WO2008020570A1 - Acrylic resin film - Google Patents

Acrylic resin film Download PDF

Info

Publication number
WO2008020570A1
WO2008020570A1 PCT/JP2007/065701 JP2007065701W WO2008020570A1 WO 2008020570 A1 WO2008020570 A1 WO 2008020570A1 JP 2007065701 W JP2007065701 W JP 2007065701W WO 2008020570 A1 WO2008020570 A1 WO 2008020570A1
Authority
WO
WIPO (PCT)
Prior art keywords
acrylic resin
resin film
film
mass
parts
Prior art date
Application number
PCT/JP2007/065701
Other languages
French (fr)
Japanese (ja)
Inventor
Shigetoshi Maekawa
Akimitsu Tsukuda
Takuya Kuma
Susumu Hirama
Original Assignee
Toray Industries, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries, Inc. filed Critical Toray Industries, Inc.
Priority to JP2007540438A priority Critical patent/JPWO2008020570A1/en
Publication of WO2008020570A1 publication Critical patent/WO2008020570A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers

Definitions

  • the present invention relates to an acrylic resin film excellent in industrially useful transparency, weather resistance, heat resistance and toughness.
  • the acrylic resin film of the present invention is a surface of an object such as a display material such as a flat display panel, a vehicle interior material and exterior material, an electrical appliance, a building material interior material and an exterior material.
  • the present invention relates to an acrylic resin film excellent in transparency, weather resistance, heat resistance and toughness used for the skin.
  • Acrylic resin films are excellent in transparency, surface gloss, and light resistance, so liquid crystal display sheets or films, optical materials such as light guide plates, vehicle interior materials and exterior materials, Used for the surface skin of objects such as vending machine exterior materials, electrical appliances, interior materials for building materials, and exterior materials.
  • R 2 represents the same or different hydrogen atoms or alkyl groups having 1 to 5 carbon atoms.
  • Patent Document 4 discloses a composition comprising a composition of an acrylic resin and elastic particles, and having improved transparency by making the difference in refractive index between the resin and the particles 0.03 or less. It is disclosed (Patent Document 4).
  • the film formed using this composition by the solution casting method has both low haze and high toughness, but has a problem that productivity is low because it is based on solution casting.
  • this composition can be used in the melt film-forming method in order to increase productivity. When such a film is formed, the film surface becomes uneven and haze increases.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2004-2711
  • Patent Document 2 Japanese Patent Laid-Open No. 7-268036
  • Patent Document 3 JP-A-60-67557
  • Patent Document 4 Japanese Patent Laid-Open No. 2002-284816
  • An object of the present invention is to provide an acrylic resin film excellent in transparency, heat resistance and toughness.
  • An acrylic resin film comprising at least three layers, wherein at least one layer comprises an acrylic resin (A) containing a dartaric anhydride unit represented by the following structural formula (1) and an elastic particle ( B), and the total of the acrylic resin (A) and the inorganic particles (B) is 100 parts by mass, and the acrylic resin (A) is 50 to 95 parts by mass, 5 to 50 parts by mass of the inorganic particles (B), and at least two layers sandwiching at least one layer are made of the acrylic resin (A) and do not contain the elastic particles (B).
  • An acrylic resin film characterized by this.
  • R 2 represents the same or different hydrogen atoms or alkyl groups having 1 to 5 carbon atoms.
  • R 2 represents the same or different hydrogen atoms or alkyl groups having 1 to 5 carbon atoms.
  • the inner layer is a rubber elastic body containing an alkyl acrylate unit and / or an aromatic bur
  • the outer layer is a glutaric acid represented by the structural formula (1).
  • the acrylic resin (A) comprises 50 to 90 parts by mass of methyl methacrylate units and 10 to 50 parts by mass of glutaric anhydride units, with the acrylic resin (A) as a whole being 100 parts by mass.
  • At least one of the at least two layers has a hard coat layer and / or an antireflective film on its surface! /, Or [1] to [; 13]! / Acrylic resin film according to crab.
  • a polarizing plate protective film comprising the acrylic resin film according to any one of [1] to [; 15].
  • an acrylic resin film having excellent transparency and heat resistance and high toughness can be obtained.
  • acrylics with dramatically improved performance such as total light transmittance of 91% or higher, haze of 1.0% or lower, heat distortion temperature of 110 ° C or higher, and elongation at break of 4% or higher. It is also possible to obtain a resin film.
  • the acrylic resin film which is suitable for the present invention, can be preferably used as an industrial material such as an optical filter that requires a high temperature processing step. Furthermore, since the acrylic resin film according to the present invention has good surface hardness, thickness uniformity, and surface adhesiveness, it can be used well in various applications other than optical filters.
  • the acrylic resin (A) used in the present invention is required to contain a gnorethalic anhydride unit represented by the following general formula (1) in the molecule.
  • IT represents the same or different hydrogen atoms or alkyl groups having 1 to 5 carbon atoms.
  • the heat resistance of the resin film such as the glass transition temperature (Tg) and the heat distortion temperature, is determined by the flexibility of the resin structure, and it has a low degree of freedom, for example, a rigid benzene ring force, an aromatic bonded with a rigid imide bond
  • Polyimide has a Tg of over 400 ° C.
  • Tg of polymethyl methacrylate (PMMA) which is a flexible aliphatic polymer with a high degree of freedom, does not reach 100 ° C.
  • the heat resistance can be remarkably improved by adding a dartaric anhydride unit having an alicyclic structure to an acrylic resin.
  • a small phase difference is required.
  • the heat resistance is improved more than the introduction of the alicyclic structure, but at the same time, there is a problem that the birefringence increases and the phase difference is easily developed.
  • the alicyclic structure include a dartal anhydride structure, a rataton ring structure, a norbornene structure, and a cyclopentane structure.
  • optical isotropy and heat resistance the same effect can be obtained regardless of the structure used.
  • expensive raw materials having these structures are used. This is industrially disadvantageous because it is necessary to use an expensive raw material that is a precursor of these structures or to undergo the reaction in several steps to obtain the desired structure.
  • dartaric anhydride units are industrially very advantageous because they are obtained from a general acrylic raw material through a single-stage dehydration and / or dealcoholization reaction.
  • specific examples include polarizing plate protective films, lenses, and optical waveguide cores. Two polarizing plates are used in LCD TVs.
  • the polarizing plate protective film used for the polarizing plate is not optically isotropic, for example, dark purple is displayed when displaying black, and yellowish white is displayed when displaying white. This coloring varies depending on the anisotropy of the polarizing plate protective film.
  • the polarizing plate protective film does not exist optically, but is indispensable for the purpose of protecting the polarizer from external force and moisture.
  • the lens In the case of a lens, the lens must have a force S that is intended to refract light at the interface, and the light must travel uniformly through the lens. If the lens is not optically isotropic, there are problems such as image distortion.
  • optical waveguide core In the case of an optical waveguide core, if it is not optical isotropic This causes a difference in the transmission speed of the wave signal, which causes noise and interference problems.
  • Other optical isotropic applications include prism sheet substrates, optical disk substrates, flat panel display substrates, and the like.
  • an unsaturated carboxylic acid monomer (i) and an unsaturated carboxylic acid alkyl ester monomer (which give a dartaric anhydride unit represented by the general formula (1) by a subsequent heating step ( In the case of containing other bulle monomer units, ii) is polymerized with bur monomer (iii) giving the units to give copolymer (a). Thereafter, force, such copolymer (a) is heated in the presence or absence of an appropriate catalyst, and an intramolecular cyclization reaction is carried out by dealcoholization and / or dehydration. By doing so, it is possible to produce an acrylic resin ( ⁇ ) containing a gnorethalic anhydride unit represented by the general formula (1).
  • the carboxyl group of the unsaturated carboxylic acid unit of 2 units is dehydrated, and there is! /, which is the adjacent unsaturated carboxylic acid unit and the unsaturated carboxylic acid unit.
  • One unit of the glutaric anhydride unit is generated by elimination of the alcohol from the acid alkyl ester unit.
  • the unsaturated carboxylic acid monomer (i) used in this case is not particularly limited, and can be copolymerized with another vinyl monomer (iii), and is represented by the following general formula (3). Unsaturated carboxylic acid monomers can be used.
  • R 3 represents hydrogen or an alkyl group having 1 to 5 carbon atoms
  • the unsaturated carboxylic acid monomer (i) represented by the general formula (3) is copolymerized to give an unsaturated carboxylic acid unit having a structure represented by the following general formula (4). [0028] [Chemical 6]
  • R represents hydrogen or an alkyl group having 1 to 5 carbon atoms
  • methyl methacrylate is required as the unsaturated carboxylic acid alkyl ester monomer (ii) from the viewpoint of transparency and weather resistance of the resulting film. Furthermore, it is possible to use one or more unsaturated carboxylic acid alkyl ester monomers together with methyl methacrylate.
  • unsaturated carboxylic acid alkyl ester monomers are not particularly limited, but preferred examples include those represented by the following general formula (5).
  • R 4 represents hydrogen or an aliphatic or alicyclic hydrocarbon group having 1 to 5 carbon atoms, and R 5 represents an optional substituent other than hydrogen.
  • R 5 is particularly preferably an acrylate ester and / or a methacrylate ester having an aliphatic or alicyclic hydrocarbon group having 1 to 6 carbon atoms or a hydrocarbon group having a substituent.
  • the unsaturated carboxylic acid alkyl ester monomer represented by the general formula (5) gives an unsaturated carboxylic acid alkyl ester unit having a structure represented by the following general formula (6) when copolymerized.
  • R 4 represents hydrogen or an aliphatic or alicyclic hydrocarbon group having 1 to 5 carbon atoms
  • R 5 represents an optional substituent other than hydrogen.
  • the unsaturated carboxylic acid alkyl ester monomer (ii) other than methyl methacrylate include (meth) acrylate ethyl, (meth) acrylate n-propyl, (meth) acrylic acid n —Butyl, (meth) acrylic acid t-butyl, (meth) acrylic acid n-hexyl, (meth) acrylic acid cyclohexyl, (meth) acrylic acid chloromethyl, (meth) acrylic acid 2-chloroethyl, ( 2-Methyl) acrylic acid 2-hydroxyethyl, (meth) acrylic acid 3-hydroxypropyl, (meth) acrylic acid 2, 3, 4, 5, 6-pentahydroxyhexyl and (meth) acrylic acid 2, 3, 4 , 5-tetrahydroxypentyl and the like.
  • bull monomers (iii) may be used within a range not impairing the effects of the present invention.
  • other bulle monomers (iii) include styrene, ⁇ -methyl styrene, ⁇ -methyl styrene, ⁇ -methyl styrene, ⁇ -ethyl styrene, ⁇ -ethyl styrene, and p-t-butyl styrene.
  • Aromatic butyl monomers such as acrylonitrile, methacrylonitrile, ethacrylonitrile, allyl glycidyl ether, styrene —p-glycidyl ether, p-glycidyl styrene, maleic anhydride, Itaconic anhydride, N-methylmaleimide, N-ethylmaleimide, N-cyclohexylmaleimide, N-fuelmaleimide, atalinoleamide, methacrylolamide, N-methylacrylamide, butoxymethylacranolamide, N-propyl Methacrylamide, aminoethyl acrylate, alcohol Propylaminoethyl crylate, dimethylaminoethyl methacrylate, ethylaminopropyl methacrylate, phenylaminoethyl methacrylate, cyclohexylaminoethyl meth
  • the polymerization method of the acrylic resin (A) a known polymerization method such as bulk polymerization, solution polymerization, suspension polymerization, emulsion polymerization or the like basically by radical polymerization can be used. Solution polymerization, bulk polymerization, and suspension polymerization are particularly preferred in terms of fewer points.
  • the polymerization temperature is not particularly limited, but from the viewpoint of color tone, a monomer mixture containing an unsaturated carboxylic acid monomer and an unsaturated carboxylic acid alkyl ester monomer is used at a polymerization temperature of 95 ° C or lower. It is preferable to polymerize with.
  • a preferable polymerization temperature is 85 ° C or lower, and particularly preferably 75 ° C or lower.
  • the lower limit of the polymerization temperature is not particularly limited as long as the polymerization proceeds, but is usually 50 ° C or higher, preferably 60 ° C or higher from the viewpoint of productivity in consideration of the polymerization rate.
  • the upper limit temperature is controlled to 95 ° C or less.
  • the polymerization initiation temperature is preferably a relatively low temperature of 75 ° C or lower.
  • the polymerization time is not particularly limited as long as it is sufficient to obtain the required degree of polymerization, but is preferably in the range of 60 to 360 minutes from the viewpoint of production efficiency. 90 to; Particularly preferred.
  • the acrylic resin (A) used in the acrylic resin film of the present invention preferably has a weight average molecular weight of 50,000 to 150,000.
  • the copolymer (a) is previously controlled to have a desired molecular weight, that is, a weight average molecular weight of 50,000 to 150,000 at the time of producing the copolymer (a).
  • a desired molecular weight that is, a weight average molecular weight of 50,000 to 150,000 at the time of producing the copolymer (a).
  • Can achieve the power S When the weight average molecular weight exceeds 150,000, there is a tendency to color during heat deaeration in the subsequent process. On the other hand, when the weight average molecular weight is less than 50,000, the toughness of the acrylic resin film tends to decrease.
  • the method for controlling the molecular weight of the copolymer (a) is not particularly limited.
  • a known technique can be applied.
  • the addition amount of radical polymerization initiators such as azo compounds and peroxides, or chain transfer of alkyl mercabtan, carbon tetrachloride, carbon tetrabromide, dimethylacetamide, dimethinorenolemamide, triethylamine, etc. It can be controlled by the amount of agent added.
  • a method of controlling the addition amount of the alkyl mercabtan, which is a chain transfer agent can be preferably used from the viewpoint of stability of polymerization and ease of handling.
  • alkyl mercaptan used in the present invention examples include ⁇ -octyl mercaptan, t-decyl mercaptan, n-dodecyl mercaptan, n-tetradecyl mercaptan, n-octadecyl mercaptan, and the like. Above all, t-dodecyl mercaptan N-dodecyl mercaptan is preferably used.
  • the addition amount of these alkyl mercabtans is not particularly limited as long as the acrylic resin (A) is controlled to have a specific molecular weight as described above, but usually the total amount of the monomer mixture is 100.
  • the amount is 0.2 to 5.0 parts by mass, preferably 0.3 to 4.0 parts by mass, and more preferably 0.4 to 3.0 parts by mass with respect to parts by mass.
  • the method of heating the copolymer (a) and performing an intramolecular cyclization reaction by dehydration or dealcoholization to obtain an acrylic resin (A) containing a glutaric anhydride unit is not particularly limited. From the viewpoint of productivity, a method in which the copolymer (a) is passed through a heated extruder having a vent or heated and degassed under an inert gas atmosphere or under vacuum is preferable. In particular, when an intramolecular cyclization reaction is performed by heating in the presence of oxygen, the yellowness tends to deteriorate. Therefore, it is preferable to sufficiently substitute the inside of the system with an inert gas such as nitrogen.
  • a single screw extruder equipped with a “unimelt” type screw, a twin screw, a three screw extruder, a continuous or batch kneader type kneader, etc. can be used.
  • a machine can be preferably used. It is preferable to provide a structure capable of introducing an inert gas such as nitrogen.
  • an inert gas such as nitrogen
  • a pipe for introducing an inert gas stream of about 10 to 100 liters / minute is connected to the upper and / or lower part of the hopper.
  • the temperature at which heat degassing is performed by the above method is not particularly limited as long as it is a temperature at which an intramolecular cyclization reaction is caused by dehydration or dealcoholization, but is preferably in the range of 180 to 300 ° C, particularly 200 A range of ⁇ 280 ° C is preferred.
  • the heating and degassing time at this time is not particularly limited, and can be appropriately set according to the desired copolymer composition.
  • the time is 1 minute to 60 minutes, preferably 2 minutes to 30 minutes. The range of 3 to 20 minutes is preferable.
  • the length / diameter ratio (L / D) of the extruder screw is preferably 40 or more in order to ensure a sufficient heating time for advancing the intramolecular cyclization reaction using an extruder.
  • the copolymer (a) when the copolymer (a) is heated by the above method or the like, one or more acids, alkalis and salt compounds are added as a catalyst for promoting the cyclization reaction to dartaric anhydride.
  • the addition amount is not particularly limited, but is suitably about 0.0;! To 1 part by mass per 100 parts by mass of the copolymer (a).
  • the acid catalyst include hydrochloric acid, sulfuric acid, p-toluenesulfonic acid, phosphoric acid, phosphorous acid, phenylphosphonic acid, and methyl phosphate.
  • Examples of the basic catalyst include metal hydroxides, amines, imines, alkali metal derivatives, alkoxides, and ammonium hydroxide salts.
  • examples of the salt catalyst include acetic acid metal salt, stearic acid metal salt, and carbonate metal salt.
  • the compound power containing an alkali metal can be preferably used because it exhibits an excellent reaction promoting effect with a relatively small addition amount.
  • hydroxides such as lithium hydroxide, sodium hydroxide, and potassium hydroxide
  • alkoxides such as sodium methoxide, sodium ethoxide, sodium phenoxide, potassium methoxide, potassium ethoxide, and potassium phenoxide.
  • organic carboxylates such as compounds, lithium acetate, sodium acetate, potassium acetate and sodium stearate, and sodium hydroxide, sodium methoxide, lithium acetate and sodium acetate are particularly preferably used.
  • the content of the dartaric acid anhydrous unit represented by the general formula (1) in the acrylic resin (A) used in the present invention is 10 to 50 parts per 100 parts by mass of the acrylic resin (A). Part by mass, more preferably 15 to 45 parts by mass, most preferably 20 to 25 parts by mass.
  • the dartal anhydride unit is less than 10 parts by mass, the heat resistance improvement effect may be reduced. If the glutaric anhydride unit exceeds 50 parts by mass, the toughness may deteriorate. Improvement in heat resistance and improvement in toughness are in a trade-off relationship and can be adjusted by the content of dartaric anhydride units. For this reason, the content of the dartaric anhydride unit should be any value from 10 to 50 parts by mass, depending on the application.
  • the Tg of 120 ° C or higher is required for the polarizing plate protective film.
  • the content of dartaric anhydride units is most preferably 20-25 parts by mass! /. If the content of the dartaric anhydride unit is 20-25 parts by mass, it will be 120- after the elastic particles are added; Tg of 130 ° C and sufficient toughness
  • a force such as a methyl methacrylate unit and a metataric acid unit is preferably contained. And it is preferable that it is content of the quantity S methyl methacrylate unit which remove
  • a methacrylic acid unit which is a precursor of a dartaric anhydride unit, is included in addition to the dartaric anhydride unit and the methyl methacrylate unit. If a methacrylolic acid unit or a methyl methacrylate unit is adjacent to a methacrylic acid unit, dehydration or dealcoholization reaction may occur during heating in film formation or stretching, which may cause foaming, which is not preferable. However, if the dartal anhydride units are adjacent, no dehydration or dealcoholization reaction can occur! /, So methacrylic acid units are included! /.
  • an infrared spectrophotometer or a proton nuclear magnetic resonance (HNMR) measuring instrument is used to quantify each component unit in the acrylic resin (A) used in the present invention.
  • HNMR proton nuclear magnetic resonance
  • Darutaru anhydride units, 1800Cm- 1 and 1760Cm- 1 of the absorption force S characteristic can be force to ward different from the unsaturated carboxylic acid unit and an unsaturated carboxylic acid alkyl ester unit.
  • the spectral assignment in a dimethyl sulfoxide heavy solvent is 0.5 to 5; Peak force S ⁇ methyl group hydrogen in methacrylic acid, methyl methacrylate and glutaric anhydride ring compounds, 1.6-2 lppm peak is methylene group hydrogen in polymer main chain, 3.5 ppm peak Is the power of methyl methacrylate, hydrogen of norebonic acid ester (one COOCH), 12.4 ppm peak is the methacrylic acid cal
  • the copolymer composition can be determined from the hydrogen of boric acid and the integral ratio of the spectrum. Also,
  • the acrylic resin (A) used in the present invention contains an unsaturated carboxylic acid unit and / or another copolymerizable bull monomer unit in the acrylic resin (A). But it can.
  • the amount of the unsaturated carboxylic acid unit is 10 parts by mass or less, ie 0 to 10 parts by mass, more preferably 0 to 5 parts by mass, and most preferably 100 parts by mass with respect to 100 parts by mass of the acrylic resin (A). Is 0 to 1 part by mass. When the unsaturated carboxylic acid unit exceeds 10 parts by mass, colorless transparency and residence stability tend to be lowered.
  • the amount of other bur monomer units copolymerizable with the acrylic resin (A) is acrylic resin.
  • (A) It is preferably 5 to 5 parts by mass, more preferably 0 to 3 parts by mass with respect to 100 parts by mass.
  • an aromatic bule monomer unit such as styrene
  • the content exceeds the above range, colorless transparency, optical isotropy, and chemical resistance tend to decrease.
  • the acrylic resin (A) has a melt viscosity of 260 ° C and a shear rate of lOOsec- 1 o'clock.
  • the melt viscosity referred to in the present invention is a value measured using a die having a die length of 10 mm and a die diameter of 1.0 mm in accordance with 13-1 ⁇ 7210-1976 (reference test).
  • the elastic particle (B) is a particle containing a rubbery polymer.
  • the elastic particles (B) As a specific form of the elastic particles (B), it is composed of a layer containing one or more rubbery polymers and one or more layers composed of different polymers, and each of these layers is composed of Adjacent structures of the so-called core-shell type polymer (B-1), or a graft copolymer obtained by copolymerizing a rubber polymer with a monomer mixture such as a bull monomer. (B-2) and the like can be preferably used.
  • the core-shell type multilayer structure polymer (B-1) is not particularly limited in the number of layers constituting the core-shell type polymer (B-1). However, it has at least one rubber polymer layer inside.
  • the rubbery polymer is a polymer composed of a polymer component having rubber elasticity! /
  • the polymer used for the core-shell type multilayer polymer (B-1) is an acrylic component.
  • An example is a rubber composed of a polymer obtained by polymerizing at least one component selected from the group consisting of a component, a propylene component and an isobutene component.
  • preferable rubbers include, for example, acrylic components such as ethyl acrylate units and butyl acrylate units, silicone components such as dimethylsiloxane units and phenylmethylsiloxane units, and styrene components such as styrene units and ⁇ -methylstyrene units. It is a rubber composed of at least one component selected from the group consisting of nitrile components such as talaronitrile units and metathalonitrile units, and conjugation component components such as butane units and isoprene units. A rubber composed of one of these components may be used, but a rubber composed of a combination of two or more types is also preferred.
  • an acrylic such as an ethyl acrylate unit or a butyl acrylate unit.
  • Components and rubber composed of silicone components such as dimethylsiloxane units and phenylmethylsiloxane units; (2) from acrylic components such as ethyl acrylate and butyl acrylate units and styrene components such as styrene units and a-methylstyrene units Constructed rubber, (3) Rubber composed of acrylic components such as ethyl acrylate units and butyl acrylate units, and Conjugated components such as butane units and isoprene units, and (4) Ethyl acrylate units And acrylic components such as butyl acrylate units, dimethylsiloxane units and Examples thereof include rubbers composed of silicone components such as dimethylsiloxane units and styrene components such as styrene units and ⁇ -methylstyrene units.
  • a rubber obtained by crosslinking a copolymer composed of a crosslinkable component such as a dibutylbenzene unit, a arylarylate unit and a butylene glycol diacrylate unit is also preferred.
  • the type of layer other than the rubbery polymer layer is not particularly limited as long as it is composed of a polymer component having thermoplasticity.
  • the glass transition temperature is higher than that of the layer, preferably a polymer component.
  • the thermoplastic polymer include unsaturated carboxylic acid alkyl ester units, unsaturated carboxylic acid units, unsaturated glycidyl group-containing units, unsaturated dicarboxylic anhydride units, aliphatic bur units, and aromatics.
  • a polymer containing at least one unit It is selected from forces such as bulle units, cyanide bulle units, maleimide units, unsaturated dicarboxylic acid units, and other bulle units.
  • a polymer containing at least one unit polymers containing at least one unit selected from unsaturated carboxylic acid alkyl ester units, unsaturated glycidyl group-containing units and unsaturated dicarboxylic anhydride units are preferred and unsaturated.
  • a polymer containing at least one unit selected from glycidyl group-containing units and unsaturated dicarboxylic anhydride units is preferred.
  • the monomer used as the raw material for the unsaturated carboxylic acid alkyl ester unit is not particularly limited, but (meth) acrylic acid alkyl ester is preferably used. Specifically, to methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, n-butyl (meth) acrylate, t-butyl (meth) acrylate, and (meth) acrylate n Xylyl, 2-methylhexyl (meth) acrylate, cyclohexanol (meth) acrylate, stearyl (meth) acrylate, octadecyl (meth) acrylate, phenyl (meth) acrylate, (meth) acrylic acid Benzyl, chloromethyl (meth) acrylate, 2-chloroethyl (meth) acrylate, 2-hydroxyethyl (meth) acryl
  • Examples of the monomer used as the raw material for the unsaturated carboxylic acid unit include, but are not limited to, acrylic acid, methacrylic acid, maleic acid, and further a hydrolyzate of maleic anhydride.
  • acrylic acid and methacrylic acid are more preferable than methacrylic acid because they are excellent in thermal stability. These can be used alone or in combination.
  • the monomer that is a raw material of the unsaturated glycidyl group-containing unit is not particularly limited, and is glycidyl (meth) acrylate, glycidyl itaconate, diglycidyl itaconate, allyl glycidyl ether, Examples thereof include styrene-4-glycidyl ether and 4-glycidino styrene. From the viewpoint that the effect of improving impact resistance is great, (meth) glycidyl acrylate is preferably used. These units can be used alone or in combination of two or more. Use with power S.
  • Examples of the monomer used as the raw material for the unsaturated dicarboxylic acid anhydride unit include maleic anhydride, itaconic anhydride, glutaconic anhydride, citraconic anhydride, and aconitic anhydride.
  • maleic anhydride is preferably used from the viewpoint that the effect of improving impact resistance is great.
  • These units can be used alone or in combination of two or more.
  • ethylene, propylene, butadiene, and the like are used as the raw material for the aliphatic bulle unit, and styrene, ⁇ - Methyl styrene, 1-Burnaphthalene, 4-Methyl styrene, 4-Propylene styrene, 4-Cyclohexyl styrene, 4-Dodecyl styrene, 2-Ethyl 4-1 Benzyl styrene, 4 (Phenylbutyl) styrene, Halogenated styrene, etc. Acrylonitrile, methacrylonitrile, etalonitrile, etc.
  • maleimide ⁇ ⁇ ⁇ methylmaleimide, ethyl maleimide, ⁇ are used as the raw material for the maleimide unit.
  • maleimide, ⁇ ⁇ ⁇ methylmaleimide, ethyl maleimide, ⁇ are used as the raw material for the maleimide unit.
  • Monomers such as chlorohexyl maleimide, ⁇ phenyl maleimide, ⁇ bromophenyl maleimide, and ⁇ - (black phenyl) maleimide are raw materials for the above unsaturated dicarboxylic acid units.
  • Monomers such as acid monoethyl ester, itaconic acid, and phthalic acid that can be used as raw materials for the other above-mentioned units are acrylamide, methacrylamide, ⁇ ⁇ ⁇ methyl acrylamide, butoxymethyl acrylamide, ⁇ ⁇ ⁇ ⁇ propyl methacrylamide, ⁇ ⁇ ⁇ vinyl.
  • Jetylamine ⁇ Acetinolevinoleamine, Alinoleamine, Metalinoleamine, ⁇ Methylenolinoleamine, ⁇ -Aminostyrene, 2-Isopropenyl oxazoline, 2-Bureuxoxazoline, 2-acroyloxazoline and 2-sti Ruokisazorin etc., can Rukoto include each of these monomers alone to be able to use two or more kinds.
  • the type of the outermost layer is not particularly limited.
  • the unsaturated carboxylic acid alkyl ester unit, the unsaturated carboxylic acid unit, the unsaturated glycidyl Group-containing unit, aliphatic bull unit, aromatic bull unit, cyanated bull unit, maleimide unit, unsaturated dicarboxylic acid unit, unsaturated dicarbo At least one selected from a polymer containing an acid anhydride unit and other bulle units is preferred.
  • At least one selected from polymers containing unsaturated carboxylic acid alkyl ester units, unsaturated carboxylic acid units, unsaturated glycidyl group-containing units, and unsaturated dicarboxylic anhydride units is preferred.
  • a polymer containing an unsaturated carboxylic acid alkyl ester unit or an unsaturated carboxylic acid unit is preferred.
  • the outermost layer in the multilayer polymer (B-1) is a polymer containing an unsaturated carboxylic acid alkyl ester unit and an unsaturated carboxylic acid unit
  • the intramolecular cyclization reaction proceeds and the dartaric anhydride unit represented by the general formula (1) is generated. Therefore, a multilayer structure polymer (B-1) having a polymer containing an unsaturated carboxylic acid alkyl ester unit and an unsaturated carboxylic acid unit in the outermost layer is blended with the above-mentioned copolymer (a) and appropriately used.
  • the acrylic resin (A), which is a continuous phase (matrix phase), can be substantially heated and melt-kneaded under various conditions, and the acrylic resin (D) represented by the above general formula (1) is contained in the acrylic resin (A). It is possible to disperse a multilayer structure polymer (B-1) having a resin-based polymer as the outermost layer. At this time, since the affinity between the acrylic resin (A) and the outermost layer of the multilayer structure polymer (B-1) is good, a good dispersion state without agglomeration becomes possible, and impact resistance, etc. Along with the improvement of mechanical properties, it is considered that extremely high transparency can be expressed.
  • the term “main component” refers to a component containing 50 parts by mass or more with respect to 100 parts by mass of the outermost polymer layer.
  • the monomer used as a raw material for the unsaturated carboxylic acid alkyl ester unit here is not particularly limited, but (meth) acrylic acid alkyl ester is more preferable. Methyl acrylate is more preferably used. Further, the monomer used as a raw material for the unsaturated carboxylic acid unit is not particularly limited, but (meth) acrylic acid is preferred, and methacrylic acid is more preferably used.
  • the core layer is a rubber elastic body containing an allylic acid alkyl ester unit and / or an aromatic bur
  • the outer layer is the above-described one.
  • Acrylic resin containing dartal anhydride unit represented by general formula (1) Is a polymer mainly composed of The refractive index difference between the multilayer structure polymer (B-1), which is an elastic particle, and the acrylic resin (A) is preferably 0.01 or less.
  • the core layer is represented by butyl acrylate / styrene polymer
  • the outermost layer is represented by methyl methacrylate / the above general formula (1).
  • Copolymers consisting of dartaric anhydride units, or methyl methacrylate / daltaric anhydride units represented by the general formula (1) / methacrylic acid polymer, and the core layer is dimethylsiloxane / acrylic acid A butyl polymer whose outermost layer is a methyl methacrylate polymer, whose core layer is a butane / styrene polymer, whose outermost layer is a methyl methacrylate polymer, and whose core layer is a butyl acrylate polymer.
  • Examples include those which are outer layer methyl acrylate polymers ("/" indicates copolymerization).
  • a preferable example is a polymer containing a glycidyl acrylate unit in either one or both of the core layer and the outermost layer.
  • the core layer is a butyl acrylate / styrene polymer
  • the outermost layer is a methyl methacrylate / copolymer composed of a dartal anhydride unit represented by the above general formula (1), or methyl methacrylate / the above general formula.
  • the dartaric anhydride unit / methacrylic acid polymer represented by (1) approximates the refractive index with the acrylic resin (A) that is the continuous phase (matrix phase), and Therefore, it is possible to obtain a good dispersion state, and the transparency that can satisfy the demand for more advanced in recent years is exhibited.
  • the weight average particle diameter of the multilayer structure polymer (B-1) is preferably 50 to 400 nm, more preferably 100 to 200 nm. If the weight average particle size is less than 50 nm, the toughness may not be improved sufficiently, and if it exceeds 400 nm, the Tg may decrease.
  • the weight ratio of the core to the shell is not particularly limited, but the core layer is 50 parts by mass or more with respect to 100 parts by mass of the whole multilayer polymer. 90 parts by mass or less is preferable, and 60 parts by mass or more and 80 parts by mass or less is more preferable.
  • the multilayer structure polymer (B-1) a commercially available product that satisfies the above-described conditions may be used, and it may be prepared by a known method.
  • Examples of commercially available multi-layer polymer include “Metaprene” manufactured by Mitsubishi Rayon Co., “Kaneace” manufactured by Kaneka Chemical Co., Ltd., Kureha “Paraloid” by Gaku Kogyo Co., “Atariroid” by Rohm and Haas, “Staffroid” by Gantz Kasei Kogyo, and “Parapet SA” by Kuraray Co., Ltd. Can be used.
  • graft copolymer (B-2) that can be used as the elastic particles (B) include a rubbery polymer, an unsaturated carboxylic acid ester monomer, Examples include a graft copolymer obtained by copolymerizing a monomer mixture comprising a carboxylic acid monomer, an aromatic bulle monomer, and, if necessary, other bulle monomers copolymerizable therewith. It is done.
  • the rubbery polymer used in the graft copolymer (B-2) is obtained by polymerizing at least one component selected from the group consisting of a gen-based rubber, an talyl-based rubber and an ethylene-based rubber.
  • gum comprised can be illustrated.
  • polybutadiene examples include polybutadiene, styrene-butadiene copolymer, block copolymer of styrene butadiene, acrylonitrile-butadiene copolymer, butyl butadiene acrylate copolymer, polyisoprene, butadiene-methyl methacrylate copolymer, Examples include butyl acrylate-methyl methacrylate copolymer, butadiene acrylate acrylate copolymer, ethylene propylene copolymer, ethylene propylene gen copolymer, ethylene isoprene copolymer, and ethylene methyl acrylate copolymer. It is done.
  • These rubbery polymers can be used alone or in a mixture of two or more.
  • the weight average particle diameter of the graft copolymer (B-2) is 50 to 400 nm. S is more preferably 100 to 200 nm. If the weight average particle size is less than 50 nm, the toughness may not be improved sufficiently, and if it exceeds 400 nm, the Tg may decrease.
  • the weight average particle diameter of the elastic particles (B) is as described in "Rubber Age, Vol. 88, p. 484-490 (1960), by E. Schmidt, PH Biddison J. In other words, using the fact that the polybutadiene particle size to be creamed differs depending on the concentration of sodium alginate, it is measured by the method of determining the particle size of 50% cumulative weight fraction from the weight proportion of cream and the cumulative weight fraction of sodium alginate concentration. can do.
  • the graft copolymer ( ⁇ -2) is produced by adding 100 parts by weight of the graft copolymer ( ⁇ -2) to the rubber.
  • Polymer 10-80 parts by weight, preferably 20-70 parts by weight, more preferably 30-60 parts by weight, and the above monomer (mixture) 20-90 parts by weight, preferably 30-80 parts by weight Preferably, it is obtained by copolymerizing 40 to 70 parts by mass. If the ratio of the rubbery polymer is less than the above range or exceeds the above range, impact strength and surface appearance may be lowered.
  • the graft copolymer (B-2) may contain an ungrafted copolymer that is produced when the monomer mixture is graft copolymerized with the rubbery polymer.
  • the graft ratio is preferably 10 to 100%.
  • the graft ratio is a weight ratio of the grafted monomer mixture to the rubbery polymer.
  • the intrinsic viscosity measured at 30 ° C of a methyl ethyl ketone solvent of an undrafted copolymer is not particularly limited, but it has a strength of 0.;! ⁇ 0.6 dl / g S, impact It is preferably used from the viewpoint of the balance between strength and moldability.
  • the intrinsic viscosity of the graft copolymer (B-2) measured at 30 ° C in a methyl ethyl ketone solvent is not particularly limited, but is 0.2 to 1; It is preferably used from the viewpoint of balance with moldability, and more preferably 0.3 to 0.7 dl / g.
  • the method for producing the graft copolymer (B-2) is not particularly limited, and can be obtained by a known polymerization method such as bulk polymerization, solution polymerization, suspension polymerization, and emulsion polymerization.
  • the difference in refractive index is preferably 0.05 or less, more preferably 0.02 or less, and particularly preferably 0.01 or less.
  • the difference in refractive index is determined by adjusting the composition ratio of each monomer unit in the acrylic resin (A) and / or the composition ratio of the rubbery polymer or monomer used in the elastic particles (B).
  • the core layer is a butyl acrylate / styrene polymer
  • the outermost layer is a methyl methacrylate / copolymer composed of dartaric anhydride units represented by the general formula (1), or a methacrylate.
  • the difference in refractive index referred to here is a solution in which the attalinole resin film of the present invention is sufficiently dissolved in a solvent in which the acrylic resin (A) is soluble under appropriate conditions to obtain a cloudy solution, which is centrifuged, etc.
  • the solvent-soluble part and the insoluble part are separated, the soluble part (acrylic resin (A)) and the insoluble part (elastic particles (B)) are purified, and the measured refractive index ( 23 ° C, measurement wavelength: 550 nm).
  • the actual copolymer composition of the acrylic resin (A) and the elastic particles (B) in the acrylic resin film is determined by separating the soluble component and the insoluble component with the above-described solvent. Components can be analyzed individually.
  • the acrylic resin film of the present invention has at least two layers (I) made of the acrylate resin (A) not containing the elastic particles (B) as described above.
  • a layer (II) composed of an acrylic resin composition (C) containing a novel attalinole resin (A) and elastic particles (B) is sandwiched.
  • the layer (II) containing the elastic particles (B) improves the toughness in addition to the heat resistance, reduces the cracks during slitting and punching, and improves the workability and handleability.
  • a single-layer film made of the acrylic resin composition (C) as described above is formed by a melt film forming method, fine irregularities are formed on the film surface and the haze of the film is deteriorated, which is not suitable for optical use.
  • a film can be formed by a solution casting method.
  • the film obtained has a low haze and is good as an optical film, has poor productivity, and is difficult to industrialize.
  • the elastic particles (B) as described above are not included! / And the acrylic particles including the elastic particles (B) between at least two layers (I) made of the acrylic resin (A).
  • the acrylic resin (A) in the layer (I) and the layer (II) need not be completely the same as long as it contains the gnoretalic anhydride unit represented by the structural formula (1). Nare ,.
  • the acrylic resin composition (C) comprises 100 parts by mass of the total of the elastic particles (B) and the acrylic resin (A), 50 to 95 parts by mass of the acrylic resin (A), and elastic particles (B). 5 to 50 parts by mass More preferably, the acrylic resin (A) is 70 to 90 parts by mass and the elastic particles (B) are 10 to 30 parts by mass.
  • the content of elastic particles (B) is less than 5 parts by mass! /, And the film has sufficient toughness, and it is difficult to perform slitting and punching. There's a problem. If the content of the elastic particles (B) is more than 50 parts by mass, the heat resistance is lowered and the yellow color of the film increases, making it suitable as an optical film.
  • the thickness of layer (I) must be at least 0.1 am. Preferably it is 0.6 m or more, more preferably 1.0 ⁇ 0 m or more. If the thickness is less than 0.1 m, it is not preferable because irregularities are formed on the surface of the laminated film and there is no effect of improving haze.
  • the thickness of the layer (I) may be thick, but is preferably 20 111 or less in order not to deteriorate the optical isotropy of the film. More preferably, lO ⁇ m or less, still more preferably 6111 or less.
  • the layer (II) containing the elastic particles (B) is preferably 50% or more of the total thickness. If it is less than 50%, the toughness becomes insufficient.
  • the upper limit of the layer (II) is particularly preferably about 95% as long as a sufficient thickness can be secured with respect to the layer (I).
  • the layer thickness can be adjusted by the discharge amount of the resin and the resin composition constituting the layer thickness.
  • the thickness of the acrylic resin film varies depending on the application. For example, when used as a polarizing plate protective film, 20 Hm to 100 Hm is preferred. Preferred for
  • the laminated thickness is obtained by cutting a film with a single blade and observing the cross section with an optical microscope, or when the film thickness is 80 m or less and observation with a microscope is difficult, a thin film section is prepared with a microtome.
  • TEM transmission electron microscope
  • the layered structure introduces a layer (III) composed of other components as long as the effects of the present invention are not impaired.
  • layer (I) and layer Layers (I) / layers ( ⁇ ) / layers (I) / layers ( ⁇ ) / ⁇ / layers ( ⁇ ) / layers (I) are stacked in layers of five or more layers (II) alternately. Also good.
  • the acrylic resin film of the present invention as described above can be obtained by basically using a known method except that the resin as described above is used.
  • the melt film forming method includes an infusion method, a T-die method, a calendar method, a hot press method, a cutting method, and the like
  • the solution film forming method includes a casting method, an emulsion method, and the like.
  • the inflation method and the T-die method can be preferably used from the viewpoint of productivity.
  • the melt extrusion temperature is preferably 150 to 350. C, more preferably 200-300. C. The most preferable temperature is 240 to 270 ° C. Melt shear rate is preferably LOOOsec 1 or more 5000Sec 1 or less.
  • the raw material used is dry.
  • the moisture content is preferably 200 ppm or less, more preferably 150 ppm.
  • Examples of a method for reducing the moisture content of the raw material to 200 ppm or less include a method of drying for 3 hours in a 100 ° C vacuum dryer. Further, from the viewpoint of suppressing coloring, it is preferable to use a vent to perform melt kneading under reduced pressure or melt kneading under a nitrogen stream.
  • the casting method includes at least an acrylic resin (A) for forming layer (I) melted by using a melt extruder, and an acrylic resin (A) and elastic particles (B) for forming layer (II).
  • a method using a feed block is preferable from the viewpoint of stacking accuracy of the apparatus and maintainability. It is preferable to install the feed block part immediately before the base in order to increase the stacking accuracy.
  • the resin is preferably discharged from the die onto a cooled drum by these methods and rapidly cooled to a glass transition temperature (Tg) or lower to obtain an unstretched film.
  • the resin discharged on the cooling drum is rapidly cooled to the glass transition temperature (Tg) or lower, the resin is used as a cooling medium by electrostatic application method, air chamber method, air knife method, press roll method, etc. It is preferable to make it adhere to a certain drum.
  • the ratio of the lip gap of the T die to the film thickness is preferably 20 or less.
  • the lip gap of the T die is preferably 0.8 mm or less.
  • the polymer temperature immediately after the mouthpiece lip is preferably 270 ° C or lower.
  • the polymer may be colored, foaming rather than glue, and bubbles may be formed in the film, making it unsuitable for films for optical applications.
  • the method of setting the force and polymer temperature to 270 ° C or less the method of setting the extrusion set temperature to 260 ° C or less, or the method of setting the lip land length of the die to 30mm or less Etc. It is also effective to lower the polymer temperature and keep the humidity near the extrusion below 70% RH.
  • the acrylic resin film of the present invention obtained as described above has a total light transmittance of 91% or more, a haze of 1.0% or less, and an elongation at break of 4% by adopting the structure described so far. It is possible to satisfy all of the above characteristics at the same time.
  • the total light transmittance and haze of the acrylic resin film are values measured according to JIS-K7361-1 1997 and JIS-K7136-2000.
  • the acrylic resin film of the present invention is suitably used for optical isotropy applications.
  • optical isotropic applications it is required to protect the protected object from external stress, heat, chemicals, etc. without incidenting any optical effects on the incident light. It is done.
  • the total light transmittance is 100% in terms of optical characteristics. If the total light transmittance is low, there is a problem of darkening when a polarizing plate protective film, a prism sheet, or a lens is used, and there is a problem of signal attenuation when the optical waveguide or the core of the optical fiber is used. Therefore, in the present invention, the total light transmittance is preferably 91% or more, more preferably 92% or more. Although there is no upper limit to the total light transmittance, the upper limit is generally about 99% because loss due to interface reflection is unavoidable.
  • the haze is preferably 1.0% or less. If the haze exceeds 1.0%, the total light transmittance may be less than 91%.
  • the haze is preferably 0.7% or less, and more preferably 0.3% or less.
  • the haze can be reduced to L. 0% or less.
  • the haze can be reduced to 0.7% or less by setting the surface roughness R to 20 nm or less, and more preferably, the haze is set to 0.3% or less by setting the surface roughness R to 10 nm or less. It becomes possible.
  • the surface roughness R has no particular lower limit from the viewpoint of reducing haze, but is preferably 3 nm or more from the viewpoint of film winding properties!
  • the elastic particles (B) are included as described above.
  • the layer (I) composed of the acrylic resin (A) and the layer (II) composed of the acrylic resin composition (C) containing the acrylic resin (A) and the elastic particles (B) are sandwiched, for example, Acrylic resin (A) Thickness of layer (I) that also has force is 0.1 l rn or more, and ratio of lip gap of T die to film thickness in melt extrusion using T die (T die lip gap / film The thickness is preferably 20 or less. In order to reduce the surface roughness R to 20 or less, the thickness of the layer (I) should be 1.
  • O ⁇ m or more and the ratio of (T-die lip gap / film thickness) should be 15 or less. Is preferred.
  • the oxygen concentration in the hopper is made 1 ppm or less during melt extrusion. To reduce the oxygen concentration in the hopper to 1 ppm or less, it is preferable to depressurize the hopper or purge nitrogen at a flow rate of 20 ml / min or more.
  • the acrylic resin film of the present invention has a strength S of preferably 4% or more in at least one direction, and more preferably 15% or more. Further, the elongation at break in the orthogonal direction is more preferably 4% or more. When the elongation at break of the acrylic resin film is 4% or more, the acrylic resin film has appropriate flexibility, film tearing during film formation and processing is reduced, and workability such as slitting is improved. Therefore, it is preferable.
  • the elongation at break of such an acrylic resin film is measured by a method based on JIS-C2318-2002.
  • the upper limit of the elongation at break of the acrylic resin film is not particularly limited, but it is considered to be about 50% in practice.
  • the molecular weight of the acrylic resin, the content of cyclic units, the composition of the elastic particles, the particle diameter, the added amount, The dispersion state and the like may be adjusted as appropriate.
  • the elongation at break is 2% force
  • the elongation at break can be made 4%. Therefore, also in the resin film of the present invention, the elongation at break can be increased by adjusting the particle diameter and the amount of the elastic particles added to the layer (II).
  • the acrylic resin film of the present invention contains a dartal anhydride unit, it has excellent heat resistance with a heat distortion temperature of 110 ° C or higher.
  • Upper limit of heat distortion temperature Although there is no particular limit, the upper limit is about 200 ° C in view of the toughness preferred to be 130 ° C or higher and the elongation at break. To improve heat resistance, it is preferable to increase the content of dartaric anhydride units.
  • the thermal deformation temperature is obtained by using thermomechanical analysis (TMA).
  • TMA thermomechanical analysis
  • TMA thermomechanical analysis
  • TMA thermomechanical analysis
  • TMA thermal analysis station
  • TM-9400 sample measurement module
  • the in-plane phase difference with respect to a light beam having a wavelength of 590 nm is preferably lOnm or less, more preferably 5 nm or less, and still more preferably Inm or less.
  • the retardation in the film surface with respect to a light beam having a wavelength of 590 nm is lOnm or less, it can be suitably used as an optical isotropic film in protective film applications such as polarizing plates and optical disks.
  • the retardation in the film surface with respect to light with a wavelength of 590 nm is smaller, but the lower limit is considered to be about 0.1 nm in practice.
  • a film having a thickness of 41 Hm and a retardation of 0.1 nm can be obtained by adjusting the film so that (the lip gap of the T die / film thickness) is 15. This is because stretching between the lip of the T die and the cooling drum can be suppressed, and the occurrence of phase difference can be suppressed.
  • the refractive index in the direction of the orthogonal axis in the acrylic resin film plane with respect to light having a wavelength of 590 nm is n and n (where n ⁇ n), respectively, and the wavelength is 590 ⁇ y x y.
  • n is the refractive index in the thickness direction of the acrylic resin film for m rays
  • z is the refractive index in the thickness direction of the acrylic resin film for m rays
  • the force is preferably S, more preferably 8 nm or less, still more preferably 5 nm or less, and most preferably 2 nm or less. Thickness direction retardation of acrylic resin film R force Onm or less
  • the acrylic resin film has excellent optical isotropy in the thickness direction as well as optical isotropy in the thickness direction. Therefore, it is more suitable for use in protective film applications such as polarizing plates and optical disks. be able to. In applications where optical isotropy in the thickness direction is required, it is preferable that the retardation R in the thickness direction is small, but the lower limit is practically about 0.1 nm.
  • Thickness direction retardation R (nm) d X ⁇ (n + n) / 2— n ⁇
  • V and so on are effective.
  • Gnorethalic anhydride unit: methyl methacrylate unit: methacrylic acid 32: 66: 20 parts by mass of a two-layer particle having a particle size of 155 nm is added to a polymer having 2 parts by mass to obtain a solution.
  • the lip gap of the T die so that the (Die lip gap / film thickness) is 50 by the film formation method, a film with a thickness of 41 ⁇ m and a thickness direction retardation of 4.5 nm is obtained. End up.
  • a film with a thickness of 4 m and a thickness difference of 0.4 nm can be obtained. Obtainable. This is because stretching between the lip of the T-die and the cooling drum is suppressed, and the occurrence of phase difference can be suppressed.
  • the acrylic resin film of the present invention has a photoelastic coefficient of ⁇ 2 X 1 for light having a wavelength of 589 m. It is preferably 0- 12 / Pa ⁇ 2 X 10_ 12 / Pa.
  • ⁇ 2 X 1 for light having a wavelength of 589 m. It is preferably 0- 12 / Pa ⁇ 2 X 10_ 12 / Pa.
  • Photoelastic coefficient of the acrylic resin film is - a 2 X can 10_ is 12 / Pa ⁇ 2 X 10_ 12 / Pa , the force, the change in phase difference even when given the mowing stress preferably small. More photoelastic coefficient is small, the properly preferred over preferred for the phase difference change is small tool to stress - a 1 X 10- 12 / Pa ⁇ l X 10_ 12 / Pa.
  • the photoelastic coefficient of an acrylic resin film is generally small, but if the styrene or maleimide is copolymerized or an aromatic substituent is introduced to improve heat resistance, the photoelastic coefficient also increases. However, the acrylic resin film of the present invention can achieve both improved heat resistance and reduced photoelastic coefficient due to the dartal anhydride structure.
  • an ultraviolet absorber depending on the application.
  • benzotriazole-based, salicylic acid ester-based, benzophenone-based, oxybenzophenone-based, cyanoacrylate-based, polymer-based, and inorganic-based ones can be used as ultraviolet absorbers.
  • commercially available ultraviolet absorbers include Adeka Stub of Asahi Denka Kogyo Co., Ltd. represented by the following general formula (7), TINUVIN (registered trademark), Uvinul of BASF Co., Ltd., and UV absorber of Johoku Chemical Co., Ltd.
  • Aromatic polymer absorbs ultraviolet rays by the aromatic units of the main chain, so the main chain is cleaved by ultraviolet rays and has the problem of degradation.
  • the acrylic resin film of the present invention deteriorates because the main chain portion does not absorb ultraviolet rays.
  • Less UV absorbers to add Depending on the type and amount, a desired UV-cutting function can be imparted, which is preferable.
  • the ultraviolet absorber to be added is an aromatic compound, it will be present in the acrylic resin film at random, so that the phase difference is hardly exhibited. Therefore, the ultraviolet absorber may be an aromatic compound or an aliphatic compound.
  • the addition amount of the ultraviolet absorber is preferably 0.1 parts by mass or more and 5 parts by mass or less with respect to 100 parts by mass of the acrylic resin film. If the amount is less than 1 part by mass, the desired effect may not be obtained. When the amount exceeds 5 parts by mass, problems such as non-uniform dispersion, a decrease in total light transmittance, and an increase in haze may occur. More preferably, it is 1 part by mass or more and 2 parts by mass or less.
  • the light transmittance of light having a wavelength of 380 nm of the acrylic resin final is 10% or less by adding an ultraviolet absorber as described above. More preferably, it is 5% or less.
  • the light transmittance of 380 nm light can be reduced by increasing the amount of UV absorber and can be increased by reducing it. By sufficiently cutting ultraviolet rays (light with a wavelength of 380 nm or less), materials that dislike ultraviolet rays can be protected.
  • the light transmittance at a wavelength of 380 nm is measured using the following apparatus.
  • T is the intensity of light that has passed through the sample
  • T is the same distance except that it does not pass through the sample.
  • UV measuring instrument U— 3410 manufactured by Hitachi Keiki Co., Ltd.
  • the acrylic resin film of the present invention includes other thermoplastic resins (for example, polyethylene, polypropylene, acrylic resin, polyamide, polyethylene sulfide resin, polyether ether ketone resin, Polyester, polysulfone, polyphenylene oxide, polyacetal, polyimide, polyetherimide, etc.) and thermosetting resins (eg phenol resin, melamine resin, polyester resin, silicone resin, epoxy resin, etc.) And / or laminating I can do it.
  • thermoplastic resins for example, polyethylene, polypropylene, acrylic resin, polyamide, polyethylene sulfide resin, polyether ether ketone resin, Polyester, polysulfone, polyphenylene oxide, polyacetal, polyimide, polyetherimide, etc.
  • thermosetting resins eg phenol resin, melamine resin, polyester resin, silicone resin, epoxy resin, etc.
  • hindered phenol, benzoate, and cyanoacrylate antioxidants such as lubricants and plasticizers, montanic acid and its salts, and esters Release agents such as half esters, stearyl alcohol, stearamide and ethylene wax, anti-coloring agents such as phosphites and hypophosphites, halogen flame retardants, phosphorus and silicone non-halogen flame retardants
  • additives such as nucleating agents, amine-based, sulfonic acid-based, anti-static agents such as polyethers, and colorants such as pigments may be optionally added.
  • the color of the additive does not adversely affect the thermoplastic polymer and the transparency is not lowered!
  • the method of blending optional components such as elastic particles (B) or other additives into acrylic resin (A) and acrylic resin (A) and others are no particular restrictions on the method of blending optional components such as elastic particles (B) or other additives into acrylic resin (A) and acrylic resin (A) and others.
  • a method is preferably used in which after arbitrary blending of these components, the mixture is uniformly melt-kneaded by a single-screw or twin-screw extruder usually at 200 to 350 ° C.
  • the cyclization reaction of the copolymer (a) obtained during the production of the acrylic resin (A) can be simultaneously performed.
  • a cyclization reaction may be performed simultaneously when a part of the elastic particles ( ⁇ ) contains a copolymer composed of an unsaturated rubonic acid monomer unit and an unsaturated carboxylic acid alkyl ester monomer unit. it can.
  • the acrylic resin (wax) is preferably filtered for the purpose of removing foreign substances.
  • the film can be usefully used as an optical application film with strict standards.
  • a resin dissolved in a solvent such as tetrahydrofuran, acetone, methyl ethyl ketone, dimethylformamide, dimethyl sulfoxide, ⁇ ⁇ ⁇ -methylpyrrolidone, etc. is 25 ° C or higher and 100 ° C or lower.
  • a filter such as sintered metal, porous ceramic, sand, wire mesh, etc.
  • the acrylic resin film of the present invention preferably has a hard coat layer and / or an antireflection film on the surface of at least one of the at least two layers. Her When forming both the coat coat layer and the antireflection film, it is preferable to stack an antireflection film on the hard coat layer.
  • the method for forming the hard coat layer is not particularly limited, and any known method can be used.
  • a method using a polyfunctional acrylate can be exemplified.
  • the polyfunctional acrylates include 1,6-hexanediol diatalate, 1,4 butanediol diatalate, ethylene glycol diatalate, diethylene glycol diatalate, tetreethylene glycol diatalate, tripropylene glycolate.
  • the antireflection film can also be formed by a known method without limitation. That is, the antireflection film is preferably a dry type using an inorganic compound or a wet type using an organic compound. Even if only one low refractive index layer is formed, a high refractive index layer, a low refractive index is used. Arbitrary layers of layers and intermediate refractive index layers may be laminated.
  • the optical filter is a member for a display device, and particularly indicates a member used for a flat panel display such as a liquid crystal display, a plasma display, a field emission display, or an electoluminescence display.
  • a flat panel display such as a liquid crystal display, a plasma display, a field emission display, or an electoluminescence display.
  • this A plastic substrate provided with a transparent conductive film and / or a gas-nolia film on a bright acrylic resin film, a lens obtained by processing and molding the acrylic resin film of the present invention, a polarizing plate protective film bonded to a polarizing plate via an adhesive,
  • optical filters include various terminal boards, printed wiring boards, speakers, microscopes, binoculars, cameras, covers for various devices represented by watches, and the like.
  • the acrylic resin film was dissolved in acetone, and this solution was centrifuged at 9000 rpm for 30 minutes to separate into an acetone soluble component and an acetone insoluble component. Acetone-soluble components were dried under reduced pressure at 60 ° C for 5 hours, and each component unit was quantified to identify each component composition of the acrylic resin.
  • a sample in which a layer to be measured based on the thickness of each layer measured with a transmission electron microscope (TEM) was shaved with a single blade was used.
  • TEM transmission electron microscope
  • force S which can be quantified by infrared spectroscopy, in this case, measure each layer of the fracture surface of the film by microscopic FT-IR.
  • the haze value (%) and total light transmittance (%) at 23 ° C. were measured using a direct reading haze meter manufactured by Toyo Seiki Co., Ltd., JIS-K7361 1997 and JIS-K7136-2000. Measurements were taken three times and averaged.
  • the tensile Young's modulus was determined from the tangent of the rising portion of the obtained load elongation curve. Also, the elongation at break was calculated by multiplying the length at the time of film rupture by subtracting the distance between chucks and dividing it by the distance between chucks. In addition, the breaking strength was determined by dividing the load at the breaking point by the cross-sectional area. The measurement was performed 5 times and the average value was taken.
  • the phase difference for the light with a wavelength of 480.4 nm the phase difference for the light with a wavelength of 548.3 nm
  • the phase difference for a light beam with a wavelength of 68.2 nm Measure the phase difference for a light beam with a wavelength of 752.7 nm.
  • the wavelength dispersion formula (R () a + b / 2 + c / 4 + d / 6)
  • the refractive index ⁇ ⁇ , ny (where ⁇ ⁇ ⁇ ⁇ ) of the acrylic resin film in the plane of the acrylic resin film is measured, and the refractive index ⁇ in the thickness direction of the acrylic resin film for the light of wavelength 590 nm is measured.
  • the thickness was determined from the following formula when the thickness of the resin film was d (nm). The measurement was performed once.
  • Thickness direction retardation R (nm) d X ⁇ (n + n) / 2— n ⁇
  • Measurement was performed using the following apparatus, and transmittance corresponding to light of each wavelength was determined. The measurement was performed once.
  • T is the intensity of light that has passed through the sample
  • T is the same distance except that it does not pass through the sample.
  • UV measuring instrument U— 3410 manufactured by Hitachi Keiki Co., Ltd.
  • thermo-mechanical analysis when the temperature of the measurement sample was raised and the deformation amount plotted against the measurement temperature, the temperature at which the deformation amount changed by 2% or more was taken as the heat deformation temperature.
  • TMA thermo-mechanical analysis
  • MMS-9000 thermal analysis station
  • TM-9400 sample measurement module
  • the thermal deformation temperature was measured by applying a bow I tension load of 150 MPa per unit cross-sectional area of the measurement sample. The measurement was performed once.
  • Acetone is added to the acrylic resin film and refluxed for 4 hours. This solution is centrifuged at 9, OOOrpm for 30 minutes to obtain acetone-soluble components (components of acrylic resin (A)) and insoluble components (elastic particles (B)). Component). These were dried under reduced pressure at 60 ° C. for 5 hours. Each solid material obtained was press-molded at 250 ° C to form a 0.1 mm thick film, and then refracted at 23 ° C at a wavelength of 550 nm by an Abbe refractometer (manufactured by Atago Co., Ltd., DR-M2). The rate was measured. The absolute value of the difference in refractive index between the acrylic resin (A) component and the elastic particle (B) component was used. The measurement was performed once.
  • DAWN— DSP type multi-angle light scattering photometer Weight average molecular weight (absolute molecular weight) was measured using a gel permeation chromatograph equipped with Wyatt Technology (pump: 515 type, manufactured by Waters, column: TSK-gel-GMHXL, manufactured by Tosoh Corporation).
  • a differential scanning calorimeter (DSC-7 type manufactured by Perkin Elmer) was used, and the measurement was performed at a temperature increase rate of 20 ° C./min in a nitrogen atmosphere. The measurement was performed once. Note that the glass transition temperature (Tmg) of JIS K7121-1987 is used as the glass transition temperature (Tg).
  • the surface pencil hardness was measured in accordance with JIS K 5400-1990. For measurement, 6H, 5H, 4H, 3H, 2H, H, F, HB, B, 2B, 3B, 4B in the Japan Paint Inspection Association Marked Test Pencil manufactured by Mitsubishi Pencil Co., Ltd. , 5B, 6B hardness pencils were used. It also means hard in this order! [0135] (15) Folding resistance (times):
  • test piece dimensions were 15 ⁇ 0.03 mm wide and 110 ⁇ 5 mm long, and the load was 8.14 MPa per cross-sectional area.
  • Centerline average roughness R was measured using a Keyence laser microscope (VK-9500). The measurement conditions are as follows. The average value of 20 measurements was taken as the value.
  • Cut age 0.08mm.
  • Thin film slices were prepared with a microtome, stained with ruthenium, observed with a transmission electron microscope (TEM), and the laminate thickness was measured with photographs. For the measurement, three different places were measured and the average value was used.
  • TEM transmission electron microscope
  • a solution of 0.05 part of methyl methacrylate / acrylamide copolymer suspension in 165 parts of ion-exchanged water is supplied to a stainless steel autoclave with a capacity of 5 liters and equipped with a baffle and a fudra-type stirring blade. The mixture was stirred at 400 rpm and the system was replaced with nitrogen gas.
  • the methyl methacrylate / acrylamide copolymer suspension was prepared by the following method: methyl methacrylate 20 parts by mass, acrylamide 80 parts by mass, potassium persulfate 0.3 parts by mass, ion Charge 1500 parts by mass of exchange water into the reactor, keep the reactor at 70 ° C while replacing with nitrogen gas, and react until the monomer is completely converted to polymer.
  • An aqueous solution of a copolymer of acrylamide and acrylamide was used as a suspension.
  • the copolymer (a-1) had a polymerization rate of 98% and a weight average molecular weight of 68,000.
  • a pellet-shaped acrylic resin (A1) was obtained.
  • the composition ratio of the dartal anhydride unit was 31 parts by mass, and the weight average molecular weight was 65,000.
  • An acrylic resin (A2) was obtained in the same manner as in Reference Example 1 except that the amount of 2,2′-azobisisobutyronitrile used was changed to 0.5 parts by mass.
  • This acrylic resin had a composition ratio of dartaric anhydride units of 31 parts by mass and a weight average molecular weight of 80,000.
  • the core-shell polymer obtained by the following was used.
  • the acrylic resin composition (C1) pellets dried at 100 ° C for 3 hours were obtained in the above Reference Example 2 using a 45mm ⁇ single screw extruder (S 1) (set temperature 250 ° C).
  • the obtained acrylic resin (A2) was extruded using a single-screw extruder (S2) of 40 ⁇ (set temperature: 250 ° C (the lip portion also has the same temperature)).
  • S1 and the acrylic resin (A2) are laminated through a feed block whose laminated structure is acrylic resin (A2) / acrylic resin composition (C1) / acrylic resin (A2) Extruded into a sheet through a T-die (set temperature 250 ° C).
  • the film was cooled with a single side of the film being completely adhered to a 130 ° C cooling roll to obtain an unstretched acrylic resin film.
  • the stack thickness ratio of each layer was adjusted so that the discharge amount was adjusted so that acrylic resin (A2): acrylic resin composition (C1): acrylic resin (A2) was 1: 5: 1.
  • the acrylic resin film obtained by strength and strength had excellent heat resistance, transparency and toughness, and excellent processing characteristics! Table 1 shows the film characteristics.
  • the acrylic resin film obtained by applying strength and strength had excellent heat resistance, transparency and toughness, and excellent processing characteristics.
  • Table 1 shows the film characteristics.
  • Example 1 except that the cooling roll speed was adjusted so that the total film thickness was 73 m. A film was formed in the same manner.
  • the acrylic resin film obtained by applying strength and strength was excellent in heat resistance, transparency and toughness, and also in processing characteristics.
  • Table 1 shows the film characteristics.
  • a film was formed in the same manner as in Example 1 except that the hopper was purged with nitrogen at a flow rate of 20 ml / min during extrusion and the temperature of the lip portion of the T die was set to 230 ° C.
  • the acrylic resin film obtained by applying strength and strength had excellent heat resistance, transparency and toughness, and excellent processing characteristics.
  • Table 1 shows the film characteristics.
  • the acrylic resin film obtained by applying strength and strength had excellent heat resistance, transparency and toughness, and excellent processing characteristics.
  • Table 1 shows the film characteristics.
  • the acrylic resin film obtained by applying strength and strength had excellent heat resistance, transparency and toughness, and excellent processing characteristics.
  • Table 1 shows the film characteristics.
  • Atalinole resin composition (C1) and acrylic resin (A2) are composed of acrylic resin (A2) / acrylic resin composition (C1) / acrylic resin (A2) / acrylic resin composition (C1) / After lamination through a feed block to be an acrylic resin (A2), it was extruded into a sheet through a T die (set temperature 250 ° C, only the lip portion was set temperature 230 ° C).
  • the acrylic resin film obtained by strength and strength has excellent heat resistance, transparency, and toughness, and excellent processing characteristics! Table 2 shows the film characteristics.
  • a film was formed in the same manner as in Example 4 except that the lamination thickness ratio was 1: 5:... 5: 1 so that the acrylic resin (A2) was thin.
  • the acrylic resin film obtained by applying force has excellent heat resistance, transparency and toughness, and excellent processing characteristics! Table 2 shows the film characteristics.
  • the mixture was kneaded to obtain a pellet-shaped acrylic resin composition (C2), and the lamination thickness ratio was 1: 5: 1 acrylic resin (A2) / acrylic resin composition (C2) / acrylic resin (A2).
  • the film was formed in the same manner as in claim 4 except that the layers were laminated so that [0166]
  • the acrylic resin film obtained by applying strength and strength has excellent heat resistance, transparency and toughness, and excellent processing characteristics! Table 2 shows the film characteristics.
  • a film was formed in the same manner as in Example 4 except that the discharge amount of the two extruders was adjusted so that the acrylic resin (A2) was thin, and the thickness of the acrylic resin (A2) layer was 0.08 m.
  • the acrylic resin film obtained by strength and strength had excellent heat resistance and toughness. The transparency was slightly inferior. Table 2 shows the film characteristics.
  • the acrylic resin composition (C1) pellets dried for 3 hours at 100 ° C were extruded using a 45mm ⁇ single screw extruder (S 1) (set temperature 250 ° C), and T-die (set temperature) 250 ° C.).
  • This film was cooled with a single face of a 130 ° C. cooling roll being completely adhered to obtain an unstretched acrylic resin film having a thickness of 40 m.
  • the acrylic resin film obtained by applying force has a large haze and is not suitable as an optical filter.
  • Table 2 shows the film characteristics.
  • the acrylic resin film obtained by applying strength and strength had excellent heat resistance and transparency, and the toughness was poor and the additive properties were poor.
  • Table 2 shows the film characteristics.
  • the hoppers of both extruders were purged with nitrogen at a flow rate of 20 ml / min.
  • the stacking structure was Sumipec LG2 / Sumipec HT50Y / Sumipec LG2
  • Only the lip and the lip part were extruded into a sheet through a set temperature of 210 ° C.
  • Example 1 Example 2
  • Example 3 Example 4
  • Example 5 Example 6
  • Example 7 Number of layers 3 layers 3 layers 3 layers 3 layers 3 layers 3 layers 3 layers 3 layers Overall thickness (m) 39
  • 34 73 40
  • 41 Acrylic Resin A2 or
  • Example 8 Example 9 Example 1 0 Example 1 1 Comparative example 1 Comparative example 2 Comparative example 3 Stack factor 5 layers 9 layers 3 layers 3 layers 1 layers 1 layers 1 layers Overall thickness (im) 40 40 40 40 40 40 80 40 Acrylic resin A2 or 3.1 1.6 5.7 0.08 0 0 5.7 Sumipec LG2 thickness (m)
  • Acrylic resin film that can be obtained through strength and strength makes use of its excellent transparency, heat resistance, light resistance, and toughness to make use of optical filters, electrical and electronic parts, automotive parts, mechanical mechanisms used in display equipment. It can be used for various applications such as covers for parts, OA equipment, home appliances, etc. and their parts and general goods.

Landscapes

  • Laminated Bodies (AREA)
  • Polarising Elements (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Disclosed is an acrylic resin film excellent in transparency, heat resistance and toughness. Specifically disclosed is an acrylic resin film composed of at least three layers, which is characterized in that at least one layer is composed of an acrylic resin composition containing an acrylic resin (A) having a glutaric anhydride unit represented by the structural formula (1) below and an elastic particle (B), wherein the acrylic resin (A) is contained in an amount of 50-95 parts by mass and the elastic particle (B) is contained in an amount of 5-50 parts by mass when the total of the acrylic resin (A) and the elastic particle (B) is taken as 100 parts by mass. The acrylic resin film is further characterized in that at least two layers sandwiching the above-described at least one layer are composed of the acrylic resin (A) and do not contain the elastic particle (B). (1)

Description

明 細 書  Specification
アクリル樹脂フィルム 技術分野  Acrylic resin film technology
[0001] 本発明は、工業上有用な透明性、耐候性、耐熱性および靱性に優れたアクリル樹 脂フィルムに関する。  [0001] The present invention relates to an acrylic resin film excellent in industrially useful transparency, weather resistance, heat resistance and toughness.
[0002] さらに詳しくは、本発明のアクリル樹脂フィルムは、例えば、フラットディスプレイパネ ル等の表示材料、車両用内装材および外装材、電化製品、建材用内装材および外 装材等、物体の表面表皮に用いられる、透明性、耐候性、耐熱性および靱性に優れ たアクリル樹脂フィルムに関する。  More specifically, the acrylic resin film of the present invention is a surface of an object such as a display material such as a flat display panel, a vehicle interior material and exterior material, an electrical appliance, a building material interior material and an exterior material. The present invention relates to an acrylic resin film excellent in transparency, weather resistance, heat resistance and toughness used for the skin.
背景技術  Background art
[0003] アクリル樹脂フィルムは、透明性や表面光沢性および耐光性に優れてレ、るため、液 晶ディスプレイ用シートまたはフィルム、導光板などの光学材料、車両用内装材およ び外装材、 自動販売機の外装材、電化製品、建材用内装材および外装材等、物体 の表面表皮に用いられてレ、る。  [0003] Acrylic resin films are excellent in transparency, surface gloss, and light resistance, so liquid crystal display sheets or films, optical materials such as light guide plates, vehicle interior materials and exterior materials, Used for the surface skin of objects such as vending machine exterior materials, electrical appliances, interior materials for building materials, and exterior materials.
[0004] 近年これらの樹脂フィルムは、例えば、 自動車のナビゲーシヨンシステム、ハンディ カメラなどの普及により、使用範囲が屋外や自動車の車内など、耐候性、耐熱性が 要求される過酷な使用環境条件下へ拡大してきて!/、る。このような過酷な環境条件 下で使用する場合、ポリメタクリル酸メチル樹脂を基板とするシートまたはフィルムは、 優れた透明性、耐候性を有するものの、耐熱性が低いために変形が生じるうえに、靱 性が低!/、ために加工時に割れやす!/、と!/、う問題があった。  [0004] In recent years, these resin films have been used in harsh usage environment conditions where weather resistance and heat resistance are required, such as outdoors and in automobiles, due to the spread of automobile navigation systems, handy cameras, and the like. Enlarge to! / When used under such harsh environmental conditions, a sheet or film having a polymethyl methacrylate resin as a substrate has excellent transparency and weather resistance, but is deformed due to low heat resistance. Because of its low toughness! /, It was prone to cracking during processing!
[0005] そのため、アクリル樹脂フィルムの耐熱性を改良する目的で、下記一般式(1)で示 されるダルタル酸無水物単位を有するフィルムが開示されている。 (特許文献 1およ び 2)  [0005] Therefore, for the purpose of improving the heat resistance of the acrylic resin film, a film having a dartaric anhydride unit represented by the following general formula (1) is disclosed. (Patent Documents 1 and 2)
[0006] [化 1] [0006] [Chemical 1]
Figure imgf000003_0001
Figure imgf000003_0001
[0007] (上記式中、
Figure imgf000003_0002
R2は、同一または相異なる水素原子または炭素数 1〜5のアルキル 基を表す。 )
[0007] (In the above formula,
Figure imgf000003_0002
R 2 represents the same or different hydrogen atoms or alkyl groups having 1 to 5 carbon atoms. )
し力、し、単にアクリル樹脂フィルムの組成の調整によって耐熱性を向上させると、曲 げ応力によって割れやすくなり、加工時に必要な十分な靱性が得られない。  However, if the heat resistance is improved simply by adjusting the composition of the acrylic resin film, it becomes easy to break due to bending stress, and sufficient toughness required during processing cannot be obtained.
[0008] アクリル樹脂フィルムの耐熱性と靱性を同時に改良する目的で、下記一般式(2)で 示されるダルタル酸無水物単位を導入したアクリル樹脂に架橋弾性体を含有させた フィルムが開示されている。 (特許文献 3、 4)  [0008] For the purpose of simultaneously improving the heat resistance and toughness of an acrylic resin film, a film is disclosed in which a crosslinked elastic body is contained in an acrylic resin into which a dartaric anhydride unit represented by the following general formula (2) is introduced. Yes. (Patent Documents 3 and 4)
[0009] [化 2]  [0009] [Chemical 2]
Figure imgf000003_0003
Figure imgf000003_0003
[0010] しかし、特許文献 3に記載のフィルムは、架橋弾性体の屈折率がアクリル樹脂と大き く異なるため、透明性に欠け、光学用途への展開は不可能であった。 [0010] However, since the refractive index of the crosslinked elastic body is significantly different from that of the acrylic resin, the film described in Patent Document 3 lacks transparency and cannot be developed for optical applications.
[0011] また、特許文献 4には、アクリル樹脂と弾性体粒子との組成物からなり、該樹脂と該 粒子の屈折率差を 0. 03以下とする事により透明性を向上した組成物が開示されて いる(特許文献 4)。し力、しながら、この組成物で溶液キャスト法を用いて製膜したフィ ルムは低ヘイズと高い靭性を両立するが、溶液製膜によるものであるため生産性が 低いという問題があった。一方、生産性を高めるためこの組成物を溶融製膜法に用 いることもできる力 そのように製膜するとフィルム表面に凹凸ができヘイズが高くなる という問題があった。そのため、高い透明性が要求されるブラ基板、偏光板保護フィ ルム、プリズムシート、導光板などへのこのフィルムの展開は困難であった。 特許文献 1:特開 2004— 2711号公報 [0011] Further, Patent Document 4 discloses a composition comprising a composition of an acrylic resin and elastic particles, and having improved transparency by making the difference in refractive index between the resin and the particles 0.03 or less. It is disclosed (Patent Document 4). However, the film formed using this composition by the solution casting method has both low haze and high toughness, but has a problem that productivity is low because it is based on solution casting. On the other hand, there is a problem that this composition can be used in the melt film-forming method in order to increase productivity. When such a film is formed, the film surface becomes uneven and haze increases. For this reason, it has been difficult to develop this film on a bra substrate, a polarizing plate protective film, a prism sheet, a light guide plate, and the like that require high transparency. Patent Document 1: Japanese Patent Application Laid-Open No. 2004-2711
特許文献 2:特開平 7— 268036号公報  Patent Document 2: Japanese Patent Laid-Open No. 7-268036
特許文献 3 :特開昭 60— 67557号公報  Patent Document 3: JP-A-60-67557
特許文献 4 :特開 2002— 284816号公報  Patent Document 4: Japanese Patent Laid-Open No. 2002-284816
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0012] 本発明の目的は、透明性、耐熱性および靱性に優れたアクリル樹脂フィルムを提 供することにある。 [0012] An object of the present invention is to provide an acrylic resin film excellent in transparency, heat resistance and toughness.
課題を解決するための手段  Means for solving the problem
[0013] 本発明者らは、上述した問題に鑑み、透明性、耐熱性および靱性に優れたアクリル 樹脂フィルムを得るべく鋭意検討した結果、下記のいずれかの構成により、透明性、 耐熱性および靱性に優れ、さらには加ェ特性に優れた生産性の高レ、アクリル樹脂フ イルムが得られることを見いだしたのである。 [0013] In view of the above-mentioned problems, the present inventors have intensively studied to obtain an acrylic resin film excellent in transparency, heat resistance, and toughness. As a result, with any of the following configurations, the transparency, heat resistance, and It was found that an acrylic resin film with excellent toughness and high processability and high productivity could be obtained.
[1] 少なくとも 3層からなるアクリル樹脂フィルムであって、少なくとも 1層は、下記構 造式(1)で表されるダルタル酸無水物単位を含有するアクリル樹脂 (A)と弾性体粒 子(B)とを含むアクリル樹脂組成物からなり、かつ、該アクリル樹脂 (A)および該弹性 体粒子(B)の合計を 100質量部として、該アクリル樹脂 (A)を 50〜95質量部、該弹 性体粒子 (B)を 5〜50質量部含有し、該少なくとも 1層を挟む少なくとも 2層は、前記 アクリル樹脂 (A)からなり、かつ、前記弾性体粒子(B)を含有していないことを特徴と するアクリル樹脂フィルム。  [1] An acrylic resin film comprising at least three layers, wherein at least one layer comprises an acrylic resin (A) containing a dartaric anhydride unit represented by the following structural formula (1) and an elastic particle ( B), and the total of the acrylic resin (A) and the inorganic particles (B) is 100 parts by mass, and the acrylic resin (A) is 50 to 95 parts by mass, 5 to 50 parts by mass of the inorganic particles (B), and at least two layers sandwiching at least one layer are made of the acrylic resin (A) and do not contain the elastic particles (B). An acrylic resin film characterized by this.
[0014] [化 3] [0014] [Chemical 3]
Figure imgf000004_0001
Figure imgf000004_0001
[0015] (上記式中、
Figure imgf000004_0002
R2は、同一または相異なる水素原子または炭素数 1〜5のアルキル 基を表す。 ) [2] 前記少なくとも 2層は、それぞれの層の厚みが 0· 1 m以上 20 m以下である 、前記 [1]に記載のアクリル樹脂フィルム。
[0015] (In the above formula,
Figure imgf000004_0002
R 2 represents the same or different hydrogen atoms or alkyl groups having 1 to 5 carbon atoms. ) [2] The acrylic resin film according to [1], wherein the thickness of each of the at least two layers is from 0.1 m to 20 m.
[3] 全光線透過率が 91 %以上であり、ヘイズが 1. 0%以下である、前記 [1]または [2]に記載のアクリル樹脂フィルム。  [3] The acrylic resin film according to [1] or [2], wherein the total light transmittance is 91% or more and the haze is 1.0% or less.
[4] 前記弾性体粒子(B)は、内層がアクリル酸アルキルエステル単位および/また は芳香族ビュルを含有するゴム弾性体であり、外層が上記構造式(1)で表されるグ ルタル酸無水物単位を含有するアクリル樹脂を主成分とする重合体であり、該弹性 体粒子(B)と前記アクリル樹脂 (A)の屈折率差が 0. 01以下である、前記 [1]〜[3] の!/、ずれかに記載のアクリル樹脂フィルム。  [4] In the elastic particles (B), the inner layer is a rubber elastic body containing an alkyl acrylate unit and / or an aromatic bur, and the outer layer is a glutaric acid represented by the structural formula (1). A polymer mainly comprising an acrylic resin containing an anhydride unit, wherein the refractive index difference between the particles (B) and the acrylic resin (A) is 0.01 or less. [3] Acrylic resin film as described in any of the above.
[5] 前記弾性体粒子(B)の重量平均粒子径が 50nm以上 400nm以下である、前 記 [1]〜 [4]の!/、ずれかに記載のアクリル樹脂フィルム。  [5] The acrylic resin film according to any one of [1] to [4], wherein the elastic particles (B) have a weight average particle diameter of 50 nm to 400 nm.
[6] 前記アクリル樹脂 (A)は、該アクリル樹脂 (A)全体を 100質量部としてメタクリル 酸メチル単位 50〜90質量部およびグルタル酸無水物単位 10〜50質量部からなる 、前記 [1]〜 [5]の!/、ずれかに記載のアクリル樹脂フィルム。  [6] The acrylic resin (A) comprises 50 to 90 parts by mass of methyl methacrylate units and 10 to 50 parts by mass of glutaric anhydride units, with the acrylic resin (A) as a whole being 100 parts by mass. ~ [5]! / Acrylic resin film according to any of the above.
[7] 破断点伸度が 4%以上である、前記 [1]〜 [6]のいずれかに記載のアクリル樹 脂フィルム。  [7] The acrylic resin film according to any one of [1] to [6], wherein the elongation at break is 4% or more.
[8] 波長 590nmの光に対するアクリル樹脂フィルムの面内の位相差が 10nm以下 である、前記 [1]〜 [7]の!/、ずれかに記載のアクリル樹脂フィルム。  [8] The acrylic resin film according to [1] to [7], wherein the in-plane retardation of the acrylic resin film with respect to light having a wavelength of 590 nm is 10 nm or less.
[9] 波長 590nmの光に対するフィルム厚み方向の位相差が 10nm以下である、前 記 [1]〜 [8]の!/、ずれかに記載のアクリル樹脂フィルム。 [9] The acrylic resin film according to any one of [1] to [8], wherein the retardation in the film thickness direction with respect to light having a wavelength of 590 nm is 10 nm or less.
[10] 波長 589nmの光に対する光弾性係数が— 2 X 10— 12/Pa以上、 2 X 1CT12 /Pa以下である、前記 [1]〜 [9]の!/、ずれかに記載のアクリル樹脂フィルム。 [10] photoelastic coefficient with respect to wavelength 589nm of light -! 2 X 10- 12 / Pa or more, or less 2 X 1CT 12 / Pa, the [1] to [9] /, acrylic according to any deviation Resin film.
[11 ] 紫外線吸収剤をアクリル樹脂フィルム 100質量部に対して 0. 1質量部以上 5 質量部以下含有する、前記 [1]〜[; 10]の!/、ずれかに記載のアクリル樹脂フィルム。 [11] The acrylic resin film according to any one of [1] to [; 10] above, wherein the ultraviolet absorber is contained in an amount of 0.1 part by mass to 5 parts by mass with respect to 100 parts by mass of the acrylic resin film. .
[12] 波長 380nmの光の光線透過率が 10%以下である、前記 [1]〜[; 11]のいず れかに記載のアクリル樹脂フィルム。 [12] The acrylic resin film according to any one of [1] to [; 11], wherein the light transmittance of light having a wavelength of 380 nm is 10% or less.
[13] 熱変形温度が 110°C以上である、前記 [1]〜[; 12]のいずれかに記載のアタリ ル樹脂フィルム。 [14] 前記少なくとも 2層のうちの少なくとも 1層は、その表面にハードコート層および /または反射防止膜を有して!/、る、前記 [ 1 ]〜[; 13]の!/、ずれかに記載のアクリル樹 脂フィルム。 [13] The allyl resin film according to any one of [1] to [; 12], which has a heat distortion temperature of 110 ° C or higher. [14] At least one of the at least two layers has a hard coat layer and / or an antireflective film on its surface! /, Or [1] to [; 13]! / Acrylic resin film according to crab.
[15] 前記 [1]〜前記 [14]のいずれかに記載のアクリル樹脂フィルムからなる光学 フィルター。  [15] An optical filter comprising the acrylic resin film according to any one of [1] to [14].
[16] 前記 [1]〜[; 15]のいずれかに記載のアクリル樹脂フィルムからなる偏光板保 護フィルム。  [16] A polarizing plate protective film comprising the acrylic resin film according to any one of [1] to [; 15].
発明の効果  The invention's effect
[0016] 本発明によれば、優れた透明性、耐熱性を有するとともに高度な靱性を有するァク リル樹脂フィルムを得ることができる。特に、例えば全光線透過率が 91 %以上、ヘイ ズが 1. 0%以下、熱変形温度が 110°C以上、破断点伸度が 4%以上と、諸性能が飛 躍的に向上したアクリル樹脂フィルムを得ることも可能である。  [0016] According to the present invention, an acrylic resin film having excellent transparency and heat resistance and high toughness can be obtained. In particular, acrylics with dramatically improved performance such as total light transmittance of 91% or higher, haze of 1.0% or lower, heat distortion temperature of 110 ° C or higher, and elongation at break of 4% or higher. It is also possible to obtain a resin film.
[0017] その結果、本発明に力、かるアクリル樹脂フィルムは、高温での加工工程を必要とす る光学フィルターなどの工業材料として好ましく使用することが出来る。さらに、本発 明にかかるアクリル樹脂フィルムは、表面硬度、厚み均一性、および表面接着性も良 好であるので、光学フィルター以外の各種用途にも良好に用いることができる。 発明を実施するための最良の形態  [0017] As a result, the acrylic resin film, which is suitable for the present invention, can be preferably used as an industrial material such as an optical filter that requires a high temperature processing step. Furthermore, since the acrylic resin film according to the present invention has good surface hardness, thickness uniformity, and surface adhesiveness, it can be used well in various applications other than optical filters. BEST MODE FOR CARRYING OUT THE INVENTION
[0018] 以下に本発明の好ましい実施の形態を説明する。 [0018] Preferred embodiments of the present invention will be described below.
[0019] 本発明に用いられるアクリル樹脂 (A)は、分子中に下記一般式(1)で表されるグノレ タル酸無水物単位を含有する事を要する。  [0019] The acrylic resin (A) used in the present invention is required to contain a gnorethalic anhydride unit represented by the following general formula (1) in the molecule.
[0020] [化 4] [0020] [Chemical 4]
Figure imgf000006_0001
Figure imgf000006_0001
[0021] (上記式中、
Figure imgf000006_0002
ITは、同一または相異なる水素原子または炭素数 1〜5のアルキル 基を表す。 ) ガラス転移温度 (Tg)や熱変形温度など、樹脂フィルムの耐熱性は樹脂構造の自 由度により決まり、 自由度の小さいもの、例えば、剛直なベンゼン環力 剛直なイミド 結合で結合された芳香族ポリイミドは 400°Cを越える Tgを持つ。一方、 自由度の大き い柔軟な脂肪族の重合体であるポリメタクリル酸メチル (PMMA)の Tgは 100°Cに満 たない。本発明においては、アクリル樹脂に、脂環構造であるダルタル酸無水物単位 を含有させることにより、耐熱性を著しく向上する事が出来る。また、光学等方用途で は位相差が小さレ、ことが要求される。ここで π電子を多く持つ芳香環を導入すると、 耐熱性は脂環構造を導入する以上に向上するが、同時に複屈折が大きくなり、位相 差が発現しやすくなる問題がある。このため、光学等方を保ったまま、耐熱性を向上 させるためには脂環構造を含有させる事が最も好まし!/、。脂環構造としてはダルタル 酸無水物構造のほか、ラタトン環構造、ノルボルネン構造、シクロペンタン構造なども 挙げられる。光学等方と耐熱性については、どの構造を用いても同様の効果が得ら れるカ S、ラタトン環構造、ノルボルネン構造、シクロペンタン構造などの導入には、こ れら構造を有する高価な原料を使用するか、またはこれら構造の前駆体となる高価 な原料を使用し、数段階の反応を経て、 目的の構造にする必要があるため、工業的 に不利である。一方、ダルタル酸無水物単位は一般的なアクリル原料から 1段階の脱 水および/または脱アルコール反応により得られるため工業的に非常に有利である ここで、光学等方用途とは、その素材に光学的等方性が求められる用途で、具体 的には偏光板保護フィルム、レンズ、光導波路コアなどを例示出来る。液晶テレビに おいて、偏光板は 2枚使用される。偏光板に使用される偏光板保護フィルムが光学 等方でない場合、黒色に表示させたいときに例えば濃い紫が表示され、白色に表示 させたいときに例えば黄ばんだ白色が表示される。この着色は偏光板保護フィルム の異方性によって異なる。偏光板保護フィルムは光学的には存在しないことが理想 であるが、外からの力および水分から偏光子を保護する目的で必要不可欠である。 また、レンズの場合、レンズはその界面で光を屈折する事を目的とする力 S、レンズ内 は均一に光が進むことが必要である。レンズ内が光学等方でないと、像が歪むなどの 問題がある。光導波路コアの場合、光学等方でないと例えば、横方向の波と、縦方向 の波の信号の伝達速度に差が生じるため、ノイズ、混信の問題を起こす原因となる。 他の光学等方用途としては、プリズムシート基材、光ディスク基板、フラットパネルディ スプレイ基板などが挙げられる。
[0021] (In the above formula,
Figure imgf000006_0002
IT represents the same or different hydrogen atoms or alkyl groups having 1 to 5 carbon atoms. ) The heat resistance of the resin film, such as the glass transition temperature (Tg) and the heat distortion temperature, is determined by the flexibility of the resin structure, and it has a low degree of freedom, for example, a rigid benzene ring force, an aromatic bonded with a rigid imide bond Polyimide has a Tg of over 400 ° C. On the other hand, Tg of polymethyl methacrylate (PMMA), which is a flexible aliphatic polymer with a high degree of freedom, does not reach 100 ° C. In the present invention, the heat resistance can be remarkably improved by adding a dartaric anhydride unit having an alicyclic structure to an acrylic resin. In optical isotropic applications, a small phase difference is required. Here, when an aromatic ring having many π electrons is introduced, the heat resistance is improved more than the introduction of the alicyclic structure, but at the same time, there is a problem that the birefringence increases and the phase difference is easily developed. For this reason, it is most preferable to include an alicyclic structure in order to improve heat resistance while maintaining the optical isotropy! Examples of the alicyclic structure include a dartal anhydride structure, a rataton ring structure, a norbornene structure, and a cyclopentane structure. As for optical isotropy and heat resistance, the same effect can be obtained regardless of the structure used. For the introduction of carbon, rataton ring structure, norbornene structure, cyclopentane structure, etc., expensive raw materials having these structures are used. This is industrially disadvantageous because it is necessary to use an expensive raw material that is a precursor of these structures or to undergo the reaction in several steps to obtain the desired structure. On the other hand, dartaric anhydride units are industrially very advantageous because they are obtained from a general acrylic raw material through a single-stage dehydration and / or dealcoholization reaction. In applications where optical isotropy is required, specific examples include polarizing plate protective films, lenses, and optical waveguide cores. Two polarizing plates are used in LCD TVs. When the polarizing plate protective film used for the polarizing plate is not optically isotropic, for example, dark purple is displayed when displaying black, and yellowish white is displayed when displaying white. This coloring varies depending on the anisotropy of the polarizing plate protective film. Ideally, the polarizing plate protective film does not exist optically, but is indispensable for the purpose of protecting the polarizer from external force and moisture. In the case of a lens, the lens must have a force S that is intended to refract light at the interface, and the light must travel uniformly through the lens. If the lens is not optically isotropic, there are problems such as image distortion. In the case of an optical waveguide core, if it is not optical isotropic This causes a difference in the transmission speed of the wave signal, which causes noise and interference problems. Other optical isotropic applications include prism sheet substrates, optical disk substrates, flat panel display substrates, and the like.
[0023] 次に、上記一般式(1)で表されるダルタル酸無水物単位を含有するアクリル樹脂( A)の製造方法を詳述する。  Next, a method for producing the acrylic resin (A) containing the dartaric anhydride unit represented by the general formula (1) will be described in detail.
[0024] まず、後の加熱工程により上記一般式(1)で表されるダルタル酸無水物単位を与え る、不飽和カルボン酸単量体(i)および不飽和カルボン酸アルキルエステル単量体( ii)と、その他のビュル系単量体単位を含む場合には該単位を与えるビュル系単量 体 (iii)とを重合させ、共重合体 (a)とする。その後、力、かる共重合体 (a)を適当な触 媒の存在下あるいは非存在下で加熱し、脱アルコールおよび/または脱水による分 子内環化反応を行わせる。このようにすることにより、上記一般式(1)で表されるグノレ タル酸無水物単位を含有するアクリル樹脂 (Α)を製造することが出来る。なお、典型 的には共重合体(a)を加熱することにより 2単位の不飽和カルボン酸単位のカルボキ シル基が脱水されて、ある!/、は隣接する不飽和カルボン酸単位と不飽和カルボン酸 アルキルエステル単位からアルコールの脱離により 1単位の前記グルタル酸無水物 単位が生成される。  [0024] First, an unsaturated carboxylic acid monomer (i) and an unsaturated carboxylic acid alkyl ester monomer (which give a dartaric anhydride unit represented by the general formula (1) by a subsequent heating step ( In the case of containing other bulle monomer units, ii) is polymerized with bur monomer (iii) giving the units to give copolymer (a). Thereafter, force, such copolymer (a) is heated in the presence or absence of an appropriate catalyst, and an intramolecular cyclization reaction is carried out by dealcoholization and / or dehydration. By doing so, it is possible to produce an acrylic resin (Α) containing a gnorethalic anhydride unit represented by the general formula (1). Typically, by heating the copolymer (a), the carboxyl group of the unsaturated carboxylic acid unit of 2 units is dehydrated, and there is! /, Which is the adjacent unsaturated carboxylic acid unit and the unsaturated carboxylic acid unit. One unit of the glutaric anhydride unit is generated by elimination of the alcohol from the acid alkyl ester unit.
[0025] この際用いられる不飽和カルボン酸単量体(i)としては、特に限定はなぐ他のビニ ル系単量体 (iii)と共重合させることが可能な、下記一般式(3)の不飽和カルボン酸 単量体を使用できる。  [0025] The unsaturated carboxylic acid monomer (i) used in this case is not particularly limited, and can be copolymerized with another vinyl monomer (iii), and is represented by the following general formula (3). Unsaturated carboxylic acid monomers can be used.
[0026] [化 5]  [0026] [Chemical 5]
Figure imgf000008_0001
Figure imgf000008_0001
[0027] (ただし、 R3は水素または炭素数 1〜5のアルキル基を表す) [0027] (wherein R 3 represents hydrogen or an alkyl group having 1 to 5 carbon atoms)
特に熱安定性が優れる点でアクリル酸、メタクリル酸が好ましぐより好ましくはメタク リル酸である。これらはその 1種、または 2種以上用いることが出来る。なお、上記一 般式 (3)で表される不飽和カルボン酸単量体 (i)は共重合すると下記一般式 (4)で 表される構造の不飽和カルボン酸単位を与える。 [0028] [化 6] In particular, acrylic acid and methacrylic acid are preferred, and methacrylic acid is more preferred in terms of excellent thermal stability. These can be used alone or in combination. The unsaturated carboxylic acid monomer (i) represented by the general formula (3) is copolymerized to give an unsaturated carboxylic acid unit having a structure represented by the following general formula (4). [0028] [Chemical 6]
Figure imgf000009_0001
Figure imgf000009_0001
[0029] (ただし、 Rは水素または炭素数 1〜5のアルキル基を表す) [0029] (wherein R represents hydrogen or an alkyl group having 1 to 5 carbon atoms)
また、不飽和カルボン酸アルキルエステル単量体(ii)としてはメタクリル酸メチルが 、得られるフィルムの透明性、耐候性の点から必要である。さらに他の不飽和カルボ ン酸アルキルエステル単量体をメタクリル酸メチルと共に 1種または 2種以上を用いる こと力 Sできる。他の不飽和カルボン酸アルキルエステル単量体としては特に制限はな いが、好ましい例として、下記一般式(5)で表されるものを挙げることが出来る。  Further, methyl methacrylate is required as the unsaturated carboxylic acid alkyl ester monomer (ii) from the viewpoint of transparency and weather resistance of the resulting film. Furthermore, it is possible to use one or more unsaturated carboxylic acid alkyl ester monomers together with methyl methacrylate. Other unsaturated carboxylic acid alkyl ester monomers are not particularly limited, but preferred examples include those represented by the following general formula (5).
[0030] [化 7]  [0030] [Chemical 7]
R4 R 4
CH2-C (5) CH 2 -C (5)
COOR5 COOR 5
[0031] (ただし、 R4は水素または炭素数 1〜5の脂肪族、もしくは脂環式炭化水素基を示し、 R5は水素以外の任意の置換基を示す。 ) (Wherein R 4 represents hydrogen or an aliphatic or alicyclic hydrocarbon group having 1 to 5 carbon atoms, and R 5 represents an optional substituent other than hydrogen.)
これらのうち、 R5として、炭素数 1〜6の脂肪族もしくは脂環式炭化水素基または置 換基を有する該炭化水素基をもつアクリル酸エステルおよび/またはメタクリル酸ェ ステルが特に好適である。なお、上記一般式(5)で表される不飽和カルボン酸アルキ ルエステル単量体は、共重合すると下記一般式(6)で表される構造の不飽和カルボ ン酸アルキルエステル単位を与える。 Of these, R 5 is particularly preferably an acrylate ester and / or a methacrylate ester having an aliphatic or alicyclic hydrocarbon group having 1 to 6 carbon atoms or a hydrocarbon group having a substituent. . The unsaturated carboxylic acid alkyl ester monomer represented by the general formula (5) gives an unsaturated carboxylic acid alkyl ester unit having a structure represented by the following general formula (6) when copolymerized.
[0032] [化 8コ  [0032] [Chemical 8
Figure imgf000009_0002
、 ,
Figure imgf000009_0002
,,
[0033] (ただし、 R4は水素または炭素数 1〜5の脂肪族、もしくは脂環式炭化水素基を示し、 R5は水素以外の任意の置換基を示す。 ) (Wherein R 4 represents hydrogen or an aliphatic or alicyclic hydrocarbon group having 1 to 5 carbon atoms, R 5 represents an optional substituent other than hydrogen. )
メタクリル酸メチル以外の不飽和カルボン酸アルキルエステル単量体(ii)の好まし い具体例としては、 (メタ)アクリル酸ェチル、 (メタ)アクリル酸 n—プロピル、 (メタ)ァク リル酸 n—ブチル、(メタ)アクリル酸 t—ブチル、(メタ)アクリル酸 n—へキシル、 (メタ) アクリル酸シクロへキシル、 (メタ)アクリル酸クロロメチル、 (メタ)アクリル酸 2—クロロェ チル、 (メタ)アクリル酸 2—ヒドロキシェチル、 (メタ)アクリル酸 3—ヒドロキシプロピル、 (メタ)アクリル酸 2, 3, 4, 5, 6—ペンタヒドロキシへキシルおよび(メタ)アクリル酸 2, 3, 4, 5—テトラヒドロキシペンチルなどが挙げられる。  Preferable specific examples of the unsaturated carboxylic acid alkyl ester monomer (ii) other than methyl methacrylate include (meth) acrylate ethyl, (meth) acrylate n-propyl, (meth) acrylic acid n —Butyl, (meth) acrylic acid t-butyl, (meth) acrylic acid n-hexyl, (meth) acrylic acid cyclohexyl, (meth) acrylic acid chloromethyl, (meth) acrylic acid 2-chloroethyl, ( 2-Methyl) acrylic acid 2-hydroxyethyl, (meth) acrylic acid 3-hydroxypropyl, (meth) acrylic acid 2, 3, 4, 5, 6-pentahydroxyhexyl and (meth) acrylic acid 2, 3, 4 , 5-tetrahydroxypentyl and the like.
[0034] また、本発明で用いるアクリル樹脂 (A)の製造においては、本発明の効果を損なわ ない範囲で、その他のビュル系単量体(iii)を用いてもかまわない。その他のビュル 系単量体(iii)の好ましい具体例としては、スチレン、 α—メチルスチレン、 ο—メチル スチレン、 ρ—メチルスチレン、 ο—ェチルスチレン、 ρ—ェチルスチレンおよび p— t— ブチルスチレンなどの芳香族ビュル系単量体、アクリロニトリル、メタタリロニトリル、ェ タクリロ二トリルなどのシアン化ビュル系単量体、ァリルグリシジルエーテル、スチレン —p—グリシジルエーテル、 p—グリシジルスチレン、無水マレイン酸、無水ィタコン酸 、 N—メチルマレイミド、 N—ェチルマレイミド、 N—シクロへキシルマレイミド、 N—フエ エルマレイミド、アタリノレアミド、メタクリノレアミド、 N—メチルアクリルアミド、ブトキシメチ ルァクリノレアミド、 N—プロピルメタクリルアミド、アクリル酸アミノエチル、アクリル酸プ 口ピルアミノエチル、メタクリル酸ジメチルアミノエチル、メタクリル酸ェチルァミノプロピ ノレ、メタクリル酸フエニルアミノエチル、メタクリル酸シクロへキシルアミノエチル、 N— ビニルジェチルァミン、 N—ァセチルビニルァミン、ァリルァミン、メタァリルアミン、 N ーメチルァリルァミン、 p—アミノスチレン、 2—イソプロぺニルーォキサゾリン、 2—ビ 二ルーォキサゾリン、 2—ァクロイルーォキサゾリンおよび 2—スチリルーォキサゾリン などを挙げることができる力 透明性、複屈折率、耐薬品性の点で芳香環を含まない 単量体がより好ましく使用できる。これらは単独ないし 2種以上を用いることができる。  [0034] Further, in the production of the acrylic resin (A) used in the present invention, other bull monomers (iii) may be used within a range not impairing the effects of the present invention. Preferable specific examples of other bulle monomers (iii) include styrene, α-methyl styrene, ο-methyl styrene, ρ-methyl styrene, ο-ethyl styrene, ρ-ethyl styrene, and p-t-butyl styrene. Aromatic butyl monomers, cyanide butyl monomers such as acrylonitrile, methacrylonitrile, ethacrylonitrile, allyl glycidyl ether, styrene —p-glycidyl ether, p-glycidyl styrene, maleic anhydride, Itaconic anhydride, N-methylmaleimide, N-ethylmaleimide, N-cyclohexylmaleimide, N-fuelmaleimide, atalinoleamide, methacrylolamide, N-methylacrylamide, butoxymethylacranolamide, N-propyl Methacrylamide, aminoethyl acrylate, alcohol Propylaminoethyl crylate, dimethylaminoethyl methacrylate, ethylaminopropyl methacrylate, phenylaminoethyl methacrylate, cyclohexylaminoethyl methacrylate, N-vinyljetylamine, N-acetyl Vinylamine, arylamine, methallylamine, N-methylallylamine, p-aminostyrene, 2-isopropenyloxazoline, 2-biloluoxazoline, 2-acroyloxazoline and 2-styrylru Oxazoline and the like A monomer that does not contain an aromatic ring can be more preferably used in terms of transparency, birefringence, and chemical resistance. These can be used alone or in combination of two or more.
[0035] アクリル樹脂 (A)の重合方法については、基本的にはラジカル重合による、塊状重 合、溶液重合、懸濁重合、乳化重合等の公知の重合方法を用いることができるが、 不純物がより少ない点で溶液重合、塊状重合、懸濁重合が特に好ましい。 [0036] 重合温度については、特に制限はないが、色調の観点から、不飽和カルボン酸単 量体および不飽和カルボン酸アルキルエステル単量体を含む単量体混合物を 95°C 以下の重合温度で重合することが好ましい。さらに加熱処理後の着色をより抑制する ために好ましい重合温度は 85°C以下であり、特に好ましくは 75°C以下である。また、 重合温度の下限は、重合が進行する温度であれば、特に制限はないが、重合速度 を考慮した生産性の面から、通常 50°C以上、好ましくは 60°C以上である。重合収率 あるいは重合速度を向上させる目的で、重合進行に従い重合温度を昇温することも 可能である力 S、この場合も昇温する上限温度は 95°C以下に制御することが好ましぐ 重合開始温度も 75°C以下の比較的低温で行うことが好ましい。また重合時間は、必 要な重合度を得るのに十分な時間であれば特に制限はないが、生産効率の点から 6 0〜360分間の範囲が好ましぐ 90〜; 180分間の範囲が特に好ましい。 [0035] As for the polymerization method of the acrylic resin (A), a known polymerization method such as bulk polymerization, solution polymerization, suspension polymerization, emulsion polymerization or the like basically by radical polymerization can be used. Solution polymerization, bulk polymerization, and suspension polymerization are particularly preferred in terms of fewer points. [0036] The polymerization temperature is not particularly limited, but from the viewpoint of color tone, a monomer mixture containing an unsaturated carboxylic acid monomer and an unsaturated carboxylic acid alkyl ester monomer is used at a polymerization temperature of 95 ° C or lower. It is preferable to polymerize with. Further, in order to further suppress coloring after the heat treatment, a preferable polymerization temperature is 85 ° C or lower, and particularly preferably 75 ° C or lower. The lower limit of the polymerization temperature is not particularly limited as long as the polymerization proceeds, but is usually 50 ° C or higher, preferably 60 ° C or higher from the viewpoint of productivity in consideration of the polymerization rate. For the purpose of improving the polymerization yield or polymerization rate, it is possible to increase the polymerization temperature as the polymerization progresses. In this case, it is preferable to control the upper limit temperature to 95 ° C or less. The polymerization initiation temperature is preferably a relatively low temperature of 75 ° C or lower. The polymerization time is not particularly limited as long as it is sufficient to obtain the required degree of polymerization, but is preferably in the range of 60 to 360 minutes from the viewpoint of production efficiency. 90 to; Particularly preferred.
[0037] 本発明のアクリル樹脂フィルムに使用するアクリル樹脂 (A)は、重量平均分子量が 5万〜 15万であることが好ましい。このような分子量を有するアクリル樹脂 (A)は、共 重合体 (a)の製造時に、共重合体 (a)を所望の分子量、すなわち重量平均分子量で 5万〜 15万に予め制御しておくことにより、達成すること力 Sできる。重量平均分子量が 、 15万を越える場合、後工程の加熱脱気時に着色する傾向が見られる。一方、重量 平均分子量が、 5万未満の場合、アクリル樹脂フィルムの靭性が低下する傾向が見ら れる。  [0037] The acrylic resin (A) used in the acrylic resin film of the present invention preferably has a weight average molecular weight of 50,000 to 150,000. In the acrylic resin (A) having such a molecular weight, the copolymer (a) is previously controlled to have a desired molecular weight, that is, a weight average molecular weight of 50,000 to 150,000 at the time of producing the copolymer (a). Can achieve the power S When the weight average molecular weight exceeds 150,000, there is a tendency to color during heat deaeration in the subsequent process. On the other hand, when the weight average molecular weight is less than 50,000, the toughness of the acrylic resin film tends to decrease.
[0038] 共重合体(a)の分子量制御方法については、特に制限はなぐ例えば公知の技術 を適用すること力できる。具体的には、ァゾ化合物、過酸化物等のラジカル重合開始 剤の添加量、あるいはアルキルメルカブタン、四塩化炭素、四臭化炭素、ジメチルァ セトアミド、ジメチノレホノレムアミド、トリェチルァミン等の連鎖移動剤の添加量等により、 制御すること力 Sできる。特に、重合の安定性、取り扱いの容易さ等から、連鎖移動剤 であるアルキルメルカブタンの添加量を制御する方法が好ましく使用することができ  [0038] The method for controlling the molecular weight of the copolymer (a) is not particularly limited. For example, a known technique can be applied. Specifically, the addition amount of radical polymerization initiators such as azo compounds and peroxides, or chain transfer of alkyl mercabtan, carbon tetrachloride, carbon tetrabromide, dimethylacetamide, dimethinorenolemamide, triethylamine, etc. It can be controlled by the amount of agent added. In particular, a method of controlling the addition amount of the alkyl mercabtan, which is a chain transfer agent, can be preferably used from the viewpoint of stability of polymerization and ease of handling.
[0039] 本発明に使用されるアルキルメルカプタンとしては、例えば、 η—ォクチルメルカプ タン、 tードデシルメルカプタン、 n—ドデシルメルカプタン、 n—テトラデシルメルカプ タン、 n—ォクタデシルメルカプタン等が挙げられ、なかでも t—ドデシルメルカプタン 、 n—ドデシルメルカプタンが好ましく用いられる。 [0039] Examples of the alkyl mercaptan used in the present invention include η-octyl mercaptan, t-decyl mercaptan, n-dodecyl mercaptan, n-tetradecyl mercaptan, n-octadecyl mercaptan, and the like. Above all, t-dodecyl mercaptan N-dodecyl mercaptan is preferably used.
[0040] これらアルキルメルカブタンの添加量としては、アクリル樹脂 (A)を上記したような特 定の分子量に制御するものであれば特に制限はないが、通常、単量体混合物の全 量 100質量部に対して、 0. 2〜5. 0質量部であり、好ましくは 0. 3〜4. 0質量部、よ り好ましくは 0. 4〜3. 0質量部である。  [0040] The addition amount of these alkyl mercabtans is not particularly limited as long as the acrylic resin (A) is controlled to have a specific molecular weight as described above, but usually the total amount of the monomer mixture is 100. The amount is 0.2 to 5.0 parts by mass, preferably 0.3 to 4.0 parts by mass, and more preferably 0.4 to 3.0 parts by mass with respect to parts by mass.
[0041] 共重合体(a)を加熱し、脱水や脱アルコールにより分子内環化反応を行い、グルタ ル酸無水物単位を含有するアクリル樹脂 (A)とする方法は、特に制限されないが、該 共重合体(a)を、ベントを有する加熱した押出機に通したり不活性ガス雰囲気下また は真空下で加熱脱気したりする方法が生産性の観点から好ましい。中でも、酸素存 在下で加熱による分子内環化反応を行うと、黄色度が悪化する傾向が見られるため 、十分に系内を窒素などの不活性ガスで置換することが好ましい。装置としては、例 えば、 "ュニメルト"タイプのスクリューを備えた単軸押出機、二軸、三軸押出機、連続 式またはバッチ式ニーダータイプの混練機などを用いることができ、とりわけ二軸押 出機が好ましく使用することができる。これらに窒素などの不活性ガスを導入可能な 構造を設けることが好ましい。例えば、二軸押出機に窒素などの不活性ガスを導入 するため、ホッパー上部および/または下部に、 10〜; 100リットル/分程度の不活 性ガス気流を導入する配管を繋ぐ。  [0041] The method of heating the copolymer (a) and performing an intramolecular cyclization reaction by dehydration or dealcoholization to obtain an acrylic resin (A) containing a glutaric anhydride unit is not particularly limited. From the viewpoint of productivity, a method in which the copolymer (a) is passed through a heated extruder having a vent or heated and degassed under an inert gas atmosphere or under vacuum is preferable. In particular, when an intramolecular cyclization reaction is performed by heating in the presence of oxygen, the yellowness tends to deteriorate. Therefore, it is preferable to sufficiently substitute the inside of the system with an inert gas such as nitrogen. As the apparatus, for example, a single screw extruder equipped with a “unimelt” type screw, a twin screw, a three screw extruder, a continuous or batch kneader type kneader, etc. can be used. A machine can be preferably used. It is preferable to provide a structure capable of introducing an inert gas such as nitrogen. For example, in order to introduce an inert gas such as nitrogen into a twin-screw extruder, a pipe for introducing an inert gas stream of about 10 to 100 liters / minute is connected to the upper and / or lower part of the hopper.
[0042] なお、上記の方法により加熱脱気する温度は、脱水や脱アルコールにより分子内 環化反応が生じる温度であれば特に限定されないが、好ましくは 180〜300°Cの範 囲、特に 200〜280°Cの範囲が好ましい。  [0042] The temperature at which heat degassing is performed by the above method is not particularly limited as long as it is a temperature at which an intramolecular cyclization reaction is caused by dehydration or dealcoholization, but is preferably in the range of 180 to 300 ° C, particularly 200 A range of ~ 280 ° C is preferred.
[0043] また、この際の加熱脱気する時間も特に限定されず、所望する共重合組成に応じ て適宜設定可能である力 通常、 1分間〜 60分間、好ましくは 2分間〜 30分間、とり わけ 3〜20分間の範囲が好ましい。特に、押出機を用いて、十分な分子内環化反応 を進行させるための加熱時間を確保するため、押出機スクリューの長さ/直径比(L /D)が 40以上であることが好ましい。 L/Dの短い押出機を使用した場合、未反応 の不飽和カルボン酸単位が多量に残存するため、加熱成形加工時に反応が再進行 し、フィルムに気泡が見られたり成形滞留時に色調が大幅に悪化したりする傾向があ [0044] さらに本発明では、共重合体(a)を上記方法等により加熱する際にダルタル酸無水 物への環化反応を促進させる触媒として、酸、アルカリ、塩化合物の 1種以上を添加 すること力 Sできる。その添加量は特に制限はなぐ共重合体(a) 100質量部に対し、 0 . 0;!〜 1質量部程度が適当である。また、これら酸、アルカリ、塩化合物の種類につ いても特に制限はない。酸触媒としては、塩酸、硫酸、 p—トルエンスルホン酸、リン 酸、亜リン酸、フエニルホスホン酸、リン酸メチル等が挙げられる。塩基性触媒として は、金属水酸化物、アミン類、イミン類、アルカリ金属誘導体、アルコキシド類、水酸 化アンモニゥム塩等が挙げられる。さらに、塩系触媒としては、酢酸金属塩、ステアリ ン酸金属塩、炭酸金属塩等が挙げられる。ただし、その触媒保有の色が熱可塑性重 合体の着色に悪影響を及ぼさず、かつ透明性が低下しない範囲で添加する必要が ある。中でも、アルカリ金属を含有する化合物力 比較的少量の添加量で、優れた反 応促進効果を示すため、好ましく使用すること力できる。具体的には、水酸化リチウム 、水酸化ナトリウム、水酸化カリウム等の水酸化物、ナトリウムメトキシド、ナトリウムエト キシド、ナトリウムフエノキシド、カリウムメトキシド、カリウムエトキシド、カリウムフエノキ シド等のアルコキシド化合物、酢酸リチウム、酢酸ナトリウム、酢酸カリウム、ステアリン 酸ナトリウム等の有機カルボン酸塩等が挙げられ、とりわけ、水酸化ナトリウム、ナトリ ゥムメトキシド、酢酸リチウム、酢酸ナトリウムが好ましく使用することができる。 [0043] In addition, the heating and degassing time at this time is not particularly limited, and can be appropriately set according to the desired copolymer composition. Usually, the time is 1 minute to 60 minutes, preferably 2 minutes to 30 minutes. The range of 3 to 20 minutes is preferable. In particular, the length / diameter ratio (L / D) of the extruder screw is preferably 40 or more in order to ensure a sufficient heating time for advancing the intramolecular cyclization reaction using an extruder. When an extruder with a short L / D is used, a large amount of unreacted unsaturated carboxylic acid units remain, so the reaction proceeds again during the heat forming process, and bubbles are seen in the film and the color tone is greatly increased when the molding stays. Tend to get worse [0044] Furthermore, in the present invention, when the copolymer (a) is heated by the above method or the like, one or more acids, alkalis and salt compounds are added as a catalyst for promoting the cyclization reaction to dartaric anhydride. The power to do S. The addition amount is not particularly limited, but is suitably about 0.0;! To 1 part by mass per 100 parts by mass of the copolymer (a). There are no particular restrictions on the types of these acids, alkalis and salt compounds. Examples of the acid catalyst include hydrochloric acid, sulfuric acid, p-toluenesulfonic acid, phosphoric acid, phosphorous acid, phenylphosphonic acid, and methyl phosphate. Examples of the basic catalyst include metal hydroxides, amines, imines, alkali metal derivatives, alkoxides, and ammonium hydroxide salts. Furthermore, examples of the salt catalyst include acetic acid metal salt, stearic acid metal salt, and carbonate metal salt. However, it is necessary to add the catalyst in such a range that the color possessed by the catalyst does not adversely affect the coloring of the thermoplastic polymer and the transparency is not lowered. Among them, the compound power containing an alkali metal can be preferably used because it exhibits an excellent reaction promoting effect with a relatively small addition amount. Specifically, hydroxides such as lithium hydroxide, sodium hydroxide, and potassium hydroxide, alkoxides such as sodium methoxide, sodium ethoxide, sodium phenoxide, potassium methoxide, potassium ethoxide, and potassium phenoxide. Examples thereof include organic carboxylates such as compounds, lithium acetate, sodium acetate, potassium acetate and sodium stearate, and sodium hydroxide, sodium methoxide, lithium acetate and sodium acetate are particularly preferably used.
[0045] 本発明に用いられるアクリル樹脂 (A)中の前記一般式(1)で表されるダルタル酸無 水物単位の含有量は、アクリル樹脂(A) 100質量部に対して 10〜50質量部、より好 ましくは 15〜45質量部、最も好ましくは 20〜25質量部である。ダルタル酸無水物単 位が 10質量部未満である場合、耐熱性向上効果が小さくなる事がある。また、グルタ ル酸無水物単位が 50質量部を越えると靱性が悪くなる事がある。耐熱性向上と靱性 向上はトレードオフの関係にあり、ダルタル酸無水物単位の含有量で調整可能であ る。このためダルタル酸無水物単位の含有量は用途に応じて 10〜50質量部の中で 任意の値を採用すべきである。例えば、偏光板保護膜には 120°C以上の Tgが要求 される力 弾性体粒子添加による Tg低下を考慮すると、ダルタル酸無水物単位の含 有量は 20〜25質量部が最も好まし!/、。ダルタル酸無水物単位の含有量は 20〜25 質量部であれば、弾性体粒子添加後に 120〜; 130°Cの Tgを持ち、かつ十分な靱性 を有する。 [0045] The content of the dartaric acid anhydrous unit represented by the general formula (1) in the acrylic resin (A) used in the present invention is 10 to 50 parts per 100 parts by mass of the acrylic resin (A). Part by mass, more preferably 15 to 45 parts by mass, most preferably 20 to 25 parts by mass. When the dartal anhydride unit is less than 10 parts by mass, the heat resistance improvement effect may be reduced. If the glutaric anhydride unit exceeds 50 parts by mass, the toughness may deteriorate. Improvement in heat resistance and improvement in toughness are in a trade-off relationship and can be adjusted by the content of dartaric anhydride units. For this reason, the content of the dartaric anhydride unit should be any value from 10 to 50 parts by mass, depending on the application. For example, the Tg of 120 ° C or higher is required for the polarizing plate protective film. Considering the Tg drop due to the addition of elastic particles, the content of dartaric anhydride units is most preferably 20-25 parts by mass! /. If the content of the dartaric anhydride unit is 20-25 parts by mass, it will be 120- after the elastic particles are added; Tg of 130 ° C and sufficient toughness Have
[0046] アクリル樹脂 (A)に含まれる他の成分としてはメタクリル酸メチル単位およびメタタリ ル酸単位等が挙げられる力 メタクリル酸メチル単位が含有されることが好ましい。そ して、アクリル樹脂 (A) 100質量部からダルタル酸無水物単位の含有量を除した量 力 Sメタクリル酸メチル単位の含有量であることが好ましい。すなわち、メタクリル酸メチ ル単位の含有量は 50〜90質量部が好まし!/、。  [0046] As other components contained in the acrylic resin (A), a force such as a methyl methacrylate unit and a metataric acid unit is preferably contained. And it is preferable that it is content of the quantity S methyl methacrylate unit which remove | divided content of the dartaric anhydride unit from 100 mass parts of acrylic resins (A). That is, the content of methyl methacrylate units is preferably 50 to 90 parts by mass! /.
[0047] ダルタル酸無水物単位とメタクリル酸メチル単位以外にダルタル酸無水物単位の前 駆体であるメタクリル酸単位が含まれて!/、ても構わな!/、。メタクリル酸単位にメタクリノレ 酸単位またはメタクリル酸メチル単位が隣接した場合、製膜や、延伸などの工程での 加熱時に脱水または脱アルコール反応が起こり、発泡の原因となる事があるので好 ましくないが、ダルタル酸無水物単位が隣接していれば、脱水または脱アルコール反 応は起こり得な!/、ので、メタクリル酸単位が含まれて!/、ても構わなレ、。  [0047] A methacrylic acid unit, which is a precursor of a dartaric anhydride unit, is included in addition to the dartaric anhydride unit and the methyl methacrylate unit. If a methacrylolic acid unit or a methyl methacrylate unit is adjacent to a methacrylic acid unit, dehydration or dealcoholization reaction may occur during heating in film formation or stretching, which may cause foaming, which is not preferable. However, if the dartal anhydride units are adjacent, no dehydration or dealcoholization reaction can occur! /, So methacrylic acid units are included! /.
[0048] 本発明に用いられるアクリル樹脂 (A)における各成分単位の定量には、一般に赤 外分光光度計やプロトン核磁気共鳴 H NMR)測定機が用いられる。赤外分光 法において、ダルタル酸無水物単位は、 1800cm— 1及び 1760cm— 1の吸収力 S特徴 的であり、不飽和カルボン酸単位や不飽和カルボン酸アルキルエステル単位から区 別すること力できる。また、 NMR法では、例えば、ダルタル酸無水物単位、メタ クリル酸、メタクリル酸メチルからなる共重合体の場合、ジメチルスルホキシド重溶媒 中でのスペクトルの帰属を、 0· 5〜; ! · 5ppmのピーク力 Sメタクリル酸、メタクリル酸メチ ルおよびグルタル酸無水物環化合物の α メチル基の水素、 1. 6〜2. lppmのピ ークはポリマー主鎖のメチレン基の水素、 3. 5ppmのピークはメタクリル酸メチルの力 ノレボン酸エステル(一COOCH )の水素、 12. 4ppmのピークはメタクリル酸のカル [0048] In general, an infrared spectrophotometer or a proton nuclear magnetic resonance (HNMR) measuring instrument is used to quantify each component unit in the acrylic resin (A) used in the present invention. In infrared spectroscopy, Darutaru anhydride units, 1800Cm- 1 and 1760Cm- 1 of the absorption force S characteristic can be force to ward different from the unsaturated carboxylic acid unit and an unsaturated carboxylic acid alkyl ester unit. In addition, in the NMR method, for example, in the case of a copolymer consisting of a dartal anhydride unit, methacrylic acid, and methyl methacrylate, the spectral assignment in a dimethyl sulfoxide heavy solvent is 0.5 to 5; Peak force S α methyl group hydrogen in methacrylic acid, methyl methacrylate and glutaric anhydride ring compounds, 1.6-2 lppm peak is methylene group hydrogen in polymer main chain, 3.5 ppm peak Is the power of methyl methacrylate, hydrogen of norebonic acid ester (one COOCH), 12.4 ppm peak is the methacrylic acid cal
3  Three
ボン酸の水素と、スペクトルの積分比から共重合体組成を決定することができる。また The copolymer composition can be determined from the hydrogen of boric acid and the integral ratio of the spectrum. Also
、上記に加えて、他の共重合成分としてスチレンを含有する共重合体の場合、 6. 5 〜7. 5ppmにスチレンの芳香族環の水素が見られ、同様にスペクトル比から共重合 体組成を決定することができる。 In addition to the above, in the case of a copolymer containing styrene as another copolymer component, hydrogen in the aromatic ring of styrene is observed at 6.5 to 7.5 ppm, and the copolymer composition is similarly determined from the spectral ratio. Can be determined.
[0049] また、本発明に用いられるアクリル樹脂 (A)は、アクリル樹脂 (A)中に、不飽和カル ボン酸単位および/または共重合可能な他のビュル系単量体単位を含有することが できる。該不飽和カルボン酸単位量はアクリル樹脂(A) 100質量部に対して 10質量 部以下、すなわち 0〜; 10質量部であることが好ましぐより好ましくは 0〜5質量部、最 も好ましくは 0〜1質量部である。不飽和カルボン酸単位が 10質量部を超える場合に は、無色透明性、滞留安定性が低下する傾向がある。 [0049] In addition, the acrylic resin (A) used in the present invention contains an unsaturated carboxylic acid unit and / or another copolymerizable bull monomer unit in the acrylic resin (A). But it can. The amount of the unsaturated carboxylic acid unit is 10 parts by mass or less, ie 0 to 10 parts by mass, more preferably 0 to 5 parts by mass, and most preferably 100 parts by mass with respect to 100 parts by mass of the acrylic resin (A). Is 0 to 1 part by mass. When the unsaturated carboxylic acid unit exceeds 10 parts by mass, colorless transparency and residence stability tend to be lowered.
[0050] また、アクリル樹脂 (A)に共重合可能な他のビュル系単量体単位量はアクリル樹脂 [0050] In addition, the amount of other bur monomer units copolymerizable with the acrylic resin (A) is acrylic resin.
(A) 100質量部に対して、 5質量部以下、すなわち 0〜5質量部の範囲であることが 好ましぐより好ましくは 0〜3質量部である。特に、スチレンなどの芳香族ビュル系単 量体単位を含有する場合、含有量が上記範囲を超えると、無色透明性、光学等方性 、耐薬品性が低下する傾向がある。  (A) It is preferably 5 to 5 parts by mass, more preferably 0 to 3 parts by mass with respect to 100 parts by mass. In particular, when an aromatic bule monomer unit such as styrene is contained, if the content exceeds the above range, colorless transparency, optical isotropy, and chemical resistance tend to decrease.
[0051] 本発明においてアクリル樹脂 (A)は、 260°C、剪断速度 lOOsec— 1時の溶融粘度が [0051] In the present invention, the acrylic resin (A) has a melt viscosity of 260 ° C and a shear rate of lOOsec- 1 o'clock.
5000poise以上 50000poise以下の範囲である樹脂を言う。本発明で言う溶融粘度 は】13— 1^7210— 1976 (参考試験)に準拠し、ダイ長 10mm、ダイ径 1 · 0mmのダイ を使用して測定した値である。  Resin that is in the range of 5000poise to 50000poise. The melt viscosity referred to in the present invention is a value measured using a die having a die length of 10 mm and a die diameter of 1.0 mm in accordance with 13-1 ^ 7210-1976 (reference test).
[0052] 本発明のアクリル樹脂フィルムにおいては、上記のアクリル樹脂 (A)に弾性体粒子  [0052] In the acrylic resin film of the present invention, elastic particles are added to the acrylic resin (A).
(B)を分散せしめたアクリル樹脂組成物(C)からなる層を少なくとも 1層含むことにより 、光学等方性および耐熱性を大きく損なうことなく優れた耐衝撃性を付与することが できる。力、かる弾性体粒子(B)とは、ゴム質重合体を含む粒子をいう。  By including at least one layer made of the acrylic resin composition (C) in which (B) is dispersed, excellent impact resistance can be imparted without significantly impairing optical isotropy and heat resistance. The elastic particle (B) is a particle containing a rubbery polymer.
弾性体粒子(B)の具体的な形態としては、 1以上のゴム質重合体を含む層と、それと は異種の重合体から構成される 1以上の層から構成され、かつ、これらの各層が隣接 し合った構造の、いわゆるコアシェル型と呼ばれる多層構造重合体 (B— 1)や、ゴム 質重合体に、ビュル系単量体などからなる単量体混合物を共重合せしめたグラフト 共重合体 (B— 2)等が好ましく使用できる。  As a specific form of the elastic particles (B), it is composed of a layer containing one or more rubbery polymers and one or more layers composed of different polymers, and each of these layers is composed of Adjacent structures of the so-called core-shell type polymer (B-1), or a graft copolymer obtained by copolymerizing a rubber polymer with a monomer mixture such as a bull monomer. (B-2) and the like can be preferably used.
[0053] コアシェル型の多層構造重合体 (B— 1)としては、これを構成する層の数が特に限 定されるものではなぐ 2層以上であれば 3層以上または 4層以上であってもよいが、 内部に少なくとも 1層以上のゴム質重合体の層を有する。  [0053] The core-shell type multilayer structure polymer (B-1) is not particularly limited in the number of layers constituting the core-shell type polymer (B-1). However, it has at least one rubber polymer layer inside.
[0054] ゴム質重合体とは、ゴム弾性を有する重合体成分から構成されるものを!/、い、コア シェル型の多層構造重合体 (B— 1)で用いられるものとしては、アクリル成分、シリコ ーン成分、スチレン成分、二トリル成分、共役ジェン成分、ウレタン成分、エチレン成 分、プロピレン成分、イソブテン成分の群から選ばれる少なくとも 1種の成分を重合さ せたものから構成されるゴムを例示できる。 [0054] The rubbery polymer is a polymer composed of a polymer component having rubber elasticity! /, And the polymer used for the core-shell type multilayer polymer (B-1) is an acrylic component. , Silicone component, styrene component, nitrile component, conjugation component, urethane component, ethylene component An example is a rubber composed of a polymer obtained by polymerizing at least one component selected from the group consisting of a component, a propylene component and an isobutene component.
好ましいゴムの具体例としては、例えば、アクリル酸ェチル単位やアクリル酸ブチル 単位などのアクリル成分、ジメチルシロキサン単位やフエニルメチルシロキサン単位な どのシリコーン成分、スチレン単位や α—メチルスチレン単位などのスチレン成分、ァ タリロニトリル単位やメタタリロニトリル単位などの二トリル成分、およびブタンジェン単 位やイソプレン単位などの共役ジェン成分の群から選ばれる少なくとも 1種の成分か ら構成されるゴムである。これらのうちの 1つの成分から構成されるゴムでもよいが、 2 種以上を組み合わせたものから構成されるゴムも好ましぐ例えば、(1 )アクリル酸ェ チル単位やアクリル酸ブチル単位などのアクリル成分およびジメチルシロキサン単位 やフエニルメチルシロキサン単位などのシリコーン成分から構成されるゴム、 (2)アタリ ル酸ェチル単位やアクリル酸ブチル単位などのアクリル成分およびスチレン単位や aーメチルスチレン単位などのスチレン成分から構成されるゴム、(3)アクリル酸ェチ ル単位やアクリル酸ブチル単位などのアクリル成分およびブタンジェン単位やイソプ レン単位などの共役ジェン成分から構成されるゴム、および (4)アクリル酸ェチル単 位やアクリル酸ブチル単位などのアクリル成分、ジメチルシロキサン単位やフエニルメ チルシロキサン単位などのシリコーン成分およびスチレン単位や α—メチルスチレン 単位などのスチレン成分から構成されるゴムなどが挙げられる。また、これらの成分の 他に、ジビュルベンゼン単位、ァリルアタリレート単位およびブチレングリコールジァク リレート単位などの架橋性成分から構成される共重合体を架橋させたゴムも好ましい 多層構造重合体 (Β— 1 )において、ゴム質重合体の層以外の層の種類は、熱可塑 性を有する重合体成分から構成されるものであれば特に限定されるものではないが、 ゴム質重合体の層よりもガラス転移温度が高レ、重合体成分であることが好ましレ、。熱 可塑性を有する重合体としては、不飽和カルボン酸アルキルエステル系単位、不飽 和カルボン酸系単位、不飽和グリシジル基含有単位、不飽和ジカルボン酸無水物系 単位、脂肪族ビュル系単位、芳香族ビュル系単位、シアン化ビュル系単位、マレイミ ド系単位、不飽和ジカルボン酸系単位およびその他のビュル系単位など力、ら選ばれ る少なくとも 1種以上の単位を含有する重合体が挙げられる。中でも、不飽和カルボ ン酸アルキルエステル系単位、不飽和グリシジル基含有単位および不飽和ジカルボ ン酸無水物系単位から選ばれる少なくとも 1種以上の単位を含有する重合体が好ま しぐさらには不飽和グリシジル基含有単位および不飽和ジカルボン酸無水物系単 位から選ばれる少なくとも 1種以上の単位を含有する重合体が好ましい。 Specific examples of preferable rubbers include, for example, acrylic components such as ethyl acrylate units and butyl acrylate units, silicone components such as dimethylsiloxane units and phenylmethylsiloxane units, and styrene components such as styrene units and α-methylstyrene units. It is a rubber composed of at least one component selected from the group consisting of nitrile components such as talaronitrile units and metathalonitrile units, and conjugation component components such as butane units and isoprene units. A rubber composed of one of these components may be used, but a rubber composed of a combination of two or more types is also preferred. For example, (1) an acrylic such as an ethyl acrylate unit or a butyl acrylate unit. Components and rubber composed of silicone components such as dimethylsiloxane units and phenylmethylsiloxane units; (2) from acrylic components such as ethyl acrylate and butyl acrylate units and styrene components such as styrene units and a-methylstyrene units Constructed rubber, (3) Rubber composed of acrylic components such as ethyl acrylate units and butyl acrylate units, and Conjugated components such as butane units and isoprene units, and (4) Ethyl acrylate units And acrylic components such as butyl acrylate units, dimethylsiloxane units and Examples thereof include rubbers composed of silicone components such as dimethylsiloxane units and styrene components such as styrene units and α-methylstyrene units. In addition to these components, a rubber obtained by crosslinking a copolymer composed of a crosslinkable component such as a dibutylbenzene unit, a arylarylate unit and a butylene glycol diacrylate unit is also preferred. In (Β-1), the type of layer other than the rubbery polymer layer is not particularly limited as long as it is composed of a polymer component having thermoplasticity. The glass transition temperature is higher than that of the layer, preferably a polymer component. Examples of the thermoplastic polymer include unsaturated carboxylic acid alkyl ester units, unsaturated carboxylic acid units, unsaturated glycidyl group-containing units, unsaturated dicarboxylic anhydride units, aliphatic bur units, and aromatics. It is selected from forces such as bulle units, cyanide bulle units, maleimide units, unsaturated dicarboxylic acid units, and other bulle units. And a polymer containing at least one unit. Among them, polymers containing at least one unit selected from unsaturated carboxylic acid alkyl ester units, unsaturated glycidyl group-containing units and unsaturated dicarboxylic anhydride units are preferred and unsaturated. A polymer containing at least one unit selected from glycidyl group-containing units and unsaturated dicarboxylic anhydride units is preferred.
[0056] 上記不飽和カルボン酸アルキルエステル系単位の原料となる単量体としては、特 に限定されるものではないが、(メタ)アクリル酸アルキルエステルが好ましく使用され る。具体的には、(メタ)アクリル酸メチル、(メタ)アクリル酸ェチル、(メタ)アクリル酸 n プロピル、(メタ)アクリル酸 n ブチル、(メタ)アクリル酸 tーブチル、(メタ)アクリル 酸 n へキシル、(メタ)アクリル酸 2—ェチルへキシル、(メタ)アクリル酸シクロへキシ ノレ、(メタ)アクリル酸ステアリル、(メタ)アクリル酸ォクタデシル、(メタ)アクリル酸フエ ニル、(メタ)アクリル酸ベンジル、(メタ)アクリル酸クロロメチル、(メタ)アクリル酸 2— クロロェチル、(メタ)アクリル酸 2 ヒドロキシェチル、(メタ)アクリル酸 3 ヒドロキシプ 口ピル、(メタ)アクリル酸 2, 3, 4, 5, 6 ペンタヒドロキシへキシル、(メタ)アクリル酸 2, 3, 4, 5 テトラヒドロキシペンチル、アクリル酸アミノエチル、アクリル酸プロピルァ ミノェチル、メタクリル酸ジメチルアミノエチル、メタクリル酸ェチルァミノプロピル、メタ クリル酸フエニルアミノエチルおよびメタクリル酸シクロへキシルアミノエチルなどが挙 げられ、耐衝撃性を向上する効果が大きいという観点から、(メタ)アクリル酸メチルが 好ましく使用される。これらの単位は単独ないし 2種以上を用いることができる。 [0056] The monomer used as the raw material for the unsaturated carboxylic acid alkyl ester unit is not particularly limited, but (meth) acrylic acid alkyl ester is preferably used. Specifically, to methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, n-butyl (meth) acrylate, t-butyl (meth) acrylate, and (meth) acrylate n Xylyl, 2-methylhexyl (meth) acrylate, cyclohexanol (meth) acrylate, stearyl (meth) acrylate, octadecyl (meth) acrylate, phenyl (meth) acrylate, (meth) acrylic acid Benzyl, chloromethyl (meth) acrylate, 2-chloroethyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, (meth) acrylic acid 3 hydroxypropyl, (meth) acrylic acid 2, 3, 4 , 5, 6 Pentahydroxyhexyl, (meth) acrylic acid 2, 3, 4, 5 Tetrahydroxypentyl, Aminoethyl acrylate, Pro Luminoethyl, dimethylaminoethyl methacrylate, ethylaminopropyl methacrylate, phenylaminoethyl methacrylate, cyclohexylaminoethyl methacrylate, and the like are listed from the viewpoint of having a large effect of improving impact resistance. , Methyl (meth) acrylate is preferably used. These units can be used alone or in combination of two or more.
[0057] 上記不飽和カルボン酸系単位の原料となる単量体としては、特に制限はなぐァク リル酸、メタクリル酸、マレイン酸、及びさらには無水マレイン酸の加水分解物などが 挙げられる。特に熱安定性が優れる点でアクリル酸、メタクリル酸が好ましぐより好ま しくはメタクリル酸である。これらはその 1種または 2種以上用いることができる。 [0057] Examples of the monomer used as the raw material for the unsaturated carboxylic acid unit include, but are not limited to, acrylic acid, methacrylic acid, maleic acid, and further a hydrolyzate of maleic anhydride. In particular, acrylic acid and methacrylic acid are more preferable than methacrylic acid because they are excellent in thermal stability. These can be used alone or in combination.
[0058] 上記不飽和グリシジル基含有単位の原料となる単量体としては、特に限定されるも のではなく、(メタ)アクリル酸グリシジル、ィタコン酸グリシジル、ィタコン酸ジグリシジ ル、ァリルグリシジルエーテル、スチレンー4ーグリシジルエーテルおよび 4ーグリシジ ノレスチレンなどが挙げられる。耐衝撃性を向上する効果が大きいという観点から、(メ タ)アクリル酸グリシジルが好ましく使用される。これらの単位は単独ないし 2種以上を 用いること力 Sでさる。 [0058] The monomer that is a raw material of the unsaturated glycidyl group-containing unit is not particularly limited, and is glycidyl (meth) acrylate, glycidyl itaconate, diglycidyl itaconate, allyl glycidyl ether, Examples thereof include styrene-4-glycidyl ether and 4-glycidino styrene. From the viewpoint that the effect of improving impact resistance is great, (meth) glycidyl acrylate is preferably used. These units can be used alone or in combination of two or more. Use with power S.
[0059] 上記不飽和ジカルボン酸無水物系単位の原料となる単量体としては、無水マレイ ン酸、無水ィタコン酸、無水グルタコン酸、無水シトラコン酸および無水アコニット酸な ど力 S挙げられる。中でも耐衝撃性を向上する効果が大きいという観点から、無水マレ イン酸が好ましく使用される。これらの単位は単独ないし 2種以上を用いることができ  [0059] Examples of the monomer used as the raw material for the unsaturated dicarboxylic acid anhydride unit include maleic anhydride, itaconic anhydride, glutaconic anhydride, citraconic anhydride, and aconitic anhydride. Among these, maleic anhydride is preferably used from the viewpoint that the effect of improving impact resistance is great. These units can be used alone or in combination of two or more.
[0060] また、上記脂肪族ビュル系単位の原料となる単量体としては、エチレン、プロピレン およびブタジエンなどを、上記芳香族ビュル系単位の原料となる単量体としては、ス チレン、 α—メチルスチレン、 1—ビュルナフタレン、 4ーメチルスチレン、 4 プロピ ノレスチレン、 4ーシクロへキシルスチレン、 4ードデシルスチレン、 2 ェチルー 4一べ ンジルスチレン、 4 (フエニルブチル)スチレンおよびハロゲン化スチレンなどを、上 記シアン化ビュル系単位の原料となる単量体としては、アクリロニトリル、メタタリロニト リルおよびエタタリロニトリルなどを、上記マレイミド系単位の原料となる単量体として は、マレイミド、 Ν メチルマレイミド、 Ν ェチルマレイミド、 Ν プロピルマレイミド、 Ν イソプロピルマレイミド、 Ν シクロへキシルマレイミド、 Ν フエニルマレイミド、 Ν 一(ρ ブロモフエニル)マレイミドおよび Ν— (クロ口フエニル)マレイミドなどを、上記 不飽和ジカルボン酸系単位の原料となる単量体としては、マレイン酸、マレイン酸モ ノエチルエステル、ィタコン酸およびフタル酸などを、上記その他のビュル系単位の 原料となる単量体としては、アクリルアミド、メタクリルアミド、 Ν メチルアクリルアミド、 ブトキシメチルアクリルアミド、 Ν プロピルメタクリルアミド、 Ν ビニルジェチルァミン 、 Ν ァセチノレビニノレアミン、ァリノレアミン、メタァリノレアミン、 Ν メチノレアリノレアミン、 ρ—アミノスチレン、 2—イソプロぺニルーォキサゾリン、 2—ビュルーォキサゾリン、 2 ーァクロイルーォキサゾリンおよび 2—スチリルーォキサゾリンなどを、それぞれ挙げ ることができ、これらの単量体は単独ないし 2種以上を用いることができる。 [0060] Further, ethylene, propylene, butadiene, and the like are used as the raw material for the aliphatic bulle unit, and styrene, α- Methyl styrene, 1-Burnaphthalene, 4-Methyl styrene, 4-Propylene styrene, 4-Cyclohexyl styrene, 4-Dodecyl styrene, 2-Ethyl 4-1 Benzyl styrene, 4 (Phenylbutyl) styrene, Halogenated styrene, etc. Acrylonitrile, methacrylonitrile, etalonitrile, etc. are used as the raw material for the system unit, and maleimide, メ チ ル methylmaleimide, ethyl maleimide, Ν are used as the raw material for the maleimide unit. Propylmaleimide, Ν isopropylmaleimide, Ν Monomers such as chlorohexyl maleimide, Ν phenyl maleimide, Ν bromophenyl maleimide, and Ν- (black phenyl) maleimide are raw materials for the above unsaturated dicarboxylic acid units. Monomers such as acid monoethyl ester, itaconic acid, and phthalic acid that can be used as raw materials for the other above-mentioned units are acrylamide, methacrylamide, メ チ ル methyl acrylamide, butoxymethyl acrylamide, プ ロ ピ ル propyl methacrylamide, ビ ニ ル vinyl. Jetylamine, Ν Acetinolevinoleamine, Alinoleamine, Metalinoleamine, Ν Methylenolinoleamine, ρ-Aminostyrene, 2-Isopropenyl oxazoline, 2-Bureuxoxazoline, 2-acroyloxazoline and 2-sti Ruokisazorin etc., can Rukoto include each of these monomers alone to be able to use two or more kinds.
[0061] そして、多層構造重合体 (B— 1)において、特に最外層の種類は、限定されるもの ではないが、不飽和カルボン酸アルキルエステル系単位、不飽和カルボン酸系単位 、不飽和グリシジル基含有単位、脂肪族ビュル系単位、芳香族ビュル系単位、シァ ン化ビュル系単位、マレイミド系単位、不飽和ジカルボン酸系単位、不飽和ジカルボ ン酸無水物系単位およびその他のビュル系単位などを含有する重合体などから選 ばれた少なくとも 1種が好ましい。中でも、不飽和カルボン酸アルキルエステル系単 位、不飽和カルボン酸系単位、不飽和グリシジル基含有単位および不飽和ジカルボ ン酸無水物系単位を含有する重合体から選ばれた少なくとも 1種が好ましぐさらに は不飽和カルボン酸アルキルエステル系単位、不飽和カルボン酸系単位を含有する 重合体が好ましい。 [0061] In the multilayer structure polymer (B-1), the type of the outermost layer is not particularly limited. However, the unsaturated carboxylic acid alkyl ester unit, the unsaturated carboxylic acid unit, the unsaturated glycidyl Group-containing unit, aliphatic bull unit, aromatic bull unit, cyanated bull unit, maleimide unit, unsaturated dicarboxylic acid unit, unsaturated dicarbo At least one selected from a polymer containing an acid anhydride unit and other bulle units is preferred. Among them, at least one selected from polymers containing unsaturated carboxylic acid alkyl ester units, unsaturated carboxylic acid units, unsaturated glycidyl group-containing units, and unsaturated dicarboxylic anhydride units is preferred. Furthermore, a polymer containing an unsaturated carboxylic acid alkyl ester unit or an unsaturated carboxylic acid unit is preferred.
[0062] さらに、上記の多層構造重合体 (B— 1)における最外層が不飽和カルボン酸アル キルエステル系単位および不飽和カルボン酸系単位を含有する重合体である場合、 加熱することにより、前述したアクリル樹脂 (A)の製造時と同様に、分子内環化反応 が進行し、上記一般式(1)で表されるダルタル酸無水物単位が生成する。従って、最 外層に不飽和カルボン酸アルキルエステル系単位および不飽和カルボン酸系単位 を含有する重合体を有する多層構造重合体 (B— 1)を上述した共重合体 (a)に配合 し、適当な条件で加熱溶融混練することにより、実質的には、連続相(マトリックス相) となるアクリル樹脂 (A)中に、上記一般式(1)で表されるダルタル酸無水物単位を含 有するアクリル樹脂を主成分とする重合体を最外層に有する多層構造重合体 (B— 1 )を分散させること力できる。このとき、アクリル樹脂 (A)と多層構造重合体 (B—1)の 最外層との親和性が良好であるため、凝集することなぐ良好な分散状態が可能とな り、耐衝撃性等の機械特性向上とともに、極めて高度な透明性が発現しうるものと考 えられる。なお、ここでいう主成分とは、最外層の重合体 100質量部に対して 50質量 部以上含む成分をいう。  [0062] Further, when the outermost layer in the multilayer polymer (B-1) is a polymer containing an unsaturated carboxylic acid alkyl ester unit and an unsaturated carboxylic acid unit, by heating, In the same manner as in the production of the acrylic resin (A) described above, the intramolecular cyclization reaction proceeds and the dartaric anhydride unit represented by the general formula (1) is generated. Therefore, a multilayer structure polymer (B-1) having a polymer containing an unsaturated carboxylic acid alkyl ester unit and an unsaturated carboxylic acid unit in the outermost layer is blended with the above-mentioned copolymer (a) and appropriately used. The acrylic resin (A), which is a continuous phase (matrix phase), can be substantially heated and melt-kneaded under various conditions, and the acrylic resin (D) represented by the above general formula (1) is contained in the acrylic resin (A). It is possible to disperse a multilayer structure polymer (B-1) having a resin-based polymer as the outermost layer. At this time, since the affinity between the acrylic resin (A) and the outermost layer of the multilayer structure polymer (B-1) is good, a good dispersion state without agglomeration becomes possible, and impact resistance, etc. Along with the improvement of mechanical properties, it is considered that extremely high transparency can be expressed. As used herein, the term “main component” refers to a component containing 50 parts by mass or more with respect to 100 parts by mass of the outermost polymer layer.
[0063] ここでいう不飽和カルボン酸アルキルエステル系単位の原料となる単量体としては 、特に限定されるものではないが、(メタ)アクリル酸アルキルエステルが好ましぐさら には (メタ)アクリル酸メチルがより好ましく使用される。また、不飽和カルボン酸系単 位の原料となる単量体としては、特に限定されるものではないが、(メタ)アクリル酸が 好ましぐさらにはメタクリル酸がより好ましく使用される。  [0063] The monomer used as a raw material for the unsaturated carboxylic acid alkyl ester unit here is not particularly limited, but (meth) acrylic acid alkyl ester is more preferable. Methyl acrylate is more preferably used. Further, the monomer used as a raw material for the unsaturated carboxylic acid unit is not particularly limited, but (meth) acrylic acid is preferred, and methacrylic acid is more preferably used.
[0064] 本発明において、多層構造重合体 (B— 1)の好ましい形態としては、コア層がアタリ ル酸アルキルエステル単位および/または芳香族ビュルを含有するゴム弾性体であ り、外層が上記一般式(1)で表されるダルタル酸無水物単位を含有するアクリル樹脂 を主成分とする重合体である。そして、弾性体粒子であるその多層構造重合体 (B— 1)と前記アクリル樹脂 (A)との屈折率差が 0. 01以下であることが好ましい。 [0064] In the present invention, as a preferred form of the multilayer structure polymer (B-1), the core layer is a rubber elastic body containing an allylic acid alkyl ester unit and / or an aromatic bur, and the outer layer is the above-described one. Acrylic resin containing dartal anhydride unit represented by general formula (1) Is a polymer mainly composed of The refractive index difference between the multilayer structure polymer (B-1), which is an elastic particle, and the acrylic resin (A) is preferably 0.01 or less.
[0065] 本発明の多層構造重合体 (B— 1)の好ましい具体例としては、コア層がアクリル酸 ブチル /スチレン重合体で、最外層がメタクリル酸メチル /上記一般式(1)で表され るダルタル酸無水物単位からなる共重合体、またはメタクリル酸メチル /上記一般式 (1)で表されるダルタル酸無水物単位/メタクリル酸重合体であるもの、コア層がジメ チルシロキサン/アクリル酸ブチル重合体で、最外層がメタクリル酸メチル重合体で あるもの、コア層がブタンジェン /スチレン重合体で、最外層がメタクリル酸メチル重 合体であるもの、およびコア層がアクリル酸ブチル重合体で最外層カ^タクリル酸メチ ル重合体であるものなどが挙げられる(なお、 "/"は共重合を示す)。 [0065] As a preferred specific example of the multilayer structure polymer (B-1) of the present invention, the core layer is represented by butyl acrylate / styrene polymer, and the outermost layer is represented by methyl methacrylate / the above general formula (1). Copolymers consisting of dartaric anhydride units, or methyl methacrylate / daltaric anhydride units represented by the general formula (1) / methacrylic acid polymer, and the core layer is dimethylsiloxane / acrylic acid A butyl polymer whose outermost layer is a methyl methacrylate polymer, whose core layer is a butane / styrene polymer, whose outermost layer is a methyl methacrylate polymer, and whose core layer is a butyl acrylate polymer. Examples include those which are outer layer methyl acrylate polymers ("/" indicates copolymerization).
[0066] さらに、コア層または最外層のいずれか一つもしくは両方の層カ^タクリル酸グリシ ジル単位を含有する重合体であるものも好ましい例として挙げられる。中でも、コア層 がアクリル酸ブチル /スチレン重合体で、最外層がメタクリル酸メチル /上記一般式 (1)で表されるダルタル酸無水物単位からなる共重合体、またはメタクリル酸メチル/ 上記一般式(1)で表されるダルタル酸無水物単位/メタクリル酸重合体であるものが 、連続相(マトリックス相)であるアクリル樹脂 (A)との屈折率を近似させること、および 樹脂組成物中での良好な分散状態を得ることが可能となり、近年より高度化する要 求を満足しうる透明性が発現するため、好ましく使用すること力 Sできる。  [0066] Further, a preferable example is a polymer containing a glycidyl acrylate unit in either one or both of the core layer and the outermost layer. Among them, the core layer is a butyl acrylate / styrene polymer, and the outermost layer is a methyl methacrylate / copolymer composed of a dartal anhydride unit represented by the above general formula (1), or methyl methacrylate / the above general formula. In the resin composition, the dartaric anhydride unit / methacrylic acid polymer represented by (1) approximates the refractive index with the acrylic resin (A) that is the continuous phase (matrix phase), and Therefore, it is possible to obtain a good dispersion state, and the transparency that can satisfy the demand for more advanced in recent years is exhibited.
[0067] 多層構造重合体(B— 1)の重量平均粒子径としては、 50〜400nmとすることが好 ましぐより好ましくは 100〜200nmである。重量平均粒径が 50nm未満の場合は靱 性の向上が十分でないことがあり、 400nmを超える場合は Tgが低下することがある。  [0067] The weight average particle diameter of the multilayer structure polymer (B-1) is preferably 50 to 400 nm, more preferably 100 to 200 nm. If the weight average particle size is less than 50 nm, the toughness may not be improved sufficiently, and if it exceeds 400 nm, the Tg may decrease.
[0068] 多層構造重合体(B— 1)において、コアとシェルの重量比は、特に限定されるもの ではないが、多層構造重合体全体 100質量部に対して、コア層が 50質量部以上、 9 0質量部以下であることが好ましぐさらに、 60質量部以上、 80質量部以下であること がより好ましい。  [0068] In the multilayer polymer (B-1), the weight ratio of the core to the shell is not particularly limited, but the core layer is 50 parts by mass or more with respect to 100 parts by mass of the whole multilayer polymer. 90 parts by mass or less is preferable, and 60 parts by mass or more and 80 parts by mass or less is more preferable.
[0069] 多層構造重合体 (B— 1)としては、上述した条件を満たす市販品を用いてもよぐま た公知の方法により作製して用いることもできる。多層構造重合体の市販品としては 、例えば、三菱レイヨン社製"メタプレン"、鐘淵化学工業社製"カネエース"、呉羽化 学工業社製"パラロイド"、ロームアンドハース社製 "アタリロイド"、ガンツ化成工業社 製"スタフイロイド"およびクラレ社製"パラペット SA"などが挙げられ、これらは、単独 なレ、し 2種以上を用いることができる。 [0069] As the multilayer structure polymer (B-1), a commercially available product that satisfies the above-described conditions may be used, and it may be prepared by a known method. Examples of commercially available multi-layer polymer include “Metaprene” manufactured by Mitsubishi Rayon Co., “Kaneace” manufactured by Kaneka Chemical Co., Ltd., Kureha “Paraloid” by Gaku Kogyo Co., “Atariroid” by Rohm and Haas, “Staffroid” by Gantz Kasei Kogyo, and “Parapet SA” by Kuraray Co., Ltd. Can be used.
[0070] また、弾性体粒子(B)として使用することができるグラフト共重合体 (B— 2)の具体 例としては、ゴム質重合体に、不飽和カルボン酸エステル系単量体、不飽和カルボン 酸系単量体、芳香族ビュル系単量体、および必要に応じてこれらと共重合可能な他 のビュル系単量体からなる単量体混合物を共重合せしめたグラフト共重合体が挙げ られる。 [0070] Further, specific examples of the graft copolymer (B-2) that can be used as the elastic particles (B) include a rubbery polymer, an unsaturated carboxylic acid ester monomer, Examples include a graft copolymer obtained by copolymerizing a monomer mixture comprising a carboxylic acid monomer, an aromatic bulle monomer, and, if necessary, other bulle monomers copolymerizable therewith. It is done.
[0071] グラフト共重合体 (B— 2)に用いられるゴム質重合体としては、ジェン系ゴム、アタリ ル系ゴムおよびエチレン系ゴムの群から選ばれる少なくとも 1種の成分を重合させた ものから構成されるゴムを例示できる。具体例としては、ポリブタジエン、スチレンーブ タジェン共重合体、スチレン ブタジエンのブロック共重合体、アクリロニトリルーブタ ジェン共重合体、アクリル酸プチルーブタジエン共重合体、ポリイソプレン、ブタジェ ンーメタクリル酸メチル共重合体、アクリル酸ブチルーメタクリル酸メチル共重合体、 ブタジエン アクリル酸ェチル共重合体、エチレン プロピレン共重合体、エチレン プロピレン ジェン系共重合体、エチレン イソプレン共重合体、およびエチレン アクリル酸メチル共重合体などが挙げられる。これらのゴム質重合体は、 1種または 2種以上の混合物で使用することが可能である。  [0071] The rubbery polymer used in the graft copolymer (B-2) is obtained by polymerizing at least one component selected from the group consisting of a gen-based rubber, an talyl-based rubber and an ethylene-based rubber. The rubber | gum comprised can be illustrated. Specific examples include polybutadiene, styrene-butadiene copolymer, block copolymer of styrene butadiene, acrylonitrile-butadiene copolymer, butyl butadiene acrylate copolymer, polyisoprene, butadiene-methyl methacrylate copolymer, Examples include butyl acrylate-methyl methacrylate copolymer, butadiene acrylate acrylate copolymer, ethylene propylene copolymer, ethylene propylene gen copolymer, ethylene isoprene copolymer, and ethylene methyl acrylate copolymer. It is done. These rubbery polymers can be used alone or in a mixture of two or more.
[0072] グラフト共重合体(B— 2)の重量平均粒子径としては、 50〜400nmとすること力 S好 ましぐより好ましくは 100〜200nmである。重量平均粒子径が 50nm未満の場合は 靱性の向上が十分でないことがあり、 400nmを超える場合は Tgが低下することがあ  [0072] The weight average particle diameter of the graft copolymer (B-2) is 50 to 400 nm. S is more preferably 100 to 200 nm. If the weight average particle size is less than 50 nm, the toughness may not be improved sufficiently, and if it exceeds 400 nm, the Tg may decrease.
[0073] なお、弾性体粒子(B)重量平均粒子径は「Rubber Age, Vol. 88, p. 484— 490 (1960) , by E. Schmidt, P. H. BiddisonJ ίこ記載のァノレギン酸ナトリウ ム法、つまりアルギン酸ナトリウムの濃度によりクリーム化するポリブタジエン粒子径が 異なることを利用して、クリーム化した重量割合とアルギン酸ナトリウム濃度の累積重 量分率より累積重量分率 50%の粒子径を求める方法により測定することができる。 [0073] The weight average particle diameter of the elastic particles (B) is as described in "Rubber Age, Vol. 88, p. 484-490 (1960), by E. Schmidt, PH Biddison J. In other words, using the fact that the polybutadiene particle size to be creamed differs depending on the concentration of sodium alginate, it is measured by the method of determining the particle size of 50% cumulative weight fraction from the weight proportion of cream and the cumulative weight fraction of sodium alginate concentration. can do.
[0074] グラフト共重合体 (Β— 2)は、グラフト共重合体 (Β— 2) 100質量部に対して、ゴム 質重合体 10〜80質量部、好ましくは 20〜70質量部、より好ましくは 30〜60質量部 と、上記の単量体(混合物) 20〜90質量部、好ましくは 30〜80質量部、より好ましく は 40〜70質量部を共重合することによって得られる。ゴム質重合体の割合が上記の 範囲未満、または上記の範囲を越える場合には、衝撃強度や表面外観性が低下す る場合がある。 [0074] The graft copolymer (Β-2) is produced by adding 100 parts by weight of the graft copolymer (Β-2) to the rubber. Polymer 10-80 parts by weight, preferably 20-70 parts by weight, more preferably 30-60 parts by weight, and the above monomer (mixture) 20-90 parts by weight, preferably 30-80 parts by weight Preferably, it is obtained by copolymerizing 40 to 70 parts by mass. If the ratio of the rubbery polymer is less than the above range or exceeds the above range, impact strength and surface appearance may be lowered.
[0075] なお、グラフト共重合体 (B— 2)は、ゴム質重合体に単量体混合物をグラフト共重合 させる際に生成する、グラフトしていない共重合体を含んでいてもよい。ただし、衝撃 強度の観点からは、グラフト率は 10〜; 100%であることが好ましい。ここで、グラフト率 とは、ゴム質重合体に対するグラフトした単量体混合物の重量割合である。また、ダラ フトしていない共重合体のメチルェチルケトン溶媒、 30°Cで測定した極限粘度は、特 に制限はないが、 0. ;!〜 0. 6dl/gのもの力 S、衝撃強度と成形加工性とのバランスの 観点から好ましく用いられる。  [0075] The graft copolymer (B-2) may contain an ungrafted copolymer that is produced when the monomer mixture is graft copolymerized with the rubbery polymer. However, from the viewpoint of impact strength, the graft ratio is preferably 10 to 100%. Here, the graft ratio is a weight ratio of the grafted monomer mixture to the rubbery polymer. In addition, the intrinsic viscosity measured at 30 ° C of a methyl ethyl ketone solvent of an undrafted copolymer is not particularly limited, but it has a strength of 0.;! ~ 0.6 dl / g S, impact It is preferably used from the viewpoint of the balance between strength and moldability.
[0076] グラフト共重合体 (B— 2)のメチルェチルケトン溶媒、 30°Cで測定した極限粘度は 、特に制限されないが、 0. 2〜; 1. Odl/gのもの力 衝撃強度と成形加工性とのバラ ンスの観点から好ましく用いられ、より好ましくは 0. 3〜0. 7dl/gのものである。  [0076] The intrinsic viscosity of the graft copolymer (B-2) measured at 30 ° C in a methyl ethyl ketone solvent is not particularly limited, but is 0.2 to 1; It is preferably used from the viewpoint of balance with moldability, and more preferably 0.3 to 0.7 dl / g.
[0077] グラフト共重合体 (B— 2)の製造方法は、特に制限されず、塊状重合、溶液重合、 懸濁重合および乳化重合などの公知の重合法により得ることができる。  [0077] The method for producing the graft copolymer (B-2) is not particularly limited, and can be obtained by a known polymerization method such as bulk polymerization, solution polymerization, suspension polymerization, and emulsion polymerization.
[0078] また、アクリル樹脂 (A)および弾性体粒子(B)を含む層にお!/、ては、アクリル樹脂( A)および弾性体粒子(B)の屈折率が近似して!/、ると、アクリル樹脂フィルムとしての 透明性を高めることができるため、好ましい。具体的には、屈折率の差が 0. 05以下 であること力 S好ましく、より好ましくは 0. 02以下、とりわけ 0. 01以下であることが好ま しい。屈折率差は、アクリル樹脂 (A)の各単量体単位の組成比を調整する方法、お よび/または弾性体粒子(B)に使用されるゴム質重合体あるいは単量体の組成比を 調製する方法などにより、小さくすること力 Sでき、その結果、透明性に優れたアタリノレ 樹脂フィルムを得ることができる。具体的には弾性体粒子 (B)に芳香族成分を導入 すると屈折率差が大きくなり、脂肪族成分を入れると屈折率差が小さくなる。また、た とえば、コア層がアクリル酸ブチル /スチレン重合体で、最外層がメタクリル酸メチル /上記一般式(1)で表されるダルタル酸無水物単位からなる共重合体、またはメタク リル酸メチル /上記一般式(1)で表されるダルタル酸無水物単位/メタクリル酸重合 体からなる弾性体粒子では、スチレン成分を多くすると屈折率差が大きくなり、アタリ ル酸ブチルを多くすると屈折率差が小さくなる。 [0078] Further, in the layer containing the acrylic resin (A) and the elastic particles (B), the refractive indexes of the acrylic resin (A) and the elastic particles (B) are approximate! / Then, since transparency as an acrylic resin film can be improved, it is preferable. Specifically, the difference in refractive index is preferably 0.05 or less, more preferably 0.02 or less, and particularly preferably 0.01 or less. The difference in refractive index is determined by adjusting the composition ratio of each monomer unit in the acrylic resin (A) and / or the composition ratio of the rubbery polymer or monomer used in the elastic particles (B). Depending on the method of preparation and the like, it can be reduced in size, and as a result, an attalinole resin film excellent in transparency can be obtained. Specifically, when an aromatic component is introduced into the elastic particles (B), the refractive index difference increases, and when an aliphatic component is added, the refractive index difference decreases. Further, for example, the core layer is a butyl acrylate / styrene polymer, and the outermost layer is a methyl methacrylate / copolymer composed of dartaric anhydride units represented by the general formula (1), or a methacrylate. In elastic particles consisting of methyl laurate / daltaric anhydride units represented by the above general formula (1) / methacrylic acid polymer, increasing the styrene component increases the difference in refractive index, and increasing the amount of butyl acrylate. The refractive index difference is reduced.
[0079] 尚、ここで言う屈折率差とは、アクリル樹脂 (A)が可溶な溶媒に、本発明のアタリノレ 樹脂フィルムを適当な条件で十分に溶解させ白濁溶液とし、これを遠心分離等の操 作により、溶媒可溶部分と不溶部分に分離し、この可溶部分 (アクリル樹脂 (A) )と不 溶部分(弾性体粒子 (B) )をそれぞれ精製した後、測定した屈折率(23°C、測定波長 : 550nm)の差を示す。  [0079] The difference in refractive index referred to here is a solution in which the attalinole resin film of the present invention is sufficiently dissolved in a solvent in which the acrylic resin (A) is soluble under appropriate conditions to obtain a cloudy solution, which is centrifuged, etc. In this way, the solvent-soluble part and the insoluble part are separated, the soluble part (acrylic resin (A)) and the insoluble part (elastic particles (B)) are purified, and the measured refractive index ( 23 ° C, measurement wavelength: 550 nm).
[0080] また、アクリル樹脂フィルム中でのアクリル樹脂 (A)と弾性体粒子(B)それぞれの実 質的な共重合組成は、上記の溶媒による可溶成分と不溶成分の分離操作により、各 成分を個別に分析可能である。  [0080] In addition, the actual copolymer composition of the acrylic resin (A) and the elastic particles (B) in the acrylic resin film is determined by separating the soluble component and the insoluble component with the above-described solvent. Components can be analyzed individually.
[0081] 本発明のアクリル樹脂フィルムは、上記したような弾性体粒子(B)を含まないアタリ ル樹脂 (A)からなる層(I)を少なくとも 2層有し、かかる層で、上記したようなアタリノレ 樹脂 (A)および弾性体粒子 (B)を含有するアクリル樹脂組成物(C)からなる層(II)を 挟んでいることを特徴とする。弾性体粒子(B)を含有する層(II)により、耐熱性に加 えて靭性が良くなり、スリットや打抜時に割れが少なく加工性、取り扱い性が向上する 。そして、上記のようなアクリル樹脂組成物(C)からなる単層のフィルムを溶融製膜法 にて製膜すると、フィルム表面に細かい凹凸ができフィルムのヘイズが悪化するため 光学用途に適さない。また、溶液製膜法によりフィルムを製膜する事もでき、その場 合得られるフィルムはヘイズも小さく光学フィルムとして良好である力 生産性が悪く 工業化が難しい。しかしながら、本発明においては、上記のような弾性体粒子(B)を 含まな!/、アクリル樹脂 (A)からなる少なくとも 2つの層(I)の間に弾性体粒子(B)を含 有するアクリル樹脂組成物(C)からなる層(II)を積層することにより、耐熱性、靭性、 低ヘイズを両立したうえに生産性をも高めることができるわけである。  [0081] The acrylic resin film of the present invention has at least two layers (I) made of the acrylate resin (A) not containing the elastic particles (B) as described above. A layer (II) composed of an acrylic resin composition (C) containing a novel attalinole resin (A) and elastic particles (B) is sandwiched. The layer (II) containing the elastic particles (B) improves the toughness in addition to the heat resistance, reduces the cracks during slitting and punching, and improves the workability and handleability. When a single-layer film made of the acrylic resin composition (C) as described above is formed by a melt film forming method, fine irregularities are formed on the film surface and the haze of the film is deteriorated, which is not suitable for optical use. In addition, a film can be formed by a solution casting method. In this case, the film obtained has a low haze and is good as an optical film, has poor productivity, and is difficult to industrialize. However, in the present invention, the elastic particles (B) as described above are not included! / And the acrylic particles including the elastic particles (B) between at least two layers (I) made of the acrylic resin (A). By laminating the layer (II) made of the resin composition (C), the heat resistance, toughness, and low haze can be achieved and the productivity can be increased.
[0082] なお、層(I)と層(II)におけるアクリル樹脂 (A)は、上記構造式(1)で表されるグノレ タル酸無水物単位を含有すれば、完全に同一である必要はなレ、。  [0082] The acrylic resin (A) in the layer (I) and the layer (II) need not be completely the same as long as it contains the gnoretalic anhydride unit represented by the structural formula (1). Nare ,.
[0083] アクリル樹脂組成物(C)は、弾性体粒子(B)とアクリル樹脂 (A)の合計を 100質量 部として、アクリル樹脂(A)を 50〜95質量部、弾性体粒子(B)を 5〜50質量部含有 していることが必要であり、より好ましくはアクリル樹脂 (A)が 70〜90質量部、弾性体 粒子(B)が 10〜30質量部である。弾性体粒子(B)の含有量が 5質量部より少な!/、と フィルムの靭性が十分でなぐスリットや打抜き加工が困難になるだけでなぐ製膜時 のフィルムの搬送においてフィルム破れが頻発する問題がある。弾性体粒子(B)の 含有量が 50質量部より多いと、耐熱性が低下するうえにフィルムの黄色味が増し、光 学フィルムとして適さなレ、。 [0083] The acrylic resin composition (C) comprises 100 parts by mass of the total of the elastic particles (B) and the acrylic resin (A), 50 to 95 parts by mass of the acrylic resin (A), and elastic particles (B). 5 to 50 parts by mass More preferably, the acrylic resin (A) is 70 to 90 parts by mass and the elastic particles (B) are 10 to 30 parts by mass. The content of elastic particles (B) is less than 5 parts by mass! /, And the film has sufficient toughness, and it is difficult to perform slitting and punching. There's a problem. If the content of the elastic particles (B) is more than 50 parts by mass, the heat resistance is lowered and the yellow color of the film increases, making it suitable as an optical film.
[0084] 本発明において、ヘイズを低減するためには、層(I)と層(II)の積層厚みをコント口 ールする事が重要である。層(I)の厚みは 0. 1 a m以上であることが必要である。好 ましくは 0. 6 m以上であり、より好ましくは 1 · 0 m以上である。厚みが 0· 1 m未 満であると積層フィルム表面に凹凸ができ、ヘイズ改良の効果が無いため好ましくな い。一方、層(I)の厚みは厚くても良いが、フィルムの光学等方性が悪化しないため にも 20 111以下が好ましい。より好ましくは lO ^ m以下、さら好ましくは 6 111以下で ある。また、十分な靭性を得るために弾性体粒子(B)を含む層(II)が全体の厚みの 5 0%以上であることが好ましい。 50%未満であると靭性が十分でなくなる。層(II)の上 限は層(I)に対して十分な厚みが確保できれば良ぐ 95%程度が特に好ましい。積 層厚みはそれを構成する樹脂および樹脂組成物の吐出量で調節できる。  In the present invention, in order to reduce haze, it is important to control the laminated thickness of the layer (I) and the layer (II). The thickness of layer (I) must be at least 0.1 am. Preferably it is 0.6 m or more, more preferably 1.0 · 0 m or more. If the thickness is less than 0.1 m, it is not preferable because irregularities are formed on the surface of the laminated film and there is no effect of improving haze. On the other hand, the thickness of the layer (I) may be thick, but is preferably 20 111 or less in order not to deteriorate the optical isotropy of the film. More preferably, lO ^ m or less, still more preferably 6111 or less. In order to obtain sufficient toughness, the layer (II) containing the elastic particles (B) is preferably 50% or more of the total thickness. If it is less than 50%, the toughness becomes insufficient. The upper limit of the layer (II) is particularly preferably about 95% as long as a sufficient thickness can be secured with respect to the layer (I). The layer thickness can be adjusted by the discharge amount of the resin and the resin composition constituting the layer thickness.
[0085] また、ヘイズ低減のためには力、かる層(I)と層(II)それぞれの厚みムラをコントロー ノレすることも好ましい。厚みムラをコントロールするためには、層(I)を構成する樹脂と 層(Π)を構成する樹脂組成物の粘度差 (条件 260°C剪断速度 90seC— を、層(I)を 構成する樹脂の粘度の 30%以内とすることが好ましい。例えば、ダルタル酸無水物 単位:メタクリル酸メチル単位:メタクリル酸 = 32 : 66 : 2質量部であり、分子量 10万、 溶融粘度 27000poise (条件 260°C剪断速度 SOsecT1)のアクリル樹脂からなる層(I )と、グルタル酸無水物単位:メタクリル酸メチル単位:メタクリル酸 = 32 : 66 : 2質量部 であり、分子量 7. 7万のアクリル樹脂に粒径 155nmの 2層弾性体粒子を 20質量部 添カロした溶融粘度 15000poise (条件 260°C剪断速度 SOsecT1)のアクリル樹脂組 成物からなる層 (II)を、層 (I) /層 (II) /層 (I) (積層比 層(I):層 (II):層(I) = 1: 5: 1)の積層構成となるよう溶融製膜法で製膜しても、フィルムにフローマーク (すなわち 厚みむら)が発生する。し力、しながら、ダルタル酸無水物単位:メタクリル酸メチル単 位:メタクリル酸 = 32: 66: 2質量部であり、分子量 8万、溶融粘度 13800poise (条件 260°C剪断速度 SOsecT1)のアクリル樹脂からなる層(I)と、ダルタル酸無水物単位: メタクリル酸メチル単位:メタクリル酸 = 32 : 66 : 2質量部であり、分子量 6. 5万のァク リル樹脂に粒径 155nmの 2層弾性体粒子を 20質量部添加した溶融粘度 14200poi se (条件 260°C剪断速度 SOsecT1)のアクリル樹脂組成物からなる層(II)を、層(I) / 層 (II) /層 (I) (積層比 層(I):層 (II):層(I) = 1: 5: 1 )の積層構成となるよう溶融製 膜法で製膜する場合、厚み 39 m (内層(I)の厚みがそれぞれ 5· 9 m)の、フロー マークのな!/、フィルムを得ることができる。 [0085] In order to reduce haze, it is also preferable to control the thickness unevenness of the layer (I) and the layer (II). In order to control the thickness unevenness, the difference in viscosity between the resin composing the layer (I) and the resin composition composing the layer (() (condition 260 ° C shear rate 90se C —) should be configured It is preferable to be within 30% of the viscosity of the resin, for example, dartal anhydride unit: methyl methacrylate unit: methacrylic acid = 32:66: 2 parts by mass, molecular weight 100,000, melt viscosity 27000poise (condition 260 ° C layer (I) made of acrylic resin with a shear rate of SOsecT 1 ), glutaric anhydride unit: methyl methacrylate unit: methacrylic acid = 32: 66: 2 parts by mass, and a molecular weight of 77,000 acrylic resin A layer (II) composed of an acrylic resin composition having a melt viscosity of 15000 poise (conditions: 260 ° C shear rate SOsecT 1 ) with 20 parts by mass of two-layer elastic particles with a particle size of 155 nm, layer (I) / layer ( II) / layer (I) (lamination ratio layer (I): layer (II): layer (I) = 1: 5: 1)) Even a film was formed by a film forming method, the flow into the film mark (that is, the thickness unevenness) occurs tooth force, while, Darutaru anhydride unit:. Methyl methacrylate single Position: Methacrylic acid = 32: 66: 2 parts by mass, molecular weight 80,000, melt viscosity 13800poise (condition 260 ° C shear rate SOsecT 1 ) acrylic resin layer (I) and dartaric anhydride unit: methacrylic Methyl acid unit: Methacrylic acid = 32: 66: 2 parts by mass, melt viscosity of 20200 parts by mass of bilayer elastic particles with a particle size of 155 nm added to an acrylic resin having a molecular weight of 650,000 (condition 260 Layer (II) made of an acrylic resin composition having a shear rate of SOsecT 1 ) was added to layer (I) / layer (II) / layer (I) (lamination ratio layer (I): layer (II): layer (I ) = 1: 5: 1) When the film is formed by the melt film formation method, the flow mark without a flow mark is 39 m (the inner layer (I) has a thickness of 5.9 m each)! A film can be obtained.
[0086] アクリル樹脂フィルムの厚みは用途により異なる力 例えば偏光板保護フィルムとし て用いる場合は 20 H m以上 100 H m以下が好ましぐ特に 30 μ m以上 40 μ m以下 が液晶パネルの薄膜化の為に好ましい。  [0086] The thickness of the acrylic resin film varies depending on the application. For example, when used as a polarizing plate protective film, 20 Hm to 100 Hm is preferred. Preferred for
[0087] なお、積層厚みはフィルムを片刃で切断し、断面を光学顕微鏡で観察する方法や 、フィルム厚みが 80 m以下で、顕微鏡での観察が困難な場合はミクロトームにより 、薄膜切片を作成し、ルテニウム染色を施し、透過型電子顕微鏡 (TEM)で観察する 方法があげられる。  [0087] Note that the laminated thickness is obtained by cutting a film with a single blade and observing the cross section with an optical microscope, or when the film thickness is 80 m or less and observation with a microscope is difficult, a thin film section is prepared with a microtome. In addition, there is a method of performing ruthenium staining and observing with a transmission electron microscope (TEM).
[0088] また、積層構成は、層(1) /層(II) /層(I)のほか、本発明の効果を害さない範囲 でその他の成分からなる層(III)を導入し、層(I) /層(II) /層(III) /層(I)としたり、 層(I) /層(II) /層(I) /層(III)としたり、また、層(I)と層(II)を交互に 5層以上積層 して層(I) /層(Π) /層(I) /層(Π) / · · · /層(Π) /層(I)の多層積層構成としても 良い。  [0088] Further, in addition to the layer (1) / layer (II) / layer (I), the layered structure introduces a layer (III) composed of other components as long as the effects of the present invention are not impaired. I) / layer (II) / layer (III) / layer (I), layer (I) / layer (II) / layer (I) / layer (III), layer (I) and layer Layers (I) / layers (Π) / layers (I) / layers (Π) / ··· / layers (Π) / layers (I) are stacked in layers of five or more layers (II) alternately. Also good.
[0089] 以上のような本発明のアクリル樹脂フィルムは、上述のような樹脂を用いる他は、基 本的に公知の方法を使用して得ることができる。すなわち、溶融製膜法としてはイン フレーシヨン法、 T ダイ法、カレンダ一法、ホットプレス法、切削法等の製造法が、溶 液製膜法としては流延法、ェマルジヨン法等の製造法が使用できる。中でも、生産性 の観点から、インフレーション法、 T—ダイ法を好ましく使用できる。  [0089] The acrylic resin film of the present invention as described above can be obtained by basically using a known method except that the resin as described above is used. In other words, the melt film forming method includes an infusion method, a T-die method, a calendar method, a hot press method, a cutting method, and the like, and the solution film forming method includes a casting method, an emulsion method, and the like. Can be used. Of these, the inflation method and the T-die method can be preferably used from the viewpoint of productivity.
[0090] インフレーション法や T ダイ法による製造法の場合、単軸あるいは二軸押出スクリ ユーを備えたエタストルーダ型溶融押出装置等が使用できる。中でもスクリューの長さ (U /直径 (D)の比(L/D)が 15以上 120以下の二軸混練押出機が、着色を防ぐ ために好ましい。インフレーション法や T ダイ法による製造法の場合、溶融押出温 度は、好ましくは 150〜350。C、より好ましくは 200〜300。Cである。また、もっとも好 ましくは 240〜270°Cである。溶融剪断速度は lOOOsec 1以上 5000sec 1以下が 好ましい。使用する原料は乾燥していることが好ましぐ具体的に水分率が 200ppm 以下、更には 150ppmであることが好ましい。原料の水分率を 200ppm以下にする 方法としては 100°Cの真空乾燥機の中で 3時間乾燥する方法などが挙げられる。ま た、着色抑制の観点から、ベントを使用し減圧下での溶融混練あるいは窒素気流下 での溶融混練を行うことが好ましい。キャスト方法は、少なくとも溶融押出機を用いて 溶融した、層(I)を形成するためのアクリル樹脂 (A)、ならびに層(II)を形成するため のアクリル樹脂 (A)および弾性体粒子(B)の混合物をそれぞれギア一ポンプで計量 した後に、ピノールやフィードブロックを用いて積層した後に Tダイ口金を用いて吐出 する方法や、マルチマ二ホールド型の口金を用いて積層し吐出する方法などを例示 できる。装置の積層精度やメンテナンス性の観点からフィードブロックを用いる方法が 好ましい。フィードブロック部は積層精度を高めるためにも口金の直前に設置すること が好ましい。これらの方法で樹脂を口金から冷却されたドラム上に吐出し、ガラス転 移温度 (Tg)以下まで急冷し、未延伸のフィルムを得ることが好ましい。なお、冷却ド ラム上に吐出された樹脂をガラス転移温度 (Tg)以下まで急冷するに際しては、静電 印加法、エアーチャンバ一法、エアーナイフ法、プレスロール法などで、樹脂を冷却 媒体であるドラムに密着させることが好ましい。 [0090] In the case of a production method using an inflation method or a T-die method, an etatruder-type melt extrusion apparatus equipped with a single-screw or twin-screw extruder can be used. Among them, the screw length (U / diameter (D) ratio (L / D) of 15 to 120) twin screw kneading extruder prevents coloring. Therefore, it is preferable. In the case of the production method by the inflation method or the T-die method, the melt extrusion temperature is preferably 150 to 350. C, more preferably 200-300. C. The most preferable temperature is 240 to 270 ° C. Melt shear rate is preferably LOOOsec 1 or more 5000Sec 1 or less. It is preferable that the raw material used is dry. Specifically, the moisture content is preferably 200 ppm or less, more preferably 150 ppm. Examples of a method for reducing the moisture content of the raw material to 200 ppm or less include a method of drying for 3 hours in a 100 ° C vacuum dryer. Further, from the viewpoint of suppressing coloring, it is preferable to use a vent to perform melt kneading under reduced pressure or melt kneading under a nitrogen stream. The casting method includes at least an acrylic resin (A) for forming layer (I) melted by using a melt extruder, and an acrylic resin (A) and elastic particles (B) for forming layer (II). ), Each of which is weighed with a gear pump, stacked using pinol or feed block, and then discharged using a T-die base, or stacked and discharged using a multi-hold type base. It can be exemplified. A method using a feed block is preferable from the viewpoint of stacking accuracy of the apparatus and maintainability. It is preferable to install the feed block part immediately before the base in order to increase the stacking accuracy. The resin is preferably discharged from the die onto a cooled drum by these methods and rapidly cooled to a glass transition temperature (Tg) or lower to obtain an unstretched film. When the resin discharged on the cooling drum is rapidly cooled to the glass transition temperature (Tg) or lower, the resin is used as a cooling medium by electrostatic application method, air chamber method, air knife method, press roll method, etc. It is preferable to make it adhere to a certain drum.
さらに、 Tダイを用いる場合、 Tダイのリップ間隙とフィルム厚みの比 (Tダイのリップ 間隙/フィルム厚み)が 20以下である事が好ましい。例えば厚み 40 mのアクリル 樹脂フィルムを得る場合に好ましい Tダイのリップ間隙は 0. 8mm以下である。リップ 間隙を 0. 8mm以下にする方法としては、温度による膨脹および溶融押出したときの 樹脂の圧力による拡張分を勘案して調整することが好ましい。さらに、口金リップ直後 のポリマー温度は 270°C以下であることが好ましい。 270°Cより大きいとポリマーが着 色するば力、りではなく発泡し、フィルム中に気泡が生じることがあり、光学用途のフィ ルムに適さない。力、かるポリマー温度を 270°C以下にする方法としては、押出設定温 度を 260°C以下に設定する方法や、 口金のリップランド長を 30mm以下にする方法 などが挙げられる。ポリマー温度を下げるとともに押出付近の湿度を 70%RH以下に 保つことも有効である。 Further, when a T die is used, the ratio of the lip gap of the T die to the film thickness (T die lip gap / film thickness) is preferably 20 or less. For example, when obtaining an acrylic resin film having a thickness of 40 m, the lip gap of the T die is preferably 0.8 mm or less. As a method of setting the lip gap to 0.8 mm or less, it is preferable to adjust in consideration of expansion due to temperature and expansion due to the pressure of the resin when melt extrusion is performed. Further, the polymer temperature immediately after the mouthpiece lip is preferably 270 ° C or lower. If the temperature is higher than 270 ° C, the polymer may be colored, foaming rather than glue, and bubbles may be formed in the film, making it unsuitable for films for optical applications. As a method of setting the force and polymer temperature to 270 ° C or less, the method of setting the extrusion set temperature to 260 ° C or less, or the method of setting the lip land length of the die to 30mm or less Etc. It is also effective to lower the polymer temperature and keep the humidity near the extrusion below 70% RH.
[0092] 以上のようにして得られる本発明のアクリル樹脂フィルムは、ここまで述べた構成と することにより、全光線透過率が 91 %以上、ヘイズ 1. 0%以下、破断点伸度 4%以 上の全ての特性を同時に満たすものとすることが可能になる。尚、上記アクリル樹脂 フィルムの全光線透過率およびヘイズは、 JIS— K7361— 1 1997および JIS— K7 136— 2000に従い、測定する値である。  [0092] The acrylic resin film of the present invention obtained as described above has a total light transmittance of 91% or more, a haze of 1.0% or less, and an elongation at break of 4% by adopting the structure described so far. It is possible to satisfy all of the above characteristics at the same time. The total light transmittance and haze of the acrylic resin film are values measured according to JIS-K7361-1 1997 and JIS-K7136-2000.
[0093] 本発明のアクリル樹脂フィルムは、光学等方用途で好適に使用される事を説明した 。光学等方用途においては、入射された光に対し、その素材の中では光学的には全 く影響を与える事無ぐ被保護体を外部からの応力、熱、薬品などから保護する事が 求められる。すなわち、光学特性について全光線透過率は 100%である事が理想で ある。全光線透過率が低いと、偏光板保護フィルムや、プリズムシートあるいはレンズ とした場合に暗くなる問題があり、光導波路や光ファイバ一のコアとした場合には信 号減衰の問題がある。したがって、本発明において、全光線透過率は 91 %以上であ る事が好ましぐさらに好ましくは 92%以上である。全光線透過率に上限は無いが、 界面反射による損失が避けられないため一般的には上限は 99%程度である。  [0093] It has been described that the acrylic resin film of the present invention is suitably used for optical isotropy applications. In optical isotropic applications, it is required to protect the protected object from external stress, heat, chemicals, etc. without incidenting any optical effects on the incident light. It is done. In other words, it is ideal that the total light transmittance is 100% in terms of optical characteristics. If the total light transmittance is low, there is a problem of darkening when a polarizing plate protective film, a prism sheet, or a lens is used, and there is a problem of signal attenuation when the optical waveguide or the core of the optical fiber is used. Therefore, in the present invention, the total light transmittance is preferably 91% or more, more preferably 92% or more. Although there is no upper limit to the total light transmittance, the upper limit is generally about 99% because loss due to interface reflection is unavoidable.
[0094] 全光線透過率を 100%に近づけるためにはこれを阻害する因子を小さくする必要 がある。このため濁度、すなわちヘイズは小さい事が求められる。理想的には 0である 1S 本発明においてヘイズは 1. 0%以下であることが好ましい。ヘイズが 1. 0%を越 えると全光線透過率が 91 %未満となる事がある。ヘイズは好ましくは 0. 7%以下であ り、より好ましくは 0. 3%以下である。  [0094] In order to bring the total light transmittance close to 100%, it is necessary to reduce the factor that inhibits this. For this reason, it is required that the turbidity, that is, the haze is small. Ideally 0 1S In the present invention, the haze is preferably 1.0% or less. If the haze exceeds 1.0%, the total light transmittance may be less than 91%. The haze is preferably 0.7% or less, and more preferably 0.3% or less.
[0095] 本発明においては、アクリル樹脂フィルムの表面粗さ Rを 40nm以下とすることによ りヘイズを; L . 0%以下とすることが可能になる。好ましくは、表面粗さ Rを 20nm以下 とすることによりヘイズを 0. 7%以下とすることが可能になり、さらに好ましくは表面粗 さ Rを 10nm以下とすることによりヘイズを 0. 3%以下とすることが可能になる。表面 粗さ Rは、ヘイズを低減するという観点からは下限は特にないが、フィルムの巻き取り 特性の観点から 3nm以上が好まし!/、。  [0095] In the present invention, by setting the surface roughness R of the acrylic resin film to 40 nm or less, the haze can be reduced to L. 0% or less. Preferably, the haze can be reduced to 0.7% or less by setting the surface roughness R to 20 nm or less, and more preferably, the haze is set to 0.3% or less by setting the surface roughness R to 10 nm or less. It becomes possible. The surface roughness R has no particular lower limit from the viewpoint of reducing haze, but is preferably 3 nm or more from the viewpoint of film winding properties!
[0096] 表面粗さ Rを 40nm以下とするためには、上記したように、弾性体粒子(B)を含ま なレ、アクリル樹脂 (A)からなる層(I)で、アクリル樹脂 (A)および弾性体粒子(B)を含 有するアクリル樹脂組成物(C)からなる層(II)を挟むうえに、例えばアクリル樹脂 (A) 力もなる層(I)の厚さを 0. l rn以上とし、かつ Tダイを用いた溶融押出において Tダ ィのリップ間隙とフィルム厚みの比 (Tダイのリップ間隙/フィルム厚み)を 20以下とす る事が好ましい。また、表面粗さ Rを 20以下とするためには、層(I)の厚さを 1. O ^ m 以上とし、かつ(Tダイのリップ間隙/フィルム厚み)の比を 15以下とすることが好まし い。さらに表面粗さ Rを 10以下とするためには、上記に加え、溶融押出に際しホッパ 一内の酸素濃度を lppm以下とすることが好ましい。ホッパー内の酸素濃度を lppm 以下にする方法としては、ホッパー内を減圧するか、窒素を 20ml/min以上の流量 でパージすることが好ましレ、。 [0096] In order to make the surface roughness R 40 nm or less, the elastic particles (B) are included as described above. In addition, the layer (I) composed of the acrylic resin (A) and the layer (II) composed of the acrylic resin composition (C) containing the acrylic resin (A) and the elastic particles (B) are sandwiched, for example, Acrylic resin (A) Thickness of layer (I) that also has force is 0.1 l rn or more, and ratio of lip gap of T die to film thickness in melt extrusion using T die (T die lip gap / film The thickness is preferably 20 or less. In order to reduce the surface roughness R to 20 or less, the thickness of the layer (I) should be 1. O ^ m or more and the ratio of (T-die lip gap / film thickness) should be 15 or less. Is preferred. Further, in order to make the surface roughness R 10 or less, in addition to the above, it is preferable that the oxygen concentration in the hopper is made 1 ppm or less during melt extrusion. To reduce the oxygen concentration in the hopper to 1 ppm or less, it is preferable to depressurize the hopper or purge nitrogen at a flow rate of 20 ml / min or more.
[0097] さらに、本発明のアクリル樹脂フィルムは、少なくとも一方向の破断点伸度が 4%以 上であること力 S好ましく、 15%以上であることがより好ましい。また直交方向の破断点 伸度も 4%以上であることがさらに好ましい。アクリル樹脂フィルムの破断点伸度が 4 %以上であると、アクリル樹脂フィルムが適度な柔軟性を有し、製膜時や加工時のフ イルム破れが低減し、スリット性などの加工性が向上するため好ましい。このようなァク リル樹脂フィルムの破断点伸度は JIS— C2318— 2002に準拠した方法で測定され る。なおアクリル樹脂フィルムの破断点伸度の上限については、特に限定されるもの ではないが、現実的には 50%程度であると考えられる。  [0097] Further, the acrylic resin film of the present invention has a strength S of preferably 4% or more in at least one direction, and more preferably 15% or more. Further, the elongation at break in the orthogonal direction is more preferably 4% or more. When the elongation at break of the acrylic resin film is 4% or more, the acrylic resin film has appropriate flexibility, film tearing during film formation and processing is reduced, and workability such as slitting is improved. Therefore, it is preferable. The elongation at break of such an acrylic resin film is measured by a method based on JIS-C2318-2002. The upper limit of the elongation at break of the acrylic resin film is not particularly limited, but it is considered to be about 50% in practice.
[0098] このような破断点伸度のアクリル樹脂フィルムを得るためには、アクリル樹脂の分子 量や環状単位の含有量、弾性体粒子の組成、粒子径、添加量、アクリル樹脂フィノレ ム中の分散状態などを適宜調節するとよい。例えば、弾性体粒子を持たないグルタ ル酸無水物単位:メタクリル酸メチル単位:メタクリル酸 = 32 : 66 : 2質量部である重合 体からなる単層のアクリル樹脂フィルムの場合、破断点伸度は 2%である力 粒径 15 5nmの 2層粒子を 20質量部添加すると、破断点伸度は 4%とすることができる。した がって、本発明の樹脂フィルムにおいても、層(II)に添加する弾性体粒子の粒子径 や添加量等を調整することで破断点伸度を高めることができる。  [0098] In order to obtain an acrylic resin film having such an elongation at break, the molecular weight of the acrylic resin, the content of cyclic units, the composition of the elastic particles, the particle diameter, the added amount, The dispersion state and the like may be adjusted as appropriate. For example, in the case of a monolayer acrylic resin film made of a polymer having glutaric anhydride units having no elastic particles: methyl methacrylate units: methacrylic acid = 32: 66: 2 parts by mass, the elongation at break is 2% force When 20 parts by mass of a two-layer particle having a particle diameter of 155 nm is added, the elongation at break can be made 4%. Therefore, also in the resin film of the present invention, the elongation at break can be increased by adjusting the particle diameter and the amount of the elastic particles added to the layer (II).
[0099] また、本発明のアクリル樹脂フィルムは、ダルタル酸無水物単位を含有するので、 熱変形温度が 110°C以上の優れた耐熱性を有するものとなる。熱変形温度の上限 は特に無いが、 130°C以上であることが好ましぐ靱性や、破断点伸度との兼ね合い から、 200°C程度が上限となる。耐熱性を向上させるにはダルタル酸無水物単位の 含有量を増やすことが好ましレ、。 [0099] Further, since the acrylic resin film of the present invention contains a dartal anhydride unit, it has excellent heat resistance with a heat distortion temperature of 110 ° C or higher. Upper limit of heat distortion temperature Although there is no particular limit, the upper limit is about 200 ° C in view of the toughness preferred to be 130 ° C or higher and the elongation at break. To improve heat resistance, it is preferable to increase the content of dartaric anhydride units.
[0100] 熱変形温度は、熱機械分析 (TMA)を用いて求めるが、測定サンプルを昇温し、測 定温度に対する変形量をプロットした時、その変形量が 2%以上変化する温度を熱 変形温度とする。詳しくは、 TMAには真空理工 (株)社製熱分析ステーション (MTS 9000)を用い、試料測定モジュール (TM— 9400)で、測定サンプル幅 4ミリ、測 定長さ 15ミリのサンプルに、該測定サンプル単位断面積当たり 150MPaの引張荷重 をかけて熱変形温度を測定する。  [0100] The thermal deformation temperature is obtained by using thermomechanical analysis (TMA). When the temperature of the measurement sample is raised and the deformation amount is plotted against the measurement temperature, the temperature at which the deformation amount changes by 2% or more is heated. Deformation temperature. For details, use a thermal analysis station (MTS 9000) manufactured by Vacuum Riko Co., Ltd. for TMA, and use a sample measurement module (TM-9400) to measure a sample with a measurement sample width of 4 mm and a measurement length of 15 mm. The thermal deformation temperature is measured by applying a tensile load of 150 MPa per unit cross-sectional area of the measurement sample.
[0101] そして、本発明のアクリル樹脂フィルムは、波長 590nmの光線に対する面内の位 相差が lOnm以下であることが好ましぐより好ましくは 5nm以下、さらに好ましくは In m以下である。波長 590nmの光線に対するフィルム面内の位相差が lOnm以下で あると、光学用等方性フィルムとして偏光板や光ディスクなどの保護フィルム用途で 好適に用いること力できる。光学等方性が要求される用途において、波長 590nmの 光線に対するフィルム面内の位相差は小さい方が好ましいが、現実的に下限は 0. 1 nm程度と考えられる。  [0101] In the acrylic resin film of the present invention, the in-plane phase difference with respect to a light beam having a wavelength of 590 nm is preferably lOnm or less, more preferably 5 nm or less, and still more preferably Inm or less. When the retardation in the film surface with respect to a light beam having a wavelength of 590 nm is lOnm or less, it can be suitably used as an optical isotropic film in protective film applications such as polarizing plates and optical disks. In applications where optical isotropy is required, it is preferable that the retardation in the film surface with respect to light with a wavelength of 590 nm is smaller, but the lower limit is considered to be about 0.1 nm in practice.
[0102] このような光学等方性のアクリル樹脂フィルムを得るためには、製膜時の延伸倍率 を低くしたり位相差を発現させる添加剤や共重合成分を導入しないようにすることな どが有効である。例えば、ダルタル酸無水物単位:メタクリル酸メチル単位:メタクリル 酸 = 32: 66: 2質量部である重合体に粒径 155nmの 2層粒子を 20質量部添加し、 溶融製膜法で (Tダイのリップ間隙/フィルム厚み)が 50となるように Tダイのリップ間 隙を調整し製膜すると、厚み 41 μ m、位相差 1 · 2nmのフィルムとなってしまう。しか しな力 、(Tダイのリップ間隙/フィルム厚み)が 15となるように調整して製膜する事 により、厚み 41 H m、位相差 0· lnmのフィルムを得ることができる。これは、 Tダイの リップと冷却ドラムとの間での延伸が抑えられ位相差の発生を抑えることができるから である。  [0102] In order to obtain such an optically isotropic acrylic resin film, it is necessary not to introduce an additive or copolymer component that lowers the draw ratio during film formation or develops a phase difference. Is effective. For example, tartrate anhydride unit: methyl methacrylate unit: methacrylic acid = 32: 66: 20 parts by mass of 2-layer particles with a particle size of 155 nm are added to a polymer with 2 parts by mass, If the lip gap of the T die is adjusted so that the lip gap / film thickness is 50, the film will have a thickness of 41 μm and a phase difference of 1.2 nm. However, a film having a thickness of 41 Hm and a retardation of 0.1 nm can be obtained by adjusting the film so that (the lip gap of the T die / film thickness) is 15. This is because stretching between the lip of the T die and the cooling drum can be suppressed, and the occurrence of phase difference can be suppressed.
[0103] なお波長 590nmの光線に対するフィルム面内の位相差は、王子計測(株)社製の 自動複屈折計(KOBRA— 21ADH)を用い、屈折率測定モードにおいて、波長 48 0. 4nmの光線に対する位相差、波長 548. 3nmの光線に対する位相差、波長 628 . 2nmの光線に対する位相差、波長 752. 7nmの光線に対する位相差を測定し、各 波長における位相差 (R)および測定波長( λ )からコーシ一の波長分散式 (R ( λ ) = a + b/ λ 2 + c/ λ 4 + d/ λ 6)の各 a〜dの係数を求め、このコーシ一の波長分散 式に波長 590nm ( = 590)を代入して求められる値とする。 [0103] The retardation in the film plane with respect to a light beam having a wavelength of 590 nm was measured using an automatic birefringence meter (KOBRA-21ADH) manufactured by Oji Scientific Co., Ltd. 0. Phase difference for 4 nm light, wavelength 548.3 nm, phase difference for 628.2 nm light, phase difference for 752.7 nm light, phase difference (R) at each wavelength And the wavelength dispersion formula (R (λ) = a + b / λ 2 + c / λ 4 + d / λ 6) for each of the cauchy from the measured wavelength (λ). The value obtained by substituting the wavelength 590nm (= 590) into the chromatic dispersion formula.
また本発明のアクリル樹脂フィルムは、波長 590nmの光線に対するアクリル樹脂フ イルム面内の直交軸方向の屈折率をそれぞれ n、 n (ただし n ≥n )とし、波長 590η χ y x y  In the acrylic resin film of the present invention, the refractive index in the direction of the orthogonal axis in the acrylic resin film plane with respect to light having a wavelength of 590 nm is n and n (where n ≥n), respectively, and the wavelength is 590ηχ y x y.
mの光線に対するアクリル樹脂フィルムの厚み方向の屈折率を n、アクリル樹脂フィ z n is the refractive index in the thickness direction of the acrylic resin film for m rays, and z
ルムの厚みを d (nm)とした時に、下式で定義する厚み方向の位相差 R 力 ^ lOnm以 When the thickness of the film is d (nm), the thickness direction retardation R force ^ lOnm
th  th
下であること力 S好ましく、より好ましくは 8nm以下、さらに好ましくは 5nm以下、最も好 ましくは 2nm以下である。アクリル樹脂フィルムの厚み方向の位相差 R 力 Onm以 The force is preferably S, more preferably 8 nm or less, still more preferably 5 nm or less, and most preferably 2 nm or less. Thickness direction retardation of acrylic resin film R force Onm or less
th  th
下であると、フィルム面内の光学等方性のみならず厚み方向の光学等方性にも優れ たアクリル樹脂フィルムとなるため、偏光板や光ディスクなどの保護フィルム用途でよ り一層好適に用いることができる。厚み方向の光学等方性が要求される用途におい て、厚み方向の位相差 R は小さい方が好ましいが、現実的に下限は 0. lnm程度と If it is below, the acrylic resin film has excellent optical isotropy in the thickness direction as well as optical isotropy in the thickness direction. Therefore, it is more suitable for use in protective film applications such as polarizing plates and optical disks. be able to. In applications where optical isotropy in the thickness direction is required, it is preferable that the retardation R in the thickness direction is small, but the lower limit is practically about 0.1 nm.
th  th
考えられる。 Conceivable.
厚み方向の位相差 R (nm) = d X { (n +n ) /2— n } Thickness direction retardation R (nm) = d X {(n + n) / 2— n}
th x y z  th x y z
厚み方向の位相差 R 力 s小さいアクリル樹脂フィルムを得るためには、製膜時の延  Thickness direction retardation R force s To obtain a small acrylic resin film,
th  th
伸倍率を低くしたり厚み方向の位相差を発現させる添加剤や共重合成分を導入しなDo not introduce additives or copolymer components that lower the draw ratio or develop a retardation in the thickness direction.
V、ようにすることなどが有効である。例えば本発明にお!/、てグノレタル酸無水物単位: メタクリル酸メチル単位:メタクリル酸 = 32: 66: 2質量部である重合体に粒径 155nm の 2層粒子を 20質量部添加し、溶液製膜法で (Tダイのリップ間隙/フィルム厚み) が 50となるように Tダイのリップ間隙を調整し製膜すると、厚み 41 μ m、厚み方向の 位相差 4. 5nmのフィルムとなってしまう。し力、しな力 Sら、(Tダイのリップ間隙/フィノレ ム厚み)が 15となるように調整し製膜する事により、厚み 4; m、厚み方向の位相差 0. 4nmのフィルムを得ることができる。これは Tダイのリップと冷却ドラムのとの間での 延伸が抑えられ、位相差の発生を抑えることができるからである V, and so on are effective. For example, according to the present invention! /, Gnorethalic anhydride unit: methyl methacrylate unit: methacrylic acid = 32: 66: 20 parts by mass of a two-layer particle having a particle size of 155 nm is added to a polymer having 2 parts by mass to obtain a solution. By adjusting the lip gap of the T die so that the (Die lip gap / film thickness) is 50 by the film formation method, a film with a thickness of 41 μm and a thickness direction retardation of 4.5 nm is obtained. End up. By adjusting the film thickness so that the (lip gap / finole thickness of the T die) is 15, a film with a thickness of 4 m and a thickness difference of 0.4 nm can be obtained. Obtainable. This is because stretching between the lip of the T-die and the cooling drum is suppressed, and the occurrence of phase difference can be suppressed.
本発明のアクリル樹脂フィルムは、波長 589mの光に対する光弾性係数が—2 X 1 0—12/Pa〜2 X 10_12/Paであることが好ましい。アクリル樹脂フィルムを液晶テレビ 等に用いる場合、アクリル樹脂フィルムに貼り合わされた他の部材の熱膨張や残留 応力等に起因して、アクリル樹脂フィルムに応力がかかる。特に大画面液晶テレビの 場合この応力が大きくなり額縁漏れが生じる。額縁漏れとは画面の枠部分において アクリル樹脂フィルムの位相差変化が大きいために光が漏れ常時白く表示される現 象である。アクリル樹脂フィルムの光弾性係数が— 2 X 10_12/Pa〜2 X 10_12/Pa である事により、力、かる応力を与えられた場合にも位相差の変化が小さく好ましい。 光弾性係数は小さいほど、応力に対する位相差変化が小さいため好ましぐより好ま しくは— 1 X 10— 12/Pa〜l X 10_12/Paである。アクリル樹脂フィルムの光弾性係数 は一般的に小さいが、耐熱性向上のために、スチレンや、マレイミドを共重合したり、 芳香族置換基を導入すると、光弾性係数も大きくなつてしまう。しかしながら、本発明 のアクリル樹脂フィルムは、ダルタル酸無水物構造により耐熱性向上と光弾性係数の 低減を両立出来る。 The acrylic resin film of the present invention has a photoelastic coefficient of −2 X 1 for light having a wavelength of 589 m. It is preferably 0- 12 / Pa~2 X 10_ 12 / Pa. When an acrylic resin film is used for a liquid crystal television or the like, stress is applied to the acrylic resin film due to thermal expansion or residual stress of other members bonded to the acrylic resin film. Especially in the case of large-screen LCD TVs, this stress increases and frame leakage occurs. Frame leakage is a phenomenon in which light leaks and is always displayed in white because the phase difference of the acrylic resin film is large in the frame of the screen. Photoelastic coefficient of the acrylic resin film is - a 2 X can 10_ is 12 / Pa~2 X 10_ 12 / Pa , the force, the change in phase difference even when given the mowing stress preferably small. More photoelastic coefficient is small, the properly preferred over preferred for the phase difference change is small tool to stress - a 1 X 10- 12 / Pa~l X 10_ 12 / Pa. The photoelastic coefficient of an acrylic resin film is generally small, but if the styrene or maleimide is copolymerized or an aromatic substituent is introduced to improve heat resistance, the photoelastic coefficient also increases. However, the acrylic resin film of the present invention can achieve both improved heat resistance and reduced photoelastic coefficient due to the dartal anhydride structure.
[0105] 本発明のアクリル樹脂フィルムは、用途に応じて紫外線吸収剤を添加することが好 ましい。紫外線吸収剤としては任意の物を利用できる力 例えばべンゾトリアゾール 系、サリチル酸エステル系、ベンゾフエノン系、ォキシベンゾフエノン系、シァノアクリレ ート系、高分子系、無機系を例示できる。市販の紫外線吸収剤としては例えば下記 一般式(7)で表される旭電化工業株式会社のアデカスタブ、 TINUVIN (登録商標) 、 BASF株式会社の Uvinul、城北化学工業株式会社の紫外線吸収剤が挙げられる [0105] In the acrylic resin film of the present invention, it is preferable to add an ultraviolet absorber depending on the application. For example, benzotriazole-based, salicylic acid ester-based, benzophenone-based, oxybenzophenone-based, cyanoacrylate-based, polymer-based, and inorganic-based ones can be used as ultraviolet absorbers. Examples of commercially available ultraviolet absorbers include Adeka Stub of Asahi Denka Kogyo Co., Ltd. represented by the following general formula (7), TINUVIN (registered trademark), Uvinul of BASF Co., Ltd., and UV absorber of Johoku Chemical Co., Ltd.
Yes
[0106] [化 9]  [0106] [Chemical 9]
Figure imgf000031_0001
芳香族高分子は主鎖の芳香族単位により紫外線を吸収するため、主鎖が紫外線 により切断され、劣化する問題がある力 本発明のアクリル樹脂フィルムは主鎖部分 が紫外線を吸収しないため、劣化することが少なぐまた、添加する紫外線吸収剤の 種類と量により、所望の紫外線カット機能を付与できるため好ましい。さらに、添加す る紫外線吸収剤は、芳香族化合物であっても、アクリル樹脂フィルム中にランダムに 存在することになるため、位相差が発現しにくい。したがって、紫外線吸収剤は、芳 香族化合物であっても脂肪族化合物であってもよレ、。
Figure imgf000031_0001
Aromatic polymer absorbs ultraviolet rays by the aromatic units of the main chain, so the main chain is cleaved by ultraviolet rays and has the problem of degradation. The acrylic resin film of the present invention deteriorates because the main chain portion does not absorb ultraviolet rays. Less UV absorbers to add Depending on the type and amount, a desired UV-cutting function can be imparted, which is preferable. Furthermore, even if the ultraviolet absorber to be added is an aromatic compound, it will be present in the acrylic resin film at random, so that the phase difference is hardly exhibited. Therefore, the ultraviolet absorber may be an aromatic compound or an aliphatic compound.
[0108] 紫外線吸収剤の添加量としてはアクリル樹脂フィルム 100質量部に対し、 0. 1質量 部以上 5質量部以下であることが好ましい。 0. 1質量部未満では、所望の効果が得 られない事がある。また、 5質量部を越えると均一に分散しない、全光線透過率が低 下する、ヘイズが上昇する等の問題が起こる事がある。さらに好ましくは 1質量部以上 2質量部以下である。 [0108] The addition amount of the ultraviolet absorber is preferably 0.1 parts by mass or more and 5 parts by mass or less with respect to 100 parts by mass of the acrylic resin film. If the amount is less than 1 part by mass, the desired effect may not be obtained. When the amount exceeds 5 parts by mass, problems such as non-uniform dispersion, a decrease in total light transmittance, and an increase in haze may occur. More preferably, it is 1 part by mass or more and 2 parts by mass or less.
[0109] 本発明にお!/、ては、上記のとおり紫外線吸収剤を添加することで、アクリル樹脂フィ ノレムの、波長 380nmの光の光線透過率を 10%以下とする事が好ましい。さらに好ま しくは 5%以下である。 380nmの光の光線透過率は紫外線吸収剤の量を増やすこと で低減でき、減らすことで増加出来る。紫外線 (波長 380nm以下の光)を十分にカツ トすることで、紫外線を嫌う素材を保護する事が出来る。  [0109] In the present invention, it is preferable that the light transmittance of light having a wavelength of 380 nm of the acrylic resin final is 10% or less by adding an ultraviolet absorber as described above. More preferably, it is 5% or less. The light transmittance of 380 nm light can be reduced by increasing the amount of UV absorber and can be increased by reducing it. By sufficiently cutting ultraviolet rays (light with a wavelength of 380 nm or less), materials that dislike ultraviolet rays can be protected.
[0110] なお、波長 380nmの光線透過率は下記装置を用いて測定する。  [0110] The light transmittance at a wavelength of 380 nm is measured using the following apparatus.
透過率(%) =丁/丁 X 100  Transmittance (%) = Ding / Ding X 100
1 0  Ten
ただし Tは試料を通過した光の強度、 Tは試料を通過しない以外は同一の距離の Where T is the intensity of light that has passed through the sample, and T is the same distance except that it does not pass through the sample.
1 0 Ten
空気中を通過した光の強度である。  It is the intensity of light that has passed through the air.
装置: UV測定器 U— 3410 (日立計測社製)  Apparatus: UV measuring instrument U— 3410 (manufactured by Hitachi Keiki Co., Ltd.)
波長: 380nm  Wavelength: 380nm
測定速度: 120nm/分  Measurement speed: 120nm / min
測定モード:透過  Measurement mode: Transmission
また、本発明のアクリル樹脂フィルムには、本発明の目的を損なわない範囲で、他 の熱可塑性樹脂(例えばポリエチレン、ポリプロピレン、アクリル樹脂、ポリアミド、ポリ フエ二レンサルファイド樹脂、ポリエーテルエーテルケトン樹脂、ポリエステル、ポリス ルホン、ポリフエ二レンオキサイド、ポリアセタール、ポリイミド、ポリエーテルイミドなど) や、熱硬化性樹脂(例えばフエノール樹脂、メラミン樹脂、ポリエステル樹脂、シリコー ン樹脂、エポキシ樹脂など)の一種以上をさらに含有および/または積層させること 力できる。また、ヒンダードフエノール系、ベンゾエート系、およびシァノアクリレート系 の酸化防止剤、高級脂肪酸や酸エステル系および酸アミド系、さらに高級アルコー ルなどの滑剤および可塑剤、モンタン酸およびその塩、そのエステル、そのハーフエ ステル、ステアリルアルコール、ステアラミドおよびエチレンワックスなどの離型剤、亜 リン酸塩、次亜リン酸塩などの着色防止剤、ハロゲン系難燃剤、リン系やシリコーン系 の非ハロゲン系難燃剤、核剤、アミン系、スルホン酸系、ポリエーテル系などの帯電 防止剤、顔料などの着色剤などの添加剤を任意に含有させてもよい。ただし、適用 する用途の要求する特性に照らし、その添加剤保有の色が熱可塑性重合体に悪影 響を及ぼさず、かつ透明性が低下しな!/、範囲で添加する必要がある。 In addition, the acrylic resin film of the present invention includes other thermoplastic resins (for example, polyethylene, polypropylene, acrylic resin, polyamide, polyethylene sulfide resin, polyether ether ketone resin, Polyester, polysulfone, polyphenylene oxide, polyacetal, polyimide, polyetherimide, etc.) and thermosetting resins (eg phenol resin, melamine resin, polyester resin, silicone resin, epoxy resin, etc.) And / or laminating I can do it. Also, hindered phenol, benzoate, and cyanoacrylate antioxidants, higher fatty acids, acid esters, and acid amides, and higher alcohols such as lubricants and plasticizers, montanic acid and its salts, and esters Release agents such as half esters, stearyl alcohol, stearamide and ethylene wax, anti-coloring agents such as phosphites and hypophosphites, halogen flame retardants, phosphorus and silicone non-halogen flame retardants In addition, additives such as nucleating agents, amine-based, sulfonic acid-based, anti-static agents such as polyethers, and colorants such as pigments may be optionally added. However, in light of the properties required by the application to be applied, the color of the additive does not adversely affect the thermoplastic polymer and the transparency is not lowered!
[0111] 本発明にお!/、てアクリル樹脂 (A)に弾性体粒子(B)あるいはその他の添加剤など の任意成分を配合する方法には、特に制限はなぐアクリル樹脂 (A)とその他の任意 成分を予めブレンドした後、通常 200〜350°Cにおいて、一軸または二軸押出機に より均一に溶融混練する方法が好ましく用いられる。この溶融混練においては、弾性 体粒子 (B)等の配合以外にも、アクリル樹脂 (A)の製造の際に得る共重合体 (a)の 環化反応を同時に行うことも可能である。さらに、弾性体粒子(Β)の一部に不飽和力 ルボン酸単量体単位および不飽和カルボン酸アルキルエステル単量体単位からな る共重合体を含む場合の環化反応も同時に行うことができる。  [0111] In the present invention, there are no particular restrictions on the method of blending optional components such as elastic particles (B) or other additives into acrylic resin (A) and acrylic resin (A) and others. A method is preferably used in which after arbitrary blending of these components, the mixture is uniformly melt-kneaded by a single-screw or twin-screw extruder usually at 200 to 350 ° C. In this melt-kneading, besides the blending of the elastic particles (B) and the like, the cyclization reaction of the copolymer (a) obtained during the production of the acrylic resin (A) can be simultaneously performed. Furthermore, a cyclization reaction may be performed simultaneously when a part of the elastic particles (Β) contains a copolymer composed of an unsaturated rubonic acid monomer unit and an unsaturated carboxylic acid alkyl ester monomer unit. it can.
[0112] また、弾性体粒子(Β)を配合する場合には、 (A)、 (Β)両成分を溶解する溶媒の溶 液中で混合した後に溶媒を除く方法を用いることができる。  [0112] Further, when the elastic particles (Β) are blended, a method of removing the solvent after mixing in the solvent of the solvent that dissolves both the components (A) and (Β) can be used.
[0113] 本発明において、アクリル樹脂 (Α)は異物を取り除く目的で濾過することが好ましい 。予め異物を除去することにより、欠点発生を防ぐことができ、その結果、基準の厳し い光学用途フィルムとして有用に使用できる。濾過は公知の方法を使用することが出 来るが、テトラヒドロフラン、アセトン、メチルェチルケトン、ジメチルホルムアミド、ジメ チルスルホキシド、 Ν—メチルピロリドン等の溶剤に溶解した樹脂を 25°C以上 100°C 以下の温度で適宜フィルター、例えば、焼結金属、多孔性セラミック、サンド、金網等 で濾過する事力 S、樹脂の着色を防ぐために好ましい。  [0113] In the present invention, the acrylic resin (wax) is preferably filtered for the purpose of removing foreign substances. By removing foreign matters in advance, the occurrence of defects can be prevented, and as a result, the film can be usefully used as an optical application film with strict standards. For filtration, it is possible to use a known method, but a resin dissolved in a solvent such as tetrahydrofuran, acetone, methyl ethyl ketone, dimethylformamide, dimethyl sulfoxide, メ チ ル -methylpyrrolidone, etc. is 25 ° C or higher and 100 ° C or lower. In order to prevent coloring of the resin, it is preferable to filter with a filter such as sintered metal, porous ceramic, sand, wire mesh, etc.
[0114] 本発明のアクリル樹脂フィルムは、前記少なくとも 2層のうちの少なくとも 1層力 そ の表面にハードコート層および/または反射防止膜を有している事が好ましい。ハー ドコート層と反射防止膜とを両方形成する場合には、ハードコート層の上にさらに反 射防止膜を積層することが好ましレ、。 [0114] The acrylic resin film of the present invention preferably has a hard coat layer and / or an antireflection film on the surface of at least one of the at least two layers. Her When forming both the coat coat layer and the antireflection film, it is preferable to stack an antireflection film on the hard coat layer.
[0115] ハードコート層の形成方法は特に限定されるものではなぐ公知の方法を用いること が出来る。たとえば、多官能アタリレートを用いる方法を例示出来る。多官能アタリレ ートとしては、 1 , 6—へキサンジオールジアタリレート、 1 , 4 ブタンジオールジアタリ レート、エチレングリコールジアタリレート、ジエチレングリコールジアタリレート、テトレ エチレングリコールジアタリレート、トリプロピレングリコーリジアタリレート、ネオペンチ ノレグリコールジアタリレート、 1 , 4 ブタンジオールジメタタリレート、ポリ(ブタンジォ ール)ジアタリレート、テトラエチレングリコールジメタクリレート、 1 , 3—ブチレングリコ ールジアタリレート、トリエチレングリコールジアタリレート、トリイソプロピレングリコール ジアタリレート、ポリエチレングリコールジアタリレート及びビスフエノール Aジメタクリレ ートに例示されるジアタリレート類や、トリメチロールプロパントリアタリレート、トリメチロ ールプロパントリメタタリレート、ペンタエリスリトールモノヒドロキシトリアタリレート及びト リメチロールプロパントリエトキシトリアタリレートに例示されるトリアタリレート類や、ペン タエリスリトールテトラアタリレート及びジ-トリメチロールプロパンテトラアタリレートに例 示されるテトラアタリレート類、並びにペンタエリスリトール(モノヒドロキシ)ペンタアタリ レートに例示されるペンタアタリレート類を挙げることができる。  [0115] The method for forming the hard coat layer is not particularly limited, and any known method can be used. For example, a method using a polyfunctional acrylate can be exemplified. The polyfunctional acrylates include 1,6-hexanediol diatalate, 1,4 butanediol diatalate, ethylene glycol diatalate, diethylene glycol diatalate, tetreethylene glycol diatalate, tripropylene glycolate. Atalylate, neopentylene glycol glycol ditalariate, 1,4 butanediol dimetatalylate, poly (butanediol) diatalylate, tetraethylene glycol dimethacrylate, 1,3-butylene glycol ditalylate, triethylene glycol ditalylate , Triisopropylene glycol diatalylate, polyethylene glycol diatalylate and diaphenolates exemplified by bisphenol A dimethacrylate and trimethylolpropane tria Tritalylates exemplified by relates, trimethylolpropane trimetatalylate, pentaerythritol monohydroxytritalylate and trimethylolpropane triethoxytritalylate, pentaerythritol tetraatalylate and di-trimethylolpropanetetra Examples thereof include tetraatarylates exemplified by attalylate, and pentaacrylates exemplified by pentaerythritol (monohydroxy) pentaacrylate.
[0116] 反射防止膜についても限定は無ぐ公知の方法で形成することが出来る。すなわち 、反射防止膜は無機化合物を用いた乾式によるものでも有機化合物を用いた湿式に よるものでも好ましく、低屈折率層を 1層だけ形成しても、また、高屈折率層、低屈折 率層、中屈折率層の任意の層を複数層積層してもよい。  [0116] The antireflection film can also be formed by a known method without limitation. That is, the antireflection film is preferably a dry type using an inorganic compound or a wet type using an organic compound. Even if only one low refractive index layer is formed, a high refractive index layer, a low refractive index is used. Arbitrary layers of layers and intermediate refractive index layers may be laminated.
[0117] 力、くして得られるフィルムは、その優れた透明性、耐熱性、耐光性、靱性を活力もて 、電気 ·電子部品、光学フィルター、自動車部品、機械機構部品、 OA機器、家電機 器などのハウジングおよびそれらの部品類、一般雑貨など種々の用途に用いること ができる。  [0117] Films obtained by strength, vibrancy, and excellent transparency, heat resistance, light resistance, and toughness, electric / electronic parts, optical filters, automotive parts, mechanical mechanism parts, OA equipment, home appliances It can be used for various purposes such as housings such as containers and their parts, general goods.
[0118] ここで、光学フィルターとはディスプレイ機器用の部材であり、特に液晶ディスプレイ 、プラズマディスプレイ、フィールドェミッションディスプレイ、エレクト口ルミネッセンス ディスプレイなどフラットパネルディスプレイに用いられる部材を示す。例えば、本発 明のアクリル樹脂フィルムに透明導電膜および/またはガスノ リア膜を付与したブラ スチック基板、本発明のアクリル樹脂フィルムを加工成形したレンズ、偏光板に接着 剤を介して貼合する偏光板保護フィルム、ハードコート層を付与しディスプレイの前 面に使用する紫外線吸収フィルム、赤外線吸収層を付与し PDPの前面に使用する 赤外線吸収フィルム、電磁波シールドフィルム、プリズムシート、プリズムシート基材、 フレネルレンズ、光ディスク基板、各種光ディスク(CD、 DVD, MD、 LD等)基板保 護フィルム、導光板、延伸または位相差層を付与した位相差フィルム、光拡散フィル ム、視野角拡大フィルム、反射フィルム、反射防止フィルム、防眩フィルム、輝度向上 フィルム、(重複するので削除)タツチパネル用導電フィルムを例示出来る。 [0118] Here, the optical filter is a member for a display device, and particularly indicates a member used for a flat panel display such as a liquid crystal display, a plasma display, a field emission display, or an electoluminescence display. For example, this A plastic substrate provided with a transparent conductive film and / or a gas-nolia film on a bright acrylic resin film, a lens obtained by processing and molding the acrylic resin film of the present invention, a polarizing plate protective film bonded to a polarizing plate via an adhesive, An ultraviolet absorbing film to be used on the front of the display with a hard coat layer and an infrared absorbing layer to be used on the front of the PDP with an infrared absorbing film, electromagnetic wave shielding film, prism sheet, prism sheet substrate, Fresnel lens, optical disk substrate Various optical discs (CD, DVD, MD, LD, etc.) substrate protective film, light guide plate, retardation film provided with a stretched or retardation layer, light diffusion film, viewing angle widening film, reflection film, antireflection film, Example of antiglare film, brightness enhancement film, and conductive film for touch panel Can show.
[0119] また光学フィルター以外の用途の具体的態様としては、例えば、各種端子板、プリ ント配線板、スピーカー、顕微鏡、双眼鏡、カメラ、時計などに代表される各種機器の カバーなどが挙げられる。 [0119] Specific examples of applications other than optical filters include various terminal boards, printed wiring boards, speakers, microscopes, binoculars, cameras, covers for various devices represented by watches, and the like.
実施例  Example
[0120] [物性の測定法]  [0120] [Measurement of physical properties]
以下、実施例により本発明の構成、効果をさらに具体的に説明する。もっとも、本発 明は下記実施例に限定されるものではない。各実施例の記述に先立ち、実施例で 採用した各種物性の測定方法を記載する。  Hereinafter, the configuration and effects of the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the following examples. Prior to describing each example, the measurement methods for various physical properties employed in the example are described.
[0121] (1)各成分組成  [0121] (1) Composition of each component
アクリル樹脂フィルムをアセトンに溶解し、この溶液を 9000rpmで 30分間遠心分離 して、アセトン可溶成分とアセトン不溶成分とに分離した。アセトン可溶成分を 60°Cで 5時間減圧乾燥し、各成分単位を定量してアクリル樹脂の各成分組成を特定した。な お、積層フィルムの各層の成分を特定するためには、透過型電子顕微鏡 (TEM)に て測定した各層の厚みを元に測定する層を片刃により削りだしたサンプルを使用した The acrylic resin film was dissolved in acetone, and this solution was centrifuged at 9000 rpm for 30 minutes to separate into an acetone soluble component and an acetone insoluble component. Acetone-soluble components were dried under reduced pressure at 60 ° C for 5 hours, and each component unit was quantified to identify each component composition of the acrylic resin. In addition, in order to specify the components of each layer of the laminated film, a sample in which a layer to be measured based on the thickness of each layer measured with a transmission electron microscope (TEM) was shaved with a single blade was used.
Yes
[0122] また、赤外分光法によって定量することもできる力 S、その場合は顕微 FT— IRにより フィルムの破断面の各層を測定する。  [0122] Also, force S, which can be quantified by infrared spectroscopy, in this case, measure each layer of the fracture surface of the film by microscopic FT-IR.
[0123] 測定は、異なる場所を 3力所測定し、その平均値を算出した。 [0123] For the measurement, three different places were measured and the average value was calculated.
[0124] (2)ゴム質重合体の重量平均粒子径 「Rubber Age, Vol. 88, p. 484— 490 (1960) , by E. Schmidt, P. H. Biddison」に記載のアルギン酸ナトリウム法により測定した。測定は、異なる箇所 を 3力所測定し、その平均値を算出した。 [0124] (2) Weight average particle diameter of rubbery polymer It was measured by the sodium alginate method described in “Rubber Age, Vol. 88, p. 484-490 (1960), by E. Schmidt, PH Biddison”. For the measurement, three different places were measured and the average value was calculated.
[0125] (3)ヘイズ値、全光線透過率 [0125] (3) Haze value, total light transmittance
JIS -K7361 1997および JIS— K7136— 2000 ίこ従レヽ、東洋精機(株)製直読 ヘイズメーターを用いて、 23°Cでのヘイズ値(%)と全光線透過率(%)を測定した。 測定は 3回行い、平均値をとつた。  The haze value (%) and total light transmittance (%) at 23 ° C. were measured using a direct reading haze meter manufactured by Toyo Seiki Co., Ltd., JIS-K7361 1997 and JIS-K7136-2000. Measurements were taken three times and averaged.
[0126] (4)破断点伸度 [0126] (4) Elongation at break
JIS -C2318 2002に準拠した方法で、オリエンテック(株)製のフィルム強伸度 自動測定装置"テンシロン AMF/RTA— 100"を用いて、次の条件で測定した。 試料サイズ:幅 10mm、長さ 150mm  Using a method based on JIS-C2318 2002, an automatic film strength measurement device “Tensilon AMF / RTA-100” manufactured by Orientec Co., Ltd. was used under the following conditions. Sample size: width 10mm, length 150mm
チャック間距離 50mm  Chuck distance 50mm
引張速度: 300mm/分  Tensile speed: 300mm / min
測定環境: 23°C、 65%RH、大気圧下  Measurement environment: 23 ° C, 65% RH, under atmospheric pressure
得られた荷重一伸び曲線の立ち上がり部の接線から引張りヤング率を求めた。また フィルム破断時の長さからチャック間距離を減じたものをチャック間距離で除したもの に 100を乗じて破断点伸度とした。また、破断点の荷重を断面積で除したものを破断 強度とした。測定は 5回行い、平均値をとつた。  The tensile Young's modulus was determined from the tangent of the rising portion of the obtained load elongation curve. Also, the elongation at break was calculated by multiplying the length at the time of film rupture by subtracting the distance between chucks and dividing it by the distance between chucks. In addition, the breaking strength was determined by dividing the load at the breaking point by the cross-sectional area. The measurement was performed 5 times and the average value was taken.
[0127] (5)フィルム面内の位相差 [0127] (5) In-plane retardation
王子計測 (株)社製の自動複屈折計 (KOBRA— 21ADH)を用い、屈折率測定モ ードにおいて、波長 480. 4nmの光線に対する位相差、波長 548. 3nmの光線に対 する位相差、波長 628. 2nmの光線に対する位相差、波長 752. 7nmの光線に対 する位相差を測定し、各波長における位相差 (R)および測定波長( λ )からコーシ一 の波長分散式(R( ) =a + b/ 2 + c/ 4 + d/ 6)の各 a〜dの係数を求め、 このコーシ一の波長分散式に波長 590nm ( = 590)を代入して求めた。測定は 1 回 fiつた。  Using an automatic birefringence meter (KOBRA-21ADH) manufactured by Oji Scientific Co., Ltd., in the refractive index measurement mode, the phase difference for the light with a wavelength of 480.4 nm, the phase difference for the light with a wavelength of 548.3 nm, Measure the phase difference for a light beam with a wavelength of 68.2 nm and the phase difference for a light beam with a wavelength of 752.7 nm. From the phase difference (R) and the measured wavelength (λ) at each wavelength, the wavelength dispersion formula (R () = a + b / 2 + c / 4 + d / 6) The coefficients of a to d were calculated, and the wavelength 590nm (= 590) was substituted into the wavelength dispersion formula of this Koishi. The measurement was performed once.
[0128] (6)フィルム厚み方向の位相差 R  [0128] (6) Film thickness direction retardation R
th  th
王子計測(株)社製の自動複屈折計 (KOBRA— 21ADH)を用い、波長 590nm の光線に対するアクリル樹脂フィルム面内の直交軸方向の屈折率 ηχ、 ny (ただし ηχ≥ η )、波長 590nmの光線に対するアクリル樹脂フィルムの厚み方向の屈折率 ηを測 y z 定し、アクリル樹脂フィルムの厚みを d (nm)とした時に下記式から求めた。測定は 1 回 fiつた。 Using an automatic birefringence meter (KOBRA-21ADH) manufactured by Oji Scientific Co., Ltd., wavelength 590nm The refractive index η χ , ny (where η χ ≥ η) of the acrylic resin film in the plane of the acrylic resin film is measured, and the refractive index η in the thickness direction of the acrylic resin film for the light of wavelength 590 nm is measured. The thickness was determined from the following formula when the thickness of the resin film was d (nm). The measurement was performed once.
厚み方向の位相差 R (nm) =d X { (n +n ) /2— n } Thickness direction retardation R (nm) = d X {(n + n) / 2— n}
th x y z  th x y z
(7)光線透過率  (7) Light transmittance
下記装置を用いて測定し、各波長の光に対応する透過率を求めた。測定は 1回行 つた。  Measurement was performed using the following apparatus, and transmittance corresponding to light of each wavelength was determined. The measurement was performed once.
透過率(%) =丁/丁 X 100 Transmittance (%) = Ding / Ding X 100
1 0  Ten
ただし Tは試料を通過した光の強度、 Tは試料を通過しない以外は同一の距離のWhere T is the intensity of light that has passed through the sample, and T is the same distance except that it does not pass through the sample.
1 0 Ten
空気中を通過した光の強度である。 It is the intensity of light that has passed through the air.
装置: UV測定器 U— 3410 (日立計測社製) Apparatus: UV measuring instrument U— 3410 (manufactured by Hitachi Keiki Co., Ltd.)
波長: 380nm Wavelength: 380nm
測定速度: 120nm/分 Measurement speed: 120nm / min
測定モード:透過 Measurement mode: Transmission
(8)光弾性係数  (8) Photoelastic coefficient
まず、樹脂フィルムから短辺 lcm長辺 7cmのサンプルを切り出した。このサンプノレ の上下 lcmずつを、島津(株)社製 TRANSDUCER U3C1— 5Kを用いてチェッ クに挟み、長辺方向に lkg/mm2 (9. 81 X 106Pa)の張力(F)をかけた。この状態 で、ニコン (株)社製偏光顕微鏡 5892を用いて位相差 Re (nm)を測定した。光源とし てはナトリウム D線(589nm)を用いた。位相差を測定した箇所の厚み d (nm)を測定 しこれらの数値を光弾性係数 = Re/ (d X F)にあてはめて光弾性係数を計算した。 測定は 1回行った。 First, a sample having a short side of 1 cm and a long side of 7 cm was cut out from the resin film. The top and bottom lcm of this sumnore is sandwiched between the checks using TRANSDUCER U3C1-5K manufactured by Shimadzu Corporation, and a tension (F) of lkg / mm 2 (9.81 X 10 6 Pa) is applied in the long side direction. It was. In this state, the phase difference Re (nm) was measured using a polarizing microscope 5892 manufactured by Nikon Corporation. Sodium D line (589 nm) was used as the light source. The thickness d (nm) of the part where the phase difference was measured was measured, and these values were applied to the photoelastic coefficient = Re / (d XF) to calculate the photoelastic coefficient. The measurement was performed once.
(9)熱変形温度 (°C)  (9) Thermal deformation temperature (° C)
熱機械分析 (TMA)を用いて、測定サンプルを昇温し、測定温度に対する変形量 をプロットした時、その変形量が 2%以上変化する温度を熱変形温度とした。なお、 T MAには、真空理工 (株)社製熱分析ステーション (MTS— 9000)を用い、試料測定 モジュール (TM— 9400)で、測定サンプル幅 4ミリ、測定長さ 15ミリのサンプルに、 該測定サンプル単位断面積当たり 150MPaの弓 I張荷重をかけて熱変形温度を測定 した。測定は 1回行った。 Using thermo-mechanical analysis (TMA), when the temperature of the measurement sample was raised and the deformation amount plotted against the measurement temperature, the temperature at which the deformation amount changed by 2% or more was taken as the heat deformation temperature. For TMA, use a thermal analysis station (MTS-9000) manufactured by Vacuum Riko Co., Ltd., and use a sample measurement module (TM-9400) to measure a sample with a measurement sample width of 4 mm and a measurement length of 15 mm. The thermal deformation temperature was measured by applying a bow I tension load of 150 MPa per unit cross-sectional area of the measurement sample. The measurement was performed once.
[0130] (10)屈折率、屈折率差  [0130] (10) Refractive index, refractive index difference
アクリル樹脂フィルムにアセトンを加え、 4時間還流し、この溶液を 9, OOOrpmで 30 分間遠心分離により、アセトン可溶分 (アクリル樹脂 (A)の成分)と不溶分(弾性体粒 子(B)の成分)に分離した。これらを 60°Cで 5時間減圧乾燥した。得られたそれぞれ の固形物を 250°Cでプレス成形し、厚さ 0. 1mmのフィルムとした後、アッベ屈折計( 株式会社ァタゴ製、 DR—M2)によって、 23°C、 550nm波長における屈折率を測定 した。尚、アクリル樹脂 (A)成分と弾性体粒子(B)成分の屈折率差については、その 絶対値を用レ、た。測定は 1回行った。  Acetone is added to the acrylic resin film and refluxed for 4 hours. This solution is centrifuged at 9, OOOrpm for 30 minutes to obtain acetone-soluble components (components of acrylic resin (A)) and insoluble components (elastic particles (B)). Component). These were dried under reduced pressure at 60 ° C. for 5 hours. Each solid material obtained was press-molded at 250 ° C to form a 0.1 mm thick film, and then refracted at 23 ° C at a wavelength of 550 nm by an Abbe refractometer (manufactured by Atago Co., Ltd., DR-M2). The rate was measured. The absolute value of the difference in refractive index between the acrylic resin (A) component and the elastic particle (B) component was used. The measurement was performed once.
[0131] (11)重量平均分子量 (絶対分子量)  [0131] (11) Weight average molecular weight (absolute molecular weight)
透過型電子顕微鏡 (TEM)にて測定した各層の厚みを元に測定する層を片刃によ り肖 IJりだしたサンプルについて、ジメチルホルムアミドを溶媒として、 DAWN— DSP 型多角度光散乱光度計 (Wyatt Technology社製)を備えたゲルパーミエーシヨン クロマトグラフ(ポンプ: 515型, Waters社製、カラム: TSK— gel— GMHXL,東ソー 社製)を用いて、重量平均分子量 (絶対分子量)を測定した。  Samples measured with a transmission electron microscope (TEM) based on the thickness of each layer were squeezed with a single blade, and the sample was wrenched with dimethylformamide as a DAWN— DSP type multi-angle light scattering photometer ( Weight average molecular weight (absolute molecular weight) was measured using a gel permeation chromatograph equipped with Wyatt Technology (pump: 515 type, manufactured by Waters, column: TSK-gel-GMHXL, manufactured by Tosoh Corporation). .
[0132] (12)ガラス転移温度 (Tg)  [0132] (12) Glass transition temperature (Tg)
示差走査熱量計(Perkin Elmer社製 DSC— 7型)を用い、窒素雰囲気下、 20°C /minの昇温速度で測定した。測定は 1回行った。なおガラス転移温度 (Tg)として は JIS K7121— 1987の中間点ガラス転移温度 (Tmg)を採用する。  A differential scanning calorimeter (DSC-7 type manufactured by Perkin Elmer) was used, and the measurement was performed at a temperature increase rate of 20 ° C./min in a nitrogen atmosphere. The measurement was performed once. Note that the glass transition temperature (Tmg) of JIS K7121-1987 is used as the glass transition temperature (Tg).
[0133] (13)型抜きテスト  [0133] (13) Die cutting test
トムソン打抜機で 12. 1インチ長方形に打ち抜いた。割れが発生した場合を不合格 (F)とし、割れが発生しなかった場合を合格 (P)とした。  Punched into a 12.1 inch rectangle with a Thomson punching machine. The case where a crack occurred was regarded as rejected (F), and the case where no crack occurred was regarded as acceptable (P).
[0134] (14)鉛筆硬度  [0134] (14) Pencil hardness
JIS K 5400— 1990に従って、表面の鉛筆硬度を測定した。なお測定には、三 菱鉛筆 (株)社製の (財)日本塗料検査協会印付試験用鉛筆における 6H、 5H、 4H 、 3H、 2H、 H、 F、 HB、 B、 2B、 3B、 4B、 5B、 6Bの硬さの鉛筆を使用した。また、こ の順番で硬!/、ことを意味する。 [0135] (15)耐折回数(回): The surface pencil hardness was measured in accordance with JIS K 5400-1990. For measurement, 6H, 5H, 4H, 3H, 2H, H, F, HB, B, 2B, 3B, 4B in the Japan Paint Inspection Association Marked Test Pencil manufactured by Mitsubishi Pencil Co., Ltd. , 5B, 6B hardness pencils were used. It also means hard in this order! [0135] (15) Folding resistance (times):
JIS P8115— 1994に従った。試験片の寸法は幅 15 ± 0. 03mm、長さ 110 ± 5 mmであり、加重は断面積あたり 8. 14MPaとした。  According to JIS P8115—1994. The test piece dimensions were 15 ± 0.03 mm wide and 110 ± 5 mm long, and the load was 8.14 MPa per cross-sectional area.
[0136] (16)表面粗さ R [0136] (16) Surface roughness R
キーエンス社製レーザー顕微鏡 (VK— 9500)を用いて, 中心線平均粗さ Rを測 定した。測定条件は、下記のとおりである。 20回の測定の平均値を持って値とした。  Centerline average roughness R was measured using a Keyence laser microscope (VK-9500). The measurement conditions are as follows. The average value of 20 measurements was taken as the value.
[0137] レンズ倍率: 100倍 [0137] Lens magnification: 100 times
深さ方向ピッチ: 0. Ol ^ m  Depth pitch: 0. Ol ^ m
測定面積: 0. 01mm2 Measurement area: 0.01 mm 2
カット才フ :0. 08mm。  Cut age: 0.08mm.
[0138] (17)アクリル樹脂フィルムにおける各層の厚み [17] (17) Thickness of each layer in acrylic resin film
ミクロトームにより、薄膜切片を作成し、ルテニウム染色を施し、透過型電子顕微鏡( TEM)で観察し、写真により積層厚みを測定した。測定は、異なる箇所を 3力所測定 し、平均値を用いた。  Thin film slices were prepared with a microtome, stained with ruthenium, observed with a transmission electron microscope (TEM), and the laminate thickness was measured with photographs. For the measurement, three different places were measured and the average value was used.
[0139] <参考例 1〉 [0139] <Reference Example 1>
アクリル樹脂 (A1)  Acrylic resin (A1)
容量が 5リットルで、バッフルおよびファゥドラ型撹拌翼を備えたステンレス製オート クレーブに、メタクリル酸メチル /アクリルアミド共重合体系懸濁剤 0. 05部をイオン交 換水 165部に溶解した溶液を供給し、 400rpmで撹拌し、系内を窒素ガスで置換し た。なお、メタクリル酸メチル /アクリルアミド共重合体系懸濁剤には、以下の方法で 調整したものを用いたすなわち、メタクリル酸メチル 20質量部、アクリルアミド 80質量 部、過硫酸カリウム 0. 3質量部、イオン交換水 1500質量部を反応器中に仕込み、反 応器中を窒素ガスで置換しながら 70°Cに保ち、単量体が完全に重合体に転化する まで反応させ、得られたアクリル酸メチルとアクリルアミドとの共重合体の水溶液を懸 濁剤として使用した  A solution of 0.05 part of methyl methacrylate / acrylamide copolymer suspension in 165 parts of ion-exchanged water is supplied to a stainless steel autoclave with a capacity of 5 liters and equipped with a baffle and a fudra-type stirring blade. The mixture was stirred at 400 rpm and the system was replaced with nitrogen gas. The methyl methacrylate / acrylamide copolymer suspension was prepared by the following method: methyl methacrylate 20 parts by mass, acrylamide 80 parts by mass, potassium persulfate 0.3 parts by mass, ion Charge 1500 parts by mass of exchange water into the reactor, keep the reactor at 70 ° C while replacing with nitrogen gas, and react until the monomer is completely converted to polymer. An aqueous solution of a copolymer of acrylamide and acrylamide was used as a suspension.
次に、反応系を撹拌しながら下記混合物質を添加し、 70°Cに昇温した。内温が 70 °Cに達した時点を重合開始として、 180分間保ち、重合を終了した。以降、通常の方 法に従い、反応系の冷却、ポリマーの分離、洗浄、乾燥を行い、ビーズ状の共重合 体(a— 1)を得た。この共重合体(a— 1)の重合率は 98%であり、重量平均分子量は 6. 8万であった。 Next, the following mixed substances were added while stirring the reaction system, and the temperature was raised to 70 ° C. The time when the internal temperature reached 70 ° C. was set as the start of polymerization, and kept for 180 minutes to complete the polymerization. Thereafter, the reaction system is cooled, the polymer is separated, washed and dried in accordance with the usual method, and the bead-shaped copolymer is produced. The body (a-1) was obtained. The copolymer (a-1) had a polymerization rate of 98% and a weight average molecular weight of 68,000.
[0140] メタクリル酸 :27質量部 [0140] Methacrylic acid: 27 parts by mass
メタクリル酸メチル : 73質量部  Methyl methacrylate: 73 parts by mass
2, 2,ーァゾビスイソブチロニトリノレ: 0. 6質量部 2, 2, azobisisobutyronitrinole: 0.6 parts by mass
これに添加剤(NaOCH )を配合し、 2軸押出機 (TEX30 (日本製鋼社製、 L/D  Additive (NaOCH) is added to this, twin screw extruder (TEX30 (manufactured by Nippon Steel Co., Ltd., L / D
3  Three
= 44. 5)を用いて、ホッパーを 10L/分の量の窒素でパージしながら、スクリュー回 転数 100rpm、原料供給量 5kg/h、シリンダ温度 290°Cで分子内環化反応を行い 、ペレット状のアクリル樹脂 (A1)を得た。このアクリル樹脂 (A1) 100質量部中のダル タル酸無水物単位の組成比は 31質量部、重量平均分子量は 6. 5万であった。  = 44.5), purging the hopper with 10 L / min of nitrogen and carrying out an intramolecular cyclization reaction at a screw speed of 100 rpm, a feed rate of 5 kg / h, and a cylinder temperature of 290 ° C. A pellet-shaped acrylic resin (A1) was obtained. In 100 parts by mass of this acrylic resin (A1), the composition ratio of the dartal anhydride unit was 31 parts by mass, and the weight average molecular weight was 65,000.
[0141] <参考例 2〉 [0141] <Reference Example 2>
アクリル樹脂 (A2)  Acrylic resin (A2)
2, 2'—ァゾビスイソブチロニトリルの使用量を 0. 5質量部とした以外は参考例 1と 同様にしてアクリル樹脂 (A2)を得た。このアクリル樹脂のダルタル酸無水物単位の 組成比は 31質量部、重量平均分子量は 8万であった。  An acrylic resin (A2) was obtained in the same manner as in Reference Example 1 except that the amount of 2,2′-azobisisobutyronitrile used was changed to 0.5 parts by mass. This acrylic resin had a composition ratio of dartaric anhydride units of 31 parts by mass and a weight average molecular weight of 80,000.
[0142] <参考例 3〉 [0142] <Reference Example 3>
弾性体粒子 (B1)  Elastic particle (B1)
下記により得られたコアシェル重合体を用いた。  The core-shell polymer obtained by the following was used.
[0143] 冷却器付きのガラス容器 (容量 5リットル)内に脱イオン水 120質量部、炭酸カリウム 0. 5質量部、スルフォコハク酸ジォクチル 0. 5質量部、過硫酸カリウム 0. 005質量部 を仕込み、窒素雰囲気下で撹拌後、アクリル酸ブチル 53質量部、スチレン 17質量部 、メタクリル酸ァリル (架橋剤) 1質量部を仕込んだ。これら混合物を 70°Cで 30分間反 応させて、コア層重合体を得た。次いで、メタクリル酸メチル 21質量部、メタクリル酸 9 質量部、過硫酸カリウム 0. 005質量部の混合物を 90分かけて連続的に添加し、更 に 90分間保持して、シェル層を重合させ、この重合体ラテックスを硫酸で凝固し、苛 性ソーダで中和した後、洗浄、濾過、乾燥して、 2層構造の弾性体粒子(B1)を得た。 電子顕微鏡で測定したこの重合体粒子の平均粒子径は 155nmであった。 [0144] 得られた弾性体粒子(B1)とアクリル樹脂 (A1)の屈折率差は 0. 002であった。 [0143] 120 parts by mass of deionized water, 0.5 parts by mass of potassium carbonate, 0.5 parts by mass of dioctyl sulfosuccinate, and 0.005 parts by mass of potassium persulfate were charged in a glass container (capacity 5 liters) equipped with a cooler. After stirring in a nitrogen atmosphere, 53 parts by mass of butyl acrylate, 17 parts by mass of styrene, and 1 part by mass of allylic methacrylate (crosslinking agent) were charged. These mixtures were reacted at 70 ° C for 30 minutes to obtain a core layer polymer. Next, a mixture of 21 parts by weight of methyl methacrylate, 9 parts by weight of methacrylic acid, and 0.005 parts by weight of potassium persulfate was continuously added over 90 minutes, and further maintained for 90 minutes to polymerize the shell layer, This polymer latex was coagulated with sulfuric acid, neutralized with caustic soda, washed, filtered and dried to obtain elastic particles (B1) having a two-layer structure. The average particle diameter of the polymer particles measured with an electron microscope was 155 nm. [0144] The refractive index difference between the obtained elastic particles (B1) and the acrylic resin (A1) was 0.002.
[0145] <実施例 1〉  <Example 1>
参考例 1で得られたアクリル樹脂 (A1) 80質量部に参考例 3で得られた弾性体粒子 (B1)を 20質量部の組成比で配合し、 2軸押出機 (TEX30 (日本製鋼社製、 L/D = 44. 5)を用いてスクリュー回転数 150rpm、シリンダ温度 280°Cで混練し、ペレット状 のアクリル樹脂組成物(C1)を得た。  80 parts by mass of the acrylic resin (A1) obtained in Reference Example 1 was blended with 20 parts by mass of the elastic particles (B1) obtained in Reference Example 3, and a twin-screw extruder (TEX30 (Nippon Steel Co., Ltd.) Manufactured by L / D = 44.5) and kneaded at a screw speed of 150 rpm and a cylinder temperature of 280 ° C. to obtain a pellet-shaped acrylic resin composition (C1).
[0146] 次いで、 100°Cで 3時間乾燥したアクリル樹脂組成物(C1)ペレットを 45mm φの一 軸押出機(S 1) (設定温度 250°C)を用いて、上記参考例 2で得られたアクリル樹脂( A2)を 40πιιη φの一軸押出機(S2) (設定温度 250°C (リップ部分も同温度))を用い て押し出した。このとき、アクリル樹脂組成物(C1)およびアクリル樹脂 (A2)は、積層 構成がアクリル樹脂 (A2) /アクリル樹脂組成物(C1) /アクリル樹脂 (A2)となるフィ ードブロックを介して積層した後、 Tダイ (設定温度 250°C)を介してシート状に押出し た。  [0146] Next, the acrylic resin composition (C1) pellets dried at 100 ° C for 3 hours were obtained in the above Reference Example 2 using a 45mmφ single screw extruder (S 1) (set temperature 250 ° C). The obtained acrylic resin (A2) was extruded using a single-screw extruder (S2) of 40πιιηφ (set temperature: 250 ° C (the lip portion also has the same temperature)). At this time, after the acrylic resin composition (C1) and the acrylic resin (A2) are laminated through a feed block whose laminated structure is acrylic resin (A2) / acrylic resin composition (C1) / acrylic resin (A2) Extruded into a sheet through a T-die (set temperature 250 ° C).
[0147] このフィルムを 130°Cの冷却ロールに片面を完全に密着させながら冷却して、未延 伸のアクリル樹脂フィルムを得た。このとき、(Tダイのリップ間隙/フィルム厚み) = 1 5となるよう、冷却ロールの速度を調整した。また各層の積層厚み比は吐出量を調整 し、アクリル樹脂 (A2):アクリル樹脂組成物(C1):アクリル樹脂 (A2)が 1 : 5 : 1となる よつにした。  [0147] The film was cooled with a single side of the film being completely adhered to a 130 ° C cooling roll to obtain an unstretched acrylic resin film. At this time, the speed of the cooling roll was adjusted so that (lip gap of T die / film thickness) = 15. In addition, the stack thickness ratio of each layer was adjusted so that the discharge amount was adjusted so that acrylic resin (A2): acrylic resin composition (C1): acrylic resin (A2) was 1: 5: 1.
[0148] 力、くして得られたアクリル樹脂フィルムは耐熱性、透明性、靱性ともに優れており、ま た加工特性も優れて!/、た。フィルムの特性は表 1の通りであった。  [0148] The acrylic resin film obtained by strength and strength had excellent heat resistance, transparency and toughness, and excellent processing characteristics! Table 1 shows the film characteristics.
[0149] <実施例 2〉 <Example 2>
アクリル樹脂 (A2)が薄くなるように、 2台の押出機の吐出量を調整し、積層厚み比 をアクリル樹脂 (A2):アクリル樹脂組成物(C1):アクリル樹脂 (A2) = 1 : 10 : 1とした 以外は実施例 1と同様に製膜した。  Adjust the discharge rate of the two extruders so that the acrylic resin (A2) is thin, and the lamination thickness ratio is acrylic resin (A2): acrylic resin composition (C1): acrylic resin (A2) = 1: 10 : A film was formed in the same manner as in Example 1 except that it was set to 1.
[0150] 力、くして得られたアクリル樹脂フィルムは耐熱性、透明性、靱性ともに優れており、ま た加工特性も優れていた。フィルムの特性は表 1の通りである。 [0150] The acrylic resin film obtained by applying strength and strength had excellent heat resistance, transparency and toughness, and excellent processing characteristics. Table 1 shows the film characteristics.
[0151] <実施例 3〉 [0151] <Example 3>
冷却ロールの速度を調整しフィルムの全体厚みを 73 mとした以外は実施例 1と 同様に製膜した。 Example 1 except that the cooling roll speed was adjusted so that the total film thickness was 73 m. A film was formed in the same manner.
[0152] 力、くして得られたアクリル樹脂フィルムは耐熱性、透明性、靱性ともに優れており、ま た加工特性も優れていた。フィルムの特性は表 1の通りである。  [0152] The acrylic resin film obtained by applying strength and strength was excellent in heat resistance, transparency and toughness, and also in processing characteristics. Table 1 shows the film characteristics.
[0153] <実施例 4〉  <Example 4>
押し出し時にホッパーを流量 20ml/分の窒素でパージし、 Tダイのリップ部分の温 度を 230°Cに設定した以外は実施例 1と同様にして製膜した。  A film was formed in the same manner as in Example 1 except that the hopper was purged with nitrogen at a flow rate of 20 ml / min during extrusion and the temperature of the lip portion of the T die was set to 230 ° C.
[0154] 力、くして得られたアクリル樹脂フィルムは耐熱性、透明性、靱性ともに優れており、ま た加工特性も優れていた。フィルムの特性は表 1の通りである。  [0154] The acrylic resin film obtained by applying strength and strength had excellent heat resistance, transparency and toughness, and excellent processing characteristics. Table 1 shows the film characteristics.
[0155] <実施例 5〜6〉  <Examples 5 to 6>
アクリル樹脂 (A2)が薄くなるように、 2台の押出機の吐出量を調整し、積層厚み比 をアクリル樹脂 (A2):アクリル樹脂組成物(C1):アクリル樹脂 (A2) = 1 : 40 : 1 (実施 例 5)または 1: 70: 1 (実施例 6)とした以外は実施例 4と同様に製膜した。  Adjust the discharge rate of the two extruders so that the acrylic resin (A2) is thin, and the lamination thickness ratio is acrylic resin (A2): acrylic resin composition (C1): acrylic resin (A2) = 1: 40 A film was formed in the same manner as in Example 4 except that 1 (Example 5) or 1: 70: 1 (Example 6) was used.
[0156] 力、くして得られたアクリル樹脂フィルムは耐熱性、透明性、靱性ともに優れており、ま た加工特性も優れていた。フィルムの特性は表 1の通りである。  [0156] The acrylic resin film obtained by applying strength and strength had excellent heat resistance, transparency and toughness, and excellent processing characteristics. Table 1 shows the film characteristics.
[0157] <実施例 7〉  [0157] <Example 7>
アクリル樹脂 (A2)が薄くなるように、 2台の押出機の吐出量を調整し、積層厚み比 をアクリル樹脂 (A2):アクリル樹脂組成物(C1):アクリル樹脂 (A2) = 1 : 170 : 1とし 、また (Tダイのリップ間隙/フィルム厚み) = 20とした以外は実施例 4と同様に製膜 した。  Adjust the discharge rate of the two extruders so that the acrylic resin (A2) is thin, and the lamination thickness ratio is acrylic resin (A2): acrylic resin composition (C1): acrylic resin (A2) = 1: 170 A film was formed in the same manner as in Example 4 except that 1 and (T-die lip gap / film thickness) = 20.
[0158] 力、くして得られたアクリル樹脂フィルムは耐熱性、透明性、靱性ともに優れており、ま た加工特性も優れていた。フィルムの特性は表 1の通りである。  [0158] The acrylic resin film obtained by applying strength and strength had excellent heat resistance, transparency and toughness, and excellent processing characteristics. Table 1 shows the film characteristics.
[0159] <実施例 8〉  <Example 8>
上記の参考例(1)で得られたアクリル樹脂 (A1) 80質量部および参考例(3)で得ら れたアクリル弾性体粒子(B1)を 20質量部の組成比で配合し、 2軸押出機 (TEX30 ( 日本製鋼社製、 L/D = 44. 5)を用いてスクリュー回転数 150rpm、シリンダ温度 28 0°Cで混練し、ペレット状のアクリル樹脂組成物(C1)を得た。  80 parts by mass of the acrylic resin (A1) obtained in the above Reference Example (1) and 20 parts by mass of the acrylic elastic particles (B1) obtained in Reference Example (3) Using an extruder (TEX30 (manufactured by Nippon Steel Co., Ltd., L / D = 44.5)), kneading was performed at a screw rotation speed of 150 rpm and a cylinder temperature of 280 ° C. to obtain a pellet-shaped acrylic resin composition (C1).
[0160] 次いで、 100°Cで 3時間乾燥したアクリル樹脂組成物(C1)ペレットを 45mm φの一 軸押出機(S 1) (設定温度 250°C)を用いて、上記参考例(2)で得られたアクリル樹 脂 (A2)を 40πιιη φの一軸押出機(S2) (設定温度 250°C)を用いて押し出した。この とき、両方の押出機のホッパーを流量 20ml/分の窒素でパージした。また、アタリノレ 樹脂組成物(C1)およびアクリル樹脂 (A2)は、積層構成がアクリル樹脂 (A2) /ァク リル樹脂組成物(C1) /アクリル樹脂 (A2) /アクリル樹脂組成物(C1) /アクリル樹 脂 (A2)となるフィードブロックを介して積層した後、 Tダイ (設定温度 250°C、リップ部 分のみ設定温度 230°C)を介してシート状に押出した。 [0160] Next, the acrylic resin composition (C1) pellets dried at 100 ° C for 3 hours were subjected to the above Reference Example (2) using a 45mm φ single screw extruder (S 1) (set temperature 250 ° C). Acrylic tree obtained in The fat (A2) was extruded using a single screw extruder (S2) (set temperature: 250 ° C.) of 40πιιη φ. At this time, the hoppers of both extruders were purged with nitrogen at a flow rate of 20 ml / min. Atalinole resin composition (C1) and acrylic resin (A2) are composed of acrylic resin (A2) / acrylic resin composition (C1) / acrylic resin (A2) / acrylic resin composition (C1) / After lamination through a feed block to be an acrylic resin (A2), it was extruded into a sheet through a T die (set temperature 250 ° C, only the lip portion was set temperature 230 ° C).
[0161] このフィルムを 130°Cの冷却ロールに片面を完全に密着させながら冷却して、未延 伸のアクリル樹脂フィルムを得た。このとき、 Tダイのリップ間隙/フィルム厚み = 15と なるよう、冷却ロールの速度を調整した。このフィルムの積層厚み比は吐出量を調整 し、アクリル樹脂 (A2):アクリル樹脂組成物(C1):アクリル樹脂 (A2):アクリル樹脂 組成物(C1 ):アクリル樹脂 (A2)が 1: 5: 1: 5: 1となるようにした。  [0161] This film was cooled with a single side of the film being completely adhered to a 130 ° C cooling roll to obtain an unstretched acrylic resin film. At this time, the speed of the cooling roll was adjusted so that the lip gap of the T die / film thickness = 15. The film thickness is adjusted by adjusting the discharge rate, and acrylic resin (A2): acrylic resin composition (C1): acrylic resin (A2): acrylic resin composition (C1): acrylic resin (A2) is 1: 5. : 1: 5: 1.
[0162] 力、くして得られたアクリル樹脂フィルムは耐熱性、透明性、靱性ともに優れており、ま た加工特性も優れて!/、た。フィルムの特性は表 2の通りである。  [0162] The acrylic resin film obtained by strength and strength has excellent heat resistance, transparency, and toughness, and excellent processing characteristics! Table 2 shows the film characteristics.
[0163] <実施例 9〉  [0163] <Example 9>
積層構成がアクリル樹脂 (A2) /アクリル樹脂組成物(C1) /' · · /アクリル樹脂組 成物(C1) /アクリル樹脂 (A2)と交互に全部で 9層となるフィードブロックを介するほ 力、、アクリル樹脂 (A2)が薄くなるように積層厚み比を 1: 5: · · ·: 5: 1として積層した以 外は実施例 4と同様に製膜した。  A laminated structure consisting of acrylic resin (A2) / acrylic resin composition (C1) / '· // acrylic resin composition (C1) / acrylic resin (A2) alternately through a feed block with a total of 9 layers A film was formed in the same manner as in Example 4 except that the lamination thickness ratio was 1: 5:... 5: 1 so that the acrylic resin (A2) was thin.
[0164] 力、くして得られたアクリル樹脂フィルムは耐熱性、透明性、靱性ともに優れており、ま た加工特性も優れて!/、た。フィルムの特性は表 2の通りである。  [0164] The acrylic resin film obtained by applying force has excellent heat resistance, transparency and toughness, and excellent processing characteristics! Table 2 shows the film characteristics.
[0165] <実施例 10〉  <Example 10>
上記の参考例(1)で得られたアクリル樹脂 (A1) 80質量部および参考例(3)で得ら れたアクリル弾性体粒子(B1)を 20質量部および紫外線吸収剤として旭電化工業株 式会社のアデカスタブ LA36を 2質量部の組成比で配合し、 2軸押出機 (TEX30 (日 本製鋼社製、 L/D = 44. 5)を用いてスクリュー回転数 150rpm、シリンダ温度 280 °Cで混練し、ペレット状のアクリル樹脂組成物(C2)を得た。そして、積層厚み比がァ クリル樹脂 (A2) /アクリル樹脂組成物(C2) /アクリル樹脂 (A2)が 1: 5: 1となるよう に積層した他は請求項 4と同様に製膜した。 [0166] 力、くして得られたアクリル樹脂フィルムは耐熱性、透明性、靱性ともに優れており、ま た加工特性も優れて!/、た。フィルムの特性は表 2の通りである。 Asahi Denka Kogyo Co., Ltd. using 80 parts by mass of the acrylic resin (A1) obtained in Reference Example (1) and 20 parts by mass of the acrylic elastic particles (B1) obtained in Reference Example (3) and an ultraviolet absorber. Adeka Stub LA36 from a formula company was blended at a composition ratio of 2 parts by mass, using a twin-screw extruder (TEX30 (manufactured by Nippon Steel Co., Ltd., L / D = 44.5)), with a screw speed of 150 rpm and a cylinder temperature of 280 ° C. The mixture was kneaded to obtain a pellet-shaped acrylic resin composition (C2), and the lamination thickness ratio was 1: 5: 1 acrylic resin (A2) / acrylic resin composition (C2) / acrylic resin (A2). The film was formed in the same manner as in claim 4 except that the layers were laminated so that [0166] The acrylic resin film obtained by applying strength and strength has excellent heat resistance, transparency and toughness, and excellent processing characteristics! Table 2 shows the film characteristics.
[0167] <実施例 11〉  <Example 11>
アクリル樹脂 (A2)が薄くなるように、 2台の押出機の吐出量を調整し、アクリル樹脂 (A2)層の厚みが 0. 08 mとした以外は実施例 4と同様に製膜した。  A film was formed in the same manner as in Example 4 except that the discharge amount of the two extruders was adjusted so that the acrylic resin (A2) was thin, and the thickness of the acrylic resin (A2) layer was 0.08 m.
[0168] 力、くして得られたアクリル樹脂フィルムは耐熱性、靭性ともに優れている力 透明 性がやや劣ってレ、た。フィルムの特性は表 2の通りである。  [0168] The acrylic resin film obtained by strength and strength had excellent heat resistance and toughness. The transparency was slightly inferior. Table 2 shows the film characteristics.
[0169] <比較例 1〉  [0169] <Comparative Example 1>
参考例 1で得られたアクリル樹脂 (A1) 80質量部に参考例 3で得られたアクリル弾 性体粒子(B1)を 20質量部の組成比で配合し、 2軸押出機 (TEX30 (日本製鋼社製 、 L/D = 44. 5)を用いてスクリュー回転数 150rpm、シリンダ温度 280°Cで混練し、 ペレット状のアクリル樹脂組成物(C1)を得た。  80 parts by mass of the acrylic resin (A1) obtained in Reference Example 1 was blended with 20 parts by mass of the acrylic elastomer particles (B1) obtained in Reference Example 3, and a twin-screw extruder (TEX30 (Japan) A pellet-shaped acrylic resin composition (C1) was obtained by kneading at a screw rotation speed of 150 rpm and a cylinder temperature of 280 ° C. using L / D = 44.5) manufactured by Steel Manufacturing Co., Ltd.
[0170] 次いで、 100°Cで 3時間乾燥したアクリル樹脂組成物(C1)ペレットを 45mm φの一 軸押出機(S 1) (設定温度 250°C)を用いて押し出し、 Tダイ (設定温度 250°C)を介 してシート状に押出した。このフィルムを 130°Cの冷却ロールに片面を完全に密着さ せながら冷却して、厚み 40 mの未延伸のアクリル樹脂フィルムを得た。このとき、 T ダイのリップ間隙/フィルム厚み = 15となるよう、冷却ロールの速度を調整した。  [0170] Next, the acrylic resin composition (C1) pellets dried for 3 hours at 100 ° C were extruded using a 45mm φ single screw extruder (S 1) (set temperature 250 ° C), and T-die (set temperature) 250 ° C.). This film was cooled with a single face of a 130 ° C. cooling roll being completely adhered to obtain an unstretched acrylic resin film having a thickness of 40 m. At this time, the speed of the cooling roll was adjusted so that the lip gap of the T die / film thickness = 15.
[0171] 力、くして得られたアクリル樹脂フィルムはヘイズが大きく光学フィルタ一として適さな い。フィルムの特性は表 2の通りである。  [0171] The acrylic resin film obtained by applying force has a large haze and is not suitable as an optical filter. Table 2 shows the film characteristics.
[0172] <比較例 2〉  [0172] <Comparative Example 2>
100°Cで 3時間乾燥したアクリル樹脂(A1)ペレットを 45mm φの一軸押出機(S1) (設定温度 250°C)を用いて押出、 Tダイ (設定温度 250°C)を介してシート状に押出 した。このフィルムを 130°Cの冷却ロールに片面を完全に密着させながら冷却して、 未延伸のアクリル樹脂フィルムを得た。このとき、 Tダイのリップ間隙/フィルム厚み = 15となるよう、冷却ロールの速度を調整した。  Acrylic resin (A1) pellets dried at 100 ° C for 3 hours are extruded using a 45mm φ single screw extruder (S1) (set temperature 250 ° C), and then sheeted through a T-die (set temperature 250 ° C) Extruded. This film was cooled with a single side of the film being completely adhered to a 130 ° C. cooling roll to obtain an unstretched acrylic resin film. At this time, the speed of the cooling roll was adjusted so that the lip gap of the T die / film thickness = 15.
[0173] 力、くして得られたアクリル樹脂フィルムは耐熱性、透明性に優れる力 靱性が悪く加 ェ特性が不良であった。フィルムの特性は表 2の通りである。  [0173] The acrylic resin film obtained by applying strength and strength had excellent heat resistance and transparency, and the toughness was poor and the additive properties were poor. Table 2 shows the film characteristics.
[0174] <比較例 3〉 80°Cで 3時間乾燥した住友化学株式会社製アクリル樹脂組成物スミペック HT50Y (PMMA樹脂と弾性体粒子との混合物)のペレットを 45mm φの一軸押出機(S 1) ( 設定温度 230°C)を用いて、住友化学株式会社製アクリル樹脂組成物スミペック LG 2 (PMMA樹脂)を 40mm φの一軸押出機(S2) (設定温度 230°C)を用いて押し出 した。このとき、両方の押出機のホッパーを流量 20ml/分の窒素パージし、また、積 層構成がスミペック LG2/スミペック HT50Y/スミペック LG2となるフィードブロック を介して積層した後、 Tダイ (設定温度 230°C、リップ部分のみ設定温度 210°C)を介 してシート状に押出した。 [0174] <Comparative Example 3> 45mmφ single screw extruder (S 1) (setting temperature 230 ° C) pellets of Sumitomo Chemical Co., Ltd. acrylic resin composition Sumipec HT50Y (mixture of PMMA resin and elastic particles) dried at 80 ° C for 3 hours Was used to extrude Sumitomo Chemical Co., Ltd. acrylic resin composition Sumipec LG 2 (PMMA resin) using a 40 mm φ single screw extruder (S2) (set temperature 230 ° C.). At this time, the hoppers of both extruders were purged with nitrogen at a flow rate of 20 ml / min.After stacking via a feed block where the stacking structure was Sumipec LG2 / Sumipec HT50Y / Sumipec LG2, Only the lip and the lip part were extruded into a sheet through a set temperature of 210 ° C.
[0175] このフィルムを 80°Cの冷却ロールに片面を完全に密着させながら冷却して、未延 伸のアクリル樹脂フィルムを得た。このとき、 Tダイのリップ間隙/フィルム厚み = 15と なるよう、冷却ロールの速度を調整した。このフィルムの積層厚み比は、吐出量を調 整し、スミペック LG2/スミペック HT50Y/スミペック LG2が 1 : 5 : 1となるようにした。  [0175] This film was cooled with one side being completely adhered to an 80 ° C cooling roll to obtain an unstretched acrylic resin film. At this time, the speed of the cooling roll was adjusted so that the lip gap of the T die / film thickness = 15. The lamination thickness ratio of this film was adjusted so that the discharge amount was adjusted so that Sumipec LG2 / Sumipec HT50Y / Sumipec LG2 was 1: 5: 1.
[0176] 力、くして得られたアクリル樹脂フィルムは透明性、靱性ともに優れる力 耐熱性が低 かったフィルムの特性は表 2の通りである。  [0176] The strength and strength of the acrylic resin film obtained by combining the strength and strength of the film is shown in Table 2.
[0177] [表 1] [0177] [Table 1]
実施例 1 実施例 2 実施例 3 実施例 4 実施例 5 実施例 6 実施例 7 積層数 3層 3層 3層 3層 3層 3層 3層 全体厚み( m) 39 34 73 40 43 41 31 アクリル樹脂 A2または Example 1 Example 2 Example 3 Example 4 Example 5 Example 6 Example 7 Number of layers 3 layers 3 layers 3 layers 3 layers 3 layers 3 layers 3 layers Overall thickness (m) 39 34 73 40 43 41 31 Acrylic Resin A2 or
5.6 2.8 10.4 5.7 1.1 0.6 0.1 スミペック LG2の厚み( u m)  5.6 2.8 10.4 5.7 1.1 0.6 0.1 Sumipec LG2 thickness (um)
Tダイ温度 ( ) 250 250 250 250 250 250 250 リップ温度 ) 250 250 250 230 230 230 230 T die temperature () 250 250 250 250 250 250 250 Lip temperature) 250 250 250 230 230 230 230
(Tダイのリップ間隙/フィルム厚 (T-die lip gap / film thickness
15 15 15 15 15 15 20 み)  15 15 15 15 15 15 20 only)
熱変形温度 C) 135 135 135 135 135 135 132 破断点伸度 (%) 10 4 93 1 1 13 15 15 破断強度(MPa) 77 72 75 79 82 80 80 全光線透過率 (%) 93 93 93 93 93 93 93 ヘイズ(%〉 0.4 0.5 0.5 0.3 0.4 0.7 1.0 面内位相差(nm) 0.8 0.7 1.1 0.6 0.9 0.8 0.8 厚み方向位相差(nm) 0.4 0.3 1.3 0.5 0.8 0.6 0.6 光弾性係数(1 0— 12Pa— 0.7 0.6 0.7 0.6 0.6 0.6 0.7 型抜きテス卜 Pass Pass Pass Pass Pass Pass Pass 鉛筆硬度 3B 3B 2B 3B 3B 4B 6B 波長 380nmの光線透過率(%) 90 91 90 90 90 90 90 耐折回数 (回) 1000 1032 10 1050 1324 1500 1895 表面粗さ(nm) 12 15 14 8 11 18 38 2] Thermal deformation temperature C) 135 135 135 135 135 135 132 Elongation at break (%) 10 4 93 1 1 13 15 15 Breaking strength (MPa) 77 72 75 79 82 80 80 Total light transmittance (%) 93 93 93 93 93 93 93 haze (%> 0.4 0.5 0.5 0.3 0.4 0.7 1.0 plane retardation (nm) 0.8 0.7 1.1 0.6 0.9 0.8 0.8 thickness direction retardation (nm) 0.4 0.3 1.3 0.5 0.8 0.6 0.6 photoelastic coefficient (1 0 12 Pa— 0.7 0.6 0.7 0.6 0.6 0.6 0.7 Die-cutting test 卜 Pass Pass Pass Pass Pass Pass Pass Pencil hardness 3B 3B 2B 3B 3B 4B 6B Light transmittance of wavelength 380nm (%) 90 91 90 90 90 90 90 ) 1000 1032 10 1050 1324 1500 1895 Surface roughness (nm) 12 15 14 8 11 18 38 2]
実施例 8 実施例 9 実施例 1 0 実施例 1 1 比較例 1 比較例 2 比較例 3 積餍数 5層 9層 3層 3層 1層 1層 1層 全体厚み( i m) 40 40 40 40 40 80 40 アクリル樹脂 A2または 3.1 1.6 5.7 0.08 0 0 5.7 スミペック LG2の厚み( m) Example 8 Example 9 Example 1 0 Example 1 1 Comparative example 1 Comparative example 2 Comparative example 3 Stack factor 5 layers 9 layers 3 layers 3 layers 1 layers 1 layers 1 layers Overall thickness (im) 40 40 40 40 40 80 40 Acrylic resin A2 or 3.1 1.6 5.7 0.08 0 0 5.7 Sumipec LG2 thickness (m)
Tダイ温度 (eC) 250 250 250 250 250 250 230 リップ温度 (Dc) 230 230 230 230 一 一 210T die temperature ( e C) 250 250 250 250 250 250 230 Lip temperature ( D c) 230 230 230 230 One 210
(Tダイのリップ間隙 フイルム厚 15 15 15 15 15 15 15 み) (T-die lip gap film thickness 15 15 15 15 15 15 15 only)
熱変形温度 (°c) 135 135 132 Ϊ 30 130 135 105 破断点伸度(%) 20 20 13 18 20 0.5 10 破断強度(MPa) 100 100 69 75 65 1 75 全光線透過率 (%) 93 93 92 93 92 93 92 ヘイズ(½) 0.4 0.4 0.3 1.5 7.5 0.3 1.2 面内位相差(nm) 0.7 0.6 0.6 0.7 1 1.3 2.2 厚み方向位相差(nm) 0.5 0.5 0.5 0.8 1.3 3.9 -0.3 光弾性係数(10— 12Pa—1 ) 0.6 0.5 0.6 0.6 1.2 1.5 -3.8 型抜きテス卜 Pass Pass Pass Pass Fail Fail Pass 鉛筆硬度 4B 4B 4B 6B 6B以下 6B 6B 波長 380nmの光線透過率(%) 90 90 4 91 91 90 90 耐折回数 (回) 2500 2800 1500 1982 2000 1 1010 表面粗さ(nm) 12 12 9 45 81 10 15 産業上の利用可能性 Thermal deformation temperature (° c) 135 135 132 Ϊ 30 130 135 105 Elongation at break (%) 20 20 13 18 20 0.5 10 Breaking strength (MPa) 100 100 69 75 65 1 75 Total light transmittance (%) 93 93 92 93 92 93 92 Haze (½) 0.4 0.4 0.3 1.5 7.5 0.3 1.2 In-plane retardation (nm) 0.7 0.6 0.6 0.7 1 1.3 2.2 Thickness direction retardation (nm) 0.5 0.5 0.5 0.8 1.3 3.9 -0.3 Photoelastic coefficient (10 — 12 Pa— 1 ) 0.6 0.5 0.6 0.6 1.2 1.5 -3.8 Die-cutting test 卜 Pass Pass Pass Pass Fail Fail Pass Pencil hardness 4B 4B 4B 6B 6B or less 6B 6B Light transmittance at wavelength 380nm (%) 90 90 4 91 91 90 90 Number of folding times (times) 2500 2800 1500 1982 2000 1 1010 Surface roughness (nm) 12 12 9 45 81 10 15 Industrial applicability
力、くして得られるアクリル樹脂フィルムは、その優れた透明性、耐熱性、耐光性、靱 性を活かして、ディスプレイ機器に使用される光学フィルターや、電気'電子部品、 自 動車部品、機械機構部品、 OA機器、家電機器などのカバーおよびそれらの部品類 、一般雑貨など種々の用途に用いることができる。  Acrylic resin film that can be obtained through strength and strength makes use of its excellent transparency, heat resistance, light resistance, and toughness to make use of optical filters, electrical and electronic parts, automotive parts, mechanical mechanisms used in display equipment. It can be used for various applications such as covers for parts, OA equipment, home appliances, etc. and their parts and general goods.

Claims

請求の範囲 少なくとも 3層からなるアクリル樹脂フィルムであって、少なくとも 1層は、下記構造式 (1)で表されるダルタル酸無水物単位を含有するアクリル樹脂 (A)と弾性体粒子(B) とを含むアクリル樹脂組成物からなり、かつ、該アクリル樹脂 (A)および該弾性体粒 子(B)の合計を 100質量部として、該アクリル樹脂 (A)を 50〜95質量部、該弾性体 粒子(B)を 5〜50質量部含有し、該少なくとも 1層を挟む少なくとも 2層は、前記アタリ ル樹脂 (A)からなり、かつ、前記弾性体粒子(B)を含有していないことを特徴とする アクリル樹脂フィルム。 Claims An acrylic resin film comprising at least three layers, wherein at least one layer comprises an acrylic resin (A) containing a dartaric anhydride unit represented by the following structural formula (1) and elastic particles (B) And the total amount of the acrylic resin (A) and the elastic particles (B) is 100 parts by mass, and the acrylic resin (A) is 50 to 95 parts by mass. 5 to 50 parts by mass of the body particles (B), and at least two layers sandwiching the at least one layer are made of the talyl resin (A) and do not contain the elastic particles (B). Acrylic resin film characterized by
[化 1]  [Chemical 1]
Figure imgf000048_0001
Figure imgf000048_0001
(上記式中、
Figure imgf000048_0002
R2は、同一または相異なる水素原子または炭素数 1〜5のアルキル 基を表す。 )
(In the above formula,
Figure imgf000048_0002
R 2 represents the same or different hydrogen atoms or alkyl groups having 1 to 5 carbon atoms. )
[2] 前記少なくとも 2層は、それぞれの層の厚みが 0· ; 1 m以上 20 m以下である、請 求項 1に記載のアクリル樹脂フィルム。  [2] The acrylic resin film according to claim 1, wherein each of the at least two layers has a thickness of 0 ·; 1 m or more and 20 m or less.
[3] 全光線透過率が 91 %以上であり、ヘイズが 1. 0%以下である、請求項 1または 2に 記載のアクリル樹脂フィルム。 [3] The acrylic resin film according to claim 1 or 2, wherein the total light transmittance is 91% or more and the haze is 1.0% or less.
[4] 前記弾性体粒子(B)は、内層がアクリル酸アルキルエステル単位および/または 芳香族ビュルを含有するゴム弾性体であり、外層が上記構造式(1)で表されるグルタ ル酸無水物単位を含有するアクリル樹脂を主成分とする重合体であり、該弾性体粒 子(B)と前記アクリル樹脂 (A)の屈折率差が 0. 01以下である、請求項;!〜 3のいず れかに記載のアクリル樹脂フィルム。 [4] The elastic particles (B) are rubber elastic bodies in which the inner layer contains an alkyl acrylate unit and / or an aromatic bullet, and the outer layer is a glutaric anhydride represented by the structural formula (1). A polymer comprising an acrylic resin containing a physical unit as a main component, wherein the refractive index difference between the elastic particles (B) and the acrylic resin (A) is 0.01 or less; An acrylic resin film according to any one of the above.
[5] 前記弾性体粒子(B)の重量平均粒子径が 50nm以上 400nm以下である、請求項[5] The weight average particle diameter of the elastic particles (B) is 50 nm or more and 400 nm or less.
1〜4のいずれかに記載のアクリル樹脂フィルム。 The acrylic resin film in any one of 1-4.
[6] 前記アクリル樹脂 (A)は、該アクリル樹脂 (A)全体を 100質量部としてメタクリル酸メ チル単位 50〜90質量部およびグルタル酸無水物単位 10〜50質量部からなる、請 求項 1〜5のいずれかに記載のアクリル樹脂フィルム。 [6] The acrylic resin (A) is composed of methacrylic acid mem The acrylic resin film according to any one of claims 1 to 5, comprising 50 to 90 parts by mass of a chill unit and 10 to 50 parts by mass of a glutaric anhydride unit.
[7] 破断点伸度が 4%以上である、請求項 1〜6のいずれかに記載のアクリル樹脂フィ ルム。 [7] The acrylic resin film according to any one of claims 1 to 6, having an elongation at break of 4% or more.
[8] 波長 590nmの光に対するアクリル樹脂フィルムの面内の位相差が lOnm以下であ る、請求項 1〜7のいずれかに記載のアクリル樹脂フィルム。  [8] The acrylic resin film according to any one of [1] to [7], wherein an in-plane retardation of the acrylic resin film with respect to light having a wavelength of 590 nm is lOnm or less.
[9] 波長 590nmの光に対するフィルム厚み方向の位相差が lOnm以下である、請求 項 1〜8のいずれかに記載のアクリル樹脂フィルム。 [9] The acrylic resin film according to any one of [1] to [8], wherein a retardation in a film thickness direction with respect to light having a wavelength of 590 nm is lOnm or less.
[10] 波長 589nmの光に対する光弾性係数が— 2 X 10_12/Pa以上、 2 X 10— 12/Pa 以下である、請求項 1〜9のいずれかに記載のアクリル樹脂フィルム。 Photoelastic coefficient for [10] Wavelength 589nm of light - 2 X 10_ 12 / Pa or more, or less 2 X 10- 12 / Pa, the acrylic resin film according to any one of claims 1 to 9.
[11] 紫外線吸収剤をアクリル樹脂フィルム 100質量部に対して 0. 1質量部以上 5質量 部以下含有する、請求項 1〜10のいずれかに記載のアクリル樹脂フィルム。 [11] The acrylic resin film according to any one of [1] to [10], wherein the ultraviolet absorber is contained in an amount of 0.1 parts by mass to 5 parts by mass with respect to 100 parts by mass of the acrylic resin film.
[12] 波長 380nmの光の光線透過率が 10%以下である、請求項;!〜 11のいずれかに 記載のアクリル樹脂フィルム。 [12] The acrylic resin film according to any one of [10] to [11], wherein the light transmittance of light having a wavelength of 380 nm is 10% or less.
[13] 熱変形温度が 110°C以上である、請求項 1〜; 12のいずれかに記載のアクリル樹脂 フィルム。 [13] The acrylic resin film according to any one of [1] to [12], wherein the heat distortion temperature is 110 ° C. or higher.
[14] 前記少なくとも 2層のうちの少なくとも 1層は、その表面にハードコート層および/ま たは反射防止膜を有している、請求項 1〜; 13のいずれかに記載のアクリル樹脂フィ ルム。  [14] The acrylic resin film according to any one of [1] to [13], wherein at least one of the at least two layers has a hard coat layer and / or an antireflection film on a surface thereof. Rum.
[15] 請求項 1〜; 14のいずれかに記載のアクリル樹脂フィルムからなる光学フィルター。  [15] An optical filter comprising the acrylic resin film according to any one of [1] to [14].
[16] 請求項 1〜; 15のいずれかに記載のアクリル樹脂フィルムからなる偏光板保護フィル ム。 [16] A polarizing plate protective film comprising the acrylic resin film according to any one of [1] to [15].
PCT/JP2007/065701 2006-08-18 2007-08-10 Acrylic resin film WO2008020570A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007540438A JPWO2008020570A1 (en) 2006-08-18 2007-08-10 Acrylic resin film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006223018 2006-08-18
JP2006-223018 2006-08-18

Publications (1)

Publication Number Publication Date
WO2008020570A1 true WO2008020570A1 (en) 2008-02-21

Family

ID=39082095

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/065701 WO2008020570A1 (en) 2006-08-18 2007-08-10 Acrylic resin film

Country Status (3)

Country Link
JP (1) JPWO2008020570A1 (en)
TW (1) TW200817179A (en)
WO (1) WO2008020570A1 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009263566A (en) * 2008-04-28 2009-11-12 Sumitomo Chemical Co Ltd Method for producing methacrylic resin composition
JP2009280750A (en) * 2008-05-26 2009-12-03 Kaneka Corp Optical film and polarizing plate
JP2009292871A (en) * 2008-06-02 2009-12-17 Fujifilm Corp Acrylic film and method for producing the same, and polarizing plate, optical compensation film, antireflection film and liquid crystal display device
JP2010024338A (en) * 2008-07-18 2010-02-04 Asahi Kasei Chemicals Corp Optical film
JP2010096919A (en) * 2008-10-15 2010-04-30 Asahi Kasei Chemicals Corp Optical film
JP2010231015A (en) * 2009-03-27 2010-10-14 Sumitomo Chemical Co Ltd Polarizer protection film, polarizing plate, and liquid crystal display
JP2012180423A (en) * 2011-02-28 2012-09-20 Sumitomo Chemical Co Ltd Method of manufacturing acrylic resin film, and acrylic resin film and polarizing plate manufactured by the method
JP2015221903A (en) * 2015-07-06 2015-12-10 富士フイルム株式会社 Acrylic film and method for producing the same
WO2016084740A1 (en) * 2014-11-26 2016-06-02 三菱レイヨン株式会社 Resin laminate film, method for manufacturing same, and melamine decorative panel
JPWO2015115537A1 (en) * 2014-01-29 2017-03-23 日立化成株式会社 Resin composition, method for manufacturing semiconductor device using resin composition, and solid-state imaging device
JP2017187619A (en) * 2016-04-06 2017-10-12 東レ株式会社 Optical film
US10358580B2 (en) 2014-01-29 2019-07-23 Hitachi Chemical Company, Ltd. Adhesive composition, resin cured product obtained from adhesive composition, method for manufacturing semiconductor device using adhesive composition, and solid-state imaging element

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2295515B1 (en) 2008-07-01 2013-09-11 LG Chem, Ltd. Adhesive composition, protective film for a polarizing plate, polarizing plate, and liquid crystal display
JP2013061600A (en) * 2011-09-15 2013-04-04 Keiwa Inc Optical sheet for three-dimentional (3d) glasses and 3d glasses
WO2017204243A1 (en) * 2016-05-27 2017-11-30 株式会社クラレ Thermoplastic resin composition, molded body, film, and laminate

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004051946A (en) * 2002-05-31 2004-02-19 Toray Ind Inc Sheet and its laminated sheet
WO2005105918A1 (en) * 2004-04-28 2005-11-10 Toray Industries, Inc. Acrylic resin films and process for producing the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004051946A (en) * 2002-05-31 2004-02-19 Toray Ind Inc Sheet and its laminated sheet
WO2005105918A1 (en) * 2004-04-28 2005-11-10 Toray Industries, Inc. Acrylic resin films and process for producing the same

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009263566A (en) * 2008-04-28 2009-11-12 Sumitomo Chemical Co Ltd Method for producing methacrylic resin composition
JP2009280750A (en) * 2008-05-26 2009-12-03 Kaneka Corp Optical film and polarizing plate
JP2009292871A (en) * 2008-06-02 2009-12-17 Fujifilm Corp Acrylic film and method for producing the same, and polarizing plate, optical compensation film, antireflection film and liquid crystal display device
JP2010024338A (en) * 2008-07-18 2010-02-04 Asahi Kasei Chemicals Corp Optical film
JP2010096919A (en) * 2008-10-15 2010-04-30 Asahi Kasei Chemicals Corp Optical film
JP2010231015A (en) * 2009-03-27 2010-10-14 Sumitomo Chemical Co Ltd Polarizer protection film, polarizing plate, and liquid crystal display
JP2012180423A (en) * 2011-02-28 2012-09-20 Sumitomo Chemical Co Ltd Method of manufacturing acrylic resin film, and acrylic resin film and polarizing plate manufactured by the method
JPWO2015115537A1 (en) * 2014-01-29 2017-03-23 日立化成株式会社 Resin composition, method for manufacturing semiconductor device using resin composition, and solid-state imaging device
US10358580B2 (en) 2014-01-29 2019-07-23 Hitachi Chemical Company, Ltd. Adhesive composition, resin cured product obtained from adhesive composition, method for manufacturing semiconductor device using adhesive composition, and solid-state imaging element
US10808150B2 (en) 2014-01-29 2020-10-20 Hitachi Chemical Company, Ltd. Resin composition, method for manufacturing semiconductor device using resin composition, and solid-state imaging element
WO2016084740A1 (en) * 2014-11-26 2016-06-02 三菱レイヨン株式会社 Resin laminate film, method for manufacturing same, and melamine decorative panel
JPWO2016084740A1 (en) * 2014-11-26 2017-08-31 三菱ケミカル株式会社 Resin laminated film, method for producing the same, and melamine decorative board
JP2018171935A (en) * 2014-11-26 2018-11-08 三菱ケミカル株式会社 Laminate film, protection film, melamine decorative sheet surface protection film, and melamine decorative sheet
JP2015221903A (en) * 2015-07-06 2015-12-10 富士フイルム株式会社 Acrylic film and method for producing the same
JP2017187619A (en) * 2016-04-06 2017-10-12 東レ株式会社 Optical film

Also Published As

Publication number Publication date
JPWO2008020570A1 (en) 2010-01-07
TW200817179A (en) 2008-04-16

Similar Documents

Publication Publication Date Title
WO2008020570A1 (en) Acrylic resin film
JPWO2005105918A1 (en) Acrylic resin film and manufacturing method
KR102059714B1 (en) Resin composition and film thereof
JP2008239739A (en) Thermoplastic resin film and production method thereof
KR20150023238A (en) Non-birefringent resin material and film
US10598822B2 (en) Optical resin material and optical film
JP6122327B2 (en) Thermoplastic resin composition, method for producing the same, molded product, and film
JPWO2007026659A1 (en) Polarizer protective film, polarizing plate, and image display device
JP2006241263A (en) Method for producing acrylic resin composition film
JP2007118266A (en) Acrylic film and its manufacturing method
JP2005314534A (en) Acrylic resin film, laminated film and optical filter
WO2016157913A1 (en) Process for producing stretched acrylic-resin film
KR101074996B1 (en) Thermoplastic resin composition, molded article, and film
JP2008074918A (en) Acrylic resin film for optical use
JP2006283013A (en) Acrylic resin film for optical use
JP2007176982A (en) Method for producing acrylic film and acrylic film produced thereby
JP2006206881A (en) Acrylic resin film and its production method
JP5200876B2 (en) Optical film, polarizing plate and liquid crystal display device using the same
JP2016169282A (en) Methacrylic resin composition
WO2015075941A1 (en) Resin material and film thereof
JP2009227908A (en) Thermoplastic resin film and manufacturing method therefor
JP2008239741A (en) Acrylic resin film and method for producing the same
JP2009184251A (en) Manufacturing method of thermoplastic resin film
JP2009191089A (en) Thermoplastic resin composition, method for manufacturing the same and molded product
JP2009235160A (en) Acrylic resin film

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2007540438

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07792346

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 07792346

Country of ref document: EP

Kind code of ref document: A1