WO2008016116A1 - Annealing apparatus and annealing method - Google Patents

Annealing apparatus and annealing method Download PDF

Info

Publication number
WO2008016116A1
WO2008016116A1 PCT/JP2007/065194 JP2007065194W WO2008016116A1 WO 2008016116 A1 WO2008016116 A1 WO 2008016116A1 JP 2007065194 W JP2007065194 W JP 2007065194W WO 2008016116 A1 WO2008016116 A1 WO 2008016116A1
Authority
WO
WIPO (PCT)
Prior art keywords
led element
light
annealing
led
cooling
Prior art date
Application number
PCT/JP2007/065194
Other languages
French (fr)
Japanese (ja)
Inventor
Shigeru Kasai
Original Assignee
Tokyo Electron Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Limited filed Critical Tokyo Electron Limited
Publication of WO2008016116A1 publication Critical patent/WO2008016116A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/268Bombardment with radiation with high-energy radiation using electromagnetic radiation, e.g. laser radiation
    • H01L21/2686Bombardment with radiation with high-energy radiation using electromagnetic radiation, e.g. laser radiation using incoherent radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67115Apparatus for thermal treatment mainly by radiation

Definitions

  • the present invention relates to an annealing apparatus and an annealing method for annealing an object to be processed by irradiating the object to be processed such as a semiconductor wafer with light from an LED.
  • Heating by LEDs uses electromagnetic radiation due to recombination of electrons and holes, not black body radiation from the heating source. Therefore, when a wafer is heated by an LED, the temperature drop rate of the wafer can be increased. For this reason, heating with LEDs may be applicable to the most advanced processes. In recent years, from the viewpoint of heating only the surface portion of the wafer, LEDs composed of GaN are frequently used as LED elements that emit light having a short wavelength of ultraviolet light to blue light!
  • LED element since the LED element generally has a low energy density, it is difficult to obtain the high power necessary for high-temperature temperature rise from the LED element.
  • LED elements composed of GaN, which are frequently used have the property that the optical power saturates when the current value exceeds a predetermined value, and it is impossible in principle to extract large optical power. Disclosure of the invention
  • the present invention has been made in view of power and circumstances, and an object thereof is to provide an annealing apparatus and an annealing method capable of obtaining a large optical power using an LED as a heat source. .
  • a program storage medium for executing such an annealing method is provided. The purpose is to provide.
  • An annealing apparatus is an annealing apparatus for irradiating a target object with light to anneal the target object, and a processing container in which the target object is accommodated and a light to the target object.
  • a heating source having a plurality of LED elements that irradiate the plurality of LED elements, a power supply device that is connected to the plurality of LED elements and supplies power to the LED elements, a cooling device that cools the LED elements, the processing vessel, and the heating source
  • the LED element is made of a GaAs-based material, and the LED element of the heating source is cooled by the cooling device and is raised by the power feeding device. It is characterized by being configured to irradiate light with high light output by being driven by current.
  • the heating source may be provided on both sides of the processing container.
  • the cooling device includes a housing in which the heating source is accommodated, and a cooling medium that has an insulating property and transmits light from the LED element. And a cooling medium supply mechanism for supplying the cooling medium into the housing.
  • the cooling medium may be a fluorine-based inert liquid.
  • the cooling device may cool the LED element to 0 ° C or less, and the power feeding device may flow a current of 100 mA or more to the LED element.
  • An annealing method is an annealing method for annealing a target object with light from a plurality of fed LED elements, the step of accommodating the target object in a processing container;
  • the LED element composed of GaAs material is driven at high current while cooling, and the LE
  • the LED element is brought into direct contact with a cooling medium having insulation and transmitting light from the LED element.
  • the element may be cooled.
  • the cooling medium may be a fluorine-based inert liquid.
  • the LLEEDD element element is cooled and cooled down to 00 ° C. or less and the electric current flowing through the LLEEDD element element is changed to 110000 mmAA. That's all for now. .
  • the recording / recording medium according to the present invention is capable of receiving light from a plurality of LLEEDD element elements that are supplied with power. Therefore, it is actually executed by the control device device that controls the device device that controls the object to be processed.
  • the program is a recording medium that has been recorded, and the program is stored in the control control device.
  • a process step for accommodating the processed body to be processed in the processing barber container, and The LLEEDD element composed of GGaaAAss-based material material is driven with high current flow while cooling and cooling, in front
  • An implementation of the process method for projecting light from the LLEEDD element and the method for the annealing method comprising This place is a special feature. .
  • the heated heat source is composed of a plurality of LLEEDD element elements.
  • the treated body is irradiated with light from the treated body.
  • the LLEEDD element made up of GG aaAAss-based material is used to perform the process.
  • LLEEDD elements composed of GGaaAAss-based material materials can be used to increase the electric current flow.
  • the capacity of the well well can be increased by increasing the light output power, and the light output power is almost equal to the current flow. An example proportional to .
  • the LLEEDD element can be cooled while cooling the LLEEDD element so as to suppress the heat generated by the LLEEDD element.
  • the LLEEDD element made up of GGaaAAss-based material materials increases the light output power as the temperature temperature decreases and decreases. To do. . Therefore, according to the cooling and cooling of the LLEEDD element, the high light from the LLEEDD element is further increased. This is where you can get light output power. . From here and there, it is possible to complete the processing of the target object to be processed with a large light beam. .
  • FIG. 11 is a schematic schematic diagram of an apparatus for installing an apparatus according to an embodiment of the present invention.
  • FIG. 3 is a cross-sectional view showing a configuration. .
  • FIG. 22 is a cross-sectional view showing the heating source of the heating apparatus shown in FIG. 11 in an enlarged scale. FIG. .
  • FIG. 33 shows the arrangement of the LLEEDD array array in the heating heat source of the apparatus shown in FIG. It is a schematic diagram of a stubborn clarification. .
  • FIG. 44 can be used as a cooling / cooling medium in the apparatus shown in FIG. Get Fluoro
  • FIG. 5 is a graph showing the radiation (absorption) characteristics of silicon.
  • FIG. 6A is a graph showing the voltage-current characteristics of an LED element composed of GaAs.
  • Fig. 6B is a graph showing the voltage-current characteristics of an LED element composed of GaN.
  • FIG. 7 is a graph showing the current-light output characteristics of an LED element composed of GaN and the current-light output characteristics of an LED element composed of GaAs.
  • FIG. 8 is a graph showing the temperature-one-light output characteristic of an LED element composed of GaN and the temperature-one-light output characteristic of an LED element composed of GaAs.
  • FIG. 1 is a cross-sectional view showing a schematic configuration of the annealing apparatus according to the embodiment of the present invention.
  • the annealing apparatus 100 is configured to be hermetically sealed and has a processing container 1 into which a wafer W is loaded.
  • a support column 2 is erected from the bottom of the processing container 1, and a support member 3 that horizontally supports the wafer W is provided so as to extend inward from the upper end of the support column 2.
  • Openings la and lb are formed in portions corresponding to the wafer W on the top wall and the bottom wall of the processing vessel 1, respectively.
  • Light transmitting members 5a and 5b are provided in an airtight manner so as to cover the openings la and lb.
  • a processing gas introduction port 22 through which a predetermined processing gas is introduced from a processing gas supply mechanism (not shown), and an exhaust port 23 (not shown) connected to an exhaust device.
  • a loading / unloading port 24 for loading / unloading the wafer W to / from the processing container 1 is provided on the side wall of the processing container 1!
  • the loading / unloading port 24 can be opened and closed by a gate valve 25.
  • a temperature sensor 26 for measuring the temperature of the wafer W placed on the support member 3 is provided.
  • the temperature sensor 26 is connected to a measuring unit 27 disposed outside the processing container 1. A temperature detection signal is output from the measurement unit 27 to a process controller 60 described later.
  • a first housing 6a is provided so as to surround the light transmitting member 5a. Is provided.
  • a second housing 6b is provided below the bottom wall of the processing container 1 so as to surround the light transmission member 5b. Heating sources 7a and 7b each having a plurality of LED elements are accommodated in the housings 6a and 6b.
  • the first housing 6a includes a holding member 28a that surrounds the light transmissive member 5a from the periphery and holds the periphery of the light transmissive member 5a, and a heat radiating member 29a fixed in close contact with the holding member 28a. ing.
  • the heat dissipating member 29a holds the heating source 7a at a position facing the light transmitting member 5a.
  • a space 30a capable of accommodating a cooling medium is formed between the lower surface supporting the heating source 7a of the heat radiating member 29a and the light transmitting member 5a.
  • the heat radiating member 29a is formed with a cooling medium flow path 31a composed of a through hole groove for circulating the cooling medium.
  • the heat dissipating member 29a is adapted to dissipate heat generated from the heating source 7a, and may be made of copper, for example.
  • the second housing 6b includes a holding member 28b that surrounds the light transmitting member 5b from the periphery and holds the periphery of the light transmitting member 5b, and a heat radiating member 29b that is fixed in close contact with the holding member 28b. ing.
  • the heat dissipating member 29b holds the heating source 7b at a position facing the light transmitting member 5b.
  • a space 30b that can accommodate a cooling medium is formed between the upper surface of the heat radiating member 29b that supports the heating source 7b and the light transmitting member 5b.
  • the heat radiating member 29b is formed with a cooling medium flow path 3 lb composed of a through-hole and a groove for circulating the cooling medium.
  • the heat dissipating member 29b is adapted to dissipate heat generated from the heating source 7b, and may be made of copper, for example.
  • the heat sources 7a and 7b are mounted on the support member 32 and a support member 32 made of a highly heat conductive material having insulation, typically A1N ceramics, as shown in an enlarged view in FIG.
  • a plurality of LED arrays 34 having a large number of LED elements 33 are included.
  • the plurality of LED arrays 34 are disposed on the lower surface of the heat radiating member 29a.
  • the plurality of LED arrays 34 are disposed on the upper surface of the heat radiating member 29b.
  • An electrode 35 is provided between the support member 32 of the LED array 34 and the LED element 33. The electrode 35 is connected to a power feeding member 36 that passes through the heat radiating members 29a and 29b.
  • each LED array 34 has, for example, a hexagonal shape in a plan view, and is arranged as shown in FIG. 3, for example. For example, about 2000 to 5000 LED elements 33 are mounted on one LED array 34.
  • the LED element 33 is made of a GaAs material, for example, GaAs or GaAsAl.
  • a cooling medium inlet 1la and a cooling medium outlet 12a are provided on the side wall of the first housing 6a.
  • a cooling medium introduction port l ib and a cooling medium discharge port 12b are provided on the side wall of the second housing 6b.
  • Cooling medium supply pipes 13a and 13b are connected to the cooling medium introduction ports 11a and ib, respectively.
  • cooling medium discharge pipes 14a and 14b are connected to the cooling medium discharge ports 12a and 12b.
  • the cooling medium supply pipes 13a and 13b are connected to the cooling medium supply mechanism 20, and the cooling medium supply mechanism 20 allows the liquid supply into the first housing 6a and the second housing 6b via the cooling medium supply pipes 13a and 13b.
  • a cooling medium 21 is supplied.
  • the space 30b between the housing 6b and the light transmission member 5b is filled with the cooling medium 21.
  • the cooling medium 21 in the space 30a between the first housing 6a and the light transmission member 5a is recovered via the cooling medium discharge pipe 14a, and the cooling in the space 30b between the second housing 6b and the light transmission member 5b is performed.
  • the medium 21 is collected through the cooling medium discharge pipe 14b. That is, the cooling medium 21 is circulated by the cooling medium supply mechanism 20.
  • the cooling medium 21 is a liquid that has a cooling capacity capable of sufficiently cooling the LED element 33, is insulative, and is transmissive to the wavelength of light emitted from the LED element 33. Can be used.
  • the light emitted from the LED element 33 is larger than the refractive index force so that the light emitted from the LED element 33 is not totally reflected. It is preferable to use a material having a small value.
  • the transmittance of the light emitted from the LED element 33 with respect to the wavelength of light is preferably 90% or more. It is more preferable that it is transparent (transmittance is almost 100%) with respect to the light emitted from the element 33. Examples of such substances include fluorinated inert liquids (trade names such as florinate and Galden). As shown in Fig. 4, the visible light transmittance of Fluorinert is almost 100%, and the refractive index is about 1.25.
  • the cooling medium 21 transmits light to and from the first and second housings 6a and 6b.
  • the LED elements 33 constituting the Karo heat fields 7a and 7b are in direct contact.
  • the cooling medium 21 is also supplied to the cooling medium flow path 3la of the heat dissipation member 29a in the first housing 6a and the cooling medium flow path 31b of the heat dissipation member 29b in the second housing 6b.
  • the heat is also cooled by being radiated to the heat radiating members 29a and 29b, so that extremely efficient cooling is achieved.
  • the LED element 33 is preferably cooled to 0 ° C. or lower.
  • the cooling medium 21 Since the cooling medium 21 is in direct contact with the light emitting surface of the LED element 33, the gas (air) dissolved slightly in the cooling medium 21 becomes air bubbles on the light emitting surface! There is a risk of reducing the luminous efficiency of the LED element 33. For this reason, it is preferable that the cooling medium 21 is used after being degassed and defoamed in advance. As degassing and defoaming treatment at this time, the sealed container containing the cooling medium 21 may be simply evacuated with a vacuum pump.
  • the LED element 33 is made of a GaAs-based material as described above.
  • the GaAs material for forming the LED element 33 include GaAs and GaAsAl. These materials are in the near infrared region where the center wavelength of the emitted light is about 950 to 970 nm, and the width of the emitted light band is as narrow as about 50 ⁇ m.
  • the annealing target is a silicon wafer W
  • the radiation (absorption) characteristics of the annealing target are as shown in FIG.
  • the emissivity (absorbance) is around 0.65 near the emission wavelength of GaAs-based materials, 950 to 970 nm, and the emissivity value is almost constant regardless of temperature.
  • GaN which has been widely used as a conventional LED element, is in the ultraviolet to blue region where the center wavelength of the emitted light is about 360 to 520 nm.
  • the emissivity (absorption rate) of silicon at the emission wavelength of LED elements made of GaN is about 0.6. Therefore, the direction of light emitted from the LED element 33 made of GaAs-based material is absorbed by the silicon wafer W at a higher absorption rate than the light from the LED element made of GaN-based material.
  • an LED element made of a GaAs-based material has voltage-current characteristics as shown in Fig. 6A when GaAs is taken as an example.
  • LED elements made of a GaAs-based material the forward current changes greatly due to changes in the forward voltage.
  • LED elements composed of conventional GaN-based materials have the voltage-current characteristics shown in Fig. 6B, taking GaAs as an example.
  • the change in forward current due to the change in forward voltage in LED elements made of conventional GaN-based materials is smaller than the change in forward current associated with the change in forward voltage in LED elements made of GaAs-based materials. . Therefore, current control is much more necessary than LED elements made of GaAs materials.
  • the current-light output characteristics of an LED element made of a GaAs-based material are compared with the current-light output characteristics of an LED element made of a GaN-based material. Yes.
  • the optical output is saturated when the drive current exceeds about 1.5 times the rated current (50 mA).
  • the light output increases in proportion to the current even if the drive current greatly exceeds the rated current (50 mA).
  • the LED element 33 constituted by GaAs-based material force
  • the drive current is increased, the light output can be increased by the capacity of the coupling layer and the quantum well.
  • the cooling medium 21 and the heat radiating members 29a and 29b as described above, a large light output can be obtained from the LED element 33 made of a GaAs material.
  • the cooling temperature by the cooling medium 21 is preferably 0 ° C. or lower in order to effectively suppress a decrease in the amount of light emission due to heat generation and obtain a sufficient light output.
  • the LED element 33 made of a GaAs-based material is regulated to operate in a noise mode, and the current value in that case is 1 A (room temperature). Accordingly, the LED element 33 is cooled by the cooling medium 21 and the heat dissipating members 29a and 29b, and a current of 1A corresponding to 20 times the rated current is supplied to the LED element 33 in a continuous mode. Compared with the case where current is supplied to the LED element 33, 20 times light output can be obtained from the LED element 33.
  • the value of current supplied to the LED element 33 made of GaAs-based material is preferably 100 mA or more.
  • the temperature-one-light output characteristic of the LED element 33 composed of GaAs-based material is compared with the temperature-one-light output characteristic of the LED element composed of GaN-based material.
  • the light output of a LED device composed of a GaN-based material does not change much with temperature.
  • the light output of the LED element 33 made of a GaAs material significantly increases as the temperature decreases. From Fig. 8, it is understood that the light output at 50 ° C is about twice the light output at room temperature (25-30 ° C) in the LED element 33 composed of GaAs material. .
  • the cooling by the cooling medium 21 not only realizes the high current drive of the LED element 33, but also the temperature decrease of the LED element 33 directly contributes to the increase in light output.
  • the light output can be improved by increasing the drive current of the LED element 33, and the light output can be improved by cooling the LED element 33. It can be obtained from the LED element 33. For example, if LED element 33 is cooled to 50 ° C and a current of 1A is applied, compared to the case of irradiation with light at the rated current at room temperature, the increase in current is 20 times, and the effect due to temperature is 2 times, for a total of 40 times. The light output can be obtained.
  • LED elements composed of GaN-based materials When LED elements composed of GaN-based materials are used, the increase in light output with respect to the current value saturates at about 1.5 times the rated current. In addition, when an LED element composed of a GaN-based material is used, the light output cannot be increased due to a decrease in the temperature of the LED element, so the effect of increasing the light output due to cooling cannot be expected. In contrast to LED elements composed of such GaN-based materials, LED elements 33 that also have GaAs-based material forces are driven by high-current driving while the LED elements 33 are being cooled. Can greatly increase the light output.
  • each component of the annealing apparatus 100 is configured to be connected to and controlled by a process controller 60 having a microprocessor (computer).
  • a user interface 61 including a keyboard for a process manager to input commands for managing the annealing apparatus 100, a display for visualizing the operation status of the annealing apparatus 100, and the like.
  • the process controller 60 executes various processes executed by the annealing apparatus 100 under the control of the process controller 60 and processes each component of the annealing apparatus 100 according to the processing conditions.
  • a storage device 62 capable of storing a program to be executed, that is, a recipe is connected.
  • the recipe may be recorded on a recording medium 62a including a hard disk or a semiconductor memory included in the storage device 62.
  • the recipe may be recorded on a portable recording medium 62a such as a CDROM or DVD.
  • the portable recording medium 62a may be set at a predetermined position in the storage device 62 so that the process controller 60 can read the recipe recorded on the recording medium 62a.
  • the recipe may be appropriately transmitted from another device, for example, via a dedicated line.
  • the user interface 61 calls an arbitrary recipe from the recording medium 62a of the storage device 62 and causes the process controller 60 to execute the recipe by executing the process controller 60 under the control of the process controller 60.
  • the desired processing at 100 is performed.
  • the gate valve 25 is opened, the wafer W is loaded from the loading / unloading port 24, and placed on the support member 3. Thereafter, the gate valve 25 is closed to close the inside of the processing container 1. Next, the inside of the processing container 1 is exhausted through an exhaust port 23 by an exhaust device (not shown). Further, a predetermined processing gas, for example, argon gas or nitrogen gas is introduced into the processing container 1 from the processing gas supply mechanism 22 (not shown) through the processing gas introduction port 22, and the pressure in the processing container 1 is in the range of, for example, 100 to 10,000 Pa. Maintained at a predetermined pressure.
  • a predetermined processing gas for example, argon gas or nitrogen gas is introduced into the processing container 1 from the processing gas supply mechanism 22 (not shown) through the processing gas introduction port 22, and the pressure in the processing container 1 is in the range of, for example, 100 to 10,000 Pa. Maintained at a predetermined pressure.
  • the cooling device 19 is used to cool the LED elements 33 of the heating sources 7a and 7b to a predetermined temperature of 0 ° C or lower, preferably 50 ° C or lower.
  • the liquid cooling medium 21 for example, a fluorine-based inert liquid (for example, a fluorine-based inert liquid (via the cooling medium supply pipes 13 a and 13 b and the cooling medium introduction ports 11 a and l ib).
  • a fluorine-based inert liquid for example, a fluorine-based inert liquid (via the cooling medium supply pipes 13 a and 13 b and the cooling medium introduction ports 11 a and l ib).
  • a fluorine-based inert liquid for example, a fluorine-based inert liquid (via the cooling medium supply pipes 13 a and 13 b and the cooling medium introduction ports 11 a and l ib).
  • the cooling medium 21 is discharged from the spaces 30a and 30b to the cooling medium supply mechanism 20 through the cooling medium discharge ports 12a and 12b and the cooling medium discharge pipes 14a and 14b. That is, while the spaces 30a and 30b are filled with the coolant 21, the spaces 30a and 30b and the coolant are supplied.
  • the cooling medium 21 is circulated with the mechanism 20. As a result, as described above, the heating sources 7a and 7b exposed to the spaces 30a and 30b are cooled by the cooling medium 21, and the heat sources 7a and 7b supported by the heat radiating members 29a and 29b , 29b will be dissipated heat.
  • the LED element 33 is made of a GaAs-based material such as GaAs or Ga AsAl.
  • the light output of the LED element composed of GaAs-based material is almost proportional to the current, so a large light output is obtained from the LED element 33 by raising the drive current to, for example, 100 mA or more while cooling the LED element 33. be able to.
  • the light output of the LED element 33 made of a GaAs-based material rises due to the temperature drop itself due to cooling.
  • the LED element 33 is cooled by using the cooling medium 21, and the LED element 33 is driven while driving the LED element 33 while suppressing the decrease in the light emission amount of the LED element 33 due to the heat generated by the LED element itself.
  • Power S can be obtained.
  • the wafer W can be rapidly heated at a heating rate of about 500 ° C / sec or higher, which is higher than before, and can be sufficiently applied to annealing that requires higher speed heating than before. Become.
  • the present invention is not limited to the embodiment described above, and various modifications are possible.
  • the above-described embodiment is an example in which a heating source having LED elements is provided on both sides of a wafer that is an object to be processed!
  • a heating source may be provided only on one side of the object to be treated! /.
  • the force S shown for the example in which the LED element is directly immersed in the cooling medium for cooling is not limited to this.
  • the object to be processed is not limited to semiconductor wafers, but can be other objects such as FPD glass substrates. Industrial applicability
  • the present invention is suitable for applications that require rapid heating, such as annealing after impurities are implanted.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Led Devices (AREA)

Abstract

Disclosed is an annealing apparatus wherein an object is annealed by being irradiated with light. The annealing apparatus comprises a process chamber in which the object is placed, a heating source having a plurality of LED elements for irradiating light onto the object, a feeding device connected to the LED elements for feeding electricity thereto, a cooling device for cooling the LED elements, and a light-transmitting member arranged between the process chamber and the heating source. The LED elements are composed of a GaAs material. These LED elements of the heating source are high-current driven by the feeding device while being cooled by the cooling device, thereby emitting light with high output power.

Description

明 細 書  Specification
ァニール装置およびァニール方法  Annealing apparatus and annealing method
技術分野  Technical field
[0001] 本発明は、半導体ウェハ等の被処理体に対して LEDからの光を照射することにより 、被処理体にァニールを行うァニール装置およびァニール方法に関する。  The present invention relates to an annealing apparatus and an annealing method for annealing an object to be processed by irradiating the object to be processed such as a semiconductor wafer with light from an LED.
背景技術  Background art
[0002] 半導体デバイスの製造にぉレ、て、被処理基板である半導体ウェハ(以下単にゥェ ハと記す)に対して、成膜処理、酸化拡散処理、改質処理、ァニール処理等の各種 熱処理が施される。そして、昨今における半導体デバイスに対する高速化や高集積 化等の要求にともない、熱処理を行う際に、とりわけイオンインプランテーション後の ァニール処理を行う際には拡散を最小限に抑えるため、被処理体をより高速で昇降 温させることが指向されている。このような高速昇降温が可能なァニール装置として、 LED (発光ダイオード)を熱源として用いた装置が提案されて!/、る(例えば、特表 200 5— 536045号公報)。 LEDによる加熱は、加熱源の黒体輻射ではなぐ電子とホー ルとの再結合による電磁輻射を利用している。したがって、ウェハ等を LEDによって 加熱する場合には、ウェハ等の降温速度を速くすることができる。このため、 LEDに よる加熱は最先端のプロセスへ適用することができる可能性がある。そして昨今にお いては、ウェハの表面部分のみを加熱する観点から、紫外光〜青色光の短い波長 の光を射出する LED素子として、 GaNから構成された LEDが多用されて!/、る。  [0002] In the manufacture of semiconductor devices, various processes such as film formation, oxidation diffusion, modification, annealing, etc. are performed on a semiconductor wafer (hereinafter simply referred to as a wafer) as a substrate to be processed. Heat treatment is applied. In response to recent demands for higher speeds and higher integration of semiconductor devices, in order to minimize diffusion during heat treatment, especially during annealing after ion implantation, the object to be processed is It is aimed to raise and lower the temperature at a higher speed. As an annealing device capable of such high-speed heating and cooling, a device using an LED (light emitting diode) as a heat source has been proposed! (For example, Japanese translation of PCT publication No. 2005-536045). Heating by LEDs uses electromagnetic radiation due to recombination of electrons and holes, not black body radiation from the heating source. Therefore, when a wafer is heated by an LED, the temperature drop rate of the wafer can be increased. For this reason, heating with LEDs may be applicable to the most advanced processes. In recent years, from the viewpoint of heating only the surface portion of the wafer, LEDs composed of GaN are frequently used as LED elements that emit light having a short wavelength of ultraviolet light to blue light!
[0003] しかしながら、 LED素子は一般的にエネルギー密度が低いので、高速昇温するた めに必要な高パワーを LED素子から得ることは困難である。とりわけ、多用されてい る GaNから構成された LED素子は、電流値が所定値以上になると光パワーが飽和 する性質を有しており、原理的に大きな光パワーを取り出すことは不可能である。 発明の開示  [0003] However, since the LED element generally has a low energy density, it is difficult to obtain the high power necessary for high-temperature temperature rise from the LED element. In particular, LED elements composed of GaN, which are frequently used, have the property that the optical power saturates when the current value exceeds a predetermined value, and it is impossible in principle to extract large optical power. Disclosure of the invention
[0004] 本発明は力、かる事情に鑑みてなされたものであって、熱源として LEDを用いて、大 きな光パワーを得ることができるァニール装置およびァニール方法を提供することを 目的とする。また、このようなァニール方法を実行するためのプログラム記憶媒体を提 供することを目的とする。 [0004] The present invention has been made in view of power and circumstances, and an object thereof is to provide an annealing apparatus and an annealing method capable of obtaining a large optical power using an LED as a heat source. . In addition, a program storage medium for executing such an annealing method is provided. The purpose is to provide.
[0005] 本発明によるァニール装置は、被処理体に光を照射して被処理体をァニールする ァニール装置であって、前記被処理体が収容される処理容器と、被処理体に対して 光を照射する複数の LED素子を有する加熱源と、前記複数の LED素子に接続され 、前記 LED素子に給電する給電装置と、前記 LED素子を冷却する冷却装置と、前 記処理容器と前記加熱源との間に設けられた光透過部材と、を備え、前記 LED素子 は GaAs系材料から構成されており、前記加熱源の前記 LED素子は、前記冷却装 置によって冷却されつつ前記給電装置によって高電流駆動され、これにより、高光出 力で光を照射するように構成されていることを特徴とする。  [0005] An annealing apparatus according to the present invention is an annealing apparatus for irradiating a target object with light to anneal the target object, and a processing container in which the target object is accommodated and a light to the target object. A heating source having a plurality of LED elements that irradiate the plurality of LED elements, a power supply device that is connected to the plurality of LED elements and supplies power to the LED elements, a cooling device that cools the LED elements, the processing vessel, and the heating source And the LED element is made of a GaAs-based material, and the LED element of the heating source is cooled by the cooling device and is raised by the power feeding device. It is characterized by being configured to irradiate light with high light output by being driven by current.
[0006] 本発明によるァニール装置において、前記加熱源は、前記処理容器の両側に設け られているようにしてあよい。  [0006] In the annealing apparatus according to the present invention, the heating source may be provided on both sides of the processing container.
[0007] また、本発明によるァニール装置にお!/、て、前記冷却装置は、前記加熱源が収容 されるハウジングと、絶縁性を有するとともに LED素子からの光を透過する冷却媒体 を、前記ハウジング内に供給する冷却媒体供給機構と、を有するようにしてもよい。  [0007] Further, in the annealing device according to the present invention, the cooling device includes a housing in which the heating source is accommodated, and a cooling medium that has an insulating property and transmits light from the LED element. And a cooling medium supply mechanism for supplying the cooling medium into the housing.
[0008] さらに、本発明によるァニール装置において、前記冷却媒体は、フッ素系不活性液 体であるようにしてもよい。  [0008] Further, in the annealing apparatus according to the present invention, the cooling medium may be a fluorine-based inert liquid.
[0009] さらに、本発明によるァニール装置において、前記冷却装置は、前記 LED素子を 0 °C以下に冷却し、前記給電装置は、前記 LED素子に 100mA以上の電流を流すよう にしてもよい。  [0009] Further, in the annealing apparatus according to the present invention, the cooling device may cool the LED element to 0 ° C or less, and the power feeding device may flow a current of 100 mA or more to the LED element.
[0010] 本発明によるァニール方法は、給電された複数の LED素子からの光によって被処 理体をァニールするァニール方法であって、被処理体を処理容器に収容する工程と An annealing method according to the present invention is an annealing method for annealing a target object with light from a plurality of fed LED elements, the step of accommodating the target object in a processing container;
、 GaAs系材料から構成された LED素子を冷却しながら高電流で駆動して、前記 LEThe LED element composed of GaAs material is driven at high current while cooling, and the LE
D素子から光を射出させる工程と、を備えることを特徴とする。 And a step of emitting light from the D element.
[0011] 本発明によるァニール方法の前記 LED素子から光を射出させる工程において、絶 縁性を有するとともに LED素子からの光を透過する冷却媒体を前記 LED素子に直 接接触させることによって、前記 LED素子を冷却するようにしてもよい。 [0011] In the step of emitting light from the LED element of the annealing method according to the present invention, the LED element is brought into direct contact with a cooling medium having insulation and transmitting light from the LED element. The element may be cooled.
[0012] また、本発明によるァニール方法にお!/、て、前記冷却媒体は、フッ素系不活性液 体であるようにしてもよい。 [[00001133]] ささららにに、、本本発発明明にによよるるァァニニーールル方方法法のの前前記記 LLEEDD素素子子かからら光光をを射射出出ささせせるる工工程程ににおお いいてて、、前前記記 LLEEDD素素子子をを 00°°CC以以下下にに冷冷却却しし、、前前記記 LLEEDD素素子子にに流流すす電電流流をを 110000mmAA以以 上上ととすするるよよううににししててああよよいい。。 [0012] Further, in the annealing method according to the present invention, the cooling medium may be a fluorine-based inert liquid. [[00001133]] Further, in the process of causing the light beam to be emitted from the LLEEDD element element before the method of the Annier method according to the present invention, In this case, the LLEEDD element element is cooled and cooled down to 00 ° C. or less and the electric current flowing through the LLEEDD element element is changed to 110000 mmAA. That's all for now. .
[[00001144]] 本本発発明明にによよるる記記録録媒媒体体はは、、給給電電さされれたた複複数数のの LLEEDD素素子子かかららのの光光にによよっってて被被処処理理体体 ををァァニニーールルすするるァァニニーールル装装置置をを制制御御すするる制制御御装装置置にによよっってて実実行行さされれるるププロロググララムムがが 記記録録さされれたた記記録録媒媒体体ででああっってて、、前前記記ププロロググララムムがが前前記記制制御御装装置置にによよっってて実実行行さされれるるここ ととにによよりり、、被被処処理理体体をを処処理理容容器器にに収収容容すするる工工程程とと、、 GGaaAAss系系材材料料でで構構成成さされれたた LLEEDD 素素子子をを冷冷却却ししななががらら高高電電流流でで駆駆動動ししてて、、前前記記 LLEEDD素素子子かからら光光をを射射出出ささせせるる工工程程とと、、 をを備備ええるるァァニニーールル方方法法をを、、ァァニニーールル装装置置にに実実施施ささせせるるここととをを特特徴徴ととすするる。。  [[00001144]] The recording / recording medium according to the present invention is capable of receiving light from a plurality of LLEEDD element elements that are supplied with power. Therefore, it is actually executed by the control device device that controls the device device that controls the object to be processed. The program is a recording medium that has been recorded, and the program is stored in the control control device. Thus, depending on the actual execution of the process, a process step for accommodating the processed body to be processed in the processing barber container, and The LLEEDD element composed of GGaaAAss-based material material is driven with high current flow while cooling and cooling, in front An implementation of the process method for projecting light from the LLEEDD element and the method for the annealing method comprising This place is a special feature. .
[[00001155]] 本本発発明明にによよれればば、、処処理理容容器器内内にに被被処処理理体体をを収収容容ささせせたた状状態態でで、、加加熱熱源源をを構構成成すするる 複複数数のの LLEEDD素素子子かからら被被処処理理体体にに光光をを照照射射ししてて被被処処理理体体ををァァニニーールルすするるににああたたりり、、 GG aaAAss系系材材料料かからら構構成成さされれたた LLEEDD素素子子をを用用いいるる。。 GGaaAAss系系材材料料でで構構成成さされれたた LLEEDD素素 子子はは、、電電流流をを増増加加ささせせれればば、、結結合合層層、、量量子子井井戸戸のの容容量量のの分分はは光光出出力力をを増増加加ささせせるるここ ととががでできき、、光光出出力力ははほほぼぼ電電流流にに比比例例すするる。。ししたたががっってて、、 LLEEDD素素子子のの発発熱熱をを抑抑制制すするる たためめにに LLEEDD素素子子をを冷冷却却ししつつつつ LLEEDD素素子子をを高高電電流流駆駆動動すするるここととにによよっってて、、 LLEEDD素素子子 力力、、らら高高光光出出力力をを得得るるここととががででききるる。。ままたた、、 GGaaAAss系系材材料料でで構構成成さされれたた LLEEDD素素子子はは温温度度 がが低低下下すするるほほどど光光出出力力がが増増加加すするる。。ししたたががっってて、、 LLEEDD素素子子をを冷冷却却すするるここととにによよっってて、、 ささららにに、、 LLEEDD素素子子かからら高高光光出出力力をを得得るるここととががででききるる。。ここれれららののここととかからら、、大大ききなな光光パパヮヮ 一一でで被被処処理理体体ののァァニニーールルをを行行ううここととががででききるる。。 [[00001155]] According to the present invention, in a state in which the processing target body is accommodated in the processing barber container, The heated heat source is composed of a plurality of LLEEDD element elements. The treated body is irradiated with light from the treated body. The LLEEDD element made up of GG aaAAss-based material is used to perform the process. . LLEEDD elements composed of GGaaAAss-based material materials can be used to increase the electric current flow. The capacity of the well well can be increased by increasing the light output power, and the light output power is almost equal to the current flow. An example proportional to . Therefore, the LLEEDD element can be cooled while cooling the LLEEDD element so as to suppress the heat generated by the LLEEDD element. Depending on where the high-current current drive is driven, it is possible to obtain LLEEDD element power, and high-light output power. I can do it. . In addition, the LLEEDD element made up of GGaaAAss-based material materials increases the light output power as the temperature temperature decreases and decreases. To do. . Therefore, according to the cooling and cooling of the LLEEDD element, the high light from the LLEEDD element is further increased. This is where you can get light output power. . From here and there, it is possible to complete the processing of the target object to be processed with a large light beam. .
図図面面のの簡簡単単なな説説明明  Simple and simple explanation on the drawing
[[00001166]] [[図図 11]]図図 11はは、、本本発発明明のの一一実実施施のの形形態態にに係係るるァァニニーールル装装置置のの概概略略構構成成をを示示すす断断面面図図 ででああるる。。  [[00001166]] [[FIG. 11]] FIG. 11 is a schematic schematic diagram of an apparatus for installing an apparatus according to an embodiment of the present invention. FIG. 3 is a cross-sectional view showing a configuration. .
[[図図 22]]図図 22はは、、図図 11にに示示さされれたたァァニニーールル装装置置のの加加熱熱源源をを拡拡大大ししてて示示すす断断面面図図ででああるる。。  [[FIG. 22]] FIG. 22 is a cross-sectional view showing the heating source of the heating apparatus shown in FIG. 11 in an enlarged scale. FIG. .
[[図図 33]]図図 33はは、、図図 11にに示示さされれたたァァニニーールル装装置置のの加加熱熱源源ににおおけけるる LLEEDDアアレレイイのの配配列列をを説説 明明すするるたためめのの模模式式図図ででああるる。。  [[FIG. 33]] FIG. 33 shows the arrangement of the LLEEDD array array in the heating heat source of the apparatus shown in FIG. It is a schematic diagram of a stubborn clarification. .
[[図図 44]]図図 44はは、、図図 11にに示示さされれたたァァニニーールル装装置置ににおおいいてて冷冷却却媒媒体体ととししてて用用いいらられれ得得るるフフロロ
Figure imgf000005_0001
[[FIG. 44]] FIG. 44 can be used as a cooling / cooling medium in the apparatus shown in FIG. Get Fluoro
Figure imgf000005_0001
[図 5]図 5は、シリコンの放射(吸収)特性を示すグラフである。 [図 6A]図 6Aは、 GaAsから構成された LED素子の電圧 電流特性を示すグラフで ある。 FIG. 5 is a graph showing the radiation (absorption) characteristics of silicon. [FIG. 6A] FIG. 6A is a graph showing the voltage-current characteristics of an LED element composed of GaAs.
[図 6B]図 6Bは、 GaNから構成された LED素子の電圧 電流特性を示すグラフであ  [Fig. 6B] Fig. 6B is a graph showing the voltage-current characteristics of an LED element composed of GaN.
[図 7]図 7は、 GaNから構成された LED素子の電流一光出力特性と、 GaAsから構成 された LED素子の電流一光出力特性と、を示すグラフである。 [FIG. 7] FIG. 7 is a graph showing the current-light output characteristics of an LED element composed of GaN and the current-light output characteristics of an LED element composed of GaAs.
[図 8]図 8は、 GaNから構成された LED素子の温度一光出力特性と、 GaAsから構成 された LED素子の温度一光出力特性と、を示すグラフである。  [FIG. 8] FIG. 8 is a graph showing the temperature-one-light output characteristic of an LED element composed of GaN and the temperature-one-light output characteristic of an LED element composed of GaAs.
発明を実施するための形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0017] 以下、添付図面を参照しながら本発明の一実施形態について説明する。以下の実 施の形態においては、表面に不純物が注入されたウェハをァニールするためのァニ ール装置を例にあげて説明する。ここで、図 1は、本発明の一実施の形態に係るァニ ール装置の概略構成を示す断面図である。  Hereinafter, an embodiment of the present invention will be described with reference to the accompanying drawings. In the following embodiments, an annealing apparatus for annealing a wafer having impurities implanted on the surface will be described as an example. Here, FIG. 1 is a cross-sectional view showing a schematic configuration of the annealing apparatus according to the embodiment of the present invention.
[0018] ァニール装置 100は、気密に構成され、ウェハ Wが搬入される処理容器 1を有して いる。処理容器 1の底部からは支持柱 2が立設しており、支持柱 2の上端から内側に 延びるようにウェハ Wを水平に支持する支持部材 3が設けられている。処理容器 1の 天壁および底壁のウェハ Wに対応する部分には、それぞれ開口部 la, lbが形成さ れている。この開口部 la, lbを覆うように、光透過部材 5a, 5bが気密に設けられてい る。また、処理容器 1の側壁には、図示しない処理ガス供給機構から所定の処理ガス が導入される処理ガス導入口 22と、図示しな!/、排気装置が接続された排気口 23と、 が設けられている。さらに、処理容器 1の側壁には、処理容器 1に対するウェハ Wの 搬入出を行うための搬入出口 24が設けられて!/、る。この搬入出口 24はゲートバルブ 25により開閉可能となっている。処理容器 1の内部には、支持部材 3上に載置された ウェハ Wの温度を測定するための温度センサー 26が設けられている。また、温度セ ンサー 26は処理容器 1の外側に配置された計測部 27に接続されている。この計測 部 27から後述するプロセスコントローラ 60に温度検出信号が出力されるようになって いる。  The annealing apparatus 100 is configured to be hermetically sealed and has a processing container 1 into which a wafer W is loaded. A support column 2 is erected from the bottom of the processing container 1, and a support member 3 that horizontally supports the wafer W is provided so as to extend inward from the upper end of the support column 2. Openings la and lb are formed in portions corresponding to the wafer W on the top wall and the bottom wall of the processing vessel 1, respectively. Light transmitting members 5a and 5b are provided in an airtight manner so as to cover the openings la and lb. Further, on the side wall of the processing vessel 1, there are a processing gas introduction port 22 through which a predetermined processing gas is introduced from a processing gas supply mechanism (not shown), and an exhaust port 23 (not shown) connected to an exhaust device. Is provided. Further, a loading / unloading port 24 for loading / unloading the wafer W to / from the processing container 1 is provided on the side wall of the processing container 1! The loading / unloading port 24 can be opened and closed by a gate valve 25. Inside the processing container 1, a temperature sensor 26 for measuring the temperature of the wafer W placed on the support member 3 is provided. In addition, the temperature sensor 26 is connected to a measuring unit 27 disposed outside the processing container 1. A temperature detection signal is output from the measurement unit 27 to a process controller 60 described later.
[0019] 処理容器 1の天壁の上には、光透過部材 5aを囲繞するように第 1ハウジング 6aが 設けられている。同様に、処理容器 1の底壁の下には光透過部材 5bを囲繞するよう に第 2ハウジング 6bが設けられている。ハウジング 6a, 6b内には、それぞれ複数の L ED素子を有する加熱源 7a, 7bが収容されて!/、る。 [0019] On the top wall of the processing container 1, a first housing 6a is provided so as to surround the light transmitting member 5a. Is provided. Similarly, a second housing 6b is provided below the bottom wall of the processing container 1 so as to surround the light transmission member 5b. Heating sources 7a and 7b each having a plurality of LED elements are accommodated in the housings 6a and 6b.
[0020] 第 1ハウジング 6aは、光透過部材 5aを周囲から取り囲み、光透過部材 5aの周囲を 保持する保持部材 28aと、保持部材 28aに密着して固定された放熱部材 29aと、を 有している。放熱部材 29aは、光透過部材 5aに対向する位置において、加熱源 7aを 保持している。放熱部材 29aの加熱源 7aを支持する下面と、光透過部材 5aと、の間 には、冷却媒体を収容し得る空間 30aが形成されている。また、放熱部材 29aには、 冷却媒体を流通させるための貫通孔ゃ溝等からなる冷却媒体流路 31aが形成され ている。放熱部材 29aは、加熱源 7aからの発熱を放熱させるようになつており、例え ば、銅から構成され得る。  [0020] The first housing 6a includes a holding member 28a that surrounds the light transmissive member 5a from the periphery and holds the periphery of the light transmissive member 5a, and a heat radiating member 29a fixed in close contact with the holding member 28a. ing. The heat dissipating member 29a holds the heating source 7a at a position facing the light transmitting member 5a. A space 30a capable of accommodating a cooling medium is formed between the lower surface supporting the heating source 7a of the heat radiating member 29a and the light transmitting member 5a. Further, the heat radiating member 29a is formed with a cooling medium flow path 31a composed of a through hole groove for circulating the cooling medium. The heat dissipating member 29a is adapted to dissipate heat generated from the heating source 7a, and may be made of copper, for example.
[0021] 第 2ハウジング 6bは、光透過部材 5bを周囲から取り囲み、光透過部材 5bの周囲を 保持する保持部材 28bと、保持部材 28bに密着して固定された放熱部材 29bと、を 有している。放熱部材 29bは、光透過部材 5bに対向する位置において、加熱源 7b を保持している。放熱部材 29bの加熱源 7bを支持する上面と、光透過部材 5bと、の 間には、冷却媒体を収容し得る空間 30bが形成されている。また、放熱部材 29bには 、冷却媒体を流通させるための貫通孔ゃ溝等からなる冷却媒体流路 3 lbが形成され ている。放熱部材 29bは、加熱源 7bからの発熱を放熱させるようになつており、例え ば、銅から構成され得る。  The second housing 6b includes a holding member 28b that surrounds the light transmitting member 5b from the periphery and holds the periphery of the light transmitting member 5b, and a heat radiating member 29b that is fixed in close contact with the holding member 28b. ing. The heat dissipating member 29b holds the heating source 7b at a position facing the light transmitting member 5b. A space 30b that can accommodate a cooling medium is formed between the upper surface of the heat radiating member 29b that supports the heating source 7b and the light transmitting member 5b. Further, the heat radiating member 29b is formed with a cooling medium flow path 3 lb composed of a through-hole and a groove for circulating the cooling medium. The heat dissipating member 29b is adapted to dissipate heat generated from the heating source 7b, and may be made of copper, for example.
[0022] 加熱源 7a, 7bは、図 2に拡大して示すように、絶縁性を有する高熱伝導性材料、典 型的には A1Nセラミックスからなる支持部材 32と、支持部材 32上に搭載された多数 の LED素子 33と、を有する LEDアレイ 34を複数含んでいる。加熱源 7aにおいて、 複数の LEDアレイ 34は放熱部材 29aの下面に配置されており、一方、加熱源 7bに おいて、複数の LEDアレイ 34は放熱部材 29bの上面に配置されている。 LEDアレイ 34の支持部材 32と LED素子 33との間には電極 35が設けられている。この電極 35 は、放熱部材 29a, 29bの内部を通過する給電部材 36に接続されている。また、一 つの LED素子 33に対応する電極 35と、この LED素子に隣接する LED素子 33に対 応する電極 35と、はこれらの間を延びる接続ワイヤ 37を介して接続されている。給電 装置 10は給電線 10a, 10bを介して加熱源 7a, 7bの給電部材 36に接続されており 、給電部材 36を介して給電装置 10から各 LED素子 33に給電が行われる。そして、 LED素子 33に給電することにより LED素子 33が発光し、その光によりウェハ Wが表 裏面から加熱されてァニール処理される。各 LEDアレイ 34は、平面視において例え ば六角形状をなし、例えば図 3に示すように配置される。一つの LEDアレイ 34には、 例えば 2000〜5000個程度の LED素子 33が搭載される。 LED素子 33は GaAs系 材料、例えば GaAs、 GaAsAlで構成される。 [0022] The heat sources 7a and 7b are mounted on the support member 32 and a support member 32 made of a highly heat conductive material having insulation, typically A1N ceramics, as shown in an enlarged view in FIG. A plurality of LED arrays 34 having a large number of LED elements 33 are included. In the heating source 7a, the plurality of LED arrays 34 are disposed on the lower surface of the heat radiating member 29a. On the other hand, in the heating source 7b, the plurality of LED arrays 34 are disposed on the upper surface of the heat radiating member 29b. An electrode 35 is provided between the support member 32 of the LED array 34 and the LED element 33. The electrode 35 is connected to a power feeding member 36 that passes through the heat radiating members 29a and 29b. Further, the electrode 35 corresponding to one LED element 33 and the electrode 35 corresponding to the LED element 33 adjacent to this LED element are connected via a connecting wire 37 extending therebetween. Power supply The device 10 is connected to the power supply members 36 of the heating sources 7a and 7b via the power supply lines 10a and 10b, and power is supplied from the power supply device 10 to the LED elements 33 via the power supply member 36. Then, the LED element 33 emits light by supplying power to the LED element 33, and the wafer W is heated from the front and back surfaces by the light to be annealed. Each LED array 34 has, for example, a hexagonal shape in a plan view, and is arranged as shown in FIG. 3, for example. For example, about 2000 to 5000 LED elements 33 are mounted on one LED array 34. The LED element 33 is made of a GaAs material, for example, GaAs or GaAsAl.
[0023] 第 1ハウジング 6aの側壁には、冷却媒体導入口 1 laおよび冷却媒体排出口 12aが 設けられている。同様に、第 2ハウジング 6bの側壁には、冷却媒体導入口 l ibおよび 冷却媒体排出口 12bが設けられている。冷却媒体導入口 11a, l ibにはそれぞれ冷 却媒体供給配管 13a, 13bが接続されている。一方、冷却媒体排出口 12a, 12bに は冷却媒体排出配管 14a, 14bが接続されている。冷却媒体供給配管 13a, 13bは 冷却媒体供給機構 20に接続されており、この冷却媒体供給機構 20により冷却媒体 供給配管 13a, 13bを介して第 1ハウジング 6aおよび第 2ハウジング 6b内に液体状の 冷却媒体 21が供給される。このような、冷却媒体供給機構 20、却媒体供給配管 13a , 13bおよび冷却媒体導入口 11a, l ibを含む冷却装置 19によって、第 1ハウジング 6aおよび光透過部材 5aの間の空間 30aと、第 2ハウジング 6bおよび光透過部材 5b の間の空間 30bと、が冷却媒体 21で充填されるようになる。また、第 1ハウジング 6a および光透過部材 5aの間の空間 30a内の冷却媒体 21は冷却媒体排出配管 14aを 介して回収され、第 2ハウジング 6bおよび光透過部材 5bの間の空間 30b内の冷却 媒体 21は冷却媒体排出配管 14bを介して回収される。すなわち、冷却媒体 21は冷 却媒体供給機構 20により循環されるようになっている。  [0023] A cooling medium inlet 1la and a cooling medium outlet 12a are provided on the side wall of the first housing 6a. Similarly, a cooling medium introduction port l ib and a cooling medium discharge port 12b are provided on the side wall of the second housing 6b. Cooling medium supply pipes 13a and 13b are connected to the cooling medium introduction ports 11a and ib, respectively. On the other hand, cooling medium discharge pipes 14a and 14b are connected to the cooling medium discharge ports 12a and 12b. The cooling medium supply pipes 13a and 13b are connected to the cooling medium supply mechanism 20, and the cooling medium supply mechanism 20 allows the liquid supply into the first housing 6a and the second housing 6b via the cooling medium supply pipes 13a and 13b. A cooling medium 21 is supplied. By such a cooling device 19 including the cooling medium supply mechanism 20, the reject medium supply pipes 13a and 13b, and the cooling medium introduction ports 11a and l ib, the space 30a between the first housing 6a and the light transmission member 5a and the first 2 The space 30b between the housing 6b and the light transmission member 5b is filled with the cooling medium 21. Further, the cooling medium 21 in the space 30a between the first housing 6a and the light transmission member 5a is recovered via the cooling medium discharge pipe 14a, and the cooling in the space 30b between the second housing 6b and the light transmission member 5b is performed. The medium 21 is collected through the cooling medium discharge pipe 14b. That is, the cooling medium 21 is circulated by the cooling medium supply mechanism 20.
[0024] 冷却媒体 21としては、 LED素子 33を十分に冷却することができる冷却能力を有し 、絶縁性であり、 LED素子 33から照射される光の波長に対して透過性を有する液体 が用いられ得る。また、 LED素子 33から射出された光が全反射しないように、屈折率 力 よりも大きぐ LED素子 33を構成する材料である GaAs系材料 (GaAsの場合に は屈折率 3. 6)よりも小さい値の物質を用いることが好ましい。効率の観点から、 LE D素子 33から照射される光の波長に対する透過率は 90%以上が好ましぐ LED素 子 33から照射される光に対して透明(透過率がほぼ 100%)であることがさらに好まし い。このような物質としては、フッ素系不活性液体(商品名フロリナート、ガルデン等) を挙げること力 Sできる。フロリナートの可視光透過率は図 4に示すようにほぼ 100%で あり、屈折率は約 1. 25である。 [0024] The cooling medium 21 is a liquid that has a cooling capacity capable of sufficiently cooling the LED element 33, is insulative, and is transmissive to the wavelength of light emitted from the LED element 33. Can be used. In addition, the light emitted from the LED element 33 is larger than the refractive index force so that the light emitted from the LED element 33 is not totally reflected. It is preferable to use a material having a small value. From the viewpoint of efficiency, the transmittance of the light emitted from the LED element 33 with respect to the wavelength of light is preferably 90% or more. It is more preferable that it is transparent (transmittance is almost 100%) with respect to the light emitted from the element 33. Examples of such substances include fluorinated inert liquids (trade names such as florinate and Galden). As shown in Fig. 4, the visible light transmittance of Fluorinert is almost 100%, and the refractive index is about 1.25.
[0025] この冷却媒体 21は、図 1に示すように、第 1および第 2ハウジング 6a, 6bと光透過[0025] As shown in Fig. 1, the cooling medium 21 transmits light to and from the first and second housings 6a and 6b.
5a, 5bとの間の空間 30a, 30bにおいて、カロ熱原 7a, 7bを構成する LED素子 3 3に直接接触するようになっている。また、この冷却媒体 21は、第 1ハウジング 6aにお ける放熱部材 29aの冷却媒体流路 3 laおよび第 2ハウジング 6bにおける放熱部材 2 9bの冷却媒体流路 31bにも供給され、 LED素子 33は直接冷却媒体 21によって冷 却される他、その熱が放熱部材 29a, 29bに放熱されることによつても冷却されること から、極めて効率的な冷却がなされる。なお、 LED素子 33は、 0°C以下まで冷却され ることが好ましい。  In the spaces 30a and 30b between 5a and 5b, the LED elements 33 constituting the Karo heat fields 7a and 7b are in direct contact. The cooling medium 21 is also supplied to the cooling medium flow path 3la of the heat dissipation member 29a in the first housing 6a and the cooling medium flow path 31b of the heat dissipation member 29b in the second housing 6b. In addition to being directly cooled by the cooling medium 21, the heat is also cooled by being radiated to the heat radiating members 29a and 29b, so that extremely efficient cooling is achieved. The LED element 33 is preferably cooled to 0 ° C. or lower.
[0026] なお LED素子 33の発光面に直接冷却媒体 21が接触することから、冷却媒体 21 中に僅かに溶解して!/、る気体(空気)が発光面にお!/、て気泡となり、 LED素子 33の 発光効率を低下させる恐れがある。このため冷却媒体 21は予め脱気、脱泡処理を施 してから使用に供されることが好ましい。この際の脱気、脱泡処理としては、冷却媒体 21の入った密閉容器を、単に真空ポンプで真空引きするだけでよい。  [0026] Since the cooling medium 21 is in direct contact with the light emitting surface of the LED element 33, the gas (air) dissolved slightly in the cooling medium 21 becomes air bubbles on the light emitting surface! There is a risk of reducing the luminous efficiency of the LED element 33. For this reason, it is preferable that the cooling medium 21 is used after being degassed and defoamed in advance. As degassing and defoaming treatment at this time, the sealed container containing the cooling medium 21 may be simply evacuated with a vacuum pump.
[0027] LED素子 33は、上述したように GaAs系材料から構成される。 LED素子 33を形成 する GaAs系材料としては、 GaAs, GaAsAlが例示される。これらの材料は、放射光 の中心波長が 950〜970nm程度の近赤外領域であり、その放射光帯域の幅は 50η m程度と狭い。ァニール対象をシリコン製のウェハ Wとした場合、ァニール対象の放 射(吸収)特性は図 5に示すようなものとなる。 GaAs系材料の放射波長である 950〜 970nm付近では放射率(吸収率)が 0. 65程度であって、放射率の値は温度によら ずほぼ一定である。一方、従来 LED素子として多用されてきた GaNは、放射光の中 心波長が 360〜520nm程度の紫外〜青色領域である。そして、 GaNからなる LED 素子の放射波長におけるシリコンの放射率(吸収率)は 0. 6程度である。したがって、 GaAs系材料で構成された LED素子 33から射出される光の方力 GaN系材料で構 成された LED素子からの光よりも、高い吸収率でシリコン製のウェハ Wに吸収される [0028] また、 GaAs系材料から構成された LED素子は、 GaAsを例にとると、電圧 電流 特性が、図 6Aに示すようになる。すなわち、 GaAs系材料から構成された LED素子 では、順電圧の変化によって順電流が大きく変化する。一方、従来の GaN系材料か ら構成された LED素子は、 GaAsを例にとると、電圧 電流特性が、図 6Bに示すよう になる。すなわち、従来の GaN系材料からなる LED素子における順電圧の変化にと もなつた順電流の変化は、 GaAs系材料からなる LED素子における順電圧の変化に ともなった順電流の変化よりも小さくなる。したがって、 GaAs系材料からなる LED素 子にぉレヽて、電流制御の必要性は大き!/、こととなる。 The LED element 33 is made of a GaAs-based material as described above. Examples of the GaAs material for forming the LED element 33 include GaAs and GaAsAl. These materials are in the near infrared region where the center wavelength of the emitted light is about 950 to 970 nm, and the width of the emitted light band is as narrow as about 50 ηm. When the annealing target is a silicon wafer W, the radiation (absorption) characteristics of the annealing target are as shown in FIG. The emissivity (absorbance) is around 0.65 near the emission wavelength of GaAs-based materials, 950 to 970 nm, and the emissivity value is almost constant regardless of temperature. On the other hand, GaN, which has been widely used as a conventional LED element, is in the ultraviolet to blue region where the center wavelength of the emitted light is about 360 to 520 nm. The emissivity (absorption rate) of silicon at the emission wavelength of LED elements made of GaN is about 0.6. Therefore, the direction of light emitted from the LED element 33 made of GaAs-based material is absorbed by the silicon wafer W at a higher absorption rate than the light from the LED element made of GaN-based material. [0028] In addition, an LED element made of a GaAs-based material has voltage-current characteristics as shown in Fig. 6A when GaAs is taken as an example. In other words, in an LED element made of a GaAs-based material, the forward current changes greatly due to changes in the forward voltage. On the other hand, LED elements composed of conventional GaN-based materials have the voltage-current characteristics shown in Fig. 6B, taking GaAs as an example. In other words, the change in forward current due to the change in forward voltage in LED elements made of conventional GaN-based materials is smaller than the change in forward current associated with the change in forward voltage in LED elements made of GaAs-based materials. . Therefore, current control is much more necessary than LED elements made of GaAs materials.
[0029] 図 7として示されたグラフにおいて、 GaAs系材料から構成された LED素子の電流 一光出力特性と、 GaN系材料から構成された LED素子の電流一光出力特性と、が 比較されている。このグラフにも示されているように、 GaN系材料から構成された LE D素子においては、駆動電流が定格電流(50mA)の 1. 5倍程度を超えると、光出力 が飽和する。一方、 GaAs系材料から構成された LED素子においては、駆動電流が 定格電流(50mA)を大きく超えても、電流に比例して光出力が増加していく。つまり 、 GaAs系材料力、ら構成された LED素子 33については、駆動電流を増加させれば、 結合層、量子井戸の容量の分は光出力を増加させることができる。ただし、 LED素 子自体の発熱による発光量の低下が存在するため、室温では大きな光出力増加は 得られない。し力もながら、上述したように冷却媒体 21および放熱部材 29a, 29bを 用いて LED素子 33を冷却することにより、 GaAs系材料から構成された LED素子 33 から大きな光出力を得ることができるようになる。 LED素子 33を冷却する場合、発熱 による発光量の低下を有効に抑制して十分な光出力を得るためには、冷却媒体 21 による冷却温度は 0°C以下であることが好ましい。また、 GaAs系材料から構成された LED素子 33には、ノ ルスモードによる動作が規定されており、その場合の電流値は 1A (室温)である。したがって、このように冷却媒体 21および放熱部材 29a, 29bによ り LED素子 33を冷却しつつ、定格電流の 20倍に相当する 1Aの電流を連続モード で LED素子 33へ供給することによって、定格電流を LED素子 33に供給した場合と 比較して 20倍の光出力を LED素子 33から得ることができるようになる。なお、有効な 光出力を得る観点から、 GaAs系材料から構成された LED素子 33に供給する電流 値は 100mA以上であることが好ましい。 [0029] In the graph shown as FIG. 7, the current-light output characteristics of an LED element made of a GaAs-based material are compared with the current-light output characteristics of an LED element made of a GaN-based material. Yes. As shown in this graph, in a LED device composed of a GaN-based material, the optical output is saturated when the drive current exceeds about 1.5 times the rated current (50 mA). On the other hand, in LED elements composed of GaAs-based materials, the light output increases in proportion to the current even if the drive current greatly exceeds the rated current (50 mA). In other words, for the LED element 33 constituted by GaAs-based material force, if the drive current is increased, the light output can be increased by the capacity of the coupling layer and the quantum well. However, there is a decrease in light emission due to the heat generated by the LED element itself, so a large increase in light output cannot be obtained at room temperature. However, by cooling the LED element 33 using the cooling medium 21 and the heat radiating members 29a and 29b as described above, a large light output can be obtained from the LED element 33 made of a GaAs material. Become. When the LED element 33 is cooled, the cooling temperature by the cooling medium 21 is preferably 0 ° C. or lower in order to effectively suppress a decrease in the amount of light emission due to heat generation and obtain a sufficient light output. In addition, the LED element 33 made of a GaAs-based material is regulated to operate in a noise mode, and the current value in that case is 1 A (room temperature). Accordingly, the LED element 33 is cooled by the cooling medium 21 and the heat dissipating members 29a and 29b, and a current of 1A corresponding to 20 times the rated current is supplied to the LED element 33 in a continuous mode. Compared with the case where current is supplied to the LED element 33, 20 times light output can be obtained from the LED element 33. Valid From the viewpoint of obtaining light output, the value of current supplied to the LED element 33 made of GaAs-based material is preferably 100 mA or more.
[0030] 図 8として示されたグラフにおいて、 GaAs系材料から構成された LED素子 33の温 度一光出力特性と、 GaN系材料から構成された LED素子の温度一光出力特性と、 が比較されている。このグラフに示されているように、 GaN系材料から構成された LE D素子の光出力は、温度によってあまり変化しない。一方、 GaAs系材料から構成さ れた LED素子 33の光出力は、温度が低下すると、著しく増加する。図 8から、 GaAs 系材料から構成された LED素子 33において、 50°Cの場合の光出力は、室温の 場合(25〜30°C)の光出力の 2倍程度になることが理解される。  [0030] In the graph shown in FIG. 8, the temperature-one-light output characteristic of the LED element 33 composed of GaAs-based material is compared with the temperature-one-light output characteristic of the LED element composed of GaN-based material. Has been. As shown in this graph, the light output of a LED device composed of a GaN-based material does not change much with temperature. On the other hand, the light output of the LED element 33 made of a GaAs material significantly increases as the temperature decreases. From Fig. 8, it is understood that the light output at 50 ° C is about twice the light output at room temperature (25-30 ° C) in the LED element 33 composed of GaAs material. .
[0031] すなわち、冷却媒体 21による冷却により、 LED素子 33の高電流駆動が実現できる だけでなぐさらに、 LED素子 33の温度低下自体が直接光出力増加に寄与するよう になる。そして、 LED素子 33の駆動電流を増加することによって光出力を向上させ ることができることと、 LED素子 33を冷去 Pすることによって光出力を向上させることが できることと、によって極めて大きな光出力を LED素子 33から得ることができる。例え ば LED素子 33を 50°Cに冷却して 1Aの電流を流せば、室温において定格電流で 光照射した場合に比べて、電流増加分で 20倍、温度による効果で 2倍、合計 40倍 の光出力を獲得することができる。 GaN系材料から構成された LED素子を用いた場 合には、電流値に対する光出力の増加が定格電流の 1. 5倍程度で飽和する。また、 GaN系材料から構成された LED素子を用いた場合、 LED素子の温度の低下により 光出力を増加させることはできないので、冷却による光出力増加の効果を期待するこ ともできない。このような GaN系材料から構成された LED素子に対し、 GaAs系材料 力も構成された LED素子 33では、 LED素子 33を冷却しながら LED素子 33を高電 流駆動することにより、 LED素子 33からの光出力を飛躍的に高めることができる。  That is, the cooling by the cooling medium 21 not only realizes the high current drive of the LED element 33, but also the temperature decrease of the LED element 33 directly contributes to the increase in light output. The light output can be improved by increasing the drive current of the LED element 33, and the light output can be improved by cooling the LED element 33. It can be obtained from the LED element 33. For example, if LED element 33 is cooled to 50 ° C and a current of 1A is applied, compared to the case of irradiation with light at the rated current at room temperature, the increase in current is 20 times, and the effect due to temperature is 2 times, for a total of 40 times. The light output can be obtained. When LED elements composed of GaN-based materials are used, the increase in light output with respect to the current value saturates at about 1.5 times the rated current. In addition, when an LED element composed of a GaN-based material is used, the light output cannot be increased due to a decrease in the temperature of the LED element, so the effect of increasing the light output due to cooling cannot be expected. In contrast to LED elements composed of such GaN-based materials, LED elements 33 that also have GaAs-based material forces are driven by high-current driving while the LED elements 33 are being cooled. Can greatly increase the light output.
[0032] 図 1に示すように、ァニール装置 100の各構成要素は、マイクロプロセッサ(コンビュ ータ)を備えたプロセスコントローラ 60に接続されて制御されるように、構成されてい る。プロセスコントローラ 60には、工程管理者がァニール装置 100を管理するために コマンドの入力操作等を行うキーボードや、ァニール装置 100の稼働状況を可視化 して表示するディスプレイ等からなるユーザーインターフェース 61が接続されて!/、る。 さらに、プロセスコントローラ 60には、ァニール装置 100で実行される各種処理をプロ セスコントローラ 60の制御にて実現するための制御プログラムや、処理条件に応じて ァニール装置 100の各構成要素に処理を実行させるためのプログラムすなわちレシ ピを格納することが可能な記憶装置 62が接続されている。レシピは、記憶装置 62に 含まれたハードディスクや半導体メモリーからなる記録媒体 62aに記録されていても よい。あるいは、レシピは、 CDROMや DVD等の可搬性の記録媒体 62aに記録され ていてもよい。可搬性の記録媒体 62aは記憶装置 62の所定位置にセットされ、これ により、プロセスコントローラ 60が記録媒体 62aに記録されたレシピを読み取ることが できるようにしてもよい。さらに、他の装置から、例えば専用回線を介してレシピを適 宜伝送させるようにしてもよい。そして、必要に応じて、ユーザーインターフェース 61 力もの指示等にて任意のレシピを記憶装置 62の記録媒体 62aから呼び出してプロセ スコントローラ 60に実行させることで、プロセスコントローラ 60の制御下で、ァニール 装置 100での所望の処理が行われる。 [0032] As shown in FIG. 1, each component of the annealing apparatus 100 is configured to be connected to and controlled by a process controller 60 having a microprocessor (computer). Connected to the process controller 60 is a user interface 61 including a keyboard for a process manager to input commands for managing the annealing apparatus 100, a display for visualizing the operation status of the annealing apparatus 100, and the like. /! In addition, the process controller 60 executes various processes executed by the annealing apparatus 100 under the control of the process controller 60 and processes each component of the annealing apparatus 100 according to the processing conditions. A storage device 62 capable of storing a program to be executed, that is, a recipe is connected. The recipe may be recorded on a recording medium 62a including a hard disk or a semiconductor memory included in the storage device 62. Alternatively, the recipe may be recorded on a portable recording medium 62a such as a CDROM or DVD. The portable recording medium 62a may be set at a predetermined position in the storage device 62 so that the process controller 60 can read the recipe recorded on the recording medium 62a. Furthermore, the recipe may be appropriately transmitted from another device, for example, via a dedicated line. If necessary, the user interface 61 calls an arbitrary recipe from the recording medium 62a of the storage device 62 and causes the process controller 60 to execute the recipe by executing the process controller 60 under the control of the process controller 60. The desired processing at 100 is performed.
[0033] 次に、以上のようなァニール装置 100を用いて実行され得るァニール方法の一例 について説明する。まず、ゲートバルブ 25を開にして搬入出口 24からウェハ Wを搬 入し、支持部材 3上に載置する。その後、ゲートバルブ 25を閉じて処理容器 1内を密 閉状態とする。次に、排気口 23を介して図示しない排気装置により処理容器 1内を 排気する。また、図示しない処理ガス供給機構から処理ガス導入口 22を介して所定 の処理ガス、例えばアルゴンガスまたは窒素ガスを処理容器 1内に導入し、処理容器 1内の圧力を例えば 100〜10000Paの範囲内の所定の圧力に維持する。  [0033] Next, an example of an annealing method that can be executed using the annealing apparatus 100 as described above will be described. First, the gate valve 25 is opened, the wafer W is loaded from the loading / unloading port 24, and placed on the support member 3. Thereafter, the gate valve 25 is closed to close the inside of the processing container 1. Next, the inside of the processing container 1 is exhausted through an exhaust port 23 by an exhaust device (not shown). Further, a predetermined processing gas, for example, argon gas or nitrogen gas is introduced into the processing container 1 from the processing gas supply mechanism 22 (not shown) through the processing gas introduction port 22, and the pressure in the processing container 1 is in the range of, for example, 100 to 10,000 Pa. Maintained at a predetermined pressure.
[0034] この状態で、冷却装置 19を用い、加熱源 7a, 7bの LED素子 33を 0°C以下の所定 の温度、好ましくは 50°C以下の温度に冷却する。具体的には、冷却装置 19の冷 却媒体供給機構 20から、冷却媒体供給配管 13a, 13bおよび冷却媒体導入口 11a , l ibを介し、液体状の冷却媒体 21、例えばフッ素系不活性液体(商品名フロリナ一 ト、ガノレデン等)をノヽウジング 6a, 6bと光透過咅 才 5a, 5bとの間の空間 30a, 30bに 送り込む。同時に、冷却媒体排出口 12a, 12bおよび冷却媒体排出配管 14a, 14b を介し、空間 30a, 30bから冷却媒体供給機構 20まで冷却媒体 21を排出する。すな わち、空間 30a, 30bを冷却媒体 21で満たしつつ、空間 30a, 30bと冷却媒体供給 機構 20との間で冷却媒体 21を循環させる。この結果、上述したように、空間 30a, 30 bへ露出した加熱源 7a, 7bが冷却媒体 21によって冷却されるとともに、放熱部材 29 a, 29bに支持された加熱源 7a, 7bから放熱部材 29a, 29bへ放熱されるようになる。 [0034] In this state, the cooling device 19 is used to cool the LED elements 33 of the heating sources 7a and 7b to a predetermined temperature of 0 ° C or lower, preferably 50 ° C or lower. Specifically, from the cooling medium supply mechanism 20 of the cooling device 19, the liquid cooling medium 21, for example, a fluorine-based inert liquid (for example, a fluorine-based inert liquid (via the cooling medium supply pipes 13 a and 13 b and the cooling medium introduction ports 11 a and l ib). (Product name: Florinart, Ganoreden, etc.) are sent into the spaces 30a, 30b between the nosing 6a, 6b and the light transmitting ability 5a, 5b. At the same time, the cooling medium 21 is discharged from the spaces 30a and 30b to the cooling medium supply mechanism 20 through the cooling medium discharge ports 12a and 12b and the cooling medium discharge pipes 14a and 14b. That is, while the spaces 30a and 30b are filled with the coolant 21, the spaces 30a and 30b and the coolant are supplied. The cooling medium 21 is circulated with the mechanism 20. As a result, as described above, the heating sources 7a and 7b exposed to the spaces 30a and 30b are cooled by the cooling medium 21, and the heat sources 7a and 7b supported by the heat radiating members 29a and 29b , 29b will be dissipated heat.
[0035] また、給電装置 10から加熱源 7a, 7bの LED素子 33に所定の電流を供給して LE D素子 33を点灯させる。この際に、 LED素子 33は GaAs系材料、例えば GaAs、 Ga AsAlで構成されている。そして、 GaAs系材料から構成された LED素子の光出力は ほぼ電流に比例するので、 LED素子 33を冷却しつつ例えば 100mA以上まで駆動 電流を上昇させることによって、 LED素子 33から大きな光出力を得ることができる。さ らに、上述したように、 GaAs系材料から構成された LED素子 33の光出力は冷却に よる温度低下自体によっても上昇する。したがって、冷却媒体 21を用いて LED素子 33を冷却し、 LED素子自身の発熱による LED素子 33の発光量の低下を抑制しな がら、 LED素子 33を駆動することにより、 LED素子 33から著しく大きな光出力を得る こと力 Sできる。これらのことから、従来よりも高い 500°C/sec程度以上の加熱速度で ウェハ Wを急速加熱することができ、従来よりも高速加熱が要求されるァニールに対 しても十分に適用可能となる。  In addition, a predetermined current is supplied from the power supply apparatus 10 to the LED elements 33 of the heating sources 7a and 7b to light the LED elements 33. At this time, the LED element 33 is made of a GaAs-based material such as GaAs or Ga AsAl. The light output of the LED element composed of GaAs-based material is almost proportional to the current, so a large light output is obtained from the LED element 33 by raising the drive current to, for example, 100 mA or more while cooling the LED element 33. be able to. Furthermore, as described above, the light output of the LED element 33 made of a GaAs-based material rises due to the temperature drop itself due to cooling. Therefore, the LED element 33 is cooled by using the cooling medium 21, and the LED element 33 is driven while driving the LED element 33 while suppressing the decrease in the light emission amount of the LED element 33 due to the heat generated by the LED element itself. Power S can be obtained. As a result, the wafer W can be rapidly heated at a heating rate of about 500 ° C / sec or higher, which is higher than before, and can be sufficiently applied to annealing that requires higher speed heating than before. Become.
[0036] なお、本発明は上述した実施の形態に限定されることなぐ種々の変形が可能であ る。例えば、上述した実施の形態では、被処理体であるウェハの両側に LED素子を 有する加熱源を設けた例につ!/、て説明したが、被処理体の!/、ずれか一方の側のみ に加熱源を設けたものであってもよい。また、 LED素子を冷却媒体に直接浸漬させ て冷却する例について示した力 S、これに限るものではない。被処理体についても、半 導体ウェハに限らず、 FPD用ガラス基板などの他のものを対象にすることができる。 産業上の利用可能性  [0036] It should be noted that the present invention is not limited to the embodiment described above, and various modifications are possible. For example, the above-described embodiment is an example in which a heating source having LED elements is provided on both sides of a wafer that is an object to be processed! As described above, a heating source may be provided only on one side of the object to be treated! /. In addition, the force S shown for the example in which the LED element is directly immersed in the cooling medium for cooling, is not limited to this. The object to be processed is not limited to semiconductor wafers, but can be other objects such as FPD glass substrates. Industrial applicability
[0037] 本発明は、不純物が注入された後のァニール処理等、急速加熱が必要な用途に 好適である。 [0037] The present invention is suitable for applications that require rapid heating, such as annealing after impurities are implanted.

Claims

請求の範囲 The scope of the claims
[1] 被処理体に光を照射して被処理体をァニールするァニール装置であって  [1] An annealing apparatus for irradiating a target object with light to anneal the target object.
前記被処理体が収容される処理容器と、  A processing container in which the object to be processed is accommodated;
被処理体に対して光を照射する複数の LED素子を有する加熱源と、  A heating source having a plurality of LED elements for irradiating the object with light;
前記複数の LED素子に接続され、前記 LED素子に給電する給電装置と、 前記 LED素子を冷却する冷却装置と、  A power feeding device that is connected to the plurality of LED elements and feeds power to the LED elements; a cooling device that cools the LED elements;
前記処理容器と前記加熱源との間に設けられた光透過部材と、を備え、 前記 LED素子は GaAs系材料から構成されており、  A light transmissive member provided between the processing container and the heating source, and the LED element is made of a GaAs-based material,
前記加熱源の前記 LED素子は、前記冷却装置によって冷却されつつ前記給電装 置によって高電流駆動され、これにより、高光出力で光を照射するように構成されて いる  The LED element of the heating source is driven by a high current by the power feeding device while being cooled by the cooling device, and thereby configured to irradiate light with a high light output.
ことを特徴とするァニール装置。  An annealing device characterized by that.
[2] 前記加熱源は、前記処理容器の両側に設けられている [2] The heating source is provided on both sides of the processing container.
ことを特徴とする請求項 1に記載のァニール装置。  The annealing device according to claim 1, wherein:
[3] 前記冷却装置は、 [3] The cooling device includes:
前記加熱源が収容されるハウジングと、  A housing that houses the heating source;
絶縁性を有するとともに LED素子からの光を透過する冷却媒体を、前記ハウジング 内に供給する冷却媒体供給機構と、を有する  A cooling medium supply mechanism for supplying a cooling medium that has an insulating property and transmits light from the LED element into the housing.
ことを特徴とする請求項 1に記載のァニール装置。  The annealing device according to claim 1, wherein:
[4] 前記冷却媒体は、フッ素系不活性液体である [4] The cooling medium is a fluorine-based inert liquid.
ことを特徴とする請求項 3に記載のァニール装置。  4. An annealing device according to claim 3, wherein
[5] 前記冷却装置は、前記 LED素子を 0°C以下に冷却し、 [5] The cooling device cools the LED element to 0 ° C or lower,
前記給電装置は、前記 LED素子に 100mA以上の電流を流す  The power feeding device allows a current of 100 mA or more to flow through the LED element.
ことを特徴とする請求項 1に記載のァニール装置。  The annealing device according to claim 1, wherein:
[6] 給電された複数の LED素子からの光によって被処理体をァニールするァニール方 法であって、 [6] An annealing method for annealing an object to be processed by light from a plurality of powered LED elements,
被処理体を処理容器に収容する工程と、  Storing the object to be processed in a processing container;
GaAs系材料から構成された LED素子を冷却しながら高電流で駆動して、前記 LE D素子から光を射出させる工程と、を備える The LED element composed of GaAs material is driven at high current while cooling, and the LE And a step of emitting light from the D element.
ことを特徴とするァニール方法。  Annealing method characterized in that.
[7] 前記 LED素子から光を射出させる工程において、絶縁性を有するとともに LED素 子からの光を透過する冷却媒体を前記 LED素子に直接接触させることによって、前 記 LED素子を冷却する [7] In the step of emitting light from the LED element, the LED element is cooled by directly contacting the LED element with a cooling medium that has an insulating property and transmits light from the LED element.
ことを特徴とする請求項 6に記載のァニール方法。  The annealing method according to claim 6, wherein:
[8] 前記冷却媒体は、フッ素系不活性液体である [8] The cooling medium is a fluorine-based inert liquid.
ことを特徴とする請求項 7に記載のァニール方法。  The annealing method according to claim 7, wherein:
[9] 前記 LED素子から光を射出させる工程において、前記 LED素子を 0°C以下に冷 却し、前記 LED素子に流す電流を 100mA以上とする [9] In the step of emitting light from the LED element, the LED element is cooled to 0 ° C. or less, and the current flowing through the LED element is set to 100 mA or more.
ことを特徴とする請求項 6に記載のァニール方法。  The annealing method according to claim 6, wherein:
[10] 給電された複数の LED素子からの光によって被処理体をァニールするァニール装 置を制御する制御装置によって実行されるプログラムが記録された記録媒体であつ て、 [10] A recording medium on which a program to be executed by a control device that controls an annealing device that anneals an object to be processed by light from a plurality of power-supplied LED elements is recorded.
前記プログラムが前記制御装置によって実行されることにより、  By executing the program by the control device,
被処理体を処理容器に収容する工程と、  Storing the object to be processed in a processing container;
GaAs系材料で構成された LED素子を冷却しながら高電流で駆動して、前記 LED 素子から光を射出させる工程と、を備えるァニール方法を、  Driving the LED element composed of GaAs-based material at a high current while cooling, and emitting light from the LED element,
ァニール装置に実施させることを特徴とする記録媒体。  What is claimed is: 1. A recording medium which is implemented by an annealing apparatus.
PCT/JP2007/065194 2006-08-04 2007-08-02 Annealing apparatus and annealing method WO2008016116A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-213540 2006-08-04
JP2006213540 2006-08-04

Publications (1)

Publication Number Publication Date
WO2008016116A1 true WO2008016116A1 (en) 2008-02-07

Family

ID=38997290

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/065194 WO2008016116A1 (en) 2006-08-04 2007-08-02 Annealing apparatus and annealing method

Country Status (2)

Country Link
TW (1) TW200822230A (en)
WO (1) WO2008016116A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009125727A1 (en) * 2008-04-11 2009-10-15 東京エレクトロン株式会社 Annealing apparatus
JP2012524400A (en) * 2009-04-20 2012-10-11 アプライド マテリアルズ インコーポレイテッド LED substrate processing
US8897631B2 (en) 2008-01-28 2014-11-25 Tokyo Electron Limited Annealing apparatus
EP3550313A4 (en) * 2016-11-29 2020-07-01 Tokyo Electron Limited Placement stand and electronic device inspecting apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57141986A (en) * 1981-02-25 1982-09-02 Fujitsu Ltd Cooling method for semiconductor laser
JPH065923A (en) * 1992-06-16 1994-01-14 Mitsubishi Kasei Polytec Co Forced cooling light emitting diode device
JPH0799372A (en) * 1993-08-02 1995-04-11 Matsushita Electric Ind Co Ltd Semiconductor light-emitting element
JP2005536045A (en) * 2002-08-09 2005-11-24 エーエスエム アメリカ インコーポレイテッド LED heating lamp array for CVD heating
JP2006059931A (en) * 2004-08-18 2006-03-02 Canon Anelva Corp Rapid thermal process device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57141986A (en) * 1981-02-25 1982-09-02 Fujitsu Ltd Cooling method for semiconductor laser
JPH065923A (en) * 1992-06-16 1994-01-14 Mitsubishi Kasei Polytec Co Forced cooling light emitting diode device
JPH0799372A (en) * 1993-08-02 1995-04-11 Matsushita Electric Ind Co Ltd Semiconductor light-emitting element
JP2005536045A (en) * 2002-08-09 2005-11-24 エーエスエム アメリカ インコーポレイテッド LED heating lamp array for CVD heating
JP2006059931A (en) * 2004-08-18 2006-03-02 Canon Anelva Corp Rapid thermal process device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8897631B2 (en) 2008-01-28 2014-11-25 Tokyo Electron Limited Annealing apparatus
WO2009125727A1 (en) * 2008-04-11 2009-10-15 東京エレクトロン株式会社 Annealing apparatus
JP2012524400A (en) * 2009-04-20 2012-10-11 アプライド マテリアルズ インコーポレイテッド LED substrate processing
EP3550313A4 (en) * 2016-11-29 2020-07-01 Tokyo Electron Limited Placement stand and electronic device inspecting apparatus

Also Published As

Publication number Publication date
TW200822230A (en) 2008-05-16

Similar Documents

Publication Publication Date Title
JP5138253B2 (en) Annealing equipment
US20120325795A1 (en) Heating apparatus and annealing apparatus
JP5084420B2 (en) Load lock device and vacuum processing system
KR101020328B1 (en) Heat treatment apparatus and storage medium
JP5351479B2 (en) Cooling structure of heating source
KR101089929B1 (en) Heating apparatus, heat treatment apparatus, computer program and storage medium
JP2015056624A (en) Substrate temperature control device and substrate processor using the same device
WO2009125727A1 (en) Annealing apparatus
JP2006059931A (en) Rapid thermal process device
JP5394730B2 (en) Annealing apparatus and annealing method
JP2008016545A (en) Device and method of annealing
WO2009116400A1 (en) Annealing apparatus and overheat prevention system
WO2008016116A1 (en) Annealing apparatus and annealing method
WO2008029742A1 (en) Annealing apparatus
JP2010034491A (en) Annealing apparatus
JP2008060560A (en) Annealing apparatus and method
US20100263196A1 (en) Substrate processing apparatus, substrate processing method, and storage medium storing program for implementing the method
US20240145267A1 (en) Substrate processing apparatus and substrate processing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07791868

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 07791868

Country of ref document: EP

Kind code of ref document: A1