WO2008020581A1 - Light-emitting device and hologram reproducer employing the light-emitting device - Google Patents

Light-emitting device and hologram reproducer employing the light-emitting device Download PDF

Info

Publication number
WO2008020581A1
WO2008020581A1 PCT/JP2007/065805 JP2007065805W WO2008020581A1 WO 2008020581 A1 WO2008020581 A1 WO 2008020581A1 JP 2007065805 W JP2007065805 W JP 2007065805W WO 2008020581 A1 WO2008020581 A1 WO 2008020581A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
support plate
light
emitting device
surface emitting
Prior art date
Application number
PCT/JP2007/065805
Other languages
French (fr)
Japanese (ja)
Inventor
Shinji Mitsuya
Yoshihiro Someno
Seiichi Ohgoshi
Original Assignee
Alps Electric Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co., Ltd. filed Critical Alps Electric Co., Ltd.
Publication of WO2008020581A1 publication Critical patent/WO2008020581A1/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/22Processes or apparatus for obtaining an optical image from holograms
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/22Processes or apparatus for obtaining an optical image from holograms
    • G03H1/2286Particular reconstruction light ; Beam properties
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/004Recording, reproducing or erasing methods; Read, write or erase circuits therefor
    • G11B7/0065Recording, reproducing or erasing by using optical interference patterns, e.g. holograms
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/125Optical beam sources therefor, e.g. laser control circuitry specially adapted for optical storage devices; Modulators, e.g. means for controlling the size or intensity of optical spots or optical traces
    • G11B7/127Lasers; Multiple laser arrays
    • G11B7/1275Two or more lasers having different wavelengths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/42Arrays of surface emitting lasers
    • H01S5/423Arrays of surface emitting lasers having a vertical cavity
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2222/00Light sources or light beam properties
    • G03H2222/34Multiple light sources
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/005Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/023Mount members, e.g. sub-mount members
    • H01S5/02325Mechanically integrated components on mount members or optical micro-benches
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0233Mounting configuration of laser chips
    • H01S5/0234Up-side down mountings, e.g. Flip-chip, epi-side down mountings or junction down mountings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0233Mounting configuration of laser chips
    • H01S5/02345Wire-bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0235Method for mounting laser chips
    • H01S5/02355Fixing laser chips on mounts
    • H01S5/0236Fixing laser chips on mounts using an adhesive
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0235Method for mounting laser chips
    • H01S5/02355Fixing laser chips on mounts
    • H01S5/02365Fixing laser chips on mounts by clamping

Definitions

  • the present invention relates to a light emitting device used for a hologram reproducing device, for example.
  • a surface emitting laser array in which a plurality of surface emitting lasers (VCSEU are arranged) is used for the light emitting device that emits the reproduction reference light.
  • the advantage of using a plurality of surface emitting lasers in this way is that the wavelength band of the reproduction reference light can be widened easily and inexpensively.
  • a wide range of wavelength bands can be obtained by combining a plurality of surface emitting lasers having different wavelength bands of the reproduction reference light.
  • a surface emitting laser array having such a wide wavelength band when a plurality of holographic data is recorded in a wide wavelength band by wavelength multiplexing, the entire area of the wavelength band is covered. It is possible. Therefore, each hologram data can be reproduced appropriately.
  • hologram data recorded at wavelength ⁇ cannot be reproduced at wavelength ⁇ due to, for example, anisotropic thermal expansion of the recording medium, and must be reproduced at wavelength 0 different from wavelength ⁇ .
  • the hologram data can be appropriately reproduced by switching to the surface emitting laser having the wavelength.
  • Patent Document 1 JP 2005-331864 A
  • Patent Document 2 Japanese Unexamined Patent Publication No. 2006-58726 Patent Document 2: JP 2003-233293 Koyuki
  • the surface emitting laser has a thickness variation.
  • two surface emitting lasers 2 and 3 are installed on the substrate 1.
  • the substrate 1 and the surface emitting lasers 2 and 3 are included in the surface emitting laser array 6.
  • a collimator lens 4 is provided between the surface emitting laser array 6 and the recording medium 5.
  • the collimator lens 4 adjusts the reproduction reference beams 2a and 3a irradiated from the surface emitting lasers 2 and 3 to parallel beams.
  • the surfaces 2b and 3b of the light emitting portions of the surface emitting lasers 2 and 3 (hereinafter defined as light emitting points). )
  • the distance HI between the light emitting point 2b of the surface emitting laser 2 and the principal point 4a of the collimator lens 4 and the distance H2 between the light emitting point 3b of the surface emitting laser 3 and the principal point 4a of the collimator lens 4 are It will be different.
  • the reproduction reference light 2a when the distance H2 between the light emitting point 3b of the surface emitting laser 3 and the principal point 4a of the lens 4 is adjusted so that the reproduction reference light 3a becomes parallel light, the light emitting point 2b Since the distance HI to the principal point 4a is shorter than the distance H2, the other reproduction reference light 2a becomes diffused light as shown in FIG. Alternatively, when the distance HI is longer than the distance H2, the reproduction reference light 2a becomes focused light. In the case of diffused light, the reproduction reference light 2a is irradiated to the entire hologram data 7 recorded on the recording medium 5, but the hologram data 7 is appropriately reproduced since the light intensity of the reproduction reference light 2a is weakened. If not, problems arise. Further, when the reproduction reference beam 2a becomes a focused beam, the reproduction data beam 2a is not properly irradiated on the entire hologram data 7, and there is a problem that the hologram data 7 cannot be reproduced. .
  • the present invention is for solving the above-described conventional problems, and in particular, a plurality of light emitting devices. It is an object of the present invention to provide a light emitting device capable of appropriately and easily reducing the variation in height of each light emitting point of an element and a hologram reproducing device using the light emitting device.
  • a plurality of light emitting elements and a support plate for supporting each light emitting element from the element surface side where the light emitting point appears,
  • the opposing surface of the support plate facing the element surface is formed to have the same plane, and the element surfaces of the plurality of light emitting elements are supported on the same plane. is there.
  • the support plate is preferably formed of a high thermal conductivity ceramic plate.
  • the light emitting element can appropriately dissipate heat, and a light emitting device with high performance and long life can be obtained.
  • the support plate has a heat conductivity higher than that of the support plate and is provided with a heat radiating plate. Thereby, it is possible to appropriately dissipate heat from the light emitting element.
  • a high-performance and long-life light-emitting device can be obtained.
  • the support plate is insulative, and the heat dissipation plate is formed of metal.
  • the opposing surface of the support plate is provided with a support plate side electrode that is electrically connected to the element side electrode provided in the light emitting element, and the heat dissipation plate is connected to the support plate side electrode. It is preferable that it functions as an electrode.
  • the heat radiating plate also as an electrode, a large area heat radiating plate including the supporting plate side electrode can be appropriately arranged within the limited area of the facing surface of the supporting plate.
  • the support plate may be formed of a metal plate.
  • the radiation of the light emitting element can be appropriately performed.
  • the support plate is provided with each light emitting element. Preferably function as a common electrode.
  • a positioning portion for the support plate is provided on the surface of the light emitting element, and a through hole is provided in the support plate at a position facing the light emitting point and the positioning portion.
  • the light from the light emitting point is irradiated through the through hole, and the light emitting element is positioned with respect to the support plate using the positioning portion visible from the through hole.
  • the light emitting element can be positioned with high accuracy on the support plate.
  • the support plate may be formed of a lens.
  • a lens lens disposed closest to the light-emitting device used in the hologram reproducing device.
  • the support plate is formed of a lens, a positioning portion for the support plate is provided on the element surface of the light emitting element, and the light emitting element is positioned so that the support plate can be seen through from the surface. It is positioned with respect to the support plate using the part! /, And the force S is preferred! /.
  • the positioning portion can be seen through from the lens surface as described above, so that it is not necessary to form a through-hole for viewing the positioning portion from the lens surface.
  • the element back surface opposite to the element surface may be pressed by an elastic member in the element surface direction.
  • a back electrode is formed on the back surface of the element, the elastic member is made of metal, and the back electrode and the elastic member are electrically connected to each other.
  • the hologram reproducing device of the present invention is a light emitting device described in any of the above, an imaging mechanism for acquiring data recorded on a recording medium, and an installation for installing the recording medium.
  • a reproducing reference light from the light emitting element is applied to the recording medium, and the data is acquired by the imaging mechanism. Even when the thickness of each light emitting element is different, the variation in the height of the light emitting point of each light emitting element can be reduced as compared with the conventional one, so that the data can be reproduced with high accuracy.
  • the reproduction reference light is adjusted to parallel light between the installation section and the light emitting device. It is preferable that a collimator lens for adjusting is provided, and the distance between the light emitting point of each surface emitting laser and the principal point of the collimator lens is set to be the same distance in each light emitting element. As a result, a hologram reproducing apparatus having a highly accurate reproducing function can be obtained.
  • the light-emitting device of the present invention has a plurality of light-emitting elements and a support plate that supports each light-emitting element from the element surface side where the light-emitting point appears, and the opposing surface of the support plate that faces the element surface. Are formed in the same plane, and each element surface of the plurality of light emitting elements is supported on the same plane.
  • a hologram reproducing device having a highly accurate reproducing function can be obtained.
  • FIG. 1 is a conceptual diagram in which hologram data is reproduced from a recording medium by a hologram reproducing device.
  • 2 is a partial cross-sectional view of the light emitting device (surface emitting laser array) and the micro lens array in the present embodiment
  • FIG. 3 is a partial plan view of the light emitting device shown in FIG. 2
  • FIG. 4 is a diagram of the light emitting device shown in FIG. It is a partial back view.
  • FIG. 5 is a partial cross-sectional view of a light-emitting device in an embodiment different from FIG. 2
  • FIG. 6 is a partial cross-sectional view of a light-emitting device that is partially different from FIG.
  • FIG. 5 is a partial cross-sectional view of a light-emitting device in an embodiment different from FIG. 2
  • FIG. 6 is a partial cross-sectional view of a light-emitting device that is partially different from FIG. FIG.
  • FIG. 7 is a partial cross-sectional view of a light-emitting device according to another embodiment different from FIGS. 2, 5, and 6.
  • FIG. 8 is a partial plan view of the light-emitting device shown in FIG.
  • FIG. 9 is a partial cross-sectional view of a light emitting device in another embodiment different from those in FIGS. 2, 5, 6 and 8.
  • FIG. 10 is a partially enlarged sectional view showing a part of FIG. 2 in an enlarged manner
  • FIG. 11 is a partially enlarged sectional view partially different from FIG. 12 and 13 are partial cross-sectional views of a light emitting device that is partially different from FIG. FIG.
  • FIG. 14 is a conceptual diagram for explaining the irradiation state of reproduction reference light irradiated from each surface emitting laser by incorporating the light emitting device of this embodiment into a hologram reproducing device.
  • the “partial sectional view” refers to a part of a cut surface obtained by cutting from a direction parallel to the thickness direction in all drawings.
  • a hologram reproducing device 10 shown in FIG. 1 includes a plurality of surface emitting lasers (on the same support plate 50).
  • VCSEL light emitting element
  • 12 are supported by a surface emitting laser array 14, a microlens array 15, a collimator lens 16, an image sensor 18 such as a CCD or CMOS, a pinhole filter 19, And an installation unit (not shown) for installing the recording medium 20.
  • holographic data 21 is recorded on the recording medium 20 by a hologram recording device (not shown).
  • the hologram data 21 appears as interference fringes.
  • FIG. 1 only one hologram data 21 is illustrated. Actually, a large number of hologram data 21 are recorded by wavelength multiplexing or angle multiplexing.
  • the reproduction reference beam 22 is irradiated toward the recording medium 20 from the surface emitting laser 12 of the hologram reproducing apparatus 10 shown in FIG.
  • the light diameter of the reproduction reference light 22 is expanded by the microlens array 15 arranged in parallel with the support plate 50, and further collimated by the collimator lens 16.
  • the reproduction reference beam 22 is applied to the recording medium 20 at an irradiation angle ⁇ 1.
  • the reproduction reference light 22 is irradiated onto the hologram data 21
  • the light is diffracted by the interference fringes satisfying the Bragg conditional expression, and the reproduction light (diffracted light) 23 is directed from the recording medium 20 toward the image sensor 18. Released.
  • the reproduction light 23 reaches the image sensor 18 through a pinhole 19a provided in the pinhole filter 19.
  • the contents of the hologram data 21 are reproduced.
  • the reason why the pinhole filter 19 is provided is that when the reproduction reference beam 22 is irradiated onto the recording medium 20 and reproduction light of a plurality of hologram data is emitted from the recording medium 20, only one of the reproduction light 23 is emitted. Is provided in order for the image sensor 18 to receive light appropriately. By providing the pinhole filter 19, a plurality of the hologram data 21 can be appropriately reproduced.
  • light emitting portions 12a and 13a are formed on the surface side of the surface emitting lasers 12 and 13, and the surfaces of the light emitting portions 12a and 13a appear on the element surfaces 12b and 13b. .
  • the surfaces of the light emitting portions 12a and 13a are referred to as “light emitting points 12al and 13al”.
  • surface electrodes 46 and 32 are formed on the element surfaces 12b and 13b.
  • the surfaces of the surface electrodes 46 and 32 are formed in the same plane as the element surfaces 12b and 13b.
  • the entire device surfaces 12b and 13b are flattened surfaces.
  • the surface electrodes 46 and 32 may be formed on the element surfaces 12b and 13b, and a step may be formed between the surface electrodes 46 and 32 and the element surfaces 12b and 13b. It will be described later.
  • the back electrodes 33, 34 are formed on the 12c, 13c.
  • the (maximum) thickness dimension of the surface emitting laser 12 is H3, the (maximum) thickness dimension of the surface emitting laser 13 is H4, and the thickness dimension H3 , H4 is different.
  • the thickness dimensions H3 and H4 are different, it is preferable to adopt the structure of the surface emitting laser array 14 in this embodiment because the effects of the present invention are appropriately exhibited.
  • the support plate 50 supports the surface emitting lasers 12 and 13 from the element surface 12b and 13b side.
  • the planar form of the support plate 50 is, for example, rectangular, but the form is not limited.
  • the opposing surface (back surface) 50a of the support plate 50 facing the element surfaces 12b and 13b is formed in the same plane.
  • “same plane” means that the planes are formed at the same height.
  • the opposing surface 50a may be referred to as the same plane 50a.
  • the element surfaces 12b, 13b of the plurality of surface emitting lasers 12, 13 are supported in contact with the same plane 50a. Thereby, even if the thicknesses of the surface emitting lasers 12 and 13 are different as shown in FIG. 2, the height of the element surfaces 12b and 13b with respect to the support plate 50 can be made substantially the same. , 13al height variation can be suppressed compared to the conventional one.
  • the light emitting points 12al and 13al of the surface emitting lasers 12 and 13 are provided at positions parallel to the support plate 50 and facing the surface emitting lasers 12 and 13, respectively.
  • the principal point with each microlens 30, 31 (here, the principal point is defined as the film thickness center at the center of each microlens 30, 31)
  • the distances H5, H6 between 30a and 31a can be made substantially the same.
  • the support plate 50 is provided with through holes 50b and 50c at positions facing the light emitting points 12al and 13al of the surface emitting lasers 12 and 13, respectively.
  • the support plate 50 is made of an insulating material having low light transmittance or zero light transmittance, and light from the surface emitting lasers 12 and 13 passes through the through holes 50b and 50c and the microlens.
  • the array 15 is irradiated.
  • the diameter of the light is expanded by the micro lenses 30 and 31.
  • the micro lenses 30 and 31 may be any type of lens as long as the light diameter can be expanded.
  • a convex lens, a meniscus lens, or the like may be used.
  • the main points 30a, 31a between the emission points 12al, 13al of the surface emitting lasers 12, 13 and the microlenses 30, 31 provided at positions facing the surface emitting lasers 12, 13, respectively.
  • the light emitted from the light emitting parts 12a and 13a is made into light having the same light diameter by the microphone lenses 30, 31 and further ahead.
  • a collimator lens 16 is irradiated.
  • first support plate side electrodes 49, 52 electrically connected to the back electrodes 33, 34 of the surface emitting lasers 12, 13 are provided.
  • first support plate side electrodes 49, 52 electrically connected to the back electrodes 33, 34 of the surface emitting lasers 12, 13 are provided.
  • second support plate side electrode is provided on the facing surface 50a facing the surface electrodes 46, 32. Being! /
  • the first support plate side electrodes 49, 52 and the back electrodes 33, 34 of the surface emitting lasers 12, 13 are electrically connected via wires 35, 36. (Wire bonding).
  • the second support plate side electrode and the surface electrodes 46, 32 are electrically connected via a conductive adhesive such as solder as will be described later.
  • the planar areas of the through holes 50b and 50c formed in the support plate 50 are formed larger than the sizes of the light emitting points 12al and 13al of the surface light emitting lasers 12 and 13, respectively.
  • the through holes 50b and 50c have a rectangular shape, and the long side thereof is, for example, a length dimension in the short direction (dimension in the X direction in the drawing) of the surface emitting lasers 12 and 13. It has a wide length dimension, and its short side (Y direction in the figure) is formed to be several to several tens of times as large as the light emitting points 12al and 13al.
  • the planar shape of the through holes 50b and 50c is not limited to the force rectangular shape which is rectangular in FIG. As shown in FIG.
  • the surface portion 50d of the support plate 50 is also provided with mark portions 5;
  • the mark parts 51, 37, 38, and 54 are placed on a virtual line D parallel to the X direction shown in the figure, and the mark parts 52, 37, 56 and 39 (53, 38, 57 and 40) are arranged in a straight line on a virtual line E parallel to the Y direction shown in the figure, and the surface emitting lasers 12 and 13 are positioned with respect to the support plate 50.
  • the surface emitting lasers 12 and 13 can be accurately positioned with respect to the support plate 50 in both the X direction and the Y direction.
  • the mark portion is not particularly limited in form, such as coloring or uneven shape.
  • the formation of the mark portion is not particularly limited by laser marking, etching, sputtering or the like.
  • the positioning method of the surface emitting lasers 12 and 13 with respect to the support plate 50 may be a method other than aligning a plurality of mark portions on a straight line as described above, or a part of the mark portions may be omitted. .
  • the support plate 50 is an insulating substrate.
  • the support plate 50 may be an inorganic insulating substrate or an organic insulating substrate.
  • the support plate 50 may be a silicon substrate having a thin oxide film (insulating film) formed on the surface! /. If the support plate 50 is of a type that transmits infrared rays, the support plate 50 and the surface emitting lasers 12 and 13 can be welded by infrared rays.
  • a heat radiating plate 60 having a higher thermal conductivity than the support plate 50 is provided on the facing surface 50 a of the support plate 50.
  • the heat sink 60 is made of metal and is electrically connected to the second support plate side electrode 61 that is electrically connected to the surface electrode 46 of the surface emitting laser 12! / That is, the heat radiating plate 60 functions as an electrode similarly to the second support plate side electrode 61.
  • the heat sink 60 may be formed of the same material as the second support plate side electrode 61 or may be formed of a different material.
  • the second support plate side electrode 61 and the heat dissipation plate 60 are integrated with each other rather than separately forming the second support plate side electrode 61 and the heat dissipation plate 60. It is preferable to form with a body shape. In other words, the second support plate side electrode 61 is formed with a larger area (area of reference numeral 60 + 61) than the conventional one (only the portion of reference numeral 61), and the heat dissipation effect by the second support plate side electrode 61 is enhanced. I like it! / The heat sink 60 and the support plate side power The area combined with the pole 61 is larger than the plane area of the surface emitting laser 12.
  • the heat sink 60 is formed of a material having higher thermal conductivity than the second support plate side electrode 61. This is preferable because the heat dissipation effect can be appropriately increased.
  • the shape of the heat sink 60 is not particularly limited. In FIG. 4, the heat radiating plate 60 is substantially L-shaped, but other forms are naturally possible. Further, the heat radiation plate 60 may be in direct contact with the element surface 12b of the surface emitting laser 12 without being in electrical contact with the second support plate side electrode 61. In such a case, the heat sink 60 does not function as an electrode.
  • the heat sink 60 may not be formed of metal, but may be formed of a high thermal conductivity ceramic such as A1N.
  • the support plate 50 itself is formed of a highly thermally conductive ceramic plate or the like.
  • the heat radiating plate 60 is formed of a material having a higher thermal conductivity than the support plate 50.
  • the surface emitting laser 12 is used for explanation, but the other surface emitting lasers 13 preferably have the same configuration.
  • a support plate 70 for supporting the surface emitting lasers 12 and 13 may be formed of metal (hereinafter, the support plate 70 is made of metal). Say the board). A force capable of selecting copper, aluminum or the like as the metal material.
  • the metal plate 70 is preferably a hard material with good flatness.
  • the metal plate 70 is electrically connected to the surface electrodes 46, 32 of the surface emitting lasers 12, 13, and the metal plate 70 functions as a common electrode for the surface emitting lasers 12, 13. Yes.
  • an auxiliary plate 71 is provided around, for example, the metal plate 70.
  • the auxiliary plate 71 needs to be an insulating substrate.
  • the auxiliary plate 71 may be an insulating substrate having a low thermal conductivity as in the conventional case.
  • the auxiliary plate 71 is provided with first support plate side electrodes 49 and 52 which are electrically connected to the backside electrodes 33 and 34 of the surface emitting lasers 12 and 13 through wires 35 and 36, respectively. .
  • a microlens array 15 is provided on the upper surface 71a of the auxiliary plate 71 via a spacer 72. It is A predetermined gap is provided between the microlens array 15 and the metal plate 70.
  • the microlens array 15 is also incorporated into the hologram reproducing device 10 as a part of the surface emitting laser array 14.
  • the microphone lens array 15, the surface emitting laser array 14, Needless to say, may be incorporated in the hologram reproducing apparatus 10 as separate parts.
  • the microlens array 15 may be incorporated as a part of the surface emitting laser 13 using a spacer 72.
  • the facing surface 70 a of the metal plate 70 facing the surface emitting lasers 12 and 13 is formed in the same plane.
  • the facing surface 70a may be referred to as the same plane.
  • the element surfaces 12b and 13b of the surface emitting lasers 12 and 13 are in contact with and supported by the same plane 70a.
  • the metal plate 70 is formed with through holes 70b, 70c at positions facing the light emitting points 12al, 13al. As described with reference to FIG. 3, the through holes 70b, A positioning mark portion (not shown) appears from 70c so that the surface emitting lasers 12, 13 can be positioned with respect to the metal plate 70 with high accuracy.
  • the microlens array 15 and the metal plate 70 may overlap each other.
  • the surface 70d of the metal plate 70 (the surface facing the microlens array 15) is formed as a flattened surface, while the microlenses 30 and 31 are formed as concave lenses, and the lenses 31 and 32 are formed.
  • the micro lenses 30 and 31 may be other than concave lenses.
  • the back surfaces of the micro lenses 30 and 31 are flattened surfaces. It becomes a recess!
  • the lens array 15 and the metal plate 70 can be appropriately stacked.
  • the amount of light leakage can be reduced and the light intensity can be increased.
  • “superimpose” includes not only the case where the microlens array 15 and the metal plate 70 are in contact, but also the state where an adhesive layer (not shown) is interposed between the microlens array 15 and the metal plate 70. .
  • the support plate 50 and the microlens array 15 can be overlapped in the same manner.
  • the surface emitting laser array 80 is configured by including the microlens array 15 and the surface emitting lasers 12 and 13.
  • the first support plate side electrodes 83 and 84 and the second support plate side electrode 85 are provided on the back surface 15a of the microlens array 15 (the surface facing the surface emitting lasers 12 and 13).
  • the element surfaces 12b and 13b of the surface emitting lasers 12 and 13 are in contact with and supported by the electrodes.
  • the micro lenses 30 and 31 are each formed of a concave lens, and the back surface 15a of the micro lens array 15 excluding the back surfaces of the micro lenses 30 and 31 is formed in the same plane.
  • the back surface 15a may be referred to as the same plane.
  • the micro lenses 30, 31 may be other than concave lenses as described above, but the back surfaces of the micro lenses 30, 31 are flattened surfaces or concave portions (that is, elements of the surface emitting lasers 12, 13). The surface is not convex in the 12b and 13b directions).
  • the element surface 12b, 13b of the surface emitting laser 12, 13 is supported under the back surface (same plane) 15a of the microlens array 15! /.
  • the first back surface 15a of the microlens array 15 is electrically connected to the back surface electrodes 33 and 34 of the surface emitting lasers 12 and 13 via wires 81 and 82, respectively.
  • Support plate side electrodes 83 and 84, and second support plate side electrodes 85 electrically connected to the surface electrodes 46 and 32 of the surface emitting lasers 12 and 13, respectively.
  • the microlens array 15 is made of transparent glass or resin.
  • the first support plate side electrodes 83 and 84 and the second support plate side electrode 85 are formed as transparent electrodes such as an ITO film. Therefore, when the microlens array 15 is viewed from directly above, the element surfaces 12b and 13b of the surface emitting lasers 12 and 13 can be seen through.
  • a micro-restriction like the support plate 50 in the embodiment of FIG. It is not necessary to provide a through hole in the sensor array 15. That is, the surface 15b or the back surface 15a of the microlens array 15 and the element surface 1 of the surface emitting lasers 12 and 13
  • the surface emitting lasers 12 and 13 are accurately aligned with the microlens array 15 using the mark portions. It is possible to do.
  • the surface-emitting lasers 12, 13 are aligned with the microlens array 15 so that 7, 39, and 92 (88, 38, 40, and 91) are aligned in a straight line on a virtual line E parallel to the Y direction shown in the figure. Position it.
  • the surface emitting lasers 12 and 13 can be accurately positioned with respect to the microlens array 15 in both the X direction and the Y direction shown.
  • the mark portion is not particularly limited in form, such as coloring or uneven shape. Further, the formation of the mark portion is not particularly limited, such as laser marking, etching, and sputtering.
  • the positioning method of the surface emitting lasers 12 and 13 with respect to the microlens array 15 may be a method other than aligning a plurality of mark portions on a straight line as described above.
  • a base 95 is provided facing the support plate 50 and a position below the support plate 50 at a predetermined distance.
  • a spacer 96 is provided between the support plate 50 and the base 95.
  • the elastic members 97 and 98 are made of, for example, Ni or its alloy (particularly NiP is preferable) having excellent spring properties and coated with a metal or the like around a core made of Cu.
  • the elastic deformation portions 97a and 98a of the elastic members 97 and 98 are, for example, spirally shaped (spiral shape) and are three-dimensionally shaped upward, and are in contact with the back surface electrodes 33 and 34 of the surface emitting lasers 12 and 13. Yes.
  • base side electrodes (same as the first support plate side electrode) 99, 100 are provided, and the back electrodes 33, 34 of the surface emitting lasers 12, 13 and the base The side electrodes 99 and 100 are electrically connected via the elastic members 97 and 98.
  • the elastic deformation portions 97a and 98a of the elastic members 97 and 98 press the back surface electrodes 33 and 34 of the surface emitting laser 12 13 in the direction of the support plate 50 (upward). It is possible to appropriately establish a conductive connection between the back surface electrodes 33 and 34 and the elastic members 97 and 98 without fixing between 34 and the elastic members 97 and 98 with a conductive adhesive or the like.
  • the surface-emitting lasers 12 and 13 and the support plate 50 are bonded and fixed with an adhesive.
  • the element surfaces 12b and 13b of the surface emitting lasers 12 and 13 are fixed under the opposing surface (same plane) 50a of the support plate 50 by the pressing force of the elastic members 97 and 98. Is possible.
  • the elastic members 97 and 98 have at least a function of pressing the surface emitting lasers 12 and 13 toward the support plate 50, and the back electrodes 33 and 34 and the base side electrodes 99 and 100 are provided. It does not have to be used as a conductive connection part for conducting the gap.
  • the elastic members 97 and 98 function only as pressing members that press the surface emitting lasers 12 and 13 toward the support plate 50 side.
  • a second support plate side electrode 25 26 is provided on the facing surface 50 a of the support plate 50.
  • the second support plate side electrode 25 26 is formed in layers on the facing surface 50a formed on the same plane. For this reason, a step corresponding to the thickness of the electrodes 25 and 26 occurs between the surface 25a 26a of the second support plate side electrode 25 26 facing the surface emitting laser 12 13 and the surface 50a of the support plate 50. ing.
  • a conductive adhesive layer 27 such as solder is provided between the surface electrode 32 46 of the surface emitting laser 12 13 and the opposing surface 25a 26a of the second support plate side electrode 25 26.
  • an adhesive layer 74 such as a resin is interposed between the element surface 12b 13b of the surface emitting laser 123 and the opposing surface 50a around the surface, and the surface emitting laser 13 is fixed to the support plate 50.
  • the adhesive layer 74 is not necessarily required, but interposing it is preferable because the adhesive strength can be increased.
  • the force S having two layers (conductive adhesive layer 27 and adhesive layer 74) contributing to adhesion for example, anisotropic conductive paste or the like is used, the surface emission is increased.
  • the entire surface between the element surfaces 12b and 13b of the optical lasers 12 and 13 and the facing surface 50a is bonded with a single adhesive layer with a force S.
  • the thickness variation of the second support plate side electrodes 25, 26 and the adhesive layers 27, 74 is smaller than the thickness variation of the surface emitting lasers 12, 13. Variations in the thickness of the surface emitting lasers 12 and 13 are about several tens to several hundreds times the variation in thickness of the second support plate side electrodes 25 and 26 and the adhesive layers 27 and 74. . In addition, variations in the thickness of the electrode and adhesive layer formed on the support plate 50 have naturally occurred in the past (the variation in thickness in the past has been shown in FIG. 15 by the substrate 1 and the surface emitting lasers 2, 3). This is a variation in the thickness of the adhesive layer between them and a variation in the thickness of the electrodes on the substrate 1).
  • the opposing surface 50a of the support plate 50 is the same plane and the element surfaces 12b and 13b of the surface emitting lasers 12 and 13 are supported under the same plane 50a, At least, it is possible to reduce variations in the heights of the light emitting points 12al and 13al of the surface emitting lasers 12 and 13 as compared with the prior art.
  • surface electrodes 32 and 46 are formed on the element surfaces 12b and 13b of the surface emitting lasers 12 and 13, and the surfaces 32a and 46a of the surface electrodes 32 and 46 and the element Even if there is a step between the surfaces 12b and 13b, the effect is considered to be the same as described above.
  • the force S in which the thickness variations of the second support plate side electrodes 25 and 26, the adhesive layers 27 and 74, and the surface electrodes 32 and 46 are accumulated The cumulative value is sufficiently smaller than the thickness variation of the surface emitting lasers 12 and 13. Therefore, as in the present embodiment, if the opposing surface 50a of the support plate 50 is made to be the same plane and the element surfaces 12b and 13b of the surface emitting lasers 12 and 13 are supported under the same plane 50a, at least conventionally. In comparison, it is possible to reduce the variation in height of the light emitting points 12al and 13al of the surface emitting lasers 12 and 13.
  • the opposing surfaces 25a, 26a of the second support plate side electrodes 25, 26 are formed in the same plane as the opposing surface 50a, and a surface emitting laser as shown in FIG.
  • a surface emitting laser as shown in FIG.
  • the surfaces of the surface electrodes 46 and 32 of 12 and 13 are formed in the same plane as the element surfaces 12b and 13b, and the facing surface 50a and the element surfaces 12b and 13b are joined via a resin layer.
  • the opposing surface 50a and the element surfaces 12b and 13b are brought into contact with each other using an elastic member without using a resin layer, for example, as shown in FIG. 9, the light emitting points 12al and 13al (FIG. Variation in height can be reduced.
  • the second support plate side The height positions of the light emitting points 12al and 13al related to variations in the thicknesses of the electrodes 25 and 26, the adhesive layer 27, and the surface electrodes 46 and 32 can be made the same.
  • the force is such that electrodes are formed on the element front surfaces 12b and 13b and the back surfaces 12c and 13c of the surface emitting lasers 12 and 13, for example, FIG.
  • a stepped portion 12e recessed downward is formed on the element surface 12b of the surface emitting laser 12
  • a surface electrode 28 instead of the back electrode may be formed on the stepped surface 12el.
  • a support plate-side electrode 29 is formed on the facing surface 50a of the support plate 50 at a position facing the surface electrode 28, and the support plate-side electrode 29 and the surface electrode 28 are interposed via a conductive adhesive layer 45. Are electrically connected.
  • the opposing surface 50a of the support plate 50 is formed so that at least the surface emitting lasers 12 and 13 are in contact with each other. It does not have to be done. As shown in FIG. 12, for example, a part 50al of the facing surface 50a may protrude downward at a position away from the position where the surface emitting laser 12 is supported.
  • a part 50a2 of the facing surface of the support plate 50 facing the step surface 12el formed in the surface emitting laser 12 may protrude downward.
  • element surface in the present embodiment refers to a surface where a light emitting point appears. Therefore, it is considered that the surface where the light emitting point does not appear is not included in the “element surface”. For example, in the form of FIG. For example, since the step surface 12el is not the surface on which the light emitting point 12al appears, it is considered that the step surface 12el is not included in the “element surface”. Then, in FIG. 13, the entire opposing surface 50a of the support plate 50 facing the element surface 12b is formed in the same plane, and the entire element surface 12b is supported under the same plane 50a. Recognize.
  • FIGS. 12 and 13 the force described using the surface emitting laser 12 and the facing surface 50a of the supporting plate 50 facing the surface emitting laser 12 in each diagram, the other surface emitting laser 13 and the supporting plate 50 facing the other surface emitting laser 13 are shown.
  • the facing surface 50a is also formed in the same form.
  • the variation in the heights of the light emitting points 12al and 13al of the plurality of surface emitting lasers 12 and 13 attached to the surface emitting laser array can be made smaller than before.
  • the distance H5 between the light emitting points 12bl and 13bl of the plurality of surface emitting lasers 12 and 13 and the main points 30a and 31a of the microlenses 30 and 31, which are optical adjusting members, , H6 can make the distances H7 and H8 between the principal points 16a of the collimator lens 16 the same.
  • the reproduction reference beam 22 emitted from the surface emitting laser 12 and the reproduction reference beam 73 emitted from the surface emitting laser 13 are both appropriately collimated through the microlens 30, 31 and the collimator lens 16. Can be adjusted. Therefore, even if the surface emitting lasers 12 and 13 for obtaining a wavelength capable of reproducing the hologram data 21 are switched, it is possible to obtain reproduction reference beams 22 and 71 having a certain light intensity or more with parallel light. Data 21 can be reproduced properly.
  • the reproduction reference light can be obtained as parallel light having a certain light intensity or more in a wide wavelength band. Therefore, a hologram reproducing device having an excellent hologram reproducing function can be manufactured.
  • the number of surface emitting lasers 12 and 13 provided on the support plate 50 is two.
  • More surface emitting lasers may be mounted.
  • the film thickness of at least one surface emitting laser is different from the film thickness of other surface emitting lasers, it is effective to apply the manufacturing method according to this embodiment.
  • the hologram reproducing device 10 has been described as an application of the surface emitting laser array 14, but is not limited to the hologram reproducing device. Uses multiple surface emitting lasers However, the present invention is applicable to applications where the emission points of the surface emitting lasers are required to be the same height.
  • the force using a surface emitting laser as the “light emitting element” is not limited to the surface emitting laser.
  • the force provided on the element surface 12b, 13b of the surface emitting laser 12, 13 on the surface electrodes 46, 32 is applied to the back surface 12c, 13c of the surface emitting laser 12, 3 respectively.
  • Two electrodes are provided! /, You can! /
  • FIG. 1 is a conceptual diagram of reproducing hologram data from a recording medium by a hologram reproducing device.
  • FIG. 2 is a partial sectional view of a light emitting device (surface emitting laser array) and a microlens array in the present embodiment.
  • FIG. 3 is a partial plan view of the light emitting device shown in FIG.
  • FIG. 4 Partial rear view of the light emitting device shown in FIG.
  • FIG. 5 is a partial cross-sectional view of a light emitting device according to an embodiment different from FIG.
  • FIG. 6 is a partial cross-sectional view of a light emitting device that is partially different from FIG.
  • FIG. 7 is a partial cross-sectional view of a light emitting device according to an embodiment different from those shown in FIGS.
  • FIG. 8 is a partial plan view of the light emitting device shown in FIG.
  • FIG. 9 is a partial cross-sectional view of a light-emitting device and a microlens array in an embodiment different from those shown in FIGS. 2, 5, 6 and 8.
  • FIG. 10 is a partially enlarged sectional view showing a part of the light emitting device of FIG. 2 in an enlarged manner.
  • FIG. 11 is a partially enlarged cross-sectional view of a light-emitting device that is partially different from FIG.
  • FIG. 12 is a partial cross-sectional view of a light emitting device that is partially different from FIG.
  • FIG. 13 is a partial cross-sectional view of a light emitting device that is partially different from FIG.
  • FIG. 14 is a conceptual diagram for explaining the irradiation state of reproduction reference light emitted from each surface emitting laser by incorporating the light emitting device of the present embodiment into a hologram reproducing device;
  • FIG. 15 is a conceptual diagram showing an irradiation state of reproduction reference light emitted from each surface emitting laser for explaining the conventional problems

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Optical Head (AREA)
  • Semiconductor Lasers (AREA)
  • Holo Graphy (AREA)

Abstract

[PROBLEMS] To provide a light-emitting device in which variation in height of respective light-emitting points of a plurality of light-emitting elements can, especially, be reduced more appropriately and easily than conventional ones, and to provide a hologram reproducer employing such a light-emitting device. [MEANS FOR SOLVING PROBLEMS] The light-emitting device comprises a plurality of surface emission lasers (12, 13), and a supporting plate (50) for supporting each surface emission laser (12, 13) from the side of element surface (12b, 13b) where a light-emitting point (12a1, 13a1) appears. The surface (50a) of the supporting plate (50) facing the element surfaces (12b, 13b) is formed to have the same plane, and each element surface (12b, 13b) of the plurality of surface emission lasers (12, 13) is supported under the same plane (50a). Consequently, even when the thicknesses of the surface emission lasers (12, 13) are different, variation in height of respective light emitting points (12a1, 13a1) of the plurality of surface emission lasers (12, 13) can be reduced more appropriately and easily than conventional ones.

Description

明 細 書  Specification
発光装置及び前記発光装置を用いたホログラム再生装置  LIGHT EMITTING DEVICE AND HOLOGRAM REPRODUCING DEVICE USING THE LIGHT EMITTING DEVICE
技術分野  Technical field
[0001] 本発明は、例えばホログラム再生装置に使用される発光装置に関する。  The present invention relates to a light emitting device used for a hologram reproducing device, for example.
背景技術  Background art
[0002] 下記の特許文献に記載されているように、ホログラムデータの再生では、再生参照 光を、ホログラムデータが記録された記録媒体に入射させると、ブラッグ条件式により 、前記再生参照光が前記データの干渉縞で回折され、再生光が発せられる。そして 、前記再生光に含まれるホログラムデータの内容が、 CCDや CMOSなどからなる撮 像素子により読み出される。  [0002] As described in the following patent document, in reproduction of hologram data, when reproduction reference light is incident on a recording medium on which hologram data is recorded, the reproduction reference light is It is diffracted by the interference fringes of the data, and reproduced light is emitted. Then, the contents of the hologram data contained in the reproduction light are read out by an imaging element such as a CCD or CMOS.
[0003] ところで下記の特許文献に記載されているように、前記再生参照光を発光する発光 装置には、例えば、複数の面発光レーザ (VCSEUが配置された面発光レーザァレ ィが使用される。  By the way, as described in the following patent document, for example, a surface emitting laser array in which a plurality of surface emitting lasers (VCSEU are arranged) is used for the light emitting device that emits the reproduction reference light.
[0004] このように複数の面発光レーザを用いる利点は、容易に且つ安価に、前記再生参 照光の波長帯域を広くできるためである。すなわち再生参照光の波長帯域の異なる 複数の面発光レーザを組み合わせることで、広範な波長帯域を得ることが可能であ る。このように広範な波長帯域を有する面発光レーザアレイであれば、複数のホログ ラムデータが波長多重にて広範な波長帯域で記録されて!/、る場合に、その波長帯域 の全域をカバーすることが可能である。よって適切に各ホログラムデータを再生する ことが出来る。  [0004] The advantage of using a plurality of surface emitting lasers in this way is that the wavelength band of the reproduction reference light can be widened easily and inexpensively. In other words, a wide range of wavelength bands can be obtained by combining a plurality of surface emitting lasers having different wavelength bands of the reproduction reference light. In the case of a surface emitting laser array having such a wide wavelength band, when a plurality of holographic data is recorded in a wide wavelength band by wavelength multiplexing, the entire area of the wavelength band is covered. It is possible. Therefore, each hologram data can be reproduced appropriately.
[0005] また、波長 αで記録されたホログラムデータが、例えば記録媒体の異方性熱膨張 等により、前記ホログラムデータを波長 αで再生できず前記波長 αと異なる波長 0で 再生しなければならない場合、上記の面発光レーザアレイであれば、その波長を有 する面発光レーザに切り替えることで、適切に前記ホログラムデータを再生することが 可能である。  In addition, hologram data recorded at wavelength α cannot be reproduced at wavelength α due to, for example, anisotropic thermal expansion of the recording medium, and must be reproduced at wavelength 0 different from wavelength α. In this case, if the surface emitting laser array is used, the hologram data can be appropriately reproduced by switching to the surface emitting laser having the wavelength.
特許文献 1 :特開 2005— 331864号公報  Patent Document 1: JP 2005-331864 A
特許文献 2:特開 2006— 58726号公報 特許文献 2:特開 2003— 233293号公幸 Patent Document 2: Japanese Unexamined Patent Publication No. 2006-58726 Patent Document 2: JP 2003-233293 Koyuki
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0006] しかしながら、面発光レーザの製造過程で、前記面発光レーザに厚さのばらつきが 生じた。 [0006] However, in the process of manufacturing the surface emitting laser, the surface emitting laser has a thickness variation.
[0007] 前記面発光レーザに厚さのばらつきが生じると以下の問題点が生じた。その問題 点を下記に説明する。  [0007] When the surface emitting laser has a variation in thickness, the following problems occur. The problem is explained below.
[0008] 図 15に示すように基板 1上には例えば、 2つの面発光レーザ 2, 3が設置されている 。前記基板 1と面発光レーザ 2, 3とを有して面発光レーザアレイ 6が構成される。  As shown in FIG. 15, for example, two surface emitting lasers 2 and 3 are installed on the substrate 1. The substrate 1 and the surface emitting lasers 2 and 3 are included in the surface emitting laser array 6.
[0009] 図 15に示すように、前記面発光レーザアレイ 6と記録媒体 5との間にはコリメ一タレ ンズ 4が設けられている。前記コリメータレンズ 4にて、前記面発光レーザ 2, 3から照 射された再生参照光 2a, 3aが平行光に調整される。  As shown in FIG. 15, a collimator lens 4 is provided between the surface emitting laser array 6 and the recording medium 5. The collimator lens 4 adjusts the reproduction reference beams 2a and 3a irradiated from the surface emitting lasers 2 and 3 to parallel beams.
[0010] ところで、図 15に示すように、前記面発光レーザ 2, 3の厚さが異なると、前記面発 光レーザ 2, 3の発光部の表面 2b, 3b (以下、発光点として定義する)の基板 1上での 高さが異なってくる。よって、前記面発光レーザ 2の発光点 2bと前記コリメータレンズ 4の主点 4aとの距離 HIと、前記面発光レーザ 3の発光点 3bと前記コリメータレンズ 4 の主点 4aとの距離 H2とは異なってしまう。  Incidentally, as shown in FIG. 15, when the surface emitting lasers 2 and 3 have different thicknesses, the surfaces 2b and 3b of the light emitting portions of the surface emitting lasers 2 and 3 (hereinafter defined as light emitting points). ) On board 1 is different. Therefore, the distance HI between the light emitting point 2b of the surface emitting laser 2 and the principal point 4a of the collimator lens 4 and the distance H2 between the light emitting point 3b of the surface emitting laser 3 and the principal point 4a of the collimator lens 4 are It will be different.
[0011] このため例えば、再生参照光 3aが平行光となるように、前記面発光レーザ 3の前記 発光点 3bと前記レンズ 4の主点 4aとの距離 H2を調整すると、前記発光点 2bと主点 4 aとの距離 HIが前記距離 H2よりも短くなるため、もう一方の再生参照光 2aは、図 15 に示すように拡散光になる。あるいは、前記距離 HIが前記距離 H2よりも長くなると、 再生参照光 2aは集束光となってしまう。拡散光となった場合、再生参照光 2aは前記 記録媒体 5に記録されたホログラムデータ 7全体に照射されるものの、前記再生参照 光 2aの光強度が弱まることから前記ホログラムデータ 7を適切に再生できないといつ た問題が生じる。また前記再生参照光 2aが集束光となった場合、前記ホログラムデ ータ 7全体に適切に再生参照光 2aが照射されなくなり、前記ホログラムデータ 7を再 生できなレヽとレ、つた問題が生じる。  Therefore, for example, when the distance H2 between the light emitting point 3b of the surface emitting laser 3 and the principal point 4a of the lens 4 is adjusted so that the reproduction reference light 3a becomes parallel light, the light emitting point 2b Since the distance HI to the principal point 4a is shorter than the distance H2, the other reproduction reference light 2a becomes diffused light as shown in FIG. Alternatively, when the distance HI is longer than the distance H2, the reproduction reference light 2a becomes focused light. In the case of diffused light, the reproduction reference light 2a is irradiated to the entire hologram data 7 recorded on the recording medium 5, but the hologram data 7 is appropriately reproduced since the light intensity of the reproduction reference light 2a is weakened. If not, problems arise. Further, when the reproduction reference beam 2a becomes a focused beam, the reproduction data beam 2a is not properly irradiated on the entire hologram data 7, and there is a problem that the hologram data 7 cannot be reproduced. .
[0012] そこで本発明は上記従来の課題を解決するためのものであり、特に、複数の発光 素子の各発光点の高さのばらつきを従来よりも適切且つ容易に小さくすることが可能 な発光装置及び前記発光装置を用いたホログラム再生装置を提供することを目的と している。 Accordingly, the present invention is for solving the above-described conventional problems, and in particular, a plurality of light emitting devices. It is an object of the present invention to provide a light emitting device capable of appropriately and easily reducing the variation in height of each light emitting point of an element and a hologram reproducing device using the light emitting device.
課題を解決するための手段  Means for solving the problem
[0013] 本発明における発光装置は、 [0013] The light emitting device in the present invention,
複数の発光素子と、各発光素子を発光点が現れる素子表面側から支持する支持 板とを有し、  A plurality of light emitting elements, and a support plate for supporting each light emitting element from the element surface side where the light emitting point appears,
前記支持板の前記素子表面と対向する対向面は、同一平面を有して形成され、複 数の前記発光素子の各素子表面が前記同一平面に支持されていることを特徴とす るものである。  The opposing surface of the support plate facing the element surface is formed to have the same plane, and the element surfaces of the plurality of light emitting elements are supported on the same plane. is there.
[0014] これにより、前記発光素子の厚さが夫々異なる場合でも、複数の前記発光素子の 各発光点の高さのばらつきを従来よりも適切且つ容易に小さくすることが可能である  Thereby, even when the thickness of the light emitting elements is different, it is possible to appropriately and easily reduce the variation in the height of each light emitting point of the plurality of light emitting elements.
[0015] 本発明では、前記支持板は、高熱伝導性セラミック板で形成されることが好ましい。 In the present invention, the support plate is preferably formed of a high thermal conductivity ceramic plate.
これにより、前記発光素子の放熱を適切に行うことが出来、高性能及び長寿命の発 光装置を得ることが出来る。  As a result, the light emitting element can appropriately dissipate heat, and a light emitting device with high performance and long life can be obtained.
[0016] また本発明では、前記支持板には前記支持板よりも熱伝導率が高!/、放熱板が設け られていることが好ましい。これにより、前記発光素子の放熱を適切に行うことが出来In the present invention, it is preferable that the support plate has a heat conductivity higher than that of the support plate and is provided with a heat radiating plate. Thereby, it is possible to appropriately dissipate heat from the light emitting element.
、高性能及び長寿命の発光装置を得ることが出来る。 A high-performance and long-life light-emitting device can be obtained.
[0017] また本発明では、前記支持板は絶縁性であり、前記放熱板は金属で形成されること [0017] In the present invention, the support plate is insulative, and the heat dissipation plate is formed of metal.
1S より効果的に発光素子の放熱を行うことができ好ましい。かかる場合、前記支持 板の前記対向面には、前記発光素子に設けられた素子側電極と電気的に接続され る支持板側電極が設けられ、前記放熱板は、前記支持板側電極と接続されて電極と して機能していること力好ましい。前記放熱板を電極兼用とすることで、前記支持板 の限られた前記対向面の面積内に前記支持板側電極も含めた大きな面積の放熱板 を適切に配置することが出来る。  It is preferable because 1S can dissipate heat from the light emitting element more effectively. In this case, the opposing surface of the support plate is provided with a support plate side electrode that is electrically connected to the element side electrode provided in the light emitting element, and the heat dissipation plate is connected to the support plate side electrode. It is preferable that it functions as an electrode. By using the heat radiating plate also as an electrode, a large area heat radiating plate including the supporting plate side electrode can be appropriately arranged within the limited area of the facing surface of the supporting plate.
[0018] また本発明では、前記支持板は、金属板で形成されてもよい。これにより、前記発 光素子の放熱を適切に行うことが出来る。かかる場合、前記支持板は、各発光素子 に対する共通電極として機能することが好ましレ、。 In the present invention, the support plate may be formed of a metal plate. Thereby, the radiation of the light emitting element can be appropriately performed. In such a case, the support plate is provided with each light emitting element. Preferably function as a common electrode.
[0019] また本発明では、前記発光素子の前記素子表面には、前記支持板に対する位置 決め部が設けられ、前記支持板には、発光点及び前記位置決め部と対向する位置 に貫通孔が設けられ、前記発光点からの光は、前記貫通孔を通して照射され、また、 前記発光素子は前記貫通孔から見える前記位置決め部を用いて前記支持板に対し 位置決めされていることが好ましい。これにより、前記発光素子を前記支持板に高精 度に位置決めできる。 In the present invention, a positioning portion for the support plate is provided on the surface of the light emitting element, and a through hole is provided in the support plate at a position facing the light emitting point and the positioning portion. Preferably, the light from the light emitting point is irradiated through the through hole, and the light emitting element is positioned with respect to the support plate using the positioning portion visible from the through hole. Thereby, the light emitting element can be positioned with high accuracy on the support plate.
[0020] また本発明では、前記支持板はレンズで形成されてもよい。後述するように本発明 の発光装置は例えばホログラム再生装置に組み込まれる力 係る場合、前記ホロダラ ム再生装置内にて使用されるレンズ (最も発光装置側に近い位置に配置されるレン ズ)を前記支持板として用いられれば、余分に前記発光素子を支持するための支持 板を用いることが必要なくなり、部品点数を減らすことが出来る。また前記支持板をレ ンズで形成する場合、前記発光素子の前記素子表面には前記支持板に対する位置 決め部が設けられ、前記発光素子は前記支持板を表面から透視して見える前記位 置決め部を用いて前記支持板に対し位置決めされて!/、ること力 S好まし!/、。レンズであ ると上記のように前記位置決め部をレンズ表面から透視できるから、わざわざ前記位 置決め部をレンズ表面から見るための貫通孔の形成は必要ない。  In the present invention, the support plate may be formed of a lens. As will be described later, when the light-emitting device of the present invention is applied to, for example, a force applied to a hologram reproducing device, a lens (lens disposed closest to the light-emitting device) used in the hologram reproducing device is used. When used as a support plate, it is not necessary to use an extra support plate for supporting the light emitting element, and the number of components can be reduced. When the support plate is formed of a lens, a positioning portion for the support plate is provided on the element surface of the light emitting element, and the light emitting element is positioned so that the support plate can be seen through from the surface. It is positioned with respect to the support plate using the part! /, And the force S is preferred! /. In the case of a lens, the positioning portion can be seen through from the lens surface as described above, so that it is not necessary to form a through-hole for viewing the positioning portion from the lens surface.
[0021] また本発明では、前記素子表面と反対側の素子裏面が、前記素子表面方向に、弾 性部材によって押圧されている構成であってもよい。かかる場合、前記素子裏面には 裏面電極が形成され、前記弾性部材は金属で形成されており、前記裏面電極と前記 弾性部材とが電気的に接続されてレ、ること力 S好ましレ、。  In the present invention, the element back surface opposite to the element surface may be pressed by an elastic member in the element surface direction. In this case, a back electrode is formed on the back surface of the element, the elastic member is made of metal, and the back electrode and the elastic member are electrically connected to each other. .
[0022] また本発明のホログラム再生装置は、上記のいずれかに記載された発光装置と、記 録媒体に記録されてレ、るデータを取得する撮像機構と、前記記録媒体を設置する設 置部と、を有し、前記発光素子から再生参照光が前記記録媒体に照射されて前記デ ータを前記撮像機構により取得することを特徴とするものである。各発光素子の厚さ が異なる場合でも、各発光素子の発光点の高さのばらつきを従来に比べて小さくで きるので、高精度に前記データを再生できる。  [0022] Further, the hologram reproducing device of the present invention is a light emitting device described in any of the above, an imaging mechanism for acquiring data recorded on a recording medium, and an installation for installing the recording medium. A reproducing reference light from the light emitting element is applied to the recording medium, and the data is acquired by the imaging mechanism. Even when the thickness of each light emitting element is different, the variation in the height of the light emitting point of each light emitting element can be reduced as compared with the conventional one, so that the data can be reproduced with high accuracy.
[0023] また本発明では、前記設置部と発光装置との間に前記再生参照光を平行光に調 整するためのコリメータレンズが設けられ、各面発光レーザの発光点と前記コリメータ レンズの主点間距離が各発光素子にて同一距離にされていることが好ましい。これ により、高精度な再生機能を有するホログラム再生装置を得ることが出来る。 In the present invention, the reproduction reference light is adjusted to parallel light between the installation section and the light emitting device. It is preferable that a collimator lens for adjusting is provided, and the distance between the light emitting point of each surface emitting laser and the principal point of the collimator lens is set to be the same distance in each light emitting element. As a result, a hologram reproducing apparatus having a highly accurate reproducing function can be obtained.
発明の効果  The invention's effect
[0024] 本発明における発光装置は、複数の発光素子と、各発光素子を発光点が現れる素 子表面側から支持する支持板とを有し、前記支持板の前記素子表面と対向する対向 面は、同一平面を有して形成され、複数の前記発光素子の各素子表面が前記同一 平面に支持されていることを特徴とするものである。  [0024] The light-emitting device of the present invention has a plurality of light-emitting elements and a support plate that supports each light-emitting element from the element surface side where the light-emitting point appears, and the opposing surface of the support plate that faces the element surface. Are formed in the same plane, and each element surface of the plurality of light emitting elements is supported on the same plane.
[0025] これにより、前記発光素子の厚さが夫々異なる場合でも、複数の前記発光素子の 各発光点の高さのばらつきを従来よりも適切且つ容易に小さくすることが可能である  [0025] Thereby, even when the thickness of the light emitting element is different, it is possible to appropriately and easily reduce the variation in the height of each light emitting point of the plurality of light emitting elements.
[0026] よって本発明における発光装置をホログラム再生装置内に組み込むことで、高精度 な再生機能を有するホログラム再生装置を得ることが出来る。 Therefore, by incorporating the light emitting device according to the present invention into the hologram reproducing device, a hologram reproducing device having a highly accurate reproducing function can be obtained.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0027] 図 1は、ホログラム再生装置によって記録媒体からホログラムデータを再生する概念 図である。図 2は、本実施形態における発光装置(面発光レーザアレイ)及びマイクロ レンズアレイの部分断面図、図 3は図 2に示す発光装置の部分平面図、図 4は、図 2 に示す発光装置の部分裏面図である。図 5は図 2とは別の実施形態における発光装 置の部分断面図、図 6は図 5と一部異なる発光装置の部分断面図である。図 7は図 2 、図 5及び図 6とは別の実施形態における発光装置の部分断面図、図 8は図 7に示す 発光装置の部分平面図である。図 9は、図 2、図 5、図 6及び図 8とは別の実施形態に おける発光装置の部分断面図である。図 10は図 2に示す一部分を拡大して示す部 分拡大断面図、図 11は、図 10とは一部異なる部分拡大断面図である。図 12、図 13 は図 2と一部異なる発光装置の部分断面図である。図 14は、本実施形態の発光装 置をホログラム再生装置に組み込み、各面発光レーザから照射される再生参照光の 照射状態を説明するための概念図である。なお「部分断面図」とは全ての図面にお いて厚さ方向と平行な方向から切断して得られた切断面の一部を指す。  FIG. 1 is a conceptual diagram in which hologram data is reproduced from a recording medium by a hologram reproducing device. 2 is a partial cross-sectional view of the light emitting device (surface emitting laser array) and the micro lens array in the present embodiment, FIG. 3 is a partial plan view of the light emitting device shown in FIG. 2, and FIG. 4 is a diagram of the light emitting device shown in FIG. It is a partial back view. FIG. 5 is a partial cross-sectional view of a light-emitting device in an embodiment different from FIG. 2, and FIG. 6 is a partial cross-sectional view of a light-emitting device that is partially different from FIG. FIG. 7 is a partial cross-sectional view of a light-emitting device according to another embodiment different from FIGS. 2, 5, and 6. FIG. 8 is a partial plan view of the light-emitting device shown in FIG. FIG. 9 is a partial cross-sectional view of a light emitting device in another embodiment different from those in FIGS. 2, 5, 6 and 8. FIG. FIG. 10 is a partially enlarged sectional view showing a part of FIG. 2 in an enlarged manner, and FIG. 11 is a partially enlarged sectional view partially different from FIG. 12 and 13 are partial cross-sectional views of a light emitting device that is partially different from FIG. FIG. 14 is a conceptual diagram for explaining the irradiation state of reproduction reference light irradiated from each surface emitting laser by incorporating the light emitting device of this embodiment into a hologram reproducing device. The “partial sectional view” refers to a part of a cut surface obtained by cutting from a direction parallel to the thickness direction in all drawings.
[0028] 図 1に示すホログラム再生装置 10は、同一の支持板 50上に複数の面発光レーザ( VCSEL) (発光素子) 12, 13が支持されてなる面発光レーザアレイ 14と、マイクロレン ズアレイ 15と、コリメータレンズ 16と、 CCDや CMOSなどからなる撮像素子 18と、ピ ンホールフィルタ 19と、記録媒体 20を設置するための設置部(図示しない)と、を有し て構成される。 A hologram reproducing device 10 shown in FIG. 1 includes a plurality of surface emitting lasers (on the same support plate 50). VCSEL) (light emitting element) 12, 13 are supported by a surface emitting laser array 14, a microlens array 15, a collimator lens 16, an image sensor 18 such as a CCD or CMOS, a pinhole filter 19, And an installation unit (not shown) for installing the recording medium 20.
[0029] 図 1に示すように記録媒体 20には、図示しないホログラム記録装置によってホログ ラムデータ 21が記録されている。前記ホログラムデータ 21は干渉縞として現れる。図 1では前記ホログラムデータ 21は一つだけ図示されている力 実際には多数の前記 ホログラムデータ 21が波長多重や角度多重にて記録されている。  As shown in FIG. 1, holographic data 21 is recorded on the recording medium 20 by a hologram recording device (not shown). The hologram data 21 appears as interference fringes. In FIG. 1, only one hologram data 21 is illustrated. Actually, a large number of hologram data 21 are recorded by wavelength multiplexing or angle multiplexing.
[0030] 今、図 1に示すホログラム再生装置 10の前記面発光レーザ 12から再生参照光 22 を前記記録媒体 20に向けて照射する。前記再生参照光 22の光径は、前記支持板 5 0と平行に配置される前記マイクロレンズアレイ 15にて広げられ、さらにコリメータレン ズ 16にて平行光にされる。  Now, the reproduction reference beam 22 is irradiated toward the recording medium 20 from the surface emitting laser 12 of the hologram reproducing apparatus 10 shown in FIG. The light diameter of the reproduction reference light 22 is expanded by the microlens array 15 arranged in parallel with the support plate 50, and further collimated by the collimator lens 16.
[0031] 前記再生参照光 22は前記記録媒体 20に照射角度 θ 1で照射される。前記再生参 照光 22が前記ホログラムデータ 21に照射されると、ブラッグ条件式を満たす干渉縞 では光が回折して、再生光(回折光) 23が前記記録媒体 20から前記撮像素子 18に 向けて放出される。このとき前記再生光 23は前記ピンホールフィルタ 19に設けられ たピンホール 19aを通って前記撮像素子 18に到達する。前記撮像素子 18では、前 記ホログラムデータ 21の内容が再生される。前記ピンホールフィルタ 19を設ける理由 は、前記再生参照光 22を前記記録媒体 20に照射し、前記記録媒体 20から複数の ホログラムデータの再生光が放射されたとき、そのうちの一つの再生光 23のみを適 切に前記撮像素子 18にて受光させるために設けられたものである。前記ピンホール フィルタ 19を設けることで、複数の前記ホログラムデータ 21を夫々適切に再生するこ とが可能となる。  [0031] The reproduction reference beam 22 is applied to the recording medium 20 at an irradiation angle θ1. When the reproduction reference light 22 is irradiated onto the hologram data 21, the light is diffracted by the interference fringes satisfying the Bragg conditional expression, and the reproduction light (diffracted light) 23 is directed from the recording medium 20 toward the image sensor 18. Released. At this time, the reproduction light 23 reaches the image sensor 18 through a pinhole 19a provided in the pinhole filter 19. In the image sensor 18, the contents of the hologram data 21 are reproduced. The reason why the pinhole filter 19 is provided is that when the reproduction reference beam 22 is irradiated onto the recording medium 20 and reproduction light of a plurality of hologram data is emitted from the recording medium 20, only one of the reproduction light 23 is emitted. Is provided in order for the image sensor 18 to receive light appropriately. By providing the pinhole filter 19, a plurality of the hologram data 21 can be appropriately reproduced.
[0032] 図 2に示すように前記面発光レーザ 12, 13の表面側には、発光部 12a, 13aが形 成され、素子表面 12b, 13bに前記発光部 12a, 13aの表面が現れている。ここで発 光部 12a, 13aの表面を「発光点 12al , 13al」とする。  As shown in FIG. 2, light emitting portions 12a and 13a are formed on the surface side of the surface emitting lasers 12 and 13, and the surfaces of the light emitting portions 12a and 13a appear on the element surfaces 12b and 13b. . Here, the surfaces of the light emitting portions 12a and 13a are referred to as “light emitting points 12al and 13al”.
[0033] 図 2に示す実施形態では、前記素子表面 12b, 13bに表面電極 46, 32が形成され ている。前記表面電極 46, 32の表面は、前記素子表面 12b, 13bと同一平面で形 成されており、前記素子表面 12b, 13b全体が平坦化面となっている。なお前記表面 電極 46, 32が前記素子表面 12b, 13b上に形成され前記表面電極 46、 32の表面と 前記素子表面 12b, 13b間に段差が生じていてもよいが、力、かる形態については後 述することとする。 In the embodiment shown in FIG. 2, surface electrodes 46 and 32 are formed on the element surfaces 12b and 13b. The surfaces of the surface electrodes 46 and 32 are formed in the same plane as the element surfaces 12b and 13b. The entire device surfaces 12b and 13b are flattened surfaces. The surface electrodes 46 and 32 may be formed on the element surfaces 12b and 13b, and a step may be formed between the surface electrodes 46 and 32 and the element surfaces 12b and 13b. It will be described later.
[0034] 前記面発光レーザ 12, 13の前記素子表面 12b, 13bと反対側の面、すなわち裏面  [0034] The surface of the surface-emitting lasers 12, 13 opposite to the element surfaces 12b, 13b, that is, the back surface
12c, 13cに (ま裏面電極 33、 34カ形成されてレヽる。  (The back electrodes 33, 34 are formed on the 12c, 13c.
[0035] 図 2に示すように、前記面発光レーザ 12の(最大)厚さ寸法は H3で、前記面発光レ 一ザ 13の(最大)厚さ寸法は H4であり、前記厚さ寸法 H3, H4は異なっている。本実 施形態において、前記面発光レーザ 12, 13の厚さ寸法 H3, H4が異なることは必須 要件ではない。すなわち前記厚さ寸法 H3, H4は同じであってもよい。ただし前記厚 さ寸法 H3, H4が異なる場合に、本実施形態における面発光レーザアレイ 14の構造 とすることが本発明の効果が適切に発揮され好適である。  As shown in FIG. 2, the (maximum) thickness dimension of the surface emitting laser 12 is H3, the (maximum) thickness dimension of the surface emitting laser 13 is H4, and the thickness dimension H3 , H4 is different. In the present embodiment, it is not essential that the surface emitting lasers 12 and 13 have different thickness dimensions H3 and H4. That is, the thickness dimensions H3 and H4 may be the same. However, when the thickness dimensions H3 and H4 are different, it is preferable to adopt the structure of the surface emitting laser array 14 in this embodiment because the effects of the present invention are appropriately exhibited.
[0036] 図 2に示すように本実施形態では、前記支持板 50は、前記面発光レーザ 12, 13を 前記素子表面 12b, 13b側から支持している。前記支持板 50の平面形態は例えば 矩形状であるが、形態は限定されない。  As shown in FIG. 2, in the present embodiment, the support plate 50 supports the surface emitting lasers 12 and 13 from the element surface 12b and 13b side. The planar form of the support plate 50 is, for example, rectangular, but the form is not limited.
[0037] 図 2に示すように前記支持板 50の前記素子表面 12b, 13bとの対向面(裏面) 50a は同一平面で形成されている。ここで「同一平面」とは、同じ高さの平面で形成されて いることを意味する。なお以下では、対向面 50aを同一平面 50aと表記する場合があ  As shown in FIG. 2, the opposing surface (back surface) 50a of the support plate 50 facing the element surfaces 12b and 13b is formed in the same plane. Here, “same plane” means that the planes are formed at the same height. In the following, the opposing surface 50a may be referred to as the same plane 50a.
[0038] 図 2に示すように、複数の面発光レーザ 12, 13の素子表面 12b, 13bは前記同一 平面 50aに当接して支持されている。これにより、前記面発光レーザ 12, 13の厚み が図 2のように異なっていても、支持板 50に対する前記素子表面 12b, 13bの高さを 、ほぼ同じとすることができ、よって発光点 12al , 13alの高さのばらつきを従来より 抑制できる。 As shown in FIG. 2, the element surfaces 12b, 13b of the plurality of surface emitting lasers 12, 13 are supported in contact with the same plane 50a. Thereby, even if the thicknesses of the surface emitting lasers 12 and 13 are different as shown in FIG. 2, the height of the element surfaces 12b and 13b with respect to the support plate 50 can be made substantially the same. , 13al height variation can be suppressed compared to the conventional one.
[0039] したがって、図 2に示すように、各面発光レーザ 12, 13の発光点 12al , 13alと、 前記支持板 50と平行でかつ各面発光レーザ 12, 13と対向する位置に設けられた各 マイクロレンズ 30, 31との主点(ここで主点は各マイクロレンズ 30, 31の中心部での 膜厚中心と定義する) 30a, 31a間の距離 H5, H6をほぼ同じにできる。 [0040] 図 2に示すように、前記支持板 50には前記面発光レーザ 12、 13の発光点 12al , 13alと対向する位置に貫通孔 50b, 50cが設けられている。前記支持板 50は光透 過率が低い、あるいは光透過率がゼロの絶縁材料で形成されており、前記面発光レ 一ザ 12, 13からの光は前記貫通孔 50b, 50cを通して前記マイクロレンズアレイ 15 に照射される。前記光は前記マイクロレンズ 30,31にて光径が広げられる。前記マイ クロレンズ 30,31は特に光径を広げられればどのような種類のレンズであってもよい。 図 2に示す凹レンズ以外に凸レンズや、メニスカスレンズ等であってもよい。そして上 記したように、各面発光レーザ 12, 13の発光点 12al , 13alと、各面発光レーザ 12 , 13と対向する位置に設けられた各マイクロレンズ 30, 31との主点 30a, 31a間の距 離 H5, H6はほぼ同じであるため、前記発光部 12a, 13aから照射された光は前記マ イク口レンズ 30, 31にてほぼ同じ光径の光にされて、さらにその先にあるコリメ一タレ ンズ 16に照射される。 Accordingly, as shown in FIG. 2, the light emitting points 12al and 13al of the surface emitting lasers 12 and 13 are provided at positions parallel to the support plate 50 and facing the surface emitting lasers 12 and 13, respectively. The principal point with each microlens 30, 31 (here, the principal point is defined as the film thickness center at the center of each microlens 30, 31) The distances H5, H6 between 30a and 31a can be made substantially the same. As shown in FIG. 2, the support plate 50 is provided with through holes 50b and 50c at positions facing the light emitting points 12al and 13al of the surface emitting lasers 12 and 13, respectively. The support plate 50 is made of an insulating material having low light transmittance or zero light transmittance, and light from the surface emitting lasers 12 and 13 passes through the through holes 50b and 50c and the microlens. The array 15 is irradiated. The diameter of the light is expanded by the micro lenses 30 and 31. The micro lenses 30 and 31 may be any type of lens as long as the light diameter can be expanded. In addition to the concave lens shown in FIG. 2, a convex lens, a meniscus lens, or the like may be used. As described above, the main points 30a, 31a between the emission points 12al, 13al of the surface emitting lasers 12, 13 and the microlenses 30, 31 provided at positions facing the surface emitting lasers 12, 13, respectively. Since the distances H5 and H6 between them are almost the same, the light emitted from the light emitting parts 12a and 13a is made into light having the same light diameter by the microphone lenses 30, 31 and further ahead. A collimator lens 16 is irradiated.
[0041] 図 2に示すように前記支持板 50の対向面 50aには前記面発光レーザ 12, 13の裏 面電極 33, 34と電気的に接続される第 1の支持板側電極 49, 52が設けられており、 前記表面電極 46 , 32に対向する対向面 50a上には前記表面電極 46, 32と電気的 に接続される図示しな!/、第 2の支持板側電極とが設けられて!/、る。  As shown in FIG. 2, on the opposing surface 50a of the support plate 50, first support plate side electrodes 49, 52 electrically connected to the back electrodes 33, 34 of the surface emitting lasers 12, 13 are provided. Provided on the facing surface 50a facing the surface electrodes 46, 32 are not shown! /, Which are electrically connected to the surface electrodes 46, 32, and a second support plate side electrode is provided. Being! /
[0042] 図 2に示すように、前記第 1の支持板側電極 49, 52と前記面発光レーザ 12, 13の 裏面電極 33, 34とはワイヤ 35, 36を介して電気的に接続される(ワイヤボンディング )。  As shown in FIG. 2, the first support plate side electrodes 49, 52 and the back electrodes 33, 34 of the surface emitting lasers 12, 13 are electrically connected via wires 35, 36. (Wire bonding).
[0043] 前記第 2の支持板側電極と前記表面電極 46, 32間は後述するように半田等の導 電性接着剤を介して電気的に接続される。  [0043] The second support plate side electrode and the surface electrodes 46, 32 are electrically connected via a conductive adhesive such as solder as will be described later.
[0044] 前記支持板 50に形成されている前記貫通孔 50b, 50cの平面面積は、各面発光レ 一ザ 12, 13の発光点 12al , 13alの大きさよりも大きく形成される。図 3に示すように 、前記貫通孔 50b, 50cは矩形状を有し、その長辺は例えば前記面発光レーザ 12, 13の短手方向の長さ寸法(図示 X方向への寸法)よりも広い長さ寸法を有し、またそ の短辺(図示 Y方向)も、発光点 12al、 13alの数倍〜数十倍程度の大きさとなるよう に形成されている。前記貫通孔 50b, 50cの平面形状は図 3では矩形状である力 矩 形状に限るものではない。 [0045] 図 3に示すように前記面発光レーザ 12, 13の素子表面 12b, 13bには、位置決め 用のマーク部 37〜40が設けられている。一方、前記支持板 50の表面 50dにもマー ク部 5;!〜 58が設けられている。例えば、画像処理等を用い、前記マーク部 51、 37、 38、及び 54 (55、 39、 40、及び 58)を図示 X方向と平行な仮想線 D上に、及び前記 マーク部 52、 37、 56、及び 39 (53、 38、 57、及び 40)を図示 Y方向と平行な仮想線 E上に夫々一直線に並べて前記面発光レーザ 12、 13を前記支持板 50に対し位置 決めする。これにより、前記面発光レーザ 12、 13を前記支持板 50に対し図示 X方向 及び図示 Y方向の双方に正確に位置決めできる。前記マーク部は、着色、凹凸形状 等、特に形態を限定するものではない。また前記マーク部の形成はレーザマーキン グゃエッチング、スパッタ等特に限定されない。また前記面発光レーザ 12、 13の支 持板 50に対する位置決め方法は上記のように複数のマーク部を一直線上に揃える 以外の方法であってもよぐまたマーク部を一部省略してもよい。 The planar areas of the through holes 50b and 50c formed in the support plate 50 are formed larger than the sizes of the light emitting points 12al and 13al of the surface light emitting lasers 12 and 13, respectively. As shown in FIG. 3, the through holes 50b and 50c have a rectangular shape, and the long side thereof is, for example, a length dimension in the short direction (dimension in the X direction in the drawing) of the surface emitting lasers 12 and 13. It has a wide length dimension, and its short side (Y direction in the figure) is formed to be several to several tens of times as large as the light emitting points 12al and 13al. The planar shape of the through holes 50b and 50c is not limited to the force rectangular shape which is rectangular in FIG. As shown in FIG. 3, on the element surfaces 12 b and 13 b of the surface emitting lasers 12 and 13, positioning mark portions 37 to 40 are provided. On the other hand, the surface portion 50d of the support plate 50 is also provided with mark portions 5; For example, by using image processing or the like, the mark parts 51, 37, 38, and 54 (55, 39, 40, and 58) are placed on a virtual line D parallel to the X direction shown in the figure, and the mark parts 52, 37, 56 and 39 (53, 38, 57 and 40) are arranged in a straight line on a virtual line E parallel to the Y direction shown in the figure, and the surface emitting lasers 12 and 13 are positioned with respect to the support plate 50. Thereby, the surface emitting lasers 12 and 13 can be accurately positioned with respect to the support plate 50 in both the X direction and the Y direction. The mark portion is not particularly limited in form, such as coloring or uneven shape. The formation of the mark portion is not particularly limited by laser marking, etching, sputtering or the like. The positioning method of the surface emitting lasers 12 and 13 with respect to the support plate 50 may be a method other than aligning a plurality of mark portions on a straight line as described above, or a part of the mark portions may be omitted. .
[0046] 前記支持板 50は絶縁基板である。前記支持板 50は無機絶縁基板、有機絶縁基 板の別を問わない。例えば前記支持板 50を、表面に薄い酸化膜 (絶縁膜)が形成さ れたシリコン基板としてもよ!/、。前記支持板 50を赤外線を透過するタイプのものとす れば、前記支持板 50と前記面発光レーザ 12, 13とを赤外線溶着することも可能であ  [0046] The support plate 50 is an insulating substrate. The support plate 50 may be an inorganic insulating substrate or an organic insulating substrate. For example, the support plate 50 may be a silicon substrate having a thin oxide film (insulating film) formed on the surface! /. If the support plate 50 is of a type that transmits infrared rays, the support plate 50 and the surface emitting lasers 12 and 13 can be welded by infrared rays.
[0047] 図 4に示すように前記支持板 50の前記対向面 50aには前記支持板 50よりも熱伝導 率が高い放熱板 60が設けられていることが好ましい。例えば図 4に示す形態では、 前記放熱板 60は金属で形成され、前記面発光レーザ 12の表面電極 46と電気的に 接続される第 2の支持板側電極 61に電気的に接続されて!/、る。すなわち前記放熱 板 60は前記第 2の支持板側電極 61と同様に電極として機能している。前記放熱板 6 0は前記第 2の支持板側電極 61と同一材料で形成されても、異なる材料で形成され てもよい。同一材料で形成される場合には、前記第 2の支持板側電極 61と前記放熱 板 60とを別々に形成するよりも、前記第 2の支持板側電極 61と前記放熱板 60とを一 体型で形成することが好ましレ、。すなわち前記第 2の支持板側電極 61を従来 (符号 6 1の部分のみ)よりも大きい面積 (符号 60 + 61の面積)で形成し、前記第 2の支持板 側電極 61による放熱効果を高めることが好まし!/、。前記放熱板 60と前記支持板側電 極 61とをあわせた面積は前記面発光レーザ 12の平面面積よりも大きい。また前記第 2の支持板側電極 61と放熱板 60とを異なる材質で形成する場合には、前記放熱板 6 0を前記第 2の支持板側電極 61よりも熱伝導率が高い材料で形成することが放熱効 果を適切に高めることができ好ましい。前記放熱板 60の形状は特に限定されるもの でない。図 4では前記放熱板 60は略 L字形状であるが、それ以外の形態であっても 当然によい。また前記放熱板 60を前記第 2の支持板側電極 61と電気的に接触させ ず、前記面発光レーザ 12の素子表面 12bに直接接触させる形態であってもよい。か かる場合、前記放熱板 60は電極として機能しない。また前記放熱板 60が電極として 機能しなレ、場合には前記放熱板 60は金属で形成されず、 A1N等の高熱伝導性セラ ミックス等で形成されてもよい。また、前記支持板 50自体が、高熱伝導性のセラミック 板等で形成されるとより好ましレ、が、力、かる場合にお!/、ても前記放熱板 60を設ける場 合には、前記放熱板 60を、前記支持板 50よりも熱伝導率が高い材料で形成する。 なお図 4では面発光レーザ 12を用いて説明したが、他の面発光レーザ 13において も同様の形態であることが好ましい。 As shown in FIG. 4, it is preferable that a heat radiating plate 60 having a higher thermal conductivity than the support plate 50 is provided on the facing surface 50 a of the support plate 50. For example, in the form shown in FIG. 4, the heat sink 60 is made of metal and is electrically connected to the second support plate side electrode 61 that is electrically connected to the surface electrode 46 of the surface emitting laser 12! / That is, the heat radiating plate 60 functions as an electrode similarly to the second support plate side electrode 61. The heat sink 60 may be formed of the same material as the second support plate side electrode 61 or may be formed of a different material. When formed of the same material, the second support plate side electrode 61 and the heat dissipation plate 60 are integrated with each other rather than separately forming the second support plate side electrode 61 and the heat dissipation plate 60. It is preferable to form with a body shape. In other words, the second support plate side electrode 61 is formed with a larger area (area of reference numeral 60 + 61) than the conventional one (only the portion of reference numeral 61), and the heat dissipation effect by the second support plate side electrode 61 is enhanced. I like it! / The heat sink 60 and the support plate side power The area combined with the pole 61 is larger than the plane area of the surface emitting laser 12. Further, when the second support plate side electrode 61 and the heat sink 60 are formed of different materials, the heat sink 60 is formed of a material having higher thermal conductivity than the second support plate side electrode 61. This is preferable because the heat dissipation effect can be appropriately increased. The shape of the heat sink 60 is not particularly limited. In FIG. 4, the heat radiating plate 60 is substantially L-shaped, but other forms are naturally possible. Further, the heat radiation plate 60 may be in direct contact with the element surface 12b of the surface emitting laser 12 without being in electrical contact with the second support plate side electrode 61. In such a case, the heat sink 60 does not function as an electrode. In the case where the heat sink 60 does not function as an electrode, the heat sink 60 may not be formed of metal, but may be formed of a high thermal conductivity ceramic such as A1N. In addition, it is more preferable that the support plate 50 itself is formed of a highly thermally conductive ceramic plate or the like. However, when the heat sink 60 is provided, The heat radiating plate 60 is formed of a material having a higher thermal conductivity than the support plate 50. In FIG. 4, the surface emitting laser 12 is used for explanation, but the other surface emitting lasers 13 preferably have the same configuration.
[0048] また他の実施形態としては、図 5に示すように、前記面発光レーザ 12、 13を支持す るための支持板 70を金属で形成してもよい(以下、支持板 70を金属板と言う)。金属 材料としては、銅、アルミニウム等を選択できる力 前記金属板 70には平坦性の良好 な硬い材質が好まれる。  In another embodiment, as shown in FIG. 5, a support plate 70 for supporting the surface emitting lasers 12 and 13 may be formed of metal (hereinafter, the support plate 70 is made of metal). Say the board). A force capable of selecting copper, aluminum or the like as the metal material. The metal plate 70 is preferably a hard material with good flatness.
[0049] 前記金属板 70は面発光レーザ 12, 13の各表面電極 46, 32と電気的に接続され ており、前記金属板 70は、前記面発光レーザ 12, 13に対する共通電極として機能し ている。  [0049] The metal plate 70 is electrically connected to the surface electrodes 46, 32 of the surface emitting lasers 12, 13, and the metal plate 70 functions as a common electrode for the surface emitting lasers 12, 13. Yes.
[0050] 図 5に示す実施形態では、前記金属板 70の例えば周囲に、補助板 71が設けられ ている。前記補助板 71は絶縁性基板であることが必要である。前記補助板 71は、従 来と同様、熱伝導電性の低い絶縁基板であってもよいが、例えば A1N等の高熱伝導 性セラミックスで形成すると、放熱性を高める上で好ましい。前記補助板 71には、前 記面発光レーザ 12、 13の裏面電極 33, 34とワイヤ 35, 36を介して電気的に接続さ れる第 1の支持板側電極 49, 52が設けられている。  In the embodiment shown in FIG. 5, an auxiliary plate 71 is provided around, for example, the metal plate 70. The auxiliary plate 71 needs to be an insulating substrate. The auxiliary plate 71 may be an insulating substrate having a low thermal conductivity as in the conventional case. However, for example, it is preferable to form the auxiliary plate 71 with a high thermal conductive ceramic such as A1N in order to improve heat dissipation. The auxiliary plate 71 is provided with first support plate side electrodes 49 and 52 which are electrically connected to the backside electrodes 33 and 34 of the surface emitting lasers 12 and 13 through wires 35 and 36, respectively. .
[0051] 前記補助板 71の上面 71aにはスぺーサ 72を介して、マイクロレンズアレイ 15が設 けられている。前記マイクロレンズアレイ 15と前記金属板 70間には所定の間隔が開 けられている。図 5の形態では、前記マイクロレンズアレイ 15も面発光レーザアレイ 1 4の一部としてホログラム再生装置 10内に組み込まれる力 図 2のように、前記マイク 口レンズアレイ 15と面発光レーザアレイ 14とが別々のものとして前記ホログラム再生 装置 10内に組み込まれてもよいことは言うまでもない。図 5に示すように、前記マイク 口レンズアレイ 15を面発光レーザアレイ 14の一部として組み込むと、前記面発光レ 一ザアレイ 14を構成した時点で、各発光点 12al , 13alと各マイクロレンズ 30, 31の 主点間距離を高精度に合わせることができ好ましい。また図 2に示す実施形態にお いても、前記マイクロレンズアレイ 15をスぺーサ 72を用いて前記面発光レーザ 13の 一部として組み込んでもよレ、。 [0051] A microlens array 15 is provided on the upper surface 71a of the auxiliary plate 71 via a spacer 72. It is A predetermined gap is provided between the microlens array 15 and the metal plate 70. In the form of FIG. 5, the microlens array 15 is also incorporated into the hologram reproducing device 10 as a part of the surface emitting laser array 14. As shown in FIG. 2, the microphone lens array 15, the surface emitting laser array 14, Needless to say, may be incorporated in the hologram reproducing apparatus 10 as separate parts. As shown in FIG. 5, when the microphone lens array 15 is incorporated as a part of the surface emitting laser array 14, the light emitting points 12al and 13al and the microlenses 30 are formed when the surface emitting laser array 14 is configured. , 31 is preferable because the distance between principal points can be adjusted with high accuracy. Also in the embodiment shown in FIG. 2, the microlens array 15 may be incorporated as a part of the surface emitting laser 13 using a spacer 72.
[0052] 図 5に示す実施形態でも図 2と同様に金属板 70の前記面発光レーザ 12, 13との 対向面 70aは同一平面で形成されている。以下では、前記対向面 70aを同一平面と 表記する場合がある。そして各面発光レーザ 12, 13の素子表面 12b, 13bが、前記 同一平面 70aに当接 ·支持されている。  In the embodiment shown in FIG. 5, as in FIG. 2, the facing surface 70 a of the metal plate 70 facing the surface emitting lasers 12 and 13 is formed in the same plane. Hereinafter, the facing surface 70a may be referred to as the same plane. The element surfaces 12b and 13b of the surface emitting lasers 12 and 13 are in contact with and supported by the same plane 70a.
[0053] したがって、前記面発光レーザ 12, 13の厚みが図 5のように異なっていても、各面 発光レーザ 12, 13の発光点 12al , 13alの高さ位置のばらつきを抑えることが可能 である。図 5に示すように、前記金属板 70には前記発光点 12al、 13alと対向する 位置に貫通孔 70b, 70cが形成されており、図 3で説明したと同様に、前記貫通孔 70 b, 70cからは位置決め用のマーク部(図示しない)が現れ、前記面発光レーザ 12, 1 3を前記金属板 70に対して高精度に位置決めできるようになつている。  Therefore, even if the surface emitting lasers 12 and 13 have different thicknesses as shown in FIG. 5, it is possible to suppress variations in the height positions of the emission points 12al and 13al of the surface emitting lasers 12 and 13. is there. As shown in FIG. 5, the metal plate 70 is formed with through holes 70b, 70c at positions facing the light emitting points 12al, 13al. As described with reference to FIG. 3, the through holes 70b, A positioning mark portion (not shown) appears from 70c so that the surface emitting lasers 12, 13 can be positioned with respect to the metal plate 70 with high accuracy.
[0054] 図 6に示す実施形態のように、前記マイクロレンズアレイ 15と前記金属板 70とを重 ねてもよい。かかる場合、前記金属板 70の表面(前記マイクロレンズアレイ 15との対 向面) 70dは平坦化面で形成され、一方、前記マイクロレンズ 30, 31は凹レンズで形 成され、前記レンズ 31 , 32の裏面(前記金属板 70との対向面)を除く前記マイクロレ ンズアレイ 15の裏面 15aが平坦化面で形成されて!/、る。上記したように前記マイクロ レンズ 30, 31は凹レンズ以外であってもよいが、前記金属板 70と前記マイクロレンズ アレイ 15とを重ねる場合には、前記マイクロレンズ 30, 31の裏面部分は平坦化面か 凹部となって!/、る(すなわち金属板 70方向に凸形状となって!/、な!/、)こと力 マイクロ レンズアレイ 15と金属板 70とを適切に重ねることができ好ましい。図 6の形態では、 光の漏れ量を少なく出来、光強度を強く出来る。ここで「重ねる」とは、マイクロレンズ アレイ 15と金属板 70とが接触している場合のみならず、前記マイクロレンズアレイ 15 と金属板 70間に接着層(図示しない)が介在する状態も含む。 As in the embodiment shown in FIG. 6, the microlens array 15 and the metal plate 70 may overlap each other. In such a case, the surface 70d of the metal plate 70 (the surface facing the microlens array 15) is formed as a flattened surface, while the microlenses 30 and 31 are formed as concave lenses, and the lenses 31 and 32 are formed. The back surface 15a of the microlens array 15 excluding the back surface (the surface facing the metal plate 70) is formed as a flat surface! As described above, the micro lenses 30 and 31 may be other than concave lenses. However, when the metal plate 70 and the micro lens array 15 are stacked, the back surfaces of the micro lenses 30 and 31 are flattened surfaces. It becomes a recess! /, Ru (that is, a convex shape in the direction of the metal plate 70! /, Na! /,) Force Micro It is preferable that the lens array 15 and the metal plate 70 can be appropriately stacked. In the form of Fig. 6, the amount of light leakage can be reduced and the light intensity can be increased. Here, “superimpose” includes not only the case where the microlens array 15 and the metal plate 70 are in contact, but also the state where an adhesive layer (not shown) is interposed between the microlens array 15 and the metal plate 70. .
[0055] 図 2の実施形態でも同様に支持板 50とマイクロレンズアレイ 15とを重ねることが可 能である。 In the embodiment of FIG. 2, the support plate 50 and the microlens array 15 can be overlapped in the same manner.
[0056] 図 7に示す実施形態では、マイクロレンズアレイ 15と面発光レーザ 12, 13とを有し て面発光レーザアレイ 80を構成している。特に本実施形態では、マイクロレンズァレ ィ 15の裏面(前記面発光レーザ 12, 13との対向面) 15aに第 1の支持板側電極 83, 84と第 2の支持板側電極 85が設けられ、当該各電極に面発光レーザ 12, 13の素子 表面 12b, 13bが当接 ·支持されている。  In the embodiment shown in FIG. 7, the surface emitting laser array 80 is configured by including the microlens array 15 and the surface emitting lasers 12 and 13. In particular, in the present embodiment, the first support plate side electrodes 83 and 84 and the second support plate side electrode 85 are provided on the back surface 15a of the microlens array 15 (the surface facing the surface emitting lasers 12 and 13). The element surfaces 12b and 13b of the surface emitting lasers 12 and 13 are in contact with and supported by the electrodes.
[0057] 前記マイクロレンズ 30、 31は夫々凹レンズで形成され、前記マイクロレンズ 30, 31 の裏面を除く前記マイクロレンズアレイ 15の裏面 15aは同一平面で形成されている。 以下、前記裏面 15aを同一平面と表記する場合がある。前記マイクロレンズ 30, 31 は、上記したように凹レンズ以外であってもよいが、前記マイクロレンズ 30, 31の裏面 は平坦化面か凹部となっている(すなわち前記面発光レーザ 12, 13の素子表面 12 b, 13b方向に凸形状となっていない)。  The micro lenses 30 and 31 are each formed of a concave lens, and the back surface 15a of the micro lens array 15 excluding the back surfaces of the micro lenses 30 and 31 is formed in the same plane. Hereinafter, the back surface 15a may be referred to as the same plane. The micro lenses 30, 31 may be other than concave lenses as described above, but the back surfaces of the micro lenses 30, 31 are flattened surfaces or concave portions (that is, elements of the surface emitting lasers 12, 13). The surface is not convex in the 12b and 13b directions).
[0058] そして図 7に示すように前記面発光レーザ 12, 13の各素子表面 12b, 13bが前記 マイクロレンズアレイ 15の裏面(同一平面) 15a下で支持されて!/、る。  Then, as shown in FIG. 7, the element surface 12b, 13b of the surface emitting laser 12, 13 is supported under the back surface (same plane) 15a of the microlens array 15! /.
[0059] 図 7に示すように前記マイクロレンズアレイ 15の裏面 15aには、前記面発光レーザ 1 2, 13の裏面電極 33, 34とワイヤ 81 , 82を介して電気的に接続される第 1の支持板 側電極 83, 84と、前記面発光レーザ 12, 13の表面電極 46, 32と電気的に接続す る第 2の支持板側電極 85とが夫々設けられて!/、る。  As shown in FIG. 7, the first back surface 15a of the microlens array 15 is electrically connected to the back surface electrodes 33 and 34 of the surface emitting lasers 12 and 13 via wires 81 and 82, respectively. Support plate side electrodes 83 and 84, and second support plate side electrodes 85 electrically connected to the surface electrodes 46 and 32 of the surface emitting lasers 12 and 13, respectively.
[0060] 前記マイクロレンズアレイ 15は透明なガラスあるいは樹脂で形成されている。また、 前記第 1の支持板側電極 83, 84および第 2の支持板側電極 85は ITO膜等の透明 電極として形成されている。したがって前記マイクロレンズアレイ 15を真上から見たと きに、前記面発光レーザ 12、 13の素子表面 12b, 13bを透視できる。  [0060] The microlens array 15 is made of transparent glass or resin. The first support plate side electrodes 83 and 84 and the second support plate side electrode 85 are formed as transparent electrodes such as an ITO film. Therefore, when the microlens array 15 is viewed from directly above, the element surfaces 12b and 13b of the surface emitting lasers 12 and 13 can be seen through.
[0061] よって、本実施形態では、例えば図 2の形態における支持板 50のようにマイクロレ ンズアレイ 15に貫通孔を設けなくてもよい。すなわち、前記マイクロレンズアレイ 15の 前記表面 15bあるいは前記裏面 15a、及び前記面発光レーザ 12、 13の素子表面 1Therefore, in the present embodiment, for example, a micro-restriction like the support plate 50 in the embodiment of FIG. It is not necessary to provide a through hole in the sensor array 15. That is, the surface 15b or the back surface 15a of the microlens array 15 and the element surface 1 of the surface emitting lasers 12 and 13
2b, 13bに夫々、位置決め用のマーク部 37〜40及び 86〜93を設けておけば、前 記マーク部を用いて前記面発光レーザ 12, 13を前記マイクロレンズアレイ 15に対し 正確に位置合わせすることが可能とある。例えば、前記マーク部 86、 37、 38、及び 8If the positioning mark portions 37 to 40 and 86 to 93 are provided in 2b and 13b, respectively, the surface emitting lasers 12 and 13 are accurately aligned with the microlens array 15 using the mark portions. It is possible to do. For example, the mark portions 86, 37, 38, and 8
9 (93、 39、 40、及び 90)が図示 X方向と平行な仮想線 D上及び前記マーク部 87、 39 (93, 39, 40, and 90) are shown on the imaginary line D parallel to the X direction and the mark portions 87, 3
7、 39、及び 92 (88、 38、 40、及び 91)が図示 Y方向と平行な仮想線 E上に夫々一 直線に並ぶように前記面発光レーザ 12、 13を前記マイクロレンズアレイ 15に対し位 置決めする。これにより、前記面発光レーザ 12、 13を前記マイクロレンズアレイ 15に 対し図示 X方向及び図示 Y方向の双方に正確に位置決めできる。前記マーク部は、 着色、凹凸形状等、特に形態を限定するものではない。また前記マーク部の形成は レーザマーキングやエッチング、スパッタ等特に限定されない。また前記面発光レー ザ 12、 13のマイクロレンズアレイ 15に対する位置決め方法は上記のように複数のマ 一ク部を一直線上に揃える以外の方法であってもよい。 The surface-emitting lasers 12, 13 are aligned with the microlens array 15 so that 7, 39, and 92 (88, 38, 40, and 91) are aligned in a straight line on a virtual line E parallel to the Y direction shown in the figure. Position it. Thus, the surface emitting lasers 12 and 13 can be accurately positioned with respect to the microlens array 15 in both the X direction and the Y direction shown. The mark portion is not particularly limited in form, such as coloring or uneven shape. Further, the formation of the mark portion is not particularly limited, such as laser marking, etching, and sputtering. The positioning method of the surface emitting lasers 12 and 13 with respect to the microlens array 15 may be a method other than aligning a plurality of mark portions on a straight line as described above.
[0062] 図 9に示す実施形態は図 2に示す面発光レーザアレイ 14を一部変更したものとし、 図 2と同じ部材については同じ符号をつけて説明する。 In the embodiment shown in FIG. 9, it is assumed that the surface emitting laser array 14 shown in FIG. 2 is partly changed, and the same members as those in FIG.
[0063] 図 9に示す実施形態では、前記支持板 50と前記支持板 50の下方に所定距離離れ た位置に対向して基台 95が設けられている。前記支持板 50と基台 95との間にはス ぺーサ 96が設けられて!/、る。 In the embodiment shown in FIG. 9, a base 95 is provided facing the support plate 50 and a position below the support plate 50 at a predetermined distance. A spacer 96 is provided between the support plate 50 and the base 95.
[0064] 図 9に示すように前記基台 95上には上方に向けて立体成形された弾性部材 97, 9[0064] As shown in Fig. 9, the elastic members 97, 9 which are three-dimensionally shaped upward on the base 95.
8が設けられている。前記弾性部材 97, 98は、例えば Cuで形成された心材の周囲 にばね性に優れる Niあるいはその合金(特に NiPが好ましい)がメツキ等により被覆さ れたものである。前記弾性部材 97, 98の弾性変形部 97a, 98aは例えばスパイラル 形状 (螺旋形状)で上方に向けて立体成形されており、記面発光レーザ 12、 13の裏 面電極 33, 34に接触している。 8 is provided. The elastic members 97 and 98 are made of, for example, Ni or its alloy (particularly NiP is preferable) having excellent spring properties and coated with a metal or the like around a core made of Cu. The elastic deformation portions 97a and 98a of the elastic members 97 and 98 are, for example, spirally shaped (spiral shape) and are three-dimensionally shaped upward, and are in contact with the back surface electrodes 33 and 34 of the surface emitting lasers 12 and 13. Yes.
[0065] 前記基台 95上には基台側電極(第 1の支持板側電極と同じもの) 99, 100が設け られ、前記面発光レーザ 12, 13の裏面電極 33, 34と前記基台側電極 99, 100間が 前記弾性部材 97, 98を介して電気的に接続されている。 [0066] 前記弾性部材 97, 98の弾性変形部 97a, 98aは、前記面発光レーザ 12 13の裏 面電極 33, 34を支持板 50方向(上方) 押圧しており、特に前記裏面電極 33, 34 と前記弾性部材 97, 98間を導電性接着剤等で固定しなくても前記裏面電極 33, 34 と前記弾性部材 97, 98間の導通接続を適切に図ることが可能である。 [0065] On the base 95, base side electrodes (same as the first support plate side electrode) 99, 100 are provided, and the back electrodes 33, 34 of the surface emitting lasers 12, 13 and the base The side electrodes 99 and 100 are electrically connected via the elastic members 97 and 98. [0066] The elastic deformation portions 97a and 98a of the elastic members 97 and 98 press the back surface electrodes 33 and 34 of the surface emitting laser 12 13 in the direction of the support plate 50 (upward). It is possible to appropriately establish a conductive connection between the back surface electrodes 33 and 34 and the elastic members 97 and 98 without fixing between 34 and the elastic members 97 and 98 with a conductive adhesive or the like.
[0067] なお図 2から図 8の実施形態においては、前記面発光レーザ 12, 13と支持板 50間 を接着剤を介して接着固定することが好ましいが、図 9の実施形態では、前記接着剤 を使用しなくても、前記弾性部材 97, 98による押圧力によって、前記面発光レーザ 1 2, 13の素子表面 12b, 13bを前記支持板 50の対向面(同一平面) 50a下で固定す ることが可能である。  In the embodiment of FIGS. 2 to 8, it is preferable that the surface-emitting lasers 12 and 13 and the support plate 50 are bonded and fixed with an adhesive. However, in the embodiment of FIG. Even if no agent is used, the element surfaces 12b and 13b of the surface emitting lasers 12 and 13 are fixed under the opposing surface (same plane) 50a of the support plate 50 by the pressing force of the elastic members 97 and 98. Is possible.
[0068] 前記弾性部材 97, 98には、少なくとも前記面発光レーザ 12, 13を前記支持板 50 側へ押圧する機能だけを持たせ、前記裏面電極 33, 34と前記基台側電極 99, 100 間を導通させるための導通接続部として用いなくてもよい。例えば図 2に示すように、 前記裏面電極 33, 34と導通接続する電極(第 1の支持板側電極) 49, 52を前記支 持板 50の前記対向面 50aに設けた場合には、前記基台 95上に前記電極 99, 100 が必要なくなる。かかる場合、前記弾性部材 97, 98は、前記面発光レーザ 12, 13を 前記支持板 50側へ押圧する押圧部材としてのみ機能する。  The elastic members 97 and 98 have at least a function of pressing the surface emitting lasers 12 and 13 toward the support plate 50, and the back electrodes 33 and 34 and the base side electrodes 99 and 100 are provided. It does not have to be used as a conductive connection part for conducting the gap. For example, as shown in FIG. 2, when electrodes (first support plate side electrodes) 49, 52 that are electrically connected to the back electrodes 33, 34 are provided on the facing surface 50a of the support plate 50, The electrodes 99 and 100 are not necessary on the base 95. In such a case, the elastic members 97 and 98 function only as pressing members that press the surface emitting lasers 12 and 13 toward the support plate 50 side.
[0069] 図 10に示すように、前記支持板 50の対向面 50aには、第 2の支持板側電極 25 2 6が設けられている。前記第 2の支持板側電極 25 26は同一平面で形成された前記 対向面 50a上に層状に形成されている。このため前記第 2の支持板側電極 25 26の 前記面発光レーザ 12 13との対向面 25a 26aと前記支持板 50の対向面 50a間に は、前記電極 25, 26の厚み分の段差が生じている。  As shown in FIG. 10, a second support plate side electrode 25 26 is provided on the facing surface 50 a of the support plate 50. The second support plate side electrode 25 26 is formed in layers on the facing surface 50a formed on the same plane. For this reason, a step corresponding to the thickness of the electrodes 25 and 26 occurs between the surface 25a 26a of the second support plate side electrode 25 26 facing the surface emitting laser 12 13 and the surface 50a of the support plate 50. ing.
[0070] 図 10に示すように、前記面発光レーザ 12 13の表面電極 32 46と前記第 2の支 持板側電極 25 26の前記対向面 25a 26a間には半田等の導電性接着層 27が介 在し、またその周囲の前記面発光レーザ 12 3の素子表面 12b 13bと前記対向面 5 0a間に樹脂等の接着層 74が介在し、前記面発光レーザ 13が前記支持板 50に固定 されている。前記接着層 74は必ずしも必要ではないが、介在させたほうが、接着強 度を強めることができ好ましい。また図 10では、接着に寄与する層が 2つ(導電性接 着層 27と接着層 74)ある力 S、例えば異方性導電ペースト等を使用すれば、前記面発 光レーザ 12、 13の素子表面 12b、 13bと対向面 50a間全体を 1層の接着層で接着 すること力 Sでさる。 As shown in FIG. 10, a conductive adhesive layer 27 such as solder is provided between the surface electrode 32 46 of the surface emitting laser 12 13 and the opposing surface 25a 26a of the second support plate side electrode 25 26. In addition, an adhesive layer 74 such as a resin is interposed between the element surface 12b 13b of the surface emitting laser 123 and the opposing surface 50a around the surface, and the surface emitting laser 13 is fixed to the support plate 50. Has been. The adhesive layer 74 is not necessarily required, but interposing it is preferable because the adhesive strength can be increased. Further, in FIG. 10, if the force S having two layers (conductive adhesive layer 27 and adhesive layer 74) contributing to adhesion, for example, anisotropic conductive paste or the like is used, the surface emission is increased. The entire surface between the element surfaces 12b and 13b of the optical lasers 12 and 13 and the facing surface 50a is bonded with a single adhesive layer with a force S.
[0071] ところで図 10に示すように前記支持板 50の対向面 50aから下方へ突出する第 2の 支持板側電極 25、 26が形成されている場合、前記第 2の支持板側電極 25、 26の厚 さにばらつき力 S生じていると、その厚さのばらつきが発光点 12al、 13alの高さ位置 のばらつきに反映される。前記接着層 27、 74の厚さにばらつきがある場合も同様で ある。  [0071] By the way, when the second support plate side electrodes 25, 26 projecting downward from the facing surface 50a of the support plate 50 are formed as shown in FIG. 10, the second support plate side electrode 25, If a variation force S occurs in the thickness of 26, the variation in thickness is reflected in the variation in the height position of the light emitting points 12al and 13al. The same applies when the thickness of the adhesive layers 27 and 74 varies.
[0072] し力、し、前記第 2の支持板側電極 25、 26や接着層 27、 74の厚さのばらつきは前記 面発光レーザ 12, 13の厚さのばらつきに比して小さい。前記面発光レーザ 12, 13 の厚さのばらつきは、前記第 2の支持板側電極 25、 26や接着層 27、 74の厚さのば らつきに対し数十倍〜数百倍程度となる。また、支持板 50に形成される電極や接着 層の厚さのばらつきは従来においても当然に生じていた(従来における厚さのばらつ きは図 15に示す基板 1と面発光レーザ 2, 3間の接着層の厚さのばらつきや、前記基 板 1上の電極の厚さのばらつきである)。  [0072] The thickness variation of the second support plate side electrodes 25, 26 and the adhesive layers 27, 74 is smaller than the thickness variation of the surface emitting lasers 12, 13. Variations in the thickness of the surface emitting lasers 12 and 13 are about several tens to several hundreds times the variation in thickness of the second support plate side electrodes 25 and 26 and the adhesive layers 27 and 74. . In addition, variations in the thickness of the electrode and adhesive layer formed on the support plate 50 have naturally occurred in the past (the variation in thickness in the past has been shown in FIG. 15 by the substrate 1 and the surface emitting lasers 2, 3). This is a variation in the thickness of the adhesive layer between them and a variation in the thickness of the electrodes on the substrate 1).
[0073] よって本実施形態のように、支持板 50の対向面 50aを同一平面とし、前記面発光 レーザ 12, 13の素子表面 12b, 13bを前記同一平面 50a下で支持するようにすれば 、少なくとも従来に比べて前記面発光レーザ 12, 13の各発光点 12al , 13alの高さ のばらつきを小さくすることが可能である。  Therefore, as in this embodiment, if the opposing surface 50a of the support plate 50 is the same plane and the element surfaces 12b and 13b of the surface emitting lasers 12 and 13 are supported under the same plane 50a, At least, it is possible to reduce variations in the heights of the light emitting points 12al and 13al of the surface emitting lasers 12 and 13 as compared with the prior art.
[0074] なお図 11に示すように、各面発光レーザ 12、 13の素子表面 12b、 13b上に表面電 極 32、 46が形成され、前記表面電極 32、 46の表面 32a、 46aと前記素子表面 12b 、 13b間に段差が生じている形態であっても、その影響は上記と同様と考えられる。  As shown in FIG. 11, surface electrodes 32 and 46 are formed on the element surfaces 12b and 13b of the surface emitting lasers 12 and 13, and the surfaces 32a and 46a of the surface electrodes 32 and 46 and the element Even if there is a step between the surfaces 12b and 13b, the effect is considered to be the same as described above.
[0075] そなわち、図 11に示す形態では、第 2の支持板側電極 25, 26、接着層 27、 74及 び表面電極 32、 46の各厚さのばらつきが累積する力 S、その累積値は、前記面発光 レーザ 12, 13の厚さのばらつきに比して十分に小さい。よって本実施形態のように、 支持板 50の対向面 50aを同一平面とし、前記面発光レーザ 12, 13の素子表面 12b , 13bを前記同一平面 50a下で支持するようにすれば、少なくとも従来に比べて前記 面発光レーザ 12, 13の各発光点 12al , 13alの高さのばらつきを小さくすることが 可能である。 [0076] また、既に述べたように、前記第 2の支持板側電極 25, 26の対向面 25a, 26aが前 記対向面 50aと同一平面で形成され、また図 10のように面発光レーザ 12、 13の表 面電極 46 , 32の表面が素子表面 12b, 13bと同一平面で形成され、前記対向面 50 aと素子表面 12b, 13b間が樹脂層を介して接合される形態では、より効果的に各発 光点 12al , 13al (図 2を参照)の高さのばらつきを小さくすることが可能である。さら に、樹脂層も設けず、例えば図 9のように弾性部材を用いて、前記対向面 50aと素子 表面 12b, 13bとを当接すれば、さらに効果的に各発光点 12al , 13al (図 2を参照) の高さのばらつきを小さくすることが可能である。 That is, in the form shown in FIG. 11, the force S in which the thickness variations of the second support plate side electrodes 25 and 26, the adhesive layers 27 and 74, and the surface electrodes 32 and 46 are accumulated, The cumulative value is sufficiently smaller than the thickness variation of the surface emitting lasers 12 and 13. Therefore, as in the present embodiment, if the opposing surface 50a of the support plate 50 is made to be the same plane and the element surfaces 12b and 13b of the surface emitting lasers 12 and 13 are supported under the same plane 50a, at least conventionally. In comparison, it is possible to reduce the variation in height of the light emitting points 12al and 13al of the surface emitting lasers 12 and 13. Further, as already described, the opposing surfaces 25a, 26a of the second support plate side electrodes 25, 26 are formed in the same plane as the opposing surface 50a, and a surface emitting laser as shown in FIG. In the form in which the surfaces of the surface electrodes 46 and 32 of 12 and 13 are formed in the same plane as the element surfaces 12b and 13b, and the facing surface 50a and the element surfaces 12b and 13b are joined via a resin layer, It is possible to effectively reduce the variation in height of the light emitting points 12al and 13al (see Fig. 2). Further, if the opposing surface 50a and the element surfaces 12b and 13b are brought into contact with each other using an elastic member without using a resin layer, for example, as shown in FIG. 9, the light emitting points 12al and 13al (FIG. Variation in height can be reduced.
[0077] なお、前記対向面 50aから発光点 12al , 13alまでの距離を等しく調整し、その状 態にて前記対向面 50a下で素子表面 12b, 13bを接合すれば、第 2の支持板側電極 25, 26、接着層 27及び表面電極 46, 32の各厚さのばらつきに関係なぐ前記発光 点 12al , 13alの高さ位置を同じ高さに揃えることが出来る。  If the distance from the facing surface 50a to the light emitting points 12al and 13al is adjusted to be equal, and the element surfaces 12b and 13b are joined under the facing surface 50a in this state, the second support plate side The height positions of the light emitting points 12al and 13al related to variations in the thicknesses of the electrodes 25 and 26, the adhesive layer 27, and the surface electrodes 46 and 32 can be made the same.
[0078] 図 2〜図 11に示す実施形態は、いずれも、面発光レーザ 12、 13の素子表面 12b, 13b及び裏面 12c, 13cに夫々電極が形成されている形態であった力 例えば図 12 に示すように、前記面発光レーザ 12の素子表面 12bに下方に凹む段差部 12eが形 成され、その段差表面 12elに前記裏面電極に代わる表面電極 28が形成されてい てもよい。前記支持板 50の前記対向面 50aには前記表面電極 28と対向する位置に 支持板側電極 29が形成され、前記支持板側電極 29と前記表面電極 28とが導電性 の接着層 45を介して電気的に接続されている。  In all of the embodiments shown in FIGS. 2 to 11, the force is such that electrodes are formed on the element front surfaces 12b and 13b and the back surfaces 12c and 13c of the surface emitting lasers 12 and 13, for example, FIG. As shown in FIG. 6, a stepped portion 12e recessed downward is formed on the element surface 12b of the surface emitting laser 12, and a surface electrode 28 instead of the back electrode may be formed on the stepped surface 12el. A support plate-side electrode 29 is formed on the facing surface 50a of the support plate 50 at a position facing the surface electrode 28, and the support plate-side electrode 29 and the surface electrode 28 are interposed via a conductive adhesive layer 45. Are electrically connected.
[0079] また、前記支持板 50の前記対向面 50aは、少なくとも面発光レーザ 12, 13が当接 •支持される箇所だけが同一平面であればよぐ前記対向面 50a全体が同一平面で 形成されなくてもよい。図 12に示すように前記面発光レーザ 12を支持する位置から 離れた箇所にて例えば前記対向面 50aの一部 50alが下方向に突出していてもよい [0079] Further, the opposing surface 50a of the support plate 50 is formed so that at least the surface emitting lasers 12 and 13 are in contact with each other. It does not have to be done. As shown in FIG. 12, for example, a part 50al of the facing surface 50a may protrude downward at a position away from the position where the surface emitting laser 12 is supported.
Yes
[0080] なお図 13に示すように、前記面発光レーザ 12に形成された段差表面 12elと対向 する支持板 50の対向面の一部 50a2が、下方に突出する形態であってもよい。  As shown in FIG. 13, a part 50a2 of the facing surface of the support plate 50 facing the step surface 12el formed in the surface emitting laser 12 may protrude downward.
[0081] なお本実施形態における「素子表面」とは発光点が現れる表面を指す。よって前記 発光点が現れない表面は「素子表面」に含めないと考える。例えば図 13の形態で言 えば、段差表面 12elは発光点 12alが現れる表面ではないので、「素子表面」に前 記段差表面 12elを含めないと考える。そうすると図 13では、素子表面 12bと対向す る支持板 50の対向面 50a全体は同一平面で形成され、前記素子表面 12b全体が前 記同一平面 50a下で支持された状態となっていることがわかる。 Note that “element surface” in the present embodiment refers to a surface where a light emitting point appears. Therefore, it is considered that the surface where the light emitting point does not appear is not included in the “element surface”. For example, in the form of FIG. For example, since the step surface 12el is not the surface on which the light emitting point 12al appears, it is considered that the step surface 12el is not included in the “element surface”. Then, in FIG. 13, the entire opposing surface 50a of the support plate 50 facing the element surface 12b is formed in the same plane, and the entire element surface 12b is supported under the same plane 50a. Recognize.
[0082] なお図 12,図 13では面発光レーザ 12及びそれと対向する支持板 50の対向面 50 aを用いて説明した力 各図において他の面発光レーザ 13及びそれに対向する支 持板 50の対向面 50aも同様の形態で形成されている。  In FIGS. 12 and 13, the force described using the surface emitting laser 12 and the facing surface 50a of the supporting plate 50 facing the surface emitting laser 12 in each diagram, the other surface emitting laser 13 and the supporting plate 50 facing the other surface emitting laser 13 are shown. The facing surface 50a is also formed in the same form.
[0083] 以上のように本実施形態によれば、面発光レーザアレイに取り付けられる複数の面 発光レーザ 12, 13の発光点 12al , 13alの高さのばらつきを従来よりも小さくできる  As described above, according to the present embodiment, the variation in the heights of the light emitting points 12al and 13al of the plurality of surface emitting lasers 12 and 13 attached to the surface emitting laser array can be made smaller than before.
[0084] よって、図 14に示すように、複数の前記面発光レーザ 12, 13の各発光点 12bl , 1 3blと光学調整部材であるマイクロレンズ 30, 31の主点 30a, 31a間の距離 H5, H6 ゃコリメータレンズ 16の主点 16a間の距離 H7, H8を同じにできる。 Accordingly, as shown in FIG. 14, the distance H5 between the light emitting points 12bl and 13bl of the plurality of surface emitting lasers 12 and 13 and the main points 30a and 31a of the microlenses 30 and 31, which are optical adjusting members, , H6 can make the distances H7 and H8 between the principal points 16a of the collimator lens 16 the same.
[0085] したがって前記面発光レーザ 12から放射される再生参照光 22、及び前記面発光 レーザ 13から放射される再生参照光 73を共に、前記マイクロレンズ 30, 31ゃコリメ ータレンズ 16を通して適切に平行光に調整できる。よって、前記ホログラムデータ 21 を再生可能な波長を得るベぐ前記面発光レーザ 12, 13を切り替えても平行光で一 定の光強度以上の再生参照光 22, 71を得ることができ、前記ホログラムデータ 21を 適切に再生できる。以上により本実施形態により製造された面発光レーザアレイ 14を 用いて前記ホログラム再生装置 10を製造すれば、広範な波長帯域にて再生参照光 を一定の光強度以上の平行光で得ることができ、よってホログラム再生機能に優れた ホログラム再生装置を製造できる。  Accordingly, the reproduction reference beam 22 emitted from the surface emitting laser 12 and the reproduction reference beam 73 emitted from the surface emitting laser 13 are both appropriately collimated through the microlens 30, 31 and the collimator lens 16. Can be adjusted. Therefore, even if the surface emitting lasers 12 and 13 for obtaining a wavelength capable of reproducing the hologram data 21 are switched, it is possible to obtain reproduction reference beams 22 and 71 having a certain light intensity or more with parallel light. Data 21 can be reproduced properly. As described above, when the hologram reproducing apparatus 10 is manufactured using the surface emitting laser array 14 manufactured according to the present embodiment, the reproduction reference light can be obtained as parallel light having a certain light intensity or more in a wide wavelength band. Therefore, a hologram reproducing device having an excellent hologram reproducing function can be manufactured.
[0086] なお実施形態では支持板 50上に設けられた面発光レーザ 12, 13は 2個であった  In the embodiment, the number of surface emitting lasers 12 and 13 provided on the support plate 50 is two.
1S さらに多くの面発光レーザが搭載されてもよい。かかる場合、少なくとも一個の面 発光レーザの膜厚が、他の面発光レーザの膜厚と異なる場合、本実施形態における 製造方法を適用すると効果的である。  1S More surface emitting lasers may be mounted. In such a case, when the film thickness of at least one surface emitting laser is different from the film thickness of other surface emitting lasers, it is effective to apply the manufacturing method according to this embodiment.
[0087] 本実施形態では、面発光レーザアレイ 14の用途してホログラム再生装置 10を説明 したが、ホログラム再生装置に限定されるものではない。複数の面発光レーザを使用 し、各面発光レーザの発光点が同一高さであることが要求される用途であれば適用 可能である。 In the present embodiment, the hologram reproducing device 10 has been described as an application of the surface emitting laser array 14, but is not limited to the hologram reproducing device. Uses multiple surface emitting lasers However, the present invention is applicable to applications where the emission points of the surface emitting lasers are required to be the same height.
[0088] また「発光素子」として面発光レーザを用いた力 前記面発光レーザに限定されるも のではない。  Further, the force using a surface emitting laser as the “light emitting element” is not limited to the surface emitting laser.
[0089] また、本実施形態では、前記面発光レーザ 12、 13の素子表面 12b, 13bに表面電 極 46 , 32カ設けられていた力 前記面発光レーザ 12、 3の裏面 12c, 13cに夫々、 2 つの電極が設けられて!/、てもよ!/、。  Further, in the present embodiment, the force provided on the element surface 12b, 13b of the surface emitting laser 12, 13 on the surface electrodes 46, 32 is applied to the back surface 12c, 13c of the surface emitting laser 12, 3 respectively. Two electrodes are provided! /, You can! /
図面の簡単な説明  Brief Description of Drawings
[0090] [図 1]ホログラム再生装置によって記録媒体からホログラムデータを再生する概念図、 [図 2]本実施形態における発光装置(面発光レーザアレイ)及びマイクロレンズアレイ の部分断面図、  [0090] FIG. 1 is a conceptual diagram of reproducing hologram data from a recording medium by a hologram reproducing device. FIG. 2 is a partial sectional view of a light emitting device (surface emitting laser array) and a microlens array in the present embodiment.
[図 3]図 2に示す発光装置の部分平面図、  FIG. 3 is a partial plan view of the light emitting device shown in FIG.
[図 4]図 2に示す発光装置の部分裏面図、  [FIG. 4] Partial rear view of the light emitting device shown in FIG.
[図 5]図 2とは別の実施形態における発光装置の部分断面図、  FIG. 5 is a partial cross-sectional view of a light emitting device according to an embodiment different from FIG.
[図 6]図 5と一部異なる発光装置の部分断面図、  FIG. 6 is a partial cross-sectional view of a light emitting device that is partially different from FIG.
[図 7]図 2、図 5及び図 6とは別の実施形態における発光装置の部分断面図、  FIG. 7 is a partial cross-sectional view of a light emitting device according to an embodiment different from those shown in FIGS.
[図 8]図 7に示す発光装置の部分平面図、  FIG. 8 is a partial plan view of the light emitting device shown in FIG.
[図 9]図 2、図 5、図 6及び図 8とは別の実施形態における発光装置及びマイクロレン ズアレイの部分断面図、  FIG. 9 is a partial cross-sectional view of a light-emitting device and a microlens array in an embodiment different from those shown in FIGS. 2, 5, 6 and 8.
[図 10]図 2の発光装置の一部分を拡大して示す部分拡大断面図、  FIG. 10 is a partially enlarged sectional view showing a part of the light emitting device of FIG. 2 in an enlarged manner.
[図 11]図 10とは一部異なる形態の発光装置の部分拡大断面図、  FIG. 11 is a partially enlarged cross-sectional view of a light-emitting device that is partially different from FIG.
[図 12]図 2と一部異なる形態の発光装置の部分断面図、  FIG. 12 is a partial cross-sectional view of a light emitting device that is partially different from FIG.
[図 13]図 2と一部異なる形態の発光装置の部分断面図、  FIG. 13 is a partial cross-sectional view of a light emitting device that is partially different from FIG.
[図 14]本実施形態の発光装置をホログラム再生装置に組み込み、各面発光レーザ から照射される再生参照光の照射状態を説明するための概念図、  FIG. 14 is a conceptual diagram for explaining the irradiation state of reproduction reference light emitted from each surface emitting laser by incorporating the light emitting device of the present embodiment into a hologram reproducing device;
[図 15]従来の問題点を説明するための各面発光レーザから照射される再生参照光 の照射状態を示す概念図、  FIG. 15 is a conceptual diagram showing an irradiation state of reproduction reference light emitted from each surface emitting laser for explaining the conventional problems;
符号の説明 0 ホログラム再生装置Explanation of symbols 0 Hologram playback device
2、 13 面発光レーザ2, 13 Surface emitting laser
2al、 13al 発光点2al, 13al luminous point
2b、 13b 素子表面2b, 13b Element surface
4、 80 面発光レーザアレイ 6 コリメータレンズ4, 80 surface emitting laser array 6 collimator lens
8 撮像素子8 Image sensor
9 ピンホールフィルタ9 pinhole filter
0 記録媒体0 Recording media
1 ホログラムデータ1 Hologram data
2、 73 再生参照光2, 73 Playback reference light
3 再生光3 Reproducing light
5、 26、 61 第 2の支持板側電極5, 26, 61 Second support plate side electrode
0、 31 マイクロレンズ0, 31 Micro lens
2、 46 表面電極2, 46 Surface electrode
3、 34 裏面電極3, 34 Back electrode
5、 36 ワイヤ5, 36 wires
7、 38、 39、 40、 51、 52、 53、 54、 55、 56、 57、 58、 86、 87、 88、 89、 90、 91、 9 、 93 マーク部7, 38, 39, 40, 51, 52, 53, 54, 55, 56, 57, 58, 86, 87, 88, 89, 90, 91, 9, 93 mark
0 支持板0 Support plate
9、 52 第 1の支持板側電極9, 52 1st support plate side electrode
0 放熱板0 Heat sink
0 金属板 (支持板)0 Metal plate (support plate)
1 補助板1 Auxiliary plate
2、 96 スぺーサ2, 96 spacer
5 基台5 base
7、 98 弾性部材 7, 98 Elastic member

Claims

請求の範囲  The scope of the claims
[I] 複数の発光素子と、各発光素子を発光点が現れる素子表面側から支持する支持 板とを有し、  [I] having a plurality of light emitting elements and a support plate for supporting each light emitting element from the element surface side where the light emitting point appears,
前記支持板の前記素子表面と対向する対向面は、同一平面を有して形成され、複 数の前記発光素子の各素子表面が前記同一平面に支持されていることを特徴とす る発光装置。  The light-emitting device characterized in that the opposing surface of the support plate facing the element surface is formed in the same plane, and each element surface of the plurality of light-emitting elements is supported on the same plane. .
[2] 前記支持板は、高熱伝導性セラミック板で形成される請求項 1記載の発光装置。  2. The light emitting device according to claim 1, wherein the support plate is formed of a high thermal conductive ceramic plate.
[3] 前記支持板には前記支持板よりも熱伝導率が高!/、放熱板が設けられて!/、る請求項 [3] The support plate has higher thermal conductivity than the support plate! /, And a heat radiating plate is provided! /
1又は 2に記載の発光装置。  The light emitting device according to 1 or 2.
[4] 前記支持板は絶縁性であり、前記放熱板は金属で形成される請求項 3記載の発光 装置。 4. The light emitting device according to claim 3, wherein the support plate is insulative and the heat radiating plate is made of metal.
[5] 前記支持板の前記対向面には、前記発光素子に設けられた素子側電極と電気的 に接続される支持板側電極が設けられ、前記放熱板は、前記支持板側電極と接続さ れて電極として機能している請求項 4記載の発光装置。  [5] The opposing surface of the support plate is provided with a support plate side electrode electrically connected to the element side electrode provided in the light emitting element, and the heat radiating plate is connected to the support plate side electrode. 5. The light emitting device according to claim 4, which functions as an electrode.
[6] 前記支持板は、金属板で形成される請求項 1記載の発光装置。 6. The light emitting device according to claim 1, wherein the support plate is formed of a metal plate.
[7] 前記支持板は、各発光素子に対する共通電極として機能する請求項 6記載の発光 装置。 7. The light emitting device according to claim 6, wherein the support plate functions as a common electrode for each light emitting element.
[8] 前記発光素子の前記素子表面には、前記支持板に対する位置決め部が設けられ 、前記支持板には、発光点及び前記位置決め部と対向する位置に貫通孔が設けら れ、前記発光点からの光は、前記貫通孔を通して照射され、また、前記発光素子は 前記貫通孔から見える前記位置決め部を用いて前記支持板に対し位置決めされて V、る請求項 1な!/、し 7の!/、ずれかに記載の発光装置。  [8] A positioning portion for the support plate is provided on the element surface of the light emitting element, and a through hole is provided in the support plate at a position facing the light emitting point and the positioning portion. The light from the light source is irradiated through the through hole, and the light emitting element is positioned with respect to the support plate using the positioning portion visible from the through hole. ! / Light emitting device as described in any of
[9] 前記支持板はレンズで形成される請求項 1記載の発光装置。 9. The light emitting device according to claim 1, wherein the support plate is formed of a lens.
[10] 前記発光素子の前記素子表面には前記支持板に対する位置決め部が設けられ、 前記発光素子は前記支持板を表面から透視して見える前記位置決め部を用いて前 記支持板に対し位置決めされている請求項 9記載の発光装置。 [10] A positioning portion for the support plate is provided on the element surface of the light emitting element, and the light emitting element is positioned with respect to the support plate using the positioning portion seen through the support plate from the surface. The light emitting device according to claim 9.
[I I] 前記素子表面と反対側の素子裏面が、前記素子表面方向に、弾性部材によって 押圧されてレ、る請求項 1な!/、し 10の!/、ずれかに記載の発光装置。 [II] The light emitting device according to any one of claims 1 to 10, wherein the element back surface opposite to the element surface is pressed by an elastic member in the element surface direction.
[12] 前記素子裏面には裏面電極が形成され、前記弾性部材は金属で形成されており、 前記裏面電極と前記弾性部材とが電気的に接続されている請求項 11記載の発光装 置。 12. The light emitting device according to claim 11, wherein a back electrode is formed on the back surface of the element, the elastic member is made of metal, and the back electrode and the elastic member are electrically connected.
[13] 請求項 1ないし 12のいずれかに記載された発光装置と、記録媒体に記録されてい るデータを取得する撮像機構と、前記記録媒体を設置する設置部と、を有し、前記発 光素子から再生参照光が前記記録媒体に照射されて前記データを前記撮像機構に より取得することを特徴とするホログラム再生装置。  [13] The light emitting device according to any one of claims 1 to 12, an imaging mechanism that acquires data recorded on a recording medium, and an installation unit that installs the recording medium. A hologram reproducing apparatus, wherein the recording medium is irradiated with reproduction reference light from an optical element and the data is acquired by the imaging mechanism.
[14] 前記設置部と発光装置との間に前記再生参照光を平行光に調整するためのコリメ ータレンズが設けられ、各面発光レーザの発光点と前記コリメータレンズの主点間距 離が各発光素子にて同一距離にされている請求項 13記載のホログラム再生装置。  [14] A collimator lens for adjusting the reproduction reference light to parallel light is provided between the installation section and the light emitting device, and the distance between the light emitting point of each surface emitting laser and the principal point of the collimator lens is each light emitting. 14. The hologram reproducing apparatus according to claim 13, wherein the same distance is provided by the element.
PCT/JP2007/065805 2006-08-16 2007-08-13 Light-emitting device and hologram reproducer employing the light-emitting device WO2008020581A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-221899 2006-08-16
JP2006221899A JP2009259299A (en) 2006-08-16 2006-08-16 Light emitting device, and hologram reproducing device using the light emitting device

Publications (1)

Publication Number Publication Date
WO2008020581A1 true WO2008020581A1 (en) 2008-02-21

Family

ID=39082106

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/065805 WO2008020581A1 (en) 2006-08-16 2007-08-13 Light-emitting device and hologram reproducer employing the light-emitting device

Country Status (2)

Country Link
JP (1) JP2009259299A (en)
WO (1) WO2008020581A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11259894A (en) * 1998-03-06 1999-09-24 Ricoh Co Ltd Optical pickup head
JP2002025104A (en) * 2000-07-12 2002-01-25 Hitachi Ltd Integrated optical head device
JP2003307703A (en) * 2002-04-15 2003-10-31 Ricoh Co Ltd Light source unit, light source unit package, optical element, optical pickup device and optical disk device
JP2004103084A (en) * 2002-09-06 2004-04-02 Sanyo Electric Co Ltd Heat radiation device for optical head
JP2005268737A (en) * 2003-11-11 2005-09-29 Ricoh Co Ltd Optical transmission element module
JP2005331864A (en) * 2004-05-21 2005-12-02 Alps Electric Co Ltd Hologram apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11259894A (en) * 1998-03-06 1999-09-24 Ricoh Co Ltd Optical pickup head
JP2002025104A (en) * 2000-07-12 2002-01-25 Hitachi Ltd Integrated optical head device
JP2003307703A (en) * 2002-04-15 2003-10-31 Ricoh Co Ltd Light source unit, light source unit package, optical element, optical pickup device and optical disk device
JP2004103084A (en) * 2002-09-06 2004-04-02 Sanyo Electric Co Ltd Heat radiation device for optical head
JP2005268737A (en) * 2003-11-11 2005-09-29 Ricoh Co Ltd Optical transmission element module
JP2005331864A (en) * 2004-05-21 2005-12-02 Alps Electric Co Ltd Hologram apparatus

Also Published As

Publication number Publication date
JP2009259299A (en) 2009-11-05

Similar Documents

Publication Publication Date Title
JP2016167492A (en) Light emission device
WO2016084833A1 (en) Method for producing optical module
JP2012515441A (en) Optoelectronic device manufacturing method and optoelectronic device
JP3972814B2 (en) Semiconductor integrated device
US6717893B1 (en) Laser thermal management system
US20060092642A1 (en) Light emitting module, optical head, and optical disc recording and reproducing apparatus
CN112636160B (en) Laser device
JP2006324409A (en) Semiconductor laser device and optical pickup device therewith
JP2007141317A (en) Optical integrated unit, optical pickup apparatus, and ceramic substrate
WO2008020581A1 (en) Light-emitting device and hologram reproducer employing the light-emitting device
JP4283837B2 (en) Semiconductor laser device and optical pickup device using the same
JP2006013286A (en) Heat-conducting member, optical head using the same, and optical recorder/player using the optical head
TWI259632B (en) Semiconductor laser device and optical pick-up apparatus using semiconductor laser device
JPH06132613A (en) Semiconductor laser
JP2006114096A (en) Semiconductor laser unit and optical pickup device equipped with the same
JP2003187477A (en) Optical pickup device
JP2007019077A (en) Semiconductor laser unit and optical pickup equipment
JP5338788B2 (en) LASER HOLDER AND OPTICAL PICKUP HAVING THE SAME
JP4044790B2 (en) Semiconductor device, image reading unit, and image forming apparatus
JP2007318075A (en) Optical device, method for manufacturing the same, optical pickup device, and optical disk drive device
JP5244515B2 (en) Semiconductor laser device
JP2002076373A (en) Electronic device and optical device
JP2009200064A (en) Method of manufacturing light-emitting device
JP4991125B2 (en) Optical printer head and optical printer using the same
JP2005251838A (en) Semiconductor laser

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07792448

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 07792448

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP