WO2008029712A1 - Stoker-type incinerator and method for controlling combustion in the incinerator - Google Patents

Stoker-type incinerator and method for controlling combustion in the incinerator Download PDF

Info

Publication number
WO2008029712A1
WO2008029712A1 PCT/JP2007/066924 JP2007066924W WO2008029712A1 WO 2008029712 A1 WO2008029712 A1 WO 2008029712A1 JP 2007066924 W JP2007066924 W JP 2007066924W WO 2008029712 A1 WO2008029712 A1 WO 2008029712A1
Authority
WO
WIPO (PCT)
Prior art keywords
combustion
exhaust gas
combustion chamber
primary air
strike
Prior art date
Application number
PCT/JP2007/066924
Other languages
French (fr)
Japanese (ja)
Inventor
Masayuki Mawatari
Kouji Namerisawa
Kenji Iida
Masao Takuma
Minoru Kuranishi
Original Assignee
Mitsubishi Heavy Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2006238692A external-priority patent/JP4701138B2/en
Priority claimed from JP2006241138A external-priority patent/JP4701140B2/en
Application filed by Mitsubishi Heavy Industries, Ltd. filed Critical Mitsubishi Heavy Industries, Ltd.
Priority to CN2007800251243A priority Critical patent/CN101484753B/en
Publication of WO2008029712A1 publication Critical patent/WO2008029712A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/44Details; Accessories
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/50Control or safety arrangements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
    • Y02P80/15On-site combined power, heat or cool generation or distribution, e.g. combined heat and power [CHP] supply

Definitions

  • the present invention relates to a strike-through incinerator for incinerating combustibles such as garbage and industrial waste, and a combustion control method thereof.
  • Stroke-type incinerators are equipped with a strike force consisting of fixed-stage and movable-stage grates arranged alternately, and are moved from the hot-spot by reciprocating the movable stage using a hydraulic device. While stirring and advancing the waste (combustibles), the waste is dried in the drying zone located upstream of the strike force, and the main combustion is performed while supplying primary air in the next main combustion zone. It is an incinerator that is configured to burn every remaining amount in the most downstream combustion zone.
  • exhaust gas from a secondary combustion chamber is usually guided to a boiler, and steam is generated by exhaust gas heat in the boiler to recover exhaust gas heat.
  • the generated steam flow of the exhaust gas heat recovery boiler may decrease during operation of the incinerator. This may be caused by a large amount of low-heat generation waste being thrown into the strike, or when the waste supply path between the waste hopper or the waste hot bar and the strike is blocked, Examples include cases where only the food is supplied.
  • combustion at a low air ratio in a stoichiometric incinerator contributes to stabilization of combustion exhaust gas properties and stabilization of boiler steam flow rate.
  • Japanese Patent Application Laid-Open No. 2004-239509 describes that the combustion air ratio is set to 1.3 to 1.5 using high-temperature gas or circulating gas, and CO in the combustion exhaust gas is A method for suppressing the generation of NOx and other harmful gases is disclosed.
  • Patent Document 1 Japanese Unexamined Patent Publication No. 2003-161421
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2004-239509
  • an object of the present invention is to provide a striking-type incinerator capable of quickly recovering a steam flow before the steam flow of a boiler that performs heat recovery of exhaust gas is greatly reduced, and its combustion control. Is to provide a method.
  • Another object of the present invention is a highly responsive strike force capable of suppressing changes in the properties of combustion exhaust gas even when the combustion state in the incinerator changes suddenly.
  • An incinerator and its combustion control method are provided.
  • the combustion control method for a stoichiometric incinerator according to the present invention has, as one aspect thereof, throwing in combustible material from hotspot onto the strike force and introducing primary air from below the strike force. Then, in the 17th combustion chamber above the stow force, the 17th combustion is performed with the primary air, and in the secondary combustion chamber above the 17th combustion chamber, the secondary combustion is performed with the secondary air.
  • the combustion control method of the first power incinerator that recovers the exhaust gas heat that passed through the secondary combustion chamber with a boiler! /, The exhaust gas temperature discharged from the secondary combustion chamber became less than the lower threshold value. In this case, the flow rate of the primary air introduced into the hopper side of the strike force in the primary air is increased.
  • the exhaust gas having the power of the secondary combustion chamber which is directly influenced by the combustion state of the 17-fire combustion chamber and the secondary combustion chamber, and the change in the combustion state appears earlier than the steam flow rate of the boiler.
  • the primary air introduced into the first hopper side of the primary air is increased to increase the flow rate of the steam before the steam flow is greatly reduced. Therefore, it is possible to promote the drying and ignition combustion of the garbage in the first power. As a result, the combustion state is quickly improved and the steam flow rate is recovered early. Therefore, by performing control based on the temperature of the exhaust gas discharged from the secondary combustion chamber, it is possible to reduce the fluctuation range of the steam flow rate with high responsiveness.
  • the feeder is operated for a certain period of time, the height of the burned object in the hopper is detected, and the change in the height in the certain period of time is less than the lower limit value, the hopper It is also possible to stop the operation of the feeder when the deocclusion device installed inside is activated and the upper limit is exceeded.
  • the combustion in the hopper during this fixed time By controlling based on the change in the height of the object, the cause of the exhaust gas temperature decrease or the oxygen concentration increase may be due to a large supply of combustibles even if the cause is a blockage in the hopper. Even if there is, it can respond.
  • a combustible material is thrown into the strike force from hotspot, and primary air is introduced from below the strike force. Then, in the first seven combustion chambers above the strike, first seventeen combustions are performed using the primary air, and in the second combustion chambers above the first seven combustion chambers, second combustion is performed using secondary air.
  • the oxygen concentration in the exhaust gas discharged from the secondary combustion chamber has an upper threshold value. When it exceeds, the flow rate of the primary air introduced into the hopper side of the strike force in the primary air is increased.
  • the exhaust gas having the power of the secondary combustion chamber which is directly affected by the combustion state of the 17-fire combustion chamber and the secondary combustion chamber, and changes in the combustion state appear earlier than the steam flow rate of the boiler.
  • the oxygen concentration in the air exceeds the upper threshold, the flow rate of the primary air introduced to the hopper side of the primary force in the primary air is increased, so that the hopper It is possible to promote the drying and ignition combustion of garbage in the side strike force.
  • the combustion state is quickly improved and the steam flow rate is recovered early. Therefore, by performing control based on the oxygen concentration in the exhaust gas discharged from the secondary combustion chamber, it is possible to reduce the fluctuation range of the steam flow rate with high responsiveness.
  • a feeder laid in the hopper is provided. Operates for a certain period of time, detects the height of the combusted object in the hopper, and if the height change force in the certain period of time is less than the lower limit, the blockage laid in the hopper When the release device is activated and the upper limit is exceeded, the operation of the feeder can be stopped.
  • the flow rate of the primary air when the condition that the steam flow rate generated in the boiler is less than a lower limit threshold is also satisfied. It is also possible to perform control to increase the value. As a result, the secondary combustion chamber It is possible to prevent excessive response to a sudden change in the exhaust gas temperature or the oxygen concentration of the exhaust gas and further stabilize the steam flow rate.
  • a striking power type incinerator a hot rod for charging the combustible material, a striking force to which the combustible material is supplied from the hot rod, Primary air is introduced from the lower side of the strike force, and the first air is burned for 7 fires above the first strike force.
  • a secondary combustion chamber for performing secondary combustion; a boiler for recovering heat of exhaust gas that has passed through the secondary combustion chamber; and a flue from the secondary combustion chamber to the boiler, wherein Exhaust gas thermometer for measuring the exhaust gas temperature at the place where it is blocked against radiation from the exhaust gas, and based on the exhaust gas temperature measured by this exhaust gas thermometer!
  • Exhaust gas thermometer for measuring the exhaust gas temperature at the place where it is blocked against radiation from the exhaust gas, and based on the exhaust gas temperature measured by this exhaust gas thermometer!
  • An oxygen concentration measuring device for measuring the oxygen concentration in the exhaust gas discharged from the secondary combustion chamber may be further provided.
  • the combustion control device measures the oxygen concentration using the oxygen concentration measuring device.
  • the one-fire combustion can be controlled based on the oxygen concentration
  • the strike power incinerator includes a hot bar for charging the burned material, a strike force to which the burned material is supplied from the hot bar, and the strike force.
  • Primary air is introduced from below the primary power, and the primary combustion chamber in which the primary air is burned with the primary air above the strike and the secondary combustion is carried out with the secondary air above the 17 fire combustion chamber.
  • the oxygen concentration in the exhaust gas exhausted from the secondary combustion chamber is determined in a secondary combustion chamber, a boiler that recovers exhaust gas heat that has passed through the secondary combustion chamber, and a flue downstream from the secondary combustion chamber.
  • 7 Combustion control device for controlling fire combustion is provided. It is preferable that the oxygen concentration measuring device is provided in the flue to the boiler outlet loca and the gas outlet of the first-stage incinerator.
  • the temperature of the exhaust gas is cooled to a relatively low temperature by measuring the oxygen concentration in the exhaust gas discharged from the secondary combustion chamber in the flue downstream from the secondary combustion chamber. Therefore, the oxygen concentration in the exhaust gas can be measured accurately and quickly.
  • an oxygen concentration measuring device that can withstand high-temperature, high-concentration soot and dust environments can be used, it is preferable to install it upstream from the boiler outlet. Therefore, by controlling the 17-fire combustion using this oxygen concentration measurement result, the combustion state can be improved quickly, and the steam flow can be recovered quickly with the force S.
  • the combustion control device can control the 17-fire combustion based on the exhaust gas temperature measured by the exhaust gas thermometer!
  • a steam flow rate measuring device for measuring a steam flow rate generated in the boiler may be further provided.
  • the combustion control device is measured by the steam flow rate measuring device.
  • the 17-fire combustion can be controlled based on the steam flow rate.
  • the combustion control method for a stoichiometric incinerator throws in a hopper force and other combustibles on the strike force, and primary air from below the strike force.
  • the primary combustion is performed by the primary air in the primary combustion chamber above the strike force
  • the secondary combustion is performed by the secondary air in the secondary combustion chamber above the primary combustion chamber.
  • the oxygen concentration in the exhaust gas discharged from the secondary combustion chamber has become less than the lower threshold because of the combustion control method of the first-power incinerator that recovers the exhaust gas heat that has passed through the secondary combustion chamber with a boiler. In this case, or when the concentration or temperature of carbon monoxide in the exhaust gas exceeds the upper threshold, the flow rate of the secondary air is increased.
  • the flow rate of the primary air is preferably decreased.
  • the secondary air introduced into the secondary combustion chamber is used by recirculating the combustion gas extracted from the 17-fire combustion chamber and increasing the flow rate of the secondary air. It is preferable to increase the amount of this combustion gas extracted and recirculated.
  • the flow rate of the secondary air is increased, the primary air flow rate is decreased, and in order to increase the flow rate of the secondary air, excess primary air generated by the flow rate decrease is extracted and burned. It is preferable to mix with gas and introduce into the secondary combustion chamber as the secondary air.
  • Another aspect of the present invention is a striking power type incinerator, a hot bar for charging a combusted material, a striking force to which the combusted material is supplied from the hot bar, Primary air is introduced from the lower side of the strike force, and the first air is burned for 7 fires above the first strike force.
  • a combustion control device that controls the secondary combustion based on the oxygen concentration, carbon monoxide concentration, or temperature measured by the measuring instrument.
  • the temperature of the exhaust gas discharged from the secondary combustion chamber is measured at a location where it is blocked against the strike force and the radiation from the flame there, or from the secondary combustion chamber.
  • the secondary combustion chamber power that is not affected by the strike force or the radiation from the flame accurately and quickly determines the temperature of the exhaust gas that is discharged.
  • the temperature measurement location is the secondary combustion chamber force, and the preferred concentration measurement location in the flue to the boiler is as close as possible to the secondary combustion chamber from the boiler outlet! /.
  • damper installed below the strike force and discharging the primary air. Further, it is preferable that a pipe is provided between the damper and the secondary combustion chamber for introducing the primary air discharged from the damper into the secondary combustion chamber.
  • a strut-type incinerator capable of quickly recovering the steam flow rate before the steam flow rate of the boiler that performs heat recovery of the exhaust gas is greatly reduced, and a combustion control method thereof Can be provided.
  • FIG. 1 is a schematic view generally showing an embodiment of a strike-type incinerator according to the present invention.
  • FIG. 2 is a schematic view showing an enlarged hopper portion of the strike-type incinerator shown in FIG. 1.
  • FIG. 3 is a chart showing the timing of changing the primary air amount with respect to increase / decrease in steam flow rate or exhaust gas temperature.
  • FIG. 4 is a graph showing a change in the height level of dust in the hopper at a judgment time.
  • FIG. 5 is a graph showing the change in the height level of dust in the hopper at the judgment time.
  • FIG. 6 is a chart showing the timing for performing dust supply, deocclusion, and increase in primary air volume as the steam flow rate or exhaust gas temperature increases or decreases.
  • FIG. 7 is a flowchart showing an example of an increase in the next air amount and control of the garbage hot bar.
  • FIG. 8 is a flowchart showing another example of the increase in the next air amount and the control of the garbage hot bar.
  • FIG. 9 is a schematic view showing another embodiment of a strike-force incinerator according to the present invention.
  • FIG. 10 is a chart showing the timing of changing the amount of secondary air as the oxygen concentration increases or decreases.
  • FIG. 11 is a chart showing the timing for changing the amount of secondary air as the carbon monoxide concentration or exhaust gas temperature increases or decreases.
  • FIG. 12 is a schematic view showing still another embodiment of a strike-force incinerator according to the present invention.
  • FIG. 1 is a schematic diagram showing an overall embodiment of a strike-force incinerator according to the present invention.
  • FIG. 2 is an enlarged schematic view showing the hopper portion of the strike-type incinerator shown in FIG.
  • the strike-through incinerator of this embodiment stirs and advances the waste hopper 1 into which combustible materials such as waste and industrial waste are put, and the waste supplied from this hot bar.
  • the stoichiometric furnace 2 that dries and burns
  • the boiler 10 that generates steam from the exhaust gas from the stoichiometric furnace, and the stoichiometric furnace to stably generate steam flow in the boiler.
  • It is mainly composed of a combustion control device 30 that controls combustion.
  • the strike power furnace 2 includes a dry zone strike force 21 mainly constituting a dry zone, a main combustion zone strike force 22 mainly constituting a combustion zone, and a main combustion zone at the bottom of the furnace.
  • a striking power of 23 is laid.
  • the dry zone strike 21 is located on the uppermost stream side with respect to the inlet from the waste hopper 1, and the main combustion zone strike 22 is below the dry zone strike 21.
  • the vertical combustion zone strike force 23 is located downstream of the main combustion zone strike force 22 and on the most downstream side.
  • the main combustion zone refers to the area where the flame is raised and burned on the dust layer.
  • Each strike force 21, 22, 23 is provided with a moving grate disposed between fixed grate, and after the garbage (burning object) is thrown in by reciprocating movement of the moving grate, Is dried with a strike of 21 and main combustion is performed with a strike of 22. Finally, the strike is performed with a strike of 23.
  • the number of combustion zone strikes 22 is three, but may be one or more.
  • An ash hopper chute 8 is laid downstream of the combustion zone strike 23. Further, a primary combustion chamber 3 is provided above the strike forces 21, 22, and 23, and a secondary combustion chamber 4 is further provided thereabove.
  • the dry zone strike force 21, the main combustion zone strike force 22, and the extra combustion zone strike force 23 are each provided with a primary air pipe 25 that opens to the lower wind box.
  • These primary air pipes 25 are distributed from the primary air main pipe 5, and the primary air main pipe 5 is provided with a pusher fan (fan) 6 for supplying primary air and a steam air preheater (SAH)! / That is, the primary air pressure-fed from the fan 6 is preheated through the primary air main pipe 5 and then supplied to the strike forces 21, 22, and 23 from the primary air pipe 25.
  • an opening / closing valve 26 or an orifice for opening / closing them is provided in the primary air pipe 25, and an opening / closing valve 7 for opening / closing this is provided in the primary air main pipe 5.
  • the exhaust gas outlet of the secondary combustion chamber 4 and the exhaust gas inlet of the boiler 10 are connected via a flue 9.
  • the flue 9 is in a state where the inside of the flue 9 is shielded from the flame radiation of the strike force 21, 22, 23 and the strike power furnace 2, that is, a U-shaped passage.
  • An exhaust gas thermometer 33 (for example, an infrared pyrometer) for measuring the temperature of the exhaust gas from the secondary combustion chamber 4 is installed in the flue 9. In this way, by providing the exhaust gas thermometer 33 at a location where it is shielded from the radiation of the flame, it is possible to measure the temperature of the exhaust gas quickly and accurately.
  • the boiler 10 is provided with a steam flow rate measuring device 31 for measuring the flow rate of the steam generated in the boiler 10.
  • a flue 11 is provided at the exhaust gas outlet of the boiler 10, and an oxygen concentration measuring device 35 for measuring the oxygen concentration in the exhaust gas is installed at the outlet of the flue 11.
  • an oxygen concentration measuring device 35 for measuring the oxygen concentration in the exhaust gas is installed at the outlet of the flue 11.
  • the exhaust gas temperature is lowered to 200 to 300 ° C., so that the oxygen concentration can be accurately measured over a long period of time.
  • an oxygen concentration measuring device that can withstand high-temperature and high-concentration dust environments can be used, it can be installed upstream of the exhaust gas outlet of the boiler 10.
  • a temperature reducing tower for cooling the exhaust gas
  • a bag filter for removing fly ash etc. from the exhaust gas
  • exhaust gas are discharged to the outside air.
  • a chimney (not shown) is laid in order.
  • a recirculation gas extraction port 28 for extracting a part of the flue gas in the seven-fire combustion chamber 3 as a recirculation gas is provided in the every other combustion zone of the seven-fire combustion chamber 3.
  • the recirculation gas outlet 28 is connected to the inlet 14 of the cyclone 12 via the recirculation passage 16.
  • a recirculation passage 15 is provided at the outlet of the cyclone 12, and this recirculation passage 15 is an outlet nozzle for supplying secondary air into the secondary combustion chamber 4 at an upstream portion of the secondary combustion chamber 4. 1 9 is connected.
  • a recirculation fan 13 is provided in the recirculation passage 15, and the on-off valve 18 provided in front of the recirculation fan 13 is used to extract the combustion exhaust gas as recirculation gas by the internal combustion chamber 3. Can be adjusted.
  • the blow-out nozzles 19 are provided on the combustion zone side and the drying zone side of the secondary combustion chamber 4, respectively.
  • the recirculation passage 15 is branched into two on the downstream side of the recirculation fan 13, and one recirculation passage 15a is connected to the blowing nozzle 19a on the drying side, and one recirculation passage 15b. It is connected to the blow nozzle 19b on the side of the hot combustion zone.
  • the branching recirculation passages 15a and 15b are each provided with an open / close valve 17, and the supply amount of secondary air can be changed by the blowout nozzles 19a and 19b on the combustion zone side. Note that multiple nozzles 19a and 19b on the drying zone side and on the combustion zone side may be provided in the secondary combustion chamber 4 along the gas flow. Fork.
  • the garbage hopper 1 is provided with a blocking release device 41 on the inclined hopper inner wall.
  • the closure release device 41 for example, there is a mechanism for hitting a hopper inclined inner wall with a hammer and causing a bridge or arching in the hopper to remove the clogged dust.
  • a dust supply device (feeder) 43 for pushing the dust 46 at the bottom into the strike furnace 2 by reciprocating motion is laid at the bottom of the garbage hopper 1.
  • a height detector 37 is installed to detect the height of the dust 46 in the hopper.
  • the height detector 37 is a non-contact type that can irradiate the surface of the dust 46 with a laser or ultrasonic wave 38 and receive the reflected laser or detect the ultrasonic wave to measure the distance to the dust surface. Those are preferred.
  • the steam flow measuring device 31, the exhaust gas thermometer 33, the oxygen concentration measuring device 35, and the height detector 37 can control the combustion so that the measured values can be transmitted to the combustion control device 30 as signals. It is electrically connected to device 30.
  • the combustion control device 30 individually adjusts the opening degree of each on-off valve 17, 18, 26 such as the primary air pipe 25 or the recirculation passage 15 or activates each of the clogging release device 41 and the dust supply device 43.
  • the on-off valves 17, 18, 26, the clogging release device 41, and the dust supply device 43 are electrically connected to each other so that they can be stopped and controlled.
  • This combustion gas is further combusted at a higher temperature by the secondary air supplied from the recirculation gas blowing nozzles 19 and 20 in the secondary combustion chamber 4.
  • Exhaust gas after combustion in the secondary combustion chamber 4 is supplied to the boiler 10 through the flue 9, and after heat recovery by generating steam, it is discharged into the atmosphere through the flue 11. .
  • the ash after combustion in the strike zone 23 is collected by the ash hopper chute 8 and discharged.
  • the combustion control device 30 when the steam flow rate is lower than the lower threshold, the primary pressure in the dry zone 21 and the upstream primary combustion zone 22 in the upstream are necessary. A signal is sent to the open / close valve 26 of the air pipe 25 to open the valve more widely and increase the primary air volume.
  • FIG. 3 is a chart showing the timing of changing the primary air amount with respect to increase and decrease of the steam flow rate. Is. As shown in Figure 3, increasing the primary air volume promotes the drying and ignition combustion of waste in the dry zone strike force 21 and the upstream main combustion zone strike force 22. The steam flow at can be restored to the set value (eg 100t / h). Further, when the steam flow rate becomes equal to or higher than the upper threshold (for example, 120 t / h), a signal is sent to the on-off valve 26 so as to reduce the primary air amount by reducing the valve opening. Thereby, the steam flow rate can be controlled within a predetermined range, and the power supply can be stabilized.
  • the set value eg 100t / h
  • the upper threshold for example, 120 t / h
  • the combustion control device 30 sends a signal to the dust supply device 43 so as to continuously operate for a predetermined determination time (for example, about 2-3 minutes to 10 minutes). As a result, garbage is supplied.
  • a predetermined determination time for example, about 2-3 minutes to 10 minutes.
  • garbage is supplied.
  • the dust supply device 43 is in a so-called idle driving state, and even if the dust supply device 43 is continuously operated in this manner, No garbage is supplied.
  • the combustion control device 30 receives the height level of the dust 46 in the garbage hopper 1 measured by the height detector 37 at regular time intervals. Calculate the change in height level at. 4 and 5 are graphs showing changes in the height level of the waste 46 during this determination time.
  • the combustion control device 30 determines that the garbage forms a bridge or an arch in the garbage hopper 1, and the garbage hopper An activation signal is sent to the closure release device 41 so as to release the closure within 1. As a result, the blockage of the bridge and the like is released, and the dust is wiped off to the bottom of the hopper 1. Then, the dust is supplied into the stoichiometric furnace 2 by the dust supply device 43 that is continuously operated. In the dry zone strike 21 and the upstream main combustion zone strike 22 the primary air volume is increased, drying and ignition combustion of newly supplied waste is promoted, and the steam flow is restored. It is possible
  • the combustion control device 30 determines that a large amount of garbage is being supplied into the stoichiometric furnace 2, and no more In order to prevent the dust from being supplied, a forced stop signal is sent to the dust supply device 43. As a result, it is possible to prevent an excessive supply of waste that hinders combustion in the stove furnace 2. Dry belt strike 21 And in the main combustion zone strike force 22 on the upstream side, the amount of primary air is increased, so that drying and ignition combustion of wastes supplied in large quantities can be promoted, and the steam flow rate can be recovered.
  • Control by exhaust gas temperature can be performed in place of or in combination with the control by steam flow described above. That is, when the exhaust gas temperature value in the flue 9 that is shielded from the flame radiation of the stoichiometric furnace 2 measured by the exhaust gas thermometer 33 falls below the lower threshold (for example, 600 ° C), A signal is sent to the opening / closing valve 26 of the primary air pipe 25 of the dry zone strike force 21 and, if necessary, the main combustion zone strike force 22 on the upstream side to open the valve more widely and increase the primary air amount (Fig. 3). ).
  • the lower threshold for example, 600 ° C
  • the exhaust gas temperature exceeds the upper threshold (for example, 700 ° C)
  • a signal is sent to the on-off valve 26 to restore the primary air amount, thereby quickly recovering the exhaust gas temperature to the set value. Can do.
  • the fluctuation range of the steam flow rate can be reduced.
  • the exhaust gas temperature measured by the exhaust gas thermometer 33 is controlled based on the temperature at the moment of measurement!
  • the deviation from the average value Can calculate the slope of the change and set and control these lower and upper thresholds.
  • the above-described control of the waste hopper 1 can be performed based on the exhaust gas temperature.
  • the combustion control device 30 sends a signal to the dust supply device 43 to continuously operate over the determination time, and during this determination time, the height detector 37
  • the measured garbage height level is received at regular time intervals, and the change in height level during this judgment time is calculated. If the height level does not drop significantly (Fig. 4), a start signal is sent to the closure release device 41, and if the height level drops significantly (Fig. 5), a forced stop signal is sent to the dust supply device 43. send.
  • FIG. 6 is a timing chart showing an example of the case where the above-described control for increasing the primary air amount and the garbage hot bar control are simultaneously performed
  • FIG. 7 is a flowchart thereof.
  • the upper and lower thresholds of the steam flow or exhaust gas temperature are set separately for the primary air volume increase and for dust supply. In this case, it is preferable to set the threshold value for dust supply closer to the set value than the threshold value for increasing the primary air amount.
  • the combustion control device 30 receives the signal a of the steam flow rate measured by the steam flow rate measuring device 31 or the exhaust gas temperature measured by the exhaust gas thermometer 33, and this signal Compare whether a is lower than the lower threshold for dusting. If the value is lower than the lower threshold for dust supply, a signal is sent to the dust supply device 43 so as to continuously operate. It is also compared whether the signal a is lower than the lower threshold for increasing primary air. If the signal a is lower than the lower threshold for increasing primary air, the dry zone strike 21 and, if necessary, the upstream main combustion zone Sending a signal to the opening / closing valve 26 of the strike force 22 to open the valve more.
  • the combustion control device 30 sets the signal b of the garbage height level in the garbage hopper 1 measured by the height detector 37 to a constant value. Receive at time intervals And calculate a change in height level (A b / A t) at a predetermined determination time. Then, a comparison is made as to whether this Ab / At is higher than a predetermined upper limit value or lower than a lower limit value. If A b / ⁇ t is higher than the predetermined upper limit! (Ie, the gradient of the change in the hopper level is large!), A signal is sent to the dust supply device 43 to forcibly stop. On the other hand, if Ab / At is lower than the predetermined lower limit value! / (That is, the gradient of the change in the hopper level is small! /), A signal is sent to activate the closure release device 41.
  • the combustion control device 30 sends a signal to the dust supply device 43 to stop the operation. If the signal a exceeds the upper limit threshold for increasing the primary air, the primary air is throttled to the opening / closing valve 26 of the dry zone strike force 21 and the upstream main combustion zone strike force 22. Send a signal to restore the amount. Stop combustion promotion in the stoichiometric furnace 2 to stabilize the combustion temperature and steam flow.
  • the control based on the oxygen concentration in the exhaust gas can be performed. That is, when the oxygen concentration value in the exhaust gas after passing through the boiler 10 measured by the oxygen concentration measuring device 35 exceeds the upper threshold (for example, 12 to 13%), the dry zone strike force 21 and if necessary A signal is sent to the open / close valve 26 of the primary air pipe 25 of the upstream main combustion zone strike force 22 to open the valve more widely and increase the primary air amount.
  • the upper threshold for example, 12 to 138%
  • the value of the oxygen concentration in the exhaust gas measured by the oxygen concentration measuring device 35 is controlled based on the oxygen concentration at the moment of measurement, and the average value measured over a certain period of time, the average value thereof, It is also possible to control by calculating the deviation or the gradient of change and setting these upper thresholds. By using average values, deviations, and moving averages in this way, it is possible to prevent excessive response to sudden changes in oxygen concentration and to further stabilize the steam flow rate.
  • the combustion control device 30 sends a signal to the dust supply device 43 so as to continuously operate over the determination time, and during this determination time, the height detector The height level of the waste measured in 37 is received at regular intervals, and the change in the height level during this judgment time is calculated. If the height level does not drop significantly (Fig. 4), a start signal is sent to the closure release device 41, and if the height level drops significantly (Fig. 5), the dust supply device 43 is forced to stop. Send a signal.
  • FIG. 8 is another example of the case where the control for increasing the primary air amount and the control of the garbage hot bar are performed simultaneously, and is a flowchart in the case where both the exhaust gas temperature and its oxygen concentration are used.
  • the combustion control device 30 performs exhaust gas measured by the oxygen concentration measuring device 35.
  • the signal of the oxygen concentration in the gas is received, and the force for calculating the moving average of this signal, or this signal is differentiated.
  • it is compared whether the deviation between the moving average and the instantaneous value or the result of the differentiation process is higher than a predetermined upper limit threshold value. If it is higher than the predetermined upper threshold value, a signal is sent to open the opening / closing valve 26 of the drying zone strike force 21 and, if necessary, the upstream main combustion zone strike force 22.
  • the combustion control device 30 receives the exhaust gas temperature signal a from the exhaust gas thermometer 33, and compares whether the signal a is lower than a predetermined lower threshold. When the value is lower than the lower threshold, a signal is sent to the dust supply device 43 so as to continuously operate. Further, the combustion control device 30 receives the signal b of the garbage height level from the height detector 37 and calculates A b / At in the same manner as described above. A comparison is made as to whether A b / A t is higher than the predetermined upper limit value or lower than the lower limit value. If A b / At is higher than the predetermined upper limit value, the dust supply device 43 is forcibly stopped. When the signal is lower than the predetermined lower limit value, the signal is sent to the closure release device 41 so as to be activated.
  • the combustion control device 30 sends a signal to the opening / closing valve 26 of the dry zone strike force 21 and the upstream main combustion zone strike force 22 to restore the primary air amount. Further, when the combustion temperature rises and the signal a exceeds the upper limit threshold for dust supply, the combustion control device 30 sends an operation stop signal to the dust supply device 43. Stop the promotion of combustion in the strike power furnace 2 and stabilize the oxygen concentration, combustion temperature and steam flow rate.
  • the primary air amount increase control of the dry zone strike force 21 and, if necessary, the upstream main combustion zone strike force 22 is performed based on the exhaust gas temperature.
  • the waste hopper 1 may be controlled based on the oxygen concentration in the exhaust gas, which makes it possible to use the exhaust gas temperature for primary air control, which requires higher responsiveness, and has a relatively responsive tolerance. Hopper By using the oxygen concentration in the exhaust gas for the control of the exhaust gas, it is possible to make each role function separately.
  • Control can also be performed using the steam flow rate. For example, by controlling when both the steam flow rate and the oxygen concentration are below the predetermined lower threshold, it is possible to prevent excessive response to a sudden change in oxygen concentration and to further increase the steam flow rate. Stabilization can be achieved. Also, the steam flow rate can be used for one of the primary air increase and the garbage hot bar control, and the oxygen concentration can be used for the other control.
  • the primary air amount of the dry zone strike force 21 and, if necessary, the upstream main combustion zone strike force 22 is increased, the total amount of air supplied into the strike force furnace 2 is maintained. It is preferable to control so that the amount corresponding to the increased amount is decreased from the secondary air amount. For example, at the downstream portion of the above-described recirculation gas blow nozzle 19, the supply amount at the blow nozzle (not shown) for supplying secondary air from the outside air into the secondary combustion chamber 4 is reduced, thereby reducing the stroke. The amount of air supplied to the entire single power furnace 2 can be made the same.
  • the primary air amount of the dry zone strike force 21 and, if necessary, the upstream main combustion zone strike force 22 is increased, in order to maintain the total amount of air supplied into the strike force furnace 2 It is also preferable to control so that the amount corresponding to the increased amount is reduced from the primary air amount supplied to the extra combustion zone strike force 23. In this case, the amount of combustion exhaust gas extracted from the recirculation gas extraction port 28 is reduced by this reduced amount. As a result, the oxygen concentration of the secondary air supplied into the secondary combustion chamber 4 in the stoichiometric furnace 2 can be prevented from relatively decreasing, and incomplete combustion can be prevented from occurring. .
  • FIG. 9 is a schematic view showing another embodiment of the strike-force incinerator according to the present invention.
  • a flue 11 is provided at the exhaust gas outlet of the boiler 10, and an oxygen for measuring the oxygen concentration or carbon monoxide concentration in the exhaust gas is provided at the outlet of the flue 11.
  • the carbon monoxide concentration measuring device 35a is installed.
  • the oxygen / carbon monoxide concentration measuring device 35a is installed at the exit of the flue 11, and the exhaust gas temperature is reduced to 200 to 300 ° C. Carbon concentration can be measured accurately over a long period of time.
  • the measuring instrument can be installed closer to the outlet of the strike furnace 2 Therefore, it is possible to grasp the change in the combustion state with a shorter time delay, and to provide a more responsive combustion control.
  • a temperature reducing tower for reducing the temperature of the exhaust gas
  • a bag filter for removing fly ash and the like from the exhaust gas
  • a chimney for evacuation
  • the secondary air pipe 27 provided in the forced air blower (fan) 20 for supplying secondary air is branched into two on the downstream side, and one secondary air pipe 27a is blown out on the drying side.
  • one secondary air pipe 27b is connected to the blowing nozzle 19b on the side of the vertical combustion zone.
  • the branched secondary air pipes 27a and 27b are provided with on-off valves 24a and 24b, respectively, and the supply amount of secondary air is changed by the discharge nozzles 19a and 19b on the combustion zone side. I can do it.
  • the blower nozzles 19a and 19b on the drying zone side and on the combustion zone side may be provided in a plurality of stages in the secondary combustion chamber 4 along the gas flow. Branch 27.
  • an air discharge damper 45 for extracting the primary air of the combustion zone from the strike force furnace 2 is installed under the strike force.
  • the air extracted from the air discharge damper 45 is configured to be discharged outside the furnace through the ash hopper chute 8 on the side of the secondary combustion chamber of the strike-type incinerator.
  • the exhaust gas thermometer 33 and the oxygen / carbon monoxide concentration measuring device 35a are electrically connected to the combustion control device 30 so that the measured values can be transmitted to the combustion control device 30 as signals.
  • the combustion control device 30 is configured so that the opening / closing valves 24 and 26 of the primary air pipe 25, the secondary air pipe 27, etc., and the opening / closing of the air discharge damper 45 can be individually adjusted. 24, 26 and air discharge damper 45 are electrically connected to each other.
  • the waste is supplied into the strike furnace 2 by the dust supply device 29 that reciprocally moves reciprocally. Is done.
  • the primary air is supplied to the dry zone strike force 21, the main combustion zone strike force 22 and the alternate combustion zone strike force 23 in the strike power furnace 2 via the primary air pipe 25, respectively.
  • One 7 fire combustion chamber 3 The garbage is burned at high temperature.
  • This combustion gas is further burned at a high temperature by the secondary air supplied from the blowout nozzle 19, and is completely burned.
  • Exhaust gas after combustion in the secondary combustion chamber 4 is supplied to the boiler 10 through the flue 9 and heat is recovered by generating steam, and then discharged into the atmosphere through the flue 11. .
  • the ash after combustion in the striking power 23 of the vertical combustion zone is collected and discharged by the ash hopper 8.
  • the combustion control device 30 when the oxygen concentration measured by the oxygen / carbon monoxide concentration measuring device 35a is less than the lower threshold (for example, 3 to 7%), the on-off valve 24 of the secondary air pipe 27 is A signal is sent to open the valve larger and increase the amount of secondary air from the blow nozzle 19.
  • FIG. 10 is a chart showing the timing of changing the secondary air amount with respect to the increase or decrease of the oxygen concentration.
  • FIG. 10 by increasing the amount of secondary air, the shortage of oxygen in the secondary combustion chamber 4 is eliminated, and the generation of unburned components can be suppressed.
  • the oxygen concentration in the exhaust gas increases, so when the oxygen concentration measured by the oxygen / carbon monoxide concentration measuring device 35a exceeds the lower threshold, the opening / closing valve 24 is throttled to the on-off valve 24.
  • changes in the properties of combustion exhaust gas can be prevented, and emission of harmful substances such as dioxins and carbon monoxide can be suppressed.
  • fluctuations in the steam flow rate of the boiler 10 can be suppressed.
  • the carbon monoxide concentration measured by the oxygen / carbon monoxide concentration measuring device 35a is the upper threshold (for example, 50 to;! OOOppm ), A signal is sent to the open / close valve 24 of the secondary air pipe 27 to open the valve more widely and increase the amount of secondary air.
  • FIG. 11 is a chart showing the timing of changing the secondary air amount with respect to the increase or decrease of the carbon monoxide concentration.
  • the secondary combustion chamber 4 is increased by increasing the amount of secondary air. Oxygen deficiency is eliminated, and generation of unburned components can be suppressed.
  • the carbon monoxide concentration in the exhaust gas decreases, so when the carbon monoxide concentration measured by the oxygen / carbon monoxide concentration measuring device 35a falls below the upper limit threshold value, the valve 24 is A signal is sent so as to reduce the secondary air amount by reducing the degree of opening. In this way, changes in the properties of the combustion exhaust gas can also be prevented by controlling based on the carbon monoxide concentration.
  • Control by exhaust gas temperature can be performed instead of or in combination with the control by oxygen concentration or carbon monoxide concentration. That is, when the value S of the exhaust gas temperature in the flue 9 shielded from the flame radiation of the stoichiometric furnace 2 measured by the exhaust gas thermometer 33 exceeds the upper threshold (for example, 650 to 800 ° C), A signal is sent to the open / close valve 24 of the secondary air pipe 27 to open the valve more widely and increase the amount of secondary air (Fig. 11).
  • the upper threshold for example, 650 to 800 ° C
  • the oxygen concentration, carbon monoxide concentration, and exhaust gas temperature are controlled based on the measured instantaneous values! /, As well as the average value (moving average) measured over a certain period of time, and the average value It is also possible to calculate the deviation from or the gradient of change, and set and control these lower and upper thresholds. By using the average value, deviation, and gradient of change in this way, it is possible to prevent excessive responses to sudden changes in oxygen concentration, carbon monoxide concentration, and exhaust gas temperature, and to further stabilize the properties of combustion exhaust gas. Can be achieved.
  • control is performed using any one of the oxygen concentration, the carbon monoxide concentration, and the exhaust gas temperature, the force S described to use one, and two or all of them. You can also. For example, by controlling to increase the amount of secondary air when two or all three of them exceed a threshold, it is possible to prevent excessive response to sudden changes and to improve the characteristics of combustion exhaust gas. Can be further stabilized. [0095] When the secondary air amount is increased, it is preferable to control so as to decrease the primary air amount at the same time. For example, a signal is sent from the combustion control device 30 to the open / close valve 26 of the primary air pipe 25 so as to narrow the valve. As a result, the combustion reaction in the 17-fire combustion chamber 3 where the combustion reaction has progressed rapidly can be suppressed, and the properties of the combustion exhaust gas can be further stabilized.
  • FIG. 12 is a schematic view showing still another embodiment of the strike-type incinerator according to the present invention.
  • the same components as those in FIG. 9 are denoted by the same reference numerals.
  • the recirculation gas extraction for extracting a part of the flue gas in the seven-fire combustion chamber 3 as the recirculation gas is included in the every seven combustion chamber 3 combustion zone. Mouth 28 is provided.
  • the recirculation gas outlet 28 is connected to the inlet 14 of the cyclone 12 via the recirculation passage 16.
  • a recirculation passage 15 is provided at the outlet of the cyclone 12, and this recirculation passage 15 is used to supply secondary air into the secondary combustion chamber 4 at an upstream portion of the secondary combustion chamber 4. Connected to blowout nozzle 19.
  • a recirculation fan 13 is provided in the recirculation passage 15, and an opening / closing valve 18 provided in front of the recirculation fan 13 is used to control the amount of combustion exhaust gas extracted from the inside of the fire combustion chamber 3 as recirculation gas. Can be adjusted.
  • the recirculation passage 15 is branched into two on the downstream side of the recirculation fan 13, and one recirculation passage 15a is connected to the blowout nozzle 19a on the drying side, and one recirculation passage 15b It is connected to the blow nozzle 19b on the hot burning zone side.
  • the branching recirculation passages 15a and 15b are provided with on-off valves 17a and 17b, respectively, and supply of recirculation gas (secondary air) through the blow nozzles 19a and 19b on the drying zone side and the combustion zone side. The amount can be changed.
  • the primary air main pipe 5 and the recirculation passage 15 are connected by a nopass pipe 40.
  • the bypass pipe 40 is provided with an open / close valve 41 for opening and closing the bypass pipe 40.
  • strike In the present embodiment, the air release damper 45 installed below is connected to the recirculation passage 16 in order to use the extracted exhaust gas as secondary air.
  • the combusted material is supplied into the strike power furnace 2 via the waste hopper 1, and the primary air from the primary air pipe 25 causes the high temperature of the waste in the 7 fire combustion chamber 3. Burned.
  • This combustion gas is further combusted at a high temperature by the recirculation gas (secondary air) supplied from the blow-off nozzles 19 and 20 in the secondary combustion chamber 4.
  • the exhaust gas after combustion in the secondary combustion chamber 4 is supplied to the boiler 10 for heat recovery and then discharged into the atmosphere through the flue 11.
  • the oxygen concentration, the carbon monoxide concentration, and the exhaust gas temperature in the exhaust gas are recovered.
  • the oxygen concentration exceeds the lower limit threshold the carbon monoxide concentration becomes lower than the upper limit threshold.
  • changes in the properties of the combustion exhaust gas can be prevented, and emission of harmful substances such as dioxins and carbon monoxide can be suppressed.
  • the force S that suppresses fluctuations in the steam flow rate of the boiler 10 is reduced.
  • the air release damper 45 when the secondary air amount is increased and the primary air amount is decreased at the same time, a signal can be sent to the air release damper 45 so as to open the damper.
  • the amount of primary air in the primary combustion chamber 3 can be instantaneously reduced, and the combustion reaction in the primary combustion chamber 3 can be quickly suppressed.
  • the gas extracted from the air release damper 45 Since the secondary air can be supplied from the discharge nozzle 19 together with the recirculation gas through the recirculation passages 16 and 15, the amount of secondary air can be increased rapidly. Therefore, it is possible to perform more responsive! / ⁇ control.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Incineration Of Waste (AREA)

Abstract

The flow rate of steam is rapidly recovered before the flow rate of steam of a boiler for the recovery of heat in an exhaust gas is significantly lowered. Even when the state of combustion within an incinerator has been rapidly changed, a change in properties of the combustion exhaust gas is suppressed. A material to be burned is introduced through a hopper into a stoker furnace. Primary air is introduced through a primary air pipe provided below the stoker, and primary combustion is carried out with primary air in a primary combustion chamber. Further, in a secondary combustion chamber above the primary combustion chamber, secondary combustion is carried out with secondary air. In recovering the heat of exhaust gas passed through the secondary combustion chamber by a boiler, when the temperature of the exhaust gas measured with a thermometer for an exhaust gas is below the lower threshold value, or when the concentration of oxygen in the exhaust gas measured in an oxygen concentration measuring device exceeds the upper threshold value, the flow rate of the primary air in its part introduced into the hopper-side stoker is increased. When the concentration of oxygen in the exhaust gas measured with an oxygen/carbon monoxide concentration measuring device is below the lower threshold value, or when the concentration of carbon monoxide exceeds the upper threshold value, or when the temperature measured with the thermometer for an exhaust gas exceeds the upper threshold value, the flow rate of the secondary air is increased.

Description

明 細 書  Specification
スト一力式焼却炉及びその燃焼制御方法  Stroke-type incinerator and its combustion control method
技術分野  Technical field
[0001] 本発明は、ごみや産業廃棄物などの被燃焼物を焼却するためのスト一力式焼却炉 及びその燃焼制御方法に関する。  TECHNICAL FIELD [0001] The present invention relates to a strike-through incinerator for incinerating combustibles such as garbage and industrial waste, and a combustion control method thereof.
背景技術  Background art
[0002] スト一力式焼却炉は、固定段と可動段の火格子を交互に配置してなるスト一力を備 え、油圧装置により可動段を往復移動させることにより、ホツバより投入されたごみ (被 燃焼物)の攪拌と前進を行いながら、スト一力の上流側に配置された乾燥帯でごみの 乾燥を行い、次の主燃焼帯で一次空気を投入しながら主燃焼を行い、最下流側の おき燃焼帯で燃え残り分のおき燃焼を行うように構成された焼却炉である。  [0002] Stroke-type incinerators are equipped with a strike force consisting of fixed-stage and movable-stage grates arranged alternately, and are moved from the hot-spot by reciprocating the movable stage using a hydraulic device. While stirring and advancing the waste (combustibles), the waste is dried in the drying zone located upstream of the strike force, and the main combustion is performed while supplying primary air in the next main combustion zone. It is an incinerator that is configured to burn every remaining amount in the most downstream combustion zone.
[0003] スト一力式焼却炉では、通常、二次燃焼室からの排ガスをボイラに導き、このボイラ において排ガス熱により蒸気を発生させて、排ガス熱を回収している。し力もながら、 焼却炉の稼動中に、この排ガス熱回収用のボイラの発生蒸気流量が低下することが ある。その原因として、低発熱量のごみが多量にスト一力上に投入された場合や、ご みホッパあるいはごみホツバとスト一力との間のごみ供給路が閉塞してスト一力上にご みが供給されてレ、なレ、場合などが挙げられる。  [0003] In a first-strength incinerator, exhaust gas from a secondary combustion chamber is usually guided to a boiler, and steam is generated by exhaust gas heat in the boiler to recover exhaust gas heat. However, the generated steam flow of the exhaust gas heat recovery boiler may decrease during operation of the incinerator. This may be caused by a large amount of low-heat generation waste being thrown into the strike, or when the waste supply path between the waste hopper or the waste hot bar and the strike is blocked, Examples include cases where only the food is supplied.
[0004] 低発熱量のごみが多量に投入された場合には、例えば、スト一力上へのごみの供 給を止めるとともに、主にスト一力の乾燥帯への一次空気量を増大させて、ごみの乾 燥、着火を待つ。また、スト一力上にごみが供給されていない場合には、例えば、ご み供給路の閉塞を解除してスト一力上にごみを投入する等の対処策が行われている 。特開 2003— 161421号公報には、ボイラの蒸気流量が低下した場合、スト一力上 の被燃焼物層の表面温度を検出し、その原因が前者なのか後者なのかを判別し、上 記の対処策を迅速かつ確実に選択して蒸気流量を回復する方法が記載されている  [0004] When a large amount of low heat generation waste is thrown in, for example, the supply of waste to the top of the strike is stopped and the primary air amount mainly to the dry zone of the strike is increased. Wait for the garbage to dry and ignite. In addition, when the waste is not supplied on the strike, countermeasures such as releasing the blockage of the waste supply path and putting the waste on the strike are taken. In Japanese Patent Laid-Open No. 2003-161421, when the steam flow rate of the boiler is reduced, the surface temperature of the burned material layer on the strike is detected, and whether the cause is the former or the latter is determined. Describes how to quickly and reliably select the corrective action to restore steam flow
[0005] しかしながら、このようなスト一力上の被燃焼物層の表面温度を検出する手段は、こ れに付随する演算手段等も含めると非常に高い費用と技術を必要とし、特に既設焼 却炉への改良として適用するためには不適当な場合がある。 [0005] However, such means for detecting the surface temperature of the combusted material layer on the strike force requires very high cost and technology, including calculation means associated therewith. It may be inappropriate to apply as an improvement to a reactor.
[0006] 一方、スト一力式焼却炉における低空気比での燃焼は、燃焼排ガス性状の安定化 およびボイラの蒸気流量の安定化に寄与する。低空気比での燃焼を実現させるため に、特開 2004— 239509号公報には、高温ガスや循環ガスを使用して燃焼空気比 を 1. 3〜; 1. 5とし、燃焼排ガス中の CO、 NOx等の有害ガスの発生量を抑制する方 法が開示されている。 [0006] On the other hand, combustion at a low air ratio in a stoichiometric incinerator contributes to stabilization of combustion exhaust gas properties and stabilization of boiler steam flow rate. In order to realize combustion at a low air ratio, Japanese Patent Application Laid-Open No. 2004-239509 describes that the combustion air ratio is set to 1.3 to 1.5 using high-temperature gas or circulating gas, and CO in the combustion exhaust gas is A method for suppressing the generation of NOx and other harmful gases is disclosed.
[0007] しかしながら、高温ガスを導入するために高温空気製造装置および/あるいは返 送排ガスのための流路の敷設が必要となり、建設コストの増大を引き起こす。また、お き燃焼帯に供給する循環排ガスを操作する制御方法のため、焼却炉稼動中に廃棄 物性状が大きく変化し、廃棄物発熱量が低下した場合には、応答性が悪ぐ燃焼排 ガス性状が大きく変化し、ボイラ蒸気流量が急激に低下し、電力供給が不安定にな  However, in order to introduce the hot gas, it is necessary to lay a flow path for the hot air production apparatus and / or the return exhaust gas, which causes an increase in construction cost. In addition, because of the control method for manipulating the circulating exhaust gas supplied to the combustion zone, if the waste properties change significantly during operation of the incinerator and the waste heat generation value decreases, the combustion exhaust gas with poor responsiveness The gas properties change greatly, the boiler steam flow rate drops rapidly, and the power supply becomes unstable.
[0008] さらに、おき燃焼帯に供給する循環排ガスを操作する制御方法のため、焼却炉稼 動中に被燃焼物の物性状が大きく変化し、被燃焼物の発熱量が低下した場合や、ス トー力上の被燃焼物層が崩落して急激に燃焼反応が進行してしまった場合には、応 答性が悪ぐ燃焼排ガスの性状が大きく変化し、ボイラ蒸気流量の急激な上昇を引き 起こし、電力供給が不安定になる。 [0008] Furthermore, because of the control method for operating the circulating exhaust gas supplied to the vertical combustion zone, when the physical properties of the combusted material greatly change during operation of the incinerator, the calorific value of the combusted material decreases, If the burned material layer on the stove force collapses and the combustion reaction proceeds rapidly, the characteristics of the flue gas with poor response will change greatly, causing a rapid increase in boiler steam flow rate. Cause power supply to become unstable.
特許文献 1 :特開 2003— 161421号公報  Patent Document 1: Japanese Unexamined Patent Publication No. 2003-161421
特許文献 2:特開 2004— 239509号公報  Patent Document 2: Japanese Patent Application Laid-Open No. 2004-239509
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0009] そこで、本発明の目的は、排ガスの熱回収を行うボイラの蒸気流量が大きく低下す る前に、迅速に蒸気流量を回復することができるスト一力式焼却炉及びその燃焼制 御方法を提供することである。 [0009] Therefore, an object of the present invention is to provide a striking-type incinerator capable of quickly recovering a steam flow before the steam flow of a boiler that performs heat recovery of exhaust gas is greatly reduced, and its combustion control. Is to provide a method.
[0010] また、本発明の別の目的は、焼却炉内の燃焼状態が急激に変化した場合であって も、燃焼排ガスの性状の変化を抑制することができる、応答性の高いスト一力式焼却 炉及びその燃焼制御方法を提供することである。 [0010] Further, another object of the present invention is a highly responsive strike force capable of suppressing changes in the properties of combustion exhaust gas even when the combustion state in the incinerator changes suddenly. An incinerator and its combustion control method are provided.
課題を解決するための手段 [0011] 本発明に係るスト一力式焼却炉の燃焼制御方法は、その一態様として、ホツバから 被燃焼物をスト一力上に投入し、このスト一力の下方より一次空気を導入して、このス トー力上方の一 7火燃焼室で前記一次空気により一 7火燃焼を行うとともに、この一 7火燃 焼室上方の二次燃焼室で二次空気により二次燃焼を行い、この二次燃焼室を経た 排ガス熱をボイラにより回収するスト一力式焼却炉の燃焼制御方法にお!/、て、前記二 次燃焼室から排出された排ガス温度が、下限閾値未満になった場合に、前記一次空 気の内、前記スト一力の前記ホッパ側に導入される一次空気の流量を増加させること を特徴とする。 Means for solving the problem [0011] The combustion control method for a stoichiometric incinerator according to the present invention has, as one aspect thereof, throwing in combustible material from hotspot onto the strike force and introducing primary air from below the strike force. Then, in the 17th combustion chamber above the stow force, the 17th combustion is performed with the primary air, and in the secondary combustion chamber above the 17th combustion chamber, the secondary combustion is performed with the secondary air. In the combustion control method of the first power incinerator that recovers the exhaust gas heat that passed through the secondary combustion chamber with a boiler! /, The exhaust gas temperature discharged from the secondary combustion chamber became less than the lower threshold value. In this case, the flow rate of the primary air introduced into the hopper side of the strike force in the primary air is increased.
[0012] このように、一 7火燃焼室および二次燃焼室の燃焼状態による直接的な影響を受け 、ボイラの蒸気流量よりも燃焼状態の変化が早期に現れる、二次燃焼室力もの排ガス 温度が、下限閾値未満になった場合に、前記一次空気の内、スト一力のホッパ側に 導入される一次空気の流量を増加させることで、蒸気流量が大きく低下する前に、ホ ツバ側のスト一力におけるごみの乾燥及び着火燃焼を促進することができる。これに より、燃焼状態が迅速に改善され、蒸気流量が早期に回復される。したがって、二次 燃焼室から排出される排ガスの温度に基づいて制御を行うことで、応答性が高ぐ蒸 気流量の変動幅を小さくすることができる。  [0012] As described above, the exhaust gas having the power of the secondary combustion chamber, which is directly influenced by the combustion state of the 17-fire combustion chamber and the secondary combustion chamber, and the change in the combustion state appears earlier than the steam flow rate of the boiler. When the temperature falls below the lower limit threshold, the primary air introduced into the first hopper side of the primary air is increased to increase the flow rate of the steam before the steam flow is greatly reduced. Therefore, it is possible to promote the drying and ignition combustion of the garbage in the first power. As a result, the combustion state is quickly improved and the steam flow rate is recovered early. Therefore, by performing control based on the temperature of the exhaust gas discharged from the secondary combustion chamber, it is possible to reduce the fluctuation range of the steam flow rate with high responsiveness.
[0013] 前記排ガス温度が第 2の下限閾値未満になった場合に、または前記二次燃焼室か ら排出される排ガス中の酸素濃度が上限閾値を超えた場合に、前記ホッパ内に敷設 されているフィーダを一定時間にわたり稼動させるとともに、前記ホッパ内における前 記被燃焼物の高さを検出し、前記一定時間における前記高さの変化が、下限値未 満になった場合に、前記ホッパ内に敷設されている閉塞解除装置を起動させ、上限 値を超えた場合に、前記フィーダの稼動を停止させることもできる。  [0013] When the exhaust gas temperature becomes lower than a second lower limit threshold, or when the oxygen concentration in the exhaust gas discharged from the secondary combustion chamber exceeds an upper limit threshold, the exhaust gas is laid in the hopper. The feeder is operated for a certain period of time, the height of the burned object in the hopper is detected, and the change in the height in the certain period of time is less than the lower limit value, the hopper It is also possible to stop the operation of the feeder when the deocclusion device installed inside is activated and the upper limit is exceeded.
[0014] このように、フィーダを一定時間にわたり稼動させ、この一定時間におけるホッパ内 の被燃焼物の高さの変化が下限値未満の場合には、ホッパ内で被燃焼物が閉塞を 起こしていること力 、閉塞を解除して被燃焼物をスト一力上に供給する。一方、前記 一定時間における前記高さの変化が上限値を超える場合には、スト一力上に被燃焼 物が供給されていることから、フィーダの稼動を停止させることで、燃焼の妨げとなる 被燃焼物の過剰供給を防ぐ。したがって、この一定時間におけるホッパ内の被燃焼 物の高さの変化に基づく制御を行うことで、排ガス温度が低下した要因又は酸素濃 度が上昇した要因が、ホッパ内の閉塞による場合であっても被燃焼物の大量供給に よる場合であっても、対応することができる。 [0014] As described above, when the feeder is operated for a certain period of time and the change in the height of the burning object in the hopper during the certain period of time is less than the lower limit value, the burning object is blocked in the hopper. The power to release the blockage and supply the combustibles on the strike. On the other hand, if the change in the height over the predetermined time exceeds the upper limit value, the combustible material is supplied on the strike, and thus stopping the feeder operation will hinder combustion. Prevent excessive supply of combustibles. Therefore, the combustion in the hopper during this fixed time By controlling based on the change in the height of the object, the cause of the exhaust gas temperature decrease or the oxygen concentration increase may be due to a large supply of combustibles even if the cause is a blockage in the hopper. Even if there is, it can respond.
[0015] 本発明に係るスト一力式焼却炉の燃焼制御方法は、別の態様として、ホツバから被 燃焼物をスト一力上に投入し、このスト一力の下方より一次空気を導入して、このスト 一力上方の一 7火燃焼室で前記一次空気により一 7火燃焼を行うとともに、この一 7火燃 焼室上方の二次燃焼室で二次空気により二次燃焼を行い、この二次燃焼室を経た 排ガス熱をボイラにより回収するスト一力式焼却炉の燃焼制御方法にお!/、て、前記二 次燃焼室から排出される排ガス中の酸素濃度が、上限閾値を超えた場合に、前記一 次空気の内、前記スト一力の前記ホッパ側に導入される一次空気の流量を増加させ ることを特徴とする。 [0015] In another aspect of the combustion control method for a strike-type incinerator according to the present invention, a combustible material is thrown into the strike force from hotspot, and primary air is introduced from below the strike force. Then, in the first seven combustion chambers above the strike, first seventeen combustions are performed using the primary air, and in the second combustion chambers above the first seven combustion chambers, second combustion is performed using secondary air. In a combustion control method of a strike-through incinerator that recovers exhaust gas heat that has passed through the secondary combustion chamber with a boiler! /, The oxygen concentration in the exhaust gas discharged from the secondary combustion chamber has an upper threshold value. When it exceeds, the flow rate of the primary air introduced into the hopper side of the strike force in the primary air is increased.
[0016] このように、一 7火燃焼室および二次燃焼室の燃焼状態による直接的な影響を受け 、ボイラの蒸気流量よりも燃焼状態の変化が早期に現れる、二次燃焼室力もの排ガス 中の酸素濃度が、上限閾値を超えた場合に、前記一次空気の内、スト一力のホッパ 側に導入される一次空気の流量を増加させることで、蒸気流量が大きく低下する前 に、ホッパ側のスト一力におけるごみの乾燥及び着火燃焼を促進することができる。こ れにより、燃焼状態が迅速に改善され、蒸気流量が早期に回復される。したがって、 二次燃焼室から排出される排ガス中の酸素濃度に基づいて制御を行うことで、応答 性が高ぐ蒸気流量の変動幅を小さくすることができる。  [0016] As described above, the exhaust gas having the power of the secondary combustion chamber, which is directly affected by the combustion state of the 17-fire combustion chamber and the secondary combustion chamber, and changes in the combustion state appear earlier than the steam flow rate of the boiler. When the oxygen concentration in the air exceeds the upper threshold, the flow rate of the primary air introduced to the hopper side of the primary force in the primary air is increased, so that the hopper It is possible to promote the drying and ignition combustion of garbage in the side strike force. As a result, the combustion state is quickly improved and the steam flow rate is recovered early. Therefore, by performing control based on the oxygen concentration in the exhaust gas discharged from the secondary combustion chamber, it is possible to reduce the fluctuation range of the steam flow rate with high responsiveness.
[0017] 前記酸素濃度が第 2の上限閾値を超えた場合に、または前記二次燃焼室力 排出 される排ガス温度が下限閾値未満になった場合に、前記ホッパ内に敷設されている フィーダを一定時間にわたり稼動させるとともに、前記ホッパ内における前記被燃焼 物の高さを検出し、前記一定時間における前記高さの変化力 下限値未満になった 場合に、前記ホッパ内に敷設されている閉塞解除装置を起動させ、上限値を超えた 場合に、前記フィーダの稼動を停止させることもできる。  [0017] When the oxygen concentration exceeds a second upper limit threshold, or when the exhaust gas temperature discharged from the secondary combustion chamber force becomes less than the lower limit threshold, a feeder laid in the hopper is provided. Operates for a certain period of time, detects the height of the combusted object in the hopper, and if the height change force in the certain period of time is less than the lower limit, the blockage laid in the hopper When the release device is activated and the upper limit is exceeded, the operation of the feeder can be stopped.
[0018] 前 2つの態様において、前記一次空気の流量を増加させる閾値の条件に加えて、 前記ボイラで発生する蒸気流量が下限閾値未満であるという条件も満たした場合に 、前記一次空気の流量を増加させる制御を行うこともできる。これにより、二次燃焼室 力、ら排出される排ガスの温度またはその酸素濃度の急激な変化に過剰に応答するこ とを防ぎ、蒸気流量の更なる安定化を図ることができる。 [0018] In the previous two aspects, in addition to the threshold condition for increasing the flow rate of the primary air, the flow rate of the primary air when the condition that the steam flow rate generated in the boiler is less than a lower limit threshold is also satisfied. It is also possible to perform control to increase the value. As a result, the secondary combustion chamber It is possible to prevent excessive response to a sudden change in the exhaust gas temperature or the oxygen concentration of the exhaust gas and further stabilize the steam flow rate.
[0019] 本発明は、別の側面として、スト一力式焼却炉であって、被燃焼物を投入するため のホツバと、このホツバから前記被燃焼物が供給されるスト一力と、このスト一力の下 方より一次空気を導入して、このスト一力上方で前記一次空気により一 7火燃焼を行う 一 7火燃焼室と、この一 7火燃焼室上方で二次空気により二次燃焼を行う二次燃焼室と 、この二次燃焼室を経た排ガス熱を回収するボイラと、前記二次燃焼室から前記ボイ ラまでの煙道内であって、前記スト一力およびそこにおける火炎からの放射に対して 遮断された箇所の排ガス温度を測定するための排ガス温度計と、この排ガス温度計 により測定された排ガス温度に基づ!/、て、前記一 7火燃焼を制御する燃焼制御装置と を備えたことを特 ί毁とする。  According to another aspect of the present invention, there is provided a striking power type incinerator, a hot rod for charging the combustible material, a striking force to which the combustible material is supplied from the hot rod, Primary air is introduced from the lower side of the strike force, and the first air is burned for 7 fires above the first strike force. A secondary combustion chamber for performing secondary combustion; a boiler for recovering heat of exhaust gas that has passed through the secondary combustion chamber; and a flue from the secondary combustion chamber to the boiler, wherein Exhaust gas thermometer for measuring the exhaust gas temperature at the place where it is blocked against radiation from the exhaust gas, and based on the exhaust gas temperature measured by this exhaust gas thermometer! A special feature is that it is equipped with a control device.
[0020] このように、二次燃焼室から排出される排ガスの温度を、二次燃焼室からボイラまで の煙道内であって、スト一力およびそこにおける火炎からの放射に対して遮断された 箇所で測定することで、スト一力や火炎からの放射の影響を受けることなぐこの排ガ スの温度を正確かつ迅速に測定することができる。したがって、この排ガス温度の測 定結果を用いて一 7火燃焼を制御することで、燃焼状態が迅速に改善され、蒸気流量 を早期に回復することができる。  [0020] In this way, the temperature of the exhaust gas discharged from the secondary combustion chamber is blocked in the flue from the secondary combustion chamber to the boiler against the strike force and the radiation from the flame there. By measuring at a location, it is possible to measure the temperature of this exhaust gas accurately and quickly without being affected by strike force or radiation from the flame. Therefore, by controlling the 17-fire combustion using the measurement result of the exhaust gas temperature, the combustion state can be quickly improved and the steam flow rate can be recovered early.
[0021] 前記二次燃焼室から排出される排ガス中の酸素濃度を測定するための酸素濃度 測定器をさらに備えることもでき、この場合、前記燃焼制御装置は、この酸素濃度測 定器により測定された酸素濃度にも基づいて、前記一 7火燃焼を制御することができる  [0021] An oxygen concentration measuring device for measuring the oxygen concentration in the exhaust gas discharged from the secondary combustion chamber may be further provided. In this case, the combustion control device measures the oxygen concentration using the oxygen concentration measuring device. The one-fire combustion can be controlled based on the oxygen concentration
[0022] 本発明に係るスト一力式焼却炉は、別の態様として、被燃焼物を投入するためのホ ツバと、このホツバから前記被燃焼物が供給されるスト一力と、このスト一力の下方より 一次空気を導入して、このスト一力上方で前記一次空気により一 7火燃焼を行う一次 燃焼室と、この一 7火燃焼室上方で二次空気により二次燃焼を行う二次燃焼室と、この 二次燃焼室を経た排ガス熱を回収するボイラと、前記二次燃焼室より下流側の煙道 内で、前記二次燃焼室力 排出される排ガス中の酸素濃度を測定するための酸素 濃度測定器と、この酸素濃度測定器により測定された酸素濃度に基づいて、前記一 7火燃焼を制御する燃焼制御装置とを備えたことを特徴とする。酸素濃度測定器は、 ボイラ出ロカ、らスト一力式焼却炉のガス排出口までの煙道内に設けることが好ましい [0022] As another aspect, the strike power incinerator according to the present invention includes a hot bar for charging the burned material, a strike force to which the burned material is supplied from the hot bar, and the strike force. Primary air is introduced from below the primary power, and the primary combustion chamber in which the primary air is burned with the primary air above the strike and the secondary combustion is carried out with the secondary air above the 17 fire combustion chamber. The oxygen concentration in the exhaust gas exhausted from the secondary combustion chamber is determined in a secondary combustion chamber, a boiler that recovers exhaust gas heat that has passed through the secondary combustion chamber, and a flue downstream from the secondary combustion chamber. Based on the oxygen concentration measuring device for measurement and the oxygen concentration measured by this oxygen concentration measuring device, 7 Combustion control device for controlling fire combustion is provided. It is preferable that the oxygen concentration measuring device is provided in the flue to the boiler outlet loca and the gas outlet of the first-stage incinerator.
[0023] このように、二次燃焼室から排出される排ガス中の酸素濃度を、二次燃焼室より下 流側の煙道内で測定することで、排ガスの温度が比較的低温に冷却されることから、 排ガス中の酸素濃度を正確かつ迅速に測定することができる。ただし、高温、高濃度 ばいじん環境下に耐え得る酸素濃度測定器を用いることができる場合は、ボイラ出口 よりも上流に設置することが好ましい。したがって、この酸素濃度の測定結果を用いて 一 7火燃焼を制御することで、燃焼状態が迅速に改善され、蒸気流量を早期に回復す ること力 Sでさる。 [0023] Thus, the temperature of the exhaust gas is cooled to a relatively low temperature by measuring the oxygen concentration in the exhaust gas discharged from the secondary combustion chamber in the flue downstream from the secondary combustion chamber. Therefore, the oxygen concentration in the exhaust gas can be measured accurately and quickly. However, if an oxygen concentration measuring device that can withstand high-temperature, high-concentration soot and dust environments can be used, it is preferable to install it upstream from the boiler outlet. Therefore, by controlling the 17-fire combustion using this oxygen concentration measurement result, the combustion state can be improved quickly, and the steam flow can be recovered quickly with the force S.
[0024] 前記二次燃焼室から前記ボイラまでの煙道内であって、前記スト一力およびそこに おける火炎からの放射に対して遮断された箇所の排ガス温度を測定するための排ガ ス温度計をさらに備えることもでき、この場合、前記燃焼制御装置は、この排ガス温度 計により測定された排ガス温度にも基づ!/、て、前記一 7火燃焼を制御することができる  [0024] An exhaust gas temperature for measuring an exhaust gas temperature in a flue from the secondary combustion chamber to the boiler, where the exhaust gas temperature is blocked by the strike force and the radiation from the flame there. In this case, the combustion control device can control the 17-fire combustion based on the exhaust gas temperature measured by the exhaust gas thermometer!
[0025] 前 2つの態様において、前記ボイラで発生する蒸気流量を測定するための蒸気流 量測定器をさらに備えることもでき、この場合、前記燃焼制御装置は、この蒸気流量 測定器により測定された蒸気流量にも基づ!/、て、前記一 7火燃焼を制御することがで きる。 [0025] In the previous two aspects, a steam flow rate measuring device for measuring a steam flow rate generated in the boiler may be further provided. In this case, the combustion control device is measured by the steam flow rate measuring device. The 17-fire combustion can be controlled based on the steam flow rate.
[0026] 本発明に係るスト一力式焼却炉の燃焼制御方法は、さらに別の態様として、ホッパ 力、ら被燃焼物をスト一力上に投入し、このスト一力の下方より一次空気を導入して、こ のスト一力上方の一次燃焼室で前記一次空気により一次燃焼を行うとともに、この一 次燃焼室上方の二次燃焼室で二次空気により二次燃焼を行い、この二次燃焼室を 経た排ガス熱をボイラにより回収するスト一力式焼却炉の燃焼制御方法にぉレ、て、前 記二次燃焼室から排出された排ガス中の酸素濃度が下限閾値未満になった場合に 、または排ガス中の一酸化炭素濃度もしくは温度が上限閾値を超えた場合に、前記 二次空気の流量を増加させることを特徴とする。  [0026] The combustion control method for a stoichiometric incinerator according to the present invention, as yet another aspect, throws in a hopper force and other combustibles on the strike force, and primary air from below the strike force. The primary combustion is performed by the primary air in the primary combustion chamber above the strike force, and the secondary combustion is performed by the secondary air in the secondary combustion chamber above the primary combustion chamber. The oxygen concentration in the exhaust gas discharged from the secondary combustion chamber has become less than the lower threshold because of the combustion control method of the first-power incinerator that recovers the exhaust gas heat that has passed through the secondary combustion chamber with a boiler. In this case, or when the concentration or temperature of carbon monoxide in the exhaust gas exceeds the upper threshold, the flow rate of the secondary air is increased.
[0027] このように、被燃焼物の発熱量が増加して着火性が向上した場合や、スト一力上の 被燃焼物層が崩落して急激に燃焼反応が進行した場合などは、酸素が不足し、不 完全燃焼により、一酸化炭素が増加し、燃焼温度が上昇する可能性があることから、 二次燃焼室からの排ガスの酸素濃度が下限閾値未満になった場合に、または一酸 化炭素濃度もしくは温度が上限閾値を超えた場合に、二次空気の流量を増加させる ことで、二次燃焼室 4での酸素不足が解消され、不完全燃焼を防ぐことができる。これ により、燃焼排ガスの性状の変化を抑制することができる。 [0027] As described above, when the calorific value of the combusted material is increased and the ignitability is improved, If the burned material layer collapses and the combustion reaction proceeds rapidly, etc., the oxygen may be insufficient, and incomplete combustion may increase carbon monoxide and increase the combustion temperature. When the oxygen concentration in the exhaust gas from the combustion chamber falls below the lower threshold, or when the carbon monoxide concentration or temperature exceeds the upper threshold, the secondary combustion chamber is increased by increasing the flow rate of the secondary air. Oxygen deficiency at 4 is resolved and incomplete combustion can be prevented. Thereby, the change of the property of combustion exhaust gas can be suppressed.
[0028] 前記二次空気の流量を増加させる際に、前記一次空気の流量を減少させることが 好ましい。この一次空気の流量減少を行うために、前記スト一力の下方に設置したダ ンパから一次空気を放出することが好ましい。また、前記二次空気の流量増加を行う ために、前記ダンバから放出した一次空気を前記二次燃焼室に前記二次空気として 導入することが好ましい。  [0028] When the flow rate of the secondary air is increased, the flow rate of the primary air is preferably decreased. In order to reduce the flow rate of the primary air, it is preferable to release the primary air from a damper installed below the strike force. In order to increase the flow rate of the secondary air, it is preferable to introduce the primary air released from the damper as the secondary air into the secondary combustion chamber.
[0029] また、前記二次燃焼室に導入する二次空気として、前記一 7火燃焼室内から抜き出 した燃焼ガスを再循環して使用するとともに、前記二次空気の流量増加を行う場合に は、この燃焼ガスを抜き出して再循環する量を増加させることが好ましい。前記二次 空気の流量増加を行う際に、前記一次空気の流量を減少させるとともに、前記二次 空気の流量増加を行うために、前記流量減少により生じた余分の一次空気を、前記 抜き出した燃焼ガスと混合して、前記二次燃焼室に前記二次空気として導入すること が好ましい。  [0029] Further, when the secondary air introduced into the secondary combustion chamber is used by recirculating the combustion gas extracted from the 17-fire combustion chamber and increasing the flow rate of the secondary air. It is preferable to increase the amount of this combustion gas extracted and recirculated. When the flow rate of the secondary air is increased, the primary air flow rate is decreased, and in order to increase the flow rate of the secondary air, excess primary air generated by the flow rate decrease is extracted and burned. It is preferable to mix with gas and introduce into the secondary combustion chamber as the secondary air.
[0030] 本発明は、別の側面として、スト一力式焼却炉であって、被燃焼物を投入するため のホツバと、このホツバから前記被燃焼物が供給されるスト一力と、このスト一力の下 方より一次空気を導入して、このスト一力上方で前記一次空気により一 7火燃焼を行う 一 7火燃焼室と、この一 7火燃焼室上方で二次空気により二次燃焼を行う二次燃焼室と 、前記スト一力およびそこにおける火炎からの放射に対して遮断された箇所の前記排 ガスの温度または酸素濃度、一酸化炭素濃度を測定するための測定器と、この測定 器で測定された酸素濃度、一酸化炭素濃度または温度に基づいて、前記二次燃焼 を制御する燃焼制御装置とを備えたことを特徴とする。  [0030] Another aspect of the present invention is a striking power type incinerator, a hot bar for charging a combusted material, a striking force to which the combusted material is supplied from the hot bar, Primary air is introduced from the lower side of the strike force, and the first air is burned for 7 fires above the first strike force. A secondary combustion chamber for performing secondary combustion, and a measuring device for measuring the temperature or oxygen concentration, carbon monoxide concentration of the exhaust gas at a location where the strike force and the radiation from the flame there are blocked from radiation And a combustion control device that controls the secondary combustion based on the oxygen concentration, carbon monoxide concentration, or temperature measured by the measuring instrument.
[0031] このように、二次燃焼室から排出される排ガスの温度を、スト一力およびそこにおけ る火炎からの放射に対して遮断された箇所で測定すること、または二次燃焼室から 排出される排ガスの酸素濃度、一酸化炭素濃度を測定することで、スト一力や火炎か らの放射の影響を受けることなぐ二次燃焼室力 排出される排ガスの温度を正確か つ迅速に測定することができる。または排ガスの酸素濃度あるいは一酸化炭素濃度 力、ら燃焼状態を正確かつ迅速に判断することができる。したがって、この測定結果を 用いて二次燃焼を制御することで、燃焼状態が早期に改善され、応答性高ぐ燃焼 排ガスの性状の変化を抑制することができる。温度の測定箇所としては、二次燃焼室 力、らボイラまでの煙道内が好ましぐ濃度の測定箇所としては、ボイラ出口から極力二 次燃焼室に近レ、位置が好まし!/、。 [0031] In this way, the temperature of the exhaust gas discharged from the secondary combustion chamber is measured at a location where it is blocked against the strike force and the radiation from the flame there, or from the secondary combustion chamber. By measuring the oxygen concentration and carbon monoxide concentration of the exhaust gas that is discharged, the secondary combustion chamber power that is not affected by the strike force or the radiation from the flame accurately and quickly determines the temperature of the exhaust gas that is discharged. Can be measured. Alternatively, it is possible to accurately and quickly determine the combustion state from the oxygen concentration or carbon monoxide concentration power of the exhaust gas. Therefore, by controlling secondary combustion using this measurement result, the combustion state can be improved at an early stage, and changes in the properties of combustion exhaust gas with high responsiveness can be suppressed. The temperature measurement location is the secondary combustion chamber force, and the preferred concentration measurement location in the flue to the boiler is as close as possible to the secondary combustion chamber from the boiler outlet! /.
[0032] 前記スト一力の下方に設置され、前記一次空気を放出するダンバをさらに備えるこ とが好ましい。また、前記ダンバと前記二次燃焼室との間に敷設され、前記ダンバか ら放出した一次空気を前記二次燃焼室に導入するための配管をさら備えることが好 ましい。 [0032] It is preferable to further include a damper installed below the strike force and discharging the primary air. Further, it is preferable that a pipe is provided between the damper and the secondary combustion chamber for introducing the primary air discharged from the damper into the secondary combustion chamber.
[0033] 前記一 7火燃焼室に設置され、前記一 7火燃焼室内の燃焼ガスを抜き出すための抜 出し口と、この抜出し口と前記二次燃焼室との間に敷設され、前記抜出し口から抜き 出した燃焼ガスを前記二次空気として前記二次燃焼室に再循環して導入するための 再循環通路とをさら備えることが好ましい。また、前記一次空気を導入するための一 次空気管と前記再循環通路との間に敷設され、前記一次空気を前記再循環通路に 導入するバイパス管をさらに備えることが好ましレ、。  [0033] An outlet that is installed in the 17 fire combustion chamber and extracts the combustion gas in the 17 fire combustion chamber, and is laid between the extraction port and the secondary combustion chamber, It is preferable to further include a recirculation passage for recirculating and introducing the combustion gas extracted from the fuel into the secondary combustion chamber as the secondary air. In addition, it is preferable to further include a bypass pipe that is laid between the primary air pipe for introducing the primary air and the recirculation passage and introduces the primary air into the recirculation passage.
発明の効果  The invention's effect
[0034] このように本発明によれば、排ガスの熱回収を行うボイラの蒸気流量が大きく低下 する前に、迅速に蒸気流量を回復することができるスト一力式焼却炉及びその燃焼 制御方法を提供することができる。  [0034] Thus, according to the present invention, a strut-type incinerator capable of quickly recovering the steam flow rate before the steam flow rate of the boiler that performs heat recovery of the exhaust gas is greatly reduced, and a combustion control method thereof Can be provided.
[0035] また、本発明によれば、焼却炉内の燃焼状態が急激に変化した場合であっても、 燃焼排ガスの性状の変化を抑制することができる、応答性の高レ、スト一力式焼却炉 及びその燃焼制御方法を提供することができる。 [0035] Further, according to the present invention, even when the combustion state in the incinerator is suddenly changed, it is possible to suppress the change in the properties of the combustion exhaust gas, and the response is high. An incinerator and its combustion control method can be provided.
図面の簡単な説明  Brief Description of Drawings
[0036] [図 1]本発明に係るスト一力式焼却炉の一実施形態を全体的に示す模式図である。  [0036] FIG. 1 is a schematic view generally showing an embodiment of a strike-type incinerator according to the present invention.
[図 2]図 1に示すスト一力式焼却炉のホッパ部を拡大して示す模式図である。 [図 3]蒸気流量又は排ガス温度の増減に対して一次空気量を変化させるタイミングを 示すチャートである。 FIG. 2 is a schematic view showing an enlarged hopper portion of the strike-type incinerator shown in FIG. 1. FIG. 3 is a chart showing the timing of changing the primary air amount with respect to increase / decrease in steam flow rate or exhaust gas temperature.
[図 4]判定時間におけるホッパ内のごみの高さレベルの変化を示すグラフである。  FIG. 4 is a graph showing a change in the height level of dust in the hopper at a judgment time.
[図 5]判定時間におけるホッパ内のごみの高さレベルの変化を示すグラフである。  FIG. 5 is a graph showing the change in the height level of dust in the hopper at the judgment time.
[図 6]蒸気流量又は排ガス温度の増減に対して給塵、閉塞解除、一次空気量増加を 行うタイミングを示すチャートである。  FIG. 6 is a chart showing the timing for performing dust supply, deocclusion, and increase in primary air volume as the steam flow rate or exhaust gas temperature increases or decreases.
[図 7]—次空気量増加とごみホツバの制御の一例を示すフローチャートである。  FIG. 7 is a flowchart showing an example of an increase in the next air amount and control of the garbage hot bar.
[図 8]—次空気量増加とごみホツバの制御の別の例を示すフローチャートである。  FIG. 8 is a flowchart showing another example of the increase in the next air amount and the control of the garbage hot bar.
[図 9]本発明に係るスト一力式焼却炉の別の実施形態を示す模式図である。  FIG. 9 is a schematic view showing another embodiment of a strike-force incinerator according to the present invention.
[図 10]酸素濃度の増減に対して二次空気量を変化させるタイミングを示すチャートで ある。  FIG. 10 is a chart showing the timing of changing the amount of secondary air as the oxygen concentration increases or decreases.
[図 11]一酸化炭素濃度又は排ガス温度の増減に対して二次空気量を変化させるタイ ミングを示すテャートである。  FIG. 11 is a chart showing the timing for changing the amount of secondary air as the carbon monoxide concentration or exhaust gas temperature increases or decreases.
[図 12]本発明に係るスト一力式焼却炉の更に別の実施形態を示す模式図である。 発明を実施するための最良の形態  FIG. 12 is a schematic view showing still another embodiment of a strike-force incinerator according to the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
[0037] 以下、添付図面を参照して、本発明に係るスト一力式焼却炉及びその運転方法の 実施の形態について説明する。  Hereinafter, with reference to the accompanying drawings, embodiments of a strike-type incinerator and an operation method thereof according to the present invention will be described.
[0038] 図 1は、本発明に係るスト一力式焼却炉の一実施形態を全体的に示す模式図であ る。図 2は、図 1に示すスト一力式焼却炉のホッパ部を拡大して示す模式図である。図 1に示すように、本実施の形態のスト一力式焼却炉は、ごみや産業廃棄物等の被燃 焼物が投入されるごみホッパ 1と、このホツバから供給されたごみを攪拌、前進させな がら乾燥、燃焼するスト一力炉 2と、このスト一力炉からの排ガスで蒸気を発生せしめ るボイラ 10と、このボイラでの蒸気流量を安定して発生させるためにスト一力炉で燃 焼を制御する燃焼制御装置 30とから主に構成されている。  [0038] FIG. 1 is a schematic diagram showing an overall embodiment of a strike-force incinerator according to the present invention. FIG. 2 is an enlarged schematic view showing the hopper portion of the strike-type incinerator shown in FIG. As shown in Fig. 1, the strike-through incinerator of this embodiment stirs and advances the waste hopper 1 into which combustible materials such as waste and industrial waste are put, and the waste supplied from this hot bar. In addition, the stoichiometric furnace 2 that dries and burns, the boiler 10 that generates steam from the exhaust gas from the stoichiometric furnace, and the stoichiometric furnace to stably generate steam flow in the boiler. It is mainly composed of a combustion control device 30 that controls combustion.
[0039] スト一力炉 2には、その炉内底部に、主として乾燥帯を構成する乾燥帯スト一力 21と 、主として燃焼帯を構成する主燃焼帯スト一力 22と、主としておき燃焼帯を構成する おき燃焼帯スト一力 23とが敷設されている。乾燥帯スト一力 21は、ごみホッパ 1からの 投入口に対して最上流側に位置し、主燃焼帯スト一力 22は乾燥帯スト一力 21の下 流側に位置し、おき燃焼帯スト一力 23は主燃焼帯スト一力 22の下流で最下流側に 位置している。ここで、主燃焼帯とは、ごみ層上で火炎を上げて燃えている領域を指 している。 [0039] The strike power furnace 2 includes a dry zone strike force 21 mainly constituting a dry zone, a main combustion zone strike force 22 mainly constituting a combustion zone, and a main combustion zone at the bottom of the furnace. A striking power of 23 is laid. The dry zone strike 21 is located on the uppermost stream side with respect to the inlet from the waste hopper 1, and the main combustion zone strike 22 is below the dry zone strike 21. Located on the flow side, the vertical combustion zone strike force 23 is located downstream of the main combustion zone strike force 22 and on the most downstream side. Here, the main combustion zone refers to the area where the flame is raised and burned on the dust layer.
[0040] 前記各スト一力 21、 22、 23は、固定火格子の間に配設した移動火格子を備え、移 動火格子の往復運動によりごみ (被燃焼物)を投入した後、ごみをスト一力 21で乾燥 し、スト一力 22で主燃焼を行い、最後にスト一力 23でおき燃焼を行うものである。なお 、本実施形態では燃焼帯スト一力 22は 3個であるが、 1個でも複数個でもよい。おき 燃焼帯スト一力 23の下流側には灰ホッパシュート 8が敷設されている。また、スト一力 21、 22、 23の上方には一次燃焼室 3が設けられ、更にその上方には二次燃焼室 4 が設けられている。  [0040] Each strike force 21, 22, 23 is provided with a moving grate disposed between fixed grate, and after the garbage (burning object) is thrown in by reciprocating movement of the moving grate, Is dried with a strike of 21 and main combustion is performed with a strike of 22. Finally, the strike is performed with a strike of 23. In this embodiment, the number of combustion zone strikes 22 is three, but may be one or more. An ash hopper chute 8 is laid downstream of the combustion zone strike 23. Further, a primary combustion chamber 3 is provided above the strike forces 21, 22, and 23, and a secondary combustion chamber 4 is further provided thereabove.
[0041] 乾燥帯スト一力 21、主燃焼帯スト一力 22、おき燃焼帯スト一力 23には、それらの下 部の風箱に開口する一次空気管 25がそれぞれ配設されている。これら一次空気管 2 5は、一次空気主管 5から分配されており、この一次空気主管 5には一次空気供給用 の押込送風機 (ファン) 6と蒸気式空気予熱器(SAH)が設置されて!/、る。すなわち、 ファン 6から圧送された一次空気は、一次空気主管 5を通って予熱された後、一次空 気管 25から各スト一力 21、 22、 23に供給されるように構成されている。また、一次空 気管 25内には、これらを開閉する開閉弁 26またはオリフィスがそれぞれ設けられ、一 次空気主管 5内には、これを開閉する開閉弁 7が設けられている。  [0041] The dry zone strike force 21, the main combustion zone strike force 22, and the extra combustion zone strike force 23 are each provided with a primary air pipe 25 that opens to the lower wind box. These primary air pipes 25 are distributed from the primary air main pipe 5, and the primary air main pipe 5 is provided with a pusher fan (fan) 6 for supplying primary air and a steam air preheater (SAH)! / That is, the primary air pressure-fed from the fan 6 is preheated through the primary air main pipe 5 and then supplied to the strike forces 21, 22, and 23 from the primary air pipe 25. Further, an opening / closing valve 26 or an orifice for opening / closing them is provided in the primary air pipe 25, and an opening / closing valve 7 for opening / closing this is provided in the primary air main pipe 5.
[0042] 二次燃焼室 4の排ガス出口とボイラ 10の排ガス入口とは、煙道 9を介して接続され ている。この煙道 9は、煙道 9内をスト一力 21、 22、 23およびスト一力炉 2の火炎の放 射から遮断した状態になっており、すなわち、 U字型の形状の通路となっている。この 煙道 9内には、二次燃焼室 4からの排ガスの温度を測定するための排ガス温度計 33 (例えば、赤外線高温計)が設置されている。このように、火炎の放射から遮断された 箇所に排ガス温度計 33を設けることで、排ガスの温度を早期かつ正確に測定するこ と力 Sできる。また、ボイラ 10には、ボイラ 10で発生した蒸気流量を測定する蒸気流量 測定器 31が設けられている。  [0042] The exhaust gas outlet of the secondary combustion chamber 4 and the exhaust gas inlet of the boiler 10 are connected via a flue 9. The flue 9 is in a state where the inside of the flue 9 is shielded from the flame radiation of the strike force 21, 22, 23 and the strike power furnace 2, that is, a U-shaped passage. ing. An exhaust gas thermometer 33 (for example, an infrared pyrometer) for measuring the temperature of the exhaust gas from the secondary combustion chamber 4 is installed in the flue 9. In this way, by providing the exhaust gas thermometer 33 at a location where it is shielded from the radiation of the flame, it is possible to measure the temperature of the exhaust gas quickly and accurately. Further, the boiler 10 is provided with a steam flow rate measuring device 31 for measuring the flow rate of the steam generated in the boiler 10.
[0043] ボイラ 10の排ガス出口には、煙道 11が設けられており、この煙道 11の出口には、 排ガス中の酸素濃度を測定するための酸素濃度測定器 35が設置されている。このよ うに酸素濃度測定器 35をボイラ 10排ガス出口に設置することで、排ガス温度が 200 〜300°Cと低下していることから、酸素濃度を長期に正確に測定することができる。た だし、高温、高濃度ばいじん環境下に耐え得る酸素濃度測定器を用いることができる 場合には、ボイラ 10の排ガス出口よりも上流に設置することができる。さらに煙道 11 の排ガス下流側には、排ガスを降温するための減温塔(図示省略)と、排ガス中から 飛灰等を取り除くためのバグフィルタ(図示省略)と、排ガスを外気へと排出するため の煙突(図示省略)とが順次敷設されて!、る。 [0043] A flue 11 is provided at the exhaust gas outlet of the boiler 10, and an oxygen concentration measuring device 35 for measuring the oxygen concentration in the exhaust gas is installed at the outlet of the flue 11. This In other words, by installing the oxygen concentration measuring device 35 at the boiler 10 exhaust gas outlet, the exhaust gas temperature is lowered to 200 to 300 ° C., so that the oxygen concentration can be accurately measured over a long period of time. However, if an oxygen concentration measuring device that can withstand high-temperature and high-concentration dust environments can be used, it can be installed upstream of the exhaust gas outlet of the boiler 10. Further, on the downstream side of the flue gas 11, a temperature reducing tower (not shown) for cooling the exhaust gas, a bag filter (not shown) for removing fly ash etc. from the exhaust gas, and exhaust gas are discharged to the outside air. A chimney (not shown) is laid in order.
[0044] 一 7火燃焼室 3のおき燃焼帯には、一 7火燃焼室 3内の燃焼排ガスの一部を再循環ガ スとして抜き出すための再循環ガス抜出し口 28が設けられている。この再循環ガス抜 出し口 28は、再循環通路 16を介してサイクロン 12の入口 14に接続されている。サイ クロン 12の出口には再循環通路 15が設けられており、この再循環通路 15は、二次 燃焼室 4の上流部位で二次燃焼室 4内に二次空気を供給するための吹出しノズル 1 9に接続している。再循環通路 15には再循環ファン 13が設けられており、この再循 環ファン 13の手前に設けられた開閉弁 18により、一 7火燃焼室 3内力も燃焼排ガスを 再循環ガスとして抜き出す量を調整することができる。  [0044] A recirculation gas extraction port 28 for extracting a part of the flue gas in the seven-fire combustion chamber 3 as a recirculation gas is provided in the every other combustion zone of the seven-fire combustion chamber 3. The recirculation gas outlet 28 is connected to the inlet 14 of the cyclone 12 via the recirculation passage 16. A recirculation passage 15 is provided at the outlet of the cyclone 12, and this recirculation passage 15 is an outlet nozzle for supplying secondary air into the secondary combustion chamber 4 at an upstream portion of the secondary combustion chamber 4. 1 9 is connected. A recirculation fan 13 is provided in the recirculation passage 15, and the on-off valve 18 provided in front of the recirculation fan 13 is used to extract the combustion exhaust gas as recirculation gas by the internal combustion chamber 3. Can be adjusted.
[0045] 吹出しノズル 19は、二次燃焼室 4の乾燥帯側とおき燃焼帯側にそれぞれ設けられ ている。また、再循環通路 15は、再循環ファン 13の下流側で 2本に分岐しており、 1 本の再循環通路 15aは乾燥側の吹出しノズル 19aに接続され、 1本の再循環通路 15 bはおき燃焼帯側の吹出しノズル 19bに接続されている。分岐した再循環通路 15a、 15bには、それぞれ開閉弁 17が設けられており、乾燥帯側とおき燃焼帯側の吹出し ノズル 19a、 19bで、二次空気の供給量を変えることができる。なお、乾燥帯側とおき 燃焼帯側の吹出しノズル 19a、 19bは、それぞれガス流に沿って二次燃焼室 4に複 数段設けてもよぐその場合、その数に合わせて再循環通路 15を分岐する。  [0045] The blow-out nozzles 19 are provided on the combustion zone side and the drying zone side of the secondary combustion chamber 4, respectively. In addition, the recirculation passage 15 is branched into two on the downstream side of the recirculation fan 13, and one recirculation passage 15a is connected to the blowing nozzle 19a on the drying side, and one recirculation passage 15b. It is connected to the blow nozzle 19b on the side of the hot combustion zone. The branching recirculation passages 15a and 15b are each provided with an open / close valve 17, and the supply amount of secondary air can be changed by the blowout nozzles 19a and 19b on the combustion zone side. Note that multiple nozzles 19a and 19b on the drying zone side and on the combustion zone side may be provided in the secondary combustion chamber 4 along the gas flow. Fork.
[0046] ごみホッパ 1には、図 2に示すように、ホッパ傾斜内壁に閉塞解除装置 41が敷設さ れている。閉塞解除装置 41としては、例えば、ハンマによりホッパ傾斜内壁を叩き、 ホッパ内でブリッジ又はアーチングを起こして詰まったごみを払い落とす機構がある。 また、ごみホッパ 1の底部には、往復運動により底部のごみ 46をスト一力炉 2内へと押 し出す給塵装置 (フィーダ) 43が敷設されている。さらに、ごみホッパ 1の上方には、 ホッパ内のごみ 46の高さを検出するための高さ検出器 37が設置されている。この高 さ検出器 37としては、レーザあるいは超音波 38をごみ 46の表面に照射し、反射した レーザを受光あるいは超音波を検出してごみ表面との距離を測定することができる非 接触式のものが好ましい。 [0046] As shown in FIG. 2, the garbage hopper 1 is provided with a blocking release device 41 on the inclined hopper inner wall. As the closure release device 41, for example, there is a mechanism for hitting a hopper inclined inner wall with a hammer and causing a bridge or arching in the hopper to remove the clogged dust. In addition, a dust supply device (feeder) 43 for pushing the dust 46 at the bottom into the strike furnace 2 by reciprocating motion is laid at the bottom of the garbage hopper 1. Furthermore, above the garbage hopper 1, A height detector 37 is installed to detect the height of the dust 46 in the hopper. The height detector 37 is a non-contact type that can irradiate the surface of the dust 46 with a laser or ultrasonic wave 38 and receive the reflected laser or detect the ultrasonic wave to measure the distance to the dust surface. Those are preferred.
[0047] 蒸気流量測定器 31、排ガス温度計 33、酸素濃度測定器 35、高さ検出器 37は、そ れぞれ測定した値を燃焼制御装置 30へと信号として送信できるように、燃焼制御装 置 30と電気的に接続されている。また、燃焼制御装置 30は、一次空気管 25ゃ再循 環通路 15等の各開閉弁 17、 18、 26の開度を個別に調整したり、閉塞解除装置 41 および給塵装置 43の各起動および停止を行ったり制御できるように、各開閉弁 17、 18、 26、閉塞解除装置 41、給塵装置 43とそれぞれ電気的に接続されている。  [0047] The steam flow measuring device 31, the exhaust gas thermometer 33, the oxygen concentration measuring device 35, and the height detector 37 can control the combustion so that the measured values can be transmitted to the combustion control device 30 as signals. It is electrically connected to device 30. In addition, the combustion control device 30 individually adjusts the opening degree of each on-off valve 17, 18, 26 such as the primary air pipe 25 or the recirculation passage 15 or activates each of the clogging release device 41 and the dust supply device 43. In addition, the on-off valves 17, 18, 26, the clogging release device 41, and the dust supply device 43 are electrically connected to each other so that they can be stopped and controlled.
[0048] 以上の構成によれば、先ず、ごみホッパ 1に被燃焼物としてごみ 46が投入されると 、ごみ 46は間欠的に往復運動する給塵装置 43によりスト一力炉 2内へと供給される。 また、スト一力炉 2内の乾燥帯スト一力 21、主燃焼帯スト一力 22、おき燃焼帯スト一力 23には、一次空気管 25を介してそれぞれ一次空気が供給され、これにより一 7火燃焼 室 3でごみが高温燃焼される。  [0048] According to the above configuration, first, when the waste 46 is put into the waste hopper 1 as a combustible, the waste 46 is moved into the strike furnace 2 by the dust supply device 43 that reciprocally moves back and forth. Supplied. Also, the primary air is supplied to the dry zone strike force 21, the main combustion zone strike force 22 and the alternate combustion zone strike force 23 in the strike power furnace 2 through the primary air pipe 25, respectively. 1 7 Fire combustion chamber 3 burns high temperature waste.
[0049] この燃焼ガスは、二次燃焼室 4において再循環ガス吹出しノズル 19、 20から供給さ れる二次空気によって、更なる高温燃焼がなされて完全燃焼される。二次燃焼室 4に て燃焼後の排ガスは、煙道 9を介してボイラ 10に供給され、蒸気を発生させることに よって熱回収をした後、煙道 11を通って大気中に排出される。また、おき燃焼帯スト 一力 23での燃焼後の灰は、灰ホッパシュート 8で捕集されて排出される。  [0049] This combustion gas is further combusted at a higher temperature by the secondary air supplied from the recirculation gas blowing nozzles 19 and 20 in the secondary combustion chamber 4. Exhaust gas after combustion in the secondary combustion chamber 4 is supplied to the boiler 10 through the flue 9, and after heat recovery by generating steam, it is discharged into the atmosphere through the flue 11. . Also, the ash after combustion in the strike zone 23 is collected by the ash hopper chute 8 and discharged.
[0050] (一次空気量の増加制御)  [0050] (Increase control of primary air volume)
ここで、蒸気流量測定器 31で測定しているボイラ 10の蒸気流量の値が、下限閾値 (例えば 80t/h)未満に低下した場合、この蒸気を利用した電力供給量も低下してし まう。そこで、電力供給を安定化するために、燃焼制御装置 30では、蒸気流量が下 限閾値未満になった場合、乾燥帯スト一力 21及び必要により上流側の主燃焼帯スト 一力 22の一次空気管 25の開閉弁 26に、弁をより大きく開いて一次空気量を増加さ せるように信号を送る。  Here, if the steam flow value of the boiler 10 measured by the steam flow measuring device 31 falls below the lower threshold (for example, 80 t / h), the power supply using this steam will also fall. . Therefore, in order to stabilize the power supply, in the combustion control device 30, when the steam flow rate is lower than the lower threshold, the primary pressure in the dry zone 21 and the upstream primary combustion zone 22 in the upstream are necessary. A signal is sent to the open / close valve 26 of the air pipe 25 to open the valve more widely and increase the primary air volume.
[0051] 図 3は、蒸気流量の増減に対して一次空気量を変化させるタイミングを示すチヤ一 トである。図 3に示すように、一次空気量を増加させることで、乾燥帯スト一力 21及び 上流側の主燃焼帯スト一力 22におけるごみの乾燥及び着火燃焼が促進されることか ら、ボイラ 10での蒸気流量を設定値 (例えば 100t/h)に回復することができる。また 、蒸気流量が上限閾値 (例えば 120t/h)以上になった場合は、上記の開閉弁 26に 、弁の開度を絞って一次空気量を元に戻すように信号を送る。これにより、蒸気流量 を所定の範囲内に制御することができ、電力供給を安定化することができる。 [0051] FIG. 3 is a chart showing the timing of changing the primary air amount with respect to increase and decrease of the steam flow rate. Is. As shown in Figure 3, increasing the primary air volume promotes the drying and ignition combustion of waste in the dry zone strike force 21 and the upstream main combustion zone strike force 22. The steam flow at can be restored to the set value (eg 100t / h). Further, when the steam flow rate becomes equal to or higher than the upper threshold (for example, 120 t / h), a signal is sent to the on-off valve 26 so as to reduce the primary air amount by reducing the valve opening. Thereby, the steam flow rate can be controlled within a predetermined range, and the power supply can be stabilized.
[0052] (ごみホツバの制御)  [0052] (Control of Garbage Hotsoba)
また、燃焼制御装置 30は、蒸気流量が下限閾値未満になった場合、給塵装置 43 に所定の判定時間(例えば 2、 3分から 10分程度)にわたり連続運転するように信号 を送る。これによりごみが供給される。一方、ごみホッパ 1内でブリッジ等が発生してい る場合は、給塵装置 43がいわゆる空打ち状態となり、このように給塵装置 43を連続 的に運転しても、スト一力炉 2内にごみは供給されない。  In addition, when the steam flow rate becomes less than the lower threshold, the combustion control device 30 sends a signal to the dust supply device 43 so as to continuously operate for a predetermined determination time (for example, about 2-3 minutes to 10 minutes). As a result, garbage is supplied. On the other hand, when a bridge or the like is generated in the waste hopper 1, the dust supply device 43 is in a so-called idle driving state, and even if the dust supply device 43 is continuously operated in this manner, No garbage is supplied.
[0053] さらに、燃焼制御装置 30は、この判定時間の間、高さ検出器 37で測定したごみホ ッパ 1内のごみ 46の高さレベルを一定の時間間隔で受信し、この判定時間における 高さレベルの変化を算出する。図 4及び図 5は、この判定時間におけるごみ 46の高さ レベルの変化を示すグラフである。  [0053] Further, during this determination time, the combustion control device 30 receives the height level of the dust 46 in the garbage hopper 1 measured by the height detector 37 at regular time intervals. Calculate the change in height level at. 4 and 5 are graphs showing changes in the height level of the waste 46 during this determination time.
[0054] 判定時間の間に高さレベルが大きく低下しなかった場合(図 4)、燃焼制御装置 30 は、ごみホッパ 1内でごみがブリッジまたはアーチングを形成していると判定し、ごみ ホッパ 1内の閉塞を解除するように、閉塞解除装置 41に起動信号を送る。これにより ブッリジ等の閉塞が解除され、ごみがホッパ 1の底部へと払い落とされる。そして、連 続運転する給塵装置 43によってごみがスト一力炉 2内に供給される。乾燥帯スト一力 21及び上流側の主燃焼帯スト一力 22では、一次空気量が増加されているので、新 たに供給されたごみの乾燥及び着火燃焼を促進し、蒸気流量を回復することができ  [0054] If the height level does not drop significantly during the determination time (Fig. 4), the combustion control device 30 determines that the garbage forms a bridge or an arch in the garbage hopper 1, and the garbage hopper An activation signal is sent to the closure release device 41 so as to release the closure within 1. As a result, the blockage of the bridge and the like is released, and the dust is wiped off to the bottom of the hopper 1. Then, the dust is supplied into the stoichiometric furnace 2 by the dust supply device 43 that is continuously operated. In the dry zone strike 21 and the upstream main combustion zone strike 22 the primary air volume is increased, drying and ignition combustion of newly supplied waste is promoted, and the steam flow is restored. It is possible
[0055] 一方、判定時間の間に高さレベルが大きく低下した場合(図 5)、燃焼制御装置 30 は、スト一力炉 2内にごみが大量に供給されていると判定し、これ以上ごみが供給さ れるのを防止するために、給塵装置 43に強制停止の信号を送る。これにより、スト一 カ炉 2内の燃焼の妨げとなるごみの過剰供給を防ぐことができる。乾燥帯スト一力 21 及び上流側の主燃焼帯スト一力 22では、一次空気量が増加されているので、大量に 供給されたごみの乾燥及び着火燃焼を促進し、蒸気流量を回復することができる。 [0055] On the other hand, when the height level greatly decreases during the determination time (Fig. 5), the combustion control device 30 determines that a large amount of garbage is being supplied into the stoichiometric furnace 2, and no more In order to prevent the dust from being supplied, a forced stop signal is sent to the dust supply device 43. As a result, it is possible to prevent an excessive supply of waste that hinders combustion in the stove furnace 2. Dry belt strike 21 And in the main combustion zone strike force 22 on the upstream side, the amount of primary air is increased, so that drying and ignition combustion of wastes supplied in large quantities can be promoted, and the steam flow rate can be recovered.
[0056] このように、給塵装置 43を運転している間のごみの高さレベルの変化に基づいて 制御を行うことで、蒸気流量が低下した要因がごみホッパ 1内の閉塞によりごみの供 給が滞って!/、る場合と発熱量の低!/、ごみが大量に供給され過ぎて燃焼反応が進行 しに《なっている場合との両者に対しても対応することができる。  [0056] In this way, by controlling based on the change in the height level of the dust while the dust supply device 43 is operating, the cause of the decrease in the steam flow rate is caused by the blockage in the dust hopper 1. It is possible to deal with both cases where the supply is stagnant! /, Where the calorific value is low! /, And where there is too much dust being supplied and the combustion reaction is progressing.
[0057] (排ガス温度による制御)  [0057] (Control by exhaust gas temperature)
上記の蒸気流量による制御に替えて又は併用して、排ガス温度による制御を行うこ とができる。すなわち、排ガス温度計 33で測定するスト一力炉 2の火炎の放射から遮 断された煙道 9内の排ガス温度の値が、下限閾値 (例えば 600°C)未満に低下した場 合に、乾燥帯スト一力 21及び必要により上流側の主燃焼帯スト一力 22の一次空気管 25の開閉弁 26に、弁をより大きく開いて一次空気量を増加させるように信号を送る( 図 3)。  Control by exhaust gas temperature can be performed in place of or in combination with the control by steam flow described above. That is, when the exhaust gas temperature value in the flue 9 that is shielded from the flame radiation of the stoichiometric furnace 2 measured by the exhaust gas thermometer 33 falls below the lower threshold (for example, 600 ° C), A signal is sent to the opening / closing valve 26 of the primary air pipe 25 of the dry zone strike force 21 and, if necessary, the main combustion zone strike force 22 on the upstream side to open the valve more widely and increase the primary air amount (Fig. 3). ).
[0058] この煙道 9内の排ガス温度は、スト一力炉 2内の燃焼温度による直接的な影響を受 けることから、ボイラ 10の蒸気流量よりも燃焼状態の変化が早期に現れ、よって、蒸 気流量に基づく制御よりも、より応答性の高い制御を行うことができる。すなわち、乾 燥帯スト一力 21及び上流側の主燃焼帯スト一力 22において、一次空気量を増加さ せることで、ごみの乾燥及び着火燃焼が促進され、燃焼温度が上昇し、排ガス温度 を設定値 (例えば 650°C)へ迅速に回復させることができる。また、排ガス温度が上限 閾値 (例えば 700°C)を超えた場合は、開閉弁 26に一次空気量を元に戻すように信 号を送ることで、排ガス温度を設定値に迅速に回復させることができる。このように、 排ガス温度に基づいて制御することで、蒸気流量の変動幅を小さくすることができる  [0058] Since the exhaust gas temperature in the flue 9 is directly affected by the combustion temperature in the stoichiometric furnace 2, the change in the combustion state appears earlier than the steam flow rate in the boiler 10, and therefore Therefore, it is possible to perform control with higher responsiveness than control based on the steam flow rate. That is, by increasing the primary air amount in the dry zone strike force 21 and the upstream main combustion zone strike force 22, the drying and ignition combustion of the waste is promoted, the combustion temperature rises, and the exhaust gas temperature increases. Can be quickly restored to a set point (eg 650 ° C). In addition, when the exhaust gas temperature exceeds the upper threshold (for example, 700 ° C), a signal is sent to the on-off valve 26 to restore the primary air amount, thereby quickly recovering the exhaust gas temperature to the set value. Can do. Thus, by controlling based on the exhaust gas temperature, the fluctuation range of the steam flow rate can be reduced.
[0059] なお、排ガス温度計 33で測定する排ガス温度は、測定した瞬間の温度に基づ!/、て 制御する他に、一定時間にわたって測定した平均値や、その平均値との偏差、また は変化の勾配を算出して、これらの下限閾値および上限閾値を設定して制御するこ ともできる。このように平均値、偏差、移動平均を用いることで、排ガス温度の急激な 変化に対して過剰に応答することを防ぎ、蒸気流量の更なる安定化を図ることができ [0060] また、この排ガス温度に基づいても、上述したごみホッパ 1の制御を行うことができる 。すなわち、排ガス温度が下限閾値未満になった場合、燃焼制御装置 30は、給塵装 置 43に判定時間にわたって連続運転するように信号を送るとともに、この判定時間 の間、高さ検出器 37で測定したごみの高さレベルを一定の時間間隔で受信し、この 判定時間における高さレベルの変化を算出する。そして、高さレベルが大きく低下し なかった場合(図 4)、閉塞解除装置 41に起動信号を送り、高さレベルが大きく低下 した場合(図 5)、給塵装置 43に強制停止の信号を送る。 [0059] The exhaust gas temperature measured by the exhaust gas thermometer 33 is controlled based on the temperature at the moment of measurement! In addition to the average value measured over a certain time, the deviation from the average value, Can calculate the slope of the change and set and control these lower and upper thresholds. By using average values, deviations, and moving averages in this way, it is possible to prevent excessive response to sudden changes in exhaust gas temperature and further stabilize the steam flow rate. [0060] Also, the above-described control of the waste hopper 1 can be performed based on the exhaust gas temperature. That is, when the exhaust gas temperature falls below the lower limit threshold, the combustion control device 30 sends a signal to the dust supply device 43 to continuously operate over the determination time, and during this determination time, the height detector 37 The measured garbage height level is received at regular time intervals, and the change in height level during this judgment time is calculated. If the height level does not drop significantly (Fig. 4), a start signal is sent to the closure release device 41, and if the height level drops significantly (Fig. 5), a forced stop signal is sent to the dust supply device 43. send.
[0061] これにより、排ガス温度が低下した要因がごみホッパ 1内の閉塞による場合であって も、低発熱量のごみの大量供給による場合であっても、乾燥帯スト一力 21及び上流 側の主燃焼帯スト一力 22において、一次空気量が増加されていることから、閉塞解 除により新たに供給されたごみ又は大量に供給された低発熱量のごみの乾燥及び 着火燃焼が促進されて、燃焼温度が上昇することから、排ガス温度を迅速に回復す ること力 Sでさる。  [0061] Thereby, even if the cause of the decrease in the exhaust gas temperature is due to the blockage in the waste hopper 1 or due to the large amount of low heat generation waste, the dry zone strike 21 and the upstream side In the main combustion zone strike 22 of the No. 1, the amount of primary air is increased, which accelerates the drying and ignition combustion of newly supplied waste or low calorific value supplied waste due to deocclusion. As the combustion temperature rises, the power S can quickly recover the exhaust gas temperature.
[0062] 図 6は、上述した一次空気量を増加する制御とごみホツバの制御とを同時に行う場 合の一例を示すタイミングチャートであり、図 7は、そのフローチャートである。図 6に 示すように、蒸気流量または排ガス温度の上限および下限の閾値については、一次 空気量増加用と給塵用とで別々に設定する。この場合、給塵用の閾値を、一次空気 量増加用の閾値よりも設定値に近レ、値とすることが好ましレ、。  FIG. 6 is a timing chart showing an example of the case where the above-described control for increasing the primary air amount and the garbage hot bar control are simultaneously performed, and FIG. 7 is a flowchart thereof. As shown in Fig. 6, the upper and lower thresholds of the steam flow or exhaust gas temperature are set separately for the primary air volume increase and for dust supply. In this case, it is preferable to set the threshold value for dust supply closer to the set value than the threshold value for increasing the primary air amount.
[0063] 図 6及び図 7に示すように、先ず、燃焼制御装置 30は、蒸気流量測定器 31で測定 した蒸気流量または排ガス温度計 33で測定した排ガス温度の信号 aを受信し、この 信号 aが給塵用の下限閾値よりも低いかどうか比較する。そして、給塵用の下限閾値 よりも低い場合、給塵装置 43に連続運転するように信号を送る。また、信号 aがー次 空気増加用の下限閾値よりも低いかどうかも比較し、一次空気増加用の下限閾値よ りも低い場合、乾燥帯スト一力 21及び必要により上流側の主燃焼帯スト一力 22の開 閉弁 26に弁をより開くように信号を送る。  [0063] As shown in Figs. 6 and 7, first, the combustion control device 30 receives the signal a of the steam flow rate measured by the steam flow rate measuring device 31 or the exhaust gas temperature measured by the exhaust gas thermometer 33, and this signal Compare whether a is lower than the lower threshold for dusting. If the value is lower than the lower threshold for dust supply, a signal is sent to the dust supply device 43 so as to continuously operate. It is also compared whether the signal a is lower than the lower threshold for increasing primary air. If the signal a is lower than the lower threshold for increasing primary air, the dry zone strike 21 and, if necessary, the upstream main combustion zone Sending a signal to the opening / closing valve 26 of the strike force 22 to open the valve more.
[0064] 次に、信号 aが給塵用の下限閾値よりも低い場合、燃焼制御装置 30は、高さ検出 器 37で測定したごみホッパ 1内のごみの高さレベルの信号 bを一定の時間間隔で受 信し、所定の判定時間における高さレベルの変化(A b/ A t)を算出する。そして、こ の A b/ A tが所定の上限値よりも高いか又は下限値よりも低いかの比較を行う。 A b / Δ tが所定の上限値よりも高!、(すなわちホッパレベルの変化の勾配が大き!、)場 合、給塵装置 43に強制停止するように信号を送る。一方、 A b/ A tが所定の下限値 よりも低!/、 (すなわちホッパレベルの変化の勾配が小さ!/、)場合、閉塞解除装置 41に 起動するように信号を送る。 [0064] Next, when the signal a is lower than the lower limit threshold value for dust supply, the combustion control device 30 sets the signal b of the garbage height level in the garbage hopper 1 measured by the height detector 37 to a constant value. Receive at time intervals And calculate a change in height level (A b / A t) at a predetermined determination time. Then, a comparison is made as to whether this Ab / At is higher than a predetermined upper limit value or lower than a lower limit value. If A b / Δt is higher than the predetermined upper limit! (Ie, the gradient of the change in the hopper level is large!), A signal is sent to the dust supply device 43 to forcibly stop. On the other hand, if Ab / At is lower than the predetermined lower limit value! / (That is, the gradient of the change in the hopper level is small! /), A signal is sent to activate the closure release device 41.
[0065] スト一力炉 2内での乾燥および着火燃焼が促進されると、燃焼温度が上昇し、蒸気 流量が回復することから、信号 aが給塵用の上限閾値を超える場合がある。この場合 、燃焼制御装置 30は、給塵装置 43に運転を停止するように信号を送る。また、信号 aがー次空気増加用の上限閾値を超えた場合は、乾燥帯スト一力 21及び上流側の 主燃焼帯スト一力 22の開閉弁 26に弁の開度を絞って一次空気量を元に戻すように 信号を送る。スト一力炉 2内での燃焼促進を止めて、燃焼温度および蒸気流量の安 定化を図る。 [0065] When drying and ignition combustion in the stoichiometric furnace 2 are promoted, the combustion temperature rises and the steam flow rate is restored, so the signal a may exceed the upper limit threshold for dust supply. In this case, the combustion control device 30 sends a signal to the dust supply device 43 to stop the operation. If the signal a exceeds the upper limit threshold for increasing the primary air, the primary air is throttled to the opening / closing valve 26 of the dry zone strike force 21 and the upstream main combustion zone strike force 22. Send a signal to restore the amount. Stop combustion promotion in the stoichiometric furnace 2 to stabilize the combustion temperature and steam flow.
[0066] なお、上記の説明では、蒸気流量と排ガス温度のどちらか一方を用いるように説明 したが、両方を用いて制御を行うこともできる。例えば、蒸気流量と排ガス温度の両方 が所定の下限閾値未満になった場合に制御を行うようにすることで、排ガス温度の急 激な変化に過剰に応答することを防ぎ、蒸気流量の更なる安定化を図ることができる 。また、蒸気流量を一次空気増加の制御に用い、排ガス温度をごみホツバの制御に 用いるようにすることで、それぞれの役割を分けて機能させることができる。  [0066] In the above description, it has been described that either the steam flow rate or the exhaust gas temperature is used, but it is also possible to perform control using both. For example, by controlling when both the steam flow rate and exhaust gas temperature fall below a predetermined lower threshold, it is possible to prevent excessive response to sudden changes in exhaust gas temperature and further increase the steam flow rate. Stabilization can be achieved. In addition, by using the steam flow rate to control the primary air increase and the exhaust gas temperature to control the garbage hot bar, each role can be functioned separately.
[0067] (排ガス中の酸素濃度による制御)  [0067] (Control by oxygen concentration in exhaust gas)
上記の蒸気流量または排ガス温度による制御に替えて又は併用して、排ガス中の 酸素濃度による制御を行うことができる。すなわち、酸素濃度測定器 35で測定するボ イラ 10通過後の排ガス中の酸素濃度の値が、上限閾値 (例えば 12〜; 13%)を超え た場合に、乾燥帯スト一力 21及び必要により上流側の主燃焼帯スト一力 22の一次空 気管 25の開閉弁 26に、弁をより大きく開いて一次空気量を増加させるように信号を ; ^る。  In place of or in combination with the control based on the steam flow rate or the exhaust gas temperature, the control based on the oxygen concentration in the exhaust gas can be performed. That is, when the oxygen concentration value in the exhaust gas after passing through the boiler 10 measured by the oxygen concentration measuring device 35 exceeds the upper threshold (for example, 12 to 13%), the dry zone strike force 21 and if necessary A signal is sent to the open / close valve 26 of the primary air pipe 25 of the upstream main combustion zone strike force 22 to open the valve more widely and increase the primary air amount.
[0068] この排ガス中の酸素濃度は、スト一力炉 2内での燃焼状態による直接的な影響を受 けることから、ボイラ 10の蒸気流量よりも燃焼状態の変化が早期に現れ、よって、蒸 気流量に基づく制御よりも、より応答性の高い制御を行うことができる。すなわち、乾 燥帯スト一力 21及び上流側の主燃焼帯スト一力 22において、一次空気量を増加さ せることで、ごみの乾燥及び着火燃焼が促進されて酸素が消費され、排ガス中の酸 素濃度を設定値 (例えば 8〜; 10%)へ迅速に回復させることができる。排ガス中の酸 素濃度が上限閾値未満になった場合は、開閉弁 26に一次空気量を元に戻すように 号を达る。 [0068] Since the oxygen concentration in the exhaust gas is directly affected by the combustion state in the stoichiometric furnace 2, the change in the combustion state appears earlier than the steam flow rate of the boiler 10, and accordingly, Steam Control with higher responsiveness can be performed than control based on the air flow rate. In other words, by increasing the primary air amount in the dry zone strike force 21 and the upstream main combustion zone strike force 22, the drying and ignition combustion of the waste is promoted, oxygen is consumed, and The oxygen concentration can be quickly restored to a set value (eg, 8 to 10%). When the oxygen concentration in the exhaust gas falls below the upper threshold, the on-off valve 26 is notified to restore the primary air amount.
[0069] なお、酸素濃度測定器 35で測定する排ガス中の酸素濃度の値は、測定した瞬間 の酸素濃度に基づいて制御する他に、一定時間にわたり測定した平均値や、その平 均値との偏差、または変化の勾配を算出して、これらの上限閾値を設定して制御する こともできる。このように平均値、偏差、移動平均を用いることで、酸素濃度の急激な 変化に対して過剰に応答することを防ぎ、蒸気流量の更なる安定化を図ることができ  [0069] The value of the oxygen concentration in the exhaust gas measured by the oxygen concentration measuring device 35 is controlled based on the oxygen concentration at the moment of measurement, and the average value measured over a certain period of time, the average value thereof, It is also possible to control by calculating the deviation or the gradient of change and setting these upper thresholds. By using average values, deviations, and moving averages in this way, it is possible to prevent excessive response to sudden changes in oxygen concentration and to further stabilize the steam flow rate.
[0070] また、この排ガス中の酸素濃度に基づいても、上述したごみホッパ 1の制御を行うこ と力 Sできる。すなわち、排ガス中の酸素濃度が上限閾値を超えた場合、燃焼制御装 置 30は、給塵装置 43に判定時間にわたって連続運転するように信号を送るとともに 、この判定時間の間、高さ検出器 37で測定したごみの高さレベルを一定の時間間隔 で受信し、この判定時間における高さレベルの変化を算出する。そして、高さレベル が大きく低下しなかった場合(図 4)、閉塞解除装置 41に起動信号を送り、高さレべ ルが大きく低下した場合(図 5)、給塵装置 43に強制停止の信号を送る。 [0070] Further, based on the oxygen concentration in the exhaust gas, it is possible to control the waste hopper 1 as described above. That is, when the oxygen concentration in the exhaust gas exceeds the upper limit threshold, the combustion control device 30 sends a signal to the dust supply device 43 so as to continuously operate over the determination time, and during this determination time, the height detector The height level of the waste measured in 37 is received at regular intervals, and the change in the height level during this judgment time is calculated. If the height level does not drop significantly (Fig. 4), a start signal is sent to the closure release device 41, and if the height level drops significantly (Fig. 5), the dust supply device 43 is forced to stop. Send a signal.
[0071] これにより、排ガス中の酸素濃度が上昇した要因がごみホッパ 1内の閉塞による場 合であっても、低発熱量のごみの大量供給による場合であっても、乾燥帯スト一力 21 及び上流側の主燃焼帯スト一力 22において、一次空気量が増加されていることから 、閉塞解除により新たに供給されたごみ又は大量に供給された低発熱量のごみの乾 燥及び着火燃焼が促進され酸素が消費されることから、排ガス中の酸素濃度が迅速 に回復する。  [0071] Thus, whether the oxygen concentration in the exhaust gas is increased due to blockage in the waste hopper 1 or due to a large amount of low-heat generation waste, 21 and the upstream main combustion zone strike 22 have increased the amount of primary air, so drying and ignition of newly supplied waste due to clogging release or low-calorific value waste supplied in large quantities Since combustion is promoted and oxygen is consumed, the oxygen concentration in the exhaust gas quickly recovers.
[0072] 図 8は、一次空気量を増加する制御とごみホツバの制御とを同時に行う場合の他の 例であって、排ガスの温度とその酸素濃度の両方を用いる場合のフローチャートであ る。図 8に示すように、先ず、燃焼制御装置 30は、酸素濃度測定器 35で測定した排 ガス中の酸素濃度の信号を受信し、この信号の移動平均を算出する力、、またはこの 信号を微分処理する。そして、この移動平均と瞬時値との偏差または微分処理の結 果が、所定の上限閾値よりも高いかどうか比較する。所定の上限閾値よりも高い場合 、乾燥帯スト一力 21及び必要により上流側の主燃焼帯スト一力 22の開閉弁 26に弁 をより開くように信号を送る。 [0072] FIG. 8 is another example of the case where the control for increasing the primary air amount and the control of the garbage hot bar are performed simultaneously, and is a flowchart in the case where both the exhaust gas temperature and its oxygen concentration are used. As shown in FIG. 8, first, the combustion control device 30 performs exhaust gas measured by the oxygen concentration measuring device 35. The signal of the oxygen concentration in the gas is received, and the force for calculating the moving average of this signal, or this signal is differentiated. Then, it is compared whether the deviation between the moving average and the instantaneous value or the result of the differentiation process is higher than a predetermined upper limit threshold value. If it is higher than the predetermined upper threshold value, a signal is sent to open the opening / closing valve 26 of the drying zone strike force 21 and, if necessary, the upstream main combustion zone strike force 22.
[0073] また、燃焼制御装置 30は、排ガス温度計 33からの排ガス温度の信号 aを受信し、こ の信号 aが所定の下限閾値よりも低いかどうか比較する。そして、下限閾値よりも低い 場合、給塵装置 43に連続運転するように信号を送る。さらに、燃焼制御装置 30は、 高さ検出器 37からごみの高さレベルの信号 bを受信して、上記と同様に A b/ A tを 算出する。この A b/ A tが所定の上限値よりも高いか又は下限値よりも低いかの比 較を行い、 A b/ A tが所定の上限値よりも高い場合、給塵装置 43に強制停止するよ うに信号を送り、所定の下限値よりも低い場合、閉塞解除装置 41に起動するように信 号を送る。 Further, the combustion control device 30 receives the exhaust gas temperature signal a from the exhaust gas thermometer 33, and compares whether the signal a is lower than a predetermined lower threshold. When the value is lower than the lower threshold, a signal is sent to the dust supply device 43 so as to continuously operate. Further, the combustion control device 30 receives the signal b of the garbage height level from the height detector 37 and calculates A b / At in the same manner as described above. A comparison is made as to whether A b / A t is higher than the predetermined upper limit value or lower than the lower limit value. If A b / At is higher than the predetermined upper limit value, the dust supply device 43 is forcibly stopped. When the signal is lower than the predetermined lower limit value, the signal is sent to the closure release device 41 so as to be activated.
[0074] スト一力炉 2内での乾燥および着火燃焼が促進されると、酸素が消費され、酸素濃 度信号の移動平均または微分処理の結果が上限閾値未満に低下する。この場合、 燃焼制御装置 30は、乾燥帯スト一力 21及び上流側の主燃焼帯スト一力 22の開閉弁 26に一次空気量を元に戻すように信号を送る。また、燃焼温度が上昇して、信号 aが 給塵用の上限閾値を超えた場合、燃焼制御装置 30は、給塵装置 43に運転停止の 信号を送る。スト一力炉 2内での燃焼促進を止めて、酸素濃度、燃焼温度および蒸気 流量の安定化を図る。  [0074] When drying and ignition combustion in the stoichiometric furnace 2 are promoted, oxygen is consumed, and the result of the moving average or differential processing of the oxygen concentration signal falls below the upper threshold. In this case, the combustion control device 30 sends a signal to the opening / closing valve 26 of the dry zone strike force 21 and the upstream main combustion zone strike force 22 to restore the primary air amount. Further, when the combustion temperature rises and the signal a exceeds the upper limit threshold for dust supply, the combustion control device 30 sends an operation stop signal to the dust supply device 43. Stop the promotion of combustion in the strike power furnace 2 and stabilize the oxygen concentration, combustion temperature and steam flow rate.
[0075] このように、排ガス中の酸素濃度に基づいて乾燥帯スト一力 21及び必要により上流 側の主燃焼帯スト一力 22の一次空気量の増加制御を行うとともに、排ガス温度に基 づレ、てごみホッパ 1の制御を行うことで、それぞれの役割を分けて機能させることがで きる。  [0075] In this manner, the increase in the primary air amount of the dry zone strike force 21 and, if necessary, the upstream main combustion zone strike force 22 is controlled based on the oxygen concentration in the exhaust gas, and the exhaust gas temperature is controlled. By controlling the waste hopper 1, each role can be functioned separately.
[0076] なお、図 8の制御とは逆に、排ガス温度に基づいて乾燥帯スト一力 21及び必要によ り上流側の主燃焼帯スト一力 22の一次空気量の増加制御を行うとともに、排ガス中の 酸素濃度に基づいてごみホッパ 1の制御を行ってもよぐこれにより、より高応答性を 要求される一次空気の制御に排ガス温度を用い、比較的応答性に裕度のあるホッパ の制御に排ガス中の酸素濃度を用いることでそれぞれの役割を分けて機能させるこ と力 Sできる。 [0076] Contrary to the control in FIG. 8, the primary air amount increase control of the dry zone strike force 21 and, if necessary, the upstream main combustion zone strike force 22 is performed based on the exhaust gas temperature. The waste hopper 1 may be controlled based on the oxygen concentration in the exhaust gas, which makes it possible to use the exhaust gas temperature for primary air control, which requires higher responsiveness, and has a relatively responsive tolerance. Hopper By using the oxygen concentration in the exhaust gas for the control of the exhaust gas, it is possible to make each role function separately.
[0077] また、蒸気流量を用いて制御を行うこともできる。例えば、蒸気流量と酸素濃度の両 方が所定の下限閾値未満になった場合に制御を行うようにすることで、酸素濃度の 急激な変化に過剰に応答することを防ぎ、蒸気流量の更なる安定化を図ることができ る。また、蒸気流量を一次空気増加およびごみホツバの制御の一方に用い、酸素濃 度を他方の制御に用いてもよぐこれによりそれぞれの役割を分けて機能させること ができる。  [0077] Control can also be performed using the steam flow rate. For example, by controlling when both the steam flow rate and the oxygen concentration are below the predetermined lower threshold, it is possible to prevent excessive response to a sudden change in oxygen concentration and to further increase the steam flow rate. Stabilization can be achieved. Also, the steam flow rate can be used for one of the primary air increase and the garbage hot bar control, and the oxygen concentration can be used for the other control.
[0078] なお、乾燥帯スト一力 21及び必要により上流側の主燃焼帯スト一力 22の一次空気 量を増加させる場合、スト一力炉 2内に供給する全体の空気量を維持するため、この 増加させる分に相当する量を、二次空気量から減少させるように制御することが好ま しい。例えば、上記した再循環ガス用の吹出しノズル 19の下流部位にて、二次燃焼 室 4内に外気からの二次空気を供給する吹出しノズル(図示省略)における供給量を 減少させることで、スト一力炉 2全体に供給する空気量を同じにすることができる。  [0078] When the primary air amount of the dry zone strike force 21 and, if necessary, the upstream main combustion zone strike force 22 is increased, the total amount of air supplied into the strike force furnace 2 is maintained. It is preferable to control so that the amount corresponding to the increased amount is decreased from the secondary air amount. For example, at the downstream portion of the above-described recirculation gas blow nozzle 19, the supply amount at the blow nozzle (not shown) for supplying secondary air from the outside air into the secondary combustion chamber 4 is reduced, thereby reducing the stroke. The amount of air supplied to the entire single power furnace 2 can be made the same.
[0079] また、乾燥帯スト一力 21及び必要により上流側の主燃焼帯スト一力 22の一次空気 量を増加させる場合、スト一力炉 2内に供給する全体の空気量を維持するため、この 増加させる分に相当する量を、おき燃焼帯スト一力 23に供給する一次空気量から減 少させるように制御することも好ましい。この場合、再循環ガス抜出し口 28から抜き出 す燃焼排ガスの量を、この減少させた量だけ減少させる。これにより、スト一力炉 2内 の二次燃焼室 4内に供給される二次空気の酸素濃度が相対的に低下することを防 止でき、不完全燃焼が発生するのを防ぐことができる。  [0079] Further, when the primary air amount of the dry zone strike force 21 and, if necessary, the upstream main combustion zone strike force 22 is increased, in order to maintain the total amount of air supplied into the strike force furnace 2 It is also preferable to control so that the amount corresponding to the increased amount is reduced from the primary air amount supplied to the extra combustion zone strike force 23. In this case, the amount of combustion exhaust gas extracted from the recirculation gas extraction port 28 is reduced by this reduced amount. As a result, the oxygen concentration of the secondary air supplied into the secondary combustion chamber 4 in the stoichiometric furnace 2 can be prevented from relatively decreasing, and incomplete combustion can be prevented from occurring. .
[0080] 図 9は、本発明に係るスト一力式焼却炉の別の実施形態を示す模式図である。なお 、図 1と同じ構成については同じ符号を付してある。図 9に示すように、ボイラ 10の排 ガス出口には、煙道 11が設けられており、この煙道 11の出口には、排ガス中の酸素 濃度または一酸化炭素濃度を測定するための酸素/一酸化炭素濃度測定器 35aが 設置されている。このように本実施の形態では酸素/一酸化炭素濃度測定器 35aを 煙道 11の出口に設置することで、排ガス温度が 200〜300°Cと低下していることから 、酸素濃度または一酸化炭素濃度を長期にわたり正確に測定することができる。しか し、高温、高ばいじん雰囲気で酸素/一酸化炭素濃度を測定可能な計測器を用い ることが可能な場合は、スト一力炉 2の出口により近い位置に計測器を設置することが できるため、より短い時間遅れにて燃焼状態の変化を把握することができ、より高応 答の燃焼制御を提供することが可能となる。 FIG. 9 is a schematic view showing another embodiment of the strike-force incinerator according to the present invention. The same components as those in FIG. 1 are denoted by the same reference numerals. As shown in FIG. 9, a flue 11 is provided at the exhaust gas outlet of the boiler 10, and an oxygen for measuring the oxygen concentration or carbon monoxide concentration in the exhaust gas is provided at the outlet of the flue 11. / The carbon monoxide concentration measuring device 35a is installed. Thus, in this embodiment, the oxygen / carbon monoxide concentration measuring device 35a is installed at the exit of the flue 11, and the exhaust gas temperature is reduced to 200 to 300 ° C. Carbon concentration can be measured accurately over a long period of time. Only However, if it is possible to use a measuring instrument that can measure the oxygen / carbon monoxide concentration in a high-temperature, high-dust atmosphere, the measuring instrument can be installed closer to the outlet of the strike furnace 2 Therefore, it is possible to grasp the change in the combustion state with a shorter time delay, and to provide a more responsive combustion control.
[0081] さらに煙道 11の排ガス下流側には、排ガスを降温するための減温塔(図示省略)と 、排ガス中から飛灰等を取り除くためのバグフィルタ(図示省略)と、排ガスを外気へと 排出するための煙突(図示省略)とが順次敷設されて!/、る。  [0081] Further, on the downstream side of the exhaust gas of the flue 11, a temperature reducing tower (not shown) for reducing the temperature of the exhaust gas, a bag filter (not shown) for removing fly ash and the like from the exhaust gas, and the exhaust gas from the outside air A chimney (not shown) for evacuation is laid in order!
[0082] 二次空気供給用の押込送風機 (ファン) 20に設けられた二次空気管 27は、下流側 で 2本に分岐しており、 1本の二次空気管 27aは乾燥側の吹出しノズル 19aに接続さ れ、 1本の二次空気管 27bはおき燃焼帯側の吹出しノズル 19bに接続されている。分 岐した二次空気管 27a、 27bには、それぞれ開閉弁 24a、 24bが設けられており、乾 燥帯側とおき燃焼帯側の吹出しノズル 19a、 19bで、二次空気の供給量を変えること 力できる。なお、乾燥帯側とおき燃焼帯側の吹出しノズル 19a、 19bは、それぞれガ ス流に沿って二次燃焼室 4に複数段設けてもよぐその場合、その数に合わせて二 次空気管 27を分岐する。  [0082] The secondary air pipe 27 provided in the forced air blower (fan) 20 for supplying secondary air is branched into two on the downstream side, and one secondary air pipe 27a is blown out on the drying side. Connected to the nozzle 19a, one secondary air pipe 27b is connected to the blowing nozzle 19b on the side of the vertical combustion zone. The branched secondary air pipes 27a and 27b are provided with on-off valves 24a and 24b, respectively, and the supply amount of secondary air is changed by the discharge nozzles 19a and 19b on the combustion zone side. I can do it. It should be noted that the blower nozzles 19a and 19b on the drying zone side and on the combustion zone side may be provided in a plurality of stages in the secondary combustion chamber 4 along the gas flow. Branch 27.
[0083] スト一力の下には、燃焼帯の一次空気をスト一力炉 2内から抜き出すための空気放 出ダンバ 45が設置されている。空気放出ダンバ 45から抜き出した空気は、灰ホッパ シュート 8を介してスト一力式焼却炉の二次燃焼室側ゃ炉外に放出するように構成さ れている。  [0083] Under the strike force, an air discharge damper 45 for extracting the primary air of the combustion zone from the strike force furnace 2 is installed. The air extracted from the air discharge damper 45 is configured to be discharged outside the furnace through the ash hopper chute 8 on the side of the secondary combustion chamber of the strike-type incinerator.
[0084] 排ガス温度計 33と酸素/一酸化炭素濃度測定器 35aは、それぞれ測定した値を 燃焼制御装置 30へと信号として送信できるように、燃焼制御装置 30と電気的に接続 されている。また、燃焼制御装置 30は、一次空気管 25や二次空気管 27等の各開閉 弁 24、 26の開度や空気放出ダンバ 45の開閉を個別に調整する制御ができるように 、各開閉弁 24、 26や空気放出ダンバ 45とそれぞれ電気的に接続されている。  [0084] The exhaust gas thermometer 33 and the oxygen / carbon monoxide concentration measuring device 35a are electrically connected to the combustion control device 30 so that the measured values can be transmitted to the combustion control device 30 as signals. In addition, the combustion control device 30 is configured so that the opening / closing valves 24 and 26 of the primary air pipe 25, the secondary air pipe 27, etc., and the opening / closing of the air discharge damper 45 can be individually adjusted. 24, 26 and air discharge damper 45 are electrically connected to each other.
[0085] 以上の構成によれば、先ず、ごみホッパ 1に被燃焼物としてごみが投入されると、ご みは間欠的に往復運動する給塵装置 29によりスト一力炉 2内へと供給される。また、 スト一力炉 2内の乾燥帯スト一力 21、主燃焼帯スト一力 22、おき燃焼帯スト一力 23に は、一次空気管 25を介してそれぞれ一次空気が供給され、これにより一 7火燃焼室 3 でごみが高温燃焼される。 [0085] According to the above configuration, first, when waste is introduced into the waste hopper 1 as a combustible, the waste is supplied into the strike furnace 2 by the dust supply device 29 that reciprocally moves reciprocally. Is done. The primary air is supplied to the dry zone strike force 21, the main combustion zone strike force 22 and the alternate combustion zone strike force 23 in the strike power furnace 2 via the primary air pipe 25, respectively. One 7 fire combustion chamber 3 The garbage is burned at high temperature.
[0086] この燃焼ガスは、吹出しノズル 19から供給される二次空気によって、更なる高温燃 焼がなされて完全燃焼される。二次燃焼室 4にて燃焼後の排ガスは、煙道 9を介して ボイラ 10に供給され、蒸気を発生させることによって熱回収をした後、煙道 11を通つ て大気中に排出される。また、おき燃焼帯スト一力 23での燃焼後の灰は、灰ホッパシ ユート 8で捕集されて排出される。  [0086] This combustion gas is further burned at a high temperature by the secondary air supplied from the blowout nozzle 19, and is completely burned. Exhaust gas after combustion in the secondary combustion chamber 4 is supplied to the boiler 10 through the flue 9 and heat is recovered by generating steam, and then discharged into the atmosphere through the flue 11. . In addition, the ash after combustion in the striking power 23 of the vertical combustion zone is collected and discharged by the ash hopper 8.
[0087] ここで、被燃焼物の発熱量が増加して着火性が向上した場合や、スト一力上の被燃 焼物層が崩落して急激に燃焼反応が進行した場合、スト一力炉 2内の酸素が不足し 、未燃成分などが多く発生する可能性がある。そこで、燃焼制御装置 30では、酸素 /一酸化炭素濃度測定器 35aで測定した酸素濃度が下限閾値 (例えば 3〜7%)未 満になった場合、二次空気管 27の開閉弁 24に、弁をより大きく開いて吹出しノズル 1 9からの二次空気量を増加させるように信号を送る。  [0087] Here, when the calorific value of the combusted material is increased and the ignitability is improved, or when the combusted material layer on the stoichiometric force collapses and the combustion reaction proceeds rapidly, the stoichiometric furnace Oxygen in 2 may be insufficient, and many unburned components may be generated. Therefore, in the combustion control device 30, when the oxygen concentration measured by the oxygen / carbon monoxide concentration measuring device 35a is less than the lower threshold (for example, 3 to 7%), the on-off valve 24 of the secondary air pipe 27 is A signal is sent to open the valve larger and increase the amount of secondary air from the blow nozzle 19.
[0088] 図 10は、酸素濃度の増減に対して二次空気量を変化させるタイミングを示すチヤ ートである。図 10に示すように、二次空気量を増加させることで、二次燃焼室 4での 酸素不足が解消され、未燃成分の発生を抑制することができる。これにより、排ガス 中の酸素濃度は増加することから、酸素/一酸化炭素濃度測定器 35aで測定した酸 素濃度が下限閾値を超えた場合、上記の開閉弁 24に、弁の開度を絞って二次空気 量を元に戻すように信号を送る。このようにして、燃焼排ガスの性状の変化を防ぐこと ができ、ダイォキシン類や一酸化炭素などの有害物質の排出を抑制できる。また、ボ イラ 10の蒸気流量の変動も抑制することができる。  [0088] FIG. 10 is a chart showing the timing of changing the secondary air amount with respect to the increase or decrease of the oxygen concentration. As shown in FIG. 10, by increasing the amount of secondary air, the shortage of oxygen in the secondary combustion chamber 4 is eliminated, and the generation of unburned components can be suppressed. As a result, the oxygen concentration in the exhaust gas increases, so when the oxygen concentration measured by the oxygen / carbon monoxide concentration measuring device 35a exceeds the lower threshold, the opening / closing valve 24 is throttled to the on-off valve 24. Send a signal to restore the secondary air volume. In this way, changes in the properties of combustion exhaust gas can be prevented, and emission of harmful substances such as dioxins and carbon monoxide can be suppressed. In addition, fluctuations in the steam flow rate of the boiler 10 can be suppressed.
[0089] 上記のようにスト一力炉 2内の酸素が不足し、未燃成分が多量に発生した場合、酸 素濃度が低下する一方、一酸化炭素濃度は増加する。そこで、上記の酸素濃度によ る制御に替えて又は併用して、燃焼制御装置 30では、酸素/一酸化炭素濃度測定 器 35aで測定した一酸化炭素濃度が上限閾値 (例えば 50〜; !OOOppm)を超えた場 合、二次空気管 27の開閉弁 24に、弁をより大きく開いて二次空気量を増加させるよ うに信号を送る。  [0089] As described above, when oxygen in the stoichiometric furnace 2 is insufficient and a large amount of unburned components are generated, the oxygen concentration is decreased while the carbon monoxide concentration is increased. Therefore, in place of or in combination with the control based on the oxygen concentration described above, in the combustion control device 30, the carbon monoxide concentration measured by the oxygen / carbon monoxide concentration measuring device 35a is the upper threshold (for example, 50 to;! OOOppm ), A signal is sent to the open / close valve 24 of the secondary air pipe 27 to open the valve more widely and increase the amount of secondary air.
[0090] 図 11は、一酸化炭素濃度の増減に対して二次空気量を変化させるタイミングを示 すチャートである。図 1 1に示すように、二次空気量を増加させることで、二次燃焼室 4 での酸素不足が解消され、未燃成分の発生を抑制することができる。これにより、排 ガス中の一酸化炭素濃度は減少することから、酸素/一酸化炭素濃度測定器 35a で測定した一酸化炭素濃度が上限閾値未満になった場合、上記の開閉弁 24に、弁 の開度を絞って二次空気量を元に戻すように信号を送る。このように、一酸化炭素濃 度に基づいて制御することでも、燃焼排ガスの性状の変化を防ぐことができる。 FIG. 11 is a chart showing the timing of changing the secondary air amount with respect to the increase or decrease of the carbon monoxide concentration. As shown in Fig. 11, the secondary combustion chamber 4 is increased by increasing the amount of secondary air. Oxygen deficiency is eliminated, and generation of unburned components can be suppressed. As a result, the carbon monoxide concentration in the exhaust gas decreases, so when the carbon monoxide concentration measured by the oxygen / carbon monoxide concentration measuring device 35a falls below the upper limit threshold value, the valve 24 is A signal is sent so as to reduce the secondary air amount by reducing the degree of opening. In this way, changes in the properties of the combustion exhaust gas can also be prevented by controlling based on the carbon monoxide concentration.
[0091] 上記の酸素濃度又は一酸化炭素濃度による制御に替えて又は併用して、排ガス温 度による制御を行うことができる。すなわち、排ガス温度計 33で測定するスト一力炉 2 の火炎の放射から遮断された煙道 9内の排ガス温度の値力 S、上限閾値 (例えば 650 〜800°C)を超えた場合に、二次空気管 27の開閉弁 24に、弁をより大きく開いて二 次空気量を増加させるように信号を送る(図 11)。  [0091] Control by exhaust gas temperature can be performed instead of or in combination with the control by oxygen concentration or carbon monoxide concentration. That is, when the value S of the exhaust gas temperature in the flue 9 shielded from the flame radiation of the stoichiometric furnace 2 measured by the exhaust gas thermometer 33 exceeds the upper threshold (for example, 650 to 800 ° C), A signal is sent to the open / close valve 24 of the secondary air pipe 27 to open the valve more widely and increase the amount of secondary air (Fig. 11).
[0092] 被燃焼物の発熱量が増加して着火性が向上した場合や、スト一力上の被燃焼物層 が崩落して急激に燃焼反応が進行した場合、スト一力炉 2内の燃焼温度が急激に上 昇するとともに、酸素が不足し、未燃成分が多量に発生する可能性がある。よって、 二次空気量を増加させることで、酸素不足を解消し、未燃成分の発生を抑制すること ができる。排ガス温度が上限閾値未満に回復した場合は、開閉弁 24に一次空気量 を元に戻すように信号を送る。このように、排ガス温度に基づいて制御することでも、 燃焼排ガスの性状の変化を防ぐことができる。  [0092] When the calorific value of the combusted material is increased and the ignitability is improved, or when the combusted material layer on the strike force collapses and the combustion reaction proceeds rapidly, the stoichiometric furnace 2 As the combustion temperature rises rapidly, oxygen may be insufficient and a large amount of unburned components may be generated. Therefore, increasing the amount of secondary air can eliminate oxygen shortage and suppress the generation of unburned components. When the exhaust gas temperature recovers below the upper threshold, a signal is sent to the on-off valve 24 to restore the primary air amount. Thus, the control of the exhaust gas temperature can also prevent changes in the properties of the combustion exhaust gas.
[0093] なお、酸素濃度、一酸化炭素濃度、排ガス温度は、測定した瞬間の値に基づ!/、て 制御する他に、一定時間にわたって測定した平均値 (移動平均)や、その平均値との 偏差、または変化の勾配を算出して、これらの下限閾値または上限閾値を設定して 制御することもできる。このように平均値、偏差、変化の勾配を用いることで、酸素濃 度、一酸化炭素濃度、排ガス温度の急激な変化に対して過剰に応答することを防ぎ 、燃焼排ガスの性状の更なる安定化を図ることができる。  [0093] Note that the oxygen concentration, carbon monoxide concentration, and exhaust gas temperature are controlled based on the measured instantaneous values! /, As well as the average value (moving average) measured over a certain period of time, and the average value It is also possible to calculate the deviation from or the gradient of change, and set and control these lower and upper thresholds. By using the average value, deviation, and gradient of change in this way, it is possible to prevent excessive responses to sudden changes in oxygen concentration, carbon monoxide concentration, and exhaust gas temperature, and to further stabilize the properties of combustion exhaust gas. Can be achieved.
[0094] なお、上記の説明では、酸素濃度、一酸化炭素濃度、排ガス温度のいずれ力、 1つ を用いるように説明した力 S、その中の 2つ又は 3つ全てを用いて制御を行うこともでき る。例えば、その中の 2つ又は 3つ全てが閾値を超える場合に二次空気量を増加す る制御を行うようにすることで、急激な変化に過剰に応答することを防ぎ、燃焼排ガス の性状の更なる安定化を図ることができる。 [0095] なお、二次空気量を増加させる場合、同時に、一次空気量を減少させるように制御 することが好ましい。例えば、燃焼制御装置 30から一次空気管 25の開閉弁 26に弁 を狭めるように信号を送る。これにより、急激に燃焼反応が進行した一 7火燃焼室 3で の燃焼反応を抑制することができ、燃焼排ガスの性状の更なる安定化を図ることがで きる。 [0094] In the above description, control is performed using any one of the oxygen concentration, the carbon monoxide concentration, and the exhaust gas temperature, the force S described to use one, and two or all of them. You can also. For example, by controlling to increase the amount of secondary air when two or all three of them exceed a threshold, it is possible to prevent excessive response to sudden changes and to improve the characteristics of combustion exhaust gas. Can be further stabilized. [0095] When the secondary air amount is increased, it is preferable to control so as to decrease the primary air amount at the same time. For example, a signal is sent from the combustion control device 30 to the open / close valve 26 of the primary air pipe 25 so as to narrow the valve. As a result, the combustion reaction in the 17-fire combustion chamber 3 where the combustion reaction has progressed rapidly can be suppressed, and the properties of the combustion exhaust gas can be further stabilized.
[0096] また、一次空気量を減少させる場合、スト一力の下に設置した空気放出ダンバ 45に 、ダンバを開放するように信号を送ることもできる。これにより、一 7火燃焼室 3内の一次 空気の量を瞬時に減少させることができるので、急激に燃焼反応が進行した一 7火燃 焼室 3での燃焼反応を迅速に抑制することができる。空気放出ダンバ 45から抜き出 したガスは、灰ホッパシュートを介して放出する。  [0096] When the primary air amount is decreased, a signal can be sent to the air discharge damper 45 installed under the strike force so as to open the damper. As a result, the amount of primary air in the 17 fire combustion chamber 3 can be instantaneously reduced, so that the combustion reaction in the 17 fire combustion chamber 3 where the combustion reaction has progressed rapidly can be quickly suppressed. it can. The gas extracted from the air release damper 45 is released through the ash hopper chute.
[0097] 図 12は、本発明に係るスト一力式焼却炉の更に別の実施形態を示す模式図である 。なお、図 9と同じ構成については同じ符号を付してある。図 12に示すように、本実施 形態では、一 7火燃焼室 3のおき燃焼帯には、一 7火燃焼室 3内の燃焼排ガスの一部を 再循環ガスとして抜き出すための再循環ガス抜出し口 28が設けられている。この再 循環ガス抜出し口 28は、再循環通路 16を介してサイクロン 12の入口 14に接続され ている。  FIG. 12 is a schematic view showing still another embodiment of the strike-type incinerator according to the present invention. The same components as those in FIG. 9 are denoted by the same reference numerals. As shown in FIG. 12, in the present embodiment, the recirculation gas extraction for extracting a part of the flue gas in the seven-fire combustion chamber 3 as the recirculation gas is included in the every seven combustion chamber 3 combustion zone. Mouth 28 is provided. The recirculation gas outlet 28 is connected to the inlet 14 of the cyclone 12 via the recirculation passage 16.
[0098] サイクロン 12の出口には再循環通路 15が設けられており、この再循環通路 15は、 二次燃焼室 4の上流部位で二次燃焼室 4内に二次空気を供給するための吹出しノズ ル 19に接続している。再循環通路 15には再循環ファン 13が設けられており、この再 循環ファン 13の手前に設けられた開閉弁 18により、一 7火燃焼室 3内から燃焼排ガス を再循環ガスとして抜き出す量を調整することができる。  [0098] A recirculation passage 15 is provided at the outlet of the cyclone 12, and this recirculation passage 15 is used to supply secondary air into the secondary combustion chamber 4 at an upstream portion of the secondary combustion chamber 4. Connected to blowout nozzle 19. A recirculation fan 13 is provided in the recirculation passage 15, and an opening / closing valve 18 provided in front of the recirculation fan 13 is used to control the amount of combustion exhaust gas extracted from the inside of the fire combustion chamber 3 as recirculation gas. Can be adjusted.
[0099] 再循環通路 15は、再循環ファン 13の下流側で 2本に分岐しており、 1本の再循環 通路 15aは乾燥側の吹出しノズル 19aに接続され、 1本の再循環通路 15bはおき燃 焼帯側の吹出しノズル 19bに接続されている。分岐した再循環通路 15a、 15bには、 それぞれ開閉弁 17a、 17bが設けられており、乾燥帯側とおき燃焼帯側の吹出しノズ ル 19a、 19bで、再循環ガス(二次空気)の供給量を変えることができる。  [0099] The recirculation passage 15 is branched into two on the downstream side of the recirculation fan 13, and one recirculation passage 15a is connected to the blowout nozzle 19a on the drying side, and one recirculation passage 15b It is connected to the blow nozzle 19b on the hot burning zone side. The branching recirculation passages 15a and 15b are provided with on-off valves 17a and 17b, respectively, and supply of recirculation gas (secondary air) through the blow nozzles 19a and 19b on the drying zone side and the combustion zone side. The amount can be changed.
[0100] 一次空気主管 5と再循環通路 15とは、ノ ィパス管 40により接続されている。また、こ のバイパス管 40には、これを開閉する開閉弁 41が設けられている。また、スト一力の 下に設置された空気放出ダンバ 45は、本実施形態では、抜き出した排ガスを二次空 気として使用するために、再循環通路 16に接続されている。 [0100] The primary air main pipe 5 and the recirculation passage 15 are connected by a nopass pipe 40. The bypass pipe 40 is provided with an open / close valve 41 for opening and closing the bypass pipe 40. Also, strike In the present embodiment, the air release damper 45 installed below is connected to the recirculation passage 16 in order to use the extracted exhaust gas as secondary air.
[0101] 以上の構成によれば、被燃焼物がごみホッパ 1を介してスト一力炉 2内に供給され、 一次空気管 25からの一次空気により、一 7火燃焼室 3でごみが高温燃焼される。この 燃焼ガスは、二次燃焼室 4において吹出しノズル 19、 20から供給される再循環ガス( 二次空気)によって、更なる高温燃焼がなされて完全燃焼される。二次燃焼室 4にて 燃焼後の排ガスは、ボイラ 10に供給されて熱回収をした後、煙道 11を通って大気中 に排出される。 [0101] According to the above configuration, the combusted material is supplied into the strike power furnace 2 via the waste hopper 1, and the primary air from the primary air pipe 25 causes the high temperature of the waste in the 7 fire combustion chamber 3. Burned. This combustion gas is further combusted at a high temperature by the recirculation gas (secondary air) supplied from the blow-off nozzles 19 and 20 in the secondary combustion chamber 4. The exhaust gas after combustion in the secondary combustion chamber 4 is supplied to the boiler 10 for heat recovery and then discharged into the atmosphere through the flue 11.
[0102] そして、酸素/一酸化炭素濃度測定器 35aで測定した酸素濃度が下限閾値未満 になった場合、一酸化炭素濃度が上限閾値を超えた場合、または排ガス温度計 33 で測定した排ガス温度が上限閾値を超えた場合、燃焼制御装置 30は、再循環通路 15の開閉弁 17に、弁をより大きく開いて再循環ガス量 (すなわち、二次空気量)を増 加させるように信号を送る(図 10、図 11)。  [0102] Then, when the oxygen concentration measured by the oxygen / carbon monoxide concentration measuring device 35a is less than the lower threshold, the carbon monoxide concentration exceeds the upper threshold, or the exhaust gas temperature measured by the exhaust gas thermometer 33. When the air pressure exceeds the upper threshold, the combustion control device 30 signals the on-off valve 17 of the recirculation passage 15 to open the valve more widely and increase the recirculation gas amount (i.e., the secondary air amount). Send (Figure 10, Figure 11).
[0103] これにより、図 9の実施形態と同様に、二次燃焼室 4での酸素不足が解消され、未 燃成分の発生を抑制することができる。また、再循環ガス抜出し口 28から抜き出すガ スの量も増加するので、すなわち、一次燃焼室 3の一次空気量が減少するので、急 激に燃焼反応が進行した一次燃焼室 3での燃焼反応を抑制することができる。  [0103] Thus, as in the embodiment of FIG. 9, the lack of oxygen in the secondary combustion chamber 4 is resolved, and the generation of unburned components can be suppressed. In addition, since the amount of gas extracted from the recirculation gas outlet 28 increases, that is, the primary air volume in the primary combustion chamber 3 decreases, the combustion reaction in the primary combustion chamber 3 where the combustion reaction has progressed rapidly. Can be suppressed.
[0104] これによつて排ガス中の酸素濃度、一酸化炭素濃度、排ガス温度が回復することか ら、酸素濃度が下限閾値を超えた場合、一酸化炭素濃度が上限閾値未満になった 場合、または排ガス温度が上限閾値未満になった場合、上記の開閉弁 17に、弁の 開度を絞って二次空気量を元に戻すように信号を送る。このようにして、本実施形態 においても、燃焼排ガスの性状の変化を防ぐことができ、ダイォキシン類や一酸化炭 素などの有害物質の排出を抑制できる。また、ボイラ 10の蒸気流量の変動も抑制す ること力 Sでさる。  [0104] As a result, the oxygen concentration, the carbon monoxide concentration, and the exhaust gas temperature in the exhaust gas are recovered. When the oxygen concentration exceeds the lower limit threshold, the carbon monoxide concentration becomes lower than the upper limit threshold. Alternatively, when the exhaust gas temperature falls below the upper threshold, a signal is sent to the on-off valve 17 to reduce the secondary air amount by reducing the valve opening. Thus, also in the present embodiment, changes in the properties of the combustion exhaust gas can be prevented, and emission of harmful substances such as dioxins and carbon monoxide can be suppressed. In addition, the force S that suppresses fluctuations in the steam flow rate of the boiler 10 is reduced.
[0105] また、本実施形態でも、二次空気量を増加させると同時に一次空気量を減少させる 場合、空気放出ダンバ 45にダンバを開放するように信号を送ることができる。これに より、一次燃焼室 3内の一次空気の量を瞬時に減少させて、一次燃焼室 3での燃焼 反応を迅速に抑制することができる。また、空気放出ダンバ 45から抜き出したガスは 、再循環通路 16、 15を通って再循環ガスとともに吹出しノズル 19から二次空気とし て供給できるので、二次空気量を迅速に増加することができる。したがって、より応答 性の高!/ヽ制御を行うこと力 Sできる。 Also in the present embodiment, when the secondary air amount is increased and the primary air amount is decreased at the same time, a signal can be sent to the air release damper 45 so as to open the damper. As a result, the amount of primary air in the primary combustion chamber 3 can be instantaneously reduced, and the combustion reaction in the primary combustion chamber 3 can be quickly suppressed. The gas extracted from the air release damper 45 Since the secondary air can be supplied from the discharge nozzle 19 together with the recirculation gas through the recirculation passages 16 and 15, the amount of secondary air can be increased rapidly. Therefore, it is possible to perform more responsive! / ヽ control.
さらに、二次空気量を増加させると同時に一次空気量を減少させる場合、バイパス 管 40の開閉弁 41に弁を開くように信号を送ることもできる。これにより、減少させる分 の一次空気の量を、バイパス管 40および再循環通路 15を通って再循環ガスとともに 吹出しノズル 19から二次空気として供給することができる。したがって、この方法によ つても、より応答性の高い制御を行うことができる。  Further, when the secondary air amount is increased and the primary air amount is decreased at the same time, a signal can be sent to the on-off valve 41 of the bypass pipe 40 to open the valve. As a result, the amount of primary air to be reduced can be supplied as secondary air from the blowing nozzle 19 together with the recirculation gas through the bypass pipe 40 and the recirculation passage 15. Therefore, this method can also perform control with higher responsiveness.

Claims

請求の範囲 The scope of the claims
[1] ホツバから被燃焼物をスト一力上に投入し、このスト一力の下方より一次空気を導入 して、このスト一力上方の一 7火燃焼室で前記一次空気により一 7火燃焼を行うとともに、 この一 7火燃焼室上方の二次燃焼室で二次空気により二次燃焼を行い、この二次燃 焼室を経た排ガス熱をボイラにより回収するスト一力式焼却炉の燃焼制御方法にお いて、  [1] Combustion material is introduced into the strike force from Hotsuba, primary air is introduced from below the strike force, and the primary air is burned by the primary air in the seven-fire combustion chamber above the strike force. In a striking-type incinerator that performs combustion and secondary combustion with secondary air in the secondary combustion chamber above the seven-fired combustion chamber, and recovers exhaust gas heat from the secondary combustion chamber with a boiler. In the combustion control method,
前記二次燃焼室から排出された排ガス温度が、下限閾値未満になった場合に、前 記一次空気の内、前記スト一力の前記ホッパ側に導入される一次空気の流量を増加 させることを特徴とするスト一力式焼却炉の燃焼制御方法。  When the exhaust gas temperature discharged from the secondary combustion chamber becomes less than the lower limit threshold, the flow rate of the primary air introduced into the hopper side of the striking force among the primary air is increased. A combustion control method for a stoichiometric incinerator characterized by the above.
[2] 前記排ガス温度が第 2の下限閾値未満になった場合に、または前記二次燃焼室か ら排出される排ガス中の酸素濃度が上限閾値を超えた場合に、前記ホッパ内に敷設 されているフィーダを一定時間にわたり稼動させるとともに、前記ホッパ内における前 記被燃焼物の高さを検出し、前記一定時間における前記高さの変化が、下限値未 満になった場合に、前記ホッパ内に敷設されている閉塞解除装置を起動させ、上限 値を超えた場合に、前記フィーダの稼動を停止させることを特徴とする請求項 1に記 載のスト一力式焼却炉の燃焼制御方法。  [2] When the exhaust gas temperature becomes lower than the second lower limit threshold value, or when the oxygen concentration in the exhaust gas discharged from the secondary combustion chamber exceeds the upper limit threshold value, the exhaust gas temperature is laid in the hopper. The feeder is operated for a certain period of time, the height of the burned object in the hopper is detected, and the change in the height in the certain period of time is less than the lower limit value, the hopper The combustion control method for a strike-through type incinerator according to claim 1, characterized in that the operation of the feeder is stopped when an obstruction release device laid inside is activated and an upper limit value is exceeded. .
[3] ホツバから被燃焼物をスト一力上に投入し、このスト一力の下方より一次空気を導入 して、このスト一力上方の一 7火燃焼室で前記一次空気により一 7火燃焼を行うとともに、 この一 7火燃焼室上方の二次燃焼室で二次空気により二次燃焼を行い、この二次燃 焼室を経た排ガス熱をボイラにより回収するスト一力式焼却炉の燃焼制御方法にお いて、  [3] Combustion material is introduced into the strike force from Hotsuba, primary air is introduced from below the strike force, and the primary air is burned by the primary air in the seven-fire combustion chamber above the strike force. In a striking-type incinerator that performs combustion and secondary combustion with secondary air in the secondary combustion chamber above the seven-fired combustion chamber, and recovers exhaust gas heat from the secondary combustion chamber with a boiler. In the combustion control method,
前記二次燃焼室力 排出される排ガス中の酸素濃度が、上限閾値を超えた場合に 、前記一次空気の内、前記スト一力の前記ホッパ側に導入される一次空気の流量を 増加させることを特徴とするスト一力式焼却炉の燃焼制御方法。  When the oxygen concentration in the exhaust gas discharged from the secondary combustion chamber force exceeds an upper limit threshold, the flow rate of the primary air introduced into the hopper side of the primary force among the primary air is increased. A combustion control method for a stoichiometric incinerator characterized by the above.
[4] 前記酸素濃度が第 2の上限閾値を超えた場合に、または前記二次燃焼室力 排出 される排ガス温度が下限閾値未満になった場合に、前記ホッパ内に敷設されている フィーダを一定時間にわたり稼動させるとともに、前記ホッパ内における前記被燃焼 物の高さを検出し、前記一定時間における前記高さの変化力 下限値未満になった 場合に、前記ホッパ内に敷設されている閉塞解除装置を起動させ、上限値を超えた 場合に、前記フィーダの稼動を停止させることを特徴とする請求項 3に記載のスト一 力式焼却炉の燃焼制御方法。 [4] When the oxygen concentration exceeds a second upper limit threshold, or when the exhaust gas temperature discharged from the secondary combustion chamber force becomes less than the lower limit threshold, a feeder laid in the hopper is removed. While operating for a certain period of time, the height of the burned object in the hopper was detected, and the height changing force for the certain period of time was below the lower limit value. 4. The strut-type incinerator according to claim 3, wherein a closure release device installed in the hopper is activated and the operation of the feeder is stopped when an upper limit is exceeded. Combustion control method.
[5] 前記一次空気の流量を増加させる閾値の条件に加えて、前記ボイラで発生する蒸 気流量が下限閾値未満であるとレ、う条件も満たした場合に、前記一次空気の流量を 増加させる制御を行うことを特徴とする請求項 1〜4のいずれか一項に記載のスト一 力式焼却炉の燃焼制御方法。 [5] In addition to the threshold condition for increasing the primary air flow rate, the primary air flow rate is increased when the steam flow rate generated in the boiler is less than the lower limit threshold value and the conditions are satisfied. 5. The combustion control method for a strike type incinerator according to any one of claims 1 to 4, wherein control is performed.
[6] 被燃焼物を投入するためのホツバと、 [6] Hotspot for charging the combustible,
このホツバから前記被燃焼物が供給されるスト一力と、  A striking force to which the combustible is supplied from this hotspot,
このスト一力の下方より一次空気を導入して、このスト一力上方で前記一次空気によ り一次燃焼を行う一次燃焼室と、  A primary combustion chamber for introducing primary air from below the strike force and performing primary combustion with the primary air above the strike force; and
この一 7火燃焼室上方で二次空気により二次燃焼を行う二次燃焼室と、  A secondary combustion chamber that performs secondary combustion with secondary air above the 17-fire combustion chamber;
この二次燃焼室を経た排ガス熱を回収するボイラと、  A boiler that recovers exhaust gas heat that has passed through the secondary combustion chamber;
前記二次燃焼室から前記ボイラまでの煙道内であって、前記スト一力およびそこに おける火炎からの放射に対して遮断された箇所の排ガス温度を測定するための排ガ ス温度計と、  An exhaust gas thermometer for measuring an exhaust gas temperature in a flue from the secondary combustion chamber to the boiler, where the exhaust gas temperature is blocked by the striking force and radiation from the flame there;
この排ガス温度計により測定された排ガス温度に基づ!/、て、前記一 7火燃焼を制御 する燃焼制御装置と  Based on the exhaust gas temperature measured by the exhaust gas thermometer, a combustion control device for controlling the 17 fire combustion and
を備えたことを特徴とするスト一力式焼却炉。  Stroke-type incinerator characterized by comprising
[7] 前記二次燃焼室から排出される排ガス中の酸素濃度を測定するための酸素濃度 測定器をさらに備えており、前記燃焼制御装置は、この酸素濃度測定器により測定さ れた酸素濃度にも基づレ、て、前記一 7火燃焼を制御するものであることを特徴とする請 求項 6に記載のスト一力式焼却炉。 [7] The apparatus further comprises an oxygen concentration measuring device for measuring the oxygen concentration in the exhaust gas discharged from the secondary combustion chamber, and the combustion control device includes the oxygen concentration measured by the oxygen concentration measuring device. Further, the first power incinerator according to claim 6, wherein the one-fire combustion is controlled based on the above.
[8] 被燃焼物を投入するためのホツバと、 [8] Hotspot for charging the combustible,
このホツバから前記被燃焼物が供給されるスト一力と、  A striking force to which the combustible is supplied from this hotspot,
このスト一力の下方より一次空気を導入して、このスト一力上方で前記一次空気によ り一次燃焼を行う一次燃焼室と、  A primary combustion chamber for introducing primary air from below the strike force and performing primary combustion with the primary air above the strike force; and
この一 7火燃焼室上方で二次空気により二次燃焼を行う二次燃焼室と、 この二次燃焼室を経た排ガス熱を回収するボイラと、 A secondary combustion chamber that performs secondary combustion with secondary air above the 17-fire combustion chamber; A boiler that recovers exhaust gas heat that has passed through the secondary combustion chamber;
前記二次燃焼室より下流側の煙道内で、前記二次燃焼室から排出される排ガス中 の酸素濃度を測定するための酸素濃度測定器と、  An oxygen concentration measuring device for measuring the oxygen concentration in the exhaust gas discharged from the secondary combustion chamber in the flue downstream of the secondary combustion chamber;
この酸素濃度測定器により測定された酸素濃度に基づレ、て、前記一次燃焼を制御 する燃焼制御装置と  A combustion control device for controlling the primary combustion based on the oxygen concentration measured by the oxygen concentration measuring device;
を備えたことを特徴とするスト一力式焼却炉。  Stroke-type incinerator characterized by comprising
前記二次燃焼室から前記ボイラまでの煙道内であって、前記スト一力およびそこに おける火炎からの放射に対して遮断された箇所の排ガス温度を測定するための排ガ ス温度計をさらに備えており、前記燃焼制御装置は、この排ガス温度計により測定さ れた排ガス温度にも基づ!/、て、前記一 7火燃焼を制御するものであることを特徴とする 請求項 8に記載のスト一力式焼却炉。  An exhaust gas thermometer for measuring an exhaust gas temperature in a flue from the secondary combustion chamber to the boiler, where the exhaust gas temperature is blocked by the strike force and the radiation from the flame there. 9. The combustion control device according to claim 8, wherein the combustion control device controls the one-fire combustion based on the exhaust gas temperature measured by the exhaust gas thermometer! The strike-type incinerator described.
前記ボイラで発生する蒸気流量を測定するための蒸気流量測定器をさらに備えて おり、前記燃焼制御装置は、この蒸気流量測定器により測定された蒸気流量にも基 づレ、て、前記一次燃焼を制御するものであることを特徴とする請求項 6〜9の!/、ずれ か一項に記載のスト一力式焼却炉。  The apparatus further comprises a steam flow measuring device for measuring the flow rate of steam generated in the boiler, and the combustion control device is configured to perform the primary combustion based on the steam flow measured by the steam flow measuring device. The strike-type incinerator according to any one of claims 6 to 9, characterized in that the control is controlled.
ホツバから被燃焼物をスト一力上に投入し、このスト一力の下方より一次空気を導入 して、このスト一力上方の一 7火燃焼室で前記一次空気により一 7火燃焼を行うとともに、 この一 7火燃焼室上方の二次燃焼室で二次空気により二次燃焼を行うスト一力式焼却 炉の燃焼制御方法にぉレヽて、  Combustion material is introduced into the top of the strike force from Hotsuba, and primary air is introduced from below the strike force, and the 17-fire combustion is performed with the primary air in the seven-fire combustion chamber above the strike force. At the same time, according to the combustion control method of a single power incinerator that performs secondary combustion with secondary air in the secondary combustion chamber above the seven-fire combustion chamber,
前記二次燃焼室力 排出された排ガス中の酸素濃度が下限閾値未満になった場 合に、または排ガス中の一酸化炭素濃度もしくは温度が上限閾値を超えた場合に、 前記二次空気の流量を増加させることを特徴とするスト一力式焼却炉の燃焼制御方 法。  The secondary combustion chamber force The flow rate of the secondary air when the oxygen concentration in the exhaust gas exhausted is less than the lower threshold value, or when the carbon monoxide concentration or temperature in the exhaust gas exceeds the upper threshold value. A combustion control method for a stoichiometric incinerator characterized by increasing the amount of fuel.
前記二次空気の流量を増加させる際に、前記一次空気の流量を減少させることを 特徴とする請求項 11に記載のスト一力式焼却炉の燃焼制御方法。  12. The combustion control method for a stoichiometric incinerator according to claim 11, wherein when the flow rate of the secondary air is increased, the flow rate of the primary air is decreased.
前記一次空気の流量減少を行うために、前記スト一力の下方に設置したダンバから 一次空気を放出することを特徴とする請求項 12に記載のスト一力式焼却炉の燃焼制 御方法。 [14] 前記二次空気の流量増加を行うために、前記ダンバから放出した一次空気を前記 二次燃焼室に前記二次空気として導入することを特徴とする請求項 13に記載のスト 一力式焼却炉の燃焼制御方法。 13. The method for controlling combustion in a stoichiometric incinerator according to claim 12, wherein the primary air is discharged from a damper installed below the strike force in order to reduce the flow rate of the primary air. 14. The strike force according to claim 13, wherein the primary air discharged from the damper is introduced as the secondary air into the secondary combustion chamber in order to increase the flow rate of the secondary air. Combustion control method for an incinerator.
[15] 前記二次燃焼室に導入する二次空気として、前記一 7火燃焼室内から抜き出した燃 焼ガスを再循環して使用し、前記二次空気の流量増加を行う場合には、この燃焼ガ スを抜き出して再循環する量を増加させることを特徴とする請求項 11〜; 14のいずれ か一項にスト一力式焼却炉の燃焼制御方法。  [15] When the secondary air introduced into the secondary combustion chamber is used by recirculating the combustion gas extracted from the 17 fire combustion chamber and increasing the flow rate of the secondary air, The combustion control method for a strike-through type incinerator according to any one of claims 11 to 14, wherein an amount of the combustion gas extracted and recirculated is increased.
[16] 前記二次空気の流量増加を行う際に、前記一次空気の流量を減少させるとともに、 前記二次空気の流量増加を行うために、前記流量減少により生じた余分の一次空気 を、前記抜き出した燃焼ガスと混合して、前記二次燃焼室に前記二次空気として導 入することを特徴とする請求項 15にスト一力式焼却炉の燃焼制御方法。  [16] When the flow rate of the secondary air is increased, the flow rate of the primary air is decreased, and in order to increase the flow rate of the secondary air, the extra primary air generated by the flow rate decrease is 16. The combustion control method for a single power incinerator according to claim 15, wherein the combustion gas is mixed with the extracted combustion gas and introduced into the secondary combustion chamber as the secondary air.
[17] 被燃焼物を投入するためのホツバと、  [17] Hotsoba for charging the combustible,
このホツバから前記被燃焼物が供給されるスト一力と、  A striking force to which the combustible is supplied from this hotspot,
このスト一力の下方より一次空気を導入して、このスト一力上方で前記一次空気によ り一次燃焼を行う一次燃焼室と、  A primary combustion chamber for introducing primary air from below the strike force and performing primary combustion with the primary air above the strike force; and
この一 7火燃焼室上方で二次空気により二次燃焼を行う二次燃焼室と、  A secondary combustion chamber that performs secondary combustion with secondary air above the 17-fire combustion chamber;
前記スト一力およびそこにおける火炎からの放射に対して遮断された箇所の前記排 ガスの酸素濃度、一酸化炭素濃度または温度を測定するための測定器と、  A measuring instrument for measuring the oxygen concentration, carbon monoxide concentration or temperature of the exhaust gas at a location blocked against the strike force and radiation from the flame there;
この測定器で測定された酸素濃度、一酸化炭素濃度または温度に基づいて、前記 二次燃焼を制御する燃焼制御装置と  A combustion control device for controlling the secondary combustion based on the oxygen concentration, carbon monoxide concentration or temperature measured by the measuring device;
を備えたことを特徴とするスト一力式焼却炉。  Stroke-type incinerator characterized by comprising
[18] 前記スト一力の下方に設置され、前記一次空気を放出するダンバをさらに備えたこ とを特徴とする請求項 17に記載のスト一力式焼却炉。 18. The stoichiometric incinerator according to claim 17, further comprising a damper installed below the strike force and releasing the primary air.
[19] 前記ダンバと前記二次燃焼室との間に敷設され、前記ダンバから放出した一次空 気を前記二次燃焼室に導入するための配管をさら備えたことを特徴とする請求項 18 に記載のスト一力式焼却炉。 19. The apparatus according to claim 18, further comprising a pipe that is laid between the damper and the secondary combustion chamber and introduces the primary air discharged from the damper into the secondary combustion chamber. Stroke-type incinerator as described in 1.
[20] 前記一 7火燃焼室に設置され、前記一 7火燃焼室内の燃焼ガスを抜き出すための抜 出し口と、この抜出し口と前記二次燃焼室との間に敷設され、前記抜出し口から抜き 出した燃焼ガスを前記二次空気として前記二次燃焼室に再循環して導入するための 再循環通路とをさら備えたことを特徴とする請求項 17〜; 19のいずれか一項に該当す るスト一力式焼却炉。 [20] An extraction port installed in the 17 fire combustion chamber, for extracting combustion gas in the 17 fire combustion chamber, and laid between the extraction port and the secondary combustion chamber, and the extraction port Unplug 20. A recirculation passage for recirculating and introducing the emitted combustion gas as the secondary air into the secondary combustion chamber is further provided. Corresponding to any one of claims 17 to 19 A one-stop power incinerator.
前記一次空気を導入するための一次空気管と前記再循環通路との間に敷設され、 前記一次空気を前記再循環通路に導入するバイパス管をさらに備えたことを特徴と する請求項 20に記載のスト一力式焼却炉。  21. The apparatus according to claim 20, further comprising a bypass pipe that is laid between a primary air pipe for introducing the primary air and the recirculation passage and introduces the primary air into the recirculation passage. Stroke-type incinerator.
PCT/JP2007/066924 2006-09-04 2007-08-30 Stoker-type incinerator and method for controlling combustion in the incinerator WO2008029712A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2007800251243A CN101484753B (en) 2006-09-04 2007-08-30 Stoker-type incinerator and method for controlling combustion in the incinerator

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006-238692 2006-09-04
JP2006238692A JP4701138B2 (en) 2006-09-04 2006-09-04 Stoker-type incinerator and its combustion control method
JP2006241138A JP4701140B2 (en) 2006-09-06 2006-09-06 Stoker-type incinerator and its combustion control method
JP2006-241138 2006-09-06

Publications (1)

Publication Number Publication Date
WO2008029712A1 true WO2008029712A1 (en) 2008-03-13

Family

ID=39157143

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/066924 WO2008029712A1 (en) 2006-09-04 2007-08-30 Stoker-type incinerator and method for controlling combustion in the incinerator

Country Status (2)

Country Link
TW (1) TW200829835A (en)
WO (1) WO2008029712A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6450987B1 (en) * 2018-08-30 2019-01-16 三菱重工環境・化学エンジニアリング株式会社 Stalker furnace
JP7316234B2 (en) * 2020-02-26 2023-07-27 三菱重工業株式会社 Control device, control method and program

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59180212A (en) * 1983-03-30 1984-10-13 Kawasaki Heavy Ind Ltd Combustion controller in refuse incinerator
JPS633115A (en) * 1986-06-23 1988-01-08 Oriental Kiden Kk Burning condition detecting device for incinerator
JPH06313533A (en) * 1993-04-30 1994-11-08 Kubota Corp Waste incinerating furnace
JPH08100917A (en) * 1994-08-09 1996-04-16 Martin Gmbh Fuer Umwelt & Energietech Control method of combustion of combustion facility, particularly garbage incineration facility
JPH09273733A (en) * 1996-02-06 1997-10-21 Nkk Corp Control method of combustion in incinerating furnace
JP2003322321A (en) * 2002-05-07 2003-11-14 Takuma Co Ltd Combustion method for stoker type refuse incinerator and stoker type refuse incinerator
JP2006064300A (en) * 2004-08-27 2006-03-09 Takuma Co Ltd Combustion information monitoring controlling device for stoker type refuse incinerator

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59180212A (en) * 1983-03-30 1984-10-13 Kawasaki Heavy Ind Ltd Combustion controller in refuse incinerator
JPS633115A (en) * 1986-06-23 1988-01-08 Oriental Kiden Kk Burning condition detecting device for incinerator
JPH06313533A (en) * 1993-04-30 1994-11-08 Kubota Corp Waste incinerating furnace
JPH08100917A (en) * 1994-08-09 1996-04-16 Martin Gmbh Fuer Umwelt & Energietech Control method of combustion of combustion facility, particularly garbage incineration facility
JPH09273733A (en) * 1996-02-06 1997-10-21 Nkk Corp Control method of combustion in incinerating furnace
JP2003322321A (en) * 2002-05-07 2003-11-14 Takuma Co Ltd Combustion method for stoker type refuse incinerator and stoker type refuse incinerator
JP2006064300A (en) * 2004-08-27 2006-03-09 Takuma Co Ltd Combustion information monitoring controlling device for stoker type refuse incinerator

Also Published As

Publication number Publication date
TWI338111B (en) 2011-03-01
TW200829835A (en) 2008-07-16

Similar Documents

Publication Publication Date Title
JP4701138B2 (en) Stoker-type incinerator and its combustion control method
JP4701140B2 (en) Stoker-type incinerator and its combustion control method
EP1726876B1 (en) Improved method of combusting solid waste
JP4479655B2 (en) Grate-type waste incinerator and its combustion control method
KR100852507B1 (en) Treatment method and treatment apparatus for combustible gas in waste melting furnace
JP6696790B2 (en) Stoker incinerator
JP6146673B2 (en) Waste incinerator and waste incineration method
JP4448799B2 (en) A waste combustion state detection method using a grate temperature in a stoker type incinerator, a waste incineration control method and a grate temperature control method using the method.
JP6695160B2 (en) Stoker incinerator
JP3963925B2 (en) Secondary combustion method and apparatus in incineration system
JP5861880B2 (en) Waste incinerator and waste incineration method
WO1988008504A1 (en) Combustion control method for fluidized bed incinerator
JP5800237B2 (en) Waste incinerator and waste incineration method
JP6695161B2 (en) Stoker incinerator
WO2008029712A1 (en) Stoker-type incinerator and method for controlling combustion in the incinerator
JP3887149B2 (en) Stoker furnace and incineration method using the same
JP6256859B2 (en) Waste incineration method
JP5871207B2 (en) Waste incinerator and waste incineration method
CN113574320B (en) Incinerator with a heat exchanger
JP6146671B2 (en) Waste incinerator and waste incineration method
JP2005265410A (en) Waste incinerator
JP2020190374A (en) Incinerator and control method of incinerator
JP6183787B2 (en) Grate-type waste incinerator and waste incineration method
JP2023091983A (en) Combustion control device for refuse incinerator and combustion control method for refuse incinerator
CZ2004887A3 (en) Fluidized bed combustion boiler

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780025124.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07806401

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07806401

Country of ref document: EP

Kind code of ref document: A1