WO2008016172A1 - Metastasis inhibitor - Google Patents

Metastasis inhibitor Download PDF

Info

Publication number
WO2008016172A1
WO2008016172A1 PCT/JP2007/065385 JP2007065385W WO2008016172A1 WO 2008016172 A1 WO2008016172 A1 WO 2008016172A1 JP 2007065385 W JP2007065385 W JP 2007065385W WO 2008016172 A1 WO2008016172 A1 WO 2008016172A1
Authority
WO
WIPO (PCT)
Prior art keywords
metastasis
bone
lip
cancer
tumor
Prior art date
Application number
PCT/JP2007/065385
Other languages
French (fr)
Japanese (ja)
Inventor
Koji Hiraoka
Kensei Nagata
Michihiko Kuwano
Mayumi Ono
Original Assignee
Kurume University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurume University filed Critical Kurume University
Publication of WO2008016172A1 publication Critical patent/WO2008016172A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/66Phosphorus compounds
    • A61K31/662Phosphorus acids or esters thereof having P—C bonds, e.g. foscarnet, trichlorfon
    • A61K31/663Compounds having two or more phosphorus acid groups or esters thereof, e.g. clodronic acid, pamidronic acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/127Liposomes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/04Antineoplastic agents specific for metastasis

Definitions

  • the present invention relates to a tumor metastasis inhibitor. More specifically, the present invention relates to a tumor tumor comprising administering to a cancer patient an effective amount of a tumor metastasis inhibitor, a ribosomal bisphosphonate, comprising a ribosomal bisphosphonate.
  • the present invention relates to a method for inhibiting metastasis of cerebral tumors, and the use of ribosomal bisphosphonates for inhibiting metastasis of cancer patients.
  • Non-Patent Documents 3 to 5 Macrophages are particularly attracting attention as stromal inflammatory responses in cancer. It has been reported that the prognosis of cancer patients and the degree of invasion of tumor-related macrophages are strongly related in many types of human cancer, including our previous presentations (Non-Patent Documents 6 to 11).
  • Non-patent Document 12 it is well known that the presence or absence of neovascularization of cancer is important not only for cancer growth but also for metastasis. Furthermore, the present inventors experimentally proved that macrophage infiltration, which is one of important inflammatory reactions, is also strongly involved in angiogenesis. In other words, new facts have been reported that show the ability to induce angiogenesis when macrophages infiltrate around cancer cells (Non-Patent Documents 9, 13, and 14). At the same time, we observed that the growth of lung cancer tumors was markedly controlled, and reported a part of it! (Non-Patent Documents 15 and 16).
  • Bone metastasis is seen in many cancers such as prostate cancer, breast cancer, and lung cancer, and is a serious problem of advanced cancer that causes fractures and nerve paralysis. It is urgent to present a treatment strategy for bone metastases to improve patient QOL.
  • Non-patent Document 17 bisphosphonate-based preparations with high specificity for osteoclasts are often used for the treatment of bone metastases! /, (Non-patent Document 17).
  • osteoclasts are involved in the development of bone metastases, and the clinical application of bisphosphonate preparations targeting them and the development of bisphosphonate preparations with stronger affinity for osteoclasts are underway.
  • reveromycin A is known as a bone absorption inhibitor that can selectively induce apoptosis in activated osteoclasts (Non-patent Document 17).
  • Non-patent Document 18 discloses that bisphosphonate clodronate ribosome preparations inhibit tumor growth by reducing tumor-associated macrophages, but these ribosome preparations are known to inhibit bone metastasis. There is no disclosure or suggestion of suppressing this (Non-patent Document 18).
  • Non-thousand references oussens, L.M., ana vVerb, L. Inflammation and cancer. Nature, 420: 860-867, 2002.
  • Non-Patent Document 2 Balkwill, F., and Mantovani, A. Inflammation and cancer: back to Virc how? Lancet, 357: 539-545, 2001.
  • Non-Patent Document 3 Pollard, J.W. Tumour—educated macrophages promote tumor progress ion and metastasis. Nat Rev Cancer, 4: 71-78, 2004.
  • Non-Patent Document 4 Kuwano, ⁇ ⁇ , Basaki, ⁇ ⁇ , Kuwano, ⁇ ⁇ , Nakao, S., Oie, S., YN Kimur a, T. Fujn, and Ono, M. The critical role of inflammatory cell infiltration in "New Angiogenesis Research, Nova Science Publishers, Inc., New York, 157-170, 2005. in tumor an giogenesis-a target for antitumor drug developmemt?
  • Non-Patent Document 5 Lewis, C.E., and Pollard, J.W., Distinct role of macrophages in differnt tumor microenvironments. Cancer Res., 66: 605-612, 2006.
  • Non-Patent Document 6 Leek, RD, Lewis, CE, Whitehouse, R., Greenall, M., Clarke, J., an d Harris, AL Association of macrophage infiltration with angiogenesis prognosis in i nvasive breast carcinoma.Cancer Res., 56: 4625-4629, 1996.
  • Non-Patent Document 7 Nishie, ⁇ ⁇ , Ono, ⁇ ⁇ , Shono, ⁇ ⁇ , Fukushi, J., Otsubo, ⁇ ⁇ , Onoue, ⁇ ⁇ , Ito, ⁇ ⁇ , Inamura, ⁇ ⁇ , Ikezaki, ke ⁇ , Fukui, ⁇ ⁇ , Iwaki, ⁇ ⁇ , and Kuwano, M. Macrophage infiltration and home oxygenase- 1 expression correlate with angiogenesis in human gliomas. Clin Cancer Res., 5: 1107-1113, 1999.
  • Patent Document 8 Ono, ⁇ ⁇ , Torisu, ⁇ ⁇ , Fukushi, J., Nishie, ⁇ ⁇ , and Kuwano, M. Biologi cal implications of macrophage infiltration in human tumor angiogenesis. Cancer Che mother Pharmacol., 43: 69 -71, 1999.
  • Non-Patent Document 9 Torisu, ⁇ ⁇ , Ono, ⁇ ⁇ , Kiryu, ⁇ ⁇ , Furue, ⁇ ⁇ , Ohmoto, ⁇ ⁇ , Nakayama, J ⁇ , Nishioka, ⁇ ⁇ , Sone, S., and Kuwano, M. Macrophage infiltration correlates with tu mor stage and angiogenesis in human malignant melanoma: possible involvement of T NFalpha and IL-1 alpha.Int J Cancer, 85: 182-188, 2000.
  • Non-Patent Document 10 Torisu, ⁇ _ ⁇ ⁇ , Furue, ⁇ ⁇ , Kuwano, ⁇ ⁇ and Ono, M. Co-expression of thymidine phosphorylase and heme oxygenase-1 in macrophages in human malignant t vertical growth melanomas. Jpn. J. Cancer Res., 91: 906-910, 2000.
  • Non-patent literature ll Schoppmann, SF, Birner, ⁇ ⁇ , Stockl, J., Kalt, R., Ullrich, R., Cauci g, Kriehuber, ⁇ ⁇ , Nagy, ⁇ ⁇ , Alitalo, ⁇ ⁇ , and Kerjaschki, D., Tumor-associated m acrophages express lymphatic endothelial growth factors and are related to peritumo ral lymphangiogenesis. Am J Pathol., 1 1: 947-956, 2002.
  • Non-Patent Document 12 Hanahan, D., and Folkm n, J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell. 86: 353-364, 1996.
  • Patent Literature 13 Kuwano, ⁇ ⁇ , Nakao, S., Yamamoto, ⁇ ⁇ , Tsuneyoshi, ⁇ ⁇ , Yam moto, ⁇ ⁇ , Kuwano, ⁇ ⁇ , and Ono, ⁇ ⁇ Cyclooxygenase2 is a key enzyme for inflammatory c ytokine-induced angiogenesis. FASEB J., 18: 300-310, 2004.
  • Patents fel4 Nakao, S., Kuwano, ⁇ ⁇ , Tsutsumi-Miyahara, C., Ueda, S., Hamano, S., Sonoda, ⁇ ⁇ , Saijo, ⁇ ⁇ , Nukiwa, ⁇ ⁇ , Ishibashi, ⁇ ⁇ , Kuwano, ⁇ ⁇ , and Ono, M. Infiltration of COX2-expressing macrophage is prerequisite for IL-lbeta- induced neovas cularization and tumor growth. J. Clinic. Invest., 115: 2979-2991, 2005.
  • Non-Patent Document 15 Kimura, YN, Nakao, S., Basaki S., Ueda, S., Takamori, S., Shirouz u,., Uwano, M., and Ono, M. The role of macrophages in tumor growth and angi ogenesis by lung cancer cells-inhibition of bisphosphonate-liposomes.97th Annual Meeting of American Association for Cancer Research, April 1-5, 200b, Washington DC, USA.
  • Non-Patent Document 16 Nobuhiko Kuwano and Ayumi Ono, Angiogenesis Inhibitors. Latest Trends from Development to Clinical Targeting of Molecular Cancer Drugs 215: 607-612, 2005
  • Non-patent document 17 Makoto Kawatani, Hiroyuki Nagata, Cancer bone metastasis drug targeting osteoclasts. Latest molecular trend drug development from clinical development. History of medicine 215: 629-633, 2005
  • Non-patent Reference 18 SM Zeisberger, B Odermatt, C Marty, AHM Zehnder-Fjallman, B allmer-Hofer and RA Schillerer, Clodronate-liposome-mediated depletion of turn or-associated macrophages: a new and hignly effective antiangiongenic therapy appr oach. of Cancer (2006) 95, 272-281
  • an object of the present invention is to provide a method for inhibiting bone metastasis and / or muscle metastasis!
  • the present inventors used a drug obtained by ribosomeizing clodronate, which is a bisphosphonate preparation (hereinafter also abbreviated as C12MDP-LIP), as a human lung cancer cell (HARA-B) with high bone / muscle metastasis ability.
  • C12MDP-LIP bisphosphonate preparation
  • HAA-B human lung cancer cell
  • the present invention relates to the following.
  • a tumor metastasis inhibitor comprising a ribosomal bisphosphonate.
  • the use of the agent of the present invention makes it possible to suppress metastasis that tends to occur after prognosis, excision, etc. of the tumor, especially bone metastasis and / or muscle metastasis.
  • FIG. 1 is a graph showing the results of confirming the effect of suppressing the number of macrophages in blood by C12MDP-LIP by flow cytometry.
  • the vertical axis indicates the percentage (%) of F4 / 80 positive and CD ib positive cells.
  • the graph shows the average soil standard deviation, and * indicates 0.05.
  • Stimulation with C12MDP-LIP 200 L showed a suppression tendency although there was no significant difference in macrophage suppression effect. There was a significant difference in the inhibitory effect of C12MDP-LIP 400 L after 24 hours (1 day).
  • FIG. 2 is a diagram showing bone metastasis and muscle metastasis in a metastasis model mouse.
  • A X-ray findings 6 weeks after transplantation of 2 X 10 5 HARA-B cells into the mouse left ventricle. The arrow indicates the site of bone metastasis, and multiple bone metastases are observed.
  • B Pathologically shows that cancer cells grow in alveolar form in bone tissue (upper figure) and in muscle (lower figure). In the figure, B represents bone, T represents tumor, and M represents muscle. The bar indicates 200 m.
  • FIG. 3 shows the inhibitory effects of clodronate, ribosomal clodronate and reveromycin A on bone metastasis.
  • the arrow indicates osteolytic bone metastasis.
  • mice (n 8) injected with clodronate 160 amol / kg once / week ip, all cases showed multiple bone metastases.
  • mice (n 7) injected with C12MDP-LIP 200 once / day subcutaneously in the ridge, 4 mice showed inhibition of the number of bone metastases.
  • mice (n 9) injected with C12MDP-LIP 400 L subcutaneously once every 3 days, bone metastasis was not observed in 8 mice.
  • mice (n 9) injected subcutaneously daily with reveromycin A 10 mg / kg, no bone metastasis was observed in 8 mice.
  • FIG. 4 After bone metastasis was formed in mice transplanted with 2 X 10 5 HARA-B cells in the left ventricle, C12MDP-LIP was injected to examine the inhibitory effect on tumor growth at the bone metastasis site.
  • FIG. 5 is a graph showing a decrease in macrophage infiltration by ribosomal clodronate administration.
  • A Microscopic image showing F4 / 80 positive cells in HARA-B tumors when injected with PBS-LIP and C12MDP-LIP 400 L.
  • B The vertical axis shows the number of F4 / 80 positive cells per field in the microscopic observation of HARA-B tumor.
  • FIG. 6 is a graph showing a decrease in osteoclasts by administration of ribosomal clodronate.
  • A. This is a microscopic image showing TRAP-positive cells in the bone marrow when PBS-LIP, clodronate, 400 ⁇ L of C12MDP-LIP and riberomycin IV were injected.
  • B. The vertical axis shows the number of TRAP positive cells per visual field in bone marrow microscopic observation.
  • the suppression of metastasis means that the primary tumor has not yet metastasized! / ,! It refers to both inhibiting tumor metastasis and inhibiting further tumor metastasis and / or tumor growth at the site of metastasis when the tumor has already metastasized. Therefore, the metastasis inhibitor of the present invention can be administered to patients with tumor metastasis and patients with a high risk of tumor metastasis.
  • the metastasis inhibitor of the present invention may be administered to a subject before tumor metastasis occurs, or may be administered to a subject after tumor metastasis occurs.
  • the metastasis inhibitor of the present invention is not particularly limited as long as it is a metastasis involving macrophages, and is a force applicable to metastasis to any organ, preferably bone metastasis and muscle metastasis.
  • Bone metastasis that can be suppressed by the metastasis inhibitor of the present invention refers to a condition in which lung cancer, breast cancer, prostate cancer, kidney cancer, stomach cancer, uterine cancer, liver cancer, etc. have metastasized to bone, for example, breast cancer bone metastasis Is a disease in which breast cancer metastasizes to bone and destroys bone, and its main symptom is bone pain. In some cases, bones become brittle and prone to fractures. When cancer metastasizes to the spine and breaks the bone, nerves are compressed and paralysis may occur. The appearance of these symptoms significantly reduces the patient's QOL.
  • Muscle metastasis that can be suppressed by the metastasis inhibitor of the present invention is a pathological condition in which lung cancer, liver cancer, or the like metastasizes into muscles to form a mass, and an intramuscular mass is pain or exercise restricted. Cause.
  • the subject that can be administered with the metastasis inhibitor of the present invention can be any animal species.
  • animal species include mammals such as primates and rodents (for example, humans, monkeys, chimpanzees, dogs, cats, horses, mice, pigs, hidges, goats, mice, Rat, guinea pig, turkey, magpie) and birds (eg, chicken, quail, ducks, geese, turkeys, ostriches, breams, etc.). These animals include pets, livestock, and experimental animals.
  • the metastasis inhibitor of the present invention is selected from those that can be safely administered to these animals. Of these, administration to humans is preferred.
  • the metastasis inhibitor of the present invention contains a ribosomal bisphosphonate.
  • Examples of the bisphosphonate used in the metastasis inhibitor of the present invention include etidronate, clodronate (clodronic acid disodium salt), nomidronate, alendronate, indronate, tiludone, risedronate, inca Examples include, but are not limited to, dronate, zoledronate, minodronate, etc.
  • PO R 2 is an arbitrary substituent) or a salt thereof (sodium salt, potassium
  • Any bisphosphonate based drug that can be developed in the future can be used.
  • clodronate is used.
  • Raceal bisphosphonate drug refers to a bisphosphonate drug contained in a liposome. Bisphosphonates are present in the internal aqueous phase or lipid bilayer of the ribosome.
  • the metastasis inhibitor of the present invention may contain one or more bisphosphonate drugs in the ribosome. Where two or more of the agents are included, any combination of the agents listed above may be included. Examples include, but are not limited to, a combination of clodronate and one or more other bisphosphonate drugs, such as a combination with a third generation drug such as zolodronate, which has extremely high bone resorption activity.
  • the metastasis inhibitor of the present invention may contain other active ingredients in the ribosome in addition to the bisphosphonate drug.
  • active ingredients include substances that can damage macrophages by a mechanism different from that of bisphosphonates (hereinafter also referred to as macrophage damaging substances), preferably macrophages that induce apoptosis of osteoclasts, etc.
  • the force S is not limited to these.
  • anticancer agents having a strong cell killing effect such as paclitaxel, cisplatin, etoposide can be used as other active ingredients.
  • components and drugs that destroy the ribosome structure when ribosomeized must be excluded.
  • two or more bisphosphonate drugs are added or other active ingredients are contained in the ribosome in addition to the bisphosphonate drug, two or more bisphosphonate drugs (or bisphosphonate drugs and Other active ingredients) Alternatively, one drug may be contained in each ribosome, and the resulting drug-containing ribosomes may be mixed to form a preparation.
  • the present invention is based on the discovery that macrophages are involved in the metastasis of cancer to various organs. Accordingly, the metastasis of macrophages other than bisphosphonates can be ribosomed (contained in ribosomes) and targeted to macrophages to selectively damage them, thereby inhibiting cancer metastasis. It is.
  • Macrophage damaging substances include, for example, the above-mentioned substances that induce apoptosis of macrophages, and anti-cancer drugs with strong cell-killing effects such as paclitaxel, cisbratin, etoposide, etc. (however, components that destroy the ribosome structure when ribosomally converted) Drugs must be excluded! /,), But not limited to them! /.
  • Ribosome generally refers to a vesicle composed of a lipid bilayer membrane. Ribosomes can encapsulate various substances within the internal aqueous phase or lipid bilayer.
  • the component constituting the ribosome is not particularly limited as long as it is a substance generally used as a ribosome component. Ribosome components include, but are not limited to, phospholipids, glycolipids, sterols and the like. As long as the ribosomes formed are taken up by macrophages, the ribosomes of the present invention may contain these ribosome components in any combination or ratio! /. Those skilled in the art can easily adjust such combinations and ratios.
  • the liposomal components that can be used in the ribosomes of the present invention may be naturally derived, semi-synthetic or synthetic.
  • Phospholipids that can be used include phosphatidylcholine, phosphatidylserine, phosphatidylinositol, phosphatidylglycerol, phosphatidylethanolamine, sphingomyelin, phosphatidic acid, cardiolipin, egg yolk lecithin, hydrogenated egg yolk lecithin, soybean lecithin Glycated mouth phospholipids such as hydrogenated soybean lecithin, phosphatidic acid,
  • the fatty acid constituting the phospholipid is not particularly limited and may be a saturated fatty acid or an unsaturated fatty acid.
  • Glycolipids such as galacyl syl diglyceride, galacyl syl diglyceride sulfate, galactosyl ceramide, galactosyl ceramide sulfate ester NORE, latatosyl ceramide, Gandarioside G7, Gandarioside G6, Gandarioside G4 Such as glycosphingolipids.
  • sterols examples include cholesterol, dihydrocholesterol, cholesterol, cholesterol, phytosterol, cholesterol, stigmasterol, campesterol, cholestanol, lanosterol or 2,4-dihydrolanosterol. Can be mentioned. Sterols act as lipid membrane stabilizing substances.
  • the ribosome may be in any form as long as it is taken up by macrophages.
  • the form of the ribosome can be various forms known in the art. Examples of ribosome forms that can be used include MLV (multilamellar vesicles), DRV (dehydration-rehydration vesicles), LUV (large unilamellar vesicles), and SUV (small unilamellar vesicles).
  • Ribosomes are also molecules that help selectively target tumor-associated macrophages to the extent that they can retain the ability to be phagocytosed by macrophages (eg, CD23
  • Antibodies against CD14, CD16, CDl lb, CD1 lc) may be further provided on the lipid membrane.
  • the present invention is based, at least in part, on the discovery that macrophages play an important role in bone metastasis or muscle metastasis. Accordingly, another aspect of the present invention provides a bone and / or muscle metastasis inhibitor containing a macrophage-damaging substance and having a dosage form that is selectively targeted to macrophages.
  • a dosage form other than ribosome a conjugate (for example, an immunoconjugate) in which a molecule useful for selectively targeting the above macrophages and a macrophage damaging substance are bound via an appropriate linker. Gate).
  • Ribosomal bisphosphonates can be produced using various methods known per se.
  • the power to build is S.
  • Such methods include, but are not limited to, force S, including supercritical fluid method, Bangh ⁇ method, and reverse phase evaporation method.
  • the ribosomal bisphosphonate agent of the present invention is produced by the method described in the following production examples, etc., according to the method described in the above-mentioned Van Rooijen et al.
  • the metastasis inhibitor of the present invention can be used as it is as a ribosomal bisphosphonate, or can be formulated by mixing a known pharmaceutically acceptable carrier.
  • pharmaceutically acceptable carriers include, for example, excipients, binders, disintegrants, lubricants, colorants, flavoring agents, stabilizers, emulsifiers, absorption enhancers, surfactants, Examples include pH adjusting agents, preservatives, and antioxidants.
  • Such carriers are known in the art.
  • the dosage forms for formulation include tablets, powders, condyles, capsules, syrups, etc. used for oral dosage forms, as well as infusions, suppositories, injections, ointments used for parenteral dosage forms, Examples include poultices.
  • the administration route of the metastasis inhibitor of the present invention is not particularly limited, and can be administered orally or parenterally.
  • administration by injection is particularly preferred, and includes intravenous administration, subcutaneous administration, intradermal administration, intramuscular administration, intraperitoneal administration, direct administration to the affected area, intravenous infusion and the like.
  • Injections should be prepared using non-aqueous diluents (eg, glycols such as propylene glycol and polyethylene glycol, vegetable oils such as olive oil, alcohols such as ethanol, etc.), suspensions or emulsions.
  • non-aqueous diluents eg, glycols such as propylene glycol and polyethylene glycol, vegetable oils such as olive oil, alcohols such as ethanol, etc.
  • Sterilization of injections may be performed by filtration sterilization with a finolator, blending of bactericides, and the like.
  • the injection can be manufactured in the form of preparation for use. That is, it can be made into a sterile solid composition by lyophilization or the like and dissolved in sterile water for injection or other solvents before use.
  • Administration of the metastasis inhibitor of the present invention to a patient is a force that varies depending on the patient's own symptoms, severity, sex, age, body weight, etc. Usually 1 to 5000 mg as a bisphosphonate, preferably 10 This amount can be administered, for example, once or several times a day, once or several times a week, or once or twice a month.
  • the metastasis inhibitor of the present invention may be administered to a patient in combination with other agents as necessary.
  • the effect of the metastasis inhibitor of the present invention can verify the decrease in the number of macrophages in the flow cytometry with respect to the suppression of macrophages.
  • the suppression of bone and muscle metastasis can be verified by X-ray diagnosis and pathological examination. For example, in the experimental examples described below, the following was observed.
  • ribosomal bisphosphonates especially ribosomal clodronate, significantly suppressed metastasis, especially bone metastasis and / or muscle metastasis, which occurred with the progression of tumor stage, It is expected to be effective in suppressing bone metastasis and / or muscle metastasis of tumors in humans.
  • the mixture was allowed to stand at room temperature for 2 hours and then subjected to sonication, and further allowed to stand for 2 hours.
  • the solution was transferred to a centrifuge tube and centrifuged at 3000 rpm for 30 minutes. After the precipitate was washed 3 times with 40 mL of phosphate buffer, the supernatant was aspirated, dissolved in 4 mL of phosphate buffer, refrigerated at 4 degrees Celsius, and used for experiments.
  • Phosphate buffer solution (PBS) -liposome was obtained in the same manner as described above using only ribosome as a control, and clodronate-unencapsulated ribosome agent (including the above-mentioned, “PBS-LIP preparation” was prepared).
  • HAA-B Human lung cancer cells
  • the cells were kindly provided by Dr. Iguchi of Shikoku Cancer Center! /, But only! /.
  • the cells were cultured in RPMI1640 medium supplemented with 10% fetal bovine serum and subjected to the following experiment.
  • HARA-B cells (2 ⁇ 10 5 cells / 100 ⁇ L phosphate buffer) were injected into the left ventricle to produce a model mouse for metastasis.
  • HARA-B cells (2 ⁇ 10 5 per mouse) were injected into the left ventricle (day 0).
  • HARA-B cells (2 ⁇ 10 5 per mouse) were injected into the left ventricle.
  • C12MDP-LIP 400 HL per mouse once every 3 days is subcutaneously administered to mice whose bone transfer has been demonstrated by X-ray diagnosis from 3 to 5 weeks or from 4 to 6 weeks after inoculation. Administered.
  • C12 MDP-LIP 200 L stimulation showed no significant difference in macrophage inhibitory effect 24 hours later (1 day)
  • C12MDP-LIP 400 L stimulation Showed a significant difference in the inhibitory effect (see Figure 1).
  • mice treated with dosing protocol 1 were sacrificed 6 weeks after HARA-B cell inoculation and examined for the formation of bone and muscle metastases.
  • the results are shown in Table 2.
  • Tumor area (calculated as ⁇ d 2/4; d is each tumor diameter (mm)) individual tumor area in bone and muscle of each mouse expressed as the sum of.
  • the administration of C12MDP-LIP 400 ⁇ L markedly suppressed the metastasis frequency, the number of bone 'muscle metastases, and the growth of tumors in the bone' muscle.
  • the inhibitory effect on bone metastasis was superior to that of riberomycin, known as a bone resorption inhibitor.
  • liberomycin A showed little inhibitory effect on tumor growth in muscle metastases, but C12MDP-LIP also showed a tendency to suppress tumor growth in muscle metastases.
  • mice treated with dosing protocol 1 bone metastasis was assessed by X-ray diagnosis under intoxication at 4 and 6 weeks after inoculation. Bone metastasis was evaluated by radiography at 6 weeks after transplantation, and pathological examination of bone and muscle metastasis was performed. The results are shown in Fig. 3 (the arrow in the figure indicates osteolytic bone metastasis).
  • C12MDP-LIP significantly inhibited bone metastasis than clodronate. In the case of C12MDP-LIP 400 L administration, no bone metastasis was observed as in the case of reveromycin A administration.
  • Tumors were excised 6 weeks after HARA-B cell inoculation from mice treated with dosing protocol 2, then the samples were immersed in OCT compound and immediately frozen in liquid nitrogen, and 5 ⁇ m frozen sections were obtained. Prepared. For tumors derived from mice that received PBS-LIP in the same way A frozen section was obtained by the same processing. These sections were rinsed with PBS, fixed briefly in 4% paraformaldehyde / PBS, and then stained with rat anti-F4 / 80 (1: 200). The sections were then rinsed 3 times with PBS and incubated with goat anti-rat IgG and lmg / mL Alexa Fluor 488 (Molecular Probes) against F4 / 80.
  • mice treated with administration protocol 1 were collected and fixed in 10% formalin.
  • the specimens were decalcified in 10% EDTA solution for 1 week and then embedded in paraffin.
  • Osteoclasts in the bone marrow were detected by TRAP staining using a Sigma Diagnostics Acid Phospnatase (Sigma Diagnostics, St. Louis, MO).
  • the results are shown in FIGS. 6A and B.
  • a significant difference test between the control (PBS-LIP) group and the other groups was performed by a two-sided student t-test.
  • C12MDP-LIP reduced the number of osteoclasts in the bone marrow as well as or better than reveromycin A.
  • HARA-B cells 2.5 ⁇ 10 4 cells / well
  • monocytes 1.8 x 10 5 cells / well
  • drugs clodronate, C12MDP-LIP, reveromycin A
  • cell viability was assayed.
  • Table 3 C12MDP-LIP did not kill lung cancer cells themselves, but killed monocytes derived from macrophages in a dose-dependent manner.
  • reveromycin A killed lung cancer cells in a dose-dependent manner, but did not have a killing effect on monocytes. Values other than the dose mean the mean soil standard deviation.
  • Riberomycin A 100,0 ⁇ 5.6 100.0 ⁇ 17.3
  • ribosome preparations containing bisphosphonates can suppress macrophage apoptosis, thereby suppressing cancer bone-muscle metastasis, and tumor growth in metastases. It became clear that it was possible to obtain. In the future, it will be a very important issue to develop more selective ribosome agents for macrophages related to malignant progression of cancer and bone metastasis.
  • the present invention is based on Japanese Patent Application No. 2006-213334 filed in Japan on August 4, 2006, the entire contents of which are included in this specification.

Abstract

Disclosed is an agent for inhibiting the bone metastasis and/or the muscle metastasis of a tumor, which is a problem of prognosis of a tumor therapy. Specifically, disclosed is an inhibitor of the metastasis (e.g., bone metastasis and/or muscle metastasis) of a tumor, which comprises a liposomal bisphosphonate-type substance (e.g., clodronate).

Description

明 細 書  Specification
転移抑制剤  Metastasis inhibitor
技術分野  Technical field
[0001] 本発明は、腫瘍の転移抑制剤に関する。より詳細には、本発明は、リボソーム化さ れたビスホスホネート系薬剤を含有する、腫瘍の転移抑制剤、リボソーム化されたビ スホスホネート系薬剤の有効量を癌患者に投与することを含む、腫瘍の転移抑制方 法、及び癌患者の転移を抑制するためのリボソーム化されたビスホスホネート系薬剤 の使用に関する。  [0001] The present invention relates to a tumor metastasis inhibitor. More specifically, the present invention relates to a tumor tumor comprising administering to a cancer patient an effective amount of a tumor metastasis inhibitor, a ribosomal bisphosphonate, comprising a ribosomal bisphosphonate. The present invention relates to a method for inhibiting metastasis of cerebral tumors, and the use of ribosomal bisphosphonates for inhibiting metastasis of cancer patients.
背景技術  Background art
[0002] 転移や浸潤を含む癌の悪性進展には炎症反応が強く関与することはよく知られて いる(非特許文献;!〜 3)。しかし、そのメカニズムについてははっきりとしていなかった 。近年、癌細胞が浸潤、転移する上で、その周囲の間質と呼ばれる微小環境に生じ る炎症が癌の治療戦略の上で多大の注目を集めるようになった。すなわち、この「間 質の炎症反応」を標的として治療を考えることは新しい治療戦略となることが期待でき  [0002] It is well known that an inflammatory reaction is strongly involved in malignant progression of cancer including metastasis and invasion (Non-patent documents;! To 3). However, the mechanism was not clear. In recent years, as cancer cells infiltrate and metastasize, inflammation in the microenvironment called the stroma around them has attracted a great deal of attention in cancer treatment strategies. In other words, it is expected that thinking about treatment targeting this “stromal inflammatory response” will be a new treatment strategy.
[0003] 癌の間質の炎症応答として特に注目されているのはマクロファージである(非特許 文献 3〜5)。多種類のヒト癌において癌患者の予後と腫瘍関連マクロファージの浸潤 程度が強く関連することが本発明者らのこれ迄の発表も含め報告されている(非特許 文献 6〜; 11)。 [0003] Macrophages are particularly attracting attention as stromal inflammatory responses in cancer (Non-Patent Documents 3 to 5). It has been reported that the prognosis of cancer patients and the degree of invasion of tumor-related macrophages are strongly related in many types of human cancer, including our previous presentations (Non-Patent Documents 6 to 11).
[0004] 他方、癌の血管新生の有無は癌の増大のみならず転移において重要であることは よく知られている(非特許文献 12)。さらに、本発明者らは、重要な炎症反応の一つ であるマクロファージの浸潤が血管新生においても強く関与していることを実験的に 証明した。すなわち、マクロファージが癌細胞の周辺に浸潤してくると血管新生を誘 導する能力を示す新事実を報告してきた (非特許文献 9、 13、 14)。と同時に、肺癌 の腫瘍の増大を著明に制御することも観察し、一部を報告して!/、る(非特許文献 15、 16)。  [0004] On the other hand, it is well known that the presence or absence of neovascularization of cancer is important not only for cancer growth but also for metastasis (Non-patent Document 12). Furthermore, the present inventors experimentally proved that macrophage infiltration, which is one of important inflammatory reactions, is also strongly involved in angiogenesis. In other words, new facts have been reported that show the ability to induce angiogenesis when macrophages infiltrate around cancer cells (Non-Patent Documents 9, 13, and 14). At the same time, we observed that the growth of lung cancer tumors was markedly controlled, and reported a part of it! (Non-Patent Documents 15 and 16).
[0005] しかしながら、骨転移などの他臓器への癌転移にもマクロファージが関与している か否かにつ!/、ては、これまで全く報告されて!/ヽなレ、。 However, macrophages are also involved in cancer metastasis to other organs such as bone metastasis. Whether or not! /, Has been reported so far!
骨転移は前立腺癌、乳癌、肺癌など多くの癌でみられ、骨折や神経の麻痺を引き 起こす進行癌の重大な問題である。患者の QOL改善のためにも骨転移に対する治 療戦略を提示することは急務である。  Bone metastasis is seen in many cancers such as prostate cancer, breast cancer, and lung cancer, and is a serious problem of advanced cancer that causes fractures and nerve paralysis. It is urgent to present a treatment strategy for bone metastases to improve patient QOL.
これまでに骨転移の治療薬は殆どなかった。最近、骨転移の治療に破骨細胞に対 して特異性の高!/、ビスホスホネート系製剤がしばしば用いられて!/、る(非特許文献 17 )。すなわち、骨転移の発症に破骨細胞が関与しており、それを標的としたビスホスホ ネート製剤の臨床応用と破骨細胞により親和性が強いビスホスホネート製剤の開発 が進められている。また、活性化破骨細胞に選択的にアポトーシスを誘発し得る骨吸 収抑制薬として、リベロマイシン Aが知られている(非特許文献 17)。  To date, there have been few treatments for bone metastases. Recently, bisphosphonate-based preparations with high specificity for osteoclasts are often used for the treatment of bone metastases! /, (Non-patent Document 17). In other words, osteoclasts are involved in the development of bone metastases, and the clinical application of bisphosphonate preparations targeting them and the development of bisphosphonate preparations with stronger affinity for osteoclasts are underway. In addition, reveromycin A is known as a bone absorption inhibitor that can selectively induce apoptosis in activated osteoclasts (Non-patent Document 17).
しかし、いずれの薬剤も、まだ骨転移を完全に抑制できるまではいたっていない。 ビスホスホネート系薬剤であるクロドロネートをリボソーム化した製剤は、腫瘍関連マ クロファージを減少させることで血管新生を阻害し、腫瘍の増殖を抑制することが知ら れているが、このようなリボソーム製剤が骨転移を抑制することは、開示も示唆もされ ていない(非特許文献 18)。  However, none of these drugs has yet been able to completely suppress bone metastasis. It is known that bisphosphonate clodronate ribosome preparations inhibit tumor growth by reducing tumor-associated macrophages, but these ribosome preparations are known to inhibit bone metastasis. There is no disclosure or suggestion of suppressing this (Non-patent Document 18).
非特千文献丄:し oussens, L.M. , ana vVerb, L. Inflammation and cancer. Nature, 420: 860-867, 2002. Non-thousand references: oussens, L.M., ana vVerb, L. Inflammation and cancer. Nature, 420: 860-867, 2002.
非特許文献 2 : Balkwill, F. , and Mantovani, A. Inflammation and cancer: back to Virc how? Lancet, 357: 539-545, 2001. Non-Patent Document 2: Balkwill, F., and Mantovani, A. Inflammation and cancer: back to Virc how? Lancet, 357: 539-545, 2001.
非特許文献 3: Pollard, J.W. Tumour—educated macrophages promote tumor progress ion and metastasis. Nat Rev Cancer, 4: 71-78, 2004. Non-Patent Document 3: Pollard, J.W. Tumour—educated macrophages promote tumor progress ion and metastasis. Nat Rev Cancer, 4: 71-78, 2004.
非特許文献 4 : Kuwano, Μ·, Basaki, Υ·, Kuwano, Τ·, Nakao, S., Oie, S., Y. N. Kimur a, T. Fujn, and Ono, M. The critical role of inflammatory cell infiltration in tumor an giogenesis - a target for antitumor drug developmemt? In "New Angiogenesis Resear ch , Nova Science Publishers, Inc. , New York, 157-170, 2005. Non-Patent Document 4: Kuwano, Μ ·, Basaki, Υ ·, Kuwano, Τ ·, Nakao, S., Oie, S., YN Kimur a, T. Fujn, and Ono, M. The critical role of inflammatory cell infiltration in "New Angiogenesis Research, Nova Science Publishers, Inc., New York, 157-170, 2005. in tumor an giogenesis-a target for antitumor drug developmemt?
非特許文献 5 : Lewis, C.E. , and Pollard, J.W. , Distinct role of macrophages in differe nt tumor microenvironments. Cancer Res. , 66: 605-612, 2006. Non-Patent Document 5: Lewis, C.E., and Pollard, J.W., Distinct role of macrophages in differnt tumor microenvironments. Cancer Res., 66: 605-612, 2006.
非特許文献 6 : Leek, R.D. , Lewis, C.E. , Whitehouse, R., Greenall, M. , Clarke, J. , an d Harris, A.L. Association of macrophage infiltration with angiogenesis prognosis in i nvasive breast carcinoma. Cancer Res., 56: 4625-4629, 1996. Non-Patent Document 6: Leek, RD, Lewis, CE, Whitehouse, R., Greenall, M., Clarke, J., an d Harris, AL Association of macrophage infiltration with angiogenesis prognosis in i nvasive breast carcinoma.Cancer Res., 56: 4625-4629, 1996.
非特許文献 7 : Nishie, Α·, Ono, Μ·, Shono, Τ·, Fukushi, J., Otsubo, Μ·, Onoue, Η·, Ito, Υ·, Inamura, Τ·, Ikezaki, Κ·, Fukui, Μ··, Iwaki, Τ·, and Kuwano, M. Macrophage infiltration and home oxygenase- 1 expression correlate with angiogenesis in human gliomas. Clin Cancer Res., 5: 1107 - 1113, 1999. Non-Patent Document 7: Nishie, Α ·, Ono, Μ ·, Shono, Τ ·, Fukushi, J., Otsubo, Μ ·, Onoue, Η ·, Ito, Υ ·, Inamura, Τ ·, Ikezaki, ke ·, Fukui, Μ ··, Iwaki, Τ ·, and Kuwano, M. Macrophage infiltration and home oxygenase- 1 expression correlate with angiogenesis in human gliomas. Clin Cancer Res., 5: 1107-1113, 1999.
^特許文献 8 : Ono, Μ·, Torisu, Η·, Fukushi, J., Nishie, Α·, and Kuwano, M. Biologi cal implications of macrophage infiltration in human tumor angiogenesis. Cancer Che mother Pharmacol. , 43: 69-71, 1999.  ^ Patent Document 8: Ono, Μ ·, Torisu, Η ·, Fukushi, J., Nishie, Α ·, and Kuwano, M. Biologi cal implications of macrophage infiltration in human tumor angiogenesis. Cancer Che mother Pharmacol., 43: 69 -71, 1999.
非特許文献 9 : Torisu, Η·, Ono, Μ·, Kiryu, Η·, Furue, Μ·, Ohmoto, Υ·, Nakayama, J ·, Nishioka, Υ·, Sone, S., and Kuwano, M. Macrophage infiltration correlates with tu mor stage and angiogenesis in human malignant melanoma: possible involvement of T NFalpha and IL-1 alpha. Int J Cancer, 85: 182-188, 2000. Non-Patent Document 9: Torisu, Η ·, Ono, Μ ·, Kiryu, Η ·, Furue, Μ ·, Ohmoto, Υ ·, Nakayama, J ·, Nishioka, Υ ·, Sone, S., and Kuwano, M. Macrophage infiltration correlates with tu mor stage and angiogenesis in human malignant melanoma: possible involvement of T NFalpha and IL-1 alpha.Int J Cancer, 85: 182-188, 2000.
非特許文献 10 : Torisu, Η_Ι·, Furue, Μ·, Kuwano, Μ· and Ono, M. Co-expression of thymidine phosphorylase and heme oxygenase- 1 in macrophages in human malignan t vertical growth melanomas. Jpn. J. Cancer Res., 91 : 906-910, 2000. Non-Patent Document 10: Torisu, Η_Ι ·, Furue, Μ ·, Kuwano, Μ · and Ono, M. Co-expression of thymidine phosphorylase and heme oxygenase-1 in macrophages in human malignant t vertical growth melanomas. Jpn. J. Cancer Res., 91: 906-910, 2000.
非特許文献 l l : Schoppmann, S.F., Birner, Ρ·, Stockl, J., Kalt, R., Ullrich, R., Cauci g,し., Kriehuber, Ε·, Nagy, Κ·, Alitalo, Κ·, and Kerjaschki, D., Tumor-associated m acrophages express lymphatic endothelial growth factors and are related to peritumo ral lymphangiogenesis. Am J Pathol., 1り 1 : 947-956, 2002. Non-patent literature ll: Schoppmann, SF, Birner, Ρ ·, Stockl, J., Kalt, R., Ullrich, R., Cauci g, Kriehuber, Ε ·, Nagy, Κ ·, Alitalo, Κ ·, and Kerjaschki, D., Tumor-associated m acrophages express lymphatic endothelial growth factors and are related to peritumo ral lymphangiogenesis. Am J Pathol., 1 1: 947-956, 2002.
非特許文献 12 : Hanahan, D., and Folkm n, J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell. 86: 353 - 364, 1996. Non-Patent Document 12: Hanahan, D., and Folkm n, J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell. 86: 353-364, 1996.
^特許文献 13 : Kuwano, Τ·, Nakao, S., Yamamoto, Η·, Tsuneyoshi, Μ·, Yam moto, Τ·, Kuwano, Μ·, and Ono, Μ·· Cyclooxygenase2 is a key enzyme for inflammatory c ytokine-induced angiogenesis. FASEB J., 18: 300-310, 2004. ^ Patent Literature 13: Kuwano, Τ ·, Nakao, S., Yamamoto, Η ·, Tsuneyoshi, Μ ·, Yam moto, Τ ·, Kuwano, Μ ·, and Ono, Μ ··· Cyclooxygenase2 is a key enzyme for inflammatory c ytokine-induced angiogenesis. FASEB J., 18: 300-310, 2004.
^特許文 fel4 : Nakao, S., Kuwano, Τ·, Tsutsumi-Miyahara, C., Ueda, S., Hamano, S., Sonoda, Κ·, Saijo, Υ·, Nukiwa, Τ·, Ishibashi, Τ·, Kuwano, Μ·, and Ono, M. Infiltr ation of COX2-expressing macrophage is prerequisite for IL-lbeta- induced neovas cularization and tumor growth. J. Clinic. Invest., 115: 2979-2991, 2005. ^ Patents fel4: Nakao, S., Kuwano, Τ ·, Tsutsumi-Miyahara, C., Ueda, S., Hamano, S., Sonoda, Κ ·, Saijo, Υ ·, Nukiwa, Τ ·, Ishibashi, Τ ·, Kuwano, Μ ·, and Ono, M. Infiltration of COX2-expressing macrophage is prerequisite for IL-lbeta- induced neovas cularization and tumor growth. J. Clinic. Invest., 115: 2979-2991, 2005.
非特許文献 15 : Kimura, Y.N., Nakao, S., Basaki Υ·, Ueda, S., Takamori, S., Shirouz u, ., uwano, M., and Ono, M. The role of macrophages in tumor growth and angi ogenesis by lung cancer cells-inhibition of bisphosphonate-liposomes. 97th Annual Meeting of American Association for Cancer Research, April 1-5, 200b, Washington D.C. , USA.  Non-Patent Document 15: Kimura, YN, Nakao, S., Basaki S., Ueda, S., Takamori, S., Shirouz u,., Uwano, M., and Ono, M. The role of macrophages in tumor growth and angi ogenesis by lung cancer cells-inhibition of bisphosphonate-liposomes.97th Annual Meeting of American Association for Cancer Research, April 1-5, 200b, Washington DC, USA.
非特許文献 16 :桑野信彦、小野眞弓著、血管新生阻害剤.がん分子標的薬 開発 から臨床への最新動向. 医学のあゆみ 215: 607-612, 2005  Non-Patent Document 16: Nobuhiko Kuwano and Ayumi Ono, Angiogenesis Inhibitors. Latest Trends from Development to Clinical Targeting of Molecular Cancer Drugs 215: 607-612, 2005
非特許文献 17 :川谷誠、長田裕之著、破骨細胞を標的とした癌骨転移治療薬.がん 分子標的薬 開発から臨床への最新動向. 医学のあゆみ 215: 629-633, 2005 非特許文献 18 : SM Zeisberger, B Odermatt, C Marty, AHM Zehnder-Fjallman, B allmer-Hofer and RA Schwendener, Clodronate-liposome-mediated depletion of turn or-associated macrophages: a new and hignly effective antiangiongenic therapy appr oach. British Journal of Cancer (2006) 95, 272-281  Non-patent document 17: Makoto Kawatani, Hiroyuki Nagata, Cancer bone metastasis drug targeting osteoclasts. Latest molecular trend drug development from clinical development. History of medicine 215: 629-633, 2005 Non-patent Reference 18: SM Zeisberger, B Odermatt, C Marty, AHM Zehnder-Fjallman, B allmer-Hofer and RA Schwendener, Clodronate-liposome-mediated depletion of turn or-associated macrophages: a new and hignly effective antiangiongenic therapy appr oach. of Cancer (2006) 95, 272-281
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0007] 上記事情に鑑み、本発明は、レ、まだ有効な予防又は治療手段がな!/、骨転移及び /又は筋転移の抑制方法を提供することを目的とする。  In view of the above circumstances, an object of the present invention is to provide a method for inhibiting bone metastasis and / or muscle metastasis!
課題を解決するための手段  Means for solving the problem
[0008] 本発明者らは、上記課題を解決すべく鋭意研究を進め、骨転移にもマクロファージ が関与しているのではないかと発想し、マクロファージに選択的に取り込まれてそれ にアポトーシスを誘導することが知られている、リボソーム化されたビスホスホネート系 製剤 (Van Rooリ en,N. i,he liposome-mediated macrophage suicide technique. J. Imm unol. Methods 124: 1-6, 1989. Van Rooijen, N. , and Sanders, A. Liposome mediated depletion of macrophages: mechanism of action, preparation of liposomes and applica tions. J. Immunol. Methods, 174: 83-93, 1994·)に着目した。そこで、本発明者らは、 ビスホスホネート系製剤であるクロドロネートをリボソーム化した薬剤(以下、 C12MDP- LIPと略記することもある。)を、骨 ·筋肉転移能の高いヒト肺癌細胞(HARA— B)を注 入した転移モデルマウスに投与した。その結果、該薬剤は、該動物の生体内マクロフ ァージ数を著明に減少させるとともに、骨転移および筋転移を有意に抑制することが 明らかとなった。さらに、リボソーム化したクロドロネートは、意外にも、骨や筋肉に転 移した腫瘍の増殖をも顕著に抑制することも見出した。本発明者らは、これらの知見 に基づいてさらに研究を重ねた結果、本発明を完成するに至った。 [0008] The present inventors have conducted intensive research to solve the above-mentioned problems, and have thought that macrophages are also involved in bone metastasis, and are selectively taken up by macrophages to induce apoptosis. Ribosomalized bisphosphonates known to do (Van Roo Rien, NI, he-phospho-mediated macrophage suicide technique. J. Imm unol. Methods 124: 1-6, 1989. Van Rooijen, N., and Sanders, A. Liposome mediated depletion of macrophages: mechanism of action, preparation of lipids and applications. J. Immunol. Methods, 174: 83-93, 1994.). Therefore, the present inventors used a drug obtained by ribosomeizing clodronate, which is a bisphosphonate preparation (hereinafter also abbreviated as C12MDP-LIP), as a human lung cancer cell (HARA-B) with high bone / muscle metastasis ability. Note The metastasis model mice were administered. As a result, it has been clarified that the drug significantly reduces the number of macrophages in vivo in the animal and significantly suppresses bone metastasis and muscle metastasis. In addition, we found that clodronate ribosomally remarkably inhibits the growth of tumors that have been transferred to bone or muscle. As a result of further studies based on these findings, the present inventors have completed the present invention.
[0009] 即ち、本発明は以下に関する。 That is, the present invention relates to the following.
[1]リボソーム化されたビスホスホネート系薬剤を含有する、腫瘍の転移抑制剤。  [1] A tumor metastasis inhibitor comprising a ribosomal bisphosphonate.
[2]転移が骨転移である、上記 [1]記載の剤。  [2] The agent described in [1] above, wherein the metastasis is bone metastasis.
[3]転移が筋転移である、上記 [1]記載の剤。  [3] The agent according to [1] above, wherein the metastasis is muscle metastasis.
[4]ビスホスホネート系薬剤がクロドロネートである、上記 [1]記載の剤。  [4] The agent according to [1] above, wherein the bisphosphonate is clodronate.
発明の効果  The invention's effect
[0010] 本発明の剤を用いれば、腫瘍の切除、摘出等の後、予後に発生しやすい転移、特 に骨転移及び/又は筋転移を抑制することが可能となる。  [0010] The use of the agent of the present invention makes it possible to suppress metastasis that tends to occur after prognosis, excision, etc. of the tumor, especially bone metastasis and / or muscle metastasis.
図面の簡単な説明  Brief Description of Drawings
[0011] [図 1]C12MDP-LIPによる血液中マクロファージ数の抑制効果をフローサイトメトリーに て確認した結果を示すグラフである。縦軸は F4/80陽性かつ CD l ib陽性の細胞の割 合(%)を示す。黒塗りバーは 0日後、網掛けバーは 1日後、白抜きバーは 2日後をそ れぞれ示す (n=4)。グラフは平均値土標準偏差で示し、 *は pく 0.05を示す。 C12MDP- LIP 200 Lの刺激ではマクロファージ抑制効果に有意差はないものの抑制傾向が 認められた。 C12MDP-LIP 400 Lの刺激では 24時間後(1日)の抑制効果に有意差 を認めた。  FIG. 1 is a graph showing the results of confirming the effect of suppressing the number of macrophages in blood by C12MDP-LIP by flow cytometry. The vertical axis indicates the percentage (%) of F4 / 80 positive and CD ib positive cells. Black bars indicate 0 days later, shaded bars 1 day later, and open bars 2 days later (n = 4). The graph shows the average soil standard deviation, and * indicates 0.05. Stimulation with C12MDP-LIP 200 L showed a suppression tendency although there was no significant difference in macrophage suppression effect. There was a significant difference in the inhibitory effect of C12MDP-LIP 400 L after 24 hours (1 day).
[図 2]転移モデルマウスにおける骨転移及び筋転移を示す図である。 A. HARA-B細 胞 2 X 105個をマウス左心室に移植後 6週間での X線所見を示す図である。矢印は骨 転移部位を示しており、多発性骨転移が認められる。 B.病理学的に骨組織内(上図 )及び筋肉内(下図)に癌細胞が胞巣状に増殖していることを示す図である。図中、 B は骨、 Tは腫瘍、 Mは筋肉を示す。バーは 200 mを示す。 FIG. 2 is a diagram showing bone metastasis and muscle metastasis in a metastasis model mouse. A. X-ray findings 6 weeks after transplantation of 2 X 10 5 HARA-B cells into the mouse left ventricle. The arrow indicates the site of bone metastasis, and multiple bone metastases are observed. B. Pathologically shows that cancer cells grow in alveolar form in bone tissue (upper figure) and in muscle (lower figure). In the figure, B represents bone, T represents tumor, and M represents muscle. The bar indicates 200 m.
[図 3]クロドロネート、リボソーム化クロドロネートおよびリベロマイシン Aの骨転移抑制 効果を示す。 HARA-B細胞 2 X 105個をマウス左心室に移植して 6週間後の X線所見 を示す図である。図中、矢印は溶骨性骨転移を示す。 PBS-LIP 400 Lを 1回 /3日尾 根部皮下に注入したマウス群 (n=9)では多発性骨転移像を認めた。クロドロネート 16 0 a mol/kgを 1回/週腹腔内注入したマウス群 (n=8)では全例に多発性骨転移を認め た。 C12MDP-LIP 200 しを 1回 /3日尾根部皮下に注入したマウス群(n=7)では 4匹に 骨転移数の抑制を認めた。 C12MDP-LIP 400 Lを 1回 /3日尾根部皮下に注入した マウス群(n=9)では 8匹で骨転移像は認められなかった。リベロマイシン A 10mg/kgを 毎日皮下注入したマウス群(n=9)では 8匹に骨転移像を認めなかった。 FIG. 3 shows the inhibitory effects of clodronate, ribosomal clodronate and reveromycin A on bone metastasis. X-ray findings 6 weeks after transplanting 5 HARA-B cells 2 X 10 into the mouse left ventricle FIG. In the figure, the arrow indicates osteolytic bone metastasis. Multiple bone metastases were observed in the group of mice (n = 9) injected with PBS-LIP 400 L once / day 3 subcutaneously. In the group of mice (n = 8) injected with clodronate 160 amol / kg once / week ip, all cases showed multiple bone metastases. In the group of mice (n = 7) injected with C12MDP-LIP 200 once / day subcutaneously in the ridge, 4 mice showed inhibition of the number of bone metastases. In the group of mice (n = 9) injected with C12MDP-LIP 400 L subcutaneously once every 3 days, bone metastasis was not observed in 8 mice. In the group of mice (n = 9) injected subcutaneously daily with reveromycin A 10 mg / kg, no bone metastasis was observed in 8 mice.
[図 4]HARA-B細胞 2 X 105個を左心室内に移植したマウスに骨転移が形成された後 に C12MDP-LIPを注入し、骨転移部の腫瘍増殖の抑制効果を検討した。 A.移植後 3 週での骨破壊像(3w)とその後 2週間 PBS-LIP 400 L、 C12MDP-LIP 400 Lを注入 した後の X線所見(5w)を示す図である。 B.骨転移部位における腫瘍増殖に対するリ ポソーム化クロドロネートの効果を示すグラフである。縦軸は溶骨面積の比率増加を 示す。グラフは平均値土標準偏差で示す(n=3)。 [Fig. 4] After bone metastasis was formed in mice transplanted with 2 X 10 5 HARA-B cells in the left ventricle, C12MDP-LIP was injected to examine the inhibitory effect on tumor growth at the bone metastasis site. A. Bone destruction image (3w) at 3 weeks after transplantation and X-ray findings (5w) after injection of PBS-LIP 400 L and C12MDP-LIP 400 L for 2 weeks thereafter. B. Graph showing the effect of liposomal clodronate on tumor growth at bone metastasis sites. The vertical axis shows the ratio increase of the osteolytic area. The graph shows the average soil standard deviation (n = 3).
[図 5]リボソーム化クロドロネート投与によるマクロファージ浸潤の減少を示す図である 。 A. PBS-LIPおよび C12MDP-LIP 400 Lを注射したときの HARA-B腫瘍中の F4/80 陽性細胞を示す顕微鏡像である。 B.縦軸は HARA-B腫瘍の顕微鏡観察における 1 視野あたりの F4/80陽性細胞数を示す。グラフは平均値土標準偏差で示す(n=15)。 *は pく 0.05を示す。  FIG. 5 is a graph showing a decrease in macrophage infiltration by ribosomal clodronate administration. A. Microscopic image showing F4 / 80 positive cells in HARA-B tumors when injected with PBS-LIP and C12MDP-LIP 400 L. B. The vertical axis shows the number of F4 / 80 positive cells per field in the microscopic observation of HARA-B tumor. The graph shows the average soil standard deviation (n = 15). * Indicates p 0.05.
[図 6]リボソーム化クロドロネート投与による破骨細胞の減少を示す図である。 A. PBS- LIP,クロドロネート、 C12MDP-LIP 400 μ Lおよびリベロマイシン Αを注射したときの骨 髄中の TRAP陽性細胞を示す顕微鏡像である。 B.縦軸は骨髄の顕微鏡観察におけ る 1視野あたりの TRAP陽性細胞数を示す。グラフは平均値土標準偏差で示す(n=15) 。 *は pく 0.05を示す。 **は pく 0.01を示す。  FIG. 6 is a graph showing a decrease in osteoclasts by administration of ribosomal clodronate. A. This is a microscopic image showing TRAP-positive cells in the bone marrow when PBS-LIP, clodronate, 400 μL of C12MDP-LIP and riberomycin IV were injected. B. The vertical axis shows the number of TRAP positive cells per visual field in bone marrow microscopic observation. The graph shows the average soil standard deviation (n = 15). * Indicates p 0.05. ** indicates p 0.01.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0012] 以下、本発明を説明する。本明細書の全体にわたり、単数形の表現は、特に言及 しない限り、その複数形の概念をも含み得る。また、本明細書において使用される用 語は、特に言及しない限り、当該分野で通常用いられる意味で用いられる。  Hereinafter, the present invention will be described. Throughout this specification, the singular forms may also include the plural concept unless otherwise stated. In addition, the terms used in this specification are used in the meaning normally used in the art unless otherwise specified.
[0013] 本発明にお!/、て転移抑制とは、原発性の腫瘍が未だ転移して!/、な!/、場合における 腫瘍の転移を抑制することと、既に腫瘍が転移している場合におけるさらなる腫瘍の 転移および/または転移部位における腫瘍の増殖を抑制することの両方を指す。従 つて、本発明の転移抑制剤は、腫瘍が転移した患者及び腫瘍が転移するリスクが高 い患者に投与することができる。本発明の転移抑制剤は、腫瘍の転移が発生する前 に被験体に投与してもよぐ腫瘍の転移が発生した後に被験体に投与してもよい。 [0013] In the present invention, the suppression of metastasis means that the primary tumor has not yet metastasized! / ,! It refers to both inhibiting tumor metastasis and inhibiting further tumor metastasis and / or tumor growth at the site of metastasis when the tumor has already metastasized. Therefore, the metastasis inhibitor of the present invention can be administered to patients with tumor metastasis and patients with a high risk of tumor metastasis. The metastasis inhibitor of the present invention may be administered to a subject before tumor metastasis occurs, or may be administered to a subject after tumor metastasis occurs.
[0014] 本発明の転移抑制剤は、マクロファージが関与する転移である限り特に制限されず 、いかなる臓器への転移にも適用可能である力 好ましくは骨転移および筋転移であ [0014] The metastasis inhibitor of the present invention is not particularly limited as long as it is a metastasis involving macrophages, and is a force applicable to metastasis to any organ, preferably bone metastasis and muscle metastasis.
[0015] 本発明の転移抑制剤により抑制可能な骨転移とは、肺癌や乳癌、前立腺癌、腎臓 癌、胃癌、子宮癌、肝臓癌などが骨に転移した症状を指し、たとえば、乳癌骨転移は 、乳癌が骨に転移して骨を破壊する病気であり、その主症状は骨の痛みである。また 、骨がもろくなつて骨折を起こしやすくなる場合もあり、脊椎に癌が転移して骨を壊す と、神経が圧迫されて麻痺を認めることもある。このような症状の出現により患者の QO Lは著しく低下することになる。 [0015] Bone metastasis that can be suppressed by the metastasis inhibitor of the present invention refers to a condition in which lung cancer, breast cancer, prostate cancer, kidney cancer, stomach cancer, uterine cancer, liver cancer, etc. have metastasized to bone, for example, breast cancer bone metastasis Is a disease in which breast cancer metastasizes to bone and destroys bone, and its main symptom is bone pain. In some cases, bones become brittle and prone to fractures. When cancer metastasizes to the spine and breaks the bone, nerves are compressed and paralysis may occur. The appearance of these symptoms significantly reduces the patient's QOL.
[0016] また、本発明の転移抑制剤により抑制可能な筋転移とは、肺癌や肝臓癌などが筋 肉内に転移して腫瘤を形成する病態であり、筋肉内の腫瘤が疼痛や運動制限の原 因となる。  [0016] Muscle metastasis that can be suppressed by the metastasis inhibitor of the present invention is a pathological condition in which lung cancer, liver cancer, or the like metastasizes into muscles to form a mass, and an intramuscular mass is pain or exercise restricted. Cause.
[0017] 本発明の転移抑制剤の投与対象となり得る被験体は、任意の動物種であり得る。こ のような動物種としては、例えば、霊長類、齧歯動物などの哺乳動物(例えば、ヒト、 サル、チンパンジー、ィヌ、ネコ、ゥマ、ゥシ、ブタ、ヒッジ、ャギ、マウス、ラット、モル モット、ノヽムスター、ゥサギ)、鳥類(例えば、ニヮトリ、ゥズラ、ァヒル、ガチョウ、シチメ ンチョウ、ダチョウ、ノ、トなど)などが挙げられる。これらの動物には、ペット、家畜、実 験動物などが含まれる。本発明の転移抑制剤は、これらの動物に安全に投与できる ものから選択される。なかでも、ヒトに投与することが好ましい。  [0017] The subject that can be administered with the metastasis inhibitor of the present invention can be any animal species. Examples of such animal species include mammals such as primates and rodents (for example, humans, monkeys, chimpanzees, dogs, cats, horses, mice, pigs, hidges, goats, mice, Rat, guinea pig, turkey, magpie) and birds (eg, chicken, quail, ducks, geese, turkeys, ostriches, breams, etc.). These animals include pets, livestock, and experimental animals. The metastasis inhibitor of the present invention is selected from those that can be safely administered to these animals. Of these, administration to humans is preferred.
[0018] 本発明の転移抑制剤は、リボソーム化されたビスホスホネート系薬剤を含有する。  [0018] The metastasis inhibitor of the present invention contains a ribosomal bisphosphonate.
マクロファージが関与する癌転移の抑制には、マクロファージに特異性の高いアポト 一シス経路を標的とすることが大切であり、ビスホスホネート系薬剤は、ミトコンドリアを 主な標的としてマクロファージにアポトーシスを誘導すること、また、ビスホスホネート 自身が骨粗鬆症の治療に広く使用されているように、マクロファージ系の細胞である 破骨細胞などに特異性が高いこと等から、好適である。 To suppress cancer metastasis involving macrophages, it is important to target the apoptotic pathway highly specific to macrophages, and bisphosphonates induce apoptosis in macrophages mainly targeting mitochondria, Bisphosphonate As it is widely used in the treatment of osteoporosis, it is preferable because it has high specificity for osteoclasts, which are macrophage cells.
[0019] 本発明の転移抑制剤に用いられるビスホスホネート系薬剤としては、例えば、ェチ ドロネート、クロドロネート(クロドロン酸 2ナトリウム塩)、ノ ミドロネート、アレンドロネ一 ト、 イノ ンドロネート、チルド口ネート、リセドロネート、インカドロネート、ゾレドロネート、 ミノドロネートなどが挙げられるがこれらに限定されず、一般式: PO 2—— CR^R2)— [0019] Examples of the bisphosphonate used in the metastasis inhibitor of the present invention include etidronate, clodronate (clodronic acid disodium salt), nomidronate, alendronate, indronate, tiludone, risedronate, inca Examples include, but are not limited to, dronate, zoledronate, minodronate, etc. General formula: PO 2 —— CR ^ R 2 ) —
3  Three
PO R2は任意の置換基)で表される化合物もしくはその塩 (ナトリウム塩、カリ
Figure imgf000009_0001
PO R 2 is an arbitrary substituent) or a salt thereof (sodium salt, potassium
Figure imgf000009_0001
ゥム塩等)であればいかなるものであってもよぐ今後開発され得るビスホスホネート 系薬剤も用いられ得る。好ましくは、クロドロネートが挙げられる。  Any bisphosphonate based drug that can be developed in the future can be used. Preferably, clodronate is used.
[0020] 「リボソーム化されたビスホスホネート系薬剤」とは、ビスホスホネート系薬剤がリポソ ームに含有されたものをいう。ビスホスホネート系薬剤は、リボソームの内部水相また は脂質二重膜中に存在する。  [0020] "Ribosomal bisphosphonate drug" refers to a bisphosphonate drug contained in a liposome. Bisphosphonates are present in the internal aqueous phase or lipid bilayer of the ribosome.
[0021] 本発明の転移抑制剤は、リボソーム中にビスホスホネート系薬剤を 1種または 2種以 上含んでよい。該薬剤を 2種以上含む場合、上で列挙した薬剤の任意の組み合わせ を含み得る。例えば、クロドロネートと他の 1種以上のビスホスホネート系薬剤の組み 合わせ、例えば、骨吸収活性の極めて高いゾロドロネートなどの第 3世代の薬剤との 組み合わせなどが挙げられる力、それらに限定されない。  [0021] The metastasis inhibitor of the present invention may contain one or more bisphosphonate drugs in the ribosome. Where two or more of the agents are included, any combination of the agents listed above may be included. Examples include, but are not limited to, a combination of clodronate and one or more other bisphosphonate drugs, such as a combination with a third generation drug such as zolodronate, which has extremely high bone resorption activity.
[0022] あるいは、本発明の転移抑制剤は、ビスホスホネート系薬剤に加えて、リボソーム中 に他の活性成分を含んでいてもよい。このような他の活性成分としては、ビスホスホネ 一トとは異なる機序でマクロファージを傷害し得る物質(以下、マクロファージ傷害性 物質ともいう)、好ましくはマクロファージゃ破骨細胞のアポトーシスを誘導する物質 などが挙げられる力 S、これらに限定されない。あるいは、パクリタキセル、シスプラチン 、エトポシドなどの殺細胞効果の強い抗癌剤を、他の活性成分として用いることもでき る。ただし、リボソーム化する際にリボソーム構造を破壊する成分や薬剤を除外しなく てはいけない。  Alternatively, the metastasis inhibitor of the present invention may contain other active ingredients in the ribosome in addition to the bisphosphonate drug. Examples of such other active ingredients include substances that can damage macrophages by a mechanism different from that of bisphosphonates (hereinafter also referred to as macrophage damaging substances), preferably macrophages that induce apoptosis of osteoclasts, etc. The force S is not limited to these. Alternatively, anticancer agents having a strong cell killing effect such as paclitaxel, cisplatin, etoposide can be used as other active ingredients. However, components and drugs that destroy the ribosome structure when ribosomeized must be excluded.
[0023] ビスホスホネート系薬剤を 2種以上、あるいはビスホスホネート系薬剤に加えて他の 活性成分をリボソーム中に含有させる場合、 1個のリボソーム中に 2種以上のビスホス ホネート系薬剤 (もしくはビスホスホネート系薬剤および他の活性成分)が同時に含ま れてもよいし、 1個のリボソーム中に各々 1種の薬剤を含有させ、得られた各薬剤含 有リボソームを混合することにより製剤化してもよい。 [0023] When two or more bisphosphonate drugs are added or other active ingredients are contained in the ribosome in addition to the bisphosphonate drug, two or more bisphosphonate drugs (or bisphosphonate drugs and Other active ingredients) Alternatively, one drug may be contained in each ribosome, and the resulting drug-containing ribosomes may be mixed to form a preparation.
[0024] 本発明は、マクロファージが癌の種々の臓器への転移に関与することの発見に基 づいている。したがって、ビスホスホネート系薬剤以外のマクロファージ傷害性物質を リボソーム化し(リボソーム中に含有させ)、マクロファージにターゲッティングさせてこ れを選択的に傷害することにより、癌の転移を抑制することも本発明の一部である。 マクロファージ傷害性物質としては、例えば、上記したマクロファージのアポトーシス を誘導する物質や、パクリタキセル、シスブラチン、エトポシドなどの殺細胞効果の強 い抗癌剤等 (ただし、リボソーム化する際にリボソーム構造を破壊する成分や薬剤を 除外しなくてはいけな!/、)が挙げられるが、それらに限定されな!/、。  [0024] The present invention is based on the discovery that macrophages are involved in the metastasis of cancer to various organs. Accordingly, the metastasis of macrophages other than bisphosphonates can be ribosomed (contained in ribosomes) and targeted to macrophages to selectively damage them, thereby inhibiting cancer metastasis. It is. Macrophage damaging substances include, for example, the above-mentioned substances that induce apoptosis of macrophages, and anti-cancer drugs with strong cell-killing effects such as paclitaxel, cisbratin, etoposide, etc. (however, components that destroy the ribosome structure when ribosomally converted) Drugs must be excluded! /,), But not limited to them! /.
[0025] 「リボソーム」とは、一般に、脂質二重膜で構成された小胞をいう。リボソームは、内 部水相または脂質二重膜内に種々の物質を内包することができる。リボソームを構成 する成分は、リボソーム構成成分として一般に使用される物質であればよぐ特に限 定されるものではない。リボソーム構成成分としては、リン脂質、糖脂質、ステロール などが挙げられる力 これらに限定されない。形成されたリボソームがマクロファージ によって取り込まれる限り、本発明のリボソームは、如何なる組み合わせ又は比率で これらリボソーム構成成分を含んで!/、てもよ!/、。そのような組み合わせ及び比率の調 整は、当業者であれば容易になし得よう。本発明のリボソームにおいて使用し得るリ ポソーム構成成分は、天然由来でも半合成または合成のものであってもよい。 [0025] "Ribosome" generally refers to a vesicle composed of a lipid bilayer membrane. Ribosomes can encapsulate various substances within the internal aqueous phase or lipid bilayer. The component constituting the ribosome is not particularly limited as long as it is a substance generally used as a ribosome component. Ribosome components include, but are not limited to, phospholipids, glycolipids, sterols and the like. As long as the ribosomes formed are taken up by macrophages, the ribosomes of the present invention may contain these ribosome components in any combination or ratio! /. Those skilled in the art can easily adjust such combinations and ratios. The liposomal components that can be used in the ribosomes of the present invention may be naturally derived, semi-synthetic or synthetic.
[0026] 使用され得るリン脂質としては、ホスファチジルコリン、ホスファチジルセリン、ホスフ ァチジルイノシトール、ホスファチジルグリセロール、ホスファチジルエタノールァミン、 スフインゴミエリン、ホスファチジン酸、カルジォリピン、卵黄レシチン、水添卵黄レシ チン、大豆レシチン、水添大豆レシチン等のグリセ口リン脂質類、ホスファチジン酸、  [0026] Phospholipids that can be used include phosphatidylcholine, phosphatidylserine, phosphatidylinositol, phosphatidylglycerol, phosphatidylethanolamine, sphingomyelin, phosphatidic acid, cardiolipin, egg yolk lecithin, hydrogenated egg yolk lecithin, soybean lecithin Glycated mouth phospholipids such as hydrogenated soybean lecithin, phosphatidic acid,
ジルセリン(DSPS)、ジステアロイルホスファチジルグリセロール(DSPG)、ジパルミトイ PI)、ジパルミトイルホスファチジン酸(DPPA)、ジステアロイルホスファチジン酸(DSP A)などが挙げられる。リン脂質を構成する脂肪酸は特に限定されず、飽和脂肪酸で あっても不飽和脂肪酸であってもよレ、。 Dilserine (DSPS), distearoyl phosphatidylglycerol (DSPG), dipalmitoy PI), dipalmitoyl phosphatidic acid (DPPA), distearoyl phosphatidic acid (DSP A) and the like. The fatty acid constituting the phospholipid is not particularly limited and may be a saturated fatty acid or an unsaturated fatty acid.
[0027] 使用され得る糖脂質としては、ジガラ外シルジグリセリド、ガラ外シルジグリセリド硫 酸エステルなどのグリセ口脂質、ガラクトシルセラミド、ガラクトシルセラミド硫酸エステ ノレ、ラタトシルセラミド、ガンダリオシド G7、ガンダリオシド G6、ガンダリオシド G4などの スフインゴ糖脂質などが挙げられる。  [0027] Glycolipids such as galacyl syl diglyceride, galacyl syl diglyceride sulfate, galactosyl ceramide, galactosyl ceramide sulfate ester NORE, latatosyl ceramide, Gandarioside G7, Gandarioside G6, Gandarioside G4 Such as glycosphingolipids.
[0028] 使用され得るステロールとしては、コレステロール、ジヒドロコレステロール、コレステ ローノレエステノレ、フィトステロ一ノレ、シトステロ一ノレ、スチグマステロ一ノレ、カンペステロ ール、コレスタノール、ラノステロールまたは 2, 4—ジヒドロラノステロールなどが挙げ られる。ステロール類は、脂質膜安定化物質として作用する。  [0028] Examples of sterols that may be used include cholesterol, dihydrocholesterol, cholesterol, cholesterol, phytosterol, cholesterol, stigmasterol, campesterol, cholestanol, lanosterol or 2,4-dihydrolanosterol. Can be mentioned. Sterols act as lipid membrane stabilizing substances.
[0029] リボソームは、マクロファージによって取り込まれる限り、いずれの形態であってもよ い。リボソームの形態は、当該分野で公知の種々の形態であり得る。例えば、使用さ れ得るリボソームの形態としては、 MLV (multilamellar vesicles)、 DRV (dehydration-r ehydration vesicles)、 LUV (large unilamellar vesicles)あるレ、(ュ SUV (small unilamellar vesicles)などが挙げられる。  [0029] The ribosome may be in any form as long as it is taken up by macrophages. The form of the ribosome can be various forms known in the art. Examples of ribosome forms that can be used include MLV (multilamellar vesicles), DRV (dehydration-rehydration vesicles), LUV (large unilamellar vesicles), and SUV (small unilamellar vesicles).
[0030] また、リボソームは、マクロファージにより貪食される能力を保持し得る範囲で、腫瘍 関連マクロファージを選択的にターグティングするのに役立つ分子(例えば、 CD23 [0030] Ribosomes are also molecules that help selectively target tumor-associated macrophages to the extent that they can retain the ability to be phagocytosed by macrophages (eg, CD23
、 CD14、 CD16、 CDl lb、 CD1 lcに対する抗体)をその脂質膜上にさらに有して いてもよい。 , Antibodies against CD14, CD16, CDl lb, CD1 lc) may be further provided on the lipid membrane.
[0031] 本発明は、少なくとも一部において、マクロファージが骨転移又は筋転移において も重要な役割を果たしていることを見出したことに基づいている。従って、本発明の別 の態様は、マクロファージ傷害性物質を含有し、マクロファージに選択的にターゲテ イングされる剤型を有することを特徴とする、骨及び/又は筋転移抑制剤を提供する 。リボソーム以外のそのような剤型としては、上記のマクロファージを選択的にターグ ティングするのに役立つ分子とマクロファージ傷害性物質とを適当なリンカ一を介し て結合させたコンジュゲート (例えば、ィムノコンジュゲート)などが挙げられる。  [0031] The present invention is based, at least in part, on the discovery that macrophages play an important role in bone metastasis or muscle metastasis. Accordingly, another aspect of the present invention provides a bone and / or muscle metastasis inhibitor containing a macrophage-damaging substance and having a dosage form that is selectively targeted to macrophages. As such a dosage form other than ribosome, a conjugate (for example, an immunoconjugate) in which a molecule useful for selectively targeting the above macrophages and a macrophage damaging substance are bound via an appropriate linker. Gate).
[0032] リボソーム化されたビスホスホネート系薬剤は、自体公知の種々の方法を用いて製 造すること力 Sできる。このような方法としては、超臨界流体法、 Bangh匪法、逆相蒸発 法などが挙げられる力 S、これらに限定されない。好ましくは、本発明のリボソーム化さ れたビスホスホネート系薬剤は、上記した Van Rooijenらの文献に記載の方法に準じ て、以下の製造例に示した方法等により製造される。 [0032] Ribosomal bisphosphonates can be produced using various methods known per se. The power to build is S. Such methods include, but are not limited to, force S, including supercritical fluid method, Bangh 匪 method, and reverse phase evaporation method. Preferably, the ribosomal bisphosphonate agent of the present invention is produced by the method described in the following production examples, etc., according to the method described in the above-mentioned Van Rooijen et al.
[0033] 本発明の転移抑制剤は、リボソーム化されたビスホスホネート系薬剤をそのまま用 いることも、公知の薬学的に許容できる担体などを配合して製剤化することも可能で ある。このような薬学的に許容可能な担体としては、例えば、賦形剤、結合剤、崩壊 剤、滑沢剤、着色剤、矯味矯臭剤、安定化剤、乳化剤、吸収促進剤、界面活性剤、 p H調整剤、防腐剤、抗酸化剤などを挙げることができる。このような担体は、当該分野 で公知である。製剤化の剤形としては、経口的投与形態に用いられる錠剤、散剤、顆 粒剤、カプセル剤、シロップ剤など力 また非経口的投与形態に用いられる点滴、坐 剤、注射剤、軟膏剤、パップ剤などが挙げられる。  The metastasis inhibitor of the present invention can be used as it is as a ribosomal bisphosphonate, or can be formulated by mixing a known pharmaceutically acceptable carrier. Such pharmaceutically acceptable carriers include, for example, excipients, binders, disintegrants, lubricants, colorants, flavoring agents, stabilizers, emulsifiers, absorption enhancers, surfactants, Examples include pH adjusting agents, preservatives, and antioxidants. Such carriers are known in the art. The dosage forms for formulation include tablets, powders, condyles, capsules, syrups, etc. used for oral dosage forms, as well as infusions, suppositories, injections, ointments used for parenteral dosage forms, Examples include poultices.
[0034] 本発明の転移抑制剤の投与経路は特に限定されず、経口又は非経口的に投与す ること力 Sできる。本発明において、特に好ましいのは注射投与であり、静脈内投与、 皮下投与、皮内投与、筋肉内投与、腹腔内投与、患部直接投与、点滴静脈投与な どが挙げられる。  [0034] The administration route of the metastasis inhibitor of the present invention is not particularly limited, and can be administered orally or parenterally. In the present invention, administration by injection is particularly preferred, and includes intravenous administration, subcutaneous administration, intradermal administration, intramuscular administration, intraperitoneal administration, direct administration to the affected area, intravenous infusion and the like.
[0035] 注射剤は、非水性の希釈剤(例えばプロピレングリコール、ポリエチレングリコール などのグリコール、ォリーブ油などの植物油、エタノールなどのアルコール類など)、 懸濁剤又は乳濁剤を用いて調製することが可能である。注射剤の無菌化は、フィノレ ターによる濾過滅菌、殺菌剤の配合などにより行えばよい。また、注射剤は、用時調 製の形態として製造することができる。すなわち、凍結乾燥法などによって無菌の固 体組成物とし、使用前に無菌の注射用蒸留水又は他の溶媒に溶解して使用すること ができる。  [0035] Injections should be prepared using non-aqueous diluents (eg, glycols such as propylene glycol and polyethylene glycol, vegetable oils such as olive oil, alcohols such as ethanol, etc.), suspensions or emulsions. Is possible. Sterilization of injections may be performed by filtration sterilization with a finolator, blending of bactericides, and the like. In addition, the injection can be manufactured in the form of preparation for use. That is, it can be made into a sterile solid composition by lyophilization or the like and dissolved in sterile water for injection or other solvents before use.
[0036] 本発明の転移抑制剤の患者への投与は、患者自体の症状、重篤度、性別、年齢、 体重等によって異なる力 通常、ビスホスホネート系薬剤として l〜5000mg、好まし くは、 10〜3000mgでよく、この量を、例えば 1日 1回又は数回、 1週間に 1回又は数 回、或いは 1ヶ月に 1回又は 2回程度投与することが出来る。  [0036] Administration of the metastasis inhibitor of the present invention to a patient is a force that varies depending on the patient's own symptoms, severity, sex, age, body weight, etc. Usually 1 to 5000 mg as a bisphosphonate, preferably 10 This amount can be administered, for example, once or several times a day, once or several times a week, or once or twice a month.
本発明の転移抑制剤は、必要に応じて他の剤と併用して患者に投与してもよい。 [0037] 本発明の転移抑制剤の効果は、以下の実験例にて詳述するように、マクロファージ の抑制については、血中マクロファージ数の減少をフローサイトメトリーにて検証する こと力 Sできる。また、骨、筋転移の抑制については、 X線診断及び病理学的に検証す ること力 Sできる。例えば、後述の実験例では、以下のことが観察された。 The metastasis inhibitor of the present invention may be administered to a patient in combination with other agents as necessary. [0037] As described in detail in the following experimental examples, the effect of the metastasis inhibitor of the present invention can verify the decrease in the number of macrophages in the flow cytometry with respect to the suppression of macrophages. In addition, the suppression of bone and muscle metastasis can be verified by X-ray diagnosis and pathological examination. For example, in the experimental examples described below, the following was observed.
( 1 )癌細胞を移植した症例にお!/、て骨、筋肉転移が著明に認められた。  (1) Metastasis of bone / muscle was markedly observed in patients transplanted with cancer cells!
(2)転移実験系において C12MDP-LIP製剤 400 しを尾根部に投与することにより 骨および筋肉転移がどちらも著明に抑制されることが観察された。  (2) It was observed that both bone and muscle metastasis were markedly suppressed by administering C12MDP-LIP preparation 400 to the ridge in the metastasis experiment system.
(3) C12MDP-LIP製剤 200 μ Lの投与ではこの抑制効果は減少した。  (3) The inhibitory effect decreased when 200 μL of C12MDP-LIP was administered.
(4) C12MDP-LIP製剤の投与により、骨転移の数だけでなく転移巣における骨吸収 も抑制され、その効果はリベロマイシン Αと同等以上であった。  (4) The administration of the C12MDP-LIP preparation suppressed not only the number of bone metastases but also bone resorption at the metastatic lesion, and the effect was equal to or greater than that of reveromycin.
(5) C12MDP-LIP製剤の投与により、マクロファージおよび破骨細胞数の減少が認 められた。  (5) Decrease in the number of macrophages and osteoclasts was observed by administration of C12MDP-LIP preparation.
(6) C12MDP-LIP製剤 400 Lの投与は筋転移の頻度と転移巣における腫瘍の増 殖をも顕著に抑制したが、リベロマイシン Aは筋転移に対してはわずかな抑制効果し か示さなかった。  (6) Administration of 400 L of C12MDP-LIP preparation markedly suppressed the frequency of muscle metastasis and tumor growth in the metastases, but reberomycin A showed only a slight inhibitory effect on muscle metastasis. It was.
[0038] 以上の結果から、リボソーム化されたビスホスホネート系薬剤、とりわけリボソーム化 されたクロドロネートは、腫瘍の病期の進行に伴い生じる転移、特に骨転移及び/又 は筋転移を有意に抑制し、ヒトでの腫瘍の骨転移及び/又は筋転移の抑制に有効 であること力 S期待される。  [0038] From the above results, ribosomal bisphosphonates, especially ribosomal clodronate, significantly suppressed metastasis, especially bone metastasis and / or muscle metastasis, which occurred with the progression of tumor stage, It is expected to be effective in suppressing bone metastasis and / or muscle metastasis of tumors in humans.
[0039] 以下に本発明の好ましい形態を説明する。以下に提供される実施形態は、本発明 のよりよい理解のために提供されるものであり、本発明の範囲は以下の記載に限定さ れるべきでないことが理解される。従って、当業者は、本明細書中の記載を参酌して 、本発明の範囲内で適宜改変を行うことができることは明らかである。  [0039] Hereinafter, preferred embodiments of the present invention will be described. The embodiments provided below are provided for a better understanding of the present invention, and it is understood that the scope of the present invention should not be limited to the following description. Therefore, it is obvious that those skilled in the art can make appropriate modifications within the scope of the present invention with reference to the description in the present specification.
実施例  Example
[0040] 製造例 [0040] Production example
コレステロール(ナカライテスタ社) 1 lmg及びホスファチジルコリン(シグマ社) 75mgを フラスコに入れ、メタノール/クロ口ホルム(1 : 1)混液 20mLを加えて溶解させた。溶解 後、エバポレータにより溶媒を蒸発除去し、フラスコ底面の白色の膜をクロ口ホルム 10 mLに完全に溶解させた。エバポレータにより、溶媒を蒸発除去させ、フラスコ底面に 白色の膜状物を得た。クロドロネート(シグマ社) 2.5gをリン酸緩衝液 10mLで溶解後、 前記白色の膜状物が生じているフラスコに入れ、攪拌して、溶解させた。室温で 2時 間静置後、超音波処理し、さらに 2時間静置し、溶液を遠心管に移し、 3000rpmにて 3 0分間遠心した。沈殿物をリン酸緩衝液 40mLにて 3回洗浄後、上清を吸引し、リン酸 緩衝液 4mLに溶解させ、摂氏 4度にて冷蔵保存し、実験時に使用に供した。 Cholesterol (Nacalai Testa) 1 lmg and phosphatidylcholine (Sigma) 75 mg were placed in a flask, and 20 mL of methanol / black mouth form (1: 1) mixture was added and dissolved. After dissolution, evaporate the solvent with an evaporator and remove the white film on the bottom of the flask. Dissolve completely in mL. The solvent was removed by evaporation with an evaporator to obtain a white film on the bottom of the flask. After dissolving 2.5 g of clodronate (Sigma) with 10 mL of phosphate buffer, it was placed in a flask in which the white film was formed and stirred to dissolve. The mixture was allowed to stand at room temperature for 2 hours and then subjected to sonication, and further allowed to stand for 2 hours. The solution was transferred to a centrifuge tube and centrifuged at 3000 rpm for 30 minutes. After the precipitate was washed 3 times with 40 mL of phosphate buffer, the supernatant was aspirated, dissolved in 4 mL of phosphate buffer, refrigerated at 4 degrees Celsius, and used for experiments.
コントロールとしてリボソームのみを用いて前記と同様にしてリン酸緩衝液(PBS)—リ ポソームを得て、クロドロネート未封入リボソーム剤(前出を含めて、本明細書にて、「 PBS-LIP製剤」と称する。)を調製した。  Phosphate buffer solution (PBS) -liposome was obtained in the same manner as described above using only ribosome as a control, and clodronate-unencapsulated ribosome agent (including the above-mentioned, “PBS-LIP preparation” Was prepared).
実験材料および方法 Experimental materials and methods
以下の実験例 1、 2で用いた癌細胞および転移モデルマウスは、下記のようにして 調製した。  The cancer cells and metastasis model mice used in Experimental Examples 1 and 2 below were prepared as follows.
(1)癌細胞  (1) Cancer cells
ヒト肺癌細胞(HARA-B)を用いた。当該細胞は四国がんセンターの井口博士のご 好意により提供!/、ただ!/、た。細胞は、 10%牛胎児血清を添加した RPMI1640培地に て培養し、以下の実験に供した。  Human lung cancer cells (HARA-B) were used. The cells were kindly provided by Dr. Iguchi of Shikoku Cancer Center! /, But only! /. The cells were cultured in RPMI1640 medium supplemented with 10% fetal bovine serum and subjected to the following experiment.
(2)転移モデルマウス  (2) Metastasis model mouse
5週齢雌性 BALBん無胸腺ヌードマウスを用いた。ペントバルビタール(0.05mg/g体 重)にて麻酔後、 HARA-B細胞 (2 X 105細胞/ 100 μ Lリン酸緩衝液)を左心室へ注入 し、転移モデルマウスを作製した。 Five-week-old female BALB athymic nude mice were used. After anesthesia with pentobarbital (0.05 mg / g body weight), HARA-B cells (2 × 10 5 cells / 100 μL phosphate buffer) were injected into the left ventricle to produce a model mouse for metastasis.
また、以下の実験例 1、 2では、下記いずれかの投与計画により処理した転移モデ ルマウスを用いて各種実験を行った。  In Experimental Examples 1 and 2 below, various experiments were conducted using metastatic model mice treated according to any of the following administration schedules.
(投与プロトコル 1)  (Dosing protocol 1)
HARA-B細胞(マウス 1匹当たり 2 X 105)を左心室に注射した(0日目)。 PBS- LIP、 C1 2MDP-LIP (3日に 1回マウス 1匹当たり 200 L及び 400 L)及びリベロマイシン A (毎 日 10mg/kg)を皮下投与し、クロドロネート(毎週 160 ^ mol/kg)を腹腔内投与した(6週 間)。 HARA-B cells (2 × 10 5 per mouse) were injected into the left ventricle (day 0). PBS-LIP, C1 2MDP-LIP (200 L and 400 L per mouse once every 3 days) and reveromycin A (10 mg / kg daily) were administered subcutaneously, clodronate (160 ^ mol / kg weekly) It was administered intraperitoneally (6 weeks).
(投与プロトコル 2) HARA-B細胞(マウス 1匹当たり 2 X 105)を左心室に注射した。 X線診断により骨転 移が実証されたマウスに、接種後 3週目〜5週目又は 4週目〜6週目にかけて C12MDP -LIP (3日に 1回マウス 1匹当たり 400 H L)を皮下投与した。 (Administration protocol 2) HARA-B cells (2 × 10 5 per mouse) were injected into the left ventricle. C12MDP-LIP (400 HL per mouse once every 3 days) is subcutaneously administered to mice whose bone transfer has been demonstrated by X-ray diagnosis from 3 to 5 weeks or from 4 to 6 weeks after inoculation. Administered.
[0042] 実験例 1 C12MDP-LIP投与による血中マクロファージ数の抑制  [0042] Experimental Example 1 Suppression of blood macrophage count by C12MDP-LIP administration
投与プロトコル 1に従い、転移モデルマウスの尾根部に C12MDP-LIP製剤 200 L又 は 400 Lを 3日毎に注入した。その後、麻酔下に上記マウスの左心室から血液 100〃 Lを採取し、その 50 ^ Lに対して、 FITC-抗 F4/80モノクローナル抗体(RM2901:CALT AG Lab.製)及び PE-抗じ011ヒモノクローナル抗体 \ 2804:じ八し下八〇 Lab.製)ファ ージ(1:50)にて染色し、 FACScan (Becton Dickinson, USA)にてマクロファージ(F4/8 0および CD1 lb陽性細胞)の数を測定した。その結果、刺激前 (0日)と比較して、 C12 MDP-LIP 200 Lの刺激では 24時間後 (1日)のマクロファージ抑制効果に有意差は 認められなかった力 C12MDP-LIP 400 Lの刺激では抑制効果に有意差が認めら れた(図 1参照)。  According to administration protocol 1, 200 L or 400 L of C12MDP-LIP preparation was injected every 3 days into the ridge of metastatic model mice. Thereafter, 100 μL of blood was collected from the left ventricle of the mouse under anesthesia, and FITC-anti-F4 / 80 monoclonal antibody (RM2901: produced by CALT AG Lab.) And PE-anti-anti HI monoclonal antibody \ 2804: stained by Labyrinth (1:50), stained with FACScan (Becton Dickinson, USA), macrophages (F4 / 80 and CD1 lb positive cells) The number of was measured. As a result, compared to the pre-stimulation (day 0), C12 MDP-LIP 200 L stimulation showed no significant difference in macrophage inhibitory effect 24 hours later (1 day) C12MDP-LIP 400 L stimulation Showed a significant difference in the inhibitory effect (see Figure 1).
[0043] 実験例 2  [0043] Experimental Example 2
( 1 )肺癌細胞転移モデルマウスの骨転移 ·骨破壊抑制  (1) Bone metastasis and suppression of bone destruction in lung cancer cell metastasis model mice
HARA-B細胞 2 X 105個をマウス左心室に移植したところ、 6週間で X線所見におい て多発性骨転移が認められた(図 2A)。組織学的分析により骨転移および筋転移が 確認された(図 2B)。 When 2 X 10 5 HARA-B cells were transplanted into the left ventricle of the mouse, multiple bone metastases were observed in X-ray findings after 6 weeks (Fig. 2A). Histological analysis confirmed bone and muscle metastasis (Figure 2B).
投与プロトコル 1に従い、 HARA-B細胞 2 X 105個を移植後、各種薬剤をマウスに注 入した。 200 しのじ12\ 0?-し1?を注入した群では、 7匹中 4匹に骨転移数の抑制が認 められ、 400 Lの C12MDP-LIPを注入した群では、 X線所見において骨転移像は 1匹 にしか認められなかった (表 1参照)。一方、 400 しの?85_し1?を注入したコントロール 群では、 6週間後の X線所見で多発性骨転移像が認められた (表 1および図 3参照)。 転移巣の数は、平均値土標準偏差で示す。 *は pく 0.05を示す。 **は pく 0.01を示す。 Following administration protocol 1, 2 X 10 5 HARA-B cells were transplanted, and then various drugs were injected into mice. In the group injected with 200 Shinouji 12 \ 0? -Shi 1 ?, 4 out of 7 animals showed suppression of bone metastasis, and in the group injected with 400 L C12MDP-LIP, X-ray findings Only one bone metastasis was observed (see Table 1). On the other hand, 400? In the control group injected with 85_ and 1 ?, X-ray findings after 6 weeks showed multiple bone metastases (see Table 1 and Fig. 3). The number of metastases is shown as the average soil standard deviation. * Indicates p 0.05. ** indicates p 0.01.
[0044] [表 1] 薬剤投与群 骨転移の発生 転移巣の数 + [0044] [Table 1] Drug administration group Bone metastasis occurrence Number of metastases +
PBS-LIP 6.6±4.2  PBS-LIP 6.6 ± 4.2
クロドロネート 2± 1.2 Clodronate 2 ± 1.2
C12MDP-LIP (200 μΐ) 0.9± 1.2ま C1 2 MDP-LIP (200 μΐ) 0.9 ± 1.2
C12MDP-LIP (400 μΐ) 0·1 ±0·3 * C1 2 MDP-LIP (400 μΐ) 0 ・ 1 ± 0 ・ 3 *
リベロマイシン A 0.3± 1.0 *  Reveromycin A 0.3 ± 1.0 *
+平均値土 SD  + Average soil value SD
† p<0.05  † p <0.05
* Pく 0.01  * P
[0045] 表 1から明らかなように、 200 Lおよび 400 Lの C12MDP-LIPを注入すると、それぞ れ 200 a Lおよび 400 a Lの PBS-LIPを添加した場合(コントロール)と較べて、骨転移 が抑制された。この抑制効果は、 2003 8811 Lの C12MDP-LIPよりも 400 Lの C12MDP-LIP を注入した場合により顕著であり、リベロマイシン Aと比較しても同等もしくはそれ以上 であった。 [0045] As is apparent from Table 1, when 200 L and 400 L of C12MDP-LIP were injected, bone was compared to when 200 a L and 400 a L of PBS-LIP were added (control), respectively. Metastasis was suppressed. This inhibitory effect was more pronounced when 400 L of C12MDP-LIP was injected than with 2003 8811 L of C12MDP-LIP, and was equal to or greater than that of reveromycin A.
以上より、 C12MDP-LIPの投与により、骨転移が顕著に抑制されることが明らかとな つた。  From the above, it was clarified that bone metastasis was significantly suppressed by administration of C12MDP-LIP.
[0046] (2) 各種薬剤投与による骨'筋転移頻度並びに転移巣での腫瘍増殖の減少  [0046] (2) Decrease in bone and muscle metastasis frequency and tumor growth at metastases by administration of various drugs
投与プロトコル 1で処理したマウス(n=7-9)を HARA-B細胞接種 6週間後に屠殺し、 骨および筋転移の形成を試験した。その結果を表 2に示す。腫瘍面積は、各マウス の骨および筋肉における個々の腫瘍面積( π d2/4として計算; dは各腫瘍の直径( mm) )の合計として示した。 C12MDP-LIP 400 μ L投与は転移頻度および骨'筋転移 巣の数、並びに骨'筋肉における腫瘍の増殖を顕著に抑制した。骨転移の抑制効果 は、骨吸収抑制薬として知られるリベロマイシン Αのそれよりも優れていた。また、リベ ロマイシン Aは筋転移巣における腫瘍増殖に対してほとんど抑制効果を示さないが、 C12MDP-LIPは筋転移における腫瘍増殖についても抑制傾向を示した。 Mice treated with dosing protocol 1 ( n = 7-9) were sacrificed 6 weeks after HARA-B cell inoculation and examined for the formation of bone and muscle metastases. The results are shown in Table 2. Tumor area (calculated as π d 2/4; d is each tumor diameter (mm)) individual tumor area in bone and muscle of each mouse expressed as the sum of. The administration of C12MDP-LIP 400 μL markedly suppressed the metastasis frequency, the number of bone 'muscle metastases, and the growth of tumors in the bone' muscle. The inhibitory effect on bone metastasis was superior to that of riberomycin, known as a bone resorption inhibitor. In addition, liberomycin A showed little inhibitory effect on tumor growth in muscle metastases, but C12MDP-LIP also showed a tendency to suppress tumor growth in muscle metastases.
[0047] [表 2] 転移の発生 腫瘍コロニ- -の数 + 驢瘍 積 ( mm2) + [0047] [Table 2] Metastasis occurrence Number of tumor colonies-+ tumor mass (mm 2 ) +
骨 筋肉 骨 筋肉 Bone muscle bone muscle
PBS-LIP 8/9 4.7±4.1 13.2土 14.1 8.14±6.88 16.35±20,20 クロドロネ一ト 8/8 3.4 ±2.4 4.6±5.8 16.68± 14.18 14.20±18.58PBS-LIP 8/9 4.7 ± 4.1 13.2 Sat 14.1 8.14 ± 6.88 16.35 ± 20,20 Clodrone 8/8 3.4 ± 2.4 4.6 ± 5.8 16.68 ± 14.18 14.20 ± 18.58
C12MDP-LIP (200 μΐ) 5/7 2.0±3.0 7.9± 13.1 5.60±9.26 10.09± 11.30C1 2 MDP-LIP (200 μΐ) 5/7 2.0 ± 3.0 7.9 ± 13.1 5.60 ± 9.26 10.09 ± 11.30
C12MDP-LIP (400 μΐ) 5/9 0.4±0.7 1.2±1.2 0,44±0 2 2.02±3.27 リベロマイシン A 6/9 0.7± 1.3 4.3±4.6 3.67±9.19 14.89± 13.87C1 2 MDP-LIP (400 μΐ) 5/9 0.4 ± 0.7 1.2 ± 1.2 0,44 ± 0 2 2.02 ± 3.27 Riberomycin A 6/9 0.7 ± 1.3 4.3 ± 4.6 3.67 ± 9.19 14.89 ± 13.87
+平均値土 SD + Average soil value SD
+ Pく 0.05 [0048] 表 2から明らかなように、 200 Lおよび 400 Lの C12MDP-LIPを注入すると、それぞ れ 200 a Lおよび 400 a Lの PBS-LIPを添加した場合(コントロール)と較べて、骨転移 および筋転移が抑制された。この抑制効果は、 200 しのじ12\ 0?-し1?ょりも400〃し の C12MDP-LIPを注入した場合により顕著であり、リベロマイシン Aと比較しても同等 以上であった。特に筋転移抑制効果については、リベロマイシン Aよりも顕著であつ た。 + P [0048] As can be seen from Table 2, when 200 L and 400 L of C12MDP-LIP were injected, bone was compared to when 200 a L and 400 a L of PBS-LIP were added (control), respectively. Metastasis and muscle metastasis were suppressed. This inhibitory effect was more noticeable when 200 C12MDP-LIP was injected as much as 400 liters, and even when compared with reveromycin A. In particular, the effect of inhibiting muscle metastasis was more remarkable than that of reveromycin A.
これらの結果から、 C12MDP-LIPの投与により、骨転移だけでなく筋転移もまた顕著 に抑制できることが明らかである。  From these results, it is clear that administration of C12MDP-LIP can significantly suppress not only bone metastasis but also muscle metastasis.
[0049] (3) 各種薬剤投与による骨転移頻度の減少  [0049] (3) Reduction of bone metastasis frequency by administration of various drugs
投与プロトコル 1で処理したマウスについて、接種の 4および 6週間後、骨転移を麻 酔下で X線診断によってアツセィした。移植後 6週目にレントゲン撮影により骨転移を 評価し、骨転移および筋転移の病理学的検討を実施した。結果を図 3に示す(図中 の矢印は溶骨性骨転移を示す)。 C12MDP-LIPはクロドロネートよりも骨転移を顕著に 抑制した。 C12MDP-LIP 400 L投与では、リベロマイシン A投与と同様、骨転移は観 察されなかった。  For mice treated with dosing protocol 1, bone metastasis was assessed by X-ray diagnosis under intoxication at 4 and 6 weeks after inoculation. Bone metastasis was evaluated by radiography at 6 weeks after transplantation, and pathological examination of bone and muscle metastasis was performed. The results are shown in Fig. 3 (the arrow in the figure indicates osteolytic bone metastasis). C12MDP-LIP significantly inhibited bone metastasis than clodronate. In the case of C12MDP-LIP 400 L administration, no bone metastasis was observed as in the case of reveromycin A administration.
[0050] (4) C12MDP-LIP投与による骨吸収の抑制  [0050] (4) Inhibition of bone resorption by C12MDP-LIP administration
投与プロトコル 2で処理したマウス(n=3)について、 HARA-B細胞接種 3 (または 4) 週目および 5 (または 6)週目に X線撮影を実施し、 X線写真上の骨転移のサイズを Po p Imageを用いて概算、溶骨面積を測定し、その増加を検定した。 PBS-LIPを同様に 投与したマウス(n=3)についても同様に溶骨面積の増加を検定、比較した。その結果 を図 4A、 Bに示す。 C12MDP-LIPを投与したマウスでは、 PBS-LIPを投与したマウスと 比較して、溶骨面積の増加が顕著に抑制された。この結果は、既に骨転移が認めら れる症例においても、 C12MDP-LIPの投与が転移巣における骨吸収の進展抑制に有 効であることを示している。  Mice treated with administration protocol 2 (n = 3) were X-rayed at weeks 3 (or 4) and 5 (or 6) of HARA-B cell inoculation, and were examined for bone metastases on the radiograph. The size was estimated using Pop Image, the osteolytic area was measured, and the increase was tested. Mice to which PBS-LIP was similarly administered (n = 3) were similarly tested and compared for an increase in osteolytic area. The results are shown in Figures 4A and B. In mice administered with C12MDP-LIP, the increase in osteolytic area was markedly suppressed compared to mice administered with PBS-LIP. This result shows that administration of C12MDP-LIP is effective in suppressing the progress of bone resorption in metastatic lesions even in cases where bone metastasis has already been observed.
[0051] (5) C12MDP-LIP投与による HARA-B腫瘍中のマクロファージの減少  [0051] (5) Decrease of macrophages in HARA-B tumor by C12MDP-LIP administration
投与プロトコル 2で処理したマウスから、 HARA-B細胞接種 6週間後に腫瘍を切除し 、次いで、サンプルを OCT化合物中に浸漬して、液体窒素中で即座に凍結し、 5 μ mの凍結切片を調製した。 PBS-LIPを同様に投与したマウス由来の腫瘍についても 同様に処理して凍結切片を得た。これらの切片を PBSでリンスし、 4%パラホルムアル デヒド /PBS中で短時間固定し、その後ラット抗 F4/80 (1:200)で染色した。次いで、 切片を PBSで 3回リンスし、ャギ抗ラット IgG及び F4/80に対する lmg/mLの Alexa Fluor 488 (Molecular Probes)と共にインキュベートした。核染色は、 4',6-ジアミジノ -2-フエ ニルインドール(DAPI) (1: 1000)を使用して実施した。染色細胞の数を、 X 200の倍 率で、 PBS-LIP又は C12MDP-LIPで処理した 3つの腫瘍の各々について、 5つの無作 為な視野で計数した(即ち、 n=15)。結果を図 5Aおよび Bに示す。 C12MDP-LIP投与 は腫瘍中のマクロファージ数を顕著に減少させた。 Tumors were excised 6 weeks after HARA-B cell inoculation from mice treated with dosing protocol 2, then the samples were immersed in OCT compound and immediately frozen in liquid nitrogen, and 5 μm frozen sections were obtained. Prepared. For tumors derived from mice that received PBS-LIP in the same way A frozen section was obtained by the same processing. These sections were rinsed with PBS, fixed briefly in 4% paraformaldehyde / PBS, and then stained with rat anti-F4 / 80 (1: 200). The sections were then rinsed 3 times with PBS and incubated with goat anti-rat IgG and lmg / mL Alexa Fluor 488 (Molecular Probes) against F4 / 80. Nuclear staining was performed using 4 ', 6-diamidino-2-phenylindole (DAPI) (1: 1000). The number of stained cells was counted in 5 random fields (ie, n = 15) for each of 3 tumors treated with PBS-LIP or C12MDP-LIP at a magnification of X200. The results are shown in FIGS. 5A and B. C12MDP-LIP administration significantly reduced the number of macrophages in the tumor.
[0052] (6)各種薬剤投与による骨髄中の破骨細胞の減少  [0052] (6) Reduction of osteoclasts in bone marrow by administration of various drugs
投与プロトコル 1で処理したマウスの後肢を採取し、 10%ホルマリン中で固定した。 該検体を、 10%EDTA溶液中で 1週間脱灰し、次いでパラフィン包埋した。 Sigma Diag nostics Acid Phospnatase ット (Sigma Diagnostics, St. Louis, MO)を使用して、骨髄 中の破骨細胞を TRAP染色により検出した。 TRAP陽性細胞の数を、 X 200の倍率で 3 つの切片の各々において、 5つの無作為な視野で顕微鏡により計数した(即ち、 n=15 )。結果を図 6Aおよび Bに示す。コントロール(PBS-LIP)群と他の群との間の有意差 検定は、両側スチューデント t検定により行った。 C12MDP-LIPは、リベロマイシン Aと 同等もしくはそれ以上に骨髄中の破骨細胞数を減少させた。  The hind limbs of mice treated with administration protocol 1 were collected and fixed in 10% formalin. The specimens were decalcified in 10% EDTA solution for 1 week and then embedded in paraffin. Osteoclasts in the bone marrow were detected by TRAP staining using a Sigma Diagnostics Acid Phospnatase (Sigma Diagnostics, St. Louis, MO). The number of TRAP positive cells was counted microscopically in 5 random fields in each of 3 sections at a magnification of X200 (ie n = 15). The results are shown in FIGS. 6A and B. A significant difference test between the control (PBS-LIP) group and the other groups was performed by a two-sided student t-test. C12MDP-LIP reduced the number of osteoclasts in the bone marrow as well as or better than reveromycin A.
[0053] 実験例 3 単球および肺癌細胞の生存に及ぼす各種薬剤の効果  [0053] Experimental Example 3 Effects of various drugs on the survival of monocytes and lung cancer cells
HARA-B細胞(2·5 Χ 104細胞/ゥエル)または単球(1.8 X 105細胞/ゥエル)を、種 々の用量の薬物(クロドロネート、 C12MDP-LIP,リベロマイシン A)の存在下で 3日間 インキュベートした後、細胞の生存を検定した。結果を表 3に示す。 C12MDP-LIPは肺 癌細胞自体を殺傷することはないが、マクロファージが由来する単球を用量依存的 に殺傷した。一方、リベロマイシン Aは肺癌細胞を用量依存的に殺傷したが、単球に 対しては殺傷効果は認められな力、つた。投与量以外の数値は、平均値土標準偏差 を意味する。 HARA-B cells (2.5 · 10 4 cells / well) or monocytes (1.8 x 10 5 cells / well) in the presence of various doses of drugs (clodronate, C12MDP-LIP, reveromycin A) After 3 days of incubation, cell viability was assayed. The results are shown in Table 3. C12MDP-LIP did not kill lung cancer cells themselves, but killed monocytes derived from macrophages in a dose-dependent manner. On the other hand, reveromycin A killed lung cancer cells in a dose-dependent manner, but did not have a killing effect on monocytes. Values other than the dose mean the mean soil standard deviation.
[0054] [表 3] 薬剤 用量 肺癌細胞 + 単球 + なし 0 100,0±4.0 100.0±21.6 クロドロネ一卜 25 98.3± 1 100.0± 14.4 [0054] [Table 3] Drug dose Lung cancer cells + Monocytes + None 0 100,0 ± 4.0 100.0 ± 21.6 First dose of clodrone 25 98.3 ± 1 100.0 ± 14.4
100 93.8±7.1 100.0± 16.4  100 93.8 ± 7.1 100.0 ± 16.4
200 (μΜ) 99.1土 1.8 100.0士 3.8  200 (μΜ) 99.1 Sat 1.8 100.0 3.8
C12MDP-LIP 2 100.0±2.6 99.6±5.8 C1 2 MDP-LIP 2 100.0 ± 2.6 99.6 ± 5.8
20 100.0±0.4 83.7土 7.2  20 100.0 ± 0.4 83.7 Sat 7.2
200 (μΜ) 100.0±5.7 43.7±7.1  200 (μΜ) 100.0 ± 5.7 43.7 ± 7.1
リベロマイシン A 1 100,0±5.6 100.0± 17.3  Riberomycin A 1 100,0 ± 5.6 100.0 ± 17.3
5 33.1 ±2.5 100.0±40.4  5 33.1 ± 2.5 100.0 ± 40.4
10 (μβ/πι1) 12.2±0.4 (%) 100.0±59.3 (%) 各数値は 2ディッシュの平均であり、薬剤非存在下の細胞数を 100%とした相対的パーセンテージで示す。 +平均値土 SD 10 (μ β / πι1) 12.2 ± 0.4 (%) 100.0 ± 59.3 (%) Each value is an average of 2 dishes, and is expressed as a relative percentage with the number of cells in the absence of the drug as 100%. + Average soil value SD
[0055] 以上の結果から、ビスホスホネート系薬剤を含有するリボソーム製剤は、マクロファ ージのアポトーシスを誘導することにより、癌の骨 ·筋転移を抑制し得ること、並びに 転移巣における腫瘍増殖を抑制し得ることが明ら力、となった。今後、癌の悪性進展や 骨転移などと関連するマクロファージに対して、より選択的なリボソーム剤を開発して いくことが非常に重要な課題であろう。 [0055] From the above results, ribosome preparations containing bisphosphonates can suppress macrophage apoptosis, thereby suppressing cancer bone-muscle metastasis, and tumor growth in metastases. It became clear that it was possible to obtain. In the future, it will be a very important issue to develop more selective ribosome agents for macrophages related to malignant progression of cancer and bone metastasis.
産業上の利用可能性  Industrial applicability
[0056] 本発明の結果は当初の期待をはるかに超えたものであった。本発明にて使用した ヒト肺癌細胞は高頻度に骨転移を発症するのみでなぐ筋肉転移を引き起こすことに 特徴があり、リボソーム化されたビスホスホネート製剤の投与により、これら両方の転 移を有意に、し力、も著明に抑制することができた。このメカニズムについてはマクロフ ァージを介した炎症反応が骨転移や筋肉転移に深く関与することを示唆している。マ クロファージ、特に腫瘍関連マクロファージを標的とするリボソーム化ビスホスホネート 製剤は骨、筋肉転移の治療に貢献することが期待される。  [0056] The results of the present invention far exceeded initial expectations. Human lung cancer cells used in the present invention are characterized by causing not only frequent bone metastasis but also muscle metastasis, and administration of a ribosomal bisphosphonate preparation significantly reduces both of these transitions. It was also possible to significantly suppress the force. This mechanism suggests that macrophage-mediated inflammatory responses are deeply involved in bone and muscle metastasis. Ribosomal bisphosphonate preparations targeting macrophages, especially tumor-associated macrophages, are expected to contribute to the treatment of bone and muscle metastases.
[0057] 本発明は、 2006年 8月 4曰に日本で出願された特願 2006— 213334を基礎とし ており、その内容は全て本明細書に包含される。  [0057] The present invention is based on Japanese Patent Application No. 2006-213334 filed in Japan on August 4, 2006, the entire contents of which are included in this specification.

Claims

請求の範囲 The scope of the claims
[1] リボソーム化されたビスホスホネート系薬剤を含有する、腫瘍の転移抑制剤。  [1] A tumor metastasis inhibitor comprising a ribosomal bisphosphonate.
[2] 転移が骨転移である、請求項 1記載の剤。 [2] The agent according to claim 1, wherein the metastasis is bone metastasis.
[3] 転移が筋転移である、請求項 1記載の剤 [3] The agent according to claim 1, wherein the metastasis is muscle metastasis.
[4] ビスホスホネート系薬剤がクロドロネートである、請求項 1記載の剤。  [4] The agent according to claim 1, wherein the bisphosphonate is clodronate.
PCT/JP2007/065385 2006-08-04 2007-08-06 Metastasis inhibitor WO2008016172A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-213334 2006-08-04
JP2006213334 2006-08-04

Publications (1)

Publication Number Publication Date
WO2008016172A1 true WO2008016172A1 (en) 2008-02-07

Family

ID=38997342

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/065385 WO2008016172A1 (en) 2006-08-04 2007-08-06 Metastasis inhibitor

Country Status (1)

Country Link
WO (1) WO2008016172A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2928270A1 (en) * 2008-03-10 2009-09-11 Erytech Pharma Sa FORMULATION METHOD FOR THE PREVENTION OR TREATMENT OF BONE METASTASES AND OTHER BONE DISEASES
CN101849909A (en) * 2010-03-15 2010-10-06 江苏大学 Preparation method of magnetic disodium clodronate liposome
JP2014520849A (en) * 2011-07-08 2014-08-25 ザ ユニバーシティ オブ ノース カロライナ アット チャペル ヒル Metal bisphosphonate nanoparticles for anti-cancer treatment and imaging and bone disorder treatment
US10517822B2 (en) 2013-11-06 2019-12-31 The University Of Chicago Nanoscale carriers for the delivery or co-delivery of chemotherapeutics, nucleic acids and photosensitizers
US11246877B2 (en) 2016-05-20 2022-02-15 The University Of Chicago Nanoparticles for chemotherapy, targeted therapy, photodynamic therapy, immunotherapy, and any combination thereof
US11826426B2 (en) 2017-08-02 2023-11-28 The University Of Chicago Nanoscale metal-organic layers and metal-organic nanoplates for x-ray induced photodynamic therapy, radiotherapy, radiodynamic therapy, chemotherapy, immunotherapy, and any combination thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57154131A (en) * 1980-10-07 1982-09-22 Procter & Gamble Control of tumor transfer
CN1771972A (en) * 2004-11-09 2006-05-17 胡才忠 Clodronate liposome and its prepn

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57154131A (en) * 1980-10-07 1982-09-22 Procter & Gamble Control of tumor transfer
CN1771972A (en) * 2004-11-09 2006-05-17 胡才忠 Clodronate liposome and its prepn

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
BIOSSIER S. ET AL.: "Bisphosphonates inhibit breast and prostate carcinoma cell invasion, an early event in the formation of bone metastases", CANCER RESEARCH, vol. 60, 2000, pages 2949 - 2954, XP003020895 *
HIRAGA T. ET AL.: "Zoledronic acid inhibits visceral metastases in the 4T1/luc mouse breast cancer model", CLINICAL CANCER RESEARCH, vol. 10, 2004, pages 4559 - 4567, XP003020896 *
WOODHOUSE E.C. ET AL.: "General mechanisms of metastasis", CANCER SUPPLEMENT, vol. 80, no. 8, 1997, pages 1529 - 1537, XP003020897 *
ZEISBERGER S.M. ET AL.: "Clodronate-liposome-mediated depletion of tumour-associated macrophages: a new and highly effective antiangiogenic therapy approach", BRITISH JOURNAL OF CANCER, vol. 95, 2006, pages 272 - 281, XP003020894 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101604451B1 (en) 2008-03-10 2016-03-17 에리테끄 파르마 Formulation and method for the prevention and treatment of bone metastases or other bone diseases
WO2009112493A1 (en) 2008-03-10 2009-09-17 Erytech Pharma Formulation and method for the prevention and treatment of bone metastases or other bone diseases
JP2011513464A (en) * 2008-03-10 2011-04-28 エリテック・ファーマ Formulations and methods for the prevention and treatment of bone metastases or other bone diseases
FR2928270A1 (en) * 2008-03-10 2009-09-11 Erytech Pharma Sa FORMULATION METHOD FOR THE PREVENTION OR TREATMENT OF BONE METASTASES AND OTHER BONE DISEASES
CN101849909A (en) * 2010-03-15 2010-10-06 江苏大学 Preparation method of magnetic disodium clodronate liposome
CN101849909B (en) * 2010-03-15 2012-06-20 江苏大学 Preparation method of magnetic disodium clodronate liposome
JP2014520849A (en) * 2011-07-08 2014-08-25 ザ ユニバーシティ オブ ノース カロライナ アット チャペル ヒル Metal bisphosphonate nanoparticles for anti-cancer treatment and imaging and bone disorder treatment
US9693957B2 (en) 2011-07-08 2017-07-04 The University Of North Carolina At Chapel Hill Metal bisphosphonate nanoparticles for anti-cancer therapy and imaging and for treating bone disorders
US10596116B2 (en) 2011-07-08 2020-03-24 The University Of North Carolina At Chapel Hill Metal bisphosphonate nanoparticles for anti-cancer therapy and imaging and for treating bone disorders
US11872311B2 (en) 2011-07-08 2024-01-16 The University Of North Carolina At Chapel Hill Metal bisphosphonate nanoparticles for anti-cancer therapy and imaging and for treating bone disorders
US10517822B2 (en) 2013-11-06 2019-12-31 The University Of Chicago Nanoscale carriers for the delivery or co-delivery of chemotherapeutics, nucleic acids and photosensitizers
US11246877B2 (en) 2016-05-20 2022-02-15 The University Of Chicago Nanoparticles for chemotherapy, targeted therapy, photodynamic therapy, immunotherapy, and any combination thereof
US11826426B2 (en) 2017-08-02 2023-11-28 The University Of Chicago Nanoscale metal-organic layers and metal-organic nanoplates for x-ray induced photodynamic therapy, radiotherapy, radiodynamic therapy, chemotherapy, immunotherapy, and any combination thereof

Similar Documents

Publication Publication Date Title
CN102026634B (en) Induction of tumor hypoxia for cancer therapy
WO2008016172A1 (en) Metastasis inhibitor
JP5028405B2 (en) Calcium salt of myo-inositol 1,6: 2, 3: 4,5 tripyrophosphate as an allosteric effector of hemoglobin
CA2231547A1 (en) Liposomal compositions and methods of using them
WO2014071379A1 (en) Dosing and administration of oligonucleotide cancer therapies
JP2009518297A (en) Amphoteric liposome preparation
EP3911302A1 (en) Drug delivery systems containing oxidized cholesterols
KR20150034517A (en) Liposome comprising a complex of a hydrophobic active ingredient and a polypeptide, and use thereof
CN114948959B (en) Nanometer medicine for regulating and controlling lactic acid metabolism of tumor and preparation method and application thereof
Sohara et al. Lytic bone lesions in human neuroblastoma xenograft involve osteoclast recruitment and are inhibited by bisphosphonate
EP1906972B1 (en) LPA2 receptor agonist for treating diarrhea
JP2023165872A (en) Inhibition of trained immunity with therapeutic nanobiological compositions
Penet et al. Effect of pantethine on ovarian tumor progression and choline metabolism
AU4664600A (en) Pharmaceutical compositions of tetrac and methods of use thereof
JP2021530482A (en) Tumor-reducing preparations and how to use them
KR101678702B1 (en) 3,3&#39;,4,4&#39;-tetrahydroxy-2,2&#39;-bipyridine-N,N&#39;-dioxides for the treatment of renal cell carcinoma
JP2019520310A (en) Therapeutic agent for cancer and precancerous lesion, method of treatment, and method of producing therapeutic agent
EP1044679B1 (en) Stable Liposomes for Targeted Drug Delivery
CA3144547A1 (en) Small molecule inhibitors for treating cancer in a subject having tumors with high interstitial pressure
Chen et al. Evaluation of multi-target and single-target liposomal drugs for the treatment of gastric cancer
Gregoriadis The physiology of the liposome
JP7015237B2 (en) How to control tumor growth
Karita et al. The antitumor effect of liposome-encapsulated cisplatin on rat osteosarcoma and its enhancement by caffeine
JP2010235564A (en) Substance-delivering carrier for producing cell of fucosylated sugar chain
JPWO2006035515A1 (en) Pharmaceutical composition for treating or preventing superficial bladder cancer, and use thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07792054

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 07792054

Country of ref document: EP

Kind code of ref document: A1