WO2008027481A1 - Recessed extended nozzles for drill bits and drill bits so equipped - Google Patents

Recessed extended nozzles for drill bits and drill bits so equipped Download PDF

Info

Publication number
WO2008027481A1
WO2008027481A1 PCT/US2007/019081 US2007019081W WO2008027481A1 WO 2008027481 A1 WO2008027481 A1 WO 2008027481A1 US 2007019081 W US2007019081 W US 2007019081W WO 2008027481 A1 WO2008027481 A1 WO 2008027481A1
Authority
WO
WIPO (PCT)
Prior art keywords
nozzle
bit
recess
exit
annular
Prior art date
Application number
PCT/US2007/019081
Other languages
French (fr)
Inventor
James Andy Oxford
Original Assignee
Baker Hughes Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Baker Hughes Incorporated filed Critical Baker Hughes Incorporated
Publication of WO2008027481A1 publication Critical patent/WO2008027481A1/en

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B10/00Drill bits
    • E21B10/60Drill bits characterised by conduits or nozzles for drilling fluids
    • E21B10/61Drill bits characterised by conduits or nozzles for drilling fluids characterised by the nozzle structure

Definitions

  • the present invention relates to rotary drag bits for drilling subterranean formations and their operation. More specifically, embodiments of the present invention relate to recessing drill bit nozzles retained by a retention element susceptible to erosion in combination with extending the nozzle outlets to remove the retention element from damaging contact with drilling fluid.
  • Tri-cone bits also termed "roller cone" bits, conventionally employ nozzles which are retained in nozzle recesses by retention elements in the form of snap-rings which are circumferentially and radially compressed when placed over a nozzle body previously disposed in a nozzle recess and then released to radially expand into an annular slot in the wall of the nozzle recess.
  • FIG. 1 of the drawings depicts a conventional, snap-ring-retained, nozzle 10 as conventionally used in a roller cone bit, but in this instance shown conceptually as it might be mounted to a rotary drag bit 20. Applicant expressly states that FIG. 1 and the accompanying description thereof do not constitute prior art or an admission of same, but are provided merely to enhance the reader's understanding of the present invention and the advantages provided thereby.
  • Nozzle 10 comprises a nozzle body 12, conventionally formed of tungsten carbide for erosion resistance to prevent "cutting out” of the nozzle 10 by the solids-laden drilling mud, nozzle body 12 having a passage 14 therethrough constricting toward a nozzle mouth or exit 16 on the face 18 of nozzle body 12.
  • a radially enlarged portion of passage 24 might comprise nozzle recess 28, nozzle recess 28 terminating at annular seat 30 at its inner end.
  • an annular seal in the form of an O-ring 32 would be disposed substantially within a first, inner annular groove 34 in the wall 36 of nozzle recess 28 and compressed against nozzle body 12 to provide a fluid seal between nozzle body 12 and the wall 36 of nozzle recess 28.
  • a snap-ring 38 would be disposed partially in a second, outer annular groove 38, a radially outer portion of snap- ring 38 being received in second, outer annular groove 40 and an inner portion extending radially inwardly over the face 18 of nozzle body 12.
  • the face 18 and nozzle exit 16 of nozzle 10 are in close proximity to formation F being drilled, resulting in splash back of drilling mud M as shown by arrows depicting contact of drilling mud M with formation F and reflection therefrom and subsequent contact with snap-ring 38.
  • fluid currents C generated in the drilling mud in close proximity to nozzle exit 16 may also contact and erode snap-ring 38.
  • the invention comprises a nozzle including a nozzle body having an extended, tubular nozzle protrusion at one end thereof terminating at a nozzle exit, the nozzle body further comprising an annular shoulder surrounding a base of the nozzle protrusion.
  • a passage extends through the nozzle body, the passage having a proximal end comprising an entry bore of larger cross-sectional area through which drilling mud may be received and necking down to a smaller cross-sectional area before entering an exit bore extending through the nozzle protrusion and distally terminating at the nozzle exit, where drilling mud may be discharged.
  • a nozzle configured as described in the preceding paragraph is disposed in a nozzle recess of a bit body of a rotary drag bit.
  • the nozzle recess is of sufficient depth, terminating at an annular seat, to receive the nozzle and recess the annular shoulder of the nozzle body a substantial distance from the bit face.
  • a snap-ring is disposed partially in an annular groove in the wall of the nozzle recess, a radially outer portion of the snap-ring being received in the annular groove and a radially inner portion extending inwardly over the annular shoulder of the nozzle body to retain the nozzle body against the annular seat.
  • the nozzle exit at the distal end of the nozzle protrusion extends to a location proximate the bit face, while the snap-ring is substantially removed from exposure to splash back and currents of drilling mud which might erode the snap-ring and cause loss of the nozzle and is additionally protected by a volume of non-circulating drilling mud comprising a "dead space" and resident in the annular recess defined between the exterior of the nozzle protrusion and the nozzle recess wall.
  • FIG. 1 comprises a schematic depiction of a conventional roller cone bit nozzle at it might be retained in a conventional nozzle recess of a bit body of a rotary drag bit; and
  • FIG. 2 comprises a schematic depiction of a nozzle according to an embodiment of the invention disposed in an elongated nozzle recess of a bit body of a rotary drag bit configured according to an embodiment of the invention.
  • FIG. 2 of the drawings depicts a snap-ring-retained nozzle 110 according to an embodiment of the present invention.
  • nozzle 110 is mounted to a rotary drag bit 120, configured to receive nozzle 110 according to an embodiment of the invention.
  • Nozzle 1 10 comprises a substantially cylindrical nozzle body 112, which may, but is not required to be, conventionally formed of tungsten carbide for erosion resistance to prevent "cutting out" of the nozzle by the solids-laden drilling mud.
  • Nozzle body 1 12 includes a longitudinal passage 114 therethrough, comprising an enlarged entry bore 1 14a and constricting at 114b toward an exit bore 114c terminating at nozzle mouth or exit 116.
  • Exit bore 114c extends through a tubular nozzle protrusion 150 at one end of nozzle body 112, nozzle protrusion 150 being surrounded at its base by annular shoulder 152. As shown in FIG. 2, exit bore 114c may commence proximate the base of nozzle protrusion 150, or more proximally within cylindrical nozzle body 112.
  • Rotary drag bit 120 comprising bit body 122, includes at least one passage (and typically a plurality of passages) 124 extending from the trailing end of the bit body 122 (not shown) or from a plenum (not shown) within the bit body 122 where drilling mud is received from a drill string to which rotary drag bit 120 is secured in a conventional manner, to bit face 126.
  • a radially enlarged portion of passage 124 comprises elongated nozzle recess 128 extending inwardly from bit face 126, nozzle recess 128 terminating at annular seat 130 at its inner end.
  • annular seal in the form of an O-ring 132 is disposed substantially within a first, inner annular groove 134 in the wall 136 of nozzle recess 128 and compressed against nozzle body 112 to provide a fluid seal between nozzle body 112 and the wall 136 of nozzle recess 128.
  • a snap-ring 138 is disposed partially in a second, outer annular groove 140, a radially outer portion of snap-ring 138. being received in second, outer annular groove 140 and a radially inner portion extending radially inwardly over the annular shoulder 152 of nozzle body 112, retaining nozzle 1 10 within nozzle recess 128 against annular seat 130 in communication with passage 124.
  • nozzle protrusion 150 including exit 116 of nozzle 110 are in close proximity to formation F being drilled, either flush with bit face 126 or protruding slightly past the mouth of nozzle recess 128 above the bit face.
  • second, outer annular groove 140 in the wall 136 of nozzle recess 128, and snap-ring 138 engaged therewith are positioned deeply within nozzle recess 128, substantially removed from bit face 126.
  • a suitable, non-limiting position for second, outer annular groove within nozzle recess 128 is at least about 1.27 cm (one-half inch (1/2")) or greater, with an associated length of nozzle protrusion 150 being selected to place nozzle exit 116 at a desired location proximate bit face 126.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Earth Drilling (AREA)

Abstract

A nozzle (110) includes a nozzle body (112) having an extended, tubular nozzle protrusion (150) terminating at a nozzle exit (116), the nozzle body having an annular shoulder (152) surrounding a base of the nozzle protrusion. A passage (114) extends through the nozzle body, necking down in cross-sectional area (114b) before entering the nozzle protrusion and distally terminating at a nozzle exit, where drilling mud (M) is discharged. A nozzle configured as described is disposed in a nozzle recess (128) of a bit body (122) of a rotary drag bit (120), the nozzle recess being of sufficient depth to receive the nozzle and recess the annular shoulder of the nozzle body a substantial distance from the bit face (126). A snap-ring (138) is received in an annular groove (140) in the wall of the nozzle recess and extends inwardly over the annular shoulder of the nozzle body. The nozzle protrusion exit extends to a location proximate the bit face.

Description

RECESSED EXTENDED NOZZLES FOR DRILL BITS AND DRILL BITS SO EQUIPPED
PRIORITY CLAIM This application claims the benefit of the filing date of United States Provisional Patent Application Serial No. 60/841 ,364, filed August 31 , 2006, entitled "RECESSED EXTENDED NOZZLES FOR DRILL BITS AND DRILL BITS SO EQUIPPED."
TECHNICAL FIELD
The present invention relates to rotary drag bits for drilling subterranean formations and their operation. More specifically, embodiments of the present invention relate to recessing drill bit nozzles retained by a retention element susceptible to erosion in combination with extending the nozzle outlets to remove the retention element from damaging contact with drilling fluid.
BACKGROUND It is conventional to use threaded exteriors to secure nozzles in nozzle recesses in the face of a fixed cutter rotary bit, also termed a rotary "drag" bit. However, it is difficult to form threads on the recess walls of certain bit bodies, particularly those formed of a tungsten carbide (WC) matrix infiltrated with a copper alloy binder, or formed of another material or materials, such as a sintered carbide, in which it might be difficult to either machine threads or to form fairly precise threads in some other reasonably efficient manner.
Therefore, it would be desirable to be able to secure nozzles within the nozzle recesses of such bit bodies in some other manner. Tri-cone bits, also termed "roller cone" bits, conventionally employ nozzles which are retained in nozzle recesses by retention elements in the form of snap-rings which are circumferentially and radially compressed when placed over a nozzle body previously disposed in a nozzle recess and then released to radially expand into an annular slot in the wall of the nozzle recess. While this approach to nozzle securement would be highly convenient for use in a drag bit, there is substantial concern that a snap-ring placed in close proximity to the formation being drilled and to the nozzle mouth or "exit" may be eroded to failure and a nozzle retained in a nozzle recess thereby consequently blown out of the nozzle recess and lost, compromising bit hydraulics and placing the hard-to-drill tungsten carbide nozzle body at the bottom of the well bore, where it may severely damage polycrystalline diamond compact (PDC) cutting elements on the bit face.
There appear to be two significant sources of such potential erosion. First, there is "blow back," also termed "splash back" of solids-laden drilling fluid or "mud" contacting the face of the formation proximate the nozzle exit and splashing back against the bit face at the nozzle location. Second, fluid currents may be generated in the drilling mud surrounding the nozzle exit, which currents may erode the snap-ring.
FIG. 1 of the drawings depicts a conventional, snap-ring-retained, nozzle 10 as conventionally used in a roller cone bit, but in this instance shown conceptually as it might be mounted to a rotary drag bit 20. Applicant expressly states that FIG. 1 and the accompanying description thereof do not constitute prior art or an admission of same, but are provided merely to enhance the reader's understanding of the present invention and the advantages provided thereby.
Nozzle 10 comprises a nozzle body 12, conventionally formed of tungsten carbide for erosion resistance to prevent "cutting out" of the nozzle 10 by the solids-laden drilling mud, nozzle body 12 having a passage 14 therethrough constricting toward a nozzle mouth or exit 16 on the face 18 of nozzle body 12. Rotary drag bit 20, comprising bit body 22, includes at least one passage (and typically a plurality of passages) 24 extending from the trailing end (not shown) of the bit body 22 where drilling mud is received from a drill string to which rotary drag bit 20 is secured, in a conventional manner, to bit face 26. At the outlet of passage 24, a radially enlarged portion of passage 24 might comprise nozzle recess 28, nozzle recess 28 terminating at annular seat 30 at its inner end. In this arrangement, an annular seal in the form of an O-ring 32 would be disposed substantially within a first, inner annular groove 34 in the wall 36 of nozzle recess 28 and compressed against nozzle body 12 to provide a fluid seal between nozzle body 12 and the wall 36 of nozzle recess 28. A snap-ring 38 would be disposed partially in a second, outer annular groove 38, a radially outer portion of snap- ring 38 being received in second, outer annular groove 40 and an inner portion extending radially inwardly over the face 18 of nozzle body 12. As shown, the face 18 and nozzle exit 16 of nozzle 10 are in close proximity to formation F being drilled, resulting in splash back of drilling mud M as shown by arrows depicting contact of drilling mud M with formation F and reflection therefrom and subsequent contact with snap-ring 38. In addition, fluid currents C generated in the drilling mud in close proximity to nozzle exit 16 may also contact and erode snap-ring 38.
DISCLOSURE OF THE INVENTION
In one embodiment, the invention comprises a nozzle including a nozzle body having an extended, tubular nozzle protrusion at one end thereof terminating at a nozzle exit, the nozzle body further comprising an annular shoulder surrounding a base of the nozzle protrusion. A passage extends through the nozzle body, the passage having a proximal end comprising an entry bore of larger cross-sectional area through which drilling mud may be received and necking down to a smaller cross-sectional area before entering an exit bore extending through the nozzle protrusion and distally terminating at the nozzle exit, where drilling mud may be discharged.
In another embodiment, a nozzle configured as described in the preceding paragraph is disposed in a nozzle recess of a bit body of a rotary drag bit. The nozzle recess is of sufficient depth, terminating at an annular seat, to receive the nozzle and recess the annular shoulder of the nozzle body a substantial distance from the bit face. A snap-ring is disposed partially in an annular groove in the wall of the nozzle recess, a radially outer portion of the snap-ring being received in the annular groove and a radially inner portion extending inwardly over the annular shoulder of the nozzle body to retain the nozzle body against the annular seat. The nozzle exit at the distal end of the nozzle protrusion extends to a location proximate the bit face, while the snap-ring is substantially removed from exposure to splash back and currents of drilling mud which might erode the snap-ring and cause loss of the nozzle and is additionally protected by a volume of non-circulating drilling mud comprising a "dead space" and resident in the annular recess defined between the exterior of the nozzle protrusion and the nozzle recess wall.
DESCRIPTION OF THE DRAWINGS
FIG. 1 comprises a schematic depiction of a conventional roller cone bit nozzle at it might be retained in a conventional nozzle recess of a bit body of a rotary drag bit; and FIG. 2 comprises a schematic depiction of a nozzle according to an embodiment of the invention disposed in an elongated nozzle recess of a bit body of a rotary drag bit configured according to an embodiment of the invention. MODE(S) FOR CARRYING OUT THE INVENTION
FIG. 2 of the drawings depicts a snap-ring-retained nozzle 110 according to an embodiment of the present invention. As shown, nozzle 110 is mounted to a rotary drag bit 120, configured to receive nozzle 110 according to an embodiment of the invention. Nozzle 1 10 comprises a substantially cylindrical nozzle body 112, which may, but is not required to be, conventionally formed of tungsten carbide for erosion resistance to prevent "cutting out" of the nozzle by the solids-laden drilling mud. Nozzle body 1 12 includes a longitudinal passage 114 therethrough, comprising an enlarged entry bore 1 14a and constricting at 114b toward an exit bore 114c terminating at nozzle mouth or exit 116. Exit bore 114c extends through a tubular nozzle protrusion 150 at one end of nozzle body 112, nozzle protrusion 150 being surrounded at its base by annular shoulder 152. As shown in FIG. 2, exit bore 114c may commence proximate the base of nozzle protrusion 150, or more proximally within cylindrical nozzle body 112.
Rotary drag bit 120, comprising bit body 122, includes at least one passage (and typically a plurality of passages) 124 extending from the trailing end of the bit body 122 (not shown) or from a plenum (not shown) within the bit body 122 where drilling mud is received from a drill string to which rotary drag bit 120 is secured in a conventional manner, to bit face 126. At the outlet of a passage 124, a radially enlarged portion of passage 124 comprises elongated nozzle recess 128 extending inwardly from bit face 126, nozzle recess 128 terminating at annular seat 130 at its inner end. In this arrangement, annular seal in the form of an O-ring 132 is disposed substantially within a first, inner annular groove 134 in the wall 136 of nozzle recess 128 and compressed against nozzle body 112 to provide a fluid seal between nozzle body 112 and the wall 136 of nozzle recess 128. A snap-ring 138 is disposed partially in a second, outer annular groove 140, a radially outer portion of snap-ring 138. being received in second, outer annular groove 140 and a radially inner portion extending radially inwardly over the annular shoulder 152 of nozzle body 112, retaining nozzle 1 10 within nozzle recess 128 against annular seat 130 in communication with passage 124. Thus, the flow of drilling fluid from the interior of bit body 122 through passage 124 is prevented from dislodging nozzle 1 10 from nozzle recess 128.
As shown, the distal end of nozzle protrusion 150 including exit 116 of nozzle 110 are in close proximity to formation F being drilled, either flush with bit face 126 or protruding slightly past the mouth of nozzle recess 128 above the bit face. On the other hand, second, outer annular groove 140 in the wall 136 of nozzle recess 128, and snap-ring 138 engaged therewith, are positioned deeply within nozzle recess 128, substantially removed from bit face 126. A suitable, non-limiting position for second, outer annular groove within nozzle recess 128 is at least about 1.27 cm (one-half inch (1/2")) or greater, with an associated length of nozzle protrusion 150 being selected to place nozzle exit 116 at a desired location proximate bit face 126. As. a result of such positioning of snap-ring 138, and further due to a "dead space" volume of non-circulating drilling mud DS, erosive splash back on snap-ring 138 of drilling mud M emanating from nozzle exit 116 as shown by arrows depicting contact of drilling mud M with formation F and subsequent reflection from formation F toward bit face 126 is eliminated. In addition, potentially erosive fluid currents C generated in close proximity to nozzle exit 116 are similarly removed from snap-ring 138 and separated therefrom by the dead space volume of non-circulating drilling mud DS. While the invention has been described in terms of an illustrated embodiment, those of ordinary skill in the art will recognize and appreciate that it is not so limited, the invention being limited only by the claims appended hereto.

Claims

CLAIMSWhat is claimed is:
1. A nozzle for a drill bit for drilling subterranean formations, the nozzle comprising: a substantially cylindrical nozzle body comprising a tubular protrusion extending from one end thereof, the tubular protrusion surrounded at a base thereof by an annular shoulder; and a passage extending longitudinally through the nozzle body from an end thereof opposite the one end to a nozzle exit at a distal end of the protrusion.
2. The nozzle of claim 1, wherein the passage extends from an entry bore at an end of the nozzle body opposite the one end and reduces in cross-sectional area to an exit bore extending through the tubular protrusion to the nozzle exit.
3. The nozzle of claim 1, wherein the nozzle body comprises tungsten carbide.
4. A rotary drill bit for drilling subterranean formations, comprising: a bit body having a face and including at least one nozzle recess opening onto the face, the nozzle recess having an annular groove in a wall thereof; a nozzle disposed in the at least one nozzle recess, the nozzle comprising: a substantially cylindrical nozzle body comprising a tubular protrusion extending from one end thereof, the tubular protrusion surrounded at a base thereof by an annular shoulder; and a passage extending longitudinally through the nozzle body from an end thereof opposite the one end to a nozzle exit at a distal end of the protrusion; and a retention element disposed partially within the annular groove and extending over at least a portion of the annular shoulder.
5. The rotary drill bit of claim 4, wherein the retention element comprises a
6. The rotary drill bit of claim 4, further including: another annular groove in the wall of the nozzle recess located inwardly of the annular groove; and a resilient annular seal disposed substantially within the another annular groove and compressed against an outer surface of the nozzle body.
7. The rotary drill bit of claim 4, wherein the passage extends from an entry bore at an end of the nozzle body opposite the one end and reduces in cross-sectional area to an exit bore extending through the tubular protrusion to the nozzle exit.
8. The rotary drill bit of claim 4, wherein the nozzle exit is located proximate the bit body face.
9. The rotary drill bit of claim 4, wherein the nozzle body comprises tungsten carbide.
10. The rotary drill bit of claim 4, wherein the rotary drill bit is configured as a drag bit.
11. The rotary drill bit of claim 4, wherein the annular groove is located at least about 1.27 cm (one-half inch) from the bit body face.
12. The rotary drill bit of claim 14, wherein the nozzle recess comprises an annular seat at an inner end thereof, and the nozzle body is secured between the annular seat and the retention element.
13. A rotary drag bit for drilling subterranean formations, comprising: a bit body having a face and including at least one nozzle recess opening onto the face; a nozzle disposed in the at least one nozzle recess, the nozzle comprising: a substantially cylindrical nozzle body comprising a tubular protrusion extending from one end thereof and terminating distally at a nozzle exit, the tubular protrusion surrounded at a base thereof by an annular shoulder; wherein the annular shoulder is located within the nozzle recess at least about 1.27 cm (one-half inch) from a surface of the bit face surrounding the nozzle recess; and wherein the nozzle exit is located immediately proximate the surface.
14. The rotary drag bit of claim 13, wherein the nozzle recess includes an annular groove therein proximate the annular shoulder, and further comprising a retention element disposed partially within the annular groove and extending over at least a portion of the annular shoulder.
15. The rotary drill. bit of claim 14, wherein the nozzle recess comprises an annular seat at an inner end thereof, and the nozzle body is secured between the annular seat and the retention element.
PCT/US2007/019081 2006-08-31 2007-08-30 Recessed extended nozzles for drill bits and drill bits so equipped WO2008027481A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US84136406P 2006-08-31 2006-08-31
US60/841,364 2006-08-31

Publications (1)

Publication Number Publication Date
WO2008027481A1 true WO2008027481A1 (en) 2008-03-06

Family

ID=38814354

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2007/019081 WO2008027481A1 (en) 2006-08-31 2007-08-30 Recessed extended nozzles for drill bits and drill bits so equipped

Country Status (2)

Country Link
US (1) US20080053708A1 (en)
WO (1) WO2008027481A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100193253A1 (en) * 2009-01-30 2010-08-05 Massey Alan J Earth-boring tools and bodies of such tools including nozzle recesses, and methods of forming same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2855182A (en) * 1954-04-05 1958-10-07 Hughes Tool Co Replaceable nozzle for drill bits
FR1296291A (en) * 1961-07-27 1962-06-15 Chicago Pneumatic Tool Co Projection nozzle for trephine

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3115200A (en) * 1957-08-28 1963-12-24 Reed Roller Bit Co Drill bit nozzle assembly
US3084751A (en) * 1960-04-29 1963-04-09 Dresser Ind Drill bit nozzle
US4711311A (en) * 1986-11-20 1987-12-08 Smith International, Inc. Vibration and erosion resistant nozzle
US8448725B2 (en) * 2004-12-10 2013-05-28 Smith International, Inc. Impact resistant PDC drill bit

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2855182A (en) * 1954-04-05 1958-10-07 Hughes Tool Co Replaceable nozzle for drill bits
FR1296291A (en) * 1961-07-27 1962-06-15 Chicago Pneumatic Tool Co Projection nozzle for trephine

Also Published As

Publication number Publication date
US20080053708A1 (en) 2008-03-06

Similar Documents

Publication Publication Date Title
US6848517B2 (en) Drillable drill bit nozzle
US6527065B1 (en) Superabrasive cutting elements for rotary drag bits configured for scooping a formation
US4381825A (en) Drill bit nozzle
US4660657A (en) Underreamer
EP2394016B1 (en) Casing bit and casing reamer designs
US4323130A (en) Drill bit
USRE32036E (en) Drill bit
US6131675A (en) Combination mill and drill bit
US4494618A (en) Drill bit with self cleaning nozzle
US8820439B2 (en) Tools for use in subterranean boreholes having expandable members and related methods
EP0872625A3 (en) Rotary drill bits with nozzles
ITTO20000846A1 (en) PROCEDURE AND DEVICE TO ENLARGE A HOLE.
CN107620573A (en) For the drill bit to be drilled with sleeve pipe or tail pipe column and its manufacture
RU2675615C2 (en) Drill bit with fixed cutters with flux guide
WO1993025794A1 (en) Well drilling tools
EP3060742B1 (en) Drilling device
US20080053708A1 (en) Recessed extended nozzles for drill bits and drill bits so equipped
US6253862B1 (en) Earth-boring bit with cutter spear point hardfacing
JP6543104B2 (en) Coring bit, hole adjusting member and drilling method
JP3142944U (en) Core sampling device
US20140090901A1 (en) Machined high angle nozzle sockets for steel body bits
WO2014055288A1 (en) Blade flow pdc bits
GB2475167A (en) Under reamer
CA1160213A (en) Drill bit nozzle
JP3418744B2 (en) Core bits for rotary percussion drills

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07837536

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 07837536

Country of ref document: EP

Kind code of ref document: A1