WO2008022591A1 - Procédé de commande de l'identification des cellules dans un système lte et appareil à cet effet - Google Patents

Procédé de commande de l'identification des cellules dans un système lte et appareil à cet effet Download PDF

Info

Publication number
WO2008022591A1
WO2008022591A1 PCT/CN2007/070487 CN2007070487W WO2008022591A1 WO 2008022591 A1 WO2008022591 A1 WO 2008022591A1 CN 2007070487 W CN2007070487 W CN 2007070487W WO 2008022591 A1 WO2008022591 A1 WO 2008022591A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
time
time value
value range
controlling
Prior art date
Application number
PCT/CN2007/070487
Other languages
English (en)
French (fr)
Inventor
Ju Li
Liyan Yin
Xudong Yang
Original Assignee
Huawei Technologies Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huawei Technologies Co., Ltd. filed Critical Huawei Technologies Co., Ltd.
Publication of WO2008022591A1 publication Critical patent/WO2008022591A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/12Access restriction or access information delivery, e.g. discovery data delivery using downlink control channel

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a method and apparatus for controlling cell identification in a long term evolution system.
  • LTE Long Term Evolution
  • the main problems addressed are: achieving higher user data rates, improved system capacity and coverage, and reasonably flexible 3G spectrum allocation.
  • the UE may trigger inter-cell handover in the connected state, and whether to perform inter-cell handover depends on the measurement result of the UE.
  • the UE Before performing the same-frequency measurement on the neighboring cell, the UE needs to synchronize with the neighboring cell, and then identify the cell. for
  • the inter-frequency measurement is not started at this time, the UE can perform the same-frequency measurement while receiving the data; Second, the inter-frequency measurement is started, then the UE can only The same frequency measurement is performed in the time when the inter-frequency measurement is not performed.
  • the UE needs to identify the cell within a certain period of time, that is, it needs to determine an upper limit time for the UE, and the time for the UE to identify the cell is at most this time; for the second case, the UE is required to be certain Identification within the time, but also need to consider the impact of the inter-frequency measurement.
  • the UE may separately perform the data while receiving the network side.
  • the slot synchronization, frame synchronization, code group identification, and cell identification are performed internally, and the cell needs to be identified in the Tidentify intra.
  • the recognition time is calculated according to the following formula:
  • T ba S k identify FDD, intra represents the basic recognition time, which is 800 mS; Measurement Period, Intra represents the measurement period; T Intra represents T M (: asurem (: rtM . d , Intra time can be used for the same frequency measurement time.
  • the above-described technique applied to identify cells in WCDMA is not suitable for application in LTE.
  • the reason is as follows:
  • the physical layer technology of LTE and the measured scenario are different from WCDMA.
  • the UE does not have a CELL-DCH state, so the UE performs the same-frequency measurement control method differently from WCDMA. Therefore, the WCDMA method is no longer applicable to LTEo.
  • Another technique for identifying cells in WCDMA is as follows:
  • the UE may separately perform slot synchronization, frame synchronization, and code group while receiving network side data. Identification, cell identification, and need to identify the cell within the monitoring set within 800ms; if the inter-frequency measurement is initiated, the UE can only be in the time slot that can be measured in the same frequency (as shown in the following formula: N TTI ' (M_REP _ 1)' 10) performs slot synchronization, frame synchronization, code group identification, cell identification, and needs to identify a cell in the Tidentify intra, which is calculated according to the following formula:
  • T basii: id (: ntifyFDD , intra indicates the basic recognition time, 800 ms ;
  • ⁇ ⁇ ' M_REP ' 10 indicates the measurement period;
  • N TTI ⁇ ( M_REP - 1) '10 means N TTI ⁇ M_REP ⁇ Time available for co-frequency measurement in 10 hours.
  • the above techniques for identifying cells are also not suitable for use in LTE.
  • the reasons are as follows:
  • the physical layer technology of LTE and the measurement scenario are different from those of WCDMA.
  • the UE does not have a CELL-FACH state, so the UE performs the same-frequency measurement control method differently from WCDMA. Therefore, the method of identifying cells in WCDMA is no longer applicable to LTE. Summary of the invention
  • the embodiment of the invention provides a method for controlling cell identification in a long term evolution system, including:
  • the embodiment of the invention further provides an apparatus for controlling cell identification in a long term evolution system, including:
  • a time value range determining unit configured to determine a range of time values for controlling the process of identifying the cell
  • the cell identification control unit is configured to control the process of identifying the cell according to each time value range determined by the time value range determining unit.
  • the present invention obtains factors that affect the value of each operating process time value in the process of identifying a cell, including: common channel design, common pilot channel design, wireless environment, interference, and adopted. Algorithm, UE implementation, etc.
  • the value range of each time value of the process of controlling the identification of the cell can be effectively determined, thereby realizing the control of the cell identification process.
  • FIG. 2 is a schematic diagram of only one synchronization channel symbol in a radio frame
  • 3 is a schematic diagram of two synchronization channel symbols in a radio frame
  • Figure 4 is a schematic diagram of only four synchronization channel symbols in a radio frame
  • Figure 5 is a schematic diagram of the calculation of the time density of the same frequency measurement
  • FIG. 8 is a schematic diagram of an embodiment of a device according to the present invention.
  • the present invention provides a method for controlling cell identification in a long term evolution system, which controls each operation process of identifying a cell by using multiple time values. Therefore, to realize the control of identifying the cell, it is necessary to first determine the range of values of the respective time values. The factors to be considered in determining the time value of the present invention are explained below by several embodiments.
  • the first embodiment is a process in which the UE does not have a neighbor list, and the UE identifies the cell.
  • the method includes the following steps: Step 1: The network side sends a measurement control message;
  • Step 2 After receiving the message, the UE demodulates the message; if the SCH (synchronization channel) channel is designed in the time domain as only one SCH symbol (synchronization channel symbol) in a radio frame, as shown in FIG. 2, gp iOms If there is only one SCH symbol in the UE, the UE performs step 3, otherwise step 4 is performed; Step 3: The UE performs symbol synchronization with the target cell in time TseH ⁇ M s ⁇ ti ⁇ , determines symbol timing and subframe timing, and determines at the same time.
  • the SCH synchronization channel
  • the UE determines the cell ID according to the P-SCH sequence information, and determines the cell ID group according to the S-SCH sequence information; and proceeds to step 6; wherein, TM symM syn ic indicates that the UE receives the cell synchronization channel signal, and performs The range of time values allowed to be synchronized with the acquisition of the SCH symbol by the cell is determined.
  • the size of the T SeH symM toe is related to the design of the synchronization channel, the wireless environment, and the implementation of the UE.
  • the UE can determine the subframe timing and the frame timing while finding the SCH. The reason is as follows: Since the position of the SCH symbol in the subframe and a 10ms frame is fixed, the SCH timing can be determined to determine the subframe timing and frame timing.
  • the UE can implement symbol synchronization by considering the time of one subframe in a case where the wireless environment is best, that is, finding the position of the SCH in one frame.
  • the UE starts at the first subframe. Found the bit of SCH
  • the symbol synchronization can be achieved by considering the time of one frame without considering the worst case of the wireless environment.
  • the UE traverses all the positions in one frame until the last frame finds the SCH; but the fact Above, because of the effects of multipath, interference, etc. in the wireless environment, there is no guarantee that the results of the UE-time search will be very accurate, so usually
  • the UE needs multiple detections, that is, TseH ⁇ M t ⁇ will be greater than the synchronization time in the best case.
  • the environment can reflect the change of the received signal of the user under a certain moving speed and a certain broadcasting environment.
  • the propagation environment here can reflect the fading of the signal.
  • the received signal strength is different.
  • LTE LTE
  • Orthogonality which simultaneously generates interference between carriers, affects the correct demodulation of the signal at the receiving end. Therefore, it is necessary to consider the time when the user identifies the small area in different wireless environments.
  • the hardware implementation of the UE includes: If the UE needs to perform inter-frequency measurement when the same frequency measurement is performed, then the UE needs to adjust the receiver to another working frequency, and the hardware of the UE will switch from the current operating frequency to another working frequency, which is required Time, different hardware, its time may have subtle differences;
  • Software implementation of the UE For example, the algorithm for searching the cell of the UE, different manufacturers, the implementation may be different, which may cause some differences in the time of identifying the cell;
  • Step 4 When the SCH channel is designed in the time domain as a radio frame (BP lOms), there are multiple SCH symbols. As shown in FIG. 3 and FIG. 4, FIG. 3 shows that there are two SCHs in one frame, and FIG. 4 is a There are 4 SCHs in the frame.
  • the UE performs symbol synchronization of the SCH with the target cell in the time T SeH SymM sync to determine the symbol timing and the subframe timing, and the UE determines the cell ID according to the P-SCH sequence information; and proceeds to step 5; wherein, T SeH symM sy
  • the influencing factors of toe are the same as described in step 3. If there are 2 SCHs in one frame, then
  • the UE can only determine the SCH symbol timing and the subframe timing, and cannot determine the frame timing. At this time, the UE can implement symbol synchronization in a subframe time without considering the wireless environment as the best.
  • Find the location of the SCH in a frame In this case, the UE finds the location of the SCH in the first subframe at the beginning; it does not consider the 10 subframes (that is, half a 10 ms in the worst case of the wireless environment).
  • the time of the frame can be used for symbol synchronization. In this case, the UE traverses all the positions in the 10 subframes until the 10th subframe finds the SCH; but in fact, because of the multipath, interference, etc.
  • Step 5 The UE and the target cell perform frame synchronization in time 1 ⁇ 1 " ⁇ syne and determine the group to which the cell belongs; wherein, TRadi. ft me sync toe indicates that the UE receives the signal of the cell synchronization channel SCH, and performs judgment. And the range of time values allowed by the frame synchronization with the cell, affecting the factor of 1 ⁇ . ⁇ 13 sync is the same as described in step 3.
  • the UE needs to determine the frame timing. After finding 4 or more than SCH, it is determined, as to how many SCHs can be determined, it needs to be based on the design of the last synchronization channel. Considering the influence of the wireless environment, interference, UE implementation, the search time will be greater than the above consideration.
  • the frame timing can be determined in the case of factors such as the wireless environment.
  • the ID group of the cell can be determined while determining the frame synchronization, for the reason: whether one or more SCH symbols, Represents a sequence that uniquely identifies the ID group of a cell.
  • SCH As described above, it may be the primary SCH, it may be the secondary SCH, or it may be SCH (that is, regardless of the primary/secondary)
  • the method for determining a frame synchronization and a cell group includes:
  • the frame timing and the cell ID group are mainly determined by the information carried by the BCH. In the best case, one frame is determined for a long time regardless of the factors of the wireless environment (because the BCH is transmitted in a radio frame period).
  • the frame timing and the cell ID group are determined by the pilot signals of the downlink common pilot channel.
  • the best case is that one frame is determined for a long time (the channel is transmitted in a radio frame period) .
  • Step 6 According to the cell ID and the cell ID group identified in the foregoing step, the UE may identify the cell;
  • Step 7 If the time when the UE identifies the cell exceeds the time 1 ⁇ 1 ⁇ ⁇ 0 TM cdl time range of the allowed identified cell, the cell is discarded and identified;
  • T id(:ntify unknoTM cell time indicates that the UE searches for a cell, synchronizes with the cell, and identifies the range of time values allowed by the cell.
  • the UE needs to perform multiple times due to factors such as the wireless environment and interference. Synchronize The occurrence of the anti-spoofing synchronization needs to consider the influence of the time of identifying the cell ID; the identify unknown ⁇ ti ⁇ is the maximum allowed time range of the identified cell, and the factors affecting the value include: the symbol synchronization time value of the SCH Range, frame synchronization time value range, identification of cell ID time value range, and/or number of times of synchronization, etc.
  • the inter-frequency measurement is also required while performing the same-frequency measurement, then all the time can be used for the same-frequency measurement. After the inter-frequency measurement is started, some time is used for the inter-frequency measurement, so identify ⁇ The value of TM 11 must be greater than the time required to not start the inter-frequency measurement. That is, at this time, the time is related to the density that can be used for the same-frequency measurement time.
  • Tl can be used for the measurement of the inter-frequency measurement: T Inter ; measurement by Repeated for the period, where the period may refer to the length of a measurement sequence, the length of the sequence may be determined in advance, or may be obtained according to the size of the data transmitted by the user information, or may be the period of measurement.
  • the density measured at the same frequency is: ⁇ ⁇ / ⁇ ⁇ , as shown in Figure 5.
  • the network side scheduling resource considers the case of the inter-frequency measurement, that is, the measured measurement gap. It can meet the requirements for inter-frequency measurement.
  • the network side does not consider the inter-frequency measurement when scheduling resources.
  • the scheduled measurement gap may meet the requirements of inter-frequency measurement, and may also partially satisfy and partially fail to meet the requirements of inter-frequency measurement. At this time, it is possible that the UE will abandon the measurement gap that does not satisfy the requirement of the inter-frequency measurement, and only use the gap that satisfies the measurement requirement for measurement.
  • the density used for the same-frequency measurement needs to be considered: the time during the measurement period can be used for the same-frequency measurement and the correction factor to calculate. That is, at this time, the same frequency measurement density is: ⁇ XT tra / T Mw CI refers to the correction factor, which is calculated by experiments, or the density is within the following range: (a X T I n tr a / T Mw ⁇ X Tlntra / T Mea Su re In the above formula, the boundary value may or may not be included.
  • ⁇ ⁇ refers to the correction factor, and the calculation of this value needs to be obtained through experiments.
  • Reason Considering that if the time when the UE performs the inter-frequency measurement in a certain period of time is uncertain, then the time-frequency measurement time density cannot be directly calculated according to Tl ⁇ / T M -, then the same frequency in this case
  • the measurement time density can be expressed as follows:
  • a fixed value which can be considered as a correction value, which can be arbitrarily drawn through multiple measurement cycles. Take a period of time to make an inter-frequency measurement, calculate the time density of the same-frequency measurement each time, and then average it.
  • the set fixed value may be set to different values depending on the wireless environment. If you set a fixed value, you can assume an average value for all wireless environments.
  • the second embodiment is to identify the operation process of the intra-frequency neighboring cell indicated by the network. As shown in FIG. 6, the method includes the following steps: Step 1: The network side sends a dedicated measurement control message or system message, and the delivered message indicates that The measured ID information of the same frequency cell and the cell;
  • the cell to be measured sent by the network side includes the following two situations: First, the classified cell includes: the same frequency layer cell, that is, at least the neighboring cell and the serving cell have the same center frequency, the same frequency neighboring cell or the different frequency layer. Cell; second is a cell that is not classified.
  • Step 5 The UE and the target cell are at time TRadi .
  • the frame sync time! is performed within the frame sync time; wherein the influencing factors of TRadio fi me s ⁇ toe are the same as those described in step 3 of the first embodiment.
  • the UE wants to determine the frame timing, it needs to find 4 and/or more than 1 SCH to determine. As for how many SCHs can be found, it needs to be determined according to the final SCH design. Considering the impact of the wireless environment, the search time will be greater than the time described above.
  • the influencing factors of TRadio frame sync tiffi e2 include: design of synchronization channel, implementation of UE.
  • the UE knows the ID information of the cell, that is, knows the ID group to which the cell ID belongs, so the UE can obtain the frame timing information by cyclic shift, that is, the UE shifts and receives the signal through the known sequence of code groups. Perform relevant judgments to obtain frame timing information therefrom.
  • Step 6 The UE performs correlation with the searched cell by using the known cell ID information in the time Tltoti & cell ID time ;
  • Step 7 If the UE finds a correlation peak, the cell is identified;
  • the UE repeats the foregoing method to identify the next neighboring cell according to the indication content of the network side.
  • Step 8 If the time when the UE identifies the cell exceeds the time Tito ⁇ ⁇ a value of the largest identified cell, and the cell is not identified, the cell is discarded.
  • the size of the T ⁇ ntify ceU ID toe value is set with the common pilot channel and/or the broadcast channel and/or the synchronization channel It depends on which channel the UE identifies the cell.
  • the third embodiment is to identify the operation process of the cell in the intra-frequency neighbor cell list indicated by the network. As shown in FIG. 7, the method includes the following steps:
  • Steps 1 to 5 are the same as those in the first embodiment.
  • the message sent by the network side indicates that the cell in the same-frequency neighbor cell list needs to be identified.
  • Step 6 The UE performs correlation with the searched cell by using the cell ID information in the known neighbor list in the time TM ⁇ TM cell ID time ;
  • Step 7 If the UE finds a correlation peak, it indicates that the cell is identified;
  • Step 8 If the two are not related, and the total recognition time exceeds the maximum allowable time ⁇ ⁇ value range, the identification is stopped, the cell is searched again and identified. If the time is not greater than the maximum allowed time 1 ⁇ 1 ⁇ 5 ⁇ value range, if there is still a cell in the neighbor list that has not been correlated, the ID information of the next cell that has not been correlated is selected, and step 6 is repeated. ;
  • the fourth embodiment is to identify a situation in which the same-frequency and inter-frequency cell is not transmitted by the network.
  • the specific steps include: Step 1: The network side sends a dedicated measurement control information or system message, and the delivered cell does not indicate that it is a co-frequency cell. Or the inter-frequency cell or other classification (for example: the same layer neighboring cell or the hetero-layer neighboring cell); Step 2: After receiving the message, the UE demodulates the message according to the indication of the network side at the time First, it is determined whether the first cell of the indication is performing the same frequency measurement or the inter-frequency measurement.
  • Step 3 If there is a neighboring cell, the UE repeats the above operation according to the indication content of the network side, and determines and identifies the next neighboring cell.
  • Titoti & ⁇ . TM. ⁇ is the maximum allowed cell time value range, and factors affecting the value include: the UE determines whether the time of the same-frequency neighboring cell and/or the symbol synchronization time of the SCH and/or the frame synchronization time and/or the identified cell ID time And/or the number of times to synchronize.
  • the process of identifying the cell ID group may be omitted according to actual conditions in actual operations, for example,
  • the network side sends the information of the cell ID, and the UE can perform the step of identifying the cell ID at this time, and obtain the timing information of the cell by cyclic shift or the like.
  • the present invention provides a device for controlling cell identification in a long term evolution system.
  • the device is disposed on the user equipment side.
  • One implementation is shown in FIG. 8.
  • the device includes: a time value range determining unit and a cell identification control unit.
  • the time value range determining unit is configured to determine each time value range of the process of controlling the identified cell.
  • the time value range determining unit further includes:
  • a factor of time range factor determining unit for determining a factor that affects the value of the range of time values
  • the time value range determining subunit is configured to determine a value range of each time value for controlling the process of identifying the cell according to the factor of the value of the influencing time value range.
  • the cell identification control unit is configured to control the process of identifying a cell according to each time value range determined by the time value range determining unit.
  • the cell identification control unit further includes:
  • the time value comparison unit is configured to compare the time occupied by each process of the identified cell with the predetermined time value range allowed by each process, thereby controlling the operation process of the identified cell.
  • the present invention obtains factors that affect the value of each operating process time value in the process of identifying a cell, including: common channel design, common pilot channel design, wireless environment, interference, adopted algorithm, UE implementation, and the like. Considering the above factors, the value range of each time value of the process of controlling the identified cell can be effectively determined, thereby realizing the control of the cell identification process.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

一种长期演进***中控制小区识别的方法及装置 技术领域
本发明涉及通信技术领域,尤其涉及一种长期演进***中控制小区识别的方法及装 置。
发明背景
为了能够促进 3G通信技术的持续发展, 3GPP提出并部署了 3G长期演进(LTE)工 作。 在 LTE中, 主要解决的问题是: 获得更高的用户数据率、 改进***容量和覆盖以及 合理灵活的 3G频谱分配。 在 LTE***中, UE在连接状态下, 可能会触发小区间的切换, 而是否进行小区间的切换取决于 UE的测量结果。
UE在对邻小区进行同频测量前, 需要先与邻小区取得同步, 之后识别小区。 对于
UE来说, 进行同频测量存在两种情况: 一是此时没有启动异频测量, 则 UE可以在接收 数据的同时进行同频测量; 二是启动了异频测量, 那么此时 UE只能在不进行异频测量 的时间内进行同频测量。 对于第一种情况而言, UE需要在一定的时间内必须识别小区, 也就是需要给 UE确定一个上限的时间, UE识别小区的时间最多为这个时间; 对于第二 种情况, 要求 UE在一定的时间内识别, 同时还需要考虑异频测量所带来的影响。
目前,在 WCDMA中,如果 UE处于 CELL— DCH (UE与网络侧通过专用信道(DCH) 接收 /发送数据)状态, 如果没有启动异频测量, 则 UE可以在接收网络侧数据的同时, 分别进行时隙同步、帧同步、码组识别、小区识别,且需要在 800ms内识别 monitoring set 内的小区; 如果启动了异频测量, 则 UE只能根据压缩模式序列在可以进行同频测量的 时隙内进行时隙同步、 帧同步、 码组识别、 小区识别, 且需要在 Tidentify intra内识别小 区, 该识别时间根据以下的公式计算:
Τ
丄 identify intra
Figure imgf000004_0001
其中: TbaSk identify FDD, intra表示基本的识别时间, 为 800mS; Measurement Period, Intra 表示测量 周期; TIntra表示 TM(:asurem(:rtMdIntra时间内可用于同频测量的时间。
上述应用于 WCDMA中的识别小区的技术不适于应用于 LTE中。 原因如下: LTE的 物理层技术以及测量的场景不同于 WCDMA的, 在 LTE中, UE没有 CELL— DCH状态, 所 以 UE进行同频测量的控制方法也不同于 WCDMA的。 故 WCDMA的方法不再适用于 LTEo 另一种应用于 WCDMA中的识别小区的技术如下:
如果 UE处于 CELL— FACH (UE与网络侧通过 FACH信道接收 /发送数据)状态, 如果 没有启动异频测量, 则 UE可以在接收网络侧数据的同时,分别进行时隙同步、帧同步、 码组识别、 小区识别, 且需要在 800ms内识别 monitoring set内的小区; 如果启动了异频 测量, 则 UE只能根据在规定的可进行同频测量的时隙内 (如如下的公式所示: NTTI ' (M_REP _ 1)' 10 )进行时隙同步、帧同步、码组识别、小区识别,且需要在 Tidentify intra内识别小区, 该识别时间根据以下的公式计算:
Tidentif intra = Maxl 800, Ceil j 1 · ΝΤΤΙ · Μ REP
LDENTLFY'INTRA [ [ NT T 腦'
TI b- (M_REP - I) - I OJ TTI - lo Jl 其中: T basii:id(:ntifyFDDintra表示基本的识别时间, 为 800ms; ΝΤΉ ' M_REP ' 10表示测量 周期; NTTI · (M_REP - 1)' 10表示 NTTI · M_REP · 10时间内可用于同频测量的时间。
上述识别小区的技术也不适于应用于 LTE中。 原因如下: LTE的物理层技术以及测 量的场景不同于 WCDMA的, 在 LTE中, UE也没有 CELL— FACH状态, 所以 UE进行同频 测量的控制方法也不同于 WCDMA的。 故 WCDMA中识别小区的方法不再适用于 LTE。 发明内容
本发明的目的在于提供一种长期演进***中控制小区识别的方法及装置。
本发明实施例是通过以下技术方案实现的:
本发明实施例提供一种长期演进***中控制小区识别的方法, 包括:
根据控制小区识别过程的各时间值范围的影响因素确定所述各时间值范围; 根据所述各时间值范围控制小区识别过程。 本发明实施例还提供一种长期演进***中控制小区识别的装置, 包括:
时间值范围确定单元, 用于确定控制识别小区过程的各时间值范围;
小区识别控制单元,用于根据所述时间值范围确定单元确定的各时间值范围控制识 别小区过程。
由上述本发明提供的技术方案可以看出,本发明获得了识别小区过程中影响各操作 过程时间值取值的因素, 包括: 公共信道设计、 公共导频信道设计、 无线环境、 干扰、 采用的算法、 UE的实现等。 在进行时间值仿真实验, 确定时间值过程中, 考虑上述因 素, 可以有效确定控制识别小区过程各时间值的取值范围, 从而实现小区识别过程的控 制。 附图简要说明
图 1为本发明所述方法实施例一操作流程图;
图 2为一个无线帧内仅有 1个同步信道符号示意图;
图 3为一个无线帧内有 2个同步信道符号示意图;
图 4为一个无线帧内仅有 4个同步信道符号示意图;
图 5为同频测量时间密度计算示意图;
图 6为本发明所述方法实施例二操作流程图;
图 7为本发明所述方法实施例三操作流程图;
图 8为本发明所述装置一种实施例模块示意图。
实施本发明的方式
本发明提供一种长期演进***中控制小区识别的方法,通过多个时间值来控制识别 小区的各操作过程。 因此, 若要实现识别小区的控制, 需要先确定所述各时间值的取值 范围。 下面通过几个实施例来说明本发明确定时间值时需要考虑的因素。
实施例一为没有邻区列表, UE识别小区的操作过程, 如图 1所示, 包括如下步骤: 步骤 1 : 网络侧下发测量控制消息;
步骤 2: UE收到消息后, 解调消息; 如果 SCH (同步信道) 信道在时域的设计为一 个无线帧内仅有 1个 SCH symbol (同步信道符号), 如图 2所示, gp iOms内仅有 1个 SCH symbol, 则 UE执行步骤 3, 否则执行步骤 4; 步骤 3 : UE在时间 TseH ^M s^ ti^ 内与目标小区进行符号同步, 确定符号定时以 及子帧定时, 同时确定帧定时; 同时 UE根据 P-SCH序列信息确定小区 ID, 根据 S-SCH序 列信息确定小区 ID组; 并转到执行步骤 6; 其中, ™ symM syn ic表示 UE接收到小区同步信道 的信号, 进行判断从而与 小区取得 SCH符号同步允许的时间值范围。 TSeH symM toe 的大小与同步信道的设计、 无线环境以及 UE 的实现有关。
所以当同步信道的设计为: 一个 10ms的帧内只有某一个子帧 (Sub-frame) 内有一 个 SCH时, UE在找到 SCH的同时, 可以确定子帧定时以及帧定时。 原因如下: 由于 SCH 符号在子帧以及一个 10ms帧中的位置是固定的, 故找到 SCH, 也即可确定子帧定时和帧 定时;
此时, UE在不考虑无线环境最好的情况下一个子帧的时间就可以实现符号同步, 即找到 SCH在一个帧中的位置,这种情况下, UE在一开始第一个子帧就找到了 SCH的位 置; 在不考虑无线环境最坏的情况下是一个帧的时间可以实现符号同步, 这种情况下, UE把一个帧内的所有位置都遍历了一遍,直到最后一个帧才找到 SCH;但事实上, 因为 无线环境多径、 干扰等的影响, 并不能保证 UE—次搜索的结果会非常准确, 所以通常
UE需要多次检测, 即 TseH ^M t^会大于最好情况下的同步时间。
也与 UE的具体实现有关系, 即不同的硬件性能会导致同步时间的 细微不同。
所述的无线环境,可以理解为该环境可以反映用户在一定的运动速度以及一定的传 播的环境下, 其接收信号的变化。 这里的传播环境可以反映信号的衰落情况, 比如, 高 楼林立的情况下与周围都是宽广平原, 所接收到的信号强度是不同的。 由于 LTE中, 需 要尽量保证子载波的正交性, 而频率偏移可以对这种正交性造成破坏, 而如果用户高速 运动时, 可能会造成较大的频率偏移, 从而影响子载波的正交性, 同时产生载波之间的 干扰, 会对接收端正确解调信号造成影响。 故需要考虑不同的无线环境下, 用户识别小 区的时间。
UE的硬件实现包括: 如果同频测量时, UE需要进行异频测量, 那么 UE需要调整接 收机到另外一个工作频率, 则 UE的硬件会从当前操作频率转到另外的工作频率, 这个 是需要时间的, 不同的硬件, 其时间可能会有细微的差别;
UE的软件实现: 比如 UE的搜索小区的算法, 不同的厂家, 其实现可能是不同的, 可能会造成识别小区时间上的一些差别;
步骤 4: 当 SCH信道在时域的设计为一个无线帧(BP lOms) 内有多个 SCH symbol, 如图 3及图 4所示, 图 3为一个帧内存在两个 SCH, 图 4为一个帧内存在 4个 SCH。 UE在时 间 TSeH SymM sync 内与目标小区进行 SCH的符号同步, 确定符号定时以及子帧定时, 同时 UE根据 P-SCH序列信息确定小区 ID; 并转到执行步骤 5; 其中, T SeH symM sy toe 的影响因素同步骤 3中所述。 如果一个帧内有 2个 SCH, 则
UE在查找到 SCH的同时, 只可以确定 SCH符号定时以及子帧定时, 不能确定帧定时; 此时, UE在不考虑无线环境最好的情况下一个子帧的时间就可以实现符号同步, 即找到 SCH在一个帧中的位置,这种情况下, UE在一开始第一个子帧就找到了 SCH的位 置; 也不考虑在无线环境最坏的情况下, 10个子帧(即半个 10ms帧)的时间可以实现符 号同步, 这种情况下, UE把 10个子帧内的所有位置都遍历了一遍, 直到第 10个子帧才 找到 SCH; 但事实上, 因为无线环境多径、干扰等的影响, 所以并不能保证 UE—次搜索 的结果会非常准确, 所以通常 UE需要多次检测, 即1^11 ^151 s^ t^会大于最好情况下 的同步时间。 步骤 5: UE与目标小区在时间1 ^1"。 ^ syne 内进行帧同步并确定小区所属的 Π)组; 其中, TRadi。 ft me sync toe表示 UE接收到小区同步信道 SCH的信号, 进行判断并与小区 取得帧同步允许的时间值范围, 影响了1^。^13 sync 的因素同步骤 3中所述。如: 假设一 个帧内有 4个 SCH, 那么, UE如果要确定帧定时, 需要找到 4个或大于 1个 SCH后确定, 至于找到多少个 SCH能确定, 需要根据最后同步信道的设计。 考虑到无线环境、 干扰、 UE实现的影响, 搜索的时间会大于如上所述的不考虑无线环境等因素影响的情况下可 以确定帧定时的时间。
如果是一个无线帧内有一个或多个 SCH符号, 且通过 SCH信道来确定帧同步, 则在 确定帧同步的同时即可确定小区的 ID组, 原因: 无论是一个还是多个 SCH符号, 都代表 了一个序列, 该序列可唯一确定一个小区的 ID组。
对于如上所述的 SCH, 可能是主 SCH, 可能是辅 SCH, 也可能是 SCH (即不分主 / 辅)
确定帧同步以及小区 Π)组的方法还包括:
1 )基于 BCH (广播信道):
主要是通过 BCH携带的信息来确定帧定时以及小区 ID组,最好的情况是,在不考虑 无线环境的因素时, 一个帧长时间内确定 (因为 BCH以一个无线帧为周期发射)。
2)基于下行导频信号:
通过下行公共导频信道的导频信号来确定帧定时以及小区 ID组,不考虑无线环境的 因素情况下, 最好的情况是一个帧长时间内确定 (该信道以一个无线帧为周期发射)。
步骤 6: 根据如上步骤中识别的小区 ID和小区 ID组, UE可识别该小区;
如果还需要 UE测量更多的同频邻小区, 则 UE继续搜索邻小区, 重复上述步骤。 步骤 7: 如果 UE识别小区的时间超过允许的识别小区的时间1^1^ ^0cdl time范 围, 则放弃识别该小区;
Tid(:ntify unkno™ cell time表示 UE搜索一个小区, 与小区取得同步并识别该小区所允许的 时间值范围。 在上述过程中, 由于无线环境、 干扰等因素的影响, UE需要进行多次同步, 以避 免伪同步的出现, 同时需要考虑识别小区 ID的时间的影响; 所述 dentify unknown ^ ti ^是允 许的最大的识别小区的时间值范围, 影响其取值的因素包括: SCH的符号同步时间值范 围、 帧同步时间值范围、 识别小区 ID时间值范围、 和 /或进行同步的次数等。 如果在进 行同频测量的同时还需要进行异频测量, 那么原本所有的时间都可以用于同频测量, 而 启动异频测量后, 则有些时间是要用于异频测量的, 因此 dentify ^™ 11 的值一定大 于不启动异频测量所需要的时间。也即此时, 该时间与可用于同频测量时间的密度, 有 关。
关于同频测量时间的密度的计算如下所述, 分两种情况:
1 )测量是以某个固定的序列重复进行的, 也即此时的测量时间具有重复性; 假设某段时间 内可用于同频测量的时间为: Tl 可用于异频测量的时间 为: TInter; 测量以
Figure imgf000009_0001
为周期重复进行, 此处的周期可以指一个测量序列的长度, 该序列长度可以是预先已经确定的, 也可以是根据用户的信息所传数据的大小所得出 的, 也可指测量的周期, 则同频测量的密度为: ΤΙ^ / ΤΜ^, 如图 5所示。
2 )测量时没有固定的序列, 也即用于异频测量的时间没有重复性, 该序列包括两 种情况: 一是网络侧调度资源时考虑了异频测量的情况, 即调度出的测量空隙可满足进 行异频测量的要求; 二是网络侧调度资源时未考虑异频测量的情况, 调度出的测量空隙 可能满足异频测量的要求, 也可能部分满足、 部分不满足异频测量的要求, 此时, 有可 能 UE会将不满足异频测量的要求的测量空隙(gap)放弃, 仅利用满足了测量要求的 gap 进行测量。
此时,用于同频测量的密度需要考虑: 测量周期内可用于同频测量的时间以及修正 因子来进行计算。 也即此时, 同频测量密度为: α X T tra / TMw CI指修正因子, 该 值的计算需要通过实验得出, 或者密度为如下范围内的值: (a X TIntra / TMw β X Tlntra / TMeaSure 上式中, 边界值可包括, 也可不包括。
同频测量时间密度公式中, α β指修正因子, 该值的计算需要通过实验得出。 原 因: 考虑到如果 UE在某段时间内进行异频测量的时间是不确定的话, 那么同频测量时 间密度是不能直接根据 Tl^ / TM—来计算的, 那么此种情况下的同频测量时间密度可 采用如下方式表达:
限定一个固定的值,该值可认为是一个修正值, 可通过在多次测量周期内的任意抽 取一段时间进行异频测量, 算出每次的同频测量时间密度, 之后进行平均得出。
所述设定的固定值可根据无线环境的不同而设定不同的值。若设定一个固定值, 则 可假定是所有无线环境下的平均值。 实施例二为识别网络指示的同频邻小区的操作过程, 如图 6所示, 包括如下步骤: 步骤 1 : 网络侧下发专用的测量控制消息或***消息, 下发的消息中指示了要测量 的同频小区及小区的 ID信息;
所述网络侧下发的要测量的小区包括如下两种情况:一是分类小区, 包括: 同频率 层小区, 即至少邻小区与服务小区有相同的中心频率、 同频邻小区或异频率层小区; 二 是不分类的小区。
步骤 2、 3、 4的操作同实施例一, 此处不再赘述; 步骤 5: UE与目标小区在时间 TRadiframe ¾™time1 ^ di。 frame sync time! 内进行巾贞同步; 其中, TRadio fi me s^ toe的影响因素同实施例一中步骤 3中所述。如:假设一个帧内有
4个 SCH, 那么, UE如果要确定帧定时, 需要找到 4个和 /或大于 1个 SCH后确定, 至于至 少找到多少个 SCH能确定, 需要根据最后 SCH的设计。 考虑到无线环境的影响, 搜索的 时间会大于如上所述的时间。
TRadio frame sync tiffie2 的影响因素包括: 同步信道的设计、 UE的实现。
此时, UE知道小区的 ID信息, 也即知道小区 ID所属的 ID组, 故 UE可通过循环移位 来获取帧定时信息, 即 UE通过已知的码组序列的移位与收到的信号进行相关判断, 从 中获取帧定时信息。 步骤 6: UE在时间 Tltoti& cell ID time 内通过已知的小区 ID信息与搜索到的小区进行相 关;
步骤 7: 如果 UE发现相关峰值, 则识别小区;
如果还有其他同频邻小区需要识别, 则 UE重复上述方法按照网络侧的指示内容, 识别下一个邻小区。
如果没有, UE继续搜索小区, 重复上述步骤。 步骤 8: 如果 UE识别小区的时间超过最大的识别小区的时间 Tito^ ^a值范围, 还没 有识别小区, 则放弃识别该小区;
其中, T ^ntify ceU ID toe值的大小与公共导频信道和 /或广播信道和 /或同步信道的设 计有关, 取决于 UE通过哪个信道识别小区。
上述过程中影响各时间值取值的因素同实施例一中所述。 实施例三为识别网络指示的同频邻小区列表中小区的操作过程, 如图 7所示, 包括 如下步骤:
其中, 步骤 1至步骤 5同实施例一中的操作; 在所述步骤 1中, 所述网络侧下发的消 息中指示需要识别同频邻小区列表中的小区。 步骤 6: UE在时间 Τμcell ID time 内通过已知的邻区列表中的小区 ID信息与搜索到 的小区进行相关;
步骤 7: 如果 UE发现相关峰值, 则表示识别小区;
如果邻区列表中还有未识别的小区, 则重复上述操作, 继续搜索未识别的小区。 步骤 8:如果二者不相关, 且总的识别时间超过了最大允许的时间 ^^^ ^值范围, 则停止识别, 重新搜索小区并识别。如果时间还没有大于最大允许的时间1^1^ 5 ^值范 围, 则如果邻区列表中还存在没有执行过相关的小区, 则选取下一个没有执行过相关的 小区的 ID信息, 重复步骤 6;
在上述的过程中, 影响各时间值取值的因素同实施例一中所述。 实施例四为识别网络下发的不区分同频、 异频小区的情况, 具体步骤包括: 步骤 1 : 网络侧下发专用的测量控制信息或***消息, 下发的小区没有指明是同频 小区还是异频小区或作其他的分类(比如: 同层邻小区或异层邻小区); 步骤 2: UE接收到所述消息后, 解调消息, 按照网络侧的指示在时间
Figure imgf000011_0001
内 首先判断对该指示的第一个小区是进行同频测量还是异频测量,如果是同频测量,则 UE 执行的步骤同实施例一中的操作; 如果是异频测量, 则按照异频测量的方法进行测量; 步骤 3: 如果还有邻小区, 则 UE根据网络侧的指示内容, 重复上述操作, 判断并识 别下一个邻小区。 在上述过程中, Titoti& ^。™。Λ是允许的最大的识别小区时间值范围, 影响其取 值的因素包括: UE判断是否同频邻小区的时间和 /或 SCH的符号同步时间和 /或 帧同步 时间和 /或识别小区 ID时间和 /或进行同步的次数。
上述各实施例中,识别小区 ID组的过程,在实际操作中根据实际情况可以省略,如, 网络侧下发了小区 ID的信息, 则 UE此时可以执行识别小区 ID的步骤, 通过循环移位等 方法获知小区的定时信息。
本发明提供一种长期演进***中控制小区识别的装置, 该装置设置于用户设备侧, 一种实施例如图 8所示, 所述装置包括: 时间值范围确定单元及小区识别控制单元。
所述时间值范围确定单元, 用于确定控制识别小区过程的各时间值范围。
所述时间值范围确定单元进一步包括:
影响时间值范围因素确定单元, 用于确定影响时间值范围取值的因素;
时间值范围确定子单元,用于根据所述影响时间值范围取值的因素确定控制识别小 区过程的各时间值的取值范围。
所述小区识别控制单元,用于根据所述时间值范围确定单元确定的各时间值范围控 制识别小区过程。
所述小区识别控制单元进一步包括:
时间值比较单元,用于比较识别小区各过程所占用的时间与预先确定的各过程允许 的时间值范围, 从而控制识别小区各操作过程。
综上所述,本发明获得了识别小区过程中影响各操作过程时间值取值的因素,包括: 公共信道设计、 公共导频信道设计、 无线环境、 干扰、 采用的算法、 UE的实现等。 考 虑上述因素, 可以有效确定控制识别小区过程各时间值的取值范围, 从而实现小区识别 过程的控制。
以上所述, 仅为本发明较佳的具体实施方式, 但本发明的保护范围并不局限于此, 任何熟悉本技术领域的技术人员在本发明揭露的技术范围内, 可轻易想到的变化或替 换, 都应涵盖在本发明的保护范围之内。 因此, 本发明的保护范围应该以权利要求的保 护范围为准。

Claims

权利要求
1、 一种长期演进***中控制小区识别的方法, 其特征在于, 包括:
根据控制小区识别过程的各时间值范围的影响因素确定所述各时间值范围; 根据所述各时间值范围控制小区识别过程。
2、如权利要求 1所述的一种长期演进***中控制小区识别的方法, 其特征在于, 所 述控制小区识别过程的时间值范围包括:
同步信道符号同步允许时间值范围、帧同步允许时间值范围、识别小区标识 ID允许 时间值范围、 识别测量类型允许时间值范围、 和 /或识别小区最大允许时间值范围。
3、如权利要求 2所述的一种长期演进***中控制小区识别的方法, 其特征在于, 影 响所述识别小区允许时间值范围的因素包括:
同步信道符号同步允许时间值范围、帧同步允许时间值范围、识别小区 ID允许时间 值范围、 进行同步的次数、 和 /或同频测量时间密度。
4、如权利要求 3所述的一种长期演进***中控制小区识别的方法, 其特征在于, 所 述识别小区 ID允许时间值范围为: 用户设备接收到小区公共信道或公共导频信道的信 号, 根据已知的小区 ID信息进行区分, 判断并识别邻小区 ID的允许时间值范围, 其影响 因素包括:
用户设备识别小区所使用的公共导频信道、 和 /或公共信道的设计。
5、如权利要求 3所述的一种长期演进***中控制小区识别的方法, 其特征在于, 所 述同频测量时间密度的计算方法包括:
当测量是以固定序列重复进行时,同频测量时间密度等于测量周期内用于同频测量 的时间与该段测量周期的比值; 或,
当测量没有固定序列时,针对不同无线环境,通过在多次测量周期内任意抽取一段 时间进行异频测量, 并计算每次的同频测量时间密度, 取多次计算所得平均值作为同频 测量时间密度。
6、如权利要求 1或 2所述的一种长期演进***中控制小区识别的方法, 其特征在于, 所述各时间值范围的影响因素包括:
公共信道设计、 公共导频信道设计、无线环境、干扰、 用户设备搜索小区采用的算 法、 用户设备的实现和 /或同频测量时间密度。
7、如权利要求 6所述的一种长期演进***中控制小区识别的方法, 其特征在于, 在 不考虑无线环境的情况下, 所述公共信道设计对各时间值范围的影响具体包括: 一个无线帧内只有一个同步信道符号时,则用户设备查找到同步信道符号的时间即 为同步信道符号定时、 子帧定时、 及帧定时时间; 或,
一个无线帧内有多个同步信道符号时,则用户设备需要查找到至少一个同步信道符 号时才能确定帧定时; 或,
通过广播信道携带的信息一个帧长时间内来确定帧定时以及小区 ID组。
8、如权利要求 6所述的一种长期演进***中控制小区识别的方法, 其特征在于, 在 不考虑无线环境的情况下, 所述公共导频信道设计对各时间值范围的影响具体包括: 通过下行公共导频信道的导频信号一个帧长时间内来确定帧定时以及小区 ID组。
9、如权利要求 6所述的一种长期演进***中控制小区识别的方法, 其特征在于, 所 述利用各时间值范围控制小区识别的方法具体包括:
利用同步信道符号同步最大允许时间、帧同步最大允许时间控制与同频邻小区的同 步操作, 确定小区 ID组或小区 ID;
利用识别小区 ID最大允许时间控制识别小区 ID过程,并利用识别小区最大允许时间 控制整个识别小区操作。
10、 如权利要求 9所述一种长期演进***中控制小区识别的方法, 其特征在于, 所 述识别小区的操作进一步包括:
UE通过已确定的小区 ID组内所包括的所有小区 ID与携带了目标小区 ID信息的信道 进行相关, 如果 UE发现相关峰值, 则可识别出小区; 如果 UE识别小区的时间超过最大 允许的识别小区的时间, 则放弃识别该小区。
11、 如权利要求 9所述一种长期演进***中控制小区识别的方法, 其特征在于, 所 述识别小区的操作进一步包括:
UE在通过已知的邻区列表中的小区 ID信息与搜索到的小区进行相关, 如果 UE发现 相关峰值, 则表示识别出小区; 如果二者不相关, 且总的识别时间超过了识别小区最大 允许的时间, 则停止识别小区操作; 如果时间还没有大于识别小区最大允许的时间, 则 选取下一个没有执行过相关的小区的信息继续执行相关操作。
12、 一种长期演进***中控制小区识别的装置, 其特征在于, 包括:
时间值范围确定单元, 用于确定控制识别小区过程的各时间值范围;
小区识别控制单元,用于根据所述时间值范围确定单元确定的各时间值范围控制识 别小区过程。
13、 如权利要求 12所述的一种长期演进***中控制小区识别的装置, 其特征在于, 所述时间值范围确定单元进一步包括:
影响时间值范围因素确定单元, 用于确定影响时间值范围取值的因素; 和 /或, 时间值范围确定子单元,用于根据所述影响时间值范围取值的因素确定控制识别小 区过程的各时间值的取值范围。
14、 如权利要求 12所述的一种长期演进***中控制小区识别的装置, 其特征在于, 所述小区识别控制单元进一步包括:
时间值比较单元,用于比较识别小区各过程所占用的时间与预先确定的各过程允许 的时间值范围, 从而控制识别小区各操作过程。
15、如权利要求 12、 13或 14所述的一种长期演进***中控制小区识别的装置, 其特 征在于, 所述装置设置于用户设备侧。
PCT/CN2007/070487 2006-08-18 2007-08-15 Procédé de commande de l'identification des cellules dans un système lte et appareil à cet effet WO2008022591A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200610111437.8 2006-08-18
CNA2006101114378A CN101128032A (zh) 2006-08-18 2006-08-18 一种长期演进***中控制小区识别的方法及装置

Publications (1)

Publication Number Publication Date
WO2008022591A1 true WO2008022591A1 (fr) 2008-02-28

Family

ID=39095916

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2007/070487 WO2008022591A1 (fr) 2006-08-18 2007-08-15 Procédé de commande de l'identification des cellules dans un système lte et appareil à cet effet

Country Status (2)

Country Link
CN (1) CN101128032A (zh)
WO (1) WO2008022591A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103220702A (zh) * 2012-01-19 2013-07-24 华为技术有限公司 一种异频小区测量方法、装置和***

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102067718B (zh) * 2008-06-02 2013-06-26 华为技术有限公司 无线通信***中的方法
CN101801064B (zh) * 2009-02-10 2013-06-26 电信科学技术研究院 一种识别小区和/或小区载波的方法、装置及***
CN102196471B (zh) * 2010-03-01 2014-12-24 上海华为技术有限公司 一种邻区测量的方法、装置及***

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005051476A (ja) * 2003-07-28 2005-02-24 Nec Corp Cdma基地局間非同期セルラ方式の移動局とそのセルサーチ方法
JP2005136748A (ja) * 2003-10-30 2005-05-26 Kyocera Corp 移動体通信システム、移動体装置及び基地局装置
WO2006061161A2 (en) * 2004-12-06 2006-06-15 Telefonaktiebolaget Lm Ericsson (Publ) Initial cell search in mobile communications systems
WO2006067657A1 (en) * 2004-12-24 2006-06-29 Koninklijke Philips Electronics N.V. Method and apparatus for cell search in wireless communication system
CN1816185A (zh) * 2005-02-01 2006-08-09 日立通讯技术株式会社 无线通信***和无线基站控制装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005051476A (ja) * 2003-07-28 2005-02-24 Nec Corp Cdma基地局間非同期セルラ方式の移動局とそのセルサーチ方法
JP2005136748A (ja) * 2003-10-30 2005-05-26 Kyocera Corp 移動体通信システム、移動体装置及び基地局装置
WO2006061161A2 (en) * 2004-12-06 2006-06-15 Telefonaktiebolaget Lm Ericsson (Publ) Initial cell search in mobile communications systems
WO2006067657A1 (en) * 2004-12-24 2006-06-29 Koninklijke Philips Electronics N.V. Method and apparatus for cell search in wireless communication system
CN1816185A (zh) * 2005-02-01 2006-08-09 日立通讯技术株式会社 无线通信***和无线基站控制装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103220702A (zh) * 2012-01-19 2013-07-24 华为技术有限公司 一种异频小区测量方法、装置和***
US10039024B2 (en) 2012-01-19 2018-07-31 Huawei Technologies Co., Ltd. Method, device, and system for inter-frequency cell measurement
US10687240B2 (en) 2012-01-19 2020-06-16 Huawei Technologies Co., Ltd. Method, device, and system for inter-frequency cell measurement

Also Published As

Publication number Publication date
CN101128032A (zh) 2008-02-20

Similar Documents

Publication Publication Date Title
US10313939B2 (en) Method and apparatus for supporting handover of user equipment in mobile communication system
US9497693B2 (en) Extension carrier discovery for carrier aggregation
US8625540B2 (en) Mobile communication system, base station device, mobile station device, and mobile communication method
EP2485545B1 (en) Communications in an asynchronous wireless network
EP2721896B1 (en) Methods and nodes for random access
EP2156577B1 (en) Method and apparatus for transmitting/receiving pilot signal in a wireless communication system
KR100965663B1 (ko) 무선통신시스템을 위한 하향링크 동기채널의 송수신 방법및 장치
EP1887823A1 (en) Wireless communication system, base station, mobile station, and wireless communication method
TWI396457B (zh) 在w-cdma硬交遞中的細胞服務區時序擷取
EP2387856B1 (en) Method and apparatus for cell searching
US7369534B2 (en) Reducing search time using known scrambling code offsets
JP6283110B2 (ja) セル同期および同期セルインジケーション
WO2010146941A1 (en) Systems and methods for component carrier selection in a wireless communication system
CN107005955B (zh) 时间同步方法、设备及***
CN109474938B (zh) 获取邻小区定时的方法、装置及用户设备
WO2011150577A1 (zh) Lte连接模式下异频异***测量调度方法、装置及终端
EP3466154A1 (en) Mobility measurement initiation using a triggering link quality measurement signal
WO2008022591A1 (fr) Procédé de commande de l'identification des cellules dans un système lte et appareil à cet effet
JP2014107845A (ja) 通信システム
WO2019137293A1 (zh) 一种基站间的同步方法及装置
JP3778780B2 (ja) 携帯電話機
JP5766842B2 (ja) 通信システム、小型基地局装置及びサーバ装置
JP5178580B2 (ja) 移動局、セルサーチ方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07800963

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 07800963

Country of ref document: EP

Kind code of ref document: A1