Θ Χ、 Θ Υ、及び θ Ζ方向の 6自由度の方向に移動可能である。基板ステージ 72の基板ホル ダ 72Ηは、基板 Ρの表面と ΧΥ平面とがほぼ平行となるように、基板 Ρを保持する。 The projection optical system PL can project the pattern image of the mask M onto the substrate P at a predetermined projection magnification, and includes the optical device 1 described in the first to thirteenth embodiments. In the present embodiment, the projection optical system PL projects an image of the pattern of the mask M onto the substrate P via the liquid LQ in the immersion space LS. The projection optical system PL of this embodiment is a reduction system whose projection magnification is, for example, 1/4, 1/5, 1/8 or the like. The projection optical system PL may be any of a reduction system, a unity magnification system, and an enlargement system. The projection optical system PL may be any of a refractive system that does not include a reflective optical element, a reflective system that does not include a refractive optical element, and a catadioptric system that includes a reflective optical element and a refractive optical element. Further, the projection optical system PL may form either an inverted image or an erect image. [0126] The substrate stage 72 has a substrate holder 72H that holds the substrate P. The substrate stage 72 is held in a state in which the substrate P is held on the substrate holder 72H by driving a substrate stage driving device 72D including an actuator such as a linear motor. On the base member BP, it can move in the direction of 6 degrees of freedom of X axis, Y axis, Z axis, ΘΘ, ΘΥ, and θΖ direction. The substrate holder 72Η of the substrate stage 72 holds the substrate よ う so that the surface of the substrate と is substantially parallel to the ほ ぼ plane.
[0127] 基板ステージ 72 (ひ!/、ては基板 Ρ)の位置情報はレーザ干渉計 72Lによって計測さ れる。レーザ干渉計 72Lは、基板ステージ 72に設けられた計測ミラー 72Rを用いて 基板ステージ 72の X軸、 Υ軸、及び θ Ζ方向に関する位置情報を計測する。また、露 光装置 ΕΧは、基板ステージ 72に保持されている基板 Ρの表面の面位置情報 (Ζ軸、 Θ X、及び θ Υ方向に関する位置情報)を検出可能な不図示のフォーカス'レベリン グ検出系を備えている。制御装置 73は、レーザ干渉計 72Lの計測結果及びフォー カス.レべリング検出系の検出結果に基づいて基板ステージ駆動装置 72Dを駆動し 、基板ステージ 72に保持されて!/、る基板 Ρの位置制御を行う。  [0127] The position information of the substrate stage 72 (H! /) Is measured by the laser interferometer 72L. The laser interferometer 72L measures positional information of the substrate stage 72 in the X axis, vertical axis, and θ vertical directions using a measurement mirror 72R provided on the substrate stage 72. In addition, the exposure apparatus ΕΧ is capable of detecting surface position information (position information on the Ζ axis, Θ X, and θ Υ directions) of the surface of the substrate 保持 held by the substrate stage 72. A detection system is provided. The control device 73 drives the substrate stage driving device 72D based on the measurement result of the laser interferometer 72L and the detection result of the focus leveling detection system, and is held by the substrate stage 72! / Perform position control.
[0128] また、本実施形態においては、基板ステージ 72上には凹部 72Cが設けられており 、基板ホルダ 72Ηはその凹部 72Cに配置されている。凹部 72C以外の基板ステージ 2の上面 72Fはほぼ平坦であり、その基板ステージ 2の上面 72Fと、基板ホルダ 72Η に保持された基板 Ρの表面とはほぼ同じ高さ(面一)である。ノズル部材 80は、基板ス テージ 72の上面 72Fとの間においても液浸空間 LSを形成可能である。  In the present embodiment, a recess 72C is provided on the substrate stage 72, and the substrate holder 72Η is disposed in the recess 72C. The upper surface 72F of the substrate stage 2 other than the recess 72C is substantially flat, and the upper surface 72F of the substrate stage 2 and the surface of the substrate substrate held by the substrate holder 72Η are substantially the same height (level). The nozzle member 80 can also form the immersion space LS between the nozzle stage 80 and the upper surface 72F of the substrate stage 72.
[0129] 図 19は、ノズル部材 80の近傍を示す側断面図である。図 19に示すように、ノズル 部材 80は、液浸空間 LSを形成するための液体 LQを供給する液体供給口 81と、液 体 LQを回収する液体回収口 82とを有している。ノズル部材 80は、終端光学素子 2Α の近傍にお!/、て、基板 Ρの表面(及び/又は基板ステージ 2の上面 2F)と対向するよ うに配置される。本実施形態においては、ノズル部材 80は、環状の部材であって、基 板 Ρ (基板ステージ 2)の上方において、露光光 ELの光路空間 Κを囲むように配置さ れる。  FIG. 19 is a side sectional view showing the vicinity of the nozzle member 80. As shown in FIG. 19, the nozzle member 80 has a liquid supply port 81 for supplying the liquid LQ for forming the liquid immersion space LS and a liquid recovery port 82 for recovering the liquid LQ. The nozzle member 80 is disposed in the vicinity of the last optical element 2 and so as to face the surface of the substrate surface (and / or the upper surface 2F of the substrate stage 2). In the present embodiment, the nozzle member 80 is an annular member, and is disposed above the base plate (substrate stage 2) so as to surround the optical path space of the exposure light EL.
[0130] ノズル部材 80は、基板 Ρの表面と対向可能な下面 90Αを有する底板 83を有してい る。底板 83の中央には露光光 ELが通過可能な開口 84が形成されている。液体供 給口 81は、底板 83の上面と終端光学素子 2Αの射出面 8との間に液体 LQを供給す る。液体供給口 81は、ノズル部材 80の内部に形成された液体供給流路 85及び液体 供給管 85Pを介して液体供給装置 86に接続されている。液体供給装置 86は、温度 が調整された清浄な液体 LQを送出可能である。液体供給装置 86は、液体供給管 8 5P、液体供給流路 85、及び液体供給口 81を介して、液浸空間 LSを形成するため の液体 LQを供給可能である。液体供給装置 86の動作は、制御装置 73に制御され [0130] The nozzle member 80 has a bottom plate 83 having a lower surface 90 mm that can face the surface of the substrate surface. In the center of the bottom plate 83, an opening 84 through which the exposure light EL can pass is formed. The liquid supply port 81 supplies liquid LQ between the upper surface of the bottom plate 83 and the exit surface 8 of the last optical element 2 mm. The The liquid supply port 81 is connected to the liquid supply device 86 via a liquid supply channel 85 and a liquid supply pipe 85P formed inside the nozzle member 80. The liquid supply device 86 can deliver a clean liquid LQ whose temperature is adjusted. The liquid supply device 86 can supply the liquid LQ for forming the immersion space LS via the liquid supply pipe 85P, the liquid supply channel 85, and the liquid supply port 81. The operation of the liquid supply device 86 is controlled by the control device 73.
[0131] 液体回収口 82は、底板 83の下面 90Aを囲むように設けられており、その液体回収 口 82には多孔部材 87が配置されている。本実施形態においては、多孔部材 87の 下面 90Bと底板 83の下面 90Aとはほぼ面一である。液体回収口 82は、ノズル部材 8 0の内部に形成された液体回収流路 88及び液体回収管 88Pを介して液体回収装置 89に接続されている。液体回収装置 89は、真空系等を含み、液体 LQを回収可能で ある。液体回収装置 89は、液体回収口 82、液体回収流路 88、及び液体回収管 88P を介して、液浸空間 LSの液体 LQを回収可能である。液体回収装置 89の動作は、 制御装置 73に制御される。 [0131] The liquid recovery port 82 is provided so as to surround the lower surface 90A of the bottom plate 83, and a porous member 87 is disposed in the liquid recovery port 82. In the present embodiment, the lower surface 90B of the porous member 87 and the lower surface 90A of the bottom plate 83 are substantially flush. The liquid recovery port 82 is connected to the liquid recovery device 89 via a liquid recovery flow path 88 and a liquid recovery pipe 88P formed inside the nozzle member 80. The liquid recovery device 89 includes a vacuum system and can recover the liquid LQ. The liquid recovery device 89 can recover the liquid LQ in the immersion space LS via the liquid recovery port 82, the liquid recovery flow path 88, and the liquid recovery pipe 88P. The operation of the liquid recovery device 89 is controlled by the control device 73.
[0132] ノズル部材 80の底板 83の下面 90A及び多孔部材 87の下面 90Bの少なくとも一部 は、基板 Pの表面との間で液体 LQを保持可能であり、基板 Pの表面との間に液体 L Qの液浸空間 LSを形成可能である。液浸空間 LSを形成し続けるために、制御装置 73は、液体供給装置 86及び液体回収装置 89のそれぞれを駆動し、液体供給口 81 を用いた液体供給動作、及び液体回収口 82を用いた液体回収動作のそれぞれを 実行する。  [0132] At least part of the lower surface 90A of the bottom plate 83 of the nozzle member 80 and the lower surface 90B of the porous member 87 can hold the liquid LQ between the surface of the substrate P and the liquid between the surface of the substrate P. LQ immersion space LS can be formed. In order to continue to form the immersion space LS, the control device 73 drives the liquid supply device 86 and the liquid recovery device 89, and uses the liquid supply operation using the liquid supply port 81 and the liquid recovery port 82. Perform each liquid recovery operation.
[0133] 液体供給装置 86から送出された液体 LQは、ノズル部材 80の液体供給流路 85を 流れた後、液体供給口 81より、終端光学素子 2Aの射出面 8と底板 83の上面との間 に供給される。終端光学素子 2Aの射出面 8と底板 83の上面との間に供給された液 体 LQは、底板 83のほぼ中央に形成された開口 84を介して、ノズル部材 80の下面 9 0A、 90Bと基板 P (基板ステージ 2)との間の空間に流入し、露光光 ELの光路空間 K を満たすように、液浸空間 LSを形成する。  [0133] The liquid LQ delivered from the liquid supply device 86 flows through the liquid supply channel 85 of the nozzle member 80, and then passes through the liquid supply port 81 between the exit surface 8 of the terminal optical element 2A and the upper surface of the bottom plate 83. Supplied in between. The liquid LQ supplied between the exit surface 8 of the last optical element 2A and the upper surface of the bottom plate 83 passes through the opening 84 formed in the approximate center of the bottom plate 83 and the lower surfaces 90A and 90B of the nozzle member 80. An immersion space LS is formed so as to flow into the space between the substrate P (substrate stage 2) and fill the optical path space K of the exposure light EL.
[0134] ノズル部材 80の下面 90A、 90Bと基板 Pの表面との間の空間の液体 LQは、ノズル 部材 80の液体回収口 82を介して液体回収流路 88に流入し、その液体回収流路 88 を流れた後、液体回収装置 89に回収される。 The liquid LQ in the space between the lower surfaces 90A, 90B of the nozzle member 80 and the surface of the substrate P flows into the liquid recovery flow path 88 via the liquid recovery port 82 of the nozzle member 80, and the liquid recovery flow Road 88 Then, the liquid is recovered by the liquid recovery device 89.
[0135] 制御装置 73は、露光光 ELの光路空間 Kに対して、単位時間当たり所定量の液体 LQを液体供給口 81より供給するとともに単位時間当たり所定量の液体 LQを液体回 収口 82より回収することで、終端光学素子 2Aと基板 Pの表面との間の露光光 ELの 光路空間 Kを液体 LQで満たすように、液浸空間 LSを形成する。  The control device 73 supplies a predetermined amount of liquid LQ per unit time to the optical path space K of the exposure light EL from the liquid supply port 81, and supplies a predetermined amount of liquid LQ per unit time to the liquid collection port 82. By further collecting, the immersion space LS is formed so that the optical path space K of the exposure light EL between the terminal optical element 2A and the surface of the substrate P is filled with the liquid LQ.
[0136] 露光装置 EXは、少なくともマスク Mのパターンの像を基板 Pに投影している間、ノズ ル部材 80を用いて液浸空間 LSを形成する。露光装置 EXは、照明系 ILより射出され 、マスク Mを通過した露光光 ELを、投影光学系 PLと液浸空間 LSの液体 LQとを介し て基板 P上に照射する。これにより、マスク Mのパターンの像が基板 P上に投影され、 基板 Pが露光される。  The exposure apparatus EX forms the immersion space LS using the nozzle member 80 at least while the pattern image of the mask M is projected onto the substrate P. The exposure apparatus EX irradiates the exposure light EL emitted from the illumination system IL and passed through the mask M onto the substrate P through the projection optical system PL and the liquid LQ in the immersion space LS. As a result, an image of the pattern of the mask M is projected onto the substrate P, and the substrate P is exposed.
[0137] 本実施形態においては、少なくとも液浸空間 LSが形成されている間、制御装置 73 は、ガスシール機構 20 (20A〜20Uを用いて所定のガスの流れを生成し、外部空 間 6の気体が終端光学素子 2Aと保持部材 3Aとの接合部 40へもたらされることを抑 制する。  In the present embodiment, at least while the immersion space LS is formed, the control device 73 generates a predetermined gas flow using the gas seal mechanism 20 (20A to 20U), and the external space 6 Is prevented from being introduced to the joint 40 between the last optical element 2A and the holding member 3A.
[0138] なお、本実施形態においては、終端光学素子 2Aが鏡筒 5に保持される構成につ いて説明したが、終端光学素子 2Aをノズル部材 80で保持してもよい。すなわち、本 実施形態における保持部材 3Aの構成をノズル部材 80に設けてもよい。  [0138] In the present embodiment, the configuration in which the terminal optical element 2A is held by the lens barrel 5 has been described. However, the terminal optical element 2A may be held by the nozzle member 80. That is, the configuration of the holding member 3A in the present embodiment may be provided in the nozzle member 80.
[0139] これにより、接合部 40の劣化が抑制され、保持部材 3Aは、終端光学素子 2Aを良 好に保持し続けること力できる。したがって、露光装置 EXは、所望の光学特性が維 持された投影光学系 PLを用いて、基板 Pを良好に露光することができる。  [0139] Thereby, deterioration of the joint 40 is suppressed, and the holding member 3A can keep holding the terminal optical element 2A well. Therefore, the exposure apparatus EX can satisfactorily expose the substrate P by using the projection optical system PL that maintains desired optical characteristics.
[0140] なお、上述の実施形態においては、投影光学系(光学装置)の終端光学素子の射 出面側の光路空間が液体で満たされる力 例えば国際公開第 2004/019128号 パンフレットに開示されているように、終端光学素子の物体面側の光路空間も液体で 満たすようにしてもよい。その場合、投影光学系のうち、終端光学素子に次いで投影 光学系の像面に近い光学素子が、液浸空間を含む第 1の空間と、第 1の空間とは異 なる第 2の空間との境界に配置される。  [0140] In the above-described embodiment, the force with which the optical path space on the projection surface side of the terminal optical element of the projection optical system (optical device) is filled with the liquid is disclosed in, for example, WO 2004/019128 pamphlet. Thus, the optical path space on the object plane side of the last optical element may be filled with liquid. In that case, in the projection optical system, the optical element close to the image plane of the projection optical system after the terminal optical element includes a first space including an immersion space, and a second space different from the first space. Placed on the border.
[0141] なお、上述の実施形態の基板 Pとしては、半導体デバイス製造用の半導体ウェハ のみならず、ディスプレイデバイス用のガラス基板や、薄膜磁気ヘッド用のセラミック ウェハ、あるいは露光装置で用いられるマスクまたはレチクルの原版 (合成石英、シリ コンウェハ)、またはフィルム部材等が適用される。また、基板はその形状が円形に限 られるものでなぐ矩形など他の形状でもよレ、。 [0141] The substrate P of the above-described embodiment includes not only a semiconductor wafer for manufacturing a semiconductor device, but also a glass substrate for a display device and a ceramic for a thin film magnetic head. Wafers, masks or reticle masters (synthetic quartz, silicon wafers) used in exposure apparatuses, film members, etc. are applied. Also, the substrate can be in other shapes, such as a rectangle, which is not limited to a circular shape.
[0142] 露光装置 EXとしては、マスク Mと基板 Pとを同期移動してマスク Mのパターンを走 查露光するステップ ·アンド ' ·スキャン方式の走査型露光装置 (スキャニングステツパ) の他に、マスク Mと基板 Pとを静止した状態でマスク Mのパターンを一括露光し、基 板 Pを順次ステップ移動させるステップ'アンド'リピート方式の投影露光装置 (ステツ ノ )にも適用することができる。  [0142] As the exposure apparatus EX, in addition to the step-and-scanning-type scanning exposure apparatus (scanning stepper) that moves the mask M and the substrate P synchronously to scan and expose the pattern of the mask M, The present invention can also be applied to a step-and-repeat projection exposure apparatus (steno) in which the pattern of the mask M is collectively exposed while the mask M and the substrate P are stationary, and the substrate P is sequentially moved stepwise.
[0143] また、露光装置 EXとしては、第 1パターンと基板 Pとをほぼ静止した状態で第 1バタ ーンの縮小像を投影光学系(例えば 1/8縮小倍率で反射素子を含まない屈折型投 影光学系)を用いて基板 P上に一括露光する方式の露光装置にも適用できる。この 場合、更にその後に、第 2パターンと基板 Pとをほぼ静止した状態で第 2パターンの 縮小像をその投影光学系を用いて、第 1パターンと部分的に重ねて基板 P上に一括 露光するスティツチ方式の一括露光装置にも適用できる。また、ステイッチ方式の露 光装置としては、基板 P上で少なくとも 2つのパターンを部分的に重ねて転写し、基 板 Pを順次移動させるステップ 'アンド ' ·スティツチ方式の露光装置にも適用できる。  [0143] Further, as the exposure apparatus EX, a reduced image of the first pattern is projected with the first pattern and the substrate P substantially stationary (for example, a refraction without a reflective element at a 1/8 reduction magnification). It can also be applied to an exposure apparatus that performs batch exposure on the substrate P using a mold projection optical system. In this case, after that, with the second pattern and the substrate P almost stationary, a reduced image of the second pattern is collectively exposed on the substrate P by partially overlapping the first pattern using the projection optical system. It can also be applied to a stitch type batch exposure apparatus. Further, the stitch type exposure apparatus can be applied to a step-and-stitch type exposure apparatus in which at least two patterns are partially overlapped and transferred on the substrate P, and the substrate P is sequentially moved.
[0144] 投影光学系 PLの光学素子(最終光学素子 2Aなど)は、フッ化化合物の単結晶材 料に限定されない。光学素子は、石英及び蛍石よりも屈折率が高い (例えば 1. 6以 上)材料で形成してもよい。屈折率が 1. 6以上の材料としては、例えば、国際公開第 2005/059617号パンフレットに開示されるサファイア、二酸化ゲルマニウム等、あ るいは、国際公開第 2005/059618号パンフレットに開示される塩化カリウム(屈折 率は約 1. 75)等を用いることができる。さらに、光学素子の表面の一部(少なくとも液 体との接触面を含む)又は全部に、親液性及び/又は溶解防止機能を有する薄膜 を形成してもよい。なお、石英は液体との親和性が高ぐかつ溶解防止膜も不要であ るが、蛍石は少なくとも溶解防止膜を形成することができる。純水よりも屈折率が高い (例えば 1 · 5以上の)液体 LQとしては、例えば、屈折率が約 1 · 50のイソプロパノー ノレ、屈折率が約 1 · 61のグリセロール(グリセリン)といった C— H結合あるいは O— H 結合を持つ所定液体、へキサン、ヘプタン、デカン等の所定液体(有機溶剤)、ある いは屈折率が約 1 · 60のデカリン (Decalin: Decahydronaphthalene)などが挙げられる 。また、液体 LQは、これら液体のうち任意の 2種類以上の液体を混合したものでもよ いし、純水にこれら液体の少なくとも 1つを添加(混合)したものでもよい。さらに、液体 は、純水に H+、 Cs+、 K+、 Cl—、 SO 2—、 PO 2 等の塩基又は酸を添加(混合)した [0144] The optical elements (such as the final optical element 2A) of the projection optical system PL are not limited to single crystal materials of fluoride compounds. The optical element may be formed of a material having a higher refractive index than quartz and fluorite (eg, 1.6 or more). Examples of materials having a refractive index of 1.6 or more include sapphire and germanium dioxide disclosed in International Publication No. 2005/059617, or potassium chloride disclosed in International Publication No. 2005/059618. (Refractive index is about 1.75) can be used. Further, a thin film having a lyophilic property and / or a dissolution preventing function may be formed on a part of the surface of the optical element (including at least a contact surface with the liquid) or all of the surface. Quartz has a high affinity with liquid and does not require a dissolution preventing film, but fluorite can form at least a dissolution preventing film. Liquid LQ with a refractive index higher than that of pure water (for example, 1 · 5 or more) includes, for example, C-H such as isopropanol having a refractive index of about 1 · 50 and glycerol (glycerin) having a refractive index of about 1 · 61. Predetermined liquid having a bond or O—H bond, predetermined liquid (organic solvent) such as hexane, heptane, decane, etc. Or decalin (Decalin: Decahydronaphthalene) with a refractive index of about 1 · 60. In addition, the liquid LQ may be a mixture of any two or more of these liquids, or a liquid obtained by adding (mixing) at least one of these liquids to pure water. Furthermore, the liquid was added (mixed) to a pure water with a base or acid such as H + , Cs + , K +, Cl—, SO 2 —, PO 2 etc.
4 4  4 4
ものでもよいし、純水に A1酸化物等の微粒子を添加(混合)したものでもよい。なお、 液体 LQとしては、光の吸収係数が小さぐ温度依存性が少なぐ投影光学系、及び /又は基板の表面に塗布されて!/、る感光材(又はトップコート膜あるいは反射防止 膜など)に対して安定なものであることが好ましい。基板には、液体から感光材ゃ基 材を保護するトップコート膜などを設けることができる。  It is also possible to add (mix) fine particles such as A1 oxide to pure water. Liquid LQ includes a projection optical system with a small light absorption coefficient and a low temperature dependence, and / or a photosensitive material (or topcoat film or antireflection film, etc.) that is applied to the surface of the substrate! It is preferable that it is stable with respect to). The substrate can be provided with a top coat film for protecting the photosensitive material or the base material from the liquid.
[0145] また、本発明は、特開平 10— 163099号公報、特開平 10— 214783号公報(対応 米国特許第 6,341 ,007号、第 6,400,441号、第 6, 549,269号及び第 6,590,634 号)、特表 2000— 505958号公報(対応米国特許第 5,969,441号)などに開示され ているような複数の基板ステージを備えたマルチステージ型の露光装置にも適用で きる。 [0145] Further, the present invention relates to JP-A-10-163099 and JP-A-10-214783 (corresponding to US Pat. Nos. 6,341,007, 6,400,441, 6,549,269 and 6,590,634), The present invention can also be applied to a multistage exposure apparatus having a plurality of substrate stages as disclosed in Table 2000-505958 (corresponding US Pat. No. 5,969,441).
[0146] 更に、特開平 11 135400号公報ゃ特開 2000— 164504号公報(対応米国特許 第 6, 897, 963号)に開示されているように、基板を保持する基板ステージと基準マ ークが形成された基準部材、及び各種の光電センサ等、露光に関する計測を実行可 能な計測器を搭載した計測ステージとを備えた露光装置にも本発明を適用すること ができる。  [0146] Further, as disclosed in JP-A-11 135400 and JP-A-2000-164504 (corresponding US Pat. No. 6,897,963), a substrate stage for holding a substrate and a reference mark are disclosed. The present invention can also be applied to an exposure apparatus that includes a measurement member equipped with a measuring member capable of performing measurement related to exposure, such as a reference member on which is formed, and various photoelectric sensors.
[0147] また、上述の実施形態においては、投影光学系 PLと基板 Pとの間に局所的に液体 を満たす露光装置を採用している力 本発明は、特開平 6— 124873号公報、特開 平 10— 303114号公報、米国特許第 5, 825, 043号などに開示されているような露 光対象の基板の表面全体が液体中に浸かっている状態で露光を行う液浸露光装置 にも適用可能である。  Further, in the above-described embodiment, a force that employs an exposure apparatus that locally fills a liquid between the projection optical system PL and the substrate P. The present invention relates to Japanese Patent Application Laid-Open No. 6-124873. In an immersion exposure apparatus that performs exposure in a state where the entire surface of a substrate to be exposed is immersed in a liquid as disclosed in Japanese Patent Application Laid-Open No. 10-303114 and US Pat. No. 5,825,043. Is also applicable.
[0148] 露光装置 EXの種類としては、基板 Pに半導体素子パターンを露光する半導体素 子製造用の露光装置に限られず、液晶表示素子製造用又はディスプレイ製造用の 露光装置や、薄膜磁気ヘッド、撮像素子(CCD)、マイクロマシン、 MEMS , DNAチ ップ、あるいはレチクル又はマスクなどを製造するための露光装置などにも広く適用 できる。 [0148] The type of exposure apparatus EX is not limited to an exposure apparatus for manufacturing a semiconductor element that exposes a semiconductor element pattern onto a substrate P, but an exposure apparatus for manufacturing a liquid crystal display element or a display, a thin film magnetic head, Widely applied to exposure devices for manufacturing imaging devices (CCD), micromachines, MEMS, DNA chips, or reticles or masks it can.
[0149] なお、上述の実施形態においては、光透過性の基板上に所定の遮光パターン (又 は位相パターン '減光パターン)を形成した光透過型マスクを用いた力 このマスクに 代えて、例えば米国特許第 6, 778, 257号公報に開示されているように、露光すベ きパターンの電子データに基づ!/、て透過パターン又は反射パターン、ある!/、は発光 ノ ターンを形成する電子マスク(可変成形マスクとも呼ばれ、例えば非発光型画像表 示素子(空間光変調器: Spatial Light Modulator (SLM)とも呼ばれる)の一種である DMD (Digital Micro-mirror Device)などを含む)を用いてもよい。なお、 DMDを用 いた露光装置は、例えば米国特許第 6,778,257号公報に開示されている。  In the above-described embodiment, force using a light transmission type mask in which a predetermined light shielding pattern (or phase pattern 'dimming pattern) is formed on a light transmission substrate is used instead of this mask. For example, as disclosed in US Pat. No. 6,778,257, based on the electronic data of a pattern to be exposed !, a transmission pattern or a reflection pattern, there is a light emission pattern! Electronic masks (also called variable shaped masks, including DMD (Digital Micro-mirror Device), which is a kind of non-light emitting image display element (also called Spatial Light Modulator (SLM)) May be used. An exposure apparatus using DMD is disclosed, for example, in US Pat. No. 6,778,257.
[0150] また、国際公開第 2001/035168号パンフレットに開示されているように、干渉縞 を基板 P上に形成することによって、基板 P上にライン 'アンド ' ·スペースパターンを露 光する露光装置(リソグラフィシステム)にも本発明を適用することができる。  Further, as disclosed in the pamphlet of International Publication No. 2001/035168, an exposure apparatus that exposes a line “and” space pattern on the substrate P by forming interference fringes on the substrate P. The present invention can also be applied to (lithography system).
[0151] また、例えば特表 2004— 519850号公報(対応米国特許第 6, 611 , 316号)に開 示されているように、 2つのマスクのパターンを、投影光学系を介して基板上で合成し 、 1回の走査露光によって基板上の 1つのショット領域をほぼ同時に二重露光する露 光装置などにも本発明を適用することができる。また、プロキシミティ方式の露光装置 、ミラープロジェクシヨン'ァライナーなどにも本発明を適用することができる。  [0151] Further, as disclosed in, for example, JP-T-2004-519850 (corresponding US Pat. No. 6,611,316), two mask patterns are formed on a substrate via a projection optical system. The present invention can also be applied to an exposure apparatus that combines and double-exposes one shot area on the substrate almost simultaneously by one scanning exposure. The present invention can also be applied to proximity type exposure apparatuses, mirror projection aligners, and the like.
[0152] なお、法令で許容される限りにおいて、上記各実施形態及び変形例で引用した露 光装置などに関する全ての公開公報及び米国特許などの開示を援用して本文の記 載の一部とする。  [0152] As long as it is permitted by law, the disclosure of all publications and U.S. patents related to the exposure apparatus and the like cited in each of the above embodiments and modifications is incorporated as part of the description of the text. To do.
[0153] 以上のように、上記実施形態の露光装置 EXは、各構成要素を含む各種サブシス テムを、所定の機械的精度、電気的精度、光学的精度を保つように、組み立てること で製造される。これら各種精度を確保するために、この組み立ての前後には、各種光 学系につ!/、ては光学的精度を達成するための調整、各種機械系につ!/、ては機械的 精度を達成するための調整、各種電気系については電気的精度を達成するための 調整が行われる。各種サブシステムから露光装置への組み立て工程は、各種サブシ ステム相互の、機械的接続、電気回路の配線接続、気圧回路の配管接続等が含ま れる。この各種サブシステムから露光装置への組み立て工程の前に、各サブシステ ム個々の組み立て工程があることはいうまでもない。各種サブシステムの露光装置へ の組み立て工程が終了したら、総合調整が行われ、露光装置全体としての各種精度 が確保される。なお、露光装置の製造は温度およびクリーン度等が管理されたタリー ンルームで行うことが望まし!/、。 [0153] As described above, the exposure apparatus EX of the above embodiment is manufactured by assembling various subsystems including each component so as to maintain predetermined mechanical accuracy, electrical accuracy, and optical accuracy. The In order to ensure these various accuracies, before and after this assembly, various optical systems! /, Adjustments to achieve optical accuracy, various mechanical systems! /, Mechanical accuracy Adjustments to achieve this and various electrical systems are adjusted to achieve electrical accuracy. The assembly process from the various subsystems to the exposure apparatus includes mechanical connections, electrical circuit wiring connections, and pneumatic circuit piping connections between the various subsystems. Before the assembly process from the various subsystems to the exposure equipment, Needless to say, there is an individual assembly process. When the assembly process of the various subsystems to the exposure apparatus is completed, comprehensive adjustments are performed to ensure various accuracies for the exposure apparatus as a whole. It is desirable to manufacture the exposure equipment in a tailored room where the temperature and cleanliness are controlled!
半導体デバイス等のマイクロデバイスは、図 20に示すように、マイクロデバイスの機 能-性能設計を行うステップ 201、この設計ステップに基づいたマスク(レチクル)を製 作するステップ 202、デバイスの基材である基板を製造するステップ 203、前述した 実施形態に従って、マスクのパターンを基板に露光し、露光した基板を現像する基 板処理(露光処理)を含む基板処理ステップ 204、デバイス組み立てステップ(ダイシ ング工程、ボンディング工程、パッケージ工程などの加工プロセスを含む) 205、検査 ステップ 206等を経て製造される。  As shown in FIG. 20, a microdevice such as a semiconductor device has a function-performance design step 201, a mask (reticle) production step 202 based on the design step, and a device substrate. Step 203 for manufacturing a substrate, substrate processing step 204 including substrate processing (exposure processing) for exposing a mask pattern to the substrate and developing the exposed substrate according to the above-described embodiment, device assembly step (dicing process) Manufacturing process such as bonding process, packaging process, etc.) 205, inspection step 206, etc.

Claims

請求の範囲 The scope of the claims
[I] 第 1空間と、前記第 1空間とは異なる第 2空間との境界に配置される光学素子と、 前記光学素子の第 1の面と対向する対向面を有する保持部材と、  [I] an optical element disposed at a boundary between the first space and a second space different from the first space; a holding member having a facing surface facing the first surface of the optical element;
前記対向面と前記第 1の面とを接合する接合部と、  A joint for joining the opposing surface and the first surface;
前記第 1空間の気体及び前記第 2空間の気体の少なくとも一方が前記接合部へも たらされることを抑制するガス流れを生成するガスシール機構と、を備えた光学装置  An optical device comprising: a gas seal mechanism that generates a gas flow that suppresses at least one of the gas in the first space and the gas in the second space from being brought to the joint.
[2] 前記接合部は、前記第 1の面と前記対向面とを接着剤で接着する請求項 1記載の 光学装置。 [2] The optical device according to [1], wherein the joining portion adheres the first surface and the facing surface with an adhesive.
[3] 前記接合部は、前記第 1の面と前記対向面とをダイレ外ボンディングで接着する請 求項 1記載の光学装置。  [3] The optical device according to [1], wherein the bonding portion bonds the first surface and the facing surface by bonding outside the die.
[4] 前記第 1空間は液浸空間を含み、 [4] The first space includes an immersion space,
前記ガスシール機構は、前記光学素子の前記第 1の面に対して前記第 1空間側に 位置する第 2の面に、前記第 1空間の気体よりも湿度が低いガスを供給する請求項 1 3の!/、ずれか一項記載の光学装置。  2. The gas seal mechanism supplies gas having a lower humidity than the gas in the first space to a second surface located on the first space side with respect to the first surface of the optical element. The optical device according to 3! /, Or a deviation.
[5] 前記ガスシール機構は、前記第 2の面に沿った前記ガスの流れを生成する請求項[5] The gas seal mechanism generates the gas flow along the second surface.
4に記載の光学装置。 4. The optical device according to 4.
[6] 前記ガス流れは、前記接合部から前記第 1空間に向かう請求項 5記載の光学装置  6. The optical device according to claim 5, wherein the gas flow is directed from the joint to the first space.
[7] 前記ガスシール機構は、前記第 2の面上の空間を陽圧化する請求項;!〜 3のいず れか一項記載の光学装置。 [7] The optical device according to any one of [1] to [3], wherein the gas seal mechanism positively pressures the space on the second surface.
[8] 前記ガスシール機構は、前記第 2の面に向けてガスを供給するガス供給口を有す る請求項 4 7のいずれか一項記載の光学装置。 8. The optical device according to claim 47, wherein the gas seal mechanism has a gas supply port for supplying gas toward the second surface.
[9] 前記ガスシール機構は、前記保持部材に設けられる請求項 4 8のいずれか一項 記載の光学装置。 9. The optical device according to claim 48, wherein the gas seal mechanism is provided on the holding member.
[10] 前記ガスシール機構は、前記第 2の面との間のガスを吸引するガス吸引機構を有 する請求項;!〜 3のいずれか一項記載の光学装置。  10. The optical device according to any one of claims 1 to 3, wherein the gas seal mechanism has a gas suction mechanism for sucking a gas between the second surface and the second surface.
[I I] 前記ガス吸引機構は、前記保持部材に形成されたガス吸引口を有する請求項 10 記載の光学装置。 [II] The gas suction mechanism has a gas suction port formed in the holding member. The optical device described.
[12] 前記接着剤は、有機材料を含み、 [12] The adhesive includes an organic material,
前記ガスシール機構は、前記有機材料の化学反応による劣化を防止する請求項 2 記載の露光装置。  The exposure apparatus according to claim 2, wherein the gas seal mechanism prevents deterioration of the organic material due to a chemical reaction.
[13] 前記接着剤は、無機材料を含み、 [13] The adhesive includes an inorganic material,
前記ガスシール機構は、前記無機材料の腐食を防止する請求項 2記載の露光装 置。  The exposure apparatus according to claim 2, wherein the gas seal mechanism prevents corrosion of the inorganic material.
[14] 複数の光学素子を保持する鏡筒をさらに備え、  [14] It further comprises a lens barrel that holds a plurality of optical elements,
前記第 2空間は、前記鏡筒の内部空間を含み、  The second space includes an internal space of the lens barrel,
前記保持部材に保持される光学素子は、前記鏡筒の内部空間と外部空間との境 界に配置される請求項;!〜 13の!/、ずれか一項記載の光学装置。  14. The optical device according to claim 13, wherein the optical element held by the holding member is disposed at a boundary between the internal space and the external space of the barrel.
[15] 露光光で基板を露光する露光装置において、 [15] In an exposure apparatus that exposes a substrate with exposure light,
請求項 1〜請求項 14のいずれか一項記載の光学装置を備え、前記光学装置の前 記光学素子を介して前記基板上に露光光を照射する露光装置。  An exposure apparatus comprising the optical device according to any one of claims 1 to 14, and irradiating exposure light onto the substrate via the optical element of the optical device.
[16] 前記保持部材に保持された光学素子と前記基板との間に液浸空間が形成され、 前記光学素子及び前記液浸空間の液体を介して前記基板を露光する請求項 15 記載の露光装置。 16. The exposure according to claim 15, wherein an immersion space is formed between the optical element held by the holding member and the substrate, and the substrate is exposed via the liquid in the optical element and the immersion space. apparatus.
[17] 請求項 15又は請求項 16のいずれか一項記載の露光装置を用いるデバイス製造 方法。  [17] A device manufacturing method using the exposure apparatus according to any one of [15] and [16].
PCT/JP2007/067324 2006-09-06 2007-09-05 Optical device, exposure apparatus, and method for manufacturing device WO2008029852A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008533188A JP5182093B2 (en) 2006-09-06 2007-09-05 Optical apparatus, exposure apparatus, and device manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006241969 2006-09-06
JP2006-241969 2006-09-06

Publications (1)

Publication Number Publication Date
WO2008029852A1 true WO2008029852A1 (en) 2008-03-13

Family

ID=39157278

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/067324 WO2008029852A1 (en) 2006-09-06 2007-09-05 Optical device, exposure apparatus, and method for manufacturing device

Country Status (2)

Country Link
JP (1) JP5182093B2 (en)
WO (1) WO2008029852A1 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009139316A1 (en) * 2008-05-15 2009-11-19 浜松ホトニクス株式会社 Method for manufacturing spectral module and spectral module
JP2011033900A (en) * 2009-08-03 2011-02-17 Ntt Electornics Corp Optical component holding holder and optical structure
JP2011159971A (en) * 2010-02-02 2011-08-18 Asml Netherlands Bv Lithographic apparatus, and device manufacturing method
US8013993B2 (en) 2008-05-15 2011-09-06 Hamamatsu Photonics K.K. Spectroscopy module
US8018591B2 (en) 2008-05-15 2011-09-13 Hamamatsu Photonics K.K. Spectroscopy module
US8027034B2 (en) 2008-05-15 2011-09-27 Hamamatsu Photonics K.K. Method for manufacturing spectroscopy module, and spectroscopy module
US8035814B2 (en) 2008-05-15 2011-10-11 Hamamatsu Photonics K.K. Spectroscopy module
US8040507B2 (en) 2008-05-15 2011-10-18 Hamamatsu Photonics K.K. Spectrometer
WO2011158740A1 (en) * 2010-06-15 2011-12-22 富士フイルム株式会社 Lens barrel and lens barrel assembly method
US8139214B2 (en) 2008-05-15 2012-03-20 Hamamatsu Photonics K.K. Spectroscopy module, and method for manufacturing the same
US8604412B2 (en) 2008-05-15 2013-12-10 Hamamatsu Photonics K.K. Spectral module and method for manufacturing spectral module
JP2013251580A (en) * 2009-12-09 2013-12-12 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
US8804118B2 (en) 2008-05-15 2014-08-12 Hamamatsu Photonics K.K. Spectral module
CN104793466A (en) * 2014-01-20 2015-07-22 上海微电子装备有限公司 Fluid restriction mechanism for immersion lithography machine
JP2016532141A (en) * 2013-10-07 2016-10-13 コーニング インコーポレイテッド Lens assembly and optical system incorporating the same
TWI640799B (en) * 2015-10-12 2018-11-11 德商卡爾蔡司Smt有限公司 Optical assembly, projection system, metrology system and euv lithography apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000056113A (en) * 1998-08-06 2000-02-25 Canon Inc Diffraction optical device
JP2002151397A (en) * 2000-11-15 2002-05-24 Nikon Corp Projection optical system, aligner and exposure method
WO2005006417A1 (en) * 2003-07-09 2005-01-20 Nikon Corporation Exposure apparatus and method for manufacturing device
JP2005136413A (en) * 2003-10-28 2005-05-26 Asml Netherlands Bv Lithography apparatus and device manufacturing method
WO2006080212A1 (en) * 2005-01-28 2006-08-03 Nikon Corporation Projection optical system, exposure system, and exposure method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07201702A (en) * 1993-12-28 1995-08-04 Fujitsu Ltd Aligning method and aligner
WO2007132862A1 (en) * 2006-05-16 2007-11-22 Nikon Corporation Projection optical system, exposure method, exposure apparatus, and method for manufacturing device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000056113A (en) * 1998-08-06 2000-02-25 Canon Inc Diffraction optical device
JP2002151397A (en) * 2000-11-15 2002-05-24 Nikon Corp Projection optical system, aligner and exposure method
WO2005006417A1 (en) * 2003-07-09 2005-01-20 Nikon Corporation Exposure apparatus and method for manufacturing device
JP2005136413A (en) * 2003-10-28 2005-05-26 Asml Netherlands Bv Lithography apparatus and device manufacturing method
WO2006080212A1 (en) * 2005-01-28 2006-08-03 Nikon Corporation Projection optical system, exposure system, and exposure method

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8604412B2 (en) 2008-05-15 2013-12-10 Hamamatsu Photonics K.K. Spectral module and method for manufacturing spectral module
US8013993B2 (en) 2008-05-15 2011-09-06 Hamamatsu Photonics K.K. Spectroscopy module
WO2009139316A1 (en) * 2008-05-15 2009-11-19 浜松ホトニクス株式会社 Method for manufacturing spectral module and spectral module
US8804118B2 (en) 2008-05-15 2014-08-12 Hamamatsu Photonics K.K. Spectral module
US8035814B2 (en) 2008-05-15 2011-10-11 Hamamatsu Photonics K.K. Spectroscopy module
US8018591B2 (en) 2008-05-15 2011-09-13 Hamamatsu Photonics K.K. Spectroscopy module
US8027034B2 (en) 2008-05-15 2011-09-27 Hamamatsu Photonics K.K. Method for manufacturing spectroscopy module, and spectroscopy module
US8742320B2 (en) 2008-05-15 2014-06-03 Hamamatsu Photonics K.K. Spectral module and method for manufacturing spectral module
US8040507B2 (en) 2008-05-15 2011-10-18 Hamamatsu Photonics K.K. Spectrometer
JP2009300417A (en) * 2008-05-15 2009-12-24 Hamamatsu Photonics Kk Spectroscopic module and its manufacturing method
US8139214B2 (en) 2008-05-15 2012-03-20 Hamamatsu Photonics K.K. Spectroscopy module, and method for manufacturing the same
US8564773B2 (en) 2008-05-15 2013-10-22 Hamamatsu Photonics K.K. Spectroscopy module
JP2011033900A (en) * 2009-08-03 2011-02-17 Ntt Electornics Corp Optical component holding holder and optical structure
JP2016075935A (en) * 2009-12-09 2016-05-12 エーエスエムエル ネザーランズ ビー.ブイ. Lithographic apparatus
US10018921B2 (en) 2009-12-09 2018-07-10 Asml Netherlands B.V. Lithographic apparatus and a device manufacturing method
JP2013251580A (en) * 2009-12-09 2013-12-12 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
US9746782B2 (en) 2009-12-09 2017-08-29 Asml Netherlands B.V. Lithographic apparatus and a device manufacturing method
JP2017161943A (en) * 2009-12-09 2017-09-14 エーエスエムエル ネザーランズ ビー.ブイ. Lithographic apparatus
JP2011159971A (en) * 2010-02-02 2011-08-18 Asml Netherlands Bv Lithographic apparatus, and device manufacturing method
US9618835B2 (en) 2010-02-02 2017-04-11 Asml Netherlands B.V. Lithographic apparatus and a device manufacturing method involving an elongate liquid supply opening or an elongate region of relatively high pressure
WO2011158740A1 (en) * 2010-06-15 2011-12-22 富士フイルム株式会社 Lens barrel and lens barrel assembly method
JP2016532141A (en) * 2013-10-07 2016-10-13 コーニング インコーポレイテッド Lens assembly and optical system incorporating the same
CN104793466A (en) * 2014-01-20 2015-07-22 上海微电子装备有限公司 Fluid restriction mechanism for immersion lithography machine
TWI640799B (en) * 2015-10-12 2018-11-11 德商卡爾蔡司Smt有限公司 Optical assembly, projection system, metrology system and euv lithography apparatus
US10146048B2 (en) 2015-10-12 2018-12-04 Carl Zeiss Smt Gmbh Optical assembly, projection system, metrology system and EUV lithography apparatus

Also Published As

Publication number Publication date
JP5182093B2 (en) 2013-04-10
JPWO2008029852A1 (en) 2010-01-21

Similar Documents

Publication Publication Date Title
JP5182093B2 (en) Optical apparatus, exposure apparatus, and device manufacturing method
JP5700010B2 (en) Immersion member, immersion exposure apparatus, immersion exposure method, device manufacturing method
JP6048598B2 (en) Immersion member, immersion exposure apparatus, immersion exposure method, and device manufacturing method
JP4968076B2 (en) Substrate holding apparatus, exposure apparatus, exposure method, and device manufacturing method
US20160231653A1 (en) Substrate holding device, exposure apparatus, and device manufacturing method
US20080291408A1 (en) Projection optical system, exposing method, exposure apparatus, and device fabricating method
WO2007083592A1 (en) Substrate holding apparatus, exposure apparatus, and device production method
US20120062860A1 (en) Exposure apparatus, exposure method, and device manufacturing method
JP2008288589A (en) Lithography, liquid immersion system, exposure method, and method of manufacturing device
JP2006310588A (en) Substrate-holding device and exposure device, and device manufacturing method
JP2009021498A (en) Exposure device, liquid immersion system, and device manufacturing method
WO2007007723A1 (en) Substrate for immersion exposure, exposure method and method for manufacturing device
JP2007088339A (en) Aligner, and method for manufacturing device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07806766

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008533188

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07806766

Country of ref document: EP

Kind code of ref document: A1