WO2008023623A1 - Dispositif électroluminescent organique - Google Patents

Dispositif électroluminescent organique Download PDF

Info

Publication number
WO2008023623A1
WO2008023623A1 PCT/JP2007/065916 JP2007065916W WO2008023623A1 WO 2008023623 A1 WO2008023623 A1 WO 2008023623A1 JP 2007065916 W JP2007065916 W JP 2007065916W WO 2008023623 A1 WO2008023623 A1 WO 2008023623A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
light emitting
substituted
emitting layer
unsubstituted
Prior art date
Application number
PCT/JP2007/065916
Other languages
English (en)
French (fr)
Inventor
Yukitoshi Jinde
Nobuhiro Yabunouchi
Hitoshi Kuma
Chishio Hosokawa
Original Assignee
Idemitsu Kosan Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co., Ltd. filed Critical Idemitsu Kosan Co., Ltd.
Priority to EP07792550A priority Critical patent/EP2061103A1/en
Priority to JP2008530877A priority patent/JPWO2008023623A1/ja
Publication of WO2008023623A1 publication Critical patent/WO2008023623A1/ja

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B1/00Dyes with anthracene nucleus not condensed with any other ring
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B57/00Other synthetic dyes of known constitution
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B57/00Other synthetic dyes of known constitution
    • C09B57/008Triarylamine dyes containing no other chromophores
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B6/00Anthracene dyes not provided for above
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/20Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the material in which the electroluminescent material is embedded
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/125OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/18Carrier blocking layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/633Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1014Carbocyclic compounds bridged by heteroatoms, e.g. N, P, Si or B
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/10Transparent electrodes, e.g. using graphene
    • H10K2102/101Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO]
    • H10K2102/103Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO] comprising indium oxides, e.g. ITO
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/18Carrier blocking layers
    • H10K50/181Electron blocking layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/321Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3]
    • H10K85/324Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3] comprising aluminium, e.g. Alq3
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/622Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing four rings, e.g. pyrene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/624Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing six or more rings
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/626Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing more than one polycyclic condensed aromatic rings, e.g. bis-anthracene

Definitions

  • the present invention relates to an organic electoluminescence element.
  • Patent Document 1 in the type in which the light emitting layer is divided into two, the light emitting color is changed to red by making the light emitting layer on the anode side where the light emitting region of the light emitting layer tends to be biased into a blue light emitting layer.
  • the tendency to be biased can be counteracted, and have proposed a white element that suppresses color changes.
  • the service life was 10,000 hours.
  • Patent Document 2 discloses an organic EL element in which a light emitting layer is laminated in the order of a red light emitting layer, a blue light emitting layer, and a green light emitting layer from the anode side. Furthermore, a technique for suppressing a color change accompanying an increase in driving current by doping a red light emitting layer used in the red light emitting layer into the blue light emitting layer is also disclosed. Despite its strength, its life was short.
  • anode, hole transporting blue light emitting layer, electron transporting carrier reconstitution The control layer layer, the electron transporting / transporting red / red light emitting / emitting layer, and the cathode / cathode layer are stacked in this order to produce white / white light emitting / emitting light.
  • the organic device EELL element that can be used is disclosed.
  • the above-mentioned carrier level control layer of the carrier rear re-bonding region control layer has positive hole hole transportability blue-blue color generation.
  • the driving drive voltage voltage was high and high, with a large and good value for the luminous level of the light emitting layer. .
  • the electron-emitting / transporting light-emitting / emitting light-emitting layer is arranged via an electron-blocking barrier layer.
  • the arranged white-white color organic light emitting organic device EELL element is disclosed.
  • the positive holes injected from the positive and negative electrodes are the very first and first light emission.
  • the second layer of electrons is transported by passing through the barrier layer of the electron barrier layer.
  • the amount of positive hole holes supplied to the light emitting layer is low, and the efficiency of white and white light emitting light is low. Lele, and ! //, there was a section assignment, and life expectancy was short. .
  • the eleventh light-emitting light layer is more than 00..lleeVV and is larger than that of the ionized popuotate signal.
  • the whiteness of the 22nd light emitting level is better than that of the 22nd light emitting layer, and it is more than 00 .. lleeVV or more.
  • the organic light emitting organic light emitting device EELL element is disclosed. .
  • the charge barrier wall layer has the functionality of both the electron barrier barrier and the positive hole barrier wall.
  • Susururu good uhh Division challenges drive driving dynamic Denden-pressure is and at most Kuku a Naruru in to the play was Meme is in Ariri ,, first initial phase bright brightness level llOOOOOOccdd // mm 22
  • the life expectancy of the heart was between 110,000,000 hours when driven by a constant current drive. .
  • the red-red light emitting layer, the green-green light-emitting layer, the blue-blue light-emitting layer from the anode side Are stacked in this order, and at least a positive hole is formed between the green-green light emitting layer and the blue-blue light emitting layer.
  • An organic device EELL element with an intermediate and intermediate layer layer that is capable of blocking electron transport and preventing electron transport is disclosed. The . Although there was a lot of power, there was a challenge that the luminous efficiency of light emission and emission was not sufficient. .
  • Japanese Patent Publication No. 11 Japanese Patent Publication No. 22000033—— Publication No. 227722885577
  • Japanese Patent Application No. 22 :: Japanese Patent Application Publication No. 22000044-- 223355116688
  • Japanese Patent Publication No. 33 :: Japanese Patent Publication No. 88-- 7788116633
  • Patent Document 5 International Publication No. 2005/112518 Pamphlet
  • Patent Document 6 Japanese Unexamined Patent Application Publication No. 2005-100921
  • Patent Document 7 US2006 / 0088729
  • a charge barrier layer is introduced in order to adjust the amount of electrons and holes injected into the two light emitting layers.
  • the charge barrier layer repeatedly generates heat due to oxidation reduction due to charge transfer of both electrons and holes. As a result, the material deteriorates, causing a short life.
  • an object of the present invention is to provide an organic EL device having a long lifetime suitable for display and lighting applications, high color rendering properties and light emission efficiency, and a small chromaticity change.
  • the following organic EL device is provided.
  • An anode, a first light emitting layer, a charge barrier layer, a second light emitting layer, and a cathode are laminated in this order, and the charge barrier layer is represented by the following formula (1) having a glass transition temperature of 110 ° C. or higher.
  • Organic electroluminescence device containing an aromatic amine derivative is represented by the following formula (1) having a glass transition temperature of 110 ° C. or higher.
  • L is a substituted or unsubstituted arylene group or heterocyclic group having 5 to 60 carbon atoms.
  • Ar to Ar are substituted or unsubstituted nuclear atoms each having 5 to 50 atoms.
  • Ar is a biphenyl group, m-terphenyl group, or p-terphenyl group, Ar to Ar force phenyl group, biphenyl group, m-terphenyl group, or
  • the organic electoluminescence device according to 1 or 2 which is a p-terphenyl group.
  • the organic electoluminescence device according to any one of the above.
  • the organic electoluminescence device according to any one of the above.
  • a hole transport layer adjacent to the first light emitting layer is provided between the anode and the first light emitting layer, and the material forming the hole transport layer and the material forming the charge barrier layer are the same.
  • the first light emitting layer is a red light emitting layer
  • the second light emitting layer is a blue light emitting layer
  • a third light emitting layer is provided between the second light emitting layer and the cathode, and the anode, the first light emitting layer, the charge barrier layer, the second light emitting layer, the third light emitting layer, and the cathode are laminated in this order.
  • the organic electoluminescence device according to any one of 1 to 9.
  • the organic electroluminescent device wherein the first light emitting layer is a red light emitting layer, the second light emitting layer is a blue light emitting layer, and the third light emitting layer is a green light emitting layer.
  • the second light-emitting layer or the second organic layer which is an organic layer close to the cathode, contains a reducing agent! /! .
  • a full-color light-emitting device comprising the organic-electric-luminescence element described in 1 to 13 above or any one of the above and a color filter.
  • an organic EL device having a long life, high color rendering properties and high luminous efficiency, and little chromaticity change.
  • FIG. 1 is a diagram showing a configuration of an organic EL element that is effective in an embodiment of the present invention.
  • FIG. 2 is a diagram showing a configuration of an organic EL element that is effective in another embodiment of the present invention.
  • FIG. 3 is a graph showing the change over time in the luminance of the organic EL devices produced in Example 2 and Comparative Examples 3 and 4.
  • the organic EL device of the present invention includes an anode, a first light emitting layer, a charge barrier layer, a second light emitting layer, and a cathode laminated in this order.
  • a charge barrier layer By inserting a charge barrier layer, the amount of electrons and holes injected into the first light-emitting layer and the second light-emitting layer are adjusted, and the light emission intensity of the first light-emitting layer and the second light-emitting layer is adjusted. be able to.
  • the charge barrier layer which has resistance to electron and hole transfer by long-time current drive and heat resistance, has a condensed ring directly coordinated to nitrogen represented by the following formula (1) having a glass transition temperature of 110 ° C or higher. Not containing aromatic amine derivatives.
  • 1 4 is not a fused ring.
  • L is a substituted or unsubstituted arylene group or heterocyclic group having 5 to 60 carbon atoms.
  • Each of Ar to Ar is a substituted or unsubstituted number of 5 to 50 nuclear atoms.
  • a white organic EL element having a long life can be obtained by adopting such a configuration. Further, the element of the present invention has color rendering properties, and even if the driving conditions (emission luminance, etc.) of the element having high luminous efficiency are changed, the chromaticity change of light emission is small.
  • FIG. 10 One embodiment of such an organic EL element is shown in FIG. This organic EL element 10 has an anode 1
  • the charge barrier layer 4 contains the above aromatic amine derivative.
  • the first light emitting layer 3 can emit red light and the second light emitting layer 5 can emit blue light, thereby obtaining white light.
  • the configuration of the organic EL element of the present invention is not limited to that shown in Fig. 1, and may be, for example, the following configuration. 1.Anode / first light emitting layer / charge barrier layer / second light emitting layer / cathode
  • the excitation energy generated when electrons and holes are recombined in the first light-emitting layer is transferred to the anode, which is a metal, to prevent non-light-emitting energy deactivation. It is preferable to have a hole transport layer between the anode and the first light emitting layer.
  • the structure has a hole transport layer
  • the hole transport layer and the charge barrier layer are the same material, the types of materials used in manufacturing the organic EL element can be reduced. Yes, because it is advantageous for industrial production and cost-effective.
  • the intervening layer is not limited as long as it can transport electrons and holes. When it is in the light extraction direction, it is preferably transparent.
  • the first light-emitting layer which is an organic layer close to the anode, facilitates the transport of holes and lowers the voltage, increases the efficiency, and extends the life of the organic light-emitting device.
  • the first organic layer preferably contains an oxidizing agent.
  • the second light-emitting layer or the second organic layer force S which is an organic layer close to the cathode, can be used to facilitate electron transport and reduce the voltage, efficiency, and life of the organic light-emitting device. It is preferable that a reducing agent is contained.
  • the charge barrier layer may be formed by stacking a plurality of charge barrier layers.
  • the organic EL device of the present invention further includes a third light emitting layer between the second light emitting layer and the cathode, and the anode
  • the first light-emitting layer, the charge barrier layer, the second light-emitting layer, the third light-emitting layer, and the cathode are stacked in this order.
  • FIG. 1 One embodiment of such an organic EL device is shown in FIG.
  • This organic EL element 20 has an anode 1
  • the hole transport layer 2, the first light-emitting layer 3, the charge barrier layer 4, the second light-emitting layer 5, the third light-emitting layer 8, the electron transport layer 6 and the cathode 7 are stacked. That is, since the third light emitting layer 8 is the same as the organic EL element 10 shown in FIG. 1 except that the third light emitting layer 8 is formed, the description of the same structure is omitted.
  • the first light-emitting layer 3 is made red light emission
  • the second light-emitting layer 5 is made blue light emission
  • the third light-emitting layer 8 is made green light emission. Use the power S to get the light.
  • the first light emitting layer is made of a hole transporting material
  • the second light emitting layer and the third light emitting layer are made of an electron transporting material.
  • the configuration of such an organic EL device is not limited to that shown in Fig. 2.
  • a configuration in which a third light emitting layer is added to Example 16 of the above device configuration may be used.
  • a plurality of charge barrier layers may be laminated.
  • the charge barrier layer includes an aromatic amine derivative having electron / hole transfer resistance and heat resistance and having a glass transition temperature of more than 110 ° C. represented by the following formula (1).
  • the glass transition temperature is a temperature representing the heat resistance of a material.
  • L is a divalent group consisting of a substituted or unsubstituted arylene group or heterocyclic group having 5 to 60 carbon atoms
  • Ar is a substituted or unsubstituted nucleus atom number of 10 to 50 Or a substituent represented by the following formula (2), wherein Ar to Ar are substituted or unsubstituted nuclei, respectively.
  • L is a substituted or unsubstituted carbon number of 5
  • Examples thereof include substituted fluorenylene, preferably biphenylene and terfenylene, and more preferably biphenylene.
  • the substituent of the above substituted fluorenylene is preferably an alkyl group having 1 to 4 carbon atoms, and more preferably a methyl group.
  • Ar is preferably a phenyl group, a biphenyl group, an m-terphenyl group or a p-terphenyl group.
  • 2 to Ar are preferably phenyl, biphenyl, m-turf
  • a naphthyl group etc. are mentioned as a substituent of 1-Ar.
  • Ar are preferably a biphenyl group or a terphenyl group, and more preferably
  • the compound represented by the formula (1) is Ar among Ar r
  • Ar is a biphenyl group, m-terphenyl group, p-terphenyl group, or phenyl group, more preferably a biphenyl group, m-terphenyl group, p-terphenyl group, or phenyl group. is there.
  • Ar, Biff
  • Ar are preferably a biphenyl group, m-terphenyl 4
  • a p-terphenyl group or a phenyl group, more preferably a biphenyl group, an m-tertphenyl group, a p-terphenyl group, or a phenyl group. More preferably Ar
  • Ar is m-terphenyl group or p-terphenyl group, Ar is
  • the thickness of the charge barrier layer is not particularly limited, but is preferably 0.;! To 50 nm. More preferably 0.;! To 20 nm.
  • a light emitting material may be added to the charge barrier layer. As a result, light emission including light of various components can be obtained. For example, with white light, light with higher color rendering can be obtained.
  • the light emitting material dopants used in each light emitting layer described later can be used.
  • the light emitting layer of the organic EL device has the following functions.
  • Injection function Function that can inject holes from the anode or hole injection / transport layer when an electric field is applied, and can inject electrons from the cathode or electron injection / transport layer
  • Transport function Function to move injected charges (electrons and holes) by the force of electric field
  • Light-emitting function A function that provides a field for recombination of electrons and holes and connects it to light emission.
  • ease of hole injection the ease of electron injection.
  • transport ability represented by the mobility of holes and electrons may be large or small, it is preferable to move one of the charges.
  • the light emitting layer for example, a known method such as a vapor deposition method, a spin coating method, or an LB method can be applied.
  • the light emitting layer is particularly preferably a molecular deposited film.
  • the molecular deposition film is a thin film formed by deposition from a material compound in a gas phase state or a film formed by solidification from a material compound in a solution state or a liquid phase state.
  • the film is a thin film (accumulated film) formed by the LB method and has a cohesive structure and high It can be classified by the difference in the next structure and the functional difference resulting therefrom.
  • a binder such as a resin and a material compound are dissolved in a solvent to form a solution, which is then thinned by a spin coating method or the like.
  • the light emitting layer can also be formed by changing the structure.
  • the material used for the first light emitting layer may be a known material having a long lifetime, but it is desirable to use the material represented by the formula (3) as the light emitting material.
  • Ar' is an aromatic ring having 6 to 50 nuclear carbon atoms or a heteroaromatic ring having 5 to 50 nuclear atoms.
  • Preferred examples include a phenyl ring, a naphthyl ring, an anthracene ring, a acenaphthylene ring, a fluorene ring, a phenanthrene ring, a fluoranthene ring, a triphenylene ring, a pyrene ring, a taricene ring, a benzanthracene ring, and a perylene ring.
  • X is a substituent
  • a substituted or unsubstituted aromatic group having 6 to 50 nuclear carbon atoms a substituted or unsubstituted aromatic heterocyclic group having 5 to 50 nuclear atoms, a substituted or unsubstituted carbon group having 1 to 50 carbon atoms.
  • Alkyl group substituted or unsubstituted alkoxy group having 1 to 50 carbon atoms, substituted or unsubstituted Aralkyl group having 1 to 50 carbon atoms, substituted or unsubstituted aryloxy group having 5 to 50 carbon atoms, substituted or unsubstituted aryloxy group having 5 to 50 nucleus atoms, substituted or unsubstituted carbon atoms 1 ⁇ 50 carboxyl group, substituted or unsubstituted styryl group, halogen group, cyano group, nitro group, hydroxyl group and the like.
  • Examples of the substituted or unsubstituted aromatic group having 6 to 50 nuclear carbon atoms include phenyl group, 1-naphthyl group, 2 naphthyl group, 1 anthrinol group, 2 anthrinol group, 9 anthrinol group, 1-ph : Nantrino group, 2 phen: nantrino group, 3 phenanthrinol group, 4-ph: nantrino group, 9 phenanthryl group, 1 naphthacenyl group, 2 naphthacenyl group, 9 naphthacenino group, 1-pyrenyl group, 2 pyrenyl group, 4-pyrenyl group, 2 Biphenylylenoyl group, 3 biphenylenoreino group, 4-biphenylenoreino group, p terfeninore 4-inole group, p terfeninole 3-inole group, p terf
  • a phenyl group 1 naphthyl group, 2 naphthyl group, 9 phenanthryl group, 1-naphthacenyl group, 2 naphthacenyl group, 9 naphthacenyl group, 1-pyrenyl group, 2 pyrenyl group, 4 pyrenyl group, 2 biphenyl group Ruyl group, 3-biphenylyl group, 4-biphenylenoylenore group, o-trinore group, m-trinole group, p-trinole group, p-t-butylphenyl group, 2-phenololenyl group, 9, 9 dimethyl-2-fluorenyl group, 3-fluorane Tulle base force S.
  • Examples of the substituted or unsubstituted aromatic heterocyclic group having 5 to 50 nuclear atoms include 1 pyrrolyl group, 2 pyrrolyl group, 3 pyrrolyl group, pyradyl group, 2 pyridinyl group, 3 pyridinyl group, 4 pyridinyl group, 1 indolinole group, 2 indolinole group, 3 indolinole group, 4-indolyl group, 5 indolinole group, 6 indolinole group, 7 indolinole group, 1 isoindolyl group, 2 isoindolyl group, 3 isoindolyl group, 4 isoindolyl group, 5 Isoindolyl Group, 6 isoindolyl group, 7 isoindolyl group, 2 frinole group, 3 frinole group, 2 benzofuranyl group, 3 -benzofuranyl group, 4 monobenzofuranyl
  • substituted or unsubstituted alkyl groups having 1 to 50 carbon atoms include methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, s-butyl group, isobutyl group, t-butyl group, and n-pentyl group.
  • a substituted or unsubstituted alkoxy group having 1 to 50 carbon atoms is a group represented by OY.
  • Y include methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, s-butyl group, and isobutyl.
  • Examples of the substituted or unsubstituted aralkyl group having 1 to 50 carbon atoms include benzyl group, 1 phenylethyl group, 2-phenylethyl group, 1 phenylisopropyl group, 2-phenylenoisopropyl group, and phenyl group.
  • a substituted or unsubstituted aryloxy group having 5 to 50 nuclear atoms is represented as —OY, and examples of ⁇ , include phenyl group, 1 naphthyl group, 2-naphthyl group, 1 anthryl group, 2-a N-trinole group, 9-N-trinole group, 1-phenanthrinol group, 2-phenanthrinol group, 3-phenane Trinole group, 4-ph: nantrinole group, 9-fu-nantrinole group, 1 naphthaceninole group, 2 naphthacenyl group, 9 naphthacenyl group, 1-pyrenyl group, 2-pyrenyl group, 4-pyrenyl group, 2-biphenylyl group, 3-biphenylyl group, 4-biphenylyl group, p-terfeninore 4-inole group, p-terfenolate 3-inole group
  • a substituted or unsubstituted aryloxy group having 5-50 nuclear atoms is represented by —SY ”, and examples of Y” include phenyl group, 1 naphthyl group, 2-naphthyl group, 1 anthryl group, 2-anthrinol group, 9 7 "Nentolinol group, 1 Phenanthrinol group, 2 Phenanthrinol group, 3 Phenanthryl group, 4 Phenanthrinol group, 9 Phenanthrinol group, 1 Naphthenyl group, 2 Naphthacin binole group, 9 Naphthenyl group, 1-Pyrenyl group, 4 Pyrenyl group, 4 -Pyrenyl group, 2-biphenylyl group, 3-biphenylyl group, 4-biphenylyl group, p-terfenyl group, 4-inole group, p-terfeninore group, 3inole
  • a substituted or unsubstituted carboxyl group having 1 to 50 carbon atoms is represented as COOZ ′, and examples of Z ′ include methyl group, ethyl group, propyl group, isopropyl group, n butyl group, s butynole group, isobutyl group, t butyl group, n pentyl group, n hexyl group, n heptinole group, n octyl group, hydroxymethyl group, 1-hydroxyethyl group, 2-hydroxyethyl group, 2 hydroxyisobutyl group, 1, 2 dihydroxyethyl Group, 1,3 dihydroxy isopropyl group, 2,3 dihydroxy-t butyl group, 1,2,3 trihydroxypropyl group, chloromethyl group, 1 chloroethyl group, 2 chloroethyl group, 2 chloroisobutyl group 1, 2-dichlorodiethyl, 1,3-dichlorodiethy
  • Examples of the substituted or unsubstituted styryl group include 2-phenyl 1-bule group, 2,2 diphenyl-1-bur group, 1, 2, 2-triphenyl-1-bur group, and the like. It is done.
  • nitrogen and rogen groups examples include fluorine, chlorine, bromine, iodine and the like.
  • n is an integer of 0 to 6.
  • n is preferably 0 ⁇ 4.
  • Ar 'in () may be the same or different.
  • X 'in () may be the same or different.
  • the first luminescent layer is preferably a yellow to orange or red luminescent layer.
  • the yellow to orange or red light emitting layer is a light emitting layer having a maximum light emission wavelength of 550 to 650 nm.
  • the light emitting layer is preferably composed of a host material and a yellow to orange or red dopant.
  • the host material of the first light emitting layer of the organic EL device of the present invention is preferably a naphthacene derivative, diaminoanthracene derivative, naphthofluoranthene derivative, diaminobilene derivative as the compound represented by the formula (3) And one or more selected from diaminoperylene derivatives, aminoanthracene derivatives, aminopyrene derivatives and dibenzochrysene derivatives. More preferably, it contains a naphthacene derivative.
  • the naphthacene derivative is represented by the following formula (4)
  • Q ⁇ Q 12 is independently a hydrogen atom or a substituted or unsubstituted carbon number. ! ⁇ 20 alkyl group, substituted or unsubstituted aryl group having 6-20 carbon atoms, amino group, substituted or unsubstituted alkoxy group having 1-20 carbon atoms, substituted or unsubstituted carbon number; 20 alkylthio groups, substituted or unsubstituted aryloxy groups having 6 to 20 nuclear carbon atoms, substituted or unsubstituted aryloxy groups having 6 to 20 nuclear carbon atoms, substituted or unsubstituted alkenyl groups having 2 to 20 carbon atoms, substituted Alternatively, it represents an unsubstituted aralkyl group having 7 to 20 nuclear carbon atoms or a substituted or unsubstituted heterocyclic group having 5 to 20 nuclear atoms, which may be the same or different.
  • the naphthacene derivative represented by the above formula (4) is a naphthacene derivative represented by the following formula (5).
  • a fluorescent compound having at least one fluoranthene skeleton or perylene skeleton can be used, and examples thereof include compounds represented by the following formulas (6) to (22).
  • Xi X ⁇ is independently a hydrogen atom, a linear, branched or cyclic alkyl group having 1 to 20 carbon atoms, a linear, branched or cyclic carbon atom.
  • adjacent substituents and Xi X ⁇ may be bonded to form a cyclic structure.
  • the adjacent substituent is an aryl group, the substituents may be the same.
  • the compounds of the formulas (6) to (20) preferably contain an amino group or an alkenyl group! /.
  • Formula (21), in (22), X ⁇ to X 4 are each independently, carbon atoms;! Alkyl group of to 20, a substituted or unsubstituted Ariru group having 6 to 30 carbon atoms Yes, X 21 and X 22 and / or X 23 and X 24 may be bonded via a carbon-carbon bond or O—S—.
  • X 25 to X 36 are a hydrogen atom, a linear, branched or cyclic alkyl group having 1 to 20 carbon atoms, a linear, branched or cyclic alkoxy group having 1 to 20 carbon atoms, a substituted or unsubstituted group.
  • 6 to 30 carbon atoms substituted or unsubstituted carbon atoms 6 to 30 carbon atoms, substituted or unsubstituted carbon atoms 6 to 30 carbon atoms, substituted or unsubstituted carbon atoms 1
  • An alkylamino group having 30 to 30 carbon atoms, a substituted or unsubstituted carbon atom having 7 to 30 carbon atoms, or a substituted or unsubstituted alkenyl group having 8 to 30 carbon atoms, an adjacent substituent group and x 25 to x 36 may form a ring structure bonded to.
  • At least one of the substituents x 25 to x 36 in each formula contains an amine or alkenyl group.
  • the compound power having a fluoranthene skeleton or a perylene skeleton is preferably an indenoperylene derivative represented by the following formula (23) or (24).
  • Ar 2 and Ar are each independently a substituted or unsubstituted aromatic group or aromatic heterocyclic group, ⁇ ′- ⁇ 18 » each independently hydrogen, halogen, alkyl group, alkoxy group, alkylthio group, alkenyl Group, alkenyloxy group, alkenylthio group, aromatic ring-containing alkyl group, aromatic ring-containing alkyloxy group, aromatic ring-containing alkylthio group, aromatic ring group, aromatic heterocyclic group, aromatic ring oxy group, aromatic ring thio group, Aromatic alkenyl group, alkenyl aromatic ring group, amino group, carbazolyl group, cyano group, hydroxyl group, CO OR 1 ′ (R 1 ′ is hydrogen, alkyl group, alkenyl group, aromatic ring-containing alkyl group or aromatic ring group ), COR 2 ′ (R 2 ′ is hydrogen, alkyl group, alkenyl group, aromatic ring-containing alkyl group, aromatic ring group
  • the adjacent groups of xi x 18 may be bonded to each other or form a ring together with a substituted carbon atom.
  • the fluorescent compound having a fluoranthene skeleton preferably contains an electron donating group in order to obtain high efficiency and a long lifetime, and a preferable electron donating group is a substituted or unsubstituted arylene amino group.
  • the fluorescent compound having a fluoranthene skeleton preferably has 5 or more fused rings, and more preferably 6 or more. This is because the fluorescent compound exhibits a fluorescence peak wavelength of 540 to 70 Onm, and the blue light emitting material and the fluorescent compound emit light and exhibit a white color.
  • the fluorescent compound has a plurality of fluoranthene skeletons because the emission color is in a yellow to orange or red region.
  • Particularly preferred fluorescent compounds have an electron donating group and a fluoranthene skeleton or a perylene skeleton, and have a fluorescence peak wavelength of 540 to 700 nm. It is shown.
  • the thickness of the first light emitting layer is preferably 1 to 60 nm, more preferably 5 to 30 nm, and most preferably 5 to 20 nm. If it is less than lnm, the luminous efficiency may decrease, and if it exceeds 60 nm, the drive voltage may increase.
  • the second light emitting layer is preferably a blue light emitting layer in view of the energy gap.
  • the peak wavelength of blue light emission is 450 to 500 nm.
  • a compound having the structure shown in (25) is preferred.
  • a 1 and ⁇ are each independently a group derived from a substituted or unsubstituted aromatic ring having 6 to 20 nuclear carbon atoms.
  • the aromatic ring may be substituted with one or more substituents! /.
  • the substituent is a substituted or unsubstituted aryl group having 6 to 50 nuclear carbon atoms, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 50 carbon atoms, Substituted or unsubstituted carbon number;!
  • a 1 and A 2 are preferably different from each other.
  • Ar is a substituted or unsubstituted condensed aromatic group having 10 to 50 nuclear carbon atoms.
  • Ar ′ is a substituted or unsubstituted aromatic group having 6 to 50 nuclear carbon atoms.
  • X is a substituted or unsubstituted aromatic group having 6 to 50 nuclear carbon atoms, a substituted or unsubstituted aromatic heterocyclic group having 5 to 50 nuclear atoms, or a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms.
  • Substituted or unsubstituted alkoxy group having 1 to 50 carbon atoms substituted or unsubstituted aranolenoquinole group having 6 to 50 carbon atoms, substituted or unsubstituted aryloxy group having 5 to 50 nucleus atoms, substituted or unsubstituted nucleus Arylthio group having 5 to 50 atoms, substituted or unsubstituted alkoxycarbonyl group having 1 to 50 carbon atoms, carboxyl group, halogen atom, cyano group , Nitro group, hydroxyl group.
  • a, b and c are each an integer of 0-4.
  • n is an integer from! In addition, when n is 2 or more, [] may be the same or different! / )
  • R′-R 10 independently of each other, a hydrogen atom, a substituted or unsubstituted aromatic ring group having 6 to 50 nuclear carbon atoms, a substituted or unsubstituted aromatic heterocyclic group having 5 to 50 nuclear atoms, substituted Or an unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted cycloalkyl group, a substituted or unsubstituted alkoxy group having 1 to 50 carbon atoms, and a substituted or unsubstituted aranolenoquinol having 6 to 50 carbon atoms.
  • Ar and Ar ′ each represent a substituted or unsubstituted aromatic group having 6 to 50 nuclear carbon atoms.
  • L and L ′ are each a substituted or unsubstituted phenylene group, a substituted or unsubstituted naphthalenylene group, a substituted or unsubstituted fluorenylene group, or a substituted or unsubstituted group.
  • n is an integer from 1 to 4
  • s is an integer from 0 to 2
  • t is an integer from 0 to 4.
  • L or Ar is bonded to any one of 1 to 5 positions of pyrene, and L or Ar is bonded to any of 6 to 10 positions of pyrene.
  • substitution positions in the pyrene of L and L ′ or Ar and Ar ′ are not the 1st and 6th positions or the 2nd and 7th positions.
  • a 1 and A 2 are each independently a substituted or unsubstituted condensed aromatic ring group having 10 to 20 nuclear carbon atoms.
  • Ar 1 and Ar 2 are each independently a hydrogen atom or a substituted or unsubstituted aromatic ring group having 6 to 50 nuclear carbon atoms.
  • R′-R 10 independently of each other, a hydrogen atom, a substituted or unsubstituted aromatic ring group having 6 to 50 nuclear carbon atoms, a substituted or unsubstituted aromatic heterocyclic group having 5 to 50 nuclear atoms, substituted Or an unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted cycloalkyl group, a substituted or unsubstituted alkoxy group having 1 to 50 carbon atoms, and a substituted or unsubstituted aranolenoquinol having 6 to 50 carbon atoms.
  • a substituted or unsubstituted aryloxy group having 5 to 50 nuclear atoms a substituted or unsubstituted arylthio group having 5 to 50 nuclear atoms, a substituted or unsubstituted alkoxycarbonyl group having 1 to 50 carbon atoms, Substituted or unsubstituted silyl group, carboxyl group, halogen atom, cyano group, nitro group or hydroxyl group.
  • Ar 2 , R 9 and R 1Q may be plural or adjacent to each other to form a saturated or unsaturated cyclic structure.
  • ⁇ ⁇ to ⁇ 1 are each independently a hydrogen atom, an alkyl group, a cycloalkyl group, an optionally substituted aryl group, an alkoxyl group, an aryloxy group, or an anolequinolamino group.
  • An alkenyl group, an arylamino group or an optionally substituted heterocyclic group, a and b each represent an integer of 1 to 5, and when they are 2 or more, R 1 or R 2 May be the same or different, and R 1 or R 2 may be bonded to each other to form a ring, or R 3 and R 4 , R 5 and R 6 , R 7 and R 8 , R 9 and R 1 () may be bonded to each other to form a ring, L 1 is a single bond, -0-,-S-, — N (R) — (R is An alkyl group or an optionally substituted aryl group), an alkylene group or an arylene group.
  • R 11 , R lbs , R lbs or R 17 s may be the same or different, and R 11 s , R 12 s , R 16 s, or R 17 s are It may be bonded to form a ring, or R 13 and R 14 , R 18 and R 19 may be bonded to each other to form a ring.
  • L 2 represents a single bond, —O—, —S—, —N (R) — (R is an alkyl group or an aryl group which may be substituted), an alkylene group or an arylene group.
  • Alpha ⁇ to? 8 are each independently a biphenyl group or a substituted or a substituted or unsubstituted is an unsubstituted naphthyl group.
  • a 9 to A U are each a substituted or unsubstituted arylene group having 6 to 50 nuclear carbon atoms, and A 12 to A 14 are each a hydrogen atom, or a substituted or unsubstituted nuclear carbon number 6 to 50.
  • R 21 to R 23 are each independently a hydrogen atom, a carbon number;!
  • R and R are a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or
  • R and R bonded to may be the same or different.
  • R and R are hydrogen sources
  • R and R bonded to the fluorene group may be the same or different.
  • Ar is a substituted or unsubstituted condensed polycyclic aromatic group having a total of 3 or more benzene rings.
  • Ar and Ar may be the same or different.
  • n an integer of 1 to 10.
  • anthracene derivatives are preferable, monoanthracene derivatives are more preferable, and asymmetric anthracene is particularly preferable.
  • Examples of the dopant that can be used in the second light-emitting layer include, for example, arylamine compounds and / or styrylamine compounds, anthracene, naphthalene, phenanthrene, pyrene, tetracene, coronene, taricene, fluorescein, perylene, phthalate perylene, and naphthaperylene.
  • Perinone lidar perinone, naphtalin perinone, diphenylbutadiene, tetraphenylbutadiene, coumarin, talixazazolinole, anoredazine, bisbenzoxazoline, bisstyrinole, Pyrazine, cyclopentagen, quinoline metal complex, aminoquinoline metal complex, benzoquinoline metal complex, imine, diphenylethylene, buranthracene, diamino force rubazole, pyran, thiopyran, polymethine, merocyanine, imidazole chelating oxinoid compound, quinacridone , Rubrene and fluorescent dyes, but are not limited thereto.
  • the second light emitting layer contains an arylamine compound and / or a styrylamine compound! /.
  • Examples of the arylamine compound include a compound represented by the following formula (26), and examples of the styrylamine compound include a compound represented by the following formula (27).
  • Ar represents phenyl, biphenyl, terphenyl, stilbene, distyryl
  • Ar and Ar are each a hydrogen atom or a carbon number of 6 to
  • Ar and / or Ar is substituted with a styryl group.
  • the aromatic group having 6 to 20 carbon atoms is preferably a phenyl group, a naphthyl group, an anthracenyl group, a phenanthryl group, a terphenyl group, or the like.
  • Ar 1 to Ar 3 are optionally substituted aryl groups having 5 to 40 nuclear carbon atoms.
  • aryl groups having 5 to 40 nuclear atoms include phenyl, naphthyl, anthraceni Nore, phenanthrinole, pyreninore, coloninole, bifuenore, tenolefuenore, pyrrolinole, furaninore, thiophenyl, benzothiophenyl, oxadiazolyl, diphenylanthracenyl, indolyl, carbazolyl, pyridyl, benzoquinolyl, pyridyl, benzoquinolyl, the aryl group having 5 to 40 nuclear atoms may be further substituted with a substituent.
  • Examples of the preferable substituent include: an aralkyl group (ethyl group, methyl group, isopropyl group having carbon number;! To 6). , N propyl group, s butyl group, t butyl group, pentyl group, hexyl group, cyclopentyl group, cyclohexyl group, etc.), alkoxy group having 1 to 6 carbon atoms (ethoxy group, methoxy group, isopropoxy group, n Propoxy group, s butoxy group, t butoxy group, pentoxy group, hexyloxy group, cyclopentoxy group, cyclohexyloxy group, etc.), aryl group having 5 to 40 nuclear atoms, aryl group having 5 to 40 nuclear atoms A substituted amino group, an ester group having an aryl group having 5 to 40 nucleus atoms, an ester group having an alkyl group having 1 to 6 carbon atoms, a cyan group,
  • the thickness of the second light emitting layer is preferably 1 to 100 nm, more preferably 5 to 50 nm. If it is less than In m, it is difficult to form a light emitting layer, and it may be difficult to adjust the chromaticity. If it exceeds lOOnm, the drive voltage may increase.
  • the third light emitting layer is preferably a green light emitting layer.
  • the emission maximum wavelength of green light emission is 500 to 550 nm.
  • the third light emitting layer is preferably composed of a host material and a green dopant.
  • a specific material the force capable of using the above-mentioned second light emitting layer is preferable.
  • the host material is preferably the same material as the second light emitting layer.
  • the same arylamine compound and / or styrylamine compound as the blue dopant described above can be used.
  • the maximum emission wavelength of green light emission is 500 to 550 nm.
  • an aromatic amine compound represented by the formula (28) can be used as a green dopant.
  • Ai to A 2 are each independently a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms (preferably carbon number;! To 6), substituted or unsubstituted Substituted aryl group having 5 to 50 (preferably, 5 to 10 nuclear carbon atoms) aryl group, substituted or unsubstituted cycloalkyl group having 3 to 20 (preferably 5 to 10 nuclear carbon atoms) cycloalkyl group, Substituted or unsubstituted alkoxy group having 1 to 10 carbon atoms (preferably carbon number;!
  • substituted or unsubstituted aryloxy group having 5 to 50 nuclear carbon atoms preferably 5 to 10 carbon atoms
  • a substituted or unsubstituted arylene group having 5 to 50 nuclear carbon atoms (preferably 5 to 20 carbon atoms), substituted or unsubstituted 1 to 10 carbon atoms (preferably 1 to 6 carbon atoms) Represents an alkylamino group or a halogen atom.
  • Examples of the substituted or unsubstituted Ariru group Ai ⁇ A 2 for example, phenyl group, 2-methylcarbamoyl Norefueniru group, 3-methylphenyl group, 4-methylphenyl group, 4 Echirufueniru group, Bifue alkenyl group, 4- Mechirubifueniru group 4-ethyl biphenyl group, 4-cyclohexyl biphenyl group, terphenyl group, 3,5-dichlorophenyl group, naphthyl group, 5-methinolennaphthyl group, anthryl group, pyrenyl group and the like.
  • the substituted or unsubstituted cycloalkyl group Ai ⁇ A 2 for example, Shikuropuropinore Group, cyclobutyl group, cyclopentyl group, cyclohexyl group, norbornel group, adamantyl group and the like.
  • the substituted or unsubstituted alkoxy group Ai ⁇ A 2 for example, a methoxy group, Etoki sheet group, propoxy group, isopropoxy group, butoxy group, isobutoxy group, sec-butoxy group, tert-butoxy group, various Penchiruokishi Groups, various hexyloxy groups, etc.
  • Examples of the substituted or unsubstituted aryl group of Ai to A 2 include a diphenylamino group, a ditolylamino group, a dinaphthylamino group, a naphthylphenylamino group, and the like.
  • the substituted or unsubstituted alkylamino group Ai ⁇ A 2 for example, Jimechiruamino group, Jechiruamino group, Kishiruamino group and the like to di.
  • the halogen atom of Ai ⁇ A 2 for example, a fluorine atom, a chlorine atom, a bromine atom can be mentioned up.
  • both A 1 and A 2 are not hydrogen atoms.
  • d and e are each an integer of 1 to 5, preferably!
  • a 2 may be the same or different and may be connected to each other to form a saturated or unsaturated ring.
  • H is an integer from !! to 9, preferably from! To 3.
  • R 11 represents a substituted or unsubstituted C3-C10 secondary or tertiary alkyl group, or a substituted or unsubstituted C3-C10 secondary or tertiary cycloalkyl. Represents a group.
  • Examples of the secondary or tertiary alkyl group having 3 to 10 substituted or unsubstituted carbon atoms of R 11 include, for example, isopropyl group, tert butyl group, sec butyl group, tert pentyl group, 1-methylbutyl group, Examples thereof include 1-methylpentyl group, 1,1 ′ dimethylpentyl group, 1,1 ′ dimethylolpropyl group, 1-benzyl-2-phenylethyl group, 1-methoxyethyl group, 1-phenyl-1-methylethyl group and the like.
  • Examples of the secondary or tertiary cycloalkyl group having 3 to 10 substituted or unsubstituted carbon atoms of R 11 include, for example, a cyclopentyl group, a cyclohexyl group, a norbornel group, an adamantyl group Etc.
  • f is an integer from;! To 9, preferably from! When f is 2 or more, the plurality of R 11 may be the same or different.
  • R 12 represents a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms (preferably 1 to 6 carbon atoms), a substituted or unsubstituted aryl group having 5 to 50 nuclear carbon atoms ( Preferably, a nuclear carbon number of 5 to 10; a substituted or unsubstituted cycloalkyl group having 3 to 20 nuclear carbon atoms (preferably a nuclear carbon number of 5 to 10; a substituted or unsubstituted carbon number of 1 to; 10 alkoxy groups (preferably 1 to 6 carbon atoms), substituted or unsubstituted aryloxy groups having 5 to 50 nuclear carbon atoms (preferably 5 to 10 carbon atoms; preferably substituted or unsubstituted nuclear carbon atoms)
  • R 12 substituted or unsubstituted alkyl group, aryl group, cycloalkyl group, alkoxy group, aryloxy group, aryl amino group, alkylamino group and halogen atom are the same as those in Ai to A 2 above. Can be mentioned.
  • g is an integer of 0 to 8, preferably 0 to 2.
  • R 12's may be the same or different! /!
  • f + g + h is an integer of 2 to 10 and preferably 2 to 6.
  • aromatic amine compound compounds represented by formulas (28— ;!) to (28-7) are more preferable.
  • a 2, d, e, R u and R 12 are the same as the formula (28).
  • the film thickness of the third light emitting layer is preferably;!-100 nm, more preferably 5-50 nm. If it is less than In m, it is difficult to form a light emitting layer, and it may be difficult to adjust chromaticity. If it exceeds, the drive voltage may increase.
  • a hole injection layer, a hole transport layer, an organic semiconductor layer, or the like can be provided as the first organic layer between the anode and the first light emitting layer.
  • the hole injection layer or the hole transport layer is a layer that assists hole injection into the light emitting layer and transports it to the light emitting region, and the ionization energy with high hole mobility is usually as small as 5.5 eV or less.
  • the hole injection layer is provided to adjust the energy level, for example, to alleviate sudden changes in energy level.
  • Such a hole injection layer or a hole transport layer is preferably a material that transports holes to the light emitting layer with a lower electric field strength, and further has a hole mobility of, for example, 10 4 to 10 6 V / cm.
  • the material for forming the hole injection layer or the hole transport layer is not particularly limited as long as it has the above-mentioned preferable properties, and is conventionally used as a charge transport material for holes in optical materials. Or any of the known materials used for hole injection layers in organic EL devices can be selected and used.
  • a material for forming such a hole injection layer or hole transport layer specifically, for example, a triazole derivative (see US Pat. No. 3,112,197, etc.), an oxadiazole derivative (US Patent 3,189,447), imidazole derivatives (see Japanese Patent Publication No. 37-196096), polyarylalkane derivatives (US Pat. No. 3,615,402, 820, 989) » 542, 544 Akita», Ushidera A Nissho 45-555, 51-10983, JP-A 51-93224, 55-17105, 56-4148, 55-108667, 55-156953, 56-3 6656, etc.), pyrazoline derivatives and pyrazolone derivatives (US Pat. Nos. 3, 180, 729 Akita » 278, 746 Akita», cattle Temple Opening Day Call 55—88064, 55—
  • the above-mentioned materials can be used.
  • Porphyrin compounds (disclosed in JP-A-63-295695 etc.), aromatic tertiary amine compounds And styrylamine compounds (US Pat. No. 4,127,412, JP-A-53-27033, 54-58445, 55-79450, 55-144250, 56- 119132, 61-295558, 61-98353, 63-295695, etc.), and aromatic tertiary amine compounds can also be used.
  • 5,061,569 has two condensed aromatic rings in the molecule, for example, 4,4,1bis (N— (1-naphthyl) N phenylamino) biphenyl, 4, 4, 4, 4 "tris (N— (3-methylphenyl) N-phenyl) in which triphenylamine units described in Kaihei 4-308688 are linked in a three-star burst type Nilamino) triphenylamine and the like.
  • aromatic dimethylidin compounds shown as the material for the light emitting layer
  • inorganic compounds such as p-type Si and p-type SiC can also be used as the material for the hole injection layer or the hole transport layer.
  • the hole injection layer or the hole transport layer may be composed of one layer or two or more layers of the materials described above, and what is a hole injection layer or a hole transport layer? It may be a laminate of a hole injection layer or a hole transport layer made of another kind of compound! /.
  • the thickness of the hole injection layer or the hole transport layer is not particularly limited, but is preferably 20 to 200 nm.
  • the organic semiconductor layer is a layer for helping the injection of holes or electrons into the emitting layer, it is preferably one having a conductivity of more than 10_ 1Q S / cm.
  • the material for the organic semiconductor layer include thiophene oligomers, conductive oligomers such as allylamin oligomers described in JP-A-8-193191, and conductive dendrimers such as allylamin dendrimers. Etc. can be used.
  • the thickness of the organic semiconductor layer is not particularly limited, but is preferably 10 to 1,000 bells.
  • the electron injection layer and the transport layer are layers that assist the injection of electrons into the light emitting layer, and have a high electron mobility.
  • the electron transport layer is appropriately selected with a film thickness of several nm to several ⁇ , but especially when the film thickness is large, in order to avoid a voltage increase, the electron mobility is 10 4 to 10 6 V / cm when an electric field is applied. it is desirable that at least 10_ 5 cm 2 / Vs or more.
  • 8-hydroxyquinoline and a compound having a metal complex or nitrogen-containing heterocycle of the derivative thereof are preferable.
  • metal chelate oxinoid compounds containing a chelate generally 8-quinolinol or 8-hydroxyquinoline.
  • Alq having A1 as the central metal is the force to use Alq having A1 as the central metal as the electron injection layer and the transport layer.
  • examples of the oxaziazole derivative include an electron transfer compound represented by the following formula.
  • Ar 321 , Ar 322 , Ar 323 , Ar 325 , Ar 326 , Ar 329 each represent a substituted or unsubstituted aryl group, and may be the same or different from each other.
  • Ar 324 , Ar ; 27 and Ar 328 represent a substituted or unsubstituted arylene group, which may be the same or different.
  • examples of the aryl group include a phenyl group, a biphenyl group, an anthranyl group, a perylenyl group, and a pyrenyl group.
  • examples of the arylene group include a phenylene group, a naphthylene group, a biphenylene group, an anthranylene group, a peryleneylene group, and a pyrenylene group.
  • examples of the substituent include an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 10 to 10 carbon atoms, and a cyan group.
  • This electron transfer compound is preferably a film-forming compound!
  • electron transfer compound examples include the following.
  • Me represents a methyl group
  • Bu represents a butyl group
  • Nitrogen-containing heterocyclic derivative represented by the following formula
  • a ddl to A ddd are a nitrogen atom or a carbon atom.
  • R 331 and R 332 are substituted or unsubstituted aryl groups having 6 to 60 carbon atoms, substituted or unsubstituted heteroaryl groups having 3 to 60 carbon atoms, alkyl groups having 1 to 20 carbon atoms, and 1 to 20 carbon atoms. Or an alkoxy group having 1 to 20 carbon atoms, n is an integer of 0 to 5, and n is an integer of 2 or more, the plurality of R 331 may be the same or different from each other.
  • a plurality of adjacent R 331 groups may be bonded to each other to form a substituted or unsubstituted carbocyclic aliphatic ring, or a substituted or unsubstituted carbocyclic aromatic ring.
  • Ar 331 is a substituted or unsubstituted aryl group having 6 to 60 carbon atoms, or a substituted or unsubstituted heteroaryl group having 3 to 60 carbon atoms.
  • Ar 331 is a substituted or unsubstituted arylene group having 6 to 60 carbon atoms, or a substituted or unsubstituted heteroarylene group having 3 to 60 carbon atoms.
  • Ar 332 is a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, a haloalkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, a substituted or unsubstituted aryl group having 6 to 60 carbon atoms, or a substitution Alternatively, it is an unsubstituted heteroaryl group having 3 to 60 carbon atoms.
  • Any one of Ar 332 is a substituted or unsubstituted fused ring group having 10 to 60 carbon atoms, or a substituted or unsubstituted heterofused ring group having 3 to 60 carbon atoms.
  • HAr is a substituted or unsubstituted nitrogen-containing heterocycle having 3 to 40 carbon atoms
  • L 341 is a single bond, a substituted or unsubstituted arylene group having 6 to 60 carbon atoms, a substituted or unsubstituted heteroarylene group having 3 to 60 carbon atoms, or a substituted or unsubstituted fluorylene group.
  • Ar 341 is a substituted or unsubstituted divalent aromatic hydrocarbon group having 6 to 60 carbon atoms
  • Ar 342 is a substituted or unsubstituted aryl group having 6 to 60 carbon atoms or a substituted or unsubstituted carbon group. It is a heteroaryl group having 3 to 60 carbon atoms.
  • X ⁇ and ⁇ ⁇ are each independently a saturated or unsaturated hydrocarbon group having 1 to 6 carbon atoms, an alkoxy group, an alkenyloxy group, an alkynyloxy group, a hydroxy group, a substituted or unsubstituted group.
  • R 351 to R 354 each independently represents hydrogen, halogen, a substituted or unsubstituted hetero ring, or a structure in which X 351 and ⁇ 3 51 are combined to form a saturated or unsaturated ring.
  • X 361 and ⁇ 361 are each independently a saturated or unsaturated hydrocarbon group having 1 to 6 carbon atoms, an alkoxy group, an alkenyloxy group, an alkynyloxy group, a substituted or unsubstituted group.
  • R 361 to R 364 are each independently hydrogen, halogen, substituted or Unsubstituted alkyl group having 1 to 6 carbon atoms, alkoxy group, aryloxy group, perfluoroalkyl group, perfluoroalkoxy group, amino group, alkylcarbonyl group, arylylcarbonyl group, alkoxycarbonyl group, aryleno Oxycarbonyl, azo, alkylcarbonyloxy, arylcarbonyloxy, alkoxycarbonyloxy, aryloxy Sicarbonyloxy group, sulfininole group, sulfonyl group, sulfanyl group, silyl group, strong rubamoyl group, aryl group, heterocyclic group, alkenyl group, alkynyl
  • R d "to R ° and Z d " are each independently a hydrogen atom, a saturated or unsaturated hydrocarbon group, an aromatic group, a heterocyclic group, a substituted amino group, a substituted boryl group, or an alkoxy group.
  • Each represents an aryloxy group
  • ⁇ 371 , Y 371 and z 371 each independently represent a saturated or unsaturated hydrocarbon group, aromatic group, heterocyclic group, substituted amino group, alkoxy group or arylenoxy group.
  • Z 371 and Z 372 may be bonded to each other to form a condensed ring.
  • N represents an integer of 1 to 3, and when n is 2 or more, Z 371 may be different.
  • N is 1, X 371 , Y 371 and R 372 are methyl groups, and R 378 is a hydrogen atom or a substituted boryl group, and n force and Z 371 is a methyl group.
  • Q 381 and Q 382 each independently represent a ligand represented by the following formula
  • L 381 represents a halogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted cycloalkyl group, Substituted or unsubstituted aryl group, substituted or unsubstituted heterocyclic group, -OR 39 ⁇
  • R 391 is a hydrogen atom, substituted or unsubstituted alkyl group, substituted or unsubstituted cycloalkyl group, substituted or unsubstituted aryl A group or a substituted or unsubstituted heterocyclic group.
  • Or —O—Ga—Q 391 (Q 392 ) (Q 391 and Q 392 have the same meaning as Q 381 and Q 382 ). Represents a quantifier. )
  • rings A 4 () 1 and A 4 ° 2 are substituted or unsubstituted aryl ring or complex ring structure bonded to each other.
  • Substituted or unsubstituted aryl group methoxy group, n-butoxy group, tert butoxy group, trichloromethoxy group, trifluoroethoxy group, pentafluoropropoxy 2, 2, 3, 3—Tetrafnore, Propoxy group, 1, 1, 1, 3, 3, 3—Hexaphnole, Low 2—Propoxy group, 6- (Perfluoroethyl) hexyloxy
  • Substituted or unsubstituted aryloxy group methylthio group, ethylthio group, tert-butylthio group, hexylthio group, octylthio group, trifluoromethylthio group, etc., substituted or unsubstituted alkylthio group, phenylthio group, p-nitrophenylthio group, ptert-butylphenylthio group, 3-fluorophenylthio group, pentafluorophenylthio group, 3-trifluoromethylphenol Mono- or di- such as substituted or unsubstituted arylothio group such as ruthio group, cyano group, nitro group, amino group, methylamino group, jetylamino group, ethynoleamino group, jetylamino group, dipropylamino group, dibutylamino group, diphenylamino
  • Substituted amino group bis (acetoxymethyl) amino group, bis (acetoxyethyl) amino group, bis (acetoxypropyl) amino group, bis (acetoxybutyl) amino group, etc. , Methylcarbamoyl group, dimethylcarbamoyl group, ethylcarbamoyl group, jetylcarbamoyl group, propylcarbamoyl group, butylcarbamoyl group, phenylcarbamoyl group, etc., substituted or unsubstituted force rubamoyl group, carboxylic acid group, sulfonic acid Base , Imide groups, cyclopentane groups, cyclohexyl groups and other cycloalkyl groups, phenyl groups, naphthyl groups, biphenyl groups, anthranyl groups, phenanthryl groups, fluorenyl groups, pyrenyl groups, etc.
  • aryl groups pyridinyl groups, pyradyl groups , Pyrimidinyl group, pyridazinyl group, triazinyl group, indolinyl group, quinolinyl group, atalidinyl group, pyrrolidinyl group, dioxanyl group, piperidinyl group, morpholinidyl group, piperazinyl group, carbazolyl group, furanyl group, thiophenyl group, oxazolyl group, oxazolyl group , Benzoxazolyl group, thiazolyl group, thiadiazolyl group, benzothiazolyl group, triazolyl group, imidazolyl group, benzoimidazolyl group and the like.
  • the above substituents may be bonded to each other to form a further 6-membered aryl ring or heterocyclic ring.
  • the film thickness of the electron injection layer or the electron transport layer is not particularly limited, but is preferably; [0127] (3) Oxidizing agent
  • the first light emitting layer or the first organic layer strength oxidizing agent which is the organic layer closest to the anode is contained.
  • Preferred oxidizing agents are electron withdrawing or electron acceptors.
  • An electron withdrawing or electron acceptor is a readily reducible organic compound.
  • the reduction potential using a saturated calomel (SCE) electrode as a reference electrode is preferably 0.8 V or more, particularly preferably a value greater than the reduction potential (about 0 V) of tetracyanoquinodimethane (TCNQ).
  • SCE saturated calomel
  • TCNQ tetracyanoquinodimethane
  • the organic compound having an electron-withdrawing substituent is preferable as the easily-reducible organic compound.
  • Specific examples include quinoid derivatives, pyrazine derivatives, arylborane derivatives, imide derivatives, and the like.
  • the quinoid derivatives include quinodimethane derivatives, thiopyran dioxide derivatives, thioxanthene dioxide derivatives, quinone derivatives, and the like.
  • the quinoid derivative is preferably a compound represented by the following formulas (la) to (; lh). More preferred are compounds represented by (la) and (lb).
  • halogen of the I ⁇ R 48 fluorine, chlorine is preferred.
  • fluoroalkyl group of 1 to! ⁇ 48 a trifluoromethyl group and a pentafluoroethyl group are preferable.
  • alkoxyl group of Ri R 48 a methoxy group, an ethoxy group, an isopropoxy group, and a tert butoxy group are preferable.
  • the alkyl group of 1 to! ⁇ 48 is preferably a methyl group, an ethyl group, a propyl group, an isopropyl group, a tert butyl group, or a cyclohexyl group.
  • the aryl group of Ri R 48 is preferably a phenyl group or a naphthyl group.
  • X is an electron-withdrawing group, and has any of the structures of the following formulas to (p). Preferred are structures of (k) and (1).
  • R 49 to R 52 are each a hydrogen atom, a fluoroalkyl group, an alkyl group, an aryl group or a heterocyclic ring, and R 5 ° and R 51 may form a ring.
  • the heterocyclic ring R 49 to R is preferably a substituent represented by the following formula! /,.
  • X is preferably a substituent represented by the following formula.
  • R 51 ′ and R 52 are a methyl group, an ethyl group, a propyl group, and a tert butyl group, respectively.
  • quinoid derivative include the following compounds.
  • arylborane derivative examples include compounds represented by the following formula.
  • Ar to Ar are each an aryl group having an electron-withdrawing group or
  • pentafluorophenyl As an aryl group having an electron-withdrawing group represented by Ar to Ar, pentafluorophenyl
  • the ru group heptafluoronaphthyl group and the pentafluorophenyl group are preferred! /.
  • heterocyclic ring having an electron-withdrawing group represented by Ar to Ar As a heterocyclic ring having an electron-withdrawing group represented by Ar to Ar, a quinoline ring or a quinoxaline ring
  • a pyridine ring, a pyrazine ring and the like are preferable.
  • arylborane derivatives include the following compounds.
  • arylborane derivative a compound having at least one fluorine as a substituent to the aryl is preferable, and tris / 3- (pentafluoronaphthyl) borane (PNB) is particularly preferable.
  • Examples of the thiopyran dioxide derivative include a compound represented by the following formula (3a), and examples of the thioxanthene oxide derivative include a compound represented by the following formula (3b).
  • T d to R b4 are each a hydrogen atom, a halogen atom, a fluoroalkyl group, a cyano group, an alkyl group or an aryl group. Of these, hydrogen and cyano group are preferable.
  • X represents an electron withdrawing group and is the same as X in the formulas (la) to (; li).
  • the structures (i), (k) are preferable.
  • the halogen, fluoroalkyl group, alkyl group and aryl group represented by R 53 to R 64 are! ⁇ 1 ⁇ The same as R 4S .
  • the imide derivative is preferably: a compound or a pyromellitic acid diimide compound.
  • c includes compounds of the following formula:
  • the light emitting layer or the second organic layer which is the organic layer closest to the cathode contains a reducing agent.
  • a reducing agent is defined as a substance capable of reducing an electron transporting compound. Accordingly, various materials can be used as long as they have a certain reducibility. For example, alkali metals, alkaline earth metals, rare earth metals, alkali metal oxides, alkali metal halides, alkalis. Earth metal oxides, alkaline earth metal halides, rare earths Metal oxides or rare earth metal halides, alkali metal organic complexes, alkaline earth metal organic complexes, rare earth metal organic complex forces, and at least one selected material can be suitably used.
  • preferable reducing agents include Na (work function: 2.36eV), K (work function: 2.28eV), Rb (work function: 2.16eV) and Cs (work function).
  • a work function of at least one alkaline earth metal selected from the group consisting of 52 eV) having a work function of 2.9 eV or less is particularly preferable.
  • a more preferable reducing agent is at least one alkali metal selected from the group consisting of K, Rb and Cs, more preferably Rb or Cs, and most preferably Cs.
  • alkali metals can improve the emission brightness and extend the life of organic EL devices by adding a relatively small amount to the electron injection region where the reducing ability is particularly high.
  • a combination of two or more alkali metals is also preferable.
  • a combination containing Cs, for example, Cs and Na, Cs and K, Cs and A combination of Rb or Cs, Na and ⁇ is preferred.
  • an electron injection layer made of an insulator or a semiconductor may be further provided between the cathode and the organic layer.
  • an insulator it is preferable to use at least one metal compound selected from the group consisting of alkali metal chalcogenides, alkali earth metal chalcogenides, alkali metal halides, and alkaline earth metal halides. . If the electron injection layer is composed of these alkali metal chalcogenides or the like, it is preferable in that the electron injection property can be further improved.
  • alkali metal chalcogenides include, for example, Li 0, LiO, Na
  • alkaline earth metal chalcogenides include
  • alkali metal halides include, for example, LiF, NaF, KF, LiCl, KCl, and NaCl. Etc.
  • alkaline earth metal halides include fluorides such as CaF, BaF, SrF, MgF and BeF, and halogens other than fluorides.
  • the electron transport layer As a semiconductor constituting the electron transport layer, at least one element of Ba, Ca, Sr, Yb, Al, Ga, In, Li, Na, Cd, Mg, Si, Ta, Sb, and Zn is used. One kind or a combination of two or more kinds of oxides, nitrides, oxynitrides and the like are included.
  • the inorganic compound constituting the electron transport layer is preferably a microcrystalline or amorphous insulating thin film. If the electron transport layer is composed of these insulating thin films, a more uniform thin film is formed, and pixel defects such as dark spots can be reduced. Examples of such an inorganic compound include the above-mentioned alkali metal chalcogenides, alkaline earth metal lucogenides, alkali metal halides, and alkaline earth metal halides.
  • the organic EL element of the present invention is provided with first, second, and third organic EL element portions that are driven independently, and color filters (for example, red, blue, green, etc.) having different transmitted light are provided in each element portion.
  • a full-color light emitting device can be obtained by combining the color filters.
  • the color filter can receive light from each element part, and is formed at a position closer to the light extraction side than the element part. For example, in the case of a bottom emission type element that extracts light from the support substrate side, it may be formed between the transparent electrode layer, which is the lowermost layer of the element, and the support substrate.
  • the color filter for example, the following dye alone or a solid filter in which the dye is dissolved or dispersed in a binder resin can be used.
  • Red (R) dye Perylene pigment, lake pigment, azo pigment, etc.
  • Green (G) coloring matter halogen polysubstituted phthalocyanine pigment, halogen polysubstituted copper phthalocyanine pigment, trifelmethane basic dye, and the like.
  • Blue (B) dye copper phthalocyanine pigment, indanthrone pigment, indophenol pigment, cyanine pigment, etc.
  • the noinder resin is preferably a transparent material (visible light transmittance of 50% or more).
  • Transparent resins polymers
  • polymers such as limethylmetatalylate, polyacrylate, polycarbonate, polybutyl alcohol, polybutylpyrrolidone, hydroxyethyl cellulose, carboxymethyl cellulose, and photosensitive resins to which one photolithography method can be applied are acrylic.
  • examples thereof include a photocurable resist material having a reactive bur group such as acid or methacrylic acid.
  • printing ink (medium) using a transparent resin such as polychlorinated bur resin, melamine resin or phenol resin is selected.
  • the film is formed by vacuum deposition or sputtering through a mask having a desired color filter pattern.
  • the color filter is composed of a dye and a binder resin
  • the dye and the above resin are used.
  • the resist is mixed, dispersed or solubilized, formed into a film by a method such as spin coating, roll coating, or casting, and then patterned with a desired color filter pattern by a photolithography method or by a method such as printing. In general, patterning is performed with a desired color filter pattern.
  • each color filter has a thickness and transmittance of preferably as follows.
  • R film thickness 0-5-5 O m (transmittance 50% or more / 610nm),
  • a sealing layer or the like is provided between the organic EL element part and the color filter. May be.
  • An example of the formation position of the sealing layer is between the transparent electrode layer and the color filter.
  • the sealing layer it is possible to use a transparent inorganic compound layer such as SiOxNy, AlOxNy, SiAlOxNy, etc., use of these transparent inorganic compound layer and transparent resin, or a layer laminated with a sealing liquid, and the like.
  • a transparent inorganic compound layer such as SiOxNy, AlOxNy, SiAlOxNy, etc.
  • the measuring method of the characteristic of a compound is as follows.
  • Tg DSC “Pyrisl” manufactured by Perkin Elma Co., Ltd. was used.
  • the MAX temperature was the melting point of Tg—DTA plus about 30 ° C, and the decomposition temperature was close! /, And was corrected accordingly.
  • the voltage (unit: V) when current was applied between ITO and A1 was measured so that the current density was 10 mA / cm 2 .
  • the EL spectrum when a current density of 1 OmA / cm 2 was applied was measured with a spectral radiance meter CS 1000A (manufactured by Konica Minolta), and the luminous efficiency (unit: cd / A) was calculated.
  • the EL spectrum at a current density of 1 OmA / cm 2 was measured with a spectral radiance meter CS 1000A (manufactured by Konica Minolta), and CIE1931 chromaticity (x, y) was measured.
  • the EL spectrum when a current density of 1 OmA / cm 2 was applied was measured with a spectral radiance meter CS 1000A (manufactured by Koni Force Minolta) and calculated according to the following formula.
  • the current density of the device at a luminance of 5000 cd / m 2 was measured. Continuous drive was performed at the current density, and the change in luminance over time was measured with a spectral radiance meter CS1000A (manufactured by Koyu Minolta). The luminance retention with respect to the initial luminance of 5000 cd / m 2 400 hours after the start of measurement was measured.
  • RH and RD were vapor-deposited at a film thickness of 5 nm so that the RD would be 0.5% by weight to form a first light emitting layer. .
  • the first light emitting layer emits red light.
  • an A-11 film having a thickness of 5 nm was formed as a charge barrier layer.
  • BH and BD were vapor-deposited on the charge barrier layer so that the BD would be 7.5% by weight to form a blue light-emitting layer (second light-emitting layer) having a thickness of 40 nm.
  • metal A1 was deposited to a thickness of 150 nm to form a metal cathode to form an organic EL light emitting device.
  • Example 1 an organic EL device was produced in the same manner as in Example 1 except that an NPD film was formed at a thickness of 5 nm instead of Compound A-11 as the charge barrier layer. Table 1 shows the measurement results.
  • Example 1 an organic EL device was produced in the same manner as in Example 1 except that a CBP film was formed with a thickness of 5 nm instead of Compound A-11 as the charge barrier layer. Table 1 shows the measurement results.
  • Example 1 after forming the second light emitting layer with a film thickness lOnm, the film is formed as the third light emitting layer. Same as Example 1 except that BH and GD were deposited at a thickness of 30 nm, and the GD was 10% by weight, deposited to form a green light-emitting layer, and then an Alq layer (electron transport layer) was formed.
  • OLED electron transport layer
  • Example 2 an organic EL light emitting device was formed in the same manner as in Example 2 except that an NPD film was formed with a thickness of 5 nm instead of A-11 as the charge barrier layer.
  • the obtained organic EL light emitting device was measured in the same manner as in Example 1. Table 1 shows the measurement results.
  • Example 2 an organic EL light emitting device was formed in the same manner as in Example 2 except that a CBP film was formed with a thickness of 5 nm instead of A-11 as the charge barrier layer.
  • the obtained organic EL light emitting device was measured in the same manner as in Example 1. Table 1 shows the measurement results.
  • Example 2 an organic EL light emitting device was formed in the same manner as in Example 2 except that an A-2 film was formed with a thickness of 5 nm instead of A-11 as the charge barrier layer.
  • the obtained organic EL light emitting device was measured in the same manner as in Example 1. Table 1 shows the measurement results.
  • Example 2 an organic EL light emitting device was formed in the same manner as in Example 2 except that an A-13 film having a thickness of 5 nm was formed instead of A-11 as a charge barrier layer.
  • the obtained organic EL light emitting device was measured in the same manner as in Example 1. Table 1 shows the measurement results.
  • Example 2 an organic EL light-emitting device was formed in the same manner as in Example 2 except that an A-17 film having a thickness of 5 nm was formed instead of A-11 as a charge barrier layer.
  • the obtained organic EL light emitting device was measured in the same manner as in Example 1. Table 1 shows the measurement results.
  • Example 2 an organic EL light emitting device was formed in the same manner as in Example 2 except that a film of A-30 was formed with a thickness of 5 nm instead of A-11 as the charge barrier layer. The obtained organic EL light emitting device was measured in the same manner as in Example 1. Table 1 shows the measurement results. [0176]
  • Example 7 An organic EL light emitting device was formed in the same manner as in Example 2 except that a film of A-30 was formed with a thickness of 5 nm instead of A-11 as the charge barrier layer. The obtained organic EL light emitting device was measured in the same manner as in Example 1. Table 1 shows the measurement results. [0176] Example 7
  • Example 2 an organic EL light emitting device was formed in the same manner as in Example 2 except that a film of A-33 was formed to a thickness of 5 nm instead of A-11 as the charge barrier layer.
  • the obtained organic EL light emitting device was measured in the same manner as in Example 1. Table 1 shows the measurement results.
  • Example 1 instead of A-11 as a charge barrier layer, A-11 and GD were vapor-deposited and deposited so that GD was 10% by weight. An organic EL light emitting device was formed in the same manner as in Example 1 except that the thickness was 40 nm.
  • the obtained organic EL light emitting device was measured in the same manner as in Example 1. Table 1 shows the measurement results.
  • Example 8 the organic EL emission was the same as in Example 8, except that NPD and GD were deposited and deposited so that GD was 10% by weight instead of A-11: GD as the charge barrier layer. Formed an element.
  • the obtained organic EL light emitting device was measured in the same manner as in Example 1. Table 1 shows the measurement results.
  • Example 1 a red light emitting layer is used as the first light emitting layer and a blue light emitting layer is used as the second light emitting layer.
  • the device structure has a charge barrier layer inserted between them.
  • the charge barrier layer in Example 1 uses the same aromatic amine compound as in Comparative Examples 1 and 2, and A-11 in Example 1 has a glass transition temperature (Tg) higher than that of NPD and CBP in Comparative Examples 1 and 2. ) Is high.
  • Tg glass transition temperature
  • the external yield was high and a good white element could be obtained.
  • the luminance retention after 400 hours with the initial constant current drive of 5000 cd / m 2 is the longest life in Example 1.
  • Example 2 by adding a green light emitting layer as the third light emitting layer to Example 1, a good white light emission with a high external quantum yield could be obtained. Furthermore, the luminance retention rate after 400 hours with a constant current drive of 5000 cd / m 2 in the initial stage is as long as 96%.
  • Comparative Examples 3 and 4 are device structures using NPD and CBP with low Tg for the charge barrier layer of Example 2. Compared with Example 2, the quantum yield and the luminance retention rate are low and the lifetime is low (FIG. 3).
  • Example 3 an aromatic amine compound having a high Tg was used as in Example 2, and good white light emission could be obtained with a high external quantum yield. Furthermore, it has a long lifetime with a high luminance retention after 400 hours when driven at a constant current of 5000 cd / m 2 initially.
  • Example 8 by further doping the charge blocking layer with a green light emitting material as compared with Example 1, it was possible to obtain good white light emission with an equivalent external quantum yield.
  • Comparative Example 5 has an element configuration in which NPD with low Tg is used for the charge barrier layer of Example 8.
  • Example 8 Compared with Example 8, the quantum efficiency and the luminance retention rate are low and the lifetime is low.
  • V259BK (manufactured by Nippon Steel Chemical Co., Ltd.) was spin-coated as a material for black matotsutas (BM) on a support substrate (OA2 glass: manufactured by Nippon Electric Glass Co., Ltd.) of 112mmX 143mm X l. S Ultraviolet exposure through a photomask that forms an open lattice pattern, development with 2% aqueous sodium carbonate, beta at 200 ° C, black matrix (thickness 1.5 m) A pattern was formed.
  • V259G (manufactured by Nippon Steel Chemical Co., Ltd.) is spin-coated as a material for the green color filter, and BM is passed through a photomask that can obtain 320 rectangular (100 m line, 230 m gap) stripe patterns.
  • BM is passed through a photomask that can obtain 320 rectangular (100 m line, 230 m gap) stripe patterns.
  • Exposed to UV light developed with 2% aqueous sodium carbonate solution, beta-treated at 200 ° C, and a green color filter pattern (thickness 1 ⁇ 5 m) is formed adjacent to the blue color filter. Formed.
  • a film of indium tin oxide was formed by sputtering to a thickness of 130 nm.
  • a positive resist (HPR204: manufactured by Fuji Orin) is spin-coated on the ITO film, and a negative electrode extraction part and a photomask that forms a striped pattern with a 90 mm line and a 20 mm gap are obtained. And then developed with a developer of tetramethylammonium hydroxide, and beta-treated at 130 ° C. to obtain a resist pattern.
  • the exposed ITO was etched with an ITO etchant.
  • the resist is treated with a stripping solution containing ethanolamine as a main component (N303: manufactured by Nagase Sangyo Co., Ltd.), and the ITO pattern is placed at a position corresponding to the blue color filter, green color filter, and red color filter. (Lower electrode: anode, number of lines 960) was obtained.
  • a negative resist (V259PA: manufactured by Nippon Steel Chemical Co., Ltd.) is used as the first interlayer insulating film.
  • the film was pin-coated, exposed to ultraviolet light through a photomask, and developed with a developer of tetramethylammonium hydroxide.
  • beta was formed at 180 ° C., and an ITO opening covering the ITO edge was 70 m ⁇ 290 m) to form a lattice-patterned interlayer insulating film.
  • a negative resist ZPN1100: manufactured by Nippon Zeon Co., Ltd.
  • a photomask that forms a stripe pattern with a 20 ⁇ m line and 310 mm gap.
  • beta after exposure was performed.
  • the negative resist was developed with a developer of tetramethylammonium hydroxide to form a second interlayer insulating film (partition) of an organic film perpendicular to the ITO stripe.
  • the substrate thus obtained was ultrasonically cleaned in pure water and isopropyl alcohol, dried by air blow, and then UV cleaned.
  • the organic layer (from the hole injection layer to the electron injection layer) was mask-deposited in a range covering the color filter, and the cathode was further vapor-deposited in a mask that could be connected to the previously formed ITO extraction electrode. .
  • the organic layer and the cathode were formed in the same manner as in Example 2.
  • the cathode (upper electrode) was automatically separated by the barrier ribs previously made on the substrate, resulting in a pattern (240 lines) intersecting the lower electrode!
  • the substrate After manufacturing the organic EL device on the substrate, move the substrate to the dry box where dry nitrogen was circulated so that it does not come into contact with the atmosphere, and cover the display with the blue glass of the sealing substrate in the dry box.
  • the peripheral part of the part was photocured with a cationic curable adhesive (TB3102: manufactured by ThreeBond) and sealed.
  • the organic EL device of the present invention can be used for various display devices, knocklights, full-color display devices using color filters, light sources for general illumination and special illumination.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Description

明 細 書
有機エレクト口ルミネッセンス素子
技術分野
[0001] 本発明は、有機エレクト口ルミネッセンス素子に関する。
背景技術
[0002] 近年、白色系有機エレクト口ルミネッセンス素子(有機 EL素子)の開発は、モノカラ 一表示装置としての用途、バックライト等の照明用途及びカラーフィルタを使用したフ ルカラー表示装置等に使用できるため積極的に行われている。特に、白色系有機 E L素子を照明用途に用いる場合、例えば蛍光灯の発光効率と比較して同等レベル以 上にある、発光効率が高い白色系有機 EL素子が要求される。
[0003] 有機 EL素子により白色発光を得る方法は数多く開示されている。これらの方法は、
1種類の発光材料だけで白色を得るものは少なぐ通常は 2種類又は 3種類の発光 材料を一つの有機 EL素子の中で、同時に発光させている。 2種類の発光材料を使 用する場合は、青系とその補色となる黄色〜赤色系の発光材料を選択するが、黄色 〜赤色系の発光が強くなることが多ぐ赤味を帯びた白色になりがちである。
[0004] この問題に対し、特許文献 1では発光層を 2分割するタイプにおいて、発光層の発 光領域が偏りやすい陽極側の発光層を青色系発光層とすることで、発光色が赤色に 偏りがちな傾向を打ち消せることを見出し、色変化を抑制した白色素子を提案してい る。し力もながら、初期輝度 lOOOcd/m2で定電流駆動したところ寿命は 1万時間で あった。
[0005] 特許文献 2では、発光層を陽極側から赤色発光層、青色発光層、緑色発光層の順 に積層した有機 EL素子が開示されている。さらに、赤色発光層に用いる赤色ドーパ ントを青色発光層にもドープすることで駆動電流増大に伴う色変化を抑制する技術 が開示されている。し力もながら、寿命が短かった。
[0006] 一方、バランスよく白色発光させるための技術としては、複数の発光層間に電荷障 壁層を設ける技術もレ、くつか開示されてレ、る。
例えば、特許文献 3では、陽極、正孔輸送性青色発光層、電子輸送性キャリア再結 合合領領域域制制御御層層、、電電子子輸輸送送性性赤赤色色発発光光層層、、陰陰極極のの順順にに積積層層しし白白色色発発光光ささせせるる有有機機 EELL 素素子子がが開開示示さされれてていいるる。。しし力力ももななががらら、、上上記記キキャャリリアア再再結結合合領領域域制制御御層層ののァァフフィィ二二テティィ レレベベルルがが正正孔孔輸輸送送性性青青色色発発光光層層ののァァフフィィ二二テティィレレベベルルにに対対ししてて大大ききいい値値ででああつつたたたた めめ駆駆動動電電圧圧がが高高力力 たた。。ままたた、、駆駆動動時時間間ととととももにに正正孔孔輸輸送送性性青青色色発発光光層層にに電電子子がが注注 入入さされれににくくくくななりり、、正正孔孔輸輸送送性性青青色色発発光光層層のの発発光光強強度度がが低低下下しし、、発発光光色色がが電電子子輸輸送送 性性発発光光層層のの赤赤色色発発光光にに偏偏りりががちちでであありり、、寿寿命命もも短短かかっったた。。
[0007] 特特許許文文献献 44でではは、、 22つつのの電電子子輸輸送送性性発発光光層層がが電電子子障障壁壁層層をを介介ししてて配配置置さされれたた白白色色 発発光光有有機機 EELL素素子子がが開開示示さされれてていいるる。。しし力力、、ししななががらら、、陽陽極極かからら注注入入さされれたた正正孔孔はは、、ほほとと んんどど最最初初のの発発光光層層でで消消費費さされれててししままいい、、電電子子障障壁壁層層をを通通過過ししてて二二つつめめのの電電子子輸輸送送 性性発発光光層層へへ供供給給さされれるる正正孔孔のの量量がが少少ななレレ、、たためめ、、白白色色発発光光のの効効率率がが低低レレ、、とと!!//、、うう課課題題がが あありり、、寿寿命命もも短短かかっったた。。
[0008] 特特許許文文献献 55でではは、、陽陽極極、、第第 11発発光光層層、、電電荷荷障障壁壁層層、、第第 22発発光光層層、、陰陰極極ををここのの順順にに積積 層層ししてて!!//、、てて、、電電荷荷障障壁壁層層ののイイオオンン化化ポポテテンンシシャャルルをを第第 11発発光光層層ののイイオオンン化化ポポテテンンシシャャ ルルよよりりもも 00.. lleeVV以以上上大大ききくくしし、、ままたた電電荷荷障障壁壁層層ののァァフフィィ二二テティィレレベベルルをを第第 22発発光光層層ののァァ フフィィニニテティィレレベベルルよよりりももよよりり 00.. lleeVV以以上上小小ささくくししたた白白色色発発光光有有機機 EELL素素子子がが開開示示さされれてて いいるる。。ししかかししななががらら、、電電荷荷障障壁壁層層はは電電子子障障壁壁とと正正孔孔障障壁壁のの両両方方のの機機能能をを有有すするるががたた めめにに駆駆動動電電圧圧がが高高くくななるるとといいうう課課題題ががあありり、、初初期期輝輝度度 llOOOOOOccdd//mm22でで定定電電流流駆駆動動しし たたととこころろ寿寿命命はは 11万万時時間間ででああっったた。。
[0009] 特特許許文文献献 66でではは、、陽陽極極側側かからら赤赤色色発発光光層層、、緑緑色色発発光光層層、、青青色色発発光光層層ががここのの順順にに積積 層層さされれ、、少少ななくくとともも緑緑色色発発光光層層とと青青色色発発光光層層のの間間にに正正孔孔輸輸送送性性かかつつ電電子子阻阻止止性性のの中中 間間層層がが設設けけらられれたた有有機機 EELL素素子子がが開開示示さされれてていいるる。。しし力力ももななががらら、、発発光光効効率率がが十十分分でで なないいとといいうう課課題題ががああっったた。。
[0010] 特特許許文文献献 77でではは、、ナナフフタタセセンン誘誘導導体体ととペペリリフフラランンテテンン誘誘導導体体をを用用いいたた有有機機 EELL素素子子がが 開開示示さされれてていいるる。。しし力力、、ししななががらら、、発発光光効効率率がが十十分分ででなないいとといいうう課課題題ががああっったた。。
[0011] 特特許許文文献献 11 ::特特開開 22000033—— 227722885577号号公公報報
特特許許文文献献 22 ::特特開開 22000044—— 223355116688号号公公報報
特特許許文文献献 33::特特開開平平 88—— 7788116633号号公公報報
Figure imgf000004_0001
特許文献 5 :国際公開第 2005/112518パンフレット
特許文献 6 :特開 2005— 100921号公報
特許文献 7 : US2006/0088729
発明の開示
[0012] 従来の白色素子においては、上述したように二つの発光層に注入される電子と正 孔の量を調整するために電荷障壁層が導入されている。このような白色素子を長時 間発光駆動した場合、電荷障壁層は、電子と正孔両方の電荷移動のために酸化還 元を繰り返し発熱する。その結果、材料が劣化し低寿命の原因となっている。
上記課題に鑑み、本発明は、ディスプレイや照明用途に適した長寿命性を有し、演 色性及び発光効率が高ぐ色度変化が少ない有機 EL素子を提供することを目的と する。
[0013] この課題を解決するために、本発明者らが鋭意研究した結果、電子'正孔移動に 耐性があり耐熱性の高い材料を見出し、さらにこの材料を用いれば、寿命が長ぐ高 V、演色性及び発光効率を有し、かつ色度変化の少な!/、有機 EL素子が得られること を見出し、本発明を完成させた。
[0014] 本発明によれば、以下の有機 EL素子が提供される。
1.陽極、第 1発光層、電荷障壁層、第 2発光層及び陰極をこの順に積層して含み、 前記電荷障壁層が、ガラス転移温度が 110°Cより大きい下記式(1)で表される芳香 族ァミン誘導体を含む有機エレクト口ルミネッセンス素子。
[化 1コ (1)
Figure imgf000005_0001
[式中、 は置換もしくは無置換の炭素数 5〜60のァリーレン基又は複素環基よりな る 2価の基であり、 は置換もしくは無置換の核原子数 10〜50の置換基又は下記 式(2)で表される置換基であり、 Ar〜Arはそれぞれ置換もしくは無置換の核原子
2 4
数 5〜50の置換基又は下記式(2)で表される置換基を示す。ただし Ar〜Arは縮
1 4 合環ではない。 [化 2]
Figure imgf000006_0001
(式中、 Lは置換もしくは無置換の炭素数 5〜60のァリーレン基又は複素環基よりな
2
る 2価の基であり、 Ar〜Arはそれぞれ置換もしくは無置換の核原子数 5〜50の置
5 6
換基である。ただし Ar〜Arは縮合環ではない。 ) ]
5 6
2.前記式(1)において、 L及び L 、ビフエ二レン、ターフェ二レン、フエナントレン
1 2
又は置換又は無置換のフルォレニレンである 1に記載の有機エレクト口ルミネッセン ス素子。
3.前記式(1)において、 Ar 、ビフエ二ル基、 m—ターフェニル基、又は p—ターフ ェニル基であり、 Ar〜Ar力 フエニル基、ビフエ二ル基、 m—ターフェニル基、又は
2 6
p—ターフェニル基である 1又は 2に記載の有機エレクト口ルミネッセンス素子。
4.前記式(1)において、 Ar〜Ar 、同一の置換基である;!〜 3のいずれかに記載
1 4
の有機エレクト口ルミネッセンス素子。
5.前記式(1)において、 Ar〜Arのうち Ar〜Arが同一の置換基である;!〜 3のい
1 4 2 4
ずれかに記載の有機エレクト口ルミネッセンス素子。
6.前記式(1)において、 Ar〜Arのうち 3つ以上が異なる置換基である;!〜 3のい
1 4
ずれかに記載の有機エレクト口ルミネッセンス素子。
7.前記電荷障壁層に、発光材料を含む 1〜6のいずれかに記載の有機エレクト口ノレ ミネッセンス素子。
8.前記陽極と前記第 1発光層の間に、第 1発光層と隣接する正孔輸送層を有し、前 記正孔輸送層を形成する材料と前記電荷障壁層を形成する材料が同じ材料である 1 〜7のいずれかに記載の有機エレクト口ルミネッセンス素子。
9.前記第 1発光層が赤色発光層、前記第 2発光層が青色発光層である;!〜 8のいず れかに記載の有機エレクト口ルミネッセンス素子。 10.さらに、前記第 2発光層と前記陰極の間に、第 3発光層を有し、陽極、第 1発光 層、電荷障壁層、第 2発光層、第 3発光層、陰極がこの順に積層されている 1〜9の いずれかに記載の有機エレクト口ルミネッセンス素子。
11.前記第 1発光層が赤色発光層、前記第 2発光層が青色発光層、前記第 3発光 層が緑色発光層である 10に記載の有機エレクト口ルミネッセンス素子。
12.前記陽極に近い有機層である第 1発光層又は第一の有機層力 酸化剤を含有 して!/、る;!〜 11の!/、ずれかに記載の有機エレクト口ルミネッセンス素子。
13.前記陰極に近い有機層である第 2発光層又は第二の有機層が、還元剤を含有 して!/、る;!〜 12の!/、ずれかに記載の有機エレクト口ルミネッセンス素子。
14.上記 1〜 13の!/、ずれかに記載の有機エレクト口ルミネッセンス素子とカラーフィ ルタを含むフルカラー発光装置。
[0015] 本発明によれば長寿命性を有し、演色性及び発光効率が高ぐ色度変化が少ない 有機 EL素子を提供することができる。
図面の簡単な説明
[0016] [図 1]本発明の一実施形態に力、かる有機 EL素子の構成を示す図である。
[図 2]本発明の他の実施形態に力、かる有機 EL素子の構成を示す図である。
[図 3]実施例 2、比較例 3, 4で作製した有機 EL素子の輝度の経時変化を示すグラフ 図である。
発明を実施するための最良の形態
[0017] 本発明の有機 EL素子は、陽極、第 1発光層、電荷障壁層、第 2発光層及び陰極を この順に積層して含む。電荷障壁層を揷入することにより、第 1発光層と第 2発光層 にそれぞれ注入される電子と正孔の量を調整し、第 1発光層と第 2発光層の発光強 度を調整することができる。長時間の電流駆動による電子'正孔移動に対する耐性と 耐熱性を持つ電荷障壁層は、ガラス転移温度が 110°Cより大きい下記式(1)で表さ れる窒素に直接縮合環が配位していない芳香族ァミン誘導体を含む。
[化 3] (1)
Figure imgf000008_0001
[式(1)中、 は置換もしくは無置換の炭素数 5〜60のァリーレン基又は複素環基よ りなる 2価の基であり、 Arは置換もしくは無置換の核原子数 10〜50の置換基又は 下記式(2)で表される置換基を示し、 Ar〜Arはそれぞれ置換もしくは無置換の核
2 4
原子数 5〜50の置換基又は下記式(2)で表される置換基を示す。ただし Ar〜Ar
1 4 は縮合環ではない。
[化 4]
Ar5. ,2
(2)
Arfi
(式(2)中、 Lは置換もしくは無置換の炭素数 5〜60のァリーレン基又は複素環基よ
2
りなる 2価の基であり、 Ar〜Arはそれぞれ置換もしくは無置換の核原子数 5〜50の
5 6
置換基である。ただし Ar〜Arは縮合環ではない。 ) ]
5 6
[0018] 本発明では、このような構成とすることにより、長寿命の白色有機 EL素子が得られ る。また、本発明の素子は、演色性を有し、発光効率が高ぐ素子の駆動条件 (発光 輝度等)を変更しても、発光の色度変化が小さい。
[0019] このような有機 EL素子の一実施形態を図 1に示す。この有機 EL素子 10は、陽極 1
、正孔輸送層 2、第 1発光層 3、電荷障壁層 4、第 2発光層 5、電子輸送層 6及び陰極
7を積層した構造を有している。
電荷障壁層 4が上記の芳香族ァミン誘導体を含む。
この素子 10では、例えば、第 1発光層 3を赤色系発光とし、第 2発光層 5を青色系 発光とすることにより、白色発光を得ること力 Sできる。
[0020] 尚、本発明の有機 EL素子の構成は図 1に限定されず、例えば、以下の構成であつ てもよい。 1.陽極/第 1発光層/電荷障壁層/第 2発光層/陰極
2.陽極/正孔輸送層/第 1発光層/電荷障壁層/第 2発光層/陰極
3.陽極/第 1発光層/電荷障壁層/第 2発光層/電子輸送層/陰極
4.陽極/正孔輸送層/第 1発光層/電荷障壁層/第 2発光層/電子輸送層/陰 極
5.陽極/正孔注入層/正孔輸送層/第 1発光層/電荷障壁層/第 2発光層/電 子輸送層/陰極
6.陽極/正孔注入層/正孔輸送層/第 1発光層/電荷障壁層/第 2発光層/電 子輸送層/電子注入層/陰極
[0021] これらの構成のなかでも、第 1発光層で電子と正孔が再結合したときに生じる励起 エネルギーが金属である陽極にエネルギー移動し非発光のエネルギー失活を防止 するためにも、陽極と第 1発光層の間に、正孔輸送層を有することが好ましい。
[0022] さらに、正孔輸送層を有する構成であるとき、正孔輸送層と、電荷障壁層が同じ材 料であると、有機 EL素子を作製する上で使用する材料の種類を減らすことができ、 工業生産にぉレ、てコスト的に有利となるため好ましレ、。
[0023] 上述した層の他にも、他の有機層又は無機層を介在させることができる。介在層は 、電子及び正孔を輸送できるものであれば制限されない。光取り出し方向にある場合 は、透明であることが好ましい。
[0024] 本発明の有機 EL素子において、正孔の輸送を容易にし、有機発光素子の低電圧 化、高効率化、長寿命化が図られるため、陽極に近い有機層である第 1発光層又は 第一の有機層が、酸化剤を含有していることが好ましい。また、電子の輸送を容易に し、有機発光素子の低電圧化、高効率化、長寿命化が図られるため、陰極に近い有 機層である第 2発光層又は第二の有機層力 S、還元剤を含有していることが好ましい。
[0025] また、電荷障壁層を、複数の電荷障壁層を積層して形成してもよい。
[0026] 本発明の有機 EL素子は、さらに、第 2発光層と陰極の間に第 3発光層を有し、陽極
、第 1発光層、電荷障壁層、第 2発光層、第 3発光層、陰極をこの順に積層して構成 すること力 Sでさる。
このような有機 EL素子の一実施形態を図 2に示す。この有機 EL素子 20は、陽極 1 、正孔輸送層 2、第 1発光層 3、電荷障壁層 4、第 2発光層 5、第 3発光層 8、電子輸送 層 6及び陰極 7を積層した構造を有している。即ち、第 3発光層 8を形成した他は、上 記図 1に示す有機 EL素子 10と同じ構成を有するため、同じ構成についての説明は 省略する。
この素子 20では、例えば、第 1発光層 3を赤色系発光とし、第 2発光層 5を青色系 発光とし、第 3発光層 8を緑色系発光とすることにより、さらに演色性に優れた白色発 光を得ること力 Sでさる。
[0027] このとき、好ましくは、第 1発光層は正孔輸送性材料からなり、第 2発光層及び第 3 発光層は電子輸送性材料からなる。これにより、電荷障壁層の両側にある第 1発光 層と第 2発光層で効率よく電子と正孔が再結合し、発光効率が優れた白色発光を得 ること力 Sでさる。
[0028] 尚、このような有機 EL素子の構成も図 2に限定されず、例えば、上記の素子構成の 例 1 6に第 3発光層を追加した構成でもよぐまた、電荷障壁層を、複数の電荷障 壁層を積層して形成してもよい。
[0029] 以下、電荷障壁層、第 1発光層、第 2発光層、第 3発光層等の部材について説明す
^ o
[0030] 1.電荷障壁層
電荷障壁層は、電子 ·正孔移動耐性、耐熱性を有する、下記式(1)で表されるガラ ス転移温度が 110度より大きい芳香族ァミン誘導体を含む。ガラス転移温度とは材料 の耐熱性を表す温度である。
[化 5]
Figure imgf000010_0001
[式(1)中、 Lは置換もしくは無置換の炭素数 5〜60のァリーレン基又は複素環基よ りなる 2価の基であり、 Arは、置換もしくは無置換の核原子数 10〜50の置換基又は 下記式(2)で表される置換基を示し、 Ar〜Arはそれぞれ置換もしくは無置換の核
2 4
原子数 5〜50の置換基又は下記式(2)で表される置換基を示す。ただし Ar〜Ar は縮合環ではない。
[化 6]
Figure imgf000011_0001
(式(2)中、 Lは置換もしくは無置換の炭素数 5
2 〜60のァリーレン基又は複素環基よ りなる 2価の基であり、 Ar
5〜Arはそれぞれ置換もしくは無置換の核原子数 5
6 〜50の 置換基である。ただし Ar〜Arは縮合環ではない。 ) ]
5 6
[0031] L及び Lとしては、ビフエ二レン、ターフェ二レン、フエナントレン又は置換又は無置
1 2
換のフルォレニレンを例示でき、好ましくはビフエ二レン、ターフェ二レンであり、さら に好ましくはビフエ二レンである。
[0032] 上記の置換フルォレニレンの置換基として、好ましくは炭素数 1〜4のアルキル基で あり、より好ましくはメチル基である。
Arは、好ましくはフエニル基、ビフエ二ル基、 m—ターフェニル基又は p—ターフェ ニル基である。
Ar ェニル基又は p—タ
2〜Arは、好ましくはフエニル基、ビフエ二ル基、 m—ターフ
6
一フエ二ノレ基である。
尚、 Ar
1〜Arの置換基としては、ナフチル基等が挙げられる。
6
[0033] 前記式(1)で表される化合物は、 Ar
1〜Arが同一の置換基であることが好ましい。
4
この際、 Ar
1〜Arとしては好ましくはビフエニル基、ターフェニル基であり、より好まし
4
くはビフエニル基である
[0034] また、前記式(1)で表される化合物は、 Ar rのうち Ar
1〜A
4 2〜Arが同一の置換基
4
であることが好ましい。この際、 Arは、ビフエ二ル基、 m—ターフェニル基、 p—ターフ ェニル基、又はフエニル基であり、より好ましくはビフエニル基、 m—ターフェニル基、 p—ターフェニル基又はフエニル基である。 Ar 、ビフ
2〜Arは、好ましくはフエニル基
4
ェニノレ基、 m—ターフェニル基、 p—ターフェニル基であり、より好ましくはビフエニル 基である。さらに好ましくは Arが m—ターフェニル基又は p—ターフェニル基であり、 Ar〜Arがビフエニルである。
2 4
[0035] また、前記式(1)で表される化合物は、 Ar
1〜Arのうち 3つ以上が異なる置換基で 4
あることが好ましい。この際、 Ar
1〜Arは、好ましくはビフエニル基、 m—ターフェニル 4
基、 p—ターフェニル基、又はフエニル基であり、より好ましくはビフエニル基、 m—タ 一フエニル基、 p—ターフェニル基又はフエニル基である。さらに好ましくは Ar
3〜Ar
4 がビフエニルであり、 Arが m—ターフェニル基又は p—ターフェニル基であり、 Arは
1 2 フエ二ノレ基である。
[0036] 以下に本発明で用いることができる芳香族ァミン誘導体の具体例を示す。
[化 7]
S I - V τ τ - v o τ - v
Figure imgf000013_0001
f/X3d εζ9ε蘭 ooz OA
Figure imgf000014_0001
Figure imgf000015_0001
Figure imgf000015_0002
9T6S90/.00Zdf/X3d ει. εζ9ε蘭 ooz OA
Figure imgf000016_0001
[0037] 電荷障壁層の膜厚は、特に限定されないが、好ましくは、 0.;!〜 50nmである。より 好ましくは 0.;!〜 20nmである。
[0038] 電荷障壁層には、発光材料を添加してもよい。これにより、さらに多様な成分の光を 含んだ発光が得られる。例えば、白色光では、より演色性の高い光が得られる。発光 材料としては、後述する各発光層で使用するドーパント等が使用できる。
[0039] 2.第 1発光層
有機 EL素子の発光層は以下の機能を併せ持つものである。
(1)注入機能;電界印加時に陽極又は正孔注入'輸送層より正孔を注入することがで き、陰極又は電子注入 ·輸送層より電子を注入することができる機能
(2)輸送機能;注入した電荷 (電子と正孔)を電界の力で移動させる機能
(3)発光機能;電子と正孔の再結合の場を提供し、これを発光につなげる機能 但し、正孔の注入されやすさと電子の注入されやすさに違いがあってもよぐまた正 孔と電子の移動度で表される輸送能に大小があってもよいが、どちらか一方の電荷 を移動することが好ましい。
[0040] この発光層を形成する方法としては、例えば蒸着法、スピンコート法、 LB法等の公 知の方法を適用することができる。発光層は、特に分子堆積膜であることが好ましい
ここで分子堆積膜とは、気相状態の材料化合物から沈着され形成された薄膜や、 溶液状態又は液相状態の材料化合物から固体化され形成された膜のことであり、通 常この分子堆積膜は、 LB法により形成された薄膜 (分子累積膜)とは凝集構造、高 次構造の相違や、それに起因する機能的な相違により区分することができる。
また、特開昭 57— 51 781号公報に開示されているように、樹脂等の結着剤と材料 化合物とを溶剤に溶力、して溶液とした後、これをスピンコート法等により薄膜化するこ とによっても、発光層を形成することができる。
[0041] 第 1発光層に用いられる材料は、長寿命な発光材料として公知のものを用いること が可能であるが、式(3)で示される材料を発光材料として用いることが望ましい。
[0042] [化 8]
( r'-terfX')n ( 3 ) 式中、 Ar'は核炭素数 6〜50の芳香族環もしくは核原子数 5〜50の複素芳香族環 である。
具体的には、フエニル環、ナフチル環、アントラセン環、ビフエ二レン環、ァズレン環 、ァセナフチレン環、フルオレン環、フエナントレン環、フルオランテン環、ァセフエナ ンスリレン環、トリフエ二レン環、ピレン環、タリセン環、ベンズアントラセン環、ナフタセ ン環、ピセン環、ペリレン環、ペンタフェン環、ペンタセン環、テトラフエ二レン環、へキ サフェン環、へキサセン環、ルビセン環、コロネン環、トリナフチレン環、ピロール環、 インドール環、力ルバゾール環、イミダゾール環、ベンズイミダゾール環、ォキサジァ ゾール環、トリァゾール環、ピリジン環、キノキサリン環、キノリン環、ピリミジン環、トリア ジン環、チォフェン環、ベンゾチォフェン環、チアンスレン環、フラン環、ベンゾフラン 環、ピラゾール環、ピラジン環、ピリダジン環、インドリジン環、キナゾリン環、フエナント 口リン環、シロール環、ベンゾシロール環等が挙げられる。
好ましくはフエニル環、ナフチル環、アントラセン環、ァセナフチレン環、フルオレン 環、フエナントレン環、フルオランテン環、トリフエ二レン環、ピレン環、タリセン環、ベン ズアントラセン環、ペリレン環が挙げられる。
[0043] X,は置換基である。
具体的には、置換もしくは無置換の核炭素数 6〜50の芳香族基、置換もしくは無 置換の核原子数 5〜50の芳香族複素環基、置換もしくは無置換の炭素数 1〜50の アルキル基、置換もしくは無置換の炭素数 1〜50のアルコキシ基、置換もしくは無置 換の炭素数 1〜50のァラルキル基、置換もしくは無置換の核原子数 5〜50のァリー ノレォキシ基、置換もしくは無置換の核原子数 5〜50のァリールチオ基、置換もしくは 無置換の炭素数 1〜50のカルボキシル基、置換又は無置換のスチリル基、ハロゲン 基、シァノ基、ニトロ基、ヒドロキシル基等である。
[0044] 置換もしくは無置換の核炭素数 6〜50の芳香族基の例としては、フエニル基、 1— ナフチル基、 2 ナフチル基、 1 アントリノレ基、 2 アントリノレ基、 9 アントリノレ基、 1 ーフ: ナントリノレ基、 2 フ: ナントリノレ基、 3 フヱナントリノレ基、 4ーフ: ナントリノレ基 、 9 フエナントリル基、 1 ナフタセニル基、 2 ナフタセニル基、 9 ナフタセニノレ 基、 1ーピレニル基、 2 ピレニル基、 4ーピレニル基、 2 ビフエ二ルイル基、 3 ビフ ェニノレイノレ基、 4ービフエニノレイノレ基、 p ターフェニノレー 4ーィノレ基、 p ターフェ二 ノレー3 ィノレ基、 p ターフェニノレー 2 ィノレ基、 m ターフェニノレー 4ーィノレ基、 m ターフェニノレー 3 ィノレ基、 m—ターフェニノレー 2 ィノレ基、 o トリノレ基、 m—トリ ノレ基、 p トリノレ基、 p— t ブチルフエニル基、 p— (2—フエニルプロピノレ)フエニル 基、 3 メチルー 2 ナフチル基、 4ーメチルー 1 ナフチル基、 4ーメチルー 1 アン トリノレ基、 4,一メチルビフエ二ルイル基、 4"— t ブチノレ一 p ターフェ二ノレ一 4—ィ ノレ基、 2 フルォレニル基、 9, 9 ジメチルー 2 フルォレニル基、 3 フルオランテ ニル基等が挙げられる。
[0045] 好ましくはフエニル基、 1 ナフチル基、 2 ナフチル基、 9 フエナントリル基、 1 - ナフタセニル基、 2 ナフタセニル基、 9 ナフタセニル基、 1ーピレニル基、 2 ピレ 二ノレ基、 4 ピレニル基、 2 ビフエ二ルイル基、 3 ビフエ二ルイル基、 4 ビフエ二 ノレイノレ基、 o トリノレ基、 m トリノレ基、 p トリノレ基、 p— t ブチルフエニル基、 2—フ ノレオレニル基、 9, 9 ジメチルー 2 フルォレニル基、 3 フルオランテュル基等力 S 挙げられる。
[0046] 置換もしくは無置換の核原子数 5〜50の芳香族複素環基の例としては、 1 ピロリ ル基、 2 ピロリル基、 3 ピロリル基、ピラジュル基、 2 ピリジニル基、 3 ピリジニ ル基、 4 ピリジニル基、 1 インドリノレ基、 2 インドリノレ基、 3 インドリノレ基、 4ーィ ンドリル基、 5 インドリノレ基、 6 インドリノレ基、 7 インドリノレ基、 1 イソインドリル基 、 2 イソインドリル基、 3 イソインドリル基、 4 イソインドリル基、 5 イソインドリル 基、 6 イソインドリル基、 7 イソインドリル基、 2 フリノレ基、 3 フリノレ基、 2 べンゾ フラニル基、 3—べンゾフラニル基、 4一べンゾフラニル基、 5—べンゾフラニル基、 6 一べンゾフラニル基、 7 べンゾフラニル基、 1 イソべンゾフラニル基、 3—イソベン ゾフラニル基、 4 イソべンゾフラニル基、 5—イソべンゾフラニル基、 6—イソべンゾフ ラニル基、 7—イソべンゾフラニル基、キノリノレ基、 3—キノリノレ基、 4 キノリル基、 5— キノリノレ基、 6—キノリノレ基、 7—キノリノレ基、 8—キノリノレ基、 1 イソキノリノレ基、 3—ィ ソキノリル基、 4 イソキノリル基、 5—イソキノリル基、 6—イソキノリル基、 7—イソキノリ ル基、 8 イソキノリル基、 2 キノキサリニル基、 5 キノキサリニル基、 6 キノキサリ 二ノレ基、 1一力ルバゾリル基、 2 力ルバゾリル基、 3 力ルバゾリル基、 4一力ルバゾ リル基、 9 カノレバゾリノレ基、 1 フエナンスリジニル基、 2 フエナンスリジニル基、 3 フエナンスリジニル基、 4 フエナンスリジニル基、 6—フエナンスリジニル基、 7—フ ェナンスリジニル基、 8—フエナンスリジニル基、 9 フエナンスリジニル基、 10 フエ ナンスリジニル基、 1 アタリジニル基、 2 アタリジニル基、 3 アタリジニル基、 4 アタリジニル基、 9—アタリジニル基、 1, 7 フエナンスロリン一 2 ィル基、 1, 7 フ ェナンスロリン一 3 ィル基、 1, 7 フエナンスロリン一 4 ィル基、 1, 7 フエナンス 口リンー5 ィノレ基、 1, 7 フエナンスロリンー6 ィノレ基、 1, 7 フエナンスロリンー8 —ィノレ基、 1, 7 フエナンスロリン一 9 イノレ基、 1, 7 フエナンスロリン一 10 ィノレ 基、 1, 8 フエナンスロリンー2 ィノレ基、 1, 8 フエナンスロリンー3 ィノレ基、 1, 8 フエナンスロリンー4ーィノレ基、 1, 8—フエナンスロリンー5—ィノレ基、 1, 8—フエナ ンスロリン一 6 ィル基、 1, 8—フエナンスロリン一 7 ィル基、 1, 8—フエナンスロリン 9ーィノレ基、 1, 8—フエナンスロリン 10 ィノレ基、 1, 9 フエナンスロリンー2— イノレ基、 1, 9 フエナンスロリン一 3—イノレ基、 1, 9 フエナンスロリン一 4—イノレ基、 1, 9 フエナンスロリンー5—ィノレ基、 1, 9 フエナンスロリンー6—ィノレ基、 1, 9ーフ ェナンスロリン一 7—ィル基、 1, 9 フエナンスロリン一 8—ィル基、 1, 9 フエナンス 口リン一 10—イノレ基、 1, 10—フエナンスロリン一 2—イノレ基、 1, 10—フエナンスロリ ン一 3—イノレ基、 1, 10—フエナンスロリン一 4—イノレ基、 1, 10—フエナンスロリン一 5 —ィル基、 2, 9 フエナンスロリン一 1—ィル基、 2, 9 フエナンスロリン一 3 ィル基 、 2, 9 フエナンスロリン 4ーィノレ基、 2, 9 フエナンスロリン 5 ィノレ基、 2, 9— フエナンスロリン 6 ィノレ基、 2, 9 フエナンスロリン 7 ィノレ基、 2, 9 フエナン スロリン一 8 ィル基、 2, 9 フエナンスロリン一 10 ィル基、 2, 8 フエナンスロリン — 1—ィル基、 2, 8—フエナンスロリン一 3—ィル基、 2, 8—フエナンスロリン一 4—ィ ノレ基、 2, 8 フエナンスロリン 5 ィノレ基、 2, 8 フエナンスロリン 6 ィノレ基、 2, 8 フエナンスロリン 7—ィノレ基、 2, 8 フエナンスロリン 9ーィノレ基、 2, 8 フエ ナンスロリン一 10 ィル基、 2, 7 フエナンスロリン一 1—ィル基、 2, 7 フエナンス 口リン 3 ィノレ基、 2, 7 フエナンスロリン一 4 ィル基、 2, 7 フエナンスロリン一 5 —ィル基、 2, 7 フエナンスロリン一 6 ィル基、 2, 7 フエナンスロリン一 8 ィル基 、 2, 7 フエナンスロリン一 9 ィル基、 2, 7 フエナンスロリン一 10 ィル基、 1—フ ェナジ二ル基、 2—フエナジニル基、 1ーフエノチアジニル基、 2—フエノチアジニル基 、 3—フエノチアジニル基、 4ーフエノチアジニル基、 10—フエノチアジニル基、 1ーフ エノキサジニル基、 2 フエノキサジニル基、 3 フエノキサジニル基、 4 フエノキサ ジニル基、 10 フエノキサジニル基、 2 ォキサゾリル基、 4ーォキサゾリル基、 5 ォ キサゾリル基、 2 ォキサジァゾリル基、 5 ォキサジァゾリル基、 3 フラザニル基、 2 チェニル基、 3 チェニル基、 2 メチルピロ一ルー 1ーィル基、 2 メチルピロ一 ノレ 3 ィノレ基、 2 メチルピロ一ルー 4ーィル基、 2 メチルピロ一ルー 5 ィル基、 3 メチルピロ一ルー 1ーィル基、 3 メチルピロ一ルー 2 ィル基、 3 メチルピロ一 ノレ 4ーィノレ基、 3 メチルピロ一ルー 5 ィル基、 2— t ブチルピロ一ルー 4ーィル 基、 3—(2—フエニルプロピノレ)ピロ一ルー 1ーィル基、 2—メチルー 1 インドリル基 、 4ーメチルー 1 インドリル基、 2 メチルー 3 インドリル基、 4ーメチノレー 3 インド リル基、 2— tーブチルー 1 インドリル基、 4 tーブチルー 1 インドリル基、 2— t ブチルー 3—インドリル基、 4 tーブチルー 3—インドリル基等が挙げられる。
置換もしくは無置換の炭素数 1〜50のアルキル基の例としては、メチル基、ェチル 基、プロピル基、イソプロピル基、 n ブチル基、 s ブチル基、イソブチル基、 tーブ チル基、 n ペンチル基、 n へキシル基、 n へプチル基、 n ォクチル基、ヒドロキ シメチル基、 1ーヒドロキシェチル基、 2—ヒドロキシェチル基、 2—ヒドロキシイソブチ ノレ基、 1 , 2—ジヒドロキシェチノレ基、 1 , 3—ジヒドロキシイソプロピノレ基、 2, 3—ジヒド 口キシー t ブチル基、 1 , 2, 3—トリヒドロキシプロピル基、クロロメチル基、 1 クロ口 ェチル基、 2—クロ口ェチル基、 2—クロ口イソブチル基、 1 , 2—ジクロ口ェチル基、 1 , 3 ジクロ口イソプロピル基、 2, 3 ジクロロー t ブチル基、 1 , 2, 3 トリクロ口プロ ピノレ基、ブロモメチル基、 1 ブロモェチル基、 2—ブロモェチル基、 2—ブロモイソブ チル基、 1 , 2—ジブロモェチル基、 1 , 3—ジブロモイソプロピル基、 2, 3—ジブロモ t ブチル基、 1 , 2, 3—トリブロモプロピル基、ョードメチル基、 1ーョードエチル基 、 2—ョードエチル基、 2—ョードイソブチル基、 1 , 2—ジョードエチル基、 1 , 3—ジョ ードイソプロピノレ基、 2, 3—ジョードー tーフ、、チノレ基、 1 , 2, 3—トリョードプロピノレ基、 アミノメチル基、 1 アミノエチノレ基、 2—アミノエチノレ基、 2—ァミノイソブチル基、 1 , 2 ジアミノエチル基、 1 , 3 ジァミノイソプロピル基、 2, 3 ジアミノー t ブチル基 、 1 , 2, 3 トリァミノプロピル基、シァノメチノレ基、 1—シァノエチル基、 2 シァノエチ ル基、 2 シァノイソブチル基、 1 , 2 ジシァノエチル基、 1 , 3 ジシァノイソプロピ ル基、 2, 3 ジシァノ一 t ブチル基、 1 , 2, 3 トリシアノプロピル基、ニトロメチル基 、 1一二トロェチル基、 2—二トロェチル基、 2—二トロイソブチル基、 1 , 2—ジニトロェ チル基、 1 , 3 ジニトロイソプロピル基、 2, 3 ジニトロ t ブチル基、 1 , 2, 3 トリ ニトロプロピル基、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロへキ シル基、 4 メチルシクロへキシル基、 1—ァダマンチル基、 2 ァダマンチル基、 1 - ノルボルニル基、 2—ノルボルニル基等が挙げられる。
置換もしくは無置換の炭素数 1〜 50のアルコキシ基は OYで表される基であり、 Yの例としては、メチル基、ェチル基、プロピル基、イソプロピル基、 n ブチル基、 s ブチル基、イソブチル基、 t ブチル基、 n ペンチル基、 n へキシル基、 n へ プチル基、 n ォクチル基、ヒドロキシメチル基、 1ーヒドロキシェチル基、 2—ヒドロキ シェチル基、 2—ヒドロキシイソブチル基、 1 , 2—ジヒドロキシェチル基、 1 , 3—ジヒド ロキシイソプロピル基、 2, 3 ジヒドロキシ一 t ブチル基、 1 , 2, 3 トリヒドロキシプ 口ピル基、クロロメチル基、 1 クロ口ェチル基、 2—クロ口ェチル基、 2—クロロイソブ チル基、 1 , 2 ジクロ口ェチル基、 1 , 3 ジクロ口イソプロピル基、 2, 3 ジクロロー t ブチル基、 1 , 2, 3—トリクロ口プロピル基、ブロモメチル基、 1 ブロモェチル基、 2 ブロモェチル基、 2 ブロモイソブチル基、 1 , 2 ジブロモェチル基、 1 , 3 ジブ ロモイソプロピル基、 2, 3 ジブ口モー t ブチル基、 1 , 2, 3 トリブロモプロピル基 、ョードメチル基、 1ーョードエチル基、 2—ョードエチル基、 2—ョードイソブチル基、 1 , 2—ジョードエチノレ基、 1 , 3—ジョードイソプロピノレ基、 2, 3—ジョードー t フ、、チ ノレ基、 1 , 2, 3 トリョードプロピノレ基、アミノメチノレ基、 1 アミノエチノレ基、 2 ァミノ ェチル基、 2—ァミノイソブチル基、 1 , 2—ジアミノエチル基、 1 , 3—ジァミノイソプロ ピル基、 2, 3 ジアミノー t ブチル基、 1 , 2, 3 トリァミノプロピル基、シァノメチル 基、 1ーシァノエチル基、 2—シァノエチル基、 2—シァノイソブチル基、 1 , 2—ジシァ ノエチル基、 1 , 3 ジシァノイソプロピル基、 2, 3 ジシァノー t ブチル基、 1 , 2, 3 トリシアノプロピル基、ニトロメチル基、 1一二トロェチノレ基、 2—二トロェチノレ基、 2 一二トロイソフ、、チノレ基、 1 , 2—ジニトロェチノレ基、 1 , 3—ジニトロイソプロピノレ基、 2, 3 ージニトロ t ブチル基、 1 , 2, 3—トリニトロプロピル基等が挙げられる。
[0049] 置換もしくは無置換の炭素数 1〜50のァラルキル基の例としては、ベンジル基、 1 フエニルェチル基、 2—フエニルェチル基、 1 フエニルイソプロピル基、 2—フエ二 ノレイソプロピル基、フエ二ルー t ブチル基、 α ナフチルメチル基、 1 α ナフチ ノレェチル基、 2— α ナフチルェチル基、 1 α ナフチルイソプロピル基、 2— α ナフチルイソプロピル基、 β ナフチルメチル基、 1— 0 ナフチルェチル基、 2 β ナフチルェチル基、 1— /3 ナフチルイソプロピル基、 2 /3—ナフチルイソ プロピル基、 1 ピロリルメチル基、 2 (1 ピロリル)ェチル基、 ρ メチルベンジル 基、 m メチルベンジル基、 o メチルベンジル基、 p クロ口べンジル基、 m クロ口 ベンジノレ基、 o クロ口べンジノレ基、 p ブロモベンジノレ基、 m ブロモベンジノレ基、 o ブロモベンジル基、 p ョードベンジル基、 m ョードベンジル基、 o ョードベンジ ノレ基、 p ヒドロキシベンジル基、 m—ヒドロキシベンジル基、 o ヒドロキシベンジル 基、 p ァミノべンジル基、 m—ァミノべンジル基、 o ァミノべンジル基、 p 二トロべ ンジル基、 m 二トロべンジル基、 o 二トロべンジル基、 p シァノベンジル基、 m— シァノベンジル基、 o シァノベンジル基、 1—ヒドロキシ一 2—フエニルイソプロピル 基、 1 クロロー 2—フエニルイソプロピル基等が挙げられる。
[0050] 置換もしくは無置換の核原子数 5〜50のァリールォキシ基は— OY,と表され、 Υ, の例としてはフエニル基、 1 ナフチル基、 2—ナフチル基、 1 アントリル基、 2—ァ ントリノレ基、 9 ントリノレ基、 1 フエナントリノレ基、 2 フエナントリノレ基、 3 フエナン トリノレ基、 4ーフ: ナントリノレ基、 9ーフヱナントリノレ基、 1 ナフタセニノレ基、 2 ナフタ セニル基、 9 ナフタセニル基、 1ーピレニル基、 2 ピレニル基、 4ーピレニル基、 2 ービフエ二ルイル基、 3—ビフエ二ルイル基、 4ービフエ二ルイル基、 p—ターフェ二ノレ 4ーィノレ基、 p ターフェニノレー 3 ィノレ基、 p ターフェニノレー 2 ィノレ基、 m タ 一フエニノレー 4ーィノレ基、 m—ターフェニノレー 3 ィノレ基、 m—ターフェニノレー 2 ィ ル基、 o トリノレ基、 m—トリノレ基、 p トリノレ基、 p— t ブチルフエニル基、 p— (2—フ ェニルプロピル)フエニル基、 3 メチルー 2 ナフチル基、 4ーメチルー 1 ナフチル 基、 4ーメチノレー 1 アントリノレ基、 4,ーメチルビフエ二ルイル基、 4"—tーブチルー p —ターフェ二ノレ一 4 ィル基、 2 ピロリノレ基、 3 ピロリノレ基、ピラジュル基、 2 ピリ ジニル基、 3 ピリジニル基、 4 ピリジニル基、 2 インドリル基、 3 インドリル基、 4 —インドリル基、 5 インドリル基、 6—インドリル基、 7 インドリル基、 1—イソインドリ ル基、 3—イソインドリル基、 4 イソインドリル基、 5—イソインドリル基、 6—イソインド リノレ基、 7 イソインドリノレ基、 2 フリノレ基、 3 フリノレ基、 2 べンゾ'フラニノレ基、 3— ベンゾフラニノレ基、 4 ベンゾフラニノレ基、 5—ベンゾフラ二ノレ基、 6—ベンゾフラ二ノレ 基、 7—べンゾフラニル基、 1 イソべンゾフラニル基、 3—イソべンゾフラニル基、 4 イソべンゾフラニル基、 5—イソべンゾフラニル基、 6—イソべンゾフラニル基、 7—イソ ベンゾフラニル基、 2 キノリノレ基、 3 キノリル基、 4ーキノリノレ基、 5 キノリノレ基、 6 ーキノリノレ基、 7 キノリノレ基、 8—キノリノレ基、 1 イソキノリノレ基、 3—イソキノリノレ基、 4 イソキノリル基、 5—イソキノリル基、 6—イソキノリル基、 7—イソキノリル基、 8—ィ ソキノリル基、 2 キノキサリニル基、 5 キノキサリニル基、 6 キノキサリニル基、 1 カノレノ ゾリノレ基、 2 力ルバゾリル基、 3 力ルバゾリル基、 4一力ルバゾリル基、 1 フエナンスリジニル基、 2 フエナンスリジニル基、 3 フエナンスリジニル基、 4 フエ ナンスリジニル基、 6—フエナンスリジニル基、 7—フエナンスリジニル基、 8—フエナン スリジニル基、 9 フエナンスリジニル基、 10 フエナンスリジニル基、 1—アタリジニ ル基、 2 アタリジニル基、 3 アタリジニル基、 4 アタリジニル基、 9 アタリジニル 基、 1 , 7 フエナンスロリンー2 ィノレ基、 1 , 7 フエナンスロリンー3—ィノレ基、 1 , 7 フエナンスロリンー4ーィノレ基、 1 , 7 フエナンスロリンー5 ィノレ基、 1 , 7 フエナ ンスロリン一 6 ィル基、 1 , 7 フエナンスロリン一 8—ィル基、 1 , 7 フエナンスロリン 9ーィノレ基、 1 , 7 フエナンスロリン 10 ィノレ基、 1 , 8 フエナンスロリンー2— イノレ基、 1 , 8—フエナンスロリン一 3—イノレ基、 1 , 8—フエナンスロリン一 4—イノレ基、 1 , 8—フエナンスロリンー5—ィノレ基、 1 , 8—フエナンスロリンー6—ィノレ基、 1 , 8—フ ェナンスロリン一 7—ィル基、 1 , 8—フエナンスロリン一 9—ィル基、 1 , 8—フエナンス 口リン 10—ィノレ基、 1 , 9 フエナンスロリンー2—ィノレ基、 1 , 9 フエナンスロリン 3—ィノレ基、 1 , 9 フエナンスロリンー4ーィノレ基、 1 , 9 フエナンスロリンー5—ィノレ 基、 1 , 9 フエナンスロリンー6—ィノレ基、 1 , 9 フエナンスロリンー7—ィノレ基、 1 , 9 フエナンスロリンー8—ィノレ基、 1 , 9 フエナンスロリン 10 ィノレ基、 1 , 10 フエ ナンスロリン一 2 ィル基、 1 , 10 フエナンスロリン一 3 ィル基、 1 , 10 フエナンス 口リン一 4 ィル基、 1 , 10 フエナンスロリン一 5 ィル基、 2, 9 フエナンスロリン一 1—ィル基、 2, 9 フエナンスロリン一 3 ィル基、 2, 9 フエナンスロリン一 4 ィノレ 基、 2, 9 フエナンスロリンー5—ィノレ基、 2, 9 フエナンスロリンー6—ィノレ基、 2, 9 フエナンスロリン 7 ィノレ基、 2, 9 フエナンスロリン 8 ィノレ基、 2, 9 フエナ ンスロリン一 10 ィル基、 2, 8 フエナンスロリン一 1—ィル基、 2, 8 フエナンスロリ ン一 3 ィル基、 2, 8 フエナンスロリン一 4 ィル基、 2, 8 フエナンスロリン一 5— イノレ基、 2, 8 フエナンスロリン一 6 イノレ基、 2, 8 フエナンスロリン一 7 イノレ基、 2, 8 フエナンスロリン一 9 ィル基、 2, 8 フエナンスロリン一 10 ィル基、 2, 7— フエナンスロリン 1ーィノレ基、 2, 7 フエナンスロリンー3—ィノレ基、 2, 7 フエナン スロリン一 4 ィル基、 2, 7 フエナンスロリン一 5 ィル基、 2, 7 フエナンスロリン —6 ィル基、 2, 7 フエナンスロリン一 8 ィル基、 2, 7 フエナンスロリン一 9 ィ ル基、 2, 7 フエナンスロリン 10 ィル基、 1 フエナジニル基、 2 フエナジ二ノレ 基、 1ーフエノチアジニル基、 2 フエノチアジニル基、 3 フエノチアジニル基、 4ーフ エノチアジニル基、 1 フエノキサジニル基、 2—フエノキサジニル基、 3—フエノキサ ジニル基、 4 フエノキサジニル基、 2 ォキサゾリル基、 4ーォキサゾリル基、 5 ォ キサゾリル基、 2 ォキサジァゾリル基、 5 ォキサジァゾリル基、 3 フラザニル基、 2 チェニル基、 3 チェニル基、 2 メチルピロ一ルー 1ーィル基、 2 メチルピロ一 ノレ 3 ィノレ基、 2 メチルピロ一ルー 4ーィル基、 2 メチルピロ一ルー 5 ィル基、 3—メチルピロ一ルー 1ーィル基、 3—メチルピロ一ルー 2—ィル基、 3—メチルピロ一 ノレ 4ーィノレ基、 3 メチルピロ一ルー 5 ィル基、 2— t ブチルピロ一ルー 4ーィル 基、 3—(2 フエニルプロピノレ)ピロ一ルー 1ーィル基、 2 メチルー 1 インドリル基 、 4ーメチルー 1 インドリル基、 2 メチルー 3 インドリル基、 4ーメチルー 3 インド リル基、 2— tーブチルー 1 インドリル基、 4 tーブチルー 1 インドリル基、 2— t ブチルー 3—インドリル基、 4 tーブチルー 3—インドリル基等が挙げられる。
置換もしくは無置換の核原子数 5〜50のァリールチオ基は— SY"と表され、 Y"の 例としてはフエニル基、 1 ナフチル基、 2—ナフチル基、 1 アントリル基、 2—アント リノレ基、 9 7 "ントリノレ基、 1 フエナントリノレ基、 2 フエナントリノレ基、 3 フエナントリ ル基、 4 フエナントリノレ基、 9 フエナントリノレ基、 1 ナフタセニル基、 2 ナフタセ 二ノレ基、 9 ナフタセニル基、 1ーピレニル基、 2 ピレニル基、 4ーピレニル基、 2— ビフエ二ルイル基、 3—ビフエ二ルイル基、 4ービフエ二ルイル基、 p—ターフェ二ルー 4ーィノレ基、 p—ターフェニノレー 3 ィノレ基、 p—ターフェニノレー 2 ィノレ基、 m—ター フエニノレー 4ーィノレ基、 m ターフェニノレー 3 ィノレ基、 m ターフェニノレー 2 ィノレ 基、 o トリノレ基、 m—トリノレ基、 p トリノレ基、 p— t ブチルフエニル基、 p— (2—フエ ニルプロピル)フエニル基、 3 メチルー 2 ナフチル基、 4ーメチルー 1 ナフチル 基、 4ーメチノレー 1 アントリノレ基、 4,ーメチルビフエ二ルイル基、 4"—tーブチルー p —ターフェ二ノレ一 4 ィル基、 2 ピロリノレ基、 3 ピロリノレ基、ピラジュル基、 2 ピリ ジニル基、 3 ピリジニル基、 4 ピリジニル基、 2 インドリル基、 3 インドリル基、 4 —インドリル基、 5 インドリル基、 6—インドリル基、 7 インドリル基、 1—イソインドリ ル基、 3—イソインドリル基、 4 イソインドリル基、 5—イソインドリル基、 6—イソインド リノレ基、 7 イソインドリノレ基、 2 フリノレ基、 3 フリノレ基、 2 べンゾ'フラニノレ基、 3— ベンゾフラニノレ基、 4 ベンゾフラニノレ基、 5—ベンゾフラ二ノレ基、 6—ベンゾフラ二ノレ 基、 7 べンゾフラニル基、 1 イソべンゾフラニル基、 3—イソべンゾフラニル基、 4 イソべンゾフラニル基、 5—イソべンゾフラニル基、 6—イソべンゾフラニル基、 7—イソ ベンゾフラニル基、 2 キノリノレ基、 3 キノリル基、 4ーキノリノレ基、 5 キノリノレ基、 6 ーキノリノレ基、 7 キノリノレ基、 8—キノリノレ基、 1 イソキノリノレ基、 3—イソキノリノレ基、 4 イソキノリル基、 5—イソキノリル基、 6—イソキノリル基、 7—イソキノリル基、 8—ィ ソキノリル基、 2 キノキサリニル基、 5 キノキサリニル基、 6 キノキサリニル基、 1 カノレノ ゾリノレ基、 2 力ルバゾリル基、 3 力ルバゾリル基、 4一力ルバゾリル基、 1 フエナンスリジニル基、 2 フエナンスリジニル基、 3 フエナンスリジニル基、 4 フエ ナンスリジニル基、 6—フエナンスリジニル基、 7—フエナンスリジニル基、 8—フエナン スリジニル基、 9 フエナンスリジニル基、 10 フエナンスリジニル基、 1—アタリジニ ル基、 2 アタリジニル基、 3 アタリジニル基、 4 アタリジニル基、 9 アタリジニル 基、 1, 7 フエナンスロリンー2 ィノレ基、 1, 7 フエナンスロリンー3—ィノレ基、 1, 7 フエナンスロリンー4ーィノレ基、 1, 7 フエナンスロリンー5—ィノレ基、 1, 7 フエナ ンスロリン一 6 ィル基、 1, 7 フエナンスロリン一 8 ィル基、 1, 7 フエナンスロリン 9ーィノレ基、 1, 7 フエナンスロリン 10 ィノレ基、 1, 8—フエナンスロリンー2— イノレ基、 1, 8—フエナンスロリン一 3—イノレ基、 1, 8—フエナンスロリン一 4—イノレ基、 1, 8—フエナンスロリンー5—ィノレ基、 1, 8—フエナンスロリンー6—ィノレ基、 1, 8—フ ェナンスロリン一 7—ィル基、 1, 8—フエナンスロリン一 9—ィル基、 1, 8—フエナンス 口リン 10—ィノレ基、 1, 9 フエナンスロリンー2—ィノレ基、 1, 9 フエナンスロリン 3—ィノレ基、 1, 9 フエナンスロリンー4ーィノレ基、 1, 9 フエナンスロリンー5—ィノレ 基、 1, 9 フエナンスロリンー6—ィノレ基、 1, 9 フエナンスロリンー7—ィノレ基、 1, 9 フエナンスロリンー8—ィノレ基、 1, 9 フエナンスロリン 10 ィノレ基、 1, 10 フエ ナンスロリン一 2 ィル基、 1, 10 フエナンスロリン一 3 ィル基、 1, 10 フエナンス 口リン一 4 ィル基、 1, 10 フエナンスロリン一 5 ィル基、 2, 9 フエナンスロリン一 1—ィル基、 2, 9 フエナンスロリン一 3 ィル基、 2, 9 フエナンスロリン一 4 ィノレ 基、 2, 9 フエナンスロリンー5—ィノレ基、 2, 9 フエナンスロリンー6—ィノレ基、 2, 9 フエナンスロリン 7 ィノレ基、 2, 9 フエナンスロリン 8 ィノレ基、 2, 9 フエナ ンスロリン一 10 ィル基、 2, 8 フエナンスロリン一 1—ィル基、 2, 8 フエナンスロリ ン一 3 ィル基、 2, 8 フエナンスロリン一 4 ィル基、 2, 8 フエナンスロリン一 5— イノレ基、 2, 8 フエナンスロリン一 6 イノレ基、 2, 8 フエナンスロリン一 7 イノレ基、 2, 8 フエナンスロリン一 9 ィル基、 2, 8 フエナンスロリン一 10 ィル基、 2, 7— フエナンスロリン 1ーィノレ基、 2, 7 フエナンスロリンー3—ィノレ基、 2, 7 フエナン スロリン一 4 ィル基、 2, 7 フエナンスロリン一 5 ィル基、 2, 7 フエナンスロリン —6 ィル基、 2, 7 フエナンスロリン一 8 ィル基、 2, 7 フエナンスロリン一 9 ィ ノレ基、 2, 7 フエナンスロリン 10 ィル基、 1 フエナジニル基、 2 フエナジ二ノレ 基、 1ーフエノチアジニル基、 2—フエノチアジニル基、 3—フエノチアジニル基、 4ーフ エノチアジニル基、 1 フエノキサジニル基、 2—フエノキサジニル基、 3—フエノキサ ジニル基、 4 フエノキサジニル基、 2 ォキサゾリル基、 4ーォキサゾリル基、 5 ォ キサゾリル基、 2 ォキサジァゾリル基、 5 ォキサジァゾリル基、 3 フラザニル基、 2 チェニル基、 3 チェニル基、 2 メチルピロ一ルー 1ーィル基、 2 メチルピロ一 ノレ 3 ィノレ基、 2 メチルピロ一ルー 4ーィル基、 2 メチルピロ一ルー 5 ィル基、 3 メチルピロ一ルー 1ーィル基、 3 メチルピロ一ルー 2 ィル基、 3 メチルピロ一 ノレ 4ーィノレ基、 3 メチルピロ一ルー 5 ィル基、 2— t ブチルピロ一ルー 4ーィル 基、 3—(2 フエニルプロピノレ)ピロ一ルー 1ーィル基、 2 メチルー 1 インドリル基 、 4ーメチルー 1 インドリル基、 2 メチルー 3 インドリル基、 4ーメチルー 3 インド リル基、 2— tーブチルー 1 インドリル基、 4 tーブチルー 1 インドリル基、 2— t ブチルー 3—インドリル基、 4 tーブチルー 3—インドリル基等が挙げられる。
置換もしくは無置換の炭素数 1〜50のカルボキシル基は COOZ'と表され、 Z'の 例としてはメチル基、ェチル基、プロピル基、イソプロピル基、 n ブチル基、 s ブチ ノレ基、イソブチル基、 t ブチル基、 n ペンチル基、 n へキシル基、 n へプチノレ 基、 n ォクチル基、ヒドロキシメチル基、 1ーヒドロキシェチル基、 2—ヒドロキシェチ ル基、 2 ヒドロキシイソブチル基、 1 , 2 ジヒドロキシェチル基、 1 , 3 ジヒドロキシ イソプロピル基、 2, 3 ジヒドロキシー t ブチル基、 1 , 2, 3 トリヒドロキシプロピル 基、クロロメチル基、 1 クロ口ェチル基、 2—クロ口ェチル基、 2—クロ口イソブチル基 、 1 , 2—ジクロ口ェチル基、 1 , 3—ジクロ口イソプロピル基、 2, 3—ジクロロー tーブチ ノレ基、 1 , 2, 3—トリクロ口プロピル基、ブロモメチル基、 1 ブロモェチル基、 2—ブロ モェチル基、 2 ブロモイソブチル基、 1 , 2 ジブロモェチル基、 1 , 3 ジブロモイソ プロピル基、 2, 3—ジブ口モー t ブチル基、 1 , 2, 3—トリブロモプロピル基、ョード メチノレ基、 1ーョードエチル基、 2—ョードエチル基、 2—ョードイソブチル基、 1 , 2— ジョードエチノレ基、 1 , 3 ジョードイソプロピノレ基、 2, 3 ジョードー tーフ、、チノレ基、 1 , 2, 3—トリョードプロピノレ基、 ミノメチノレ基、 1 ミノェチノレ基、 2— ミノェチノレ基 、 2—ァミノイソフ、、チノレ基、 1 , 2—ジアミノエチノレ基、 1 , 3—ジァミノイソプロピノレ基、 2 , 3 ジァミノ一 t ブチル基、 1 , 2, 3 トリァミノプロピル基、シァノメチル基、 1—シ ァノエチル基、 2—シァノエチル基、 2—シァノイソブチル基、 1 , 2—ジシァノエチル 基、 2, 3 t ブチル基、 1 , 2, 3—卜リシ ァノプロピル基、ニトロメチル基、 1一二トロェチル基、 2—二トロェチル基、 2—二トロ イソフ、、チノレ基、 1 , 2—ジニトロェチノレ基、 1 , 3—ジニトロイソプロピノレ基、 2, 3—ジニト ロー t ブチル基、 1 , 2, 3 トリニトロプロピル基等が挙げられる。
[0053] 置換又は無置換のスチリル基の例としては、 2 フエ二ルー 1—ビュル基、 2, 2 ジ フエニル— 1—ビュル基、 1 , 2, 2—トリフエニル— 1—ビュル基等が挙げられる。
[0054] ノ、ロゲン基の例としては、フッ素、塩素、臭素、ヨウ素等が挙げられる。
[0055] mは 1〜5の整数、 nは 0〜6の整数である。
mは;!〜 2、 nは 0〜4が好ましい。
[0056] 尚 m≥2の時、( )内の Ar'はそれぞれ同じでも異なっていてもよい。
また n≥2の時、( )内の X'はそれぞれ同じでも異なっていてもよい。
[0057] 発光色について、第 1発光層は黄色〜橙色又は赤色発光層であることが好ましい。
黄色〜橙色又は赤色発光層は、発光の最大波長が 550〜650nmである発光層で ある。発光層は、好ましくはホスト材料と黄色〜橙色又は赤色ドーパントからなる。
[0058] 本発明の有機 EL素子の第 1発光層のホスト材料は、好ましくは、式(3)で表される 化合物として、ナフタセン誘導体、ジァミノアントラセン誘導体、ナフソフルオランテン 誘導体、ジアミノビレン誘導体、ジァミノペリレン誘導体、アミノアントラセン誘導体、ァ ミノピレン誘導体及びジベンゾクリセン誘導体から選択される 1種以上を含有する。よ り好ましくは、ナフタセン誘導体を含有する。
ナフタセン誘導体は下記式 (4)で表される
[0059] [化 9]
Figure imgf000028_0001
(式 (4)中、 Q^Q12は、それぞれ独立に、水素原子、置換もしくは無置換の炭素数 ;!〜 20のアルキル基、置換もしくは無置換の核炭素数 6〜20のァリール基、アミノ基 、置換もしくは無置換の炭素数 1〜20のアルコキシ基、置換もしくは無置換の炭素数 ;!〜 20のアルキルチオ基、置換もしくは無置換の核炭素数 6〜20のァリーロキシ基、 置換もしくは無置換の核炭素数 6〜20のァリールチオ基、置換もしくは無置換の炭 素数 2〜20のアルケニル基、置換もしくは無置換の核炭素数 7〜20のァラルキル基 又は置換もしくは無置換の核原子数 5〜20の複素環基を表し、これらは同一でも異 なるものであってもよい。 )
[0060] より好ましくは、上記式 (4)で表されるナフタセン誘導体は、下記式(5)で示される ナフタセン誘導体である。
[化 10]
Figure imgf000029_0001
(式(5)中、 Q3〜Q12、 Q101~Q105, Q201〜Q25は、それぞれ独立に、上記式 (4)の
Q3〜Q12と同様の基を表し、これらは同一でも異なるものであってもよぐこれら隣接 する 2個以上が互いに結合して環を形成してもよ!/、。 )
[0061] 黄色〜橙色又は赤色系ドーパントは、少なくとも一つのフルオランテン骨格又はぺ リレン骨格を有する蛍光性化合物が使用でき、例えば下記式(6)〜(22)で示される 化合物が挙げられる。
[0062] [化 11]
Figure imgf000030_0001
Figure imgf000031_0001
〔式(6)〜(20)式中、 Xi X^は、それぞれ独立に、水素原子、直鎖、分岐もしくは 環状の炭素原子数 1〜20のアルキル基、直鎖、分岐もしくは環状の炭素原子数 1〜 20のアルコキシ基、置換もしくは無置換の炭素原子数 6〜30のァリール基、置換もし くは無置換の炭素原子数 6〜30のァリールォキシ基、置換もしくは無置換の炭素原 子数 6〜30のァリールアミノ基、置換もしくは無置換の炭素原子数;!〜 30のアルキル アミノ基、置換もしくは無置換の炭素原子数 7〜30のァリールアルキルアミノ基又は 置換もしくは無置換炭素原子数 8〜30のアルケニル基であり、隣接する置換基及び Xi X^は結合して環状構造を形成していてもよい。隣接する置換基がァリール基の 時は、置換基は同一であってもよい。〕
式(6)〜(20)の化合物は、アミノ基又はアルケニル基を含有すると好まし!/、。
[0063] [化 12]
Figure imgf000032_0001
( 2 1 ) ( 2 2
[0064] 式(21)、 (22)中、 X^〜X 4は、それぞれ独立に、炭素原子数;!〜 20のアルキル 基、置換もしくは無置換の炭素原子数 6〜30のァリール基であり、 X21と X22及び/又 は X23と X24は、炭素 炭素結合又は O— S—を介して結合していてもよい。
X25〜X36は、水素原子、直鎖、分岐もしくは環状の炭素原子数 1〜20のアルキル 基、直鎖、分岐もしくは環状の炭素原子数 1〜20のアルコキシ基、置換もしくは無置 換の炭素原子数 6〜30のァリール基、置換もしくは無置換の炭素原子数 6〜30のァ リールォキシ基、置換もしくは無置換の炭素原子数 6〜30のァリールアミノ基、置換 もしくは無置換の炭素原子数 1〜30のアルキルアミノ基、置換もしくは無置換の炭素 原子数 7〜30のァリールアルキルアミノ基又は置換もしくは無置換炭素原子数 8〜3 0のアルケニル基であり、隣接する置換基及び x25〜x36は結合して環状構造を形成 していてもよい。
各式中の置換基 x25〜x36の少なくとも一つがァミン又はアルケニル基を含有すると 好ましい。 好ましくは、フルオランテン骨格又はペリレン骨格を有する化合物力 下記式(23) 又は式(24)で表されるインデノペリレン誘導体である。
[化 13]
Figure imgf000033_0001
[式中、
Figure imgf000033_0002
Ar2及び Arは、それぞれ独立に置換又は無置換の芳香環基あるいは 芳香族複素環基であり、 χ'-χ18»,それぞれ独立に水素、ハロゲン、アルキル基、 アルコキシ基、アルキルチオ基、アルケニル基、アルケニルォキシ基、アルケニルチ ォ基、芳香環含有アルキル基、芳香環含有アルキルォキシ基、芳香環含有アルキル チォ基、芳香環基、芳香族複素環基、芳香環ォキシ基、芳香環チォ基、芳香環アル ケニル基、アルケニル芳香環基、アミノ基、カルバゾリル基、シァノ基、水酸基、 CO OR1' (R1'は水素、アルキル基、アルケニル基、芳香環含有アルキル基又は芳香環 基である。)、 COR2' (R2'は水素、アルキル基、アルケニル基、芳香環含有アルキ ル基、芳香環基又はアミノ基である)、又は OCOR3' (R3'はアルキル基、アルケニ ル基、芳香環含有アルキル基又は芳香環基である)である。 xi x18の隣接する基 は、互いに結合して、又は置換している炭素原子と共に環を形成していてもよい。 ] フルオランテン骨格を有する蛍光性化合物は、高効率及び長寿命を得るために電 子供与性基を含有することが好ましぐ好ましい電子供与性基は置換もしくは未置換 のァリールアミノ基である。さらに、フルオランテン骨格を有する蛍光性化合物は、縮 合環数 5以上が好ましぐ 6以上が特に好ましい。これは、蛍光性化合物が 540〜70 Onmの蛍光ピーク波長を示し、青色系発光材料と蛍光性化合物からの発光が重な つて白色を呈するからである。
上記の蛍光性化合物は、フルオランテン骨格を複数有すると、発光色が黄色〜橙 色又は赤色領域となるため好ましい。特に好ましい蛍光性化合物は、電子供与性基 とフルオランテン骨格又はペリレン骨格を有し、 540〜700nmの蛍光ピーク波長を 示すものである。
[0067] 第 1発光層の膜厚は、好ましくは l〜60nm、より好ましくは 5〜30nm、最も好ましく は 5〜20nmである。 lnm未満では発光効率が低下する恐れがあり、 60nmを超える と駆動電圧が上昇する恐れがある。
[0068] 3.第 2発光層
発光色について、エネルギーギャップの関係から第 2発光層は青系発光層であるこ とが好ましい。好ましくは、青色系発光のピーク波長は 450〜500nmである。
[0069] 第 2発光層に使用できるホスト材料としては、アントラセン中心骨格を有する下記式
(25)に示す構造を有する化合物が好ましい。
[化 14]
Figure imgf000034_0001
[0070] (式中、 A1及び ΑΊま、それぞれ独立に、置換又は無置換の核炭素数 6〜20の芳香 族環から誘導される基である。
前記芳香族環は 1又は 2以上の置換基で置換されて!/、てもよレ、。
前記置換基は、置換又は無置換の核炭素数 6〜50のァリール基、置換又は無置 換の炭素数 1〜50のアルキル基、置換又は無置換の炭素数 3〜50のシクロアルキ ル基、置換又は無置換の炭素数;!〜 50のアルコキシ基、置換又は無置換の炭素数 6〜50のァラルキル基、置換又は無置換の核原子数 5〜50のァリールォキシ基、置 換又は無置換の核原子数 5〜50のァリールチオ基、置換又は無置換の炭素数;!〜 5 0のアルコキシカルボニル基、置換又は無置換のシリル基、カルボキシル基、ハロゲ ン原子、シァノ基、ニトロ基及びヒドロキシル基から選ばれる。
前記芳香族環が 2以上の置換基で置換されて!/、る場合、前記置換基は同一であつ ても異なっていてもよく、隣接する置換基同士は互いに結合して飽和又は不飽和の 環状構造を形成して!/、てもよレヽ。
!^〜 は、それぞれ独立に、水素原子、置換又は無置換の核炭素数 6〜50のァリ ール基、置換又は無置換の核原子数 5〜50のへテロアリール基、置換又は無置換 の炭素数 1〜50のアルキル基、置換又は無置換の炭素数 3〜50のシクロアルキル 基、置換又は無置換の炭素数 1〜50のアルコキシ基、置換又は無置換の炭素数 6 〜50のァラルキル基、置換又は無置換の核原子数 5〜50のァリールォキシ基、置換 又は無置換の核原子数 5〜50のァリールチオ基、置換又は無置換の炭素数;!〜 50 のアルコキシカルボニル基、置換又は無置換のシリル基、カルボキシル基、ハロゲン 原子、シァノ基、ニトロ基及びヒドロキシル基から選ばれる。 )
尚、式(25)において、 A1と A2とは互いに異なることが好ましい。
[0071] さらに、下記 (i)〜(ix)で表される化合物が好ましい。
[0072] 下記式 (i)で表される非対称アントラセン。
[化 15]
Figure imgf000035_0001
[0073] (式中、 Arは置換もしくは無置換の核炭素数 10〜50の縮合芳香族基である。
Ar'は置換もしくは無置換の核炭素数 6〜50の芳香族基である。
Xは、置換もしくは無置換の核炭素数 6〜50の芳香族基、置換もしくは無置換の核 原子数 5〜50の芳香族複素環基、置換もしくは無置換の炭素数 1〜50のアルキル 基、置換もしくは無置換の炭素数 1〜50のアルコキシ基、置換もしくは無置換の炭素 数 6〜50のァラノレキノレ基、置換もしくは無置換の核原子数 5〜50のァリールォキシ 基、置換もしくは無置換の核原子数 5〜50のァリールチオ基、置換もしくは無置換の 炭素数 1〜50のアルコキシカルボニル基、カルボキシル基、ハロゲン原子、シァノ基 、ニトロ基、ヒドロキシル基である。
a、 b及び cは、それぞれ 0〜4の整数である。
nは;!〜 3の整数である。また、 nが 2以上の場合は、 [ ]内は、同じでも異なって!/ てあよい。 )
下記式 (ii)で表される非対称モノアントラセン誘導体。
[化 16]
Figure imgf000036_0001
[0075] (式中、 Ar1及び Ar2は、それぞれ独立に、置換もしくは無置換の核炭素数 6〜50の 芳香族環基であり、 m及び nは、それぞれ 1〜4の整数である。ただし、 m = n= lでか つ Ar1と Ar2のベンゼン環への結合位置が左右対称型の場合には、 Ar1と Ar2は同一 ではなぐ m又は nが 2〜4の整数の場合には mと nは異なる整数である。
R'-R10^,それぞれ独立に、水素原子、置換もしくは無置換の核炭素数 6〜50の 芳香族環基、置換もしくは無置換の核原子数 5〜50の芳香族複素環基、置換もしく は無置換の炭素数 1〜50のアルキル基、置換もしくは無置換のシクロアルキル基、 置換もしくは無置換の炭素数 1〜 50のアルコキシ基、置換もしくは無置換の炭素数 6 〜50のァラノレキノレ基、置換もしくは無置換の核原子数 5〜50のァリールォキシ基、 置換もしくは無置換の核原子数 5〜 50のァリ一ルチオ基、置換もしくは無置換の炭 素数 1〜50のアルコキシカルボニル基、置換もしくは無置換のシリル基、カルボキシ ル基、ハロゲン原子、シァノ基、ニトロ基、ヒドロキシル基である。 )
[0076] 下記式 (iii)で表される非対称ピレン誘導体。
[化 17]
Figure imgf000037_0001
[0077] [式中、 Ar及び Ar'は、それぞれ置換もしくは無置換の核炭素数 6〜50の芳香族基 である。
L及び L'は、それぞれ置換もしくは無置換のフエ二レン基、置換もしくは無置換の ナフタレニレン基、置換もしくは無置換のフルォレニレン基又は置換もしくは無置換
Figure imgf000037_0002
mは 0〜2の整数、 nは 1〜4の整数、 sは 0〜2の整数、 tは 0〜4の整数である。 また、 L又は Arは、ピレンの 1〜5位のいずれかに結合し、 L,又は Ar,は、ピレンの 6〜; 10位のいずれかに結合する。
ただし、 n + tが偶数の時、 Ar, Ar' , L, L'は下記(1)又は(2)を満たす。
(1) Ar≠Ar,及び/又は L≠L' (ここで≠は、異なる構造の基であることを示す。 )
(2) Ar=Ar'かつ L = L 'の時
(2- 1) m≠s及び/又は n≠t、又は
(2- 2) m = sかつ n = tの時、
(2- 2- 1) L及び L'、又はピレン力、それぞれ Ar及び Ar'上の異なる結合位 置に結合しているか、
(2- 2- 2) L及び L'、又はピレン力 S、 Ar及び Ar'上の同じ結合位置で結合し ている場合、
L及び L'又は Ar及び Ar'のピレンにおける置換位置が 1位と 6位、又は 2位と 7 位である場合はない。 ]
[0078] 下記式 (iv)で表される非対称アントラセン誘導体。 [化 18]
Figure imgf000038_0001
Y
(iv)
[0079] (式中、 A1及び A2は、それぞれ独立に、置換もしくは無置換の核炭素数 10〜20の 縮合芳香族環基である。
Ar1及び Ar2は、それぞれ独立に、水素原子、又は置換もしくは無置換の核炭素数 6〜50の芳香族環基である。
R'-R10^,それぞれ独立に、水素原子、置換もしくは無置換の核炭素数 6〜50の 芳香族環基、置換もしくは無置換の核原子数 5〜50の芳香族複素環基、置換もしく は無置換の炭素数 1〜50のアルキル基、置換もしくは無置換のシクロアルキル基、 置換もしくは無置換の炭素数 1〜 50のアルコキシ基、置換もしくは無置換の炭素数 6 〜50のァラノレキノレ基、置換もしくは無置換の核原子数 5〜50のァリールォキシ基、 置換もしくは無置換の核原子数 5〜 50のァリ一ルチオ基、置換もしくは無置換の炭 素数 1〜50のアルコキシカルボニル基、置換もしくは無置換のシリル基、カルボキシ ル基、ハロゲン原子、シァノ基、ニトロ基又はヒドロキシル基である。
Ar2、 R9及び R1Qは、それぞれ複数であってもよぐ隣接するもの同士で飽和も しくは不飽和の環状構造を形成してレ、てもよレ、。
ただし、式(iv)において、中心のアントラセンの 9位及び 10位に、該アントラセン上 に示す X— Y軸に対して対称型となる基が結合する場合はない。 )
[0080] 下記式 (V)で表されるアントラセン誘導体。
[化 19]
Figure imgf000039_0001
[0081] (式中、 Ι^〜Κ1()は、それぞれ独立に水素原子,アルキル基,シクロアルキル基,置 換しても良いァリール基,アルコキシル基,ァリーロキシ基,ァノレキノレアミノ基,ァルケ ニル基,ァリールアミノ基又は置換しても良い複素環式基を示し、 a及び bは、それぞ れ 1〜5の整数を示し、それらが 2以上の場合、 R1同士又は R2同士は、それぞれにお いて、同一でも異なっていてもよぐまた R1同士又は R2同士が結合して環を形成して いてもよいし、 R3と R4, R5と R6, R7と R8, R9と R1()がたがいに結合して環を形成してい てもよい。 L1は単結合、 -0- , - S - , — N (R)— (Rはアルキル基又は置換しても 良いァリール基である)、アルキレン基又はァリーレン基を示す。)
[0082] 下記式 (vi)で表されるアントラセン誘導体。
[化 20]
Figure imgf000039_0002
(式中、 RU〜R uは、それぞれ独立に水素原子,アルキル基,シクロアルキル基,ァリ ール基, アルコキシル基,ァリーロキシ基,ァノレキノレアミノ基,ァリールアミノ基又は置 換しても良い複数環式基を示し、 c, d, e及び fは、それぞれ;!〜 5の整数を示し、それ らが 2以上の場合、 R11同士, 同士, Rlb同士又は R17同士は、それぞれにおいて 、同一でも異なっていてもよぐまた R11同士, R12同士, R16同士又は R17同士が結合 して環を形成していてもよいし、 R13と R14, R18と R19がたがいに結合して環を形成して いてもよい。 L2は単結合、— O— , — S— , — N (R)— (Rはアルキル基又は置換して も良いァリール基である)、アルキレン基又はァリーレン基を示す。)
[0084] 下記式 (vii)で表されるスピロフルオレン誘導体。
[化 21]
Figure imgf000040_0001
[0085] (式中、 Α^〜Α8は、それぞれ独立に、置換もしくは無置換のビフエニル基又は置換も しくは無置換のナフチル基である。 )
[0086] 下記式 (viii)で表される縮合環含有化合物。
[化 22]
Figure imgf000040_0002
(式中、 A9〜AUはそれぞれ置換もしくは無置換の核炭素数 6〜50のァリーレン基で あり、 A12〜A14はそれぞれ水素原子、又は置換もしくは無置換の核炭素数 6〜50の ァリール基であり、 R21〜R23は、それぞれ独立に、水素原子、炭素数;!〜 6のアルキ ル基、炭素数 3〜6のシクロアルキル基、炭素数 1〜6のアルコキシル基、炭素数 5〜 18のァリールォキシ基、炭素数 7〜; 18のァラルキルォキシ基、炭素数 5〜; 16のァリ 一ノレアミノ基、ニトロ基、シァノ基、炭素数 1〜6のエステル基又はハロゲン原子を示し 、 A9〜A14のうち少なくとも 1つは 3環以上の縮合芳香族環を有する基である。 )
[0088] 下記式(ix)で表されるフルオレン化合物。
[化 23]
Figure imgf000041_0001
[0089] (式中、 R及び Rは、水素原子、置換あるいは無置換のアルキル基、置換あるいは
1 2
無置換のァラルキル基、置換あるいは無置換のァリール基,置換あるいは無置換の 複素環基、置換アミノ基、シァノ基又はハロゲン原子を表わす。異なるフルオレン基 に結合する R同士、 R同士は、同じであっても異なっていてもよく、同じフルオレン基
1 2
に結合する R及び Rは、同じであっても異なっていてもよい。 R及び Rは、水素原
1 2 3 4
子、置換あるいは無置換のアルキル基、置換あるいは無置換のァラルキル基、置換 あるいは無置換のァリール基又は置換あるいは無置換の複素環基を表わし、異なる フルオレン基に結合する R同士、 R同士は、同じであっても異なっていてもよく、同じ
3 4
フルオレン基に結合する R及び Rは、同じであっても異なっていてもよい。 Ar及び
3 4 1
Arは、ベンゼン環の合計が 3個以上の置換あるいは無置換の縮合多環芳香族基又
2
はベンゼン環と複素環の合計が 3個以上の置換あるいは無置換の炭素でフルオレン 基に結合する縮合多環複素環基を表わし、 Ar及び Arは、同じであっても異なって
1 2
いてもよい。 nは、 1乃至 10の整数を表す。 )
[0090] 以上のホスト材料の中でも、好ましくはアントラセン誘導体、さらに好ましくはモノア ントラセン誘導体、特に好ましくは非対称アントラセンである。
[0091] 第 2発光層に使用できるドーパントとしては、例えば、ァリールァミン化合物及び/ 又はスチリルァミン化合物、アントラセン、ナフタレン、フエナントレン、ピレン、テトラセ ン、コロネン、タリセン、フノレォレセイン、ペリレン、フタ口ペリレン、ナフタ口ペリレン、ぺ リノン、フタ口ペリノン、ナフタ口ペリノン、ジフエニルブタジエン、テトラフェニルブタジ ェン.クマリン、才キサジァゾ一ノレ、ァノレダジン、ビスベンゾキサゾリン、ビススチリノレ、 ピラジン、シクロペンタジェン、キノリン金属錯体、ァミノキノリン金属錯体、ベンゾキノ リン金属錯体、ィミン、ジフエニルェチレン、ビュルアントラセン、ジァミノ力ルバゾール 、ピラン、チォピラン、ポリメチン、メロシアニン、イミダゾールキレート化ォキシノイド化 合物、キナクリドン、ルブレン及び蛍光色素等が挙げられるが、これらに限定されるも のではない。
[0092] また、本発明の有機 EL素子は、第 2発光層が、ァリールァミン化合物及び/又はス チリルァミン化合物を含有すると好まし!/、。
ァリールァミン化合物としては下記式(26)で表される化合物等が挙げられ、スチリ ルァミン化合物としては下記式(27)で表される化合物等が挙げられる。
[化 24]
Figure imgf000042_0001
[式(26)中、 Arは、フエニル、ビフエニル、テルフエニル、スチルベン、ジスチリルァ
8
リールから選ばれる基であり、 Ar及び Ar は、それぞれ水素原子又は炭素数が 6〜
9 10
20の芳香族基であり、 Ar又は Ar は置換されていてもよい。 p'は、 1〜4の整数で
9 10
ある。 ]
好ましくは Ar及び/又は Ar はスチリル基が置換されている。
9 10
ここで、炭素数が 6〜20の芳香族基としては、フエニル基、ナフチル基、アントラセ ニル基、フエナントリル基、テルフエニル基等が好ましい。
[0093] [化 25]
Figure imgf000042_0002
[式(27)中、 Ar 〜Ar は、置換されていてもよい核炭素数 5〜40のァリール基で
11 13
ある。 q'は、;!〜 4の整数である。 ]
ここで、核原子数が 5〜40のァリール基としては、フエニル、ナフチル、アントラセニ ノレ、フエナントリノレ、ピレニノレ、 コロニノレ、ビフエニノレ、テノレフエニノレ、ピローリノレ、フラニ ノレ、チォフエニル、ベンゾチォフエニル、ォキサジァゾリル、ジフエ二ルアントラセニル 、インドリル、カルバゾリル、ピリジル、ベンゾキノリル、フルオランテュル、ァセナフトフ ルオランテュル、スチルベン等が好ましい。尚、核原子数が 5〜40のァリール基は、 さらに置換基により置換されていてもよぐ好ましい置換基としては、炭素数;!〜 6のァ ノレキル基(ェチル基、メチル基、イソプロピル基、 n プロピル基、 s ブチル基、 t ブチル基、ペンチル基、へキシル基、シクロペンチル基、シクロへキシル基等)、炭素 数 1〜6のアルコキシ基(エトキシ基、メトキシ基、イソプロポキシ基、 n プロポキシ基 、 s ブトキシ基、 t ブトキシ基、ペントキシ基、へキシルォキシ基、シクロペントキシ 基、シクロへキシルォキシ基等)、核原子数 5〜40のァリール基、核原子数 5〜40の ァリール基で置換されたァミノ基、核原子数 5〜40のァリール基を有するエステル基 、炭素数 1〜6のアルキル基を有するエステル基、シァノ基、ニトロ基、ハロゲン原子( 塩素、臭素、ヨウ素等)が挙げられる。
[0094] 第 2発光層の膜厚は、好ましくは l〜100nm、より好ましくは 5〜50nmである。 In m未満では発光層形成が困難となり、色度の調整が困難となる恐れがあり、 lOOnm を超えると駆動電圧が上昇する恐れがある。
[0095] 4.第 3発光層
発光色については、第 3発光層は緑系発光層であることが好ましい。好ましくは、緑 色系発光の発光最大波長は 500〜550nmである。
第 3発光層は、ホスト材料と緑色系ドーパントからなることが好ましい。具体的な材 料は、上述した第 2発光層のものが使用できる力 ホスト材料は第 2発光層と同じ材 料であると好ましい。
[0096] 緑色系ドーパントとして、上述した青色ドーパントと同じァリールァミン化合物及び /又はスチリルァミン化合物を用いることができる。好ましくは、緑色系発光の発光最 大波長は 500〜550nmである。
好ましくは緑色系ドーパントとして、式(28)で表わされる芳香族ァミン化合物を使用 できる。
[化 26]
Figure imgf000044_0001
[0097] 式(28)において、 Ai〜A2は、それぞれ独立に、水素原子、置換もしくは無置換の 炭素数 1〜10 (好ましくは、炭素数;!〜 6)のアルキル基、置換もしくは無置換の核炭 素数 5〜50 (好ましくは、核炭素数 5〜10)のァリール基、置換もしくは無置換の核炭 素数 3〜20 (好ましくは、核炭素数 5〜 10)のシクロアルキル基、置換もしくは無置換 の炭素数 1〜10 (好ましくは、炭素数;!〜 6)のアルコキシ基、置換もしくは無置換の 核炭素数 5〜 50 (好ましくは、核炭素数 5〜 10)のァリールォキシ基、置換もしくは無 置換の核炭素数 5〜50 (好ましくは、核炭素数 5〜20)のァリールアミノ基、置換もし くは無置換の炭素数 1〜10 (好ましくは、炭素数 1〜6)のアルキルアミノ基、又はハロ ゲン原子を表す。
[0098] Ai〜A2の置換もしくは無置換のアルキル基としては、例えば、メチル基、ェチル基 、プロピル基、イソプロピル基、ブチル基、 sec ブチル基、 tert ブチル基、ペンチ ル基、へキシル基、ヘプチル基、ォクチル基、ステアリル基、 2—フエニルイソプロピ ル基、トリクロロメチノレ基、トリフノレオロメチノレ基、ベンジル基、 α フエノキシベンジル 基、 α , α—ジメチルベンジル基、 α , a メチルフエニルベンジル基、 α , aージト リフルォロメチルベンジル基、トリフエニルメチル基、 α —べンジルォキシベンジル基 等が挙げられる。
[0099] Ai〜A2の置換もしくは無置換のァリール基としては、例えば、フエニル基、 2 メチ ノレフエニル基、 3—メチルフエニル基、 4 メチルフエニル基、 4 ェチルフエニル基、 ビフエ二ル基、 4—メチルビフエニル基、 4—ェチルビフエニル基、 4—シクロへキシル ビフエ二ル基、ターフェニル基、 3, 5—ジクロロフェニル基、ナフチル基、 5—メチノレ ナフチル基、アントリル基、ピレニル基等が挙げられる。
[0100] Ai〜A2の置換もしくは無置換のシクロアルキル基としては、例えば、シクロプロピノレ 基、シクロブチル基、シクロペンチル基、シクロへキシル基、ノルボルネル基、ァダマ ンチル基等が挙げられる。
[0101] Ai〜A2の置換もしくは無置換のアルコキシ基としては、例えば、メトキシ基、ェトキ シ基、プロポキシ基、イソプロポキシ基、ブトキシ基、イソブトキシ基、 sec ブトキシ基 、 tert ブトキシ基、各種ペンチルォキシ基、各種へキシルォキシ基等が挙げられる
[0102] Ai〜A2の置換もしくは無置換のァリールォキシ基としては、例えば、フエノキシ基、 トリルォキシ基、ナフチルォキシ基等が挙げられる。
Ai〜A2の置換もしくは無置換のァリールアミノ基としては、例えば、ジフエニルァミノ 基、ジトリルアミノ基、ジナフチルァミノ基、ナフチルフエニルァミノ基等が挙げられる。
Ai〜A2の置換もしくは無置換のアルキルアミノ基としては、例えば、ジメチルァミノ 基、ジェチルァミノ基、ジへキシルァミノ基等が挙げられる。
Ai〜A2のハロゲン原子としては、例えば、フッ素原子、塩素原子、臭素原子等が挙 げられる。
尚、式(28)において、 A1及び A2の両方が水素原子である場合はない。
[0103] 式(28)において、 d及び eはそれぞれ 1〜5の整数であり、;!〜 3であると好ましい。
d、 eがそれぞれ 2以上の場合、
Figure imgf000045_0001
A2は、それぞれ同一でも異なっていても よぐ互いに連結して飽和もしくは不飽和の環を形成していてもよい。また、 hは;!〜 9 の整数であり、;!〜 3であると好ましい。
[0104] R11は、置換もしくは無置換の炭素数 3〜; 10の 2級又は 3級のアルキル基、又は置 換もしくは無置換の炭素数 3〜; 10の 2級又は 3級のシクロアルキル基を表す。
R11の置換もしくは無置換の炭素数 3〜; 10の 2級又は 3級のアルキル基としては、例 えば、イソプロピル基、 tert ブチル基、 sec ブチル基、 tert ペンチル基、 1ーメ チルブチル基、 1ーメチルペンチル基、 1 , 1 ' ジメチルペンチル基、 1 , 1 ' ジェチ ノレプロピル基、 1一べンジルー 2—フエニルェチル基、 1ーメトキシェチル基、 1 フエ 二ルー 1 メチルェチル基等が挙げられる。
R11の置換もしくは無置換の炭素数 3〜; 10の 2級又は 3級のシクロアルキル基として は、例えば、シクロペンチル基、シクロへキシル基、ノルボルネル基、ァダマンチル基 等が挙げられる。
式(28)において、 fは;!〜 9の整数であり、;!〜 3であると好ましい。 fが 2以上の場合 、複数の R11は同一でも異なっていてもよい。
[0105] R12は、水素原子、置換もしくは無置換の炭素数 1〜; 10のアルキル基(好ましくは、 炭素数 1〜6)、置換もしくは無置換の核炭素数 5〜50のァリール基 (好ましくは、核 炭素数 5〜; 10)、置換もしくは無置換の核炭素数 3〜20のシクロアルキル基(好ましく は、核炭素数 5〜; 10)、置換もしくは無置換の炭素数 1〜; 10のアルコキシ基 (好ましく は、炭素数 1〜6)、置換もしくは無置換の核炭素数 5〜50のァリールォキシ基 (好ま しくは、核炭素数 5〜; 10)、置換もしくは無置換の核炭素数 5〜50のァリールアミノ基 (好ましくは、核炭素数 5〜20)、置換もしくは無置換の炭素数 1〜; 10のアルキルアミ ノ基 (好ましくは、炭素数 1〜6)、又はハロゲン原子を表す。
R12の置換もしくは無置換のアルキル基、ァリール基、シクロアルキル基、アルコキ シ基、ァリールォキシ基、ァリールアミノ基、アルキルアミノ基及びハロゲン原子の具 体例としては、上記 Ai〜A2と同様のものが挙げられる。
式(28)において、 gは 0〜8の整数であり、 0〜2であると好ましい。
gが 2以上の場合、複数の R12は同一でも異なって!/、てもよ!/、。
また、式(28)において、 f + g + hは 2〜; 10の整数であり、 2〜6であると好ましい。
[0106] 芳香族ァミン化合物としては、式(28—;!)〜(28— 7)で表される化合物がより好ま しい。
[化 27]
Figure imgf000047_0001
[式(28— 1)〜(28— 7)中、
Figure imgf000047_0002
A2、 d、 e、 Ru及び R12は、式(28)と同じである。 ] 第 3発光層の膜厚は、好ましくは;!〜 100nm、より好ましくは 5〜50nmである。 In m未満では発光層形成が困難となり、色度の調整が困難となる恐れがあり、 lOOnm を超えると駆動電圧が上昇する恐れがある。
[0108] 5.他の有機層
(1)第一の有機層
陽極と第 1発光層の間に、第一の有機層として、正孔注入層、正孔輸送層又は有 機半導体層等を設けることができる。正孔注入層又は正孔輸送層は、発光層への正 孔注入を助け、発光領域まで輸送する層であって、正孔移動度が大きぐイオン化工 ネルギ一が通常 5. 5eV以下と小さい。正孔注入層はエネルギーレベルの急な変化 を緩和する等、エネルギーレベルを調整するために設ける。このような正孔注入層又 は正孔輸送層としてはより低い電界強度で正孔を発光層に輸送する材料が好ましく 、さらに正孔の移動度が、例えば 104〜; 106V/cmの電界印加時に、少なくとも 10_6 cm v ·秒であるものが好ましい。正孔注入層又は正孔輸送層を形成する材料とし ては、前記の好ましい性質を有するものであれば特に制限はなぐ従来、光導伝材 料において正孔の電荷輸送材料として慣用されているものや、有機 EL素子の正孔 注入層に使用されている公知のものの中から任意のものを選択して用いることができ
[0109] このような正孔注入層又は正孔輸送層の形成材料としては、具体的には、例えばト リアゾール誘導体 (米国特許 3, 112, 197号明細書等参照)、ォキサジァゾール誘 導体 (米国特許 3, 189, 447号明細書等参照)、イミダゾール誘導体(特公昭 37— 1 6096号公報等参照)、ポリアリールアルカン誘導体(米国特許 3, 615, 402号明細 ·、同 820, 989 明糸田 »、 542, 544 明糸田 »、牛寺 A日召 45— 555 公報、同 51— 10983号公報、特開昭 51— 93224号公報、同 55— 17105号公報、 同 56— 4148号公報、同 55— 108667号公報、同 55— 156953号公報、同 56— 3 6656号公報等参照)、ピラゾリン誘導体及びピラゾロン誘導体 (米国特許第 3, 180 , 729 明糸田 »、 278, 746 明糸田 »、牛寺開日召 55— 88064 、同 55—
88065号公報、同 49— 105537号公報、同 55— 51086号公報、同 56— 80051号 公報、同 56— 88141号公報、同 57— 45545号公報、同 54— 112637号公報、同 5 5— 74546号公報等参照)、フエ二レンジァミン誘導体 (米国特許第 3, 615, 404号 明細書、特 昭 51— 10105号 A報、同 46— 3712号 A報、同 47— 25336号 A報 、同 54— 119925号公報等参照)、ァリールァミン誘導体(米国特許第 3, 567, 450 240, 597 曰月糸田»、 658, 520 曰月糸田»、 232
, 103号明細書、同第 4, 175, 961号明細書、同第 4, 012, 376号明細書、特公昭 49— 35702号公報、同 39— 27577号公報、特開昭 55— 144250号公報、同 56— 119132号公報、同 56— 22437号公報、***特許第 1 , 110, 518号明細書等参 照)、ァミノ置換カルコン誘導体 (米国特許第 3, 526, 501号明細書等参照)、ォキ サゾール誘導体 (米国特許第 3, 257, 203号明細書等に開示のもの)、スチリルアン トラセン誘導体(特開昭 56— 46234号公報等参照)、フルォレノン誘導体(特開昭 5 4 1 10837号公報等参照)、ヒドラゾン誘導体 (米国特許第 3, 717, 462号明細書 、特開昭 54— 59143号公報、同 55— 52063号公報、同 55— 52064号公報、同 55
— 46760号公報、同 57— 11350号公報、同 57— 148749号公報、特開平 2— 311 591号公報等参照)、スチルベン誘導体(特開昭 61— 210363号公報、同第 61— 2 28451号公報、同 61— 14642号公報、同 61— 72255号公報、同 62— 47646号 公報、同 62— 36674号公報、同 62— 10652号公報、同 62— 30255号公報、同 60
— 93455号公報、同 60— 94462号公報、同 60— 174749号公報、同 60— 17505 2号公報等参照)、シラザン誘導体 (米国特許第 4, 950, 950号明細書)、ポリシラン 系(特開平 2— 204996号公報)、ァニリン系共重合体(特開平 2— 282263号公報) 等を挙げること力 Sでさる。
正孔注入層又は正孔輸送層の材料としては、上記のものを使用することができるが 、ポルフィリン化合物(特開昭 63— 295695号公報等に開示のもの)、芳香族第三級 ァミン化合物及びスチリルァミン化合物(米国特許第 4, 127, 412号明細書、特開昭 53— 27033号公報、同 54— 58445号公報、同 55— 79450号公報、同 55— 1442 50号公報、同 56— 119132号公報、同 61— 295558号公報、同 61— 98353号公 報、同 63— 295695号公報等参照)、芳香族第三級ァミン化合物を用いることもでき る。また米国特許第 5, 061 , 569号に記載されている 2個の縮合芳香族環を分子内 に有する、例えば 4, 4,一ビス(N— (1—ナフチル) N フエニルァミノ)ビフエニル 、また特開平 4— 308688号公報に記載されているトリフエニルァミンユニットが 3っス ターバースト型に連結された 4, 4,, 4"ートリス(N— (3—メチルフエニル) N—フエ ニルァミノ)トリフエニルァミン等を挙げることができる。さらに、発光層の材料として示 した前述の芳香族ジメチリディン系化合物の他、 p型 Si、 p型 SiC等の無機化合物も 正孔注入層又は正孔輸送層の材料として使用することができる。
[0111] この正孔注入層又は正孔輸送層は、上述した材料の 1種又は 2種以上からなる一 層で構成されてもよいし、また、正孔注入層又は正孔輸送層とは別種の化合物から なる正孔注入層又は正孔輸送層を積層したものであってもよ!/、。正孔注入層又は正 孔輸送層の膜厚は、特に限定されないが、好ましくは、 20〜200nmである。
[0112] 有機半導体層は、発光層への正孔注入又は電子注入を助ける層であって、 10_1Q S/cm以上の導電率を有するものが好適である。このような有機半導体層の材料と しては、含チォフェンオリゴマーゃ特開平 8— 193191号公報に記載の含ァリールァ ミンオリゴマー等の導電性オリゴマー、含ァリールァミンデンドリマー等の導電性デン ドリマー等を用いることができる。有機半導体層の膜厚は、特に限定されないが、好 ましくは、 10—1 , 000腹である。
[0113] (2)第二の有機層
陰極と第 2発光層の間に、第二の有機層として、電子注入層又は電子輸送層等を 設けること力 Sできる。電子注入層、輸送層は発光層への電子の注入を助ける層であ つて、電子移動度が大きい。電子輸送層は数 nm〜数 πιの膜厚で適宜選ばれるが 、特に膜厚が厚いとき、電圧上昇を避けるために、 104〜; 106V/cmの電界印加時 に電子移動度が少なくとも 10_5cm2/Vs以上であることが望ましい。
電子注入層、輸送層に用いられる材料としては、 8—ヒドロキシキノリン、及びその誘 導体の金属錯体又は含窒素複素環を有する化合物が好適である。
[0114] 上記 8—ヒドロキシキノリン又はその誘導体の金属錯体の具体例としては、ォキシン
(一般に 8—キノリノール又は 8—ヒドロキシキノリン)のキレートを含む金属キレートォ キシノイド化合物が挙げられる。例えば中心金属として A1を有する Alqを電子注入層 、輸送層として用いること力でさる。
一方ォキサジァゾール誘導体としては、以下の式で表される電子伝達化合物が挙 げられる。
[0115] [化 28] N-N
Ar321- -Ar322
O
N-N N-N
O O
N-N N-N
Ar326^ -Ar327-0-Ar328 -Ar329
O O
(式中 Ar321, Ar322, Ar323, Ar325, Ar326, Ar329はそれぞれ置換もしくは無置換のァ リール基を示し、それぞれ互いに同一であっても異なっていてもよい。また Ar324, Ar; 27, Ar328は置換もしくは無置換のァリーレン基を示し、それぞれ同一であっても異な つていてもよい)
[0116] ここでァリール基としてはフエニル基、ビフエ二ル基、アントラニル基、ペリレニル基、 ピレニル基が挙げられる。またァリーレン基としてはフエ二レン基、ナフチレン基、ビフ ェニレン基、アントラニレン基、ペリレニレン基、ピレニレン基等が挙げられる。また置 換基としては炭素数 1〜 10のアルキル基、炭素数;!〜 10のアルコキシ基又はシァノ 基等が挙げられる。この電子伝達化合物は薄膜形成性のものが好まし!/、。
上記電子伝達性化合物の具体例としては下記のものを挙げることができる。
[0117] [化 29]
Figure imgf000051_0001
Meはメチル基、 Buはブチル基を表す。
下記式で表される含窒素複素環誘導体
[化 30]
Figure imgf000052_0001
(式中、 Addl〜Adddは、窒素原子又は炭素原子である。
R331及び R332は、置換もしくは無置換の炭素数 6〜60のァリール基、置換もしくは 無置換の炭素数 3〜60のへテロアリール基、炭素数 1〜20のアルキル基、炭素数 1 〜20のハロアルキル基又は炭素数 1〜20のアルコキシ基であり、 nは 0から 5の整数 であり、 nが 2以上の整数であるとき、複数の R331は、互いに同一又は異なっていても よい。
また、隣接する複数の R331基同士で互いに結合して、置換又は未置換の炭素環式 脂肪族環、あるいは、置換又は未置換の炭素環式芳香族環を形成していてもよい。
Ar331は、置換もしくは無置換の炭素数 6〜60のァリール基、又は置換もしくは無置 換の炭素数 3〜60のへテロアリール基である。
Ar331は、置換もしくは無置換の炭素数 6〜60のァリーレン基、又は置換もしくは無 置換の炭素数 3〜60のへテロアリーレン基である。
Ar332は、水素原子、炭素数 1〜20のアルキル基、炭素数 1〜20のハロアルキル基 、炭素数 1〜20のアルコキシ基、置換もしくは無置換の炭素数 6〜60のァリール基、 又は置換もしくは無置換の炭素数 3〜60のへテロアリール基である。
ただし、
Figure imgf000052_0002
Ar332のいずれか一方は、置換もしくは無置換の炭素数 10〜60の 縮合環基、又は置換もしくは無置換の炭素数 3〜60のへテロ縮合環基である。 VJ L ^及び は、それぞれ単結合、置換もしくは無置換の炭素数 6〜60の縮 合環、置換もしくは無置換の炭素数 3〜60のへテロ縮合環又は置換もしくは無置換 のフルォレニレン基である。 )
特願 2003— 004193号に示されて!/、る下記式で示される含窒素複素環誘導体
[化 31]
H A r— L 3 4 1— A r 3 4 1— A r 3 4 2
(式中、 HArは、置換もしくは無置換の炭素数 3〜40の含窒素複素環であり、
L341は、単結合、置換もしくは無置換の炭素数 6〜60のァリーレン基、置換もしくは 無置換の炭素数 3〜60のへテロアリーレン基又は置換もしくは無置換のフルォレニ レン基であり、
Ar341は、置換もしくは無置換の炭素数 6〜60の 2価の芳香族炭化水素基であり、 Ar342は、置換もしくは無置換の炭素数 6〜60のァリール基又は置換もしくは無置 換の炭素数 3〜60のへテロアリール基である。 )
特開平 09— 087616に示されている下記式で表されるシラシクロペンタジェン誘導
[化 32]
Figure imgf000053_0001
(式中、 X ^及び Υ ^は、それぞれ独立に炭素数 1から 6までの飽和若しくは不飽和 の炭化水素基、アルコキシ基、アルケニルォキシ基、アルキニルォキシ基、ヒドロキシ 基、置換若しくは無置換のァリール基、置換若しくは無置換のへテロ環又は X351と Υ3 51が結合して飽和又は不飽和の環を形成した構造であり、 R351〜R354は、それぞれ 独立に水素、ハロゲン、置換もしくは無置換の炭素数 1から 6までのアルキル基、アル コキシ基、ァリールォキシ基、パーフルォロアルキル基、パーフルォロアルコキシ基、 アミノ基、アルキルカルボニル基、ァリールカルボニル基、アルコキシカルボニル基、 ァリールォキシカルボニル基、ァゾ基、アルキルカルボニルォキシ基、ァリール力ノレ ボニルォキシ基、アルコキシカルボニルォキシ基、ァリールォキシカルボニルォキシ 基、スルフィエル基、スルフォニル基、スルファニル基、シリル基、力ルバモイル基、ァ リーノレ基、ヘテロ環基、アルケニル基、アルキニル基、ニトロ基、ホノレミノレ基、ニトロソ 基、ホルミルォキシ基、イソシァノ基、シァネート基、イソシァネート基、チオシァネート 基、イソチオシァネート基もしくはシァノ基又は隣接した場合には置換若しくは無置 換の環が縮合した構造である。 )
特開平 09— 194487に示されている下記式で表されるシラシクロペンタジェン誘導
[化 33]
Figure imgf000054_0001
(式中、 X361及び Υ361は、それぞれ独立に炭素数 1から 6までの飽和もしくは不飽和 の炭化水素基、アルコキシ基、アルケニルォキシ基、アルキニルォキシ基、置換もし くは無置換のァリール基、置換もしくは無置換のへテロ環又は X361と Υ361が結合して 飽和もしくは不飽和の環を形成した構造であり、 R361〜R364は、それぞれ独立に水素 、ハロゲン、置換もしくは無置換の炭素数 1から 6までのアルキル基、アルコキシ基、 ァリールォキシ基、パーフルォロアルキル基、パーフルォロアルコキシ基、アミノ基、 アルキルカルボニル基、ァリールカルボニル基、アルコキシカルボニル基、ァリーノレ ォキシカルボニル基、ァゾ基、アルキルカルボニルォキシ基、ァリールカルボニルォ キシ基、アルコキシカルボニルォキシ基、ァリールォキシカルボニルォキシ基、スルフ ィニノレ基、スルフォニル基、スルファニル基、シリル基、力ルバモイル基、ァリール基、 ヘテロ環基、アルケニル基、アルキニル基、ニトロ基、ホノレミノレ基、ニトロソ基、ホルミ ルォキシ基、イソシァノ基、シァネート基、イソシァネート基、チオシァネート基、イソチ オシァネート基、もしくはシァノ基又は隣接した場合には置換もしくは無置換の環が 縮合した構造である(但し、 R361及び R364がフエニル基の場合、 X361及び Y361は、ァ ルキル基及びフエニル基ではなぐ R361及び R364がチェニル基の場合、 X361及び Y36 1は、一価炭化水素基を、 R362及び R363は、アルキル基、ァリール基、アルケニル基又 は R362と R363が結合して環を形成する脂肪族基を同時に満たさない構造であり、 R361 及び R364がシリル基の場合、 R362、 R363、 X361及び Y361は、それぞれ独立に、炭素数 1から 6の一価炭化水素基又は水素原子でなぐ R361及び R362でベンゼン環が縮合 した構造の場合、 X361及び Υ361は、アルキル基及びフエニル基ではない)。 )
[0122] 特再第 2000— 040586号公報に示されているに示されている下記式で表されるボ ラン誘導体
[化 34]
Figure imgf000055_0001
(式中、 Rd"〜R °及び Zd "は、それぞれ独立に、水素原子、飽和もしくは不飽和の 炭化水素基、芳香族基、ヘテロ環基、置換アミノ基、置換ボリル基、アルコキシ基又 はァリールォキシ基を示し、 χ371、 Y371及び z371は、それぞれ独立に、飽和もしくは不 飽和の炭化水素基、芳香族基、ヘテロ環基、置換アミノ基、アルコキシ基又はァリー ノレォキシ基を示し、 Z371と Z372の置換基は相互に結合して縮合環を形成してもよぐ n は 1〜3の整数を示し、 nが 2以上の場合、 Z371は異なってもよい。但し、 nが 1、 X371、 Y371及び R372がメチル基であって、 R378が水素原子又は置換ボリル基の場合、及び n 力 ¾で Z371がメチル基の場合を含まない。 )
[0123] 特開平 10— 088121に示されている下記式で示される化合物
[化 35]
Figure imgf000056_0001
(式中、 Q381及び Q382は、それぞれ独立に、下記式で示される配位子を表し、 L381は 、ハロゲン原子、置換もしくは未置換のアルキル基、置換もしくは未置換のシクロアル キル基、置換もしくは未置換のァリール基、置換もしくは未置換の複素環基、 -OR39 ^R391は水素原子、置換もしくは未置換のアルキル基、置換もしくは未置換のシクロ アルキル基、置換もしくは未置換のァリール基又は置換もしくは未置換の複素環基 である。)又は— O— Ga— Q391 (Q392) (Q391及び Q392は、 Q381及び Q382と同じ意味を 表す。)で示される配位子を表す。 )
[0124] [化 36]
。,ヽ
I \
\ N \ , ノ'
、A40 ー/
(式中、環 A4()1及び A4°2は、互いに結合した置換もしくは未置換のァリール環又は複 素環構造である。 )
[0125] 上記式の配位子を形成する環 A4()1及び A4°2の置換基の具体的な例を挙げると、塩 素、臭素、ヨウ素、フッ素のハロゲン原子、メチル基、ェチル基、プロピル基、ブチル 基、 sec ブチル基、 tert ブチル基、ペンチル基、へキシル基、ヘプチル基、オタ チル基、ステアリル基、トリクロロメチル基等の置換もしくは未置換のアルキル基、フエ 二ノレ基、ナフチル基、 3—メチルフエニル基、 3—メトキシフエ二ル基、 3—フルオロフ ェニノレ基、 3—トリクロロメチルフエニル基、 3—トリフルォロメチルフエニル基、 3—二ト 口フエニル基等の置換もしくは未置換のァリール基、メトキシ基、 n—ブトキシ基、 tert ブトキシ基、トリクロロメトキシ基、トリフルォロエトキシ基、ペンタフルォロプロポキシ 基、 2, 2, 3, 3—テ卜ラフノレ才口プロポキシ基、 1 , 1 , 1 , 3, 3, 3—へキサフノレ才ロー 2—プロポキシ基、 6 - (パーフルォロェチル)へキシルォキシ基等の置換もしくは未 置換のアルコキシ基、フエノキシ基、 ρ—二トロフエノキシ基、 p— tert—ブチルフエノ キシ基、 3—フルオロフエノキシ基、ペンタフルオロフェニル基、 3—トリフルォロメチル フエノキシ基等の置換もしくは未置換のァリールォキシ基、メチルチオ基、ェチルチ ォ基、 tert—ブチルチオ基、へキシルチオ基、ォクチルチオ基、トリフルォロメチルチ ォ基等の置換もしくは未置換のアルキルチオ基、フエ二ルチオ基、 p—二トロフエニル チォ基、 ptert—ブチルフエ二ルチオ基、 3—フルオロフェニルチオ基、ペンタフルォ 口フエ二ルチオ基、 3—トリフルォロメチルフエ二ルチオ基等の置換もしくは未置換の ァリールチオ基、シァノ基、ニトロ基、アミノ基、メチルァミノ基、ジェチルァミノ基、ェ チノレアミノ基、ジェチルァミノ基、ジプロピルアミノ基、ジブチルァミノ基、ジフエニルァ ミノ基等のモノ又はジ置換アミノ基、ビス(ァセトキシメチル)アミノ基、ビス(ァセトキシ ェチル)アミノ基、ビスァセトキシプロピル)アミノ基、ビス(ァセトキシブチル)アミノ基 等のァシルァミノ基、水酸基、シロキシ基、ァシル基、力ルバモイル基、メチルカルバ モイル基、ジメチルカルバモイル基、ェチルカルバモイル基、ジェチルカルバモイル 基、プロィピルカルバモイル基、ブチルカルバモイル基、フエ二ルカルバモイル基等 の置換もしくは未置換の力ルバモイル基、カルボン酸基、スルフォン酸基、イミド基、 シクロペンタン基、シクロへキシル基等のシクロアルキル基、フエニル基、ナフチル基 、ビフエ二ル基、アントラニル基、フエナントリル基、フルォレニル基、ピレニル基等の ァリール基、ピリジニル基、ピラジュル基、ピリミジニル基、ピリダジニル基、トリアジ二 ル基、インドリニル基、キノリニル基、アタリジニル基、ピロリジニル基、ジォキサニル基 、ピペリジニル基、モルフオリジニル基、ピペラジニル基、カルバゾリル基、フラニル基 、チオフェニル基、ォキサゾリル基、ォキサジァゾリル基、ベンゾォキサゾリル基、チア ゾリル基、チアジアゾリル基、ベンゾチアゾリル基、トリァゾリル基、イミダゾリル基、ベ ンゾイミダゾリル基等の複素環基等がある。また、以上の置換基同士が結合してさら なる 6員ァリール環もしくは複素環を形成してもよい。
電子注入層又は電子輸送層の膜厚は、特に限定されないが、好ましくは、;!〜 100 nmで ¾)·ο。 [0127] (3)酸化剤
陽極に最も近い有機層である第一発光層又は第一の有機層力 酸化剤を含有し ていることが好ましい。好ましい酸化剤は、電子吸引性又は電子ァクセプターである 。電子吸引性又は電子ァクセプターは、易還元性の有機化合物である。
化合物の還元しやすさは、還元電位で測定することができる。本発明では飽和カロ メル(SCE)電極を参照電極とした還元電位において、 0. 8V以上が好ましぐ特 に好ましくはテトラシァノキノジメタン (TCNQ)の還元電位 (約 0V)より大きな値を持 つ化合物が好ましい。
[0128] 易還元性の有機化合物として、好ましくは電子吸引性の置換基を有する有機化合 物である。具体的には、キノイド誘導体、ピラジン誘導体、ァリールボラン誘導体、イミ ド誘導体等である。キノイド誘導体には、キノジメタン誘導体、チォピランジオキシド誘 導体、チォキサンテンジォキシド誘導体及びキノン誘導体等が含まれる。
[0129] 例えば、キノイド誘導体として、好ましくは、下記式(la)〜(; lh)に示される化合物 力 S挙げられる。より好ましくは、 (la) , (lb)に示される化合物である。
[化 37]
Figure imgf000059_0001
Figure imgf000059_0002
Figure imgf000059_0003
( lh)
[0130] 式(la)〜(; lh)において、 1〜!^48は、それぞれ水素、ハロゲン、フルォロアルキル 基、シァノ基、アルコキシ基、アルキル基又はァリール基である。好ましくは、水素、シ ァノ基である。
[0131] I^ R48のハロゲンとして、フッ素、塩素が好ましい。
1〜!^48のフルォロアルキル基として、トリフルォロメチル基、ペンタフルォロェチル 基が好ましい。
Ri R48のアルコキシル基として、メトキシ基、エトキシ基、 iso プロポキシ基、 tert ブトキシ基が好ましい。
1〜!^48のアルキル基として、メチル基、ェチル基、プロピル基、 iso プロピル基、 t ert ブチル基、シクロへキシル基が好ましい。
Ri R48のァリール基として、フエニル基、ナフチル基が好ましい。 [0132] 式(la)〜(; lh)において、 Xは電子吸引基であり、下記式 〜(p)の構造のいず れかである。好ましくは、 、(k)、(1)の構造である。
[化 38]
0 NC CN CN NC CF3 NC^COOR49 R50OOC ^COOR51 NC. ,R52 l! T » T T T T
G) (k) (I) (m) (n) (o) (p)
(式中、 R49〜R52は、それぞれ水素、フルォロアルキル基、アルキル基、ァリール基 又は複素環であり、 R5°と R51が環を形成してもよい。 )
[0133] R49〜R52のフルォロアルキル基、アルキル基、ァリール基は、!^〜 48と同様である
[0134] R49〜R の複素環として、下記式に示す置換基が好まし!/、。
[化 39]
Figure imgf000060_0001
[0135] RbU1が環を形成する場合、 Xは、好ましくは、下記式に示す置換基である。
[化 40]
Figure imgf000060_0002
(式中、 R51' , R52は、それぞれメチル基、ェチル基、プロピル基、 tert ブチル基で ある。リ
[0136] 式(la)〜(; lh)において、 Yは、 N =、又は CH =である。
[0137] キノイド誘導体の具体例としては、以下の化合物が挙げられる。
[化 41] 33 /、
Figure imgf000061_0001
ァリールボラン誘導体として、下記式に示される化合物が挙げられる。
[化 42]
Β Ar32
( 2 a 式(2a)において、 Ar 〜Ar は、それぞれ電子吸引性基を有するァリール基又は
31 33
複素環である。
Ar 〜Ar が示す電子吸引性基を有するァリール基として、ペンタフルオロフェニ ル基ヘプタフルォロナフチル基、ペンタフルオロフェニル基が好まし!/、。
Ar 〜Ar が示す電子吸引性基を有する複素環として、キノリン環、キノキサリン環
31 33
、ピリジン環、ピラジン環等が好ましい。
ァリールボラン誘導体の具体例としては、以下の化合物が挙げられる。
[化 43]
Figure imgf000062_0001
[0141] ァリールボラン誘導体として、好ましくは、少なくとも一個のフッ素をァリールへの置 換基として有する化合物であり、特に好ましくは、トリス /3—(ペンタフルォロナフチル )ボラン(PNB)である。
[0142] チォピランジオキシド誘導体として、下記式(3a)に示される化合物が、チォキサン テンジォキシド誘導体として、下記式(3b)に示される化合物が、それぞれ挙げられる
[化 44]
Figure imgf000062_0002
(3a) (3b)
[0143] 式(3a)及び式(3b)において、!Td〜Rb4は、それぞれ水素、ハロゲン、フルォロア ルキル基、シァノ基、アルキル基又はァリール基である。好ましくは、水素、シァノ基 である。
式(3a)及び式(3b)において、 Xは電子吸引基を示し式(la)〜(; li)の Xと同じであ る。好ましくは、(i)、 、(k)の構造である。
R53〜R64が示すハロゲン、フルォロアルキル基、アルキル基及びァリール基は!^1〜 R4Sと同様である。
[0144] 式(3a)に示されるチォピランジオキシド誘導体、式(3b)に示されるチォキサンテン ジォキシド誘導体の具体例を以下に示す。
[化 45]
Figure imgf000063_0001
(式中、 tBuは t—ブチル基である。)
[0145] イミド誘導体として、好ましくは、 :ド化合物及びピロ メリット酸ジイミド化合物である。
[0146] さらに、下記式の化合物が挙げられる c
[化 46]
Figure imgf000063_0002
[0147] (4)還元剤
陰極に最も近い有機層である発光層又は第二の有機層が、還元剤を含有しているこ とが好ましい。還元剤とは、電子輸送性化合物を還元ができる物質と定義される。従 つて、一定の還元性を有するものであれば、様々なものが用いられ、例えば、アル力 リ金属、アルカリ土類金属、希土類金属、アルカリ金属の酸化物、アルカリ金属のハ ロゲン化物、アルカリ土類金属の酸化物、アルカリ土類金属のハロゲン化物、希土類 金属の酸化物又は希土類金属のハロゲン化物、アルカリ金属の有機錯体、アルカリ 土類金属の有機錯体、希土類金属の有機錯体力 なる群力 選択される少なくとも 一つの物質を好適に使用することができる。
[0148] また、より具体的に、好ましい還元剤としては、 Na (仕事関数: 2. 36eV)、 K (仕事 関数: 2. 28eV)、Rb (仕事関数: 2. 16eV)及び Cs (仕事関数: 1. 95eV)からなる 群から選択される少なくとも一つのアルカリ金属や、 Ca (仕事関数: 2· 9eV)、 Sr (仕 事関数: 2. 0〜2. 5eV)、及び Ba (仕事関数: 2. 52eV)からなる群から選択される 少なくとも一つのアルカリ土類金属が挙げられる仕事関数が 2. 9eV以下のものが特 に好ましい。これらのうち、より好ましい還元剤は、 K、 Rb及び Csからなる群から選択 される少なくとも一つのアルカリ金属であり、さらに好ましくは、 Rb又は Csであり、最も 好ましいものは、 Csである。これらのアルカリ金属は、特に還元能力が高ぐ電子注 入域への比較的少量の添加により、有機 EL素子における発光輝度の向上や長寿命 化が図られる。また、仕事関数が 2. 9eV以下の還元剤として、これら 2種以上のアル カリ金属の組合わせも好ましぐ特に、 Csを含んだ組み合わせ、例えば、 Csと Na、 C sと K、 Csと Rbあるいは Csと Naと Κとの組み合わせであることが好ましい。 Csを組み 合わせて含むことにより、還元能力を効率的に発揮することができ、電子注入域への 添加により、有機 EL素子における発光輝度の向上や長寿命化が図られる。
[0149] 本発明においては、陰極と有機層の間に絶縁体や半導体で構成される電子注入 層をさらに設けてもよい。これにより、電流のリークを有効に防止して、電子注入性を 向上させること力 Sできる。このような絶縁体としては、アルカリ金属カルコゲナイド、ァ ルカリ土類金属カルコゲナイド、アルカリ金属のハロゲン化物及びアルカリ土類金属 のハロゲン化物からなる群から選択される少なくとも一つの金属化合物を使用するの が好ましい。電子注入層がこれらのアルカリ金属カルコゲナイド等で構成されていれ ば、電子注入性をさらに向上させることができる点で好ましい。
具体的に、好ましいアルカリ金属カルコゲナイドとしては、例えば、 Li 0、 LiO、 Na
2 2
S、 Na Se及び NaOが挙げられ、好ましいアルカリ土類金属カルコゲナイドとしては、
2
例えば、 CaO、 BaO、 SrO、 BeO、 BaS、及び CaSeが挙げられる。また、好ましいァ ルカリ金属のハロゲン化物としては、例えば、 LiF、 NaF、 KF、 LiCl、 KCl及び NaCl 等が挙げられる。また、好ましいアルカリ土類金属のハロゲン化物としては、例えば、 CaF 、 BaF、 SrF、 MgF及び BeFといったフッ化物や、フッ化物以外のハロゲン
2 2 2 2 2
化物が挙げられる。
[0150] また、電子輸送層を構成する半導体としては、 Ba、 Ca、 Sr、 Yb、 Al、 Ga、 In、 Li、 Na、 Cd、 Mg、 Si、 Ta、 Sb及び Znの少なくとも一つの元素を含む酸化物、窒化物又 は酸化窒化物等の一種単独又は二種以上の組み合わせが挙げられる。また、電子 輸送層を構成する無機化合物が、微結晶又は非晶質の絶縁性薄膜であることが好 ましい。電子輸送層がこれらの絶縁性薄膜で構成されていれば、より均質な薄膜が 形成されるために、ダークスポット等の画素欠陥を減少させることができる。尚、このよ うな無機化合物としては、上述したアルカリ金属カルコゲナイド、アルカリ土類金属力 ルコゲナイド、アルカリ金属のハロゲン化物及びアルカリ土類金属のハロゲン化物等 が挙げられる。
[0151] 本発明の有機 EL素子にカラーフィルタを組み合わせることにより、フルカラー発光 装置を作製することができる。
例えば、本発明の有機 EL素子からなり、それぞれ独立に駆動する第 1、第 2及び 第 3の有機 EL素子部を設け、各素子部に透過光の異なるカラーフィルタ(例えば、 赤、青、緑の各カラーフィルタ)を組み合わせることでフルカラー発光装置が得られる 。カラーフィルタは、各素子部からの光を受光でき、素子部よりも光取り出し側の位置 に形成される。例えば、光を支持基板側から取り出すボトムェミッション型の素子の場 合、素子の最下層である透明電極層と支持基板の間に形成すればよい。
[0152] カラーフィルタとしては、例えば、下記の色素のみ、又は色素をバインダー樹脂中 に溶解あるいは分散させた固体状態のものを使用できる。
赤色 (R)色素:ペリレン系顔料、レーキ顔料、ァゾ系顔料等。
緑色(G)色素:ハロゲン多置換フタロシアニン系顔料、ハロゲン多置換銅フタロシア ニン系顔料、トリフェルメタン系塩基性染料等。
青色(B)色素:銅フタロシアニン系顔料、インダンスロン系顔料、インドフエノール系 顔料、シァニン系顔料等。
[0153] ノインダー樹脂は、透明な(可視光透過率 50%以上)材料が好ましい。例えば、ポ リメチルメタタリレート、ポリアタリレート、ポリカーボネート、ポリビュルアルコール、ポリ ビュルピロリドン、ヒドロキシェチルセルロース、カルボキシメチルセルロース等の透明 樹脂(高分子)や、フォトリソグラフィ一法が適用できる感光性樹脂として、アクリル酸 系、メタクリル酸系等の反応性ビュル基を有する光硬化型レジスト材料が挙げられる 。また、印刷法を用いる場合には、ポリ塩化ビュル樹脂、メラミン樹脂、フエノール樹 脂等の透明な樹脂を用いた印刷インキ (メジゥム)が選ばれる。
[0154] カラーフィルタが主に色素からなる場合は、所望のカラーフィルタパターンのマスク を介して真空蒸着又はスパッタリング法で成膜され、一方、色素とバインダー樹脂か らなる場合は、色素と上記樹脂及びレジストを混合、分散又は可溶化させ、スピンコ ート、ロールコート、キャスト法等の方法で製膜し、フォトリソグラフィ一法で所望のカラ 一フィルタパターンでパターユングしたり、印刷等の方法で所望のカラーフィルタのパ ターンでパターユングするのが一般的である。
[0155] それぞれのカラーフィルタの膜厚と透過率は、下記とすることが好ましい。
R:膜厚 0· 5〜5· O m (透過率 50%以上/ 610nm) ,
G :膜厚 0· 5〜5· O m (透過率 50%以上/ 545nm) ,
B :膜厚 0· 2〜5· O ^ m (透過率 50%以上/ 460nm)。
[0156] 尚、有機 EL素子部が環境やカラーフィルタに含まれる酸素、水分、その他揮発成 分により劣化することを防止するため、有機 EL素子部とカラーフィルタの間に封止層 等を設けてもよい。封止層の形成位置は、例えば、透明電極層とカラーフィルタの間 が挙げられる。
封止層の具体例としては、 SiOxNy、 Al〇xNy、 SiAlOxNy等の透明無機化合物層 、これらの透明無機化合物層と透明樹脂、あるいは封止液と積層したもの等を用いる こと力 Sでさる。
また、各カラーフィルタの間等に、コントラスト比向上のためブラックマトリックスを用 いること力 Sでさる。
[実施例]
[0157] 以下に実施例及び比較例に使用した化合物を示す。
[化 47]
Figure imgf000067_0001
9T6S90/.00Zdf/X3d 99 εζ9ε蘭 ooz OA
Figure imgf000068_0001
Figure imgf000068_0002
Figure imgf000068_0003
Figure imgf000068_0004
化合物の特性の測定方法は以下の通りである。
(l)Tgの測定方法
Tgはパーキンエルマ一社 DSC「Pyrisl」を使用し、下記測定条件での 2回目のヒ 一ティングの直を用いた。
[測定条件] (i) 30°Cから MAX温度へ加熱(10°C/分)
(ii) MAX温度で 3分間保持
(iii) MAX温度から 50°Cへ冷却(200°C/分)
(iv)— 50°Cで 10分間保持
(V) 50°Cから MAX温度へ加熱(10°C/分)
MAX温度は Tg— DTAでの融点プラス約 30°C、分解温度が近!/、場合はそれに応 じて修正した。
[0159] (2)駆動電圧
電流密度が 10mA/cm2となるように ITOと A1間に通電したときの電圧(単位: V)を 計測した。
[0160] (3)発光効率
電流密度 1 OmA/cm2印加時の ELスペクトルを分光放射輝度計 CS 1000A (コニ 力ミノルタ社製)で測定し、発光効率(単位: cd/A)を算出した。
[0161] (4) CIE1931色度
電流密度 1 OmA/cm2印加時の ELスペクトルを分光放射輝度計 CS 1000A (コニ 力ミノルタ社製)で測定し、 CIE1931色度 (x、 y)を計測した。
[0162] (5)外部量子収率
電流密度 1 OmA/cm2印加時の ELスペクトルを分光放射輝度計 CS 1000A (コニ 力ミノルタ社製)で測定し、下記式にて算出した。
EQE (O/0, (分光放射強度 ÷光子のエネルギー)を 光子の波長で種分し更 に立体角で積分 電流密度 ÷電子の素電荷
[0163] (6)寿命測定
輝度 5000cd/m2時の素子の電流密度を測定した。その電流密度で連続駆動を 行い、輝度の経時変化を分光放射輝度計 CS1000A (コユカミノルタ社製)にて計測 した。測定開始から 400時間後の初期輝度 5000cd/m2に対する輝度保持率を測 定した。
[0164] 実施例 1 (有機 EL素子の形成)
25mm X 75mm X l . 1mm厚の ITO透明電極(陽極)付きガラス基板(ジォマティ ック社製)(ΙΤΟの膜厚 130nm)をイソプロピルアルコール中で超音波洗浄を 5分間 行なった後、 UVオゾン洗浄を 30分間行なった。洗浄後の透明電極ライン付きガラス 基板を真空蒸着装置の基板ホルダーに装着し、まず透明電極ラインが形成されてい る側の面上に前記透明電極を覆うようにして膜厚 60nmの HI膜を成膜した。この HI 膜は、正孔注入層として機能する。 HI膜の成膜に続けて、膜厚 15nmの A— 11膜を 成膜した。この A— 11膜は正孔輸送層として機能する。
[0165] さらに、 A— 11膜の成膜に続けて、膜厚 5nmにて RHと RDを、 RDが 0· 5重量%と なるように、蒸着し成膜し、第 1発光層とした。この第 1発光層は赤色発光する。次い で、電荷障壁層として、膜厚 5nmの A— 11膜を成膜した。電荷障壁層上に BHと BD を、 BDが 7. 5重量%となるように蒸着し成膜し、膜厚が 40nmの青色発光層(第 2発 光層)とした。この膜上に、電子輸送層として膜厚 20nmのトリス(8—キノリノール)ァ ノレミニゥム膜 (Alq膜)を成膜した。この後、電子注入層として LiF膜を 1. 6nm形成し
3
た。この LiF膜上に金属 A1を 150nm蒸着させ金属陰極を形成し有機 EL発光素子を 形成した。
[0166] (有機 EL素子の評価)
得られた有機 EL発光装置の特性につ!/、て測定を行った。結果を表 1に示す。
[0167] 比較例 1
実施例 1において、電荷障壁層として化合物 A— 11の代わりに、厚さ 5nmにて NP D膜を成膜した他は実施例 1と同様にして有機 EL素子を作製した。測定結果を表 1 に示す。
[0168] 比較例 2
実施例 1において、電荷障壁層として化合物 A— 11の代わりに、厚さ 5nmにて CB P膜を成膜した他は実施例 1と同様にして有機 EL素子を作製した。測定結果を表 1 に示す。
[0169] 実施例 2
実施例 1において、第 2発光層を膜厚 lOnmにて形成した後、第 3発光層として、膜 厚 30nmにて BHと GDを、 GDが 10重量%となるように、蒸着し成膜し、緑系発光層 とした後、 Alq層(電子輸送層)を形成した他は実施例 1と同様にして有機 EL発光素
3
子を形成した。得られた有機 EL発光装置について、実施例 1と同様に測定を行った 。測定結果を表 1に示す。
[0170] 比較例 3
実施例 2において、電荷障壁層として A— 11の代わりに、厚さ 5nmにて NPD膜を 成膜した他は実施例 2と同様にして有機 EL発光装置を形成した。得られた有機 EL 発光装置について、実施例 1と同様に測定を行った。測定結果を表 1に示す。
[0171] 比較例 4
実施例 2において、電荷障壁層として A— 11の代わりに、厚さ 5nmにて CBP膜を 成膜した他は実施例 2と同様にして有機 EL発光装置を形成した。得られた有機 EL 発光装置について、実施例 1と同様に測定を行った。測定結果を表 1に示す。
[0172] 実施例 3
実施例 2において、電荷障壁層として A— 11の代わりに、厚さ 5nmにて A—2膜を 成膜した他は実施例 2と同様にして有機 EL発光装置を形成した。得られた有機 EL 発光装置について、実施例 1と同様に測定を行った。測定結果を表 1に示す。
[0173] 実施例 4
実施例 2において、電荷障壁層として A— 11の代わりに、厚さ 5nmにて A— 13膜を 成膜した他は実施例 2と同様にして有機 EL発光装置を形成した。得られた有機 EL 発光装置について、実施例 1と同様に測定を行った。測定結果を表 1に示す。
[0174] 実施例 5
実施例 2において、電荷障壁層として A— 11の代わりに、厚さ 5nmにて A— 17膜を 成膜した他は実施例 2と同様にして有機 EL発光装置を形成した。得られた有機 EL 発光装置について、実施例 1と同様に測定を行った。測定結果を表 1に示す。
[0175] 実施例 6
実施例 2において、電荷障壁層として A— 11の代わりに、厚さ 5nmにて A— 30の 膜を成膜した他は実施例 2と同様にして有機 EL発光装置を形成した。得られた有機 EL発光装置について、実施例 1と同様に測定を行った。測定結果を表 1に示す。 [0176] 実施例 7
実施例 2において、電荷障壁層として A— 11の代わりに、厚さ 5nmにて A— 33の 膜を成膜した他は実施例 2と同様にして有機 EL発光装置を形成した。得られた有機 EL発光装置について、実施例 1と同様に測定を行った。測定結果を表 1に示す。
[0177] 実施例 8
実施例 1にお!/、て、電荷障壁層として A— 11の代わりに、 A— 11と GDを、 GDが 1 0重量%となるように、蒸着し成膜し、第二発光層の厚さを 40nmとした他は、実施例 1と同様にして有機 EL発光素子を形成した。
得られた有機 EL発光装置について、実施例 1と同様に測定を行った。測定結果を 表 1に示す。
[0178] 比較例 5
実施例 8において、電荷障壁層として A— 11 : GDの代わりに、 NPDと GDを、 GD が 10重量%となるように蒸着し成膜した他は、実施例 8と同様にして有機 EL発光素 子を形成した。
得られた有機 EL発光装置について、実施例 1と同様に測定を行った。測定結果を 表 1に示す。
[0179] [表 1]
Figure imgf000073_0001
施例 1では、第 1発光層として赤色発光層と第 2発光層として青色発光層を用い 、その間に電荷障壁層を揷入した素子構成である。実施例 1の電荷障壁層は比較例 1 , 2と同じ芳香族ァミン系化合物を用いている力、実施例 1の A— 11は比較例 1 , 2 の NPD、 CBPよりもガラス転移温度 (Tg)が高い。実施例 1は比較例 1 , 2に比べ、外 部量収率が高ぐかつ良好な白色素子が得ることができた。さらに初期 5000cd/m2 の定電流駆動で 400時間後の輝度保持率が実施例 1で最も高ぐ長寿命となってい
[0181] 実施例 2では、実施例 1に対してさらに第 3発光層として緑色発光層を入れることに より、外部量子収率が高く良好な白色発光を得ることができた。さらに初期 5000cd /m2の定電流駆動で 400時間後の輝度保持率が 96%と高ぐ長寿命となっている。
[0182] 比較例 3、 4では実施例 2の電荷障壁層に Tgが低い NPD、 CBPを用いた素子構 成である。実施例 2に比べ、量子収率、輝度保持率が低ぐ低寿命となっている(図 3 )。
[0183] 実施例 3〜7では、実施例 2と同様に Tgが高い芳香族ァミン化合物を用いていて、 外部量子収率が高く良好な白色発光を得ることができた。さらに初期 5000cd/m2 の定電流駆動で 400時間後の輝度保持率が高ぐ長寿命となっている。
[0184] 実施例 8では、実施例 1に対してさらに電荷障壁層に緑色発光材料をドープするこ とにより、同等の外部量子収率ながら良好な白色発光を得ることができた。
[0185] 比較例 5では、実施例 8の電荷障壁層に Tgが低い NPDを用いた素子構成である。
実施例 8に比べ、量子効率、輝度保持率が低ぐ低寿命となっている。
[0186] 実施例 9
(フルカラー発光装置)
(1)カラーフィルタの形成
112mmX 143mm X l . 1mmの支持基板(OA2ガラス:日本電気硝子社製)上に 、ブラックマトツタス (BM)の材料として V259BK (新日鉄化学社製)をスピンコートし 、 68〃 mX 285〃 m力 S開口した格子状のパターンになるようなフォトマスクを介して紫 外線露光し、 2%炭酸ナトリウム水溶液で現像後、 200°Cでベータして、ブラックマトリ ックス(膜厚 1 · 5 m)のパターンを形成した。
次に、青色カラーフィルタの材料として、 V259B (新日鉄化学社製)をスピンコート し、長方形(100 mライン、 230 mギャップ)のストライプパターンが 320本得られ るようなフォトマスクを介して、 BMに位置合わせして紫外線露光し、 2%炭酸ナトリウ ム水溶液で現像後、 200°Cでベータして、青色カラーフィルタ(膜厚 1. 5 m)のパタ ーン (青色画素に相当 )を形成した。
次に、緑色カラーフィルタの材料として、 V259G (新日鉄化学社製)をスピンコート し、長方形(100 mライン、 230 mギャップ)のストライプパターンが 320本得られ るようなフォトマスクを介して、 BMに位置合わせして紫外線露光し、 2%炭酸ナトリウ ム水溶液で現像後、 200°Cでベータして、青色カラーフィルタに隣接する位置に緑 色カラーフィルタ(膜厚 1 · 5 m)のパターンを形成した。
次に、赤色カラーフィルタの材料として、 CRY— S840B (富士フィルムアーチ製)を スピンコートし、長方形(100〃 mライン、 230〃 mギャップ)のストライプパターンが 32 0本得られるようなフォトマスクを介して、 BMに位置合わせして紫外線露光し、 2%炭 酸ナトリウム水溶液で現像後、 200°Cでベータして、青色カラーフィルタと緑色カラー フィルタの間の位置に赤色カラーフィルタ(膜厚 1. 5 m)のパターンを形成した。 次に、平坦化膜としてアクリル系熱硬化性樹脂 (V259PH:新日鉄化学社製)を先 の基板上にスピンコートし、 180°Cでベータして、平坦化膜 (膜厚 5 πι)を形成した。
[0187] (2)有機 EL素子の形成
上記の平坦化膜の上に、 ΙΤΟ (インジウム錫酸化物)をスパッタリングにより 130nm 膜厚で成膜した。
次に、 ITO膜上にポジ型レジスト(HPR204 :富士オーリン製)をスピンコートし、陰 極の取り出し部と、 90〃 mライン、 20〃 mギャップのストライプ状のパターンになるよう なフォトマスクを介して紫外線露光し、テトラメチルアンモニゥムヒドロキシドの現像液 で現像し、 130°Cでベータし、レジストパターンを得た。
次に、 ITOエツチャントにて、露出している部分の ITOをエッチングした。次に、レジ ストを、エタノールアミンを主成分とする剥離液 (N303 :長瀬産業製)で処理して、青 色カラーフィルタ、緑色カラーフィルタ、赤色カラーフィルタ上に相当する位置に、 IT Oパターン(下部電極:陽極、ライン数 960本)を得た。
[0188] 次に、第一の層間絶縁膜として、ネガ型レジスト (V259PA :新日鉄化学社製)をス ピンコートし、フォトマスクを介して、紫外線露光し、テトラメチルアンモニゥムヒドロキ シドの現像液で現像した。次に、 180°Cでベータして、 ITOのエッジを被覆した ITO の開口部が 70 m X 290 m)格子状パターン層間絶縁膜を形成した。
次に、第二の層間絶縁膜(隔壁)として、ネガ型レジスト (ZPN1100 :日本ゼオン製 )をスピンコートし、 20 μ mライン、 310〃 mギャップのストライプパターンになるような フォトマスクを介して紫外線露光後、さらに露光後ベータを行なった。次に、テトラメチ ルアンモニゥムヒドロキシドの現像液でネガレジストを現像し、 ITOストライプに直交し た有機膜の第二の層間絶縁膜 (隔壁)を形成した。
このようにして得られた基板を純水及びイソプロピルアルコール中で超音波洗浄し、 エアブローにて乾燥後、 UV洗浄した。
[0189] その後、有機層(正孔注入層〜電子注入層まで)は、カラーフィルタを覆う範囲にマ スク蒸着し、陰極はさらに、先に形成した ITO取り出し電極に接続できるようなマスク 蒸着した。尚、有機層及び陰極は実施例 2と同様にして形成した。
陰極(上部電極)は、先に基板上に作製した隔壁により、自動的に分離され、下部 電極と交差したパターン (ライン数 240本)となって!/、た。
基板上に有機 EL素子を作製後、乾燥窒素を流通したドライボックスに基板を大気 に触れないように移動し、そのドライボックス内にて、封止基板の青板ガラスで表示部 を被覆し、表示部周辺部はカチオン硬化性の接着剤 (TB3102:スリーボンド製)で 光硬化させて封止した。
[0190] このようにして、下部電極と上部電極が XYマトリックスを形成してなるフルカラー発 光装置を作製し、その下部電極と上部電極に DC電圧を印加(下部電極:(+ )、上部 電極:(一))したところ、各電極の交差部分 (画素)が発光した。
[0191] (3)フルカラー発光装置の特性評価
(青色性能)
青色カラーフィルタに対応する下部電極と上部透明電極との間に、 7. 25Vの直流 電圧を印加したところ、青く発光した。分光放射輝度計 CS— 1000 (ミノルタ製)にて 測定したところ、輝度 31cd/m2、色度(0. 124, 0. 117)であった。両電極間に流 れる電流値を測定し、発光効率を算出したところ、 1. 14cd/Aであった。 (緑色性能)
緑色カラーフィルタに対応する下部電極と上部透明電極との間に、 7. 25Vの直流 電圧を印加したところ、緑色に発光した。分光放射輝度計 CS— 1000 (ミノルタ製)に て測定したところ、輝度 250cd/m2、色度(0. 247, 0. 621)であった。両電極間に 流れる電流値を測定し、発光効率を算出したところ、 9. 24cd/Aであった。
(赤色性能)
赤色カラーフィルタに対応する下部電極と上部透明電極との間に、 7. 25Vの直流 電圧を印加したところ、赤色に発光した。分光放射輝度計 CS— 1000 (ミノルタ製)に て測定したところ、輝度 85cd/m2、色度(0. 652, 0. 335)であった。両電極間に 流れる電流値を測定し、発光効率を算出したところ、 3. 15cd/Aであった。
(全面点灯)
全ての下部電極と上部透明電極との間に、 7. 25Vの直流電圧を印加したところ、 白色発光を示した。分光放射輝度計 CS— 1000 (ミノルタ製)にて測定したところ、輝 度 451cd/m2、色度(0. 324, 0. 397)であった。両電極間に流れる電流値を測定 し、発光効率を算出したところ、 4. 51cd/Aであり、非常に高効率であった。
産業上の利用可能性
本発明の有機 EL素子は、各種表示装置、ノ ックライト、カラーフィルタを使用したフ ルカラー表示装置、汎用照明用及び特殊照明用光源等に使用できる。

Claims

請求の範囲
陽極、第 1発光層、電荷障壁層、第 2発光層及び陰極をこの順に積層して含み、前 記電荷障壁層が、ガラス転移温度が 110°Cより大きい下記式(1)で表される芳香族 含む有機エレクト口ルミネッセンス素子。
[化 48] (1)
Figure imgf000078_0001
[式中、 Lは置換もしくは無置換の炭素数 5〜60のァリーレン基又は複素環基よりな る 2価の基であり、 Arは置換もしくは無置換の核原子数 10〜50の置換基又は下記 式(2)で表される置換基であり、 Ar〜Arはそれぞれ置換もしくは無置換の核原子
2 4
数 5〜50の置換基又は下記式(2)で表される置換基を示す。ただし Ar〜Arは縮
1 4 合環ではない。
[化 49]
Figure imgf000078_0002
(式中、 Lは置換もしくは無置換の炭素数 5〜60のァリーレン基又は複素環基よりな
2
る 2価の基であり、 Ar〜Arはそれぞれ置換もしくは無置換の核原子数 5〜50の置
5 6
換基である。ただし Ar〜Arは縮合環ではない。 ) ]
5 6
[2] 前記式(1)において、 L及び L力 ビフエ二レン、ターフェ二レン、フエナントレン又
1 2
は置換又は無置換のフルォレニレンである請求項 1に記載の有機エレクト口ルミネッ センス素子。
[3] 前記式(1)において、 Ar 、ビフエ二ル基、 m—ターフェニル基、又は p—ターフェ ニル基であり、 Ar〜Ar 、フエニル基、ビフエ二ル基、 m—ターフェニル基、又は p
2 6
ターフェニル基である請求項 1又は 2に記載の有機エレクト口ルミネッセンス素子。 [4] 前記式(1)において、 Ar〜Ar 、同一の置換基である請求項;!〜 3のいずれか
1 4
に記載の有機エレクト口ルミネッセンス素子。
[5] 前記式(1)において、 Ar〜Arのうち Ar〜Arが同一の置換基である請求項;!〜
1 4 2 4
3のいずれかに記載の有機エレクト口ルミネッセンス素子。
[6] 前記式(1)において、 Ar〜Arのうち 3つ以上が異なる置換基である請求項 1〜3
1 4
のいずれかに記載の有機エレクト口ルミネッセンス素子。
[7] 前記電荷障壁層に、発光材料を含む請求項 1〜6のいずれかに記載の有機エレク トロルミネッセンス素子。
[8] 前記陽極と前記第 1発光層の間に、第 1発光層と隣接する正孔輸送層を有し、前 記正孔輸送層を形成する材料と前記電荷障壁層を形成する材料が同じ材料である 請求項 1〜7のいずれかに記載の有機エレクト口ルミネッセンス素子。
[9] 前記第 1発光層が赤色発光層、前記第 2発光層が青色発光層である請求項;!〜 8の いずれかに記載の有機エレクト口ルミネッセンス素子。
[10] さらに、前記第 2発光層と前記陰極の間に、第 3発光層を有し、陽極、第 1発光層、 電荷障壁層、第 2発光層、第 3発光層、陰極がこの順に積層されている請求項 1〜9 のいずれかに記載の有機エレクト口ルミネッセンス素子。
[11] 前記第 1発光層が赤色発光層、前記第 2発光層が青色発光層、前記第 3発光層が 緑色発光層である請求項 10に記載の有機エレクト口ルミネッセンス素子。
[12] 前記陽極に近い有機層である第 1発光層又は第一の有機層力 酸化剤を含有して
V、る請求項;!〜 11の!/、ずれかに記載の有機エレクト口ルミネッセンス素子。
[13] 前記陰極に近い有機層である第 2発光層又は第二の有機層が、還元剤を含有して いる請求項 1〜 12のいずれかに記載の有機エレクト口ルミネッセンス素子。
[14] 請求項 1〜 13のいずれかに記載の有機エレクト口ルミネッセンス素子とカラーフィル タを含むフルカラー発光装置。
PCT/JP2007/065916 2006-08-22 2007-08-15 Dispositif électroluminescent organique WO2008023623A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP07792550A EP2061103A1 (en) 2006-08-22 2007-08-15 Organic electroluminescent device
JP2008530877A JPWO2008023623A1 (ja) 2006-08-22 2007-08-15 有機エレクトロルミネッセンス素子

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006-224958 2006-08-22
JP2006224958 2006-08-22
US11/521,317 2006-09-15
US11/521,317 US20080049413A1 (en) 2006-08-22 2006-09-15 Organic electroluminescence device

Publications (1)

Publication Number Publication Date
WO2008023623A1 true WO2008023623A1 (fr) 2008-02-28

Family

ID=39113193

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/065916 WO2008023623A1 (fr) 2006-08-22 2007-08-15 Dispositif électroluminescent organique

Country Status (7)

Country Link
US (1) US20080049413A1 (ja)
EP (1) EP2061103A1 (ja)
JP (1) JPWO2008023623A1 (ja)
KR (1) KR20090042272A (ja)
CN (1) CN101507010A (ja)
TW (1) TW200836383A (ja)
WO (1) WO2008023623A1 (ja)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009272144A (ja) * 2008-05-07 2009-11-19 Seiko Epson Corp 発光素子、表示装置および電子機器
WO2010134350A1 (ja) 2009-05-22 2010-11-25 出光興産株式会社 有機エレクトロルミネッセンス素子
WO2010134352A1 (ja) 2009-05-22 2010-11-25 出光興産株式会社 有機エレクトロルミネッセンス素子
JP2011506617A (ja) * 2007-06-01 2011-03-03 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 緑色発光材料
JP2011108899A (ja) * 2009-11-18 2011-06-02 Seiko Epson Corp 発光素子、発光装置、表示装置および電子機器
WO2011086941A1 (ja) 2010-01-15 2011-07-21 出光興産株式会社 有機エレクトロルミネッセンス素子
WO2011129096A1 (ja) 2010-04-12 2011-10-20 出光興産株式会社 有機エレクトロルミネッセンス素子
WO2012001969A1 (ja) 2010-06-30 2012-01-05 出光興産株式会社 芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子
WO2012029253A1 (ja) 2010-08-31 2012-03-08 出光興産株式会社 含窒素芳香族複素環誘導体及びそれらを用いた有機エレクトロルミネッセンス素子
WO2012049828A1 (ja) 2010-10-12 2012-04-19 出光興産株式会社 芳香族複素環誘導体及びそれらを用いた有機エレクトロルミネッセンス素子
WO2012070234A1 (en) 2010-11-22 2012-05-31 Idemitsu Kosan Co.,Ltd. Organic electroluminescence device
WO2012086170A1 (ja) 2010-12-20 2012-06-28 出光興産株式会社 芳香族複素環誘導体及びそれを用いた有機エレクトロルミネッセンス素子
CN102751449A (zh) * 2012-07-23 2012-10-24 中国科学院长春应用化学研究所 一种有机发光二极管
US8531100B2 (en) 2008-12-22 2013-09-10 E I Du Pont De Nemours And Company Deuterated compounds for luminescent applications
JP5780607B2 (ja) * 2010-05-17 2015-09-16 Necライティング株式会社 照明装置および調光方法
EP3211682A1 (en) 2011-11-22 2017-08-30 Idemitsu Kosan Co., Ltd Aromatic heterocyclic derivative, organic electroluminescence device material and organic electroluminescence device field
US10050209B2 (en) 2015-06-03 2018-08-14 Seiko Epson Corporation Light-emitting element, light-emitting device, authentication device, and electronic apparatus
WO2020183264A1 (ja) * 2019-03-08 2020-09-17 株式会社半導体エネルギー研究所 発光デバイス、発光機器、表示装置、電子機器及び照明装置

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8115378B2 (en) * 2006-12-28 2012-02-14 E. I. Du Pont De Nemours And Company Tetra-substituted chrysenes for luminescent applications
KR20100017934A (ko) * 2007-06-01 2010-02-16 이 아이 듀폰 디 네모아 앤드 캄파니 청색 발광 재료
JP5401448B2 (ja) * 2007-06-01 2014-01-29 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 深青色発光用途のためのクリセン類
JP2011526424A (ja) * 2008-06-26 2011-10-06 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 有機発光ダイオード照明器具
KR101495396B1 (ko) * 2008-11-19 2015-02-24 이 아이 듀폰 디 네모아 앤드 캄파니 청색 또는 녹색 발광 용도를 위한 크라이센 화합물
EP2376593A4 (en) * 2008-12-12 2013-03-06 Du Pont PHOTO-ACTIVE COMPOSITION AND ELECTRONIC DEVICE USING THE COMPOSITION
US8932733B2 (en) * 2008-12-19 2015-01-13 E I Du Pont De Nemours And Company Chrysene derivative host materials
TW201038532A (en) * 2008-12-19 2010-11-01 Du Pont Anthracene compounds for luminescent applications
US8759818B2 (en) 2009-02-27 2014-06-24 E I Du Pont De Nemours And Company Deuterated compounds for electronic applications
JP2010225563A (ja) * 2009-03-25 2010-10-07 Panasonic Electric Works Co Ltd 有機el素子
CN102369255B (zh) * 2009-04-03 2014-08-20 E.I.内穆尔杜邦公司 电活性材料
TWI407831B (zh) * 2009-04-17 2013-09-01 Innolux Corp 影像顯示系統
WO2010135403A2 (en) 2009-05-19 2010-11-25 E. I. Du Pont De Nemours And Company Chrysene compounds for luminescent applications
EP2449054A4 (en) 2009-07-01 2013-05-29 Du Pont CHRYSENE COMPOUNDS FOR LUMINESCENT APPLICATIONS
KR101545774B1 (ko) * 2009-08-13 2015-08-19 이 아이 듀폰 디 네모아 앤드 캄파니 크라이센 유도체 재료
EP2471119A2 (en) * 2009-08-24 2012-07-04 E. I. du Pont de Nemours and Company Organic light-emitting diode luminaires
JP2013502742A (ja) * 2009-08-24 2013-01-24 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 有機発光ダイオード照明器具
EP2471123A2 (en) * 2009-08-24 2012-07-04 E. I. du Pont de Nemours and Company Organic light-emitting diode luminaires
US20110204337A1 (en) * 2009-08-24 2011-08-25 E. I. Du Pont De Nemours And Company Organic light-emitting diode luminaires
TW201132737A (en) 2009-08-24 2011-10-01 Du Pont Organic light-emitting diode luminaires
EP2471118A2 (en) * 2009-08-24 2012-07-04 E. I. du Pont de Nemours and Company Organic light-emitting diode luminaires
EP2483366A4 (en) * 2009-09-29 2013-05-01 Du Pont DEUTERATED COMPOUNDS FOR LUMINESCENT APPLICATIONS
KR101202347B1 (ko) 2009-10-09 2012-11-16 삼성디스플레이 주식회사 축합환 화합물 및 이를 포함한 유기층을 구비한 유기 발광 소자
JP5784621B2 (ja) 2009-10-29 2015-09-24 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニーE.I.Du Pont De Nemours And Company 電子用途用の重水素化合物
US8674343B2 (en) 2009-10-29 2014-03-18 E I Du Pont De Nemours And Company Organic light-emitting diodes having white light emission
US8617720B2 (en) 2009-12-21 2013-12-31 E I Du Pont De Nemours And Company Electroactive composition and electronic device made with the composition
TWI508621B (zh) * 2010-02-03 2015-11-11 Innolux Corp 影像顯示系統
KR20120006811A (ko) 2010-07-13 2012-01-19 삼성모바일디스플레이주식회사 유기 발광 소자
US8546793B2 (en) 2010-10-26 2013-10-01 Samsung Display Co., Ltd. Organic light-emitting device
JP5727038B2 (ja) 2010-12-20 2015-06-03 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニーE.I.Du Pont De Nemours And Company 電子技術応用のための組成物
KR101152317B1 (ko) * 2011-02-16 2012-06-11 광전자정밀주식회사 전극체 부착장치
JP5487174B2 (ja) * 2011-09-16 2014-05-07 株式会社東芝 有機電界発光素子、表示装置および照明装置
KR102131960B1 (ko) * 2013-01-16 2020-07-09 삼성디스플레이 주식회사 축합환 화합물 및 이를 포함하는 유기 전계 발광 소자
CN108281559B (zh) * 2018-01-08 2019-10-29 太原理工大学 一种高效率、低滚降磷光有机发光二极管
WO2020203447A1 (ja) * 2019-04-02 2020-10-08 東レ株式会社 導電層付き基材およびタッチパネル

Citations (94)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1110518B (de) 1959-04-09 1961-07-06 Kalle Ag Material fuer die elektrophotographische Bilderzeugung
US3112197A (en) 1956-06-27 1963-11-26 Azoplate Corp Electrophotographic member
US3180729A (en) 1956-12-22 1965-04-27 Azoplate Corp Material for electrophotographic reproduction
US3189447A (en) 1956-06-04 1965-06-15 Azoplate Corp Electrophotographic material and method
US3240597A (en) 1961-08-21 1966-03-15 Eastman Kodak Co Photoconducting polymers for preparing electrophotographic materials
US3257203A (en) 1958-08-20 1966-06-21 Azoplate Corp Electrophotographic reproduction material
JPS45555B1 (ja) 1966-03-24 1970-01-09
US3526501A (en) 1967-02-03 1970-09-01 Eastman Kodak Co 4-diarylamino-substituted chalcone containing photoconductive compositions for use in electrophotography
US3542544A (en) 1967-04-03 1970-11-24 Eastman Kodak Co Photoconductive elements containing organic photoconductors of the triarylalkane and tetraarylmethane types
JPS463712B1 (ja) 1966-04-14 1971-01-29
US3567450A (en) 1968-02-20 1971-03-02 Eastman Kodak Co Photoconductive elements containing substituted triarylamine photoconductors
US3615404A (en) 1968-04-25 1971-10-26 Scott Paper Co 1 3-phenylenediamine containing photoconductive materials
US3615402A (en) 1969-10-01 1971-10-26 Eastman Kodak Co Tetra-substituted methanes as organic photoconductors
US3658520A (en) 1968-02-20 1972-04-25 Eastman Kodak Co Photoconductive elements containing as photoconductors triarylamines substituted by active hydrogen-containing groups
JPS4725336B1 (ja) 1969-11-26 1972-07-11
US3717462A (en) 1969-07-28 1973-02-20 Canon Kk Heat treatment of an electrophotographic photosensitive member
US3820989A (en) 1969-09-30 1974-06-28 Eastman Kodak Co Tri-substituted methanes as organic photoconductors
JPS4935702B1 (ja) 1969-06-20 1974-09-25
JPS49105537A (ja) 1973-01-15 1974-10-05
JPS5110105B2 (ja) 1972-02-09 1976-04-01
JPS5110983B2 (ja) 1971-09-10 1976-04-08
JPS5193224A (ja) 1974-12-20 1976-08-16
US4012376A (en) 1975-12-29 1977-03-15 Eastman Kodak Company Photosensitive colorant materials
JPS5327033A (en) 1976-08-23 1978-03-13 Xerox Corp Image forming member and image forming method
US4127412A (en) 1975-12-09 1978-11-28 Eastman Kodak Company Photoconductive compositions and elements
JPS5458445A (en) 1977-09-29 1979-05-11 Xerox Corp Electrostatic photosensitive device
JPS5459143A (en) 1977-10-17 1979-05-12 Ibm Electronic photographic material
JPS54110837A (en) 1978-02-17 1979-08-30 Ricoh Co Ltd Electrophotographic photoreceptor
JPS54112637A (en) 1978-02-06 1979-09-03 Ricoh Co Ltd Electrophotographic photoreceptor
JPS54119925A (en) 1978-03-10 1979-09-18 Ricoh Co Ltd Photosensitive material for electrophotography
US4175961A (en) 1976-12-22 1979-11-27 Eastman Kodak Company Multi-active photoconductive elements
JPS5517105A (en) 1978-07-21 1980-02-06 Konishiroku Photo Ind Co Ltd Electrophotographic photoreceptor
JPS5546760A (en) 1978-09-29 1980-04-02 Ricoh Co Ltd Electrophotographic photoreceptor
JPS5551086A (en) 1978-09-04 1980-04-14 Copyer Co Ltd Novel pyrazoline compound, its preparation, and electrophotographic photosensitive substance comprising it
JPS5552063A (en) 1978-10-13 1980-04-16 Ricoh Co Ltd Electrophotographic receptor
JPS5552064A (en) 1978-10-13 1980-04-16 Ricoh Co Ltd Electrophotographic receptor
JPS5574546A (en) 1978-11-30 1980-06-05 Ricoh Co Ltd Electrophotographic photoreceptor
JPS5579450A (en) 1978-12-04 1980-06-14 Xerox Corp Image formation device
JPS5588064A (en) 1978-12-05 1980-07-03 Konishiroku Photo Ind Co Ltd Electrophotographic receptor
JPS5588065A (en) 1978-12-12 1980-07-03 Konishiroku Photo Ind Co Ltd Electrophotographic receptor
JPS55108667A (en) 1979-02-13 1980-08-21 Ricoh Co Ltd Electrophotographic receptor
US4232103A (en) 1979-08-27 1980-11-04 Xerox Corporation Phenyl benzotriazole stabilized photosensitive device
JPS55144250A (en) 1979-04-30 1980-11-11 Xerox Corp Image formation device
JPS55156953A (en) 1979-05-17 1980-12-06 Mitsubishi Paper Mills Ltd Organic semiconductor electrophotographic material
JPS564148A (en) 1979-06-21 1981-01-17 Konishiroku Photo Ind Co Ltd Electrophotographic receptor
JPS5622437A (en) 1979-08-01 1981-03-03 Ricoh Co Ltd Electrophotographic receptor
JPS5636656A (en) 1979-09-03 1981-04-09 Mitsubishi Paper Mills Ltd Electrophotographic material
JPS5646234A (en) 1979-09-21 1981-04-27 Ricoh Co Ltd Electrophotographic receptor
JPS5680051A (en) 1979-12-04 1981-07-01 Ricoh Co Ltd Electrophotographic receptor
US4278746A (en) 1978-06-21 1981-07-14 Konishiroku Photo Industry Co., Ltd. Photosensitive elements for electrophotography
JPS5688141A (en) 1979-12-20 1981-07-17 Konishiroku Photo Ind Co Ltd Electrophotographic receptor
JPS56119132A (en) 1979-11-23 1981-09-18 Xerox Corp Image forming element
JPS5711350A (en) 1980-06-24 1982-01-21 Fuji Photo Film Co Ltd Electrophotographic receptor
JPS5745545A (en) 1980-09-03 1982-03-15 Mitsubishi Paper Mills Ltd Electrophotographic receptor
JPS5751781A (en) 1980-07-17 1982-03-26 Eastman Kodak Co Organic electroluminiscent cell and method
JPS57148749A (en) 1981-03-11 1982-09-14 Fuji Photo Film Co Ltd Electrophotographic receptor
JPS6093455A (ja) 1983-10-28 1985-05-25 Fuji Xerox Co Ltd 電子写真用現像剤
JPS6094462A (ja) 1983-10-28 1985-05-27 Ricoh Co Ltd スチルベン誘導体及びその製造法
JPS60175052A (ja) 1984-02-21 1985-09-09 Ricoh Co Ltd 電子写真用感光体
JPS60174749A (ja) 1984-02-21 1985-09-09 Ricoh Co Ltd スチリル化合物及びその製造法
JPS6114642A (ja) 1984-06-29 1986-01-22 Konishiroku Photo Ind Co Ltd 電子写真感光体
JPS6172255A (ja) 1984-09-14 1986-04-14 Konishiroku Photo Ind Co Ltd 電子写真感光体
JPS6198353A (ja) 1984-10-19 1986-05-16 ゼロツクス コーポレーシヨン 芳香族エーテル正孔移送層を含む感光装置
JPS61210363A (ja) 1985-03-15 1986-09-18 Canon Inc 電子写真感光体
JPS61228451A (ja) 1985-04-03 1986-10-11 Canon Inc 電子写真感光体
JPS61295558A (ja) 1985-06-24 1986-12-26 ゼロツクス コ−ポレ−シヨン アルコキシアミン電荷移送分子を含有する光導電性像形成部材
JPS6210652A (ja) 1985-07-08 1987-01-19 Minolta Camera Co Ltd 感光体
JPS6230255A (ja) 1985-07-31 1987-02-09 Minolta Camera Co Ltd 電子写真感光体
JPS6236674A (ja) 1985-08-05 1987-02-17 Fuji Photo Film Co Ltd 電子写真感光体
JPS6247646A (ja) 1985-08-27 1987-03-02 Konishiroku Photo Ind Co Ltd 感光体
JPS63295695A (ja) 1987-02-11 1988-12-02 イーストマン・コダック・カンパニー 有機発光媒体をもつ電場発光デバイス
JPH02204996A (ja) 1989-02-01 1990-08-14 Nec Corp 有機薄膜el素子
US4950950A (en) 1989-05-18 1990-08-21 Eastman Kodak Company Electroluminescent device with silazane-containing luminescent zone
JPH02282263A (ja) 1988-12-09 1990-11-19 Nippon Oil Co Ltd ホール輸送材料
JPH02311591A (ja) 1989-05-25 1990-12-27 Mitsubishi Kasei Corp 有機電界発光素子
US5061569A (en) 1990-07-26 1991-10-29 Eastman Kodak Company Electroluminescent device with organic electroluminescent medium
JPH04308688A (ja) 1991-04-08 1992-10-30 Pioneer Electron Corp 有機エレクトロルミネッセンス素子
JPH0848656A (ja) * 1994-02-08 1996-02-20 Tdk Corp 有機el素子用化合物および有機el素子
JPH0878163A (ja) 1994-09-07 1996-03-22 Kemipuro Kasei Kk 有機エレクトロルミネッセンス素子およびその製法
JPH08193191A (ja) 1995-01-19 1996-07-30 Idemitsu Kosan Co Ltd 有機電界発光素子及び有機薄膜
JPH0987616A (ja) 1995-07-17 1997-03-31 Chisso Corp シラシクロペンタジエン誘導体を用いた有機電界発光素子
JPH09194487A (ja) 1996-01-12 1997-07-29 Chisso Corp シラシクロペンタジエン誘導体
JPH1088121A (ja) 1995-08-04 1998-04-07 Toyo Ink Mfg Co Ltd 有機エレクトロルミネッセンス素子材料およびそれを使用した有機エレクトロルミネッセンス素子
JP2000040586A (ja) 1998-07-21 2000-02-08 Tdk Corp 有機el素子モジュール
JP2003004193A (ja) 2001-06-19 2003-01-08 Mitsui Chemicals Inc 電気融着継手
JP2003272857A (ja) 2002-03-19 2003-09-26 Idemitsu Kosan Co Ltd 白色系有機エレクトロルミネッセンス素子
JP2004235168A (ja) 2004-05-20 2004-08-19 Toyota Industries Corp 有機エレクトロルミネッセンス素子
JP2005100921A (ja) 2003-08-22 2005-04-14 Sony Corp 有機el素子および表示装置
WO2005099313A1 (ja) 2004-04-02 2005-10-20 Idemitsu Kosan Co., Ltd. 電子障壁層を介して2つの発光層を有する有機エレクトロルミネッセンス素子
JP3716096B2 (ja) 1998-04-02 2005-11-16 三菱重工業株式会社 微粉炭セパレータ装置
WO2005112518A1 (ja) 2004-03-25 2005-11-24 Idemitsu Kosan Co., Ltd. 有機エレクトロルミネッセンス素子
US20060088729A1 (en) 2004-10-25 2006-04-27 Eastman Kodak Company White organic light-emitting devices with improved performance
WO2006070619A1 (ja) * 2004-12-28 2006-07-06 Konica Minolta Holdings, Inc. 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP3927577B2 (ja) 1994-11-10 2007-06-13 マイケルスン、ガーリー、ケィー 電動骨鉗子

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0666298A3 (en) * 1994-02-08 1995-11-15 Tdk Corp Organic electroluminescent element and compound used therein.
CN101180262B (zh) * 2005-04-18 2012-06-13 出光兴产株式会社 芳香族三胺化合物以及应用该化合物的有机电致发光元件

Patent Citations (94)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3189447A (en) 1956-06-04 1965-06-15 Azoplate Corp Electrophotographic material and method
US3112197A (en) 1956-06-27 1963-11-26 Azoplate Corp Electrophotographic member
US3180729A (en) 1956-12-22 1965-04-27 Azoplate Corp Material for electrophotographic reproduction
US3257203A (en) 1958-08-20 1966-06-21 Azoplate Corp Electrophotographic reproduction material
DE1110518B (de) 1959-04-09 1961-07-06 Kalle Ag Material fuer die elektrophotographische Bilderzeugung
US3240597A (en) 1961-08-21 1966-03-15 Eastman Kodak Co Photoconducting polymers for preparing electrophotographic materials
JPS45555B1 (ja) 1966-03-24 1970-01-09
JPS463712B1 (ja) 1966-04-14 1971-01-29
US3526501A (en) 1967-02-03 1970-09-01 Eastman Kodak Co 4-diarylamino-substituted chalcone containing photoconductive compositions for use in electrophotography
US3542544A (en) 1967-04-03 1970-11-24 Eastman Kodak Co Photoconductive elements containing organic photoconductors of the triarylalkane and tetraarylmethane types
US3567450A (en) 1968-02-20 1971-03-02 Eastman Kodak Co Photoconductive elements containing substituted triarylamine photoconductors
US3658520A (en) 1968-02-20 1972-04-25 Eastman Kodak Co Photoconductive elements containing as photoconductors triarylamines substituted by active hydrogen-containing groups
US3615404A (en) 1968-04-25 1971-10-26 Scott Paper Co 1 3-phenylenediamine containing photoconductive materials
JPS4935702B1 (ja) 1969-06-20 1974-09-25
US3717462A (en) 1969-07-28 1973-02-20 Canon Kk Heat treatment of an electrophotographic photosensitive member
US3820989A (en) 1969-09-30 1974-06-28 Eastman Kodak Co Tri-substituted methanes as organic photoconductors
US3615402A (en) 1969-10-01 1971-10-26 Eastman Kodak Co Tetra-substituted methanes as organic photoconductors
JPS4725336B1 (ja) 1969-11-26 1972-07-11
JPS5110983B2 (ja) 1971-09-10 1976-04-08
JPS5110105B2 (ja) 1972-02-09 1976-04-01
JPS49105537A (ja) 1973-01-15 1974-10-05
JPS5193224A (ja) 1974-12-20 1976-08-16
US4127412A (en) 1975-12-09 1978-11-28 Eastman Kodak Company Photoconductive compositions and elements
US4012376A (en) 1975-12-29 1977-03-15 Eastman Kodak Company Photosensitive colorant materials
JPS5327033A (en) 1976-08-23 1978-03-13 Xerox Corp Image forming member and image forming method
US4175961A (en) 1976-12-22 1979-11-27 Eastman Kodak Company Multi-active photoconductive elements
JPS5458445A (en) 1977-09-29 1979-05-11 Xerox Corp Electrostatic photosensitive device
JPS5459143A (en) 1977-10-17 1979-05-12 Ibm Electronic photographic material
JPS54112637A (en) 1978-02-06 1979-09-03 Ricoh Co Ltd Electrophotographic photoreceptor
JPS54110837A (en) 1978-02-17 1979-08-30 Ricoh Co Ltd Electrophotographic photoreceptor
JPS54119925A (en) 1978-03-10 1979-09-18 Ricoh Co Ltd Photosensitive material for electrophotography
US4278746A (en) 1978-06-21 1981-07-14 Konishiroku Photo Industry Co., Ltd. Photosensitive elements for electrophotography
JPS5517105A (en) 1978-07-21 1980-02-06 Konishiroku Photo Ind Co Ltd Electrophotographic photoreceptor
JPS5551086A (en) 1978-09-04 1980-04-14 Copyer Co Ltd Novel pyrazoline compound, its preparation, and electrophotographic photosensitive substance comprising it
JPS5546760A (en) 1978-09-29 1980-04-02 Ricoh Co Ltd Electrophotographic photoreceptor
JPS5552063A (en) 1978-10-13 1980-04-16 Ricoh Co Ltd Electrophotographic receptor
JPS5552064A (en) 1978-10-13 1980-04-16 Ricoh Co Ltd Electrophotographic receptor
JPS5574546A (en) 1978-11-30 1980-06-05 Ricoh Co Ltd Electrophotographic photoreceptor
JPS5579450A (en) 1978-12-04 1980-06-14 Xerox Corp Image formation device
JPS5588064A (en) 1978-12-05 1980-07-03 Konishiroku Photo Ind Co Ltd Electrophotographic receptor
JPS5588065A (en) 1978-12-12 1980-07-03 Konishiroku Photo Ind Co Ltd Electrophotographic receptor
JPS55108667A (en) 1979-02-13 1980-08-21 Ricoh Co Ltd Electrophotographic receptor
JPS55144250A (en) 1979-04-30 1980-11-11 Xerox Corp Image formation device
JPS55156953A (en) 1979-05-17 1980-12-06 Mitsubishi Paper Mills Ltd Organic semiconductor electrophotographic material
JPS564148A (en) 1979-06-21 1981-01-17 Konishiroku Photo Ind Co Ltd Electrophotographic receptor
JPS5622437A (en) 1979-08-01 1981-03-03 Ricoh Co Ltd Electrophotographic receptor
US4232103A (en) 1979-08-27 1980-11-04 Xerox Corporation Phenyl benzotriazole stabilized photosensitive device
JPS5636656A (en) 1979-09-03 1981-04-09 Mitsubishi Paper Mills Ltd Electrophotographic material
JPS5646234A (en) 1979-09-21 1981-04-27 Ricoh Co Ltd Electrophotographic receptor
JPS56119132A (en) 1979-11-23 1981-09-18 Xerox Corp Image forming element
JPS5680051A (en) 1979-12-04 1981-07-01 Ricoh Co Ltd Electrophotographic receptor
JPS5688141A (en) 1979-12-20 1981-07-17 Konishiroku Photo Ind Co Ltd Electrophotographic receptor
JPS5711350A (en) 1980-06-24 1982-01-21 Fuji Photo Film Co Ltd Electrophotographic receptor
JPS5751781A (en) 1980-07-17 1982-03-26 Eastman Kodak Co Organic electroluminiscent cell and method
JPS5745545A (en) 1980-09-03 1982-03-15 Mitsubishi Paper Mills Ltd Electrophotographic receptor
JPS57148749A (en) 1981-03-11 1982-09-14 Fuji Photo Film Co Ltd Electrophotographic receptor
JPS6093455A (ja) 1983-10-28 1985-05-25 Fuji Xerox Co Ltd 電子写真用現像剤
JPS6094462A (ja) 1983-10-28 1985-05-27 Ricoh Co Ltd スチルベン誘導体及びその製造法
JPS60175052A (ja) 1984-02-21 1985-09-09 Ricoh Co Ltd 電子写真用感光体
JPS60174749A (ja) 1984-02-21 1985-09-09 Ricoh Co Ltd スチリル化合物及びその製造法
JPS6114642A (ja) 1984-06-29 1986-01-22 Konishiroku Photo Ind Co Ltd 電子写真感光体
JPS6172255A (ja) 1984-09-14 1986-04-14 Konishiroku Photo Ind Co Ltd 電子写真感光体
JPS6198353A (ja) 1984-10-19 1986-05-16 ゼロツクス コーポレーシヨン 芳香族エーテル正孔移送層を含む感光装置
JPS61210363A (ja) 1985-03-15 1986-09-18 Canon Inc 電子写真感光体
JPS61228451A (ja) 1985-04-03 1986-10-11 Canon Inc 電子写真感光体
JPS61295558A (ja) 1985-06-24 1986-12-26 ゼロツクス コ−ポレ−シヨン アルコキシアミン電荷移送分子を含有する光導電性像形成部材
JPS6210652A (ja) 1985-07-08 1987-01-19 Minolta Camera Co Ltd 感光体
JPS6230255A (ja) 1985-07-31 1987-02-09 Minolta Camera Co Ltd 電子写真感光体
JPS6236674A (ja) 1985-08-05 1987-02-17 Fuji Photo Film Co Ltd 電子写真感光体
JPS6247646A (ja) 1985-08-27 1987-03-02 Konishiroku Photo Ind Co Ltd 感光体
JPS63295695A (ja) 1987-02-11 1988-12-02 イーストマン・コダック・カンパニー 有機発光媒体をもつ電場発光デバイス
JPH02282263A (ja) 1988-12-09 1990-11-19 Nippon Oil Co Ltd ホール輸送材料
JPH02204996A (ja) 1989-02-01 1990-08-14 Nec Corp 有機薄膜el素子
US4950950A (en) 1989-05-18 1990-08-21 Eastman Kodak Company Electroluminescent device with silazane-containing luminescent zone
JPH02311591A (ja) 1989-05-25 1990-12-27 Mitsubishi Kasei Corp 有機電界発光素子
US5061569A (en) 1990-07-26 1991-10-29 Eastman Kodak Company Electroluminescent device with organic electroluminescent medium
JPH04308688A (ja) 1991-04-08 1992-10-30 Pioneer Electron Corp 有機エレクトロルミネッセンス素子
JPH0848656A (ja) * 1994-02-08 1996-02-20 Tdk Corp 有機el素子用化合物および有機el素子
JPH0878163A (ja) 1994-09-07 1996-03-22 Kemipuro Kasei Kk 有機エレクトロルミネッセンス素子およびその製法
JP3927577B2 (ja) 1994-11-10 2007-06-13 マイケルスン、ガーリー、ケィー 電動骨鉗子
JPH08193191A (ja) 1995-01-19 1996-07-30 Idemitsu Kosan Co Ltd 有機電界発光素子及び有機薄膜
JPH0987616A (ja) 1995-07-17 1997-03-31 Chisso Corp シラシクロペンタジエン誘導体を用いた有機電界発光素子
JPH1088121A (ja) 1995-08-04 1998-04-07 Toyo Ink Mfg Co Ltd 有機エレクトロルミネッセンス素子材料およびそれを使用した有機エレクトロルミネッセンス素子
JPH09194487A (ja) 1996-01-12 1997-07-29 Chisso Corp シラシクロペンタジエン誘導体
JP3716096B2 (ja) 1998-04-02 2005-11-16 三菱重工業株式会社 微粉炭セパレータ装置
JP2000040586A (ja) 1998-07-21 2000-02-08 Tdk Corp 有機el素子モジュール
JP2003004193A (ja) 2001-06-19 2003-01-08 Mitsui Chemicals Inc 電気融着継手
JP2003272857A (ja) 2002-03-19 2003-09-26 Idemitsu Kosan Co Ltd 白色系有機エレクトロルミネッセンス素子
JP2005100921A (ja) 2003-08-22 2005-04-14 Sony Corp 有機el素子および表示装置
WO2005112518A1 (ja) 2004-03-25 2005-11-24 Idemitsu Kosan Co., Ltd. 有機エレクトロルミネッセンス素子
WO2005099313A1 (ja) 2004-04-02 2005-10-20 Idemitsu Kosan Co., Ltd. 電子障壁層を介して2つの発光層を有する有機エレクトロルミネッセンス素子
JP2004235168A (ja) 2004-05-20 2004-08-19 Toyota Industries Corp 有機エレクトロルミネッセンス素子
US20060088729A1 (en) 2004-10-25 2006-04-27 Eastman Kodak Company White organic light-emitting devices with improved performance
WO2006070619A1 (ja) * 2004-12-28 2006-07-06 Konica Minolta Holdings, Inc. 有機エレクトロルミネッセンス素子、表示装置及び照明装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TOKITO S. ET AL.: "Yuki Denkai Hakko Soshi", R&D REVIEW OF TOYOTA CRDL, vol. 33, no. 2, June 1998 (1998-06-01), pages 3 - 22, XP003021241 *

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011506617A (ja) * 2007-06-01 2011-03-03 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 緑色発光材料
JP2009272144A (ja) * 2008-05-07 2009-11-19 Seiko Epson Corp 発光素子、表示装置および電子機器
US8531100B2 (en) 2008-12-22 2013-09-10 E I Du Pont De Nemours And Company Deuterated compounds for luminescent applications
WO2010134350A1 (ja) 2009-05-22 2010-11-25 出光興産株式会社 有機エレクトロルミネッセンス素子
WO2010134352A1 (ja) 2009-05-22 2010-11-25 出光興産株式会社 有機エレクトロルミネッセンス素子
JP2011108899A (ja) * 2009-11-18 2011-06-02 Seiko Epson Corp 発光素子、発光装置、表示装置および電子機器
WO2011086941A1 (ja) 2010-01-15 2011-07-21 出光興産株式会社 有機エレクトロルミネッセンス素子
WO2011129096A1 (ja) 2010-04-12 2011-10-20 出光興産株式会社 有機エレクトロルミネッセンス素子
JP5780607B2 (ja) * 2010-05-17 2015-09-16 Necライティング株式会社 照明装置および調光方法
WO2012001969A1 (ja) 2010-06-30 2012-01-05 出光興産株式会社 芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子
WO2012029253A1 (ja) 2010-08-31 2012-03-08 出光興産株式会社 含窒素芳香族複素環誘導体及びそれらを用いた有機エレクトロルミネッセンス素子
WO2012049828A1 (ja) 2010-10-12 2012-04-19 出光興産株式会社 芳香族複素環誘導体及びそれらを用いた有機エレクトロルミネッセンス素子
WO2012070233A1 (en) 2010-11-22 2012-05-31 Idemitsu Kosan Co.,Ltd. Organic electroluminescence device
WO2012070234A1 (en) 2010-11-22 2012-05-31 Idemitsu Kosan Co.,Ltd. Organic electroluminescence device
WO2012086170A1 (ja) 2010-12-20 2012-06-28 出光興産株式会社 芳香族複素環誘導体及びそれを用いた有機エレクトロルミネッセンス素子
EP3211682A1 (en) 2011-11-22 2017-08-30 Idemitsu Kosan Co., Ltd Aromatic heterocyclic derivative, organic electroluminescence device material and organic electroluminescence device field
CN102751449A (zh) * 2012-07-23 2012-10-24 中国科学院长春应用化学研究所 一种有机发光二极管
US10050209B2 (en) 2015-06-03 2018-08-14 Seiko Epson Corporation Light-emitting element, light-emitting device, authentication device, and electronic apparatus
WO2020183264A1 (ja) * 2019-03-08 2020-09-17 株式会社半導体エネルギー研究所 発光デバイス、発光機器、表示装置、電子機器及び照明装置

Also Published As

Publication number Publication date
US20080049413A1 (en) 2008-02-28
JPWO2008023623A1 (ja) 2010-01-07
EP2061103A1 (en) 2009-05-20
TW200836383A (en) 2008-09-01
CN101507010A (zh) 2009-08-12
KR20090042272A (ko) 2009-04-29

Similar Documents

Publication Publication Date Title
WO2008023623A1 (fr) Dispositif électroluminescent organique
JP5432523B2 (ja) 有機エレクトロルミネッセンス素子
US7737625B2 (en) Organic electroluminescent device with carrier blocking layer interposed between two emitting layers
JP4509211B2 (ja) 電子障壁層を介して2つの発光層を有する有機エレクトロルミネッセンス素子
KR101551591B1 (ko) 방향족 아민 유도체 및 그들을 이용한 유기 전기 발광 소자
JP5097700B2 (ja) 有機エレクトロルミネッセンス素子
EP1729545A1 (en) Organic electroluminescent device and display
WO2007080704A1 (ja) 芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子
WO2007100010A1 (ja) 有機エレクトロルミネッセンス素子
WO2008072400A1 (ja) 芳香族アミン誘導体及びそれらを用いた有機エレクトロルミネッセンス素子
WO2007138906A1 (ja) 有機エレクトロルミネッセンス素子及びフルカラー発光装置
WO2007148660A1 (ja) 複素環含有アリールアミン誘導体を用いた有機エレクトロルミネッセンス素子
WO2008023550A1 (fr) Dérivé d'amine aromatique et dispositif électroluminescent organique utilisant celui-ci
WO2007007464A1 (ja) 含窒素複素環誘導体及びそれを用いた有機エレクトロルミネッセンス素子
WO2008032631A1 (fr) Dérivé d'amine aromatique et dispositif électroluminescent organique l'employant
KR20080105113A (ko) 함질소 복소환 유도체 및 그것을 이용한 유기 전기 발광 소자
WO2006062078A1 (ja) 有機エレクトロルミネッセンス素子
WO2007102361A1 (ja) 芳香族アミン誘導体及びそれらを用いた有機エレクトロルミネッセンス素子
WO2008059713A1 (en) Fluoranthene compound, organic electroluminescent device using the fluoranthene compound, and organic electroluminescent material-containing solution
KR20080105112A (ko) 함질소 복소환 유도체 및 그것을 이용한 유기 전기발광 소자
KR20100017692A (ko) 디아미노피렌 유도체 및 이를 사용한 유기 el 소자
WO2008001551A1 (fr) Dérivé d'amine aromatique et dispositif a électroluminescence organique utilisant celui-ci
WO2008072586A1 (ja) 有機エレクトロルミネッセンス素子用材料及び有機エレクトロルミネッセンス素子
WO2007099983A1 (ja) フルオランテン誘導体及びインデノペリレン誘導体を用いた有機エレクトロルミネッセンス素子
JP4134280B2 (ja) 有機エレクトロルミネッセンス素子及びフルカラー発光装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780031276.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07792550

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008530877

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020097003517

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007792550

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: RU