WO2008013250A1 - Periodic table group 11 or group 12 metal chalcogenide nanoparticle and method for producing the same - Google Patents

Periodic table group 11 or group 12 metal chalcogenide nanoparticle and method for producing the same Download PDF

Info

Publication number
WO2008013250A1
WO2008013250A1 PCT/JP2007/064729 JP2007064729W WO2008013250A1 WO 2008013250 A1 WO2008013250 A1 WO 2008013250A1 JP 2007064729 W JP2007064729 W JP 2007064729W WO 2008013250 A1 WO2008013250 A1 WO 2008013250A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
nanoparticles
metal
silver
mmol
Prior art date
Application number
PCT/JP2007/064729
Other languages
French (fr)
Japanese (ja)
Inventor
Shigeyoshi Nishino
Shuji Yokoyama
Shinya Takigawa
Original Assignee
Ube Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries, Ltd. filed Critical Ube Industries, Ltd.
Priority to JP2008526824A priority Critical patent/JP5332612B2/en
Publication of WO2008013250A1 publication Critical patent/WO2008013250A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles

Definitions

  • the present invention relates to periodic table group 11 or group 12 metal chalcogenide nanoparticles and a method for producing the same.
  • Periodic table Group 11 or Group 12 metal chalcogenide nanoparticles are useful compounds for reducing the drive voltage of liquid crystal displays, for example.
  • Patent Document 1 Japanese Patent Laid-Open No. 2003-1096
  • An object of the present invention is to provide Group 11 or Group 12 metal chalcogenide nanoparticles containing liquid crystal molecules by a method capable of solving the above problems and easily mass-producing, and It is an object of the present invention to provide a method for producing metal group chalcogenide nanoparticles of Group 11 or Group 12 containing an industrially suitable liquid crystal molecule.
  • An object of the present invention is to provide Group 11 or Group 12 of the Periodic Table comprising one or more Group 11 or Group 12 metal chalcogenides and one or more liquid crystal molecules. Solved by metal chalcogenide nanoparticles.
  • the subject of the present invention is also one or more liquid crystal molecules, one or more periodic tables.
  • the angle can also be determined by the above-mentioned method for producing Group 11 or Group 12 metal chalcogenide nanoparticles.
  • Group 11 or Group 12 metal chalcogenide nanoparticles containing liquid crystal molecules can be provided by a method that can be easily mass-produced.
  • FIG. 1 is a transmission electron micrograph of silver sulfide nanoparticles synthesized by the method of Example 1.
  • FIG. 2 is a transmission electron micrograph of silver sulfide nanoparticles synthesized by the method of Example 2.
  • FIG. 3 is a transmission electron micrograph of copper sulfide nanoparticles synthesized by the method of Example 3.
  • FIG. 4 is a transmission electron micrograph of copper sulfide nanoparticles synthesized by the method of Example 4.
  • FIG. 5 is a transmission electron micrograph of copper sulfide nanoparticles synthesized by the method of Example 5.
  • FIG. 6 is a transmission electron micrograph of copper sulfide nanoparticles synthesized by the method of Example 6.
  • FIG. 7 is a transmission electron micrograph of silver telluride nanoparticles synthesized by the method of Example 7.
  • FIG. 8 is a transmission electron micrograph of silver telluride nanoparticles synthesized by the method of Example 8.
  • FIG. 9 is a transmission electron micrograph of silver telluride nanoparticles synthesized by the method of Example 9.
  • FIG. 10 is a transmission electron micrograph of silver telluride nanoparticles synthesized by the method of Example 10.
  • FIG. 11 is a transmission electron micrograph of silver telluride nanoparticles synthesized by the method of Example 11.
  • FIG. 12 is a transmission electron micrograph of silver telluride nanoparticles synthesized by the method of Example 12.
  • FIG. 13 is a transmission electron micrograph of cadmium sulfide nanoparticles synthesized by the method of Example 13.
  • FIG. 14 is a transmission electron micrograph of zinc sulfide nanoparticles synthesized by the method of Example 14.
  • FIG. 15 is a transmission electron micrograph of zinc sulfide nanoparticles synthesized by the method of Example 15.
  • FIG. 16 is a transmission electron micrograph of zinc sulfide nanoparticles synthesized by the method of Example 16.
  • FIG. 17 is a transmission electron micrograph of zinc telluride nanoparticles synthesized by the method of Example 17.
  • FIG. 18 is a transmission electron micrograph of zinc telluride nanoparticles synthesized by the method of Example 18.
  • FIG. 19 is a transmission electron micrograph of zinc telluride nanoparticles synthesized by the method of Example 19.
  • FIG. 20 is a transmission electron micrograph of zinc telluride nanoparticles synthesized by the method of Example 20.
  • FIG. 21 is a transmission electron micrograph of zinc telluride nanoparticles synthesized by the method of Example 21.
  • One or more periodic table Group 11 or Group 12 metal chalcogenides of the present invention, and a periodic table Group 11 or Group 12 metal chalcogenide nanoparticle comprising one or more liquid crystal molecules For example, by reacting one or two or more liquid crystal molecules, one or two or more periodic table Group 11 or Group 12 metal salts and a chalcogenide precursor in a solvent. Can be manufactured.
  • liquid crystal molecules used in the reaction of the present invention include cyanobiphenyls such as 4'-n-pentyl-4-cyanobiphenyl and 4'-n-hexyloxy-4-cyanobiphenyl; 4- (trans- 4- ⁇ -pentynolecyclohexenole) cyclohexenolevenzonitols such as benzonitrinole; 4'-n-pentyl-4-ethoxy-2,3-difluorobiphenyl, 1-ethoxy-2,3- Fluorobenzenes such as difluoro mouth-4- (trans-4-n-pentylcyclohexyl) benzene; 4_butylbenzoic acid (4-cyanophenyl), 4-heptylbenzoic acid (4-cyanophenyl), etc.
  • cyanobiphenyls such as 4'-n-pentyl-4-cyanobiphenyl and 4'-n-hexyloxy-4-cyanobiphen
  • the amount of the liquid crystal molecules used is preferably 0.1 to 500 mol, more preferably 1 to 200 mol, per 1 mol of Group 1 or Group 12 metal salt of the periodic table.
  • the Group 1 or Group 12 metal salt of the periodic table used in the reaction of the present invention refers to a salt composed of an ion and a counter ion of Group 1 or Group 12 metal of the Periodic Table.
  • the group 1 1 metal ion of the periodic table is, for example, at least one metal ion selected from the group consisting of Au + , Au 3+ , Ag + , Cu + and Cu 2+ .
  • Examples of the ions of the Group 12 metal of the periodic table include: It is at least one metal ion selected from the group consisting of Hg 2+ .
  • Examples of the counter ion include a halogen ion, a halogenate ion, a perhalogenate ion, an optionally substituted carboxylate ion, a acetyl cetate ion, a carbonate ion, a sulfate ion, a nitrate ion, and a tetrafluoro ion.
  • Examples include loborate ions and hexafluorophosphate ions, and hydride ions when they are counter ions of group 11 metal ions in the periodic table.
  • These metal salts may be coordinated with a neutral ligand (for example, carbon monoxide, triphenylphosphine, P-cymene, etc.).
  • Group 1 or Group 12 metal salts may be used alone or in admixture of two or more.
  • the group 1 or 12 metal chalcogenide of the periodic table used in the reaction of the present invention refers to an element (sulfur, selenium) of the group 1 or 12 metal of the periodic table and oxygen in the periodic table. , Tell Compound), and examples thereof include sulfides, selenides, and tellurides.
  • the chalcogenide precursor is a compound that forms a metal chalcogenide (for example, metal sulfide, metal selenide, metal telluride) by reacting with a metal compound (for example, the metal salt shown above), for example. The generic name of is shown. These chalcogenide precursors may be used alone or in admixture of two or more different metal species.
  • the chalcogenide precursor (sulfurizing agent) for synthesizing the metal sulfide includes, for example, thioamides such as thioacetamide and N, N-dimethylthioacetamide; sulfur; hydrogen sulfide; Thioureas such as N, N-dimethylthiourea; alkali metal sulfides such as sodium sulfide and potassium sulfide; alkali metal hydrogen sulfides such as sodium hydrogen sulfide and potassium hydrogen sulfide.
  • thioamides, thioureas, alkali metal sulphides, and also hydrogen sulfide is used when synthesizing Group 12 metal sulphides in the periodic table, more preferably thioamides, thioureas, and periodicity. Hydrogen sulfide is also used when synthesizing Group 12 metal sulfides.
  • chalcogenide precursors sulfurizing agents
  • chalcogenide precursor (selenating agent) for synthesizing the metal selenide examples include, for example, selenium; hydrogen selenide; selenamides such as selenoacetamide and N, N-dimethylselenoacetamide; selenourea, N And selenoureas such as N-dimethylselenourea; alkali metal selenides such as sodium selenide and potassium selenide; and alkali metal hydrogen selenides such as sodium hydrogen selenide and potassium hydrogen selenide.
  • selenide, selenoamides, selenoureas, and also hydrogen selenide are used when synthesizing group 12 metal selenium in the periodic table, more preferably selenium, selenoureas, and periodic table. Hydrogen selenide is also used when synthesizing Group 12 metal selenides.
  • chalcogenide precursors may be used alone or in admixture of two or more.
  • tellurium, tellurium ureas, alkali metal hydrogen tellurides, and in addition, tellurium hydrogen telluride is used when synthesizing Group 12 metal tellurides, more preferably tellurium, alkali metal hydrogen tellurides, In addition, hydrogen telluride is also used when synthesizing group 12 metal tellurium in the periodic table.
  • chalcogenide precursors tenolelating agents
  • the amount of the chalcogenide precursor used is preferably 0.1 mol to 5 mol, more preferably 0.2 mol to 3 mol, relative to 1 mol of the Group 11 or Group 12 metal salt of the periodic table.
  • the solvent used in the reaction of the present invention is not particularly limited as long as it does not inhibit the reaction.
  • water ketones such as acetone, methyl ethyl ketone, and methyl isobutyl ketone; methyl acetate, ethyl acetate , Esters such as butyl acetate and methyl propionate; amides such as ⁇ , ⁇ -dimethylformamide, ⁇ , ⁇ -dimethylacetamide, ⁇ -methinorepyrrolidone; urea such as ⁇ , ⁇ '-dimethylimidazolidinone Sulfoxides such as dimethyl sulfoxide; sulfones such as sulfolane; nitriles such as acetonitrile and propionitryl; ethers such as diethyl ether, diisopropyl ether, tetrahydrofuran and dioxane; hexane, hept
  • Aliphatic hydrocarbons such as benzene, toluene and xylene Family hydrocarbons.
  • nitriles, ethers, aromatic hydrocarbons, and also water is used in the case of Group 11 metal salts of the periodic table, more preferably ethers, and Group 11 metal salts of the periodic table. In this case, water is also used.
  • These solvents may be used alone or in admixture of two or more.
  • the amount of the solvent used is preferably 10 to 500 ml, more preferably 20 to 200 ml, with respect to lg of liquid crystal molecules.
  • the reaction of the present invention includes, for example, one or more liquid crystal molecules, one or more periodic tables.
  • reaction temperature at that time is preferably 20 to 120 ° C, more preferably 40 to 100 ° C, and the reaction pressure is not particularly limited.
  • periodic group 11 metal chalcogenide nanoparticles and a solvent are included.
  • a dispersion can be obtained.
  • a paste containing uniform Group 11 or Group 12 metal chalcogenide nanoparticles and a solvent can be obtained.
  • the method for concentrating the dispersion is not particularly limited, but can be carried out under reduced pressure, preferably at 20 to 100 ° C.
  • the reaction solution was cooled to room temperature to obtain 50 ml of a silver sulfide nanoparticle dispersion as a brownish brown uniform liquid.
  • the silver sulfide nanoparticles had a uniform particle size of 10 to 30 nm (Fig. 1). Further, the obtained dispersion containing silver sulfide nanoparticles was concentrated under reduced pressure to obtain 0.67 g of a brownish brown uniform silver sulfide nanoparticle paste.
  • the mixture was cooled to room temperature to obtain 50 ml of silver sulfide nanoparticle dispersion as a brownish brown uniform liquid.
  • the silver sulfide nanoparticle size was uniform between 10 and 30 nm (Fig. 2).
  • the obtained dispersion containing silver sulfide nanoparticles was concentrated under reduced pressure to obtain 0.67 g of a brownish brown uniform silver sulfide nanoparticle paste. It was.
  • the mixture was cooled to room temperature to obtain 50 ml of a copper sulfide nanoparticle dispersion as a brownish brown uniform liquid.
  • the copper sulfide nanoparticles had a uniform particle size of about 2 mm (Fig. 3). Further, the obtained dispersion containing copper sulfide nanoparticles was concentrated under reduced pressure to obtain 0.67 g of a brown brown uniform copper sulfide nanoparticle paste.
  • the mixture was cooled to room temperature to obtain 50 ml of a copper sulfide nanoparticle dispersion liquid as a brownish brown uniform liquid.
  • the particle size of the copper sulfide nanoparticles was uniform at 10 to 30 mm (Fig. 4). Further, the obtained dispersion containing copper sulfide nanoparticles was concentrated under reduced pressure to obtain 0.67 g of a brown brown uniform copper sulfide nanoparticle paste.
  • the mixture was cooled to room temperature to obtain 50 ml of a copper sulfide nanoparticle dispersion as a brownish brown uniform liquid.
  • the copper sulfide nanoparticles had a uniform particle size of about 2 nm (Fig. 5).
  • the obtained dispersion liquid containing copper sulfide nanoparticles was concentrated under reduced pressure to obtain 0.67 g of a brownish brown uniform copper sulfide nanoparticle paste.
  • the mixture was cooled to room temperature to obtain 50 ml of a copper sulfide nanoparticle dispersion as a brownish brown uniform liquid.
  • the copper sulfide nanoparticles had a uniform particle size of about 2 nm (Fig. 6). Furthermore, the obtained dispersion liquid containing copper sulfide nanoparticles was concentrated under reduced pressure to obtain 0.67 g of a brownish brown uniform copper sulfide nanoparticle paste.
  • the silver telluride nanoparticles had a uniform particle size of 3 to 15 nm (FIG. 7). Further, the obtained dispersion containing silver telluride nanoparticles was concentrated under reduced pressure to obtain 0.67 g of a gray-white uniform silver telluride nanoparticle paste.
  • liquid crystal content ZLI-5100-100 (Merck) 0.50 g, tetrahydrofuran 44.0 ml and tellurium 3 ⁇ 8 mg (0.030 mmol) were added, then 0.01 mol / l silver trifluoroacetate in tetrahydrofuran solution 6.00 ml (silver atoms 0.060 mmol) was added, and the mixed solution was heated to 65 to 75 ° C. with stirring to be reacted. After completion of the reaction, the mixture was cooled to room temperature to obtain 50 ml of silver telluride nanoparticle dispersion as an off-white uniform liquid.
  • the silver telluride nanoparticles had a uniform particle size of 3 to 15 nm (Fig. 8). Further, the obtained dispersion liquid containing silver telluride nanoparticles was concentrated under reduced pressure to obtain 0.5 lg of grayish white uniform silver telluride nanoparticle paste.
  • the mixture was cooled to room temperature to obtain 50 ml of silver telluride nanoparticle dispersion as an off-white uniform liquid.
  • the particle size of the silver telluride nanoparticles was uniform at 3 to 15 nm (FIG. 11). Further, the obtained dispersion liquid containing silver telluride nanoparticles was concentrated under reduced pressure to obtain 0.5 lg of a grayish white uniform silver telluride nanoparticle paste.
  • the mixture was cooled to room temperature to obtain 50 ml of silver telluride nanoparticle dispersion as an off-white uniform liquid.
  • the silver telluride nanoparticles had a uniform particle size of 3 to 15 nm (FIG. 12). Further, the obtained dispersion liquid containing silver telluride nanoparticles was concentrated under reduced pressure to obtain 0.5 lg of a grayish white uniform silver telluride nanoparticle paste.
  • the mixture was cooled to room temperature to obtain 50 ml of a cadmium sulfide nanoparticle dispersion as a pale yellow uniform liquid.
  • the zinc sulfide nanoparticles had a uniform particle size of 5 to 10 mm. ( Figure 13). Furthermore, the obtained dispersion liquid containing cadmium sulfide nanoparticles was concentrated under reduced pressure to obtain 0.71 g of a pale yellow uniform zinc sulfide nanoparticle paste.
  • the mixture was cooled to room temperature to obtain 50 ml of a zinc sulfide nanoparticle dispersion as a colorless uniform liquid.
  • the particle size of the zinc sulfide nanoparticle was uniform between 2 and 10 nm (FIG. 14). Further, the obtained dispersion containing zinc sulfide nanoparticles was concentrated under reduced pressure to obtain 0.67 g of a pale yellow uniform zinc sulfide nanoparticle paste.
  • Liquid crystal molecule mixture (MLC_6692 (Merck) 0.50g, Tetrahydrofuran 47ml, Water 0.05ml and Zinc acetyl etherate 7.8mg in a 100ml glass container equipped with stirrer, thermometer and reflux condenser (0.03 mmol) was added and the mixture was heated to 65-75 ° C. with stirring. Next, 3.0 ml of a 0.01 mol / l thioacetamide tetrahydrofuran solution was gently added dropwise to cause the reaction. After completion of the reaction, the mixture was cooled to room temperature to obtain 50 ml of a zinc sulfide nanoparticle dispersion as a colorless uniform liquid.
  • MLC_6692 Merck
  • the zinc sulfide nanoparticles had a uniform particle size of 2 to 10 nm (Fig. 15). Further, the obtained dispersion containing zinc sulfide nanoparticles was concentrated under reduced pressure to obtain 0.50 g of a pale yellow uniform zinc sulfide nanoparticle paste.
  • Liquid crystal molecule mixture (MLC_6608 (Merck) 0.50g, Tetrahydrofuran 47ml, Water 0.05ml and Zinc acetyl etherate 7.8mg in a 100ml glass container equipped with stirrer, thermometer and reflux condenser (0.03 mmol) was added and the mixture was heated to 65-75 ° C. with stirring. Then, 0.01ml / l thioacetamide in tetrahydrofuran solution 3.0ml was slowly dropped to react. After completion of the reaction, the mixture was cooled to room temperature to obtain 50 ml of a zinc sulfide nanoparticle dispersion as a colorless uniform liquid.
  • the zinc sulfide nanoparticles had a uniform particle size of 2 to 10 nm (Fig. 16). Further, the obtained dispersion containing zinc sulfide nanoparticles was concentrated under reduced pressure to obtain 0.50 g of a pale yellow uniform zinc sulfide nanoparticle paste.
  • the zinc telluride nanoparticles had a uniform particle size of 3 to 15 mm (FIG. 17). Further, the obtained dispersion containing zinc telluride nanoparticles was concentrated under reduced pressure to obtain 0.51 g of a colorless, uniform zinc telluride nanoparticle paste.
  • the zinc telluride nanoparticles had a uniform particle size of 3 to 15 mm (FIG. 18). Further, the obtained dispersion containing zinc telluride nanoparticles was concentrated under reduced pressure to obtain 0.51 g of a colorless uniform zinc telluride nanoparticle paste.
  • the zinc telluride nanoparticles had a uniform particle size of 3 to 15 nm (FIG. 19). Further, the obtained dispersion containing zinc telluride nanoparticles was concentrated under reduced pressure to obtain 0.51 g of a colorless uniform zinc telluride nanoparticle paste.
  • the zinc telluride nanoparticles had a uniform particle size of 3 to 15 mm (FIG. 20). Further, the obtained dispersion containing zinc telluride nanoparticles was concentrated under reduced pressure to obtain 0.51 g of a colorless and uniform zinc telluride nanoparticle paste.
  • the zinc telluride nanoparticles had a uniform particle size of 3 to 15 mm (Fig. 21). Further, the obtained dispersion containing zinc telluride nanoparticles was concentrated under reduced pressure to obtain 0.51 g of a colorless and uniform zinc telluride nanoparticle paste.
  • the present invention relates to Periodic Table Group 11 or Group 12 metal chalcogenide nanoparticles containing liquid crystal molecules and a method for producing the same.
  • Periodic table Group 11 or Group 12 metal chalcogenide nanoparticles are useful compounds, for example, for reducing the drive voltage of a liquid crystal display.

Abstract

Disclosed is a method for easily mass-producing a periodic table group 11 or group 12 metal chalcogenide nanoparticle which contains a liquid crystal molecule. Also disclosed is a commercially suitable periodic table group 11 or group 12 metal chalcogenide nanoparticle.

Description

明 細 書  Specification
周期表第 11族又は第 12族金属カルコゲナイドナノ粒子及びその製法 技術分野  Periodic table group 11 or group 12 metal chalcogenide nanoparticles and process for producing the same
[0001] 本発明は、周期表第 11族又は第 12族金属カルコゲナイドナノ粒子及びその製法に 関する。周期表第 11族又は第 12族金属カルコゲナイドナノ粒子は、例えば、液晶デ イスプレイの駆動電圧を低下させるための有用な化合物である。  The present invention relates to periodic table group 11 or group 12 metal chalcogenide nanoparticles and a method for producing the same. Periodic table Group 11 or Group 12 metal chalcogenide nanoparticles are useful compounds for reducing the drive voltage of liquid crystal displays, for example.
背景技術  Background art
[0002] 従来、周期表第 11族金属カルコゲナイド粒子の製法としては、例えば、アルカリ金 属及びアルカリ土類金属を除く金属イオンとカルコゲナイド前駆体とを溶解した溶液 を超音波処理することにより、金属カルコゲナイドのコロイド粒子を合成する方法が開 示されている(例えば、特許文献 1参照)。し力もながら、この方法においては、超音 波処理のために超音波分散機を使用する必要があり、工業的に大量生産する手法 としては不適当であった。又、特許文献 1には、周期表第 12族金属カルコゲナイドナ ノ粒子については、実質的には言及されていなかった。  Conventionally, as a method for producing Group 11 metal chalcogenide particles of the periodic table, for example, a metal ion excluding alkali metal and alkaline earth metal and a chalcogenide precursor dissolved in a solution are subjected to ultrasonic treatment. A method for synthesizing chalcogenide colloidal particles has been disclosed (see, for example, Patent Document 1). However, in this method, it is necessary to use an ultrasonic disperser for ultrasonic processing, which is not suitable for industrial mass production. Patent Document 1 did not substantially mention the Group 12 metal chalcogenide nanoparticle of the periodic table.
特許文献 1:特開 2003— 1096号公報  Patent Document 1: Japanese Patent Laid-Open No. 2003-1096
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0003] 本発明の課題は、上記問題点を解決し、容易に大量製造が可能な方法にて、液晶 分子を含む周期表第 11族又は第 12族金属カルコゲナイドナノ粒子を提供すること、 ならびに工業的に好適な液晶分子を含む周期表第 11族又は第 12族金属カルコゲナ イドナノ粒子の製法を提供することにある。 [0003] An object of the present invention is to provide Group 11 or Group 12 metal chalcogenide nanoparticles containing liquid crystal molecules by a method capable of solving the above problems and easily mass-producing, and It is an object of the present invention to provide a method for producing metal group chalcogenide nanoparticles of Group 11 or Group 12 containing an industrially suitable liquid crystal molecule.
課題を解決するための手段  Means for solving the problem
[0004] 本発明の課題は、 1種又は 2種以上の周期表第 11族又は第 12族金属カルコゲナイ ド、及び 1種又は 2種以上の液晶分子を含む周期表第 11族又は第 12族金属カルコゲ ナイドナノ粒子によって解決される。 [0004] An object of the present invention is to provide Group 11 or Group 12 of the Periodic Table comprising one or more Group 11 or Group 12 metal chalcogenides and one or more liquid crystal molecules. Solved by metal chalcogenide nanoparticles.
[0005] 本発明の課題は、又、 1種又は 2種以上の液晶分子、 1種又は 2種以上の周期表第[0005] The subject of the present invention is also one or more liquid crystal molecules, one or more periodic tables.
11族又は第 12族金属塩、及び 1又は 2種以上のカルコゲナイド前駆体を溶媒中で反 応させる、上記の周期表第 11族又は第 12族金属カルコゲナイドナノ粒子の製法によ つても角早決される。 React Group 11 or Group 12 metal salt and one or more chalcogenide precursors in a solvent. The angle can also be determined by the above-mentioned method for producing Group 11 or Group 12 metal chalcogenide nanoparticles.
発明の効果  The invention's effect
[0006] 本発明により、容易に大量製造が可能な方法にて、液晶分子を含む周期表第 11族 又は第 12族金属カルコゲナイドナノ粒子を提供することができる。  [0006] According to the present invention, Group 11 or Group 12 metal chalcogenide nanoparticles containing liquid crystal molecules can be provided by a method that can be easily mass-produced.
[0007] また、工業的に好適な液晶分子を含む周期表第 11族又は第 12族金属カルコゲナ イドナノ粒子の製法を提供することができる。  [0007] In addition, it is possible to provide a process for producing Group 11 or Group 12 metal chalcogenide nanoparticles containing liquid crystal molecules that are industrially suitable.
図面の簡単な説明  Brief Description of Drawings
[0008] [図 1]実施例 1の方法で合成した硫化銀ナノ粒子の透過型電子顕微鏡写真である。  FIG. 1 is a transmission electron micrograph of silver sulfide nanoparticles synthesized by the method of Example 1.
[図 2]実施例 2の方法で合成した硫化銀ナノ粒子の透過型電子顕微鏡写真である。  FIG. 2 is a transmission electron micrograph of silver sulfide nanoparticles synthesized by the method of Example 2.
[図 3]実施例 3の方法で合成した硫化銅ナノ粒子の透過型電子顕微鏡写真である。  FIG. 3 is a transmission electron micrograph of copper sulfide nanoparticles synthesized by the method of Example 3.
[図 4]実施例 4の方法で合成した硫化銅ナノ粒子の透過型電子顕微鏡写真である。  FIG. 4 is a transmission electron micrograph of copper sulfide nanoparticles synthesized by the method of Example 4.
[図 5]実施例 5の方法で合成した硫化銅ナノ粒子の透過型電子顕微鏡写真である。  FIG. 5 is a transmission electron micrograph of copper sulfide nanoparticles synthesized by the method of Example 5.
[図 6]実施例 6の方法で合成した硫化銅ナノ粒子の透過型電子顕微鏡写真である。  FIG. 6 is a transmission electron micrograph of copper sulfide nanoparticles synthesized by the method of Example 6.
[図 7]実施例 7の方法で合成したテルル化銀ナノ粒子の透過型電子顕微鏡写真であ  FIG. 7 is a transmission electron micrograph of silver telluride nanoparticles synthesized by the method of Example 7.
[図 8]実施例 8の方法で合成したテルル化銀ナノ粒子の透過型電子顕微鏡写真であ FIG. 8 is a transmission electron micrograph of silver telluride nanoparticles synthesized by the method of Example 8.
[図 9]実施例 9の方法で合成したテルル化銀ナノ粒子の透過型電子顕微鏡写真であ FIG. 9 is a transmission electron micrograph of silver telluride nanoparticles synthesized by the method of Example 9.
[図 10]実施例 10の方法で合成したテルル化銀ナノ粒子の透過型電子顕微鏡写真で ある。 FIG. 10 is a transmission electron micrograph of silver telluride nanoparticles synthesized by the method of Example 10.
[図 11]実施例 11の方法で合成したテルル化銀ナノ粒子の透過型電子顕微鏡写真で ある。  FIG. 11 is a transmission electron micrograph of silver telluride nanoparticles synthesized by the method of Example 11.
[図 12]実施例 12の方法で合成したテルル化銀ナノ粒子の透過型電子顕微鏡写真で ある。  FIG. 12 is a transmission electron micrograph of silver telluride nanoparticles synthesized by the method of Example 12.
[図 13]実施例 13の方法で合成した硫化カドミウムナノ粒子の透過型電子顕微鏡写真 である。 [図 14]実施例 14の方法で合成した硫化亜鉛ナノ粒子の透過型電子顕微鏡写真であ FIG. 13 is a transmission electron micrograph of cadmium sulfide nanoparticles synthesized by the method of Example 13. FIG. 14 is a transmission electron micrograph of zinc sulfide nanoparticles synthesized by the method of Example 14.
[図 15]実施例 15の方法で合成した硫化亜鉛ナノ粒子の透過型電子顕微鏡写真であ FIG. 15 is a transmission electron micrograph of zinc sulfide nanoparticles synthesized by the method of Example 15.
[図 16]実施例 16の方法で合成した硫化亜鉛ナノ粒子の透過型電子顕微鏡写真であ FIG. 16 is a transmission electron micrograph of zinc sulfide nanoparticles synthesized by the method of Example 16.
[図 17]実施例 17の方法で合成したテルル化亜鉛ナノ粒子の透過型電子顕微鏡写 真である。 FIG. 17 is a transmission electron micrograph of zinc telluride nanoparticles synthesized by the method of Example 17.
[図 18]実施例 18の方法で合成したテルル化亜鉛ナノ粒子の透過型電子顕微鏡写 真である。  FIG. 18 is a transmission electron micrograph of zinc telluride nanoparticles synthesized by the method of Example 18.
[図 19]実施例 19の方法で合成したテルル化亜鉛ナノ粒子の透過型電子顕微鏡写 真である。  FIG. 19 is a transmission electron micrograph of zinc telluride nanoparticles synthesized by the method of Example 19.
[図 20]実施例 20の方法で合成したテルル化亜鉛ナノ粒子の透過型電子顕微鏡写 真である。  FIG. 20 is a transmission electron micrograph of zinc telluride nanoparticles synthesized by the method of Example 20.
[図 21]実施例 21の方法で合成したテルル化亜鉛ナノ粒子の透過型電子顕微鏡写 真である。  FIG. 21 is a transmission electron micrograph of zinc telluride nanoparticles synthesized by the method of Example 21.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0009] 本発明の 1種又は 2種以上の周期表第 11族又は第 12族金属カルコゲナイド、及び 1種又は 2種以上の液晶分子を含む周期表第 11族又は第 12族金属カルコゲナイド ナノ粒子は、例えば、 1種又は 2種以上の液晶分子、 1種又は 2種以上の周期表第 11 族又は第 12族金属塩及びカルコゲナイド前駆体とを溶媒中で反応させることによつ て好適に製造することができる。  [0009] One or more periodic table Group 11 or Group 12 metal chalcogenides of the present invention, and a periodic table Group 11 or Group 12 metal chalcogenide nanoparticle comprising one or more liquid crystal molecules For example, by reacting one or two or more liquid crystal molecules, one or two or more periodic table Group 11 or Group 12 metal salts and a chalcogenide precursor in a solvent. Can be manufactured.
[0010] 本発明の反応において使用する液晶分子としては、例えば、 4'-n-ペンチル -4-シ ァノビフエニル、 4'-n-へキシルォキシ -4-シァノビフエニル等のシァノビフエニル類; 4 -(trans-4-η-ペンチノレシクロへキシノレ)ベンゾニトリノレ等のシクロへキシノレべンゾニトリ ノレ類; 4'-n-ペンチル -4-エトキシ -2,3-ジフルォロビフエニル、 1-エトキシ -2,3-ジフル ォ口- 4-(trans-4-n-ペンチルシクロへキシル)ベンゼン等のフルォロベンゼン類; 4_ブ チル安息香酸 (4-シァノフエ二ル)、 4-ヘプチル安息香酸 (4-シァノフエニル)等のフエ ニルエステル類; 4-カルボキシフエニルェチルカーボネート、 4-カルボキシフエ二ル- n-ブチルカーボネート等の炭酸エステル類; 4-(4_n-ペンチルフエニルェチュル)シァ ノベンゼン、 4-(4_n-ペンチルフエ二ルェチ二ノレ)フルォロベンゼン等のフエ二ルァセ チレン類; 2-(4-シァノフエニル) -5-n-ペンチルピリミジン、 2-(4-シァノフエニル) -5-n- ォクチルピリミジン等のフエニルピリミジン類; 4,4'-ビス (エトキシカルボニル)ァゾベン ゼン等のァゾベンゼン類; 4,4 ' -ァゾキシァニソール、 4,4'-ジへキシルァゾキシベンゼ ン等のァゾキシベンゼン類; N-(4-メトキシベンジリデン) -4-n-ブチルァニリン、 N-(4- エトキシベンジリデン) -4-n-ブチルァニリン等のシッフ塩基類; Ν,Ν'-ビスべンジリデン ベンジジン等のベンジジン類;コレステリルアセテート、コレステリルべンゾエート等の コレステリルエステル類;ポリ (4-フエ二レンテレフタルアミド)等の液晶高分子類が挙げ られる。なお、これらの液晶分子は、単独又は 2種以上を混合して使用しても良ぐ液 晶分子混合物としては、市販品のものをそのまま用いることができる。 [0010] Examples of the liquid crystal molecules used in the reaction of the present invention include cyanobiphenyls such as 4'-n-pentyl-4-cyanobiphenyl and 4'-n-hexyloxy-4-cyanobiphenyl; 4- (trans- 4-η-pentynolecyclohexenole) cyclohexenolevenzonitols such as benzonitrinole; 4'-n-pentyl-4-ethoxy-2,3-difluorobiphenyl, 1-ethoxy-2,3- Fluorobenzenes such as difluoro mouth-4- (trans-4-n-pentylcyclohexyl) benzene; 4_butylbenzoic acid (4-cyanophenyl), 4-heptylbenzoic acid (4-cyanophenyl), etc. Hue Nylesters; Carbonates such as 4-carboxyphenyl carbonate and 4-carboxyphenyl-n-butyl carbonate; 4- (4_n-pentylphenyl) cyanobenzene, 4- (4_n-pentylphenyl) Phenylacetylenes such as 2- (4-cyanophenyl) -5-n-pentylpyrimidine, 2- (4-cyanophenyl) -5-n-octylpyrimidine; Azobenzenes such as 4,4′-bis (ethoxycarbonyl) azobenzen; Azoxybenzenes such as 4,4′-azoxanisole and 4,4′-dihexayloxybenzen; N- ( Schiff bases such as 4-methoxybenzylidene) -4-n-butylaniline and N- (4-ethoxybenzylidene) -4-n-butylaniline; ベ ン, Ν'-bisbenzylidene benzidines such as benzidine; cholesteryl acetate DOO, cholesteryl esters such as cholesteryl base Nzoeto; poly (4-phenylene terephthalamide) liquid crystal polymers such like. These liquid crystal molecules can be used alone or as a mixture of two or more liquid crystal molecules, which are commercially available.
[001 1] 前記液晶分子の使用量は、周期表第 1 1族又は第 12族金属塩 1モルに対して、好ま しくは 0· 1〜500モル、更に好ましくは 1〜200モルである。  [001 1] The amount of the liquid crystal molecules used is preferably 0.1 to 500 mol, more preferably 1 to 200 mol, per 1 mol of Group 1 or Group 12 metal salt of the periodic table.
[0012] 本発明の反応において使用する周期表第 1 1族又は第 12族金属塩とは、周期表第 1 1族又は第 12族金属のイオンと対イオンからなる塩をいう。前記周期表第 1 1族金属 のイオンとしては、例えば、 Au+、 Au3+、 Ag+、 Cu+、 Cu2+からなる群より選ばれる少なくと も 1種の金属イオンである。前記周期表第 12族金属のイオンとしては、例えば、
Figure imgf000005_0001
Figure imgf000005_0002
Hg2+からなる群より選ばれる少なくとも 1種の金属イオンである。対イオンと しては、例えば、ハロゲンイオン、ハロゲン酸イオン、過ハロゲン酸イオン、置換されて いても良いカルボン酸イオン、ァセチルァセトナートイオン、炭酸イオン、硫酸イオン、 硝酸イオン、テトラフルォロホウ酸イオン、へキサフルォロリン酸イオンが挙げられ、周 期表第 1 1族金属のイオンの対イオンのときには、ヒドリドイオンも挙げられる。なお、こ れらの金属塩は、中性の配位子(例えば、一酸化炭素、トリフエニルホスフィン、 P-シ メン等)が配位していても良い。また、これらの周期表第 1 1族又は第 12族金属塩は、 単独で又は 2種以上を混合して使用しても良い。
[0012] The Group 1 or Group 12 metal salt of the periodic table used in the reaction of the present invention refers to a salt composed of an ion and a counter ion of Group 1 or Group 12 metal of the Periodic Table. The group 1 1 metal ion of the periodic table is, for example, at least one metal ion selected from the group consisting of Au + , Au 3+ , Ag + , Cu + and Cu 2+ . Examples of the ions of the Group 12 metal of the periodic table include:
Figure imgf000005_0001
Figure imgf000005_0002
It is at least one metal ion selected from the group consisting of Hg 2+ . Examples of the counter ion include a halogen ion, a halogenate ion, a perhalogenate ion, an optionally substituted carboxylate ion, a acetyl cetate ion, a carbonate ion, a sulfate ion, a nitrate ion, and a tetrafluoro ion. Examples include loborate ions and hexafluorophosphate ions, and hydride ions when they are counter ions of group 11 metal ions in the periodic table. These metal salts may be coordinated with a neutral ligand (for example, carbon monoxide, triphenylphosphine, P-cymene, etc.). These periodic table Group 1 or Group 12 metal salts may be used alone or in admixture of two or more.
[0013] 本発明の反応において使用する周期表第 1 1族又は第 12族金属カルコゲナイドとは 、周期表第 1 1族又は第 12族金属と周期律表の酸素の下の元素 (硫黄、セレン、テル ノレ)との化合物を示し、例えば、硫化物、セレン化物、テルル化物が挙げられる。又、 カルコゲナイド前駆体とは、例えば、金属化合物(例えば、先に示した金属塩)と反応 させることによって、金属カルコゲナイド(例えば、金属硫化物、金属セレン化物、金 属テルル化物)を生成する化合物の総称を示す。なお、これらのカルコゲナイド前駆 体は、単独で又は金属種の異なる 2種以上を混合して使用しても良い。 [0013] The group 1 or 12 metal chalcogenide of the periodic table used in the reaction of the present invention refers to an element (sulfur, selenium) of the group 1 or 12 metal of the periodic table and oxygen in the periodic table. , Tell Compound), and examples thereof include sulfides, selenides, and tellurides. The chalcogenide precursor is a compound that forms a metal chalcogenide (for example, metal sulfide, metal selenide, metal telluride) by reacting with a metal compound (for example, the metal salt shown above), for example. The generic name of is shown. These chalcogenide precursors may be used alone or in admixture of two or more different metal species.
[0014] 前記金属硫化物を合成するためのカルコゲナイド前駆体 (硫化剤)としては、例え ば、チオアセトアミド、 N,N-ジメチルチオァセトアミド等のチォアミド類;硫黄;硫化水 素;チォ尿素、 N,N-ジメチルチオ尿素等のチォ尿素類;硫化ナトリウム、硫化カリウム 等のアルカリ金属硫化物類;硫化水素ナトリウム、硫化水素カリウム等のアルカリ金属 水素硫化物類が挙げられる。好ましくはチオアミド類、チォ尿素類、アルカリ金属硫 化物類、加えて周期律表第 12族金属硫化物を合成するときには硫化水素も使用さ れ、更に好ましくはチオアミド類、チォ尿素類、加えて周期律表第 12族金属硫化物を 合成するときには硫化水素も使用される。なお、これらのカルコゲナイド前駆体 (硫化 剤)は、単独で又は 2種以上を混合して使用しても良い。  [0014] The chalcogenide precursor (sulfurizing agent) for synthesizing the metal sulfide includes, for example, thioamides such as thioacetamide and N, N-dimethylthioacetamide; sulfur; hydrogen sulfide; Thioureas such as N, N-dimethylthiourea; alkali metal sulfides such as sodium sulfide and potassium sulfide; alkali metal hydrogen sulfides such as sodium hydrogen sulfide and potassium hydrogen sulfide. Preferably, thioamides, thioureas, alkali metal sulphides, and also hydrogen sulfide is used when synthesizing Group 12 metal sulphides in the periodic table, more preferably thioamides, thioureas, and periodicity. Hydrogen sulfide is also used when synthesizing Group 12 metal sulfides. These chalcogenide precursors (sulfurizing agents) may be used alone or in admixture of two or more.
[0015] 前記金属セレン化物を合成するためのカルコゲナイド前駆体(セレン化剤)としては 、例えば、セレン;セレン化水素;セレノアセトアミド、 N,N-ジメチルセレノアセトアミド等 のセレノアミド類;セレノ尿素、 N,N-ジメチルセレノ尿素等のセレノ尿素類;セレン化ナ トリウム、セレン化カリウム等のアルカリ金属セレン化物類;セレン化水素ナトリウム、セ レン化水素カリウム等のアルカリ金属水素セレン化物類が挙げられる。好ましくはセレ ン、セレノアミド類、セレノ尿素類、加えて周期律表第 12族金属セレン物を合成すると きにはセレン化水素も使用され、更に好ましくはセレン、セレノ尿素類、加えて周期律 表第 12族金属セレン物を合成するときにはセレン化水素も使用される。なお、これら のカルコゲナイド前駆体 (セレン化剤)は、単独で又は 2種以上を混合して使用しても 良い。  Examples of the chalcogenide precursor (selenating agent) for synthesizing the metal selenide include, for example, selenium; hydrogen selenide; selenamides such as selenoacetamide and N, N-dimethylselenoacetamide; selenourea, N And selenoureas such as N-dimethylselenourea; alkali metal selenides such as sodium selenide and potassium selenide; and alkali metal hydrogen selenides such as sodium hydrogen selenide and potassium hydrogen selenide. Preferably, selenide, selenoamides, selenoureas, and also hydrogen selenide are used when synthesizing group 12 metal selenium in the periodic table, more preferably selenium, selenoureas, and periodic table. Hydrogen selenide is also used when synthesizing Group 12 metal selenides. These chalcogenide precursors (selenating agents) may be used alone or in admixture of two or more.
[0016] 前記金属テルル化物を合成するためのカルコゲナイド前駆体(テルル化剤)として は、例えば、テルル;テルル化水素;テルロアセトアミド、 N,N-ジメチルテルロアセトァ ミド等のテルロアミド類;テル口尿素、 N,N-ジメチルテル口尿素等のテル口尿素類;テ ノレル化ナトリウム、テルル化カリウム等のアルカリ金属テルル化物類;テルル化水素 ナトリウム、テルル化水素カリウム等のアルカリ金属水素テルル化物類が挙げられる。 好ましくはテルル、テル口尿素類、アルカリ金属水素テルル化物類、加えて周期律表 第 12族金属テルル物を合成するときにはテルル化水素も使用され、更に好ましくは テルル、アルカリ金属水素テルル化物類、加えて周期律表第 12族金属テルル物を合 成するときにはテルル化水素も使用される。なお、これらのカルコゲナイド前駆体 (テ ノレル化剤)は、単独で又は 2種以上を混合して使用しても良い。 Examples of chalcogenide precursors (tellurizing agents) for synthesizing the metal tellurides include tellurium; hydrogen telluride; telluramides such as telluroacetamide and N, N-dimethyltelluroacetamide; Terurea ureas such as urea, N, N-dimethylterurea urea; alkali metal tellurides such as sodium tenolide and potassium telluride; hydrogen telluride Examples thereof include alkali metal hydrogen tellurides such as sodium and potassium telluride. Preferably, tellurium, tellurium ureas, alkali metal hydrogen tellurides, and in addition, tellurium hydrogen telluride is used when synthesizing Group 12 metal tellurides, more preferably tellurium, alkali metal hydrogen tellurides, In addition, hydrogen telluride is also used when synthesizing group 12 metal tellurium in the periodic table. These chalcogenide precursors (tenolelating agents) may be used alone or in admixture of two or more.
[0017] 前記カルコゲナイド前駆体の使用量は、周期表第 11族又は第 12族金属塩 1モルに 対して、好ましくは 0· 1〜5モル、更に好ましくは 0·2〜3モルである。  [0017] The amount of the chalcogenide precursor used is preferably 0.1 mol to 5 mol, more preferably 0.2 mol to 3 mol, relative to 1 mol of the Group 11 or Group 12 metal salt of the periodic table.
[0018] 本発明の反応において使用する溶媒としては、反応を阻害しないものならば特に 限定されず、例えば、水;アセトン、メチルェチルケトン、メチルイソブチルケトン等の ケトン類;酢酸メチル、酢酸ェチル、酢酸ブチル、プロピオン酸メチル等のエステル類 ; Ν,Ν-ジメチルホルムアミド、 Ν,Ν-ジメチルァセトアミド、 Ν-メチノレピロリドン等のアミド 類; Ν,Ν'-ジメチルイミダゾリジノン等の尿素類;ジメチルスルホキシド等のスルホキシド 類;スルホラン等のスルホン類;ァセトニトリル、プロピオ二トリル等の二トリル類;ジェチ ルエーテル、ジイソプロピルエーテル、テトラヒドロフラン、ジォキサン等のエーテル類 ;へキサン、ヘプタン、シクロへキサン等の脂肪族炭化水素類;ベンゼン、トルエン、 キシレン等の芳香族炭化水素類が挙げられる。好ましくは二トリル類、エーテル類、 芳香族炭化水素類、加えて周期律表第 11族金属塩のときには水も使用され、更に好 ましくはエーテル類、加えて周期律表第 11族金属塩のときには水も使用される。なお 、これらの溶媒は、単独で又は 2種以上を混合して使用しても良い。  [0018] The solvent used in the reaction of the present invention is not particularly limited as long as it does not inhibit the reaction. For example, water; ketones such as acetone, methyl ethyl ketone, and methyl isobutyl ketone; methyl acetate, ethyl acetate , Esters such as butyl acetate and methyl propionate; amides such as Ν, Ν-dimethylformamide, Ν, Ν-dimethylacetamide, 、 -methinorepyrrolidone; urea such as Ν, Ν'-dimethylimidazolidinone Sulfoxides such as dimethyl sulfoxide; sulfones such as sulfolane; nitriles such as acetonitrile and propionitryl; ethers such as diethyl ether, diisopropyl ether, tetrahydrofuran and dioxane; hexane, heptane, cyclohexane, etc. Aliphatic hydrocarbons such as benzene, toluene and xylene Family hydrocarbons. Preferably, nitriles, ethers, aromatic hydrocarbons, and also water is used in the case of Group 11 metal salts of the periodic table, more preferably ethers, and Group 11 metal salts of the periodic table. In this case, water is also used. These solvents may be used alone or in admixture of two or more.
[0019] 前記溶媒の使用量は、液晶分子 lgに対して、好ましくは 10〜500ml、更に好ましく は 20〜200mlである。  [0019] The amount of the solvent used is preferably 10 to 500 ml, more preferably 20 to 200 ml, with respect to lg of liquid crystal molecules.
[0020] 本発明の反応は、例えば、 1又は 2種以上の液晶分子、 1又は 2種以上の周期表第  [0020] The reaction of the present invention includes, for example, one or more liquid crystal molecules, one or more periodic tables.
11族又は第 12族金属塩、 1又は 2種以上のカルコゲナイド前駆体及び溶媒を混合し 、場合により加熱しながら攪拌しながら反応させる等の方法によって行われる。その 際の反応温度は、好ましくは 20〜120°C、更に好ましくは 40〜100°Cであり、その際の 反応圧力は特に制限されない。  It is carried out by a method of mixing a Group 11 or Group 12 metal salt, one or more chalcogenide precursors and a solvent, and optionally reacting while stirring with heating. The reaction temperature at that time is preferably 20 to 120 ° C, more preferably 40 to 100 ° C, and the reaction pressure is not particularly limited.
[0021] 本発明の反応によって周期表第 11族金属カルコゲナイドナノ粒子と溶媒とを含む 分散液が得られるが、当該分散液を濃縮することによって、均一な周期表第 11族又 は第 12族金属カルコゲナイドナノ粒子と溶媒とを含むペーストを取得することができる 。なお、該分散液の濃縮方法は特に限定されないが、減圧下にて、好ましくは 20〜1 00°Cにて行うことができる。 [0021] According to the reaction of the present invention, periodic group 11 metal chalcogenide nanoparticles and a solvent are included. A dispersion can be obtained. By concentrating the dispersion, a paste containing uniform Group 11 or Group 12 metal chalcogenide nanoparticles and a solvent can be obtained. The method for concentrating the dispersion is not particularly limited, but can be carried out under reduced pressure, preferably at 20 to 100 ° C.
実施例  Example
[0022] 次に、実施例を挙げて本発明を具体的に説明するが、本発明の範囲はこれらに限 定されるものではない。  Next, the present invention will be specifically described with reference to examples, but the scope of the present invention is not limited to these examples.
[0023] 実施例 1 (硫化銀ナノ粒子の合成)  Example 1 (Synthesis of silver sulfide nanoparticles)
攪拌装置、温度計及び還流冷却器を備えた内容積 100mlのガラス製容器に、 4'-n- ペンチル- 4-シァノビフエニル 0.66g(2.64mmol)、テトラヒドロフラン 45.0ml、水 0.05ml及 び 0.01mol/lチオアセトアミドのテトラヒドロフラン溶液 1.65ml(0.0165mmol)を加え、当 該混合溶液を攪拌しながら 65〜75°Cに加熱した。次いで、 0.01mol/lトリフルォロ酢酸 銀のテトラヒドロフラン溶液 3.30ml (銀原子として 0.033mmol)をゆるやかに滴下し反応 させた。反応終了後、反応液を室温まで冷却し、茶褐色の均一な液体として、硫化銀 ナノ粒子分散液 50mlを得た。これを透過型電子顕微鏡により分析した結果、硫化銀 ナノ粒子の粒径は 10〜30nmで均一であった(図 1)。更に、得られた硫化銀ナノ粒子 を含む分散液を減圧下で濃縮し、茶褐色の均一な硫化銀ナノ粒子ペースト 0.67gを 取得した。  In a glass container with an internal volume of 100 ml equipped with a stirrer, thermometer and reflux condenser, 0.66 g (2.64 mmol) of 4'-n-pentyl-4-cyanobiphenyl, 45.0 ml of tetrahydrofuran, 0.05 ml of water and 0.01 mol / l 1.65 ml (0.0165 mmol) of thioacetamide in tetrahydrofuran was added and the mixture was heated to 65-75 ° C. with stirring. Next, 3.30 ml (0.033 mmol as silver atoms) of 0.01 mol / l silver trifluoroacetic acid in tetrahydrofuran was slowly dropped and reacted. After completion of the reaction, the reaction solution was cooled to room temperature to obtain 50 ml of a silver sulfide nanoparticle dispersion as a brownish brown uniform liquid. As a result of analysis with a transmission electron microscope, the silver sulfide nanoparticles had a uniform particle size of 10 to 30 nm (Fig. 1). Further, the obtained dispersion containing silver sulfide nanoparticles was concentrated under reduced pressure to obtain 0.67 g of a brownish brown uniform silver sulfide nanoparticle paste.
[0024] 実施例 2 (硫化銀ナノ粒子の合成)  Example 2 (Synthesis of silver sulfide nanoparticles)
攪拌装置、温度計、還流冷却器を備えた内容積 100mlのガラス製容器に、 4'-n-ぺ ンチル -4-シァノビフエニル 0.66g(2.64mmol)、テトラヒドロフラン 45.0ml、水 0.05ml及び 0.01mol/lチオアセトアミドのテトラヒドロフラン溶液 1.65ml(0.0165mmol)を加え、当該 混合溶液を攪拌しながら 65〜75°Cに加熱した。次いで、 O.Olmol/1過塩素酸銀のテト ラヒドロフラン溶液 3.30ml (銀原子として 0.033mmol)をゆるやかに滴下し反応させた。 反応終了後、混合物を室温まで冷却し、茶褐色の均一な液体として、硫化銀ナノ粒 子分散液 50mlを得た。これを透過型電子顕微鏡により分析した結果、硫化銀ナノ粒 子の粒径は 10〜30nmで均一であった(図 2)。更に、得られた硫化銀ナノ粒子を含む 分散液を減圧下で濃縮し、茶褐色の均一な硫化銀ナノ粒子ペースト 0.67gを取得し た。 In a 100 ml glass container equipped with a stirrer, thermometer, reflux condenser, 4'-n-pent-4-cyanobiphenyl 0.66 g (2.64 mmol), tetrahydrofuran 45.0 ml, water 0.05 ml and 0.01 mol / l 1.65 ml (0.0165 mmol) of thioacetamide in tetrahydrofuran was added and the mixture was heated to 65-75 ° C. with stirring. Next, 3.30 ml (0.033 mmol as silver atoms) of a tetrahydrofuran solution of O.Olmol / 1 silver perchlorate was slowly added dropwise to react. After completion of the reaction, the mixture was cooled to room temperature to obtain 50 ml of silver sulfide nanoparticle dispersion as a brownish brown uniform liquid. As a result of analysis using a transmission electron microscope, the silver sulfide nanoparticle size was uniform between 10 and 30 nm (Fig. 2). Further, the obtained dispersion containing silver sulfide nanoparticles was concentrated under reduced pressure to obtain 0.67 g of a brownish brown uniform silver sulfide nanoparticle paste. It was.
[0025] 実施例 3 (硫化銅ナノ粒子の合成)  Example 3 (Synthesis of copper sulfide nanoparticles)
攪拌装置、温度計、還流冷却器を備えた内容積 100mlのガラス製容器に、 4'-n-ぺ ンチル -4-シァノビフエニル 0.66g(2.64mmol)、テトラヒドロフラン 43.4ml、水 0.05ml及び O.Olmol/Ιチオアセトアミドのテトラヒドロフラン溶液 3.30ml(0.033mmol)を加え、当該混 合溶液を攪拌しながら 65〜75°Cに加熱した。次いで、 O.Olmol/Ιトリフルォロ酢酸銅 (Π )のテトラヒドロフラン溶液 3.30ml (銅原子として 0.033mmol)をゆるやかに滴下し反応さ せた。反応終了後、混合物を室温まで冷却し、茶褐色の均一な液体として、硫化銅 ナノ粒子分散液 50mlを得た。これを透過型電子顕微鏡により分析した結果、硫化銅 ナノ粒子の粒径は 2匪程度で均一であった (図 3)。更に、得られた硫化銅ナノ粒子を 含む分散液を減圧下で濃縮し、茶褐色の均一な硫化銅ナノ粒子ペースト 0.67gを取 得した。  In a 100 ml glass container equipped with a stirrer, thermometer, reflux condenser, 4'-n-pent-4-cyanobiphenyl 0.66 g (2.64 mmol), tetrahydrofuran 43.4 ml, water 0.05 ml and O.Olmol / 30 ml (0.033 mmol) of tetrahydrofuran solution of thioacetamide was added, and the mixed solution was heated to 65 to 75 ° C. with stirring. Next, 3.30 ml (0.033 mmol as a copper atom) of a tetrahydrofuran solution of O.Olmol / sodium trifluoroacetate (Π) was slowly dropped and reacted. After completion of the reaction, the mixture was cooled to room temperature to obtain 50 ml of a copper sulfide nanoparticle dispersion as a brownish brown uniform liquid. As a result of transmission electron microscope analysis, the copper sulfide nanoparticles had a uniform particle size of about 2 mm (Fig. 3). Further, the obtained dispersion containing copper sulfide nanoparticles was concentrated under reduced pressure to obtain 0.67 g of a brown brown uniform copper sulfide nanoparticle paste.
[0026] 実施例 4 (硫化銅ナノ粒子の合成)  Example 4 (Synthesis of copper sulfide nanoparticles)
攪拌装置、温度計、還流冷却器を備えた内容積 100mlのガラス製容器に、 4'-n-ぺ ンチル -4-シァノビフエニル 0.66g(2.64mmol)、テトラヒドロフラン 43.4ml、水 0.05ml及び O.Olmol/Ιチオアセトアミドのテトラヒドロフラン溶液 3.30ml(0.033mmol)を加え、当該混 合溶液を攪拌しながら 65〜75°Cに加熱した。次いで、 O.Olmol/Ι酢酸銅 (II)のテトラヒド 口フラン溶液 3.30ml (銅原子として 0.033mmol)をゆるやかに滴下し反応させた。反応 終了後、混合物を室温まで冷却し、茶褐色の均一な液体として、硫化銅ナノ粒子分 散液 50mlを得た。これを透過型電子顕微鏡により分析した結果、硫化銅ナノ粒子の 粒径は 10〜30匪で均一であった (図 4)。更に、得られた硫化銅ナノ粒子を含む分散 液を減圧下で濃縮し、茶褐色の均一な硫化銅ナノ粒子ペースト 0.67gを取得した。  In a 100 ml glass container equipped with a stirrer, thermometer, reflux condenser, 4'-n-pent-4-cyanobiphenyl 0.66 g (2.64 mmol), tetrahydrofuran 43.4 ml, water 0.05 ml and O.Olmol / 30 ml (0.033 mmol) of tetrahydrofuran solution of thioacetamide was added, and the mixed solution was heated to 65 to 75 ° C. with stirring. Next, 3.30 ml (0.033 mmol as a copper atom) of a solution of O.Olmol / sodium acetate (II) in tetrahydride was slowly dropped and reacted. After completion of the reaction, the mixture was cooled to room temperature to obtain 50 ml of a copper sulfide nanoparticle dispersion liquid as a brownish brown uniform liquid. As a result of analysis with a transmission electron microscope, the particle size of the copper sulfide nanoparticles was uniform at 10 to 30 mm (Fig. 4). Further, the obtained dispersion containing copper sulfide nanoparticles was concentrated under reduced pressure to obtain 0.67 g of a brown brown uniform copper sulfide nanoparticle paste.
[0027] 実施例 5 (硫化銅ナノ粒子の合成)  Example 5 (Synthesis of copper sulfide nanoparticles)
攪拌装置、温度計、還流冷却器を備えた内容積 100mlのガラス製容器に、 4'-n-ぺ ンチル -4-シァノビフエニル 0.66g(2.64mmol)、テトラヒドロフラン 43.4ml、水 0.05ml及び O.Olmol/Ιチオアセトアミドのテトラヒドロフラン溶液 3.30ml(0.033mmol)を加え、当該混 合溶液を攪拌しながら 65〜75°Cに加熱した。次いで、 O.Olmol/Ι銅 (II)ァセチルァセト ナートのテトラヒドロフラン溶液 3.30ml (銅原子として 0.033mmol)をゆるやかに滴下し反 応させた。反応終了後、混合物を室温まで冷却し、茶褐色の均一な液体として、硫化 銅ナノ粒子分散液 50mlを得た。これを透過型電子顕微鏡により分析した結果、硫化 銅ナノ粒子の粒径は 2nm程度で均一であった(図 5)。更に、得られた硫化銅ナノ粒 子を含む分散液を減圧下で濃縮し、茶褐色の均一な硫化銅ナノ粒子ペースト 0.67g を取得した。 In a 100 ml glass container equipped with a stirrer, thermometer, reflux condenser, 4'-n-pent-4-cyanobiphenyl 0.66 g (2.64 mmol), tetrahydrofuran 43.4 ml, water 0.05 ml and O.Olmol / 30 ml (0.033 mmol) of tetrahydrofuran solution of thioacetamide was added, and the mixed solution was heated to 65 to 75 ° C. with stirring. Next, 3.30 ml (0.033 mmol as a copper atom) of a solution of O.Olmol / copper (II) acetylacetonate in tetrahydrofuran was slowly added dropwise to the reaction mixture. I adapted it. After completion of the reaction, the mixture was cooled to room temperature to obtain 50 ml of a copper sulfide nanoparticle dispersion as a brownish brown uniform liquid. As a result of analysis with a transmission electron microscope, the copper sulfide nanoparticles had a uniform particle size of about 2 nm (Fig. 5). Furthermore, the obtained dispersion liquid containing copper sulfide nanoparticles was concentrated under reduced pressure to obtain 0.67 g of a brownish brown uniform copper sulfide nanoparticle paste.
[0028] 実施例 6 (硫化銅ナノ粒子の合成) Example 6 (Synthesis of copper sulfide nanoparticles)
攪拌装置、温度計、還流冷却器を備えた内容積 100mlのガラス製容器に、 4'-n-ぺ ンチル -4-シァノビフエニル 0.66g(2.64mmol)、テトラヒドロフラン 43.4ml、水 0.05ml及び O.Olmol/Ιチオアセトアミドのテトラヒドロフラン溶液 3.30ml(0.033mmol)を加え、当該混 合溶液を攪拌しながら 65〜75°Cに加熱した。次いで、 O.Olmol/Ιテトラフルォロホウ酸 銅 (Π)のテトラヒドロフラン溶液 3.30ml (銅原子として 0.033mmol)をゆるやかに滴下し反 応させた。反応終了後、混合物を室温まで冷却し、茶褐色の均一な液体として、硫化 銅ナノ粒子分散液 50mlを得た。これを透過型電子顕微鏡により分析した結果、硫化 銅ナノ粒子の粒径は 2nm程度で均一であった(図 6)。更に、得られた硫化銅ナノ粒子 を含む分散液を減圧下で濃縮し、茶褐色の均一な硫化銅ナノ粒子ペースト 0.67gを 取得した。  In a 100 ml glass container equipped with a stirrer, thermometer, reflux condenser, 4'-n-pent-4-cyanobiphenyl 0.66 g (2.64 mmol), tetrahydrofuran 43.4 ml, water 0.05 ml and O.Olmol / 30 ml (0.033 mmol) of tetrahydrofuran solution of thioacetamide was added, and the mixed solution was heated to 65 to 75 ° C. with stirring. Next, 3.30 ml (0.033 mmol as a copper atom) of a tetrahydrofuran solution of O.Olmol / sodium tetrafluoroborate (Π) was gently dropped and reacted. After completion of the reaction, the mixture was cooled to room temperature to obtain 50 ml of a copper sulfide nanoparticle dispersion as a brownish brown uniform liquid. As a result of analysis using a transmission electron microscope, the copper sulfide nanoparticles had a uniform particle size of about 2 nm (Fig. 6). Furthermore, the obtained dispersion liquid containing copper sulfide nanoparticles was concentrated under reduced pressure to obtain 0.67 g of a brownish brown uniform copper sulfide nanoparticle paste.
[0029] 実施例 7 (テルル化銀ナノ粒子の合成)  Example 7 (Synthesis of silver telluride nanoparticles)
攪拌装置、温度計、還流冷却器を備えた内容積 100mlのガラス製容器に、 4'-n-ぺ ンチル -4-シァノビフエニル 0.66g(2.64mmol)、テトラヒドロフラン 43.4ml及びテルル 4.2 mg(0.033mmol)を加え、次いで、 O.Olmol/Ιトリフルォロ酢酸銀のテトラヒドロフラン溶液 6.60ml (銀原子として 0.066mmol)を加え、当該混合溶液を攪拌しながら 65〜75°Cに加 熱し、反応させた。反応終了後、混合物を室温まで冷却し、灰白色の均一な液体とし て、テルル化銀ナノ粒子分散液 50mlを得た。これを透過型電子顕微鏡により分析し た結果、テルル化銀ナノ粒子の粒径は 3〜15nmで均一であった (図 7)。更に、得られ たテルル化銀ナノ粒子を含む分散液を減圧下で濃縮し、灰白色の均一なテルル化 銀ナノ粒子ペースト 0.67gを取得した。  In a 100 ml glass container equipped with a stirrer, thermometer, reflux condenser, 4'-n-pent-4-cyanobiphenyl 0.66 g (2.64 mmol), tetrahydrofuran 43.4 ml and tellurium 4.2 mg (0.033 mmol) Next, 6.60 ml (0.066 mmol as silver atoms) of a solution of O.Olmol / silver trifluoroacetate in tetrahydrofuran was added, and the mixed solution was heated to 65 to 75 ° C. with stirring to be reacted. After completion of the reaction, the mixture was cooled to room temperature to obtain 50 ml of silver telluride nanoparticle dispersion as an off-white uniform liquid. As a result of analyzing this with a transmission electron microscope, the silver telluride nanoparticles had a uniform particle size of 3 to 15 nm (FIG. 7). Further, the obtained dispersion containing silver telluride nanoparticles was concentrated under reduced pressure to obtain 0.67 g of a gray-white uniform silver telluride nanoparticle paste.
[0030] 実施例 8 (テルル化銀ナノ粒子の合成)  Example 8 (Synthesis of silver telluride nanoparticles)
攪拌装置、温度計、還流冷却器を備えた内容積 100mlのガラス製容器に、液晶分 子混合物(ZLI-5100-100 (メルク社製) ) 0.50g、テトラヒドロフラン 44.0ml及びテルル 3· 8mg(0.030mmol)を加え、次いで、 0.01mol/lトリフルォロ酢酸銀のテトラヒドロフラン溶 液 6.00ml (銀原子として 0.060mmol)を加え、当該混合溶液を攪拌しながら 65〜75°Cに 加熱し、反応させた。反応終了後、混合物を室温まで冷却し、灰白色の均一な液体 として、テルル化銀ナノ粒子分散液 50mlを得た。これを透過型電子顕微鏡により分析 した結果、テルル化銀ナノ粒子の粒径は 3〜15nmで均一であった (図 8)。更に、得ら れたテルル化銀ナノ粒子を含む分散液を減圧下で濃縮し、灰白色の均一なテルノレ 化銀ナノ粒子ペースト 0.5 lgを取得した。 In a 100 ml glass container equipped with a stirrer, thermometer and reflux condenser, liquid crystal content (ZLI-5100-100 (Merck)) 0.50 g, tetrahydrofuran 44.0 ml and tellurium 3 · 8 mg (0.030 mmol) were added, then 0.01 mol / l silver trifluoroacetate in tetrahydrofuran solution 6.00 ml (silver atoms 0.060 mmol) was added, and the mixed solution was heated to 65 to 75 ° C. with stirring to be reacted. After completion of the reaction, the mixture was cooled to room temperature to obtain 50 ml of silver telluride nanoparticle dispersion as an off-white uniform liquid. As a result of analysis using a transmission electron microscope, the silver telluride nanoparticles had a uniform particle size of 3 to 15 nm (Fig. 8). Further, the obtained dispersion liquid containing silver telluride nanoparticles was concentrated under reduced pressure to obtain 0.5 lg of grayish white uniform silver telluride nanoparticle paste.
[0031] 実施例 9 (テルル化銀ナノ粒子の合成) Example 9 (Synthesis of silver telluride nanoparticles)
攪拌装置、温度計、還流冷却器を備えた内容積 100mlのガラス製容器に、液晶分 子混合物(MLC-6054-100 (メルク社製) ) 0.50g、テトラヒドロフラン 44.0ml及びテルル 3 In a 100 ml glass container equipped with a stirrer, thermometer and reflux condenser, 0.50 g of liquid crystal molecule mixture (MLC-6054-100 (Merck)), 44.0 ml of tetrahydrofuran and tellurium 3
• 8mg(0.030mmol)を加え、次いで、 0.01mol/lトリフルォロ酢酸銀のテトラヒドロフラン溶 液 6.00ml (銀原子として 0.060mmol)を加え、当該混合溶液を攪拌しながら 65〜75°Cに 加熱し、反応させた。反応終了後、混合物を室温まで冷却し、灰白色の均一な液体 として、テルル化銀ナノ粒子分散液 50mlを得た。これを透過型電子顕微鏡により分析 した結果、テルル化銀ナノ粒子の粒径は 3〜15nmで均一であった (図 9)。更に、得ら れたテルル化銀ナノ粒子を含む分散液を減圧下で濃縮し、灰白色の均一なテルノレ 化銀ナノ粒子ペースト 0.5 lgを取得した。 • Add 8 mg (0.030 mmol), then add 6.00 ml of 0.01 mol / l silver trifluoroacetate in tetrahydrofuran (0.060 mmol as silver atoms) and heat the mixture to 65-75 ° C with stirring. Reacted. After completion of the reaction, the mixture was cooled to room temperature to obtain 50 ml of silver telluride nanoparticle dispersion as an off-white uniform liquid. As a result of analysis with a transmission electron microscope, the silver telluride nanoparticles had a uniform particle size of 3 to 15 nm (Fig. 9). Further, the obtained dispersion liquid containing silver telluride nanoparticles was concentrated under reduced pressure to obtain 0.5 lg of grayish white uniform silver telluride nanoparticle paste.
[0032] 実施例 10 (テルル化銀ナノ粒子の合成)  Example 10 (Synthesis of silver telluride nanoparticles)
攪拌装置、温度計、還流冷却器を備えた内容積 100mlのガラス製容器に、液晶分 子混合物(MLC-6292-100 (メルク社製) ) 0.50g、テトラヒドロフラン 44.0ml及びテルル 3 In a 100 ml glass container equipped with a stirrer, thermometer and reflux condenser, 0.50 g of liquid crystal molecule mixture (MLC-6292-100 (Merck)), 44.0 ml of tetrahydrofuran and tellurium 3
• 8mg(0.030mmol)を加え、次いで、 0.01mol/lトリフルォロ酢酸銀のテトラヒドロフラン溶 液 6.00ml (銀原子として 0.060mmol)を加え、当該混合溶液を攪拌しながら 65〜75°Cに 加熱し、反応させた。反応終了後、混合物を室温まで冷却し、灰白色の均一な液体 として、テルル化銀ナノ粒子分散液 50mlを得た。これを透過型電子顕微鏡により分析 した結果、テルル化銀ナノ粒子の粒径は 3〜15nmで均一であった (図 10)。更に、得ら れたテルル化銀ナノ粒子を含む分散液を減圧下で濃縮し、灰白色の均一なテルノレ 化銀ナノ粒子ペースト 0.5 lgを取得した。 [0033] 実施例 11 (テルル化銀ナノ粒子の合成) • Add 8 mg (0.030 mmol), then add 6.00 ml of 0.01 mol / l silver trifluoroacetate in tetrahydrofuran (0.060 mmol as silver atoms) and heat the mixture to 65-75 ° C with stirring. Reacted. After completion of the reaction, the mixture was cooled to room temperature to obtain 50 ml of silver telluride nanoparticle dispersion as an off-white uniform liquid. As a result of analysis with a transmission electron microscope, the silver telluride nanoparticles had a uniform particle size of 3 to 15 nm (Fig. 10). Further, the obtained dispersion liquid containing silver telluride nanoparticles was concentrated under reduced pressure to obtain 0.5 lg of grayish white uniform silver telluride nanoparticle paste. Example 11 (Synthesis of silver telluride nanoparticles)
攪拌装置、温度計、還流冷却器を備えた内容積 100mlのガラス製容器に、液晶分 子混合物(MLC-6608 (メルク社製) ) 0.50g、テトラヒドロフラン 44.0ml及びテルル 3.8mg (0.030mmol)を加え、次!/、で、 0.01mol/lトリフルォロ酢酸銀のテトラヒドロフラン溶液 6.0 0ml (銀原子として 0.060mmol)を加え、当該混合溶液を攪拌しながら 65〜75°Cに加熱 し、反応させた。反応終了後、混合物を室温まで冷却し、灰白色の均一な液体として 、テルル化銀ナノ粒子分散液 50mlを得た。これを透過型電子顕微鏡により分析した 結果、テルル化銀ナノ粒子の粒径は 3〜15nmで均一であった (図 11)。更に、得られ たテルル化銀ナノ粒子を含む分散液を減圧下で濃縮し、灰白色の均一なテルル化 銀ナノ粒子ペースト 0.5 lgを取得した。  In a 100-ml glass container equipped with a stirrer, thermometer, and reflux condenser, 0.50 g of liquid crystal molecule mixture (MLC-6608 (Merck)), 44.0 ml of tetrahydrofuran and 3.8 mg (0.030 mmol) of tellurium were added. In addition, in the following! /, 6.00 ml of a 0.01 mol / l silver trifluoroacetate solution in tetrahydrofuran (0.060 mmol as silver atoms) was added, and the mixed solution was heated to 65 to 75 ° C. with stirring to be reacted. After completion of the reaction, the mixture was cooled to room temperature to obtain 50 ml of silver telluride nanoparticle dispersion as an off-white uniform liquid. As a result of analysis by a transmission electron microscope, the particle size of the silver telluride nanoparticles was uniform at 3 to 15 nm (FIG. 11). Further, the obtained dispersion liquid containing silver telluride nanoparticles was concentrated under reduced pressure to obtain 0.5 lg of a grayish white uniform silver telluride nanoparticle paste.
[0034] 実施例 12 (テルル化銀ナノ粒子の合成)  Example 12 (Synthesis of silver telluride nanoparticles)
攪拌装置、温度計、還流冷却器を備えた内容積 100mlのガラス製容器に、液晶分 子混合物(MLC-6692 (メルク社製) ) 0.50g、テトラヒドロフラン 44.0ml及びテルル 3.8mg (0.030mmol)を加え、次!/、で、 0.01mol/lトリフルォロ酢酸銀のテトラヒドロフラン溶液 6.0 0ml (銀原子として 0.060mmol)を加え、当該混合溶液を攪拌しながら 65〜75°Cに加熱 し、反応させた。反応終了後、混合物を室温まで冷却し、灰白色の均一な液体として 、テルル化銀ナノ粒子分散液 50mlを得た。これを透過型電子顕微鏡により分析した 結果、テルル化銀ナノ粒子の粒径は 3〜15nmで均一であった (図 12)。更に、得られ たテルル化銀ナノ粒子を含む分散液を減圧下で濃縮し、灰白色の均一なテルル化 銀ナノ粒子ペースト 0.5 lgを取得した。  In a 100 ml glass container equipped with a stirrer, thermometer and reflux condenser, 0.50 g of liquid crystal molecule mixture (MLC-6692 (Merck)), 44.0 ml of tetrahydrofuran and 3.8 mg of tellurium (0.030 mmol) were placed. In addition, in the following! /, 6.00 ml of a 0.01 mol / l silver trifluoroacetate solution in tetrahydrofuran (0.060 mmol as silver atoms) was added, and the mixed solution was heated to 65 to 75 ° C. with stirring to be reacted. After completion of the reaction, the mixture was cooled to room temperature to obtain 50 ml of silver telluride nanoparticle dispersion as an off-white uniform liquid. As a result of analysis with a transmission electron microscope, the silver telluride nanoparticles had a uniform particle size of 3 to 15 nm (FIG. 12). Further, the obtained dispersion liquid containing silver telluride nanoparticles was concentrated under reduced pressure to obtain 0.5 lg of a grayish white uniform silver telluride nanoparticle paste.
[0035] 実施例 13 (硫化カドミウムナノ粒子の合成)  Example 13 (Synthesis of cadmium sulfide nanoparticles)
攪拌装置、温度計及び還流冷却器を備えた内容積 100mlのガラス製容器に、 4'-n- ペンチル- 4-シァノビフエニル 0.70g(2.81mmol)、テトラヒドロフラン 46.3ml、水 0.05ml及 びカドミウムァセチルァセトナート 11.5mg (0.037mmol)を加え、当該混合溶液を攪拌 しながら 65〜75°Cに加熱した。次いで、 0.01mol/lチオアセトアミドのテトラヒドロフラン 溶液 3.70mlをゆるやかに滴下し反応させた。反応終了後、混合物を室温まで冷却し 、淡黄色の均一な液体として、硫化カドミウムナノ粒子分散液 50mlを得た。これを透 過型電子顕微鏡により分析した結果、硫化亜鉛ナノ粒子の粒径は 5〜 10匪で均一で あった(図 13)。更に、得られた硫化カドミウムナノ粒子を含む分散液を減圧下で濃 縮し、淡黄色の均一な硫化亜鉛ナノ粒子ペースト 0.71gを取得した。 In a 100 ml glass container equipped with a stirrer, thermometer and reflux condenser, 4'-n-pentyl-4-cyanobiphenyl 0.70 g (2.81 mmol), tetrahydrofuran 46.3 ml, water 0.05 ml and cadmium acetyl Casenate 11.5 mg (0.037 mmol) was added and the mixture was heated to 65-75 ° C. with stirring. Next, 3.70 ml of a 0.01 mol / l thioacetamide tetrahydrofuran solution was gently dropped and reacted. After completion of the reaction, the mixture was cooled to room temperature to obtain 50 ml of a cadmium sulfide nanoparticle dispersion as a pale yellow uniform liquid. As a result of analysis with a transmission electron microscope, the zinc sulfide nanoparticles had a uniform particle size of 5 to 10 mm. (Figure 13). Furthermore, the obtained dispersion liquid containing cadmium sulfide nanoparticles was concentrated under reduced pressure to obtain 0.71 g of a pale yellow uniform zinc sulfide nanoparticle paste.
[0036] 実施例 14 (硫化亜鉛ナノ粒子の合成) Example 14 (Synthesis of zinc sulfide nanoparticles)
攪拌装置、温度計及び還流冷却器を備えた内容積 100mlのガラス製容器に、 4'-n- ペンチル- 4-シァノビフエニル 0.66g(2.64mmol)、テトラヒドロフラン 43.4ml、水 0.05ml及 び O.Olmol/1チオアセトアミドのテトラヒドロフラン溶液 3.30mlを加え、当該混合溶液を 攪拌しながら 65〜75°Cに加熱した。次いで、 0.01mol/l亜鉛ァセチルァセトナートのテ トラヒドロフラン溶液 3.30ml (亜鉛原子として 0.033mmol)をゆるやかに滴下し反応させ た。反応終了後、混合物を室温まで冷却し、無色の均一な液体として、硫化亜鉛ナノ 粒子分散液 50mlを得た。これを透過型電子顕微鏡により分析した結果、硫化亜鉛ナ ノ粒子の粒径は 2〜10nmで均一であった(図 14)。更に、得られた硫化亜鉛ナノ粒子 を含む分散液を減圧下で濃縮し、淡黄色の均一な硫化亜鉛ナノ粒子ペースト 0.67g を取得した。  In a glass container with a volume of 100 ml equipped with a stirrer, thermometer and reflux condenser, 4'-n-pentyl-4-cyanobiphenyl 0.66 g (2.64 mmol), tetrahydrofuran 43.4 ml, water 0.05 ml and O.Olmol / 30 ml of a tetrahydrofuran solution of thioacetamide was added, and the mixed solution was heated to 65 to 75 ° C. with stirring. Next, 3.30 ml (0.033 mmol as zinc atoms) of 0.01 mol / l zinc acetylacetate tetrahydrofuran solution was gently dropped and reacted. After completion of the reaction, the mixture was cooled to room temperature to obtain 50 ml of a zinc sulfide nanoparticle dispersion as a colorless uniform liquid. As a result of analysis with a transmission electron microscope, the particle size of the zinc sulfide nanoparticle was uniform between 2 and 10 nm (FIG. 14). Further, the obtained dispersion containing zinc sulfide nanoparticles was concentrated under reduced pressure to obtain 0.67 g of a pale yellow uniform zinc sulfide nanoparticle paste.
[0037] 実施例 15 (硫化亜鉛ナノ粒子の合成)  Example 15 (Synthesis of zinc sulfide nanoparticles)
攪拌装置、温度計及び還流冷却器を備えた内容積 100mlのガラス製容器に、液晶 分子混合物(MLC_6692 (メルク社製)) 0.50g、テトラヒドロフラン 47ml、水 0.05ml及び 亜鉛ァセチルァセトナート 7.8mg (0.03mmol)を加え、当該混合溶液を攪拌しながら 65 〜75°Cに加熱した。次いで、 0.01mol/lチオアセトアミドのテトラヒドロフラン溶液 3.0ml をゆるやかに滴下し反応させた。反応終了後、混合物を室温まで冷却し、無色の均 一な液体として、硫化亜鉛ナノ粒子分散液 50mlを得た。これを透過型電子顕微鏡に より分析した結果、硫化亜鉛ナノ粒子の粒径は 2〜10nmで均一であった(図 15)。更 に、得られた硫化亜鉛ナノ粒子を含む分散液を減圧下で濃縮し、淡黄色の均一な硫 化亜鉛ナノ粒子ペースト 0.50gを取得した。  Liquid crystal molecule mixture (MLC_6692 (Merck)) 0.50g, Tetrahydrofuran 47ml, Water 0.05ml and Zinc acetyl etherate 7.8mg in a 100ml glass container equipped with stirrer, thermometer and reflux condenser (0.03 mmol) was added and the mixture was heated to 65-75 ° C. with stirring. Next, 3.0 ml of a 0.01 mol / l thioacetamide tetrahydrofuran solution was gently added dropwise to cause the reaction. After completion of the reaction, the mixture was cooled to room temperature to obtain 50 ml of a zinc sulfide nanoparticle dispersion as a colorless uniform liquid. As a result of analysis using a transmission electron microscope, the zinc sulfide nanoparticles had a uniform particle size of 2 to 10 nm (Fig. 15). Further, the obtained dispersion containing zinc sulfide nanoparticles was concentrated under reduced pressure to obtain 0.50 g of a pale yellow uniform zinc sulfide nanoparticle paste.
[0038] 実施例 16 (硫化亜鉛ナノ粒子の合成)  Example 16 (Synthesis of zinc sulfide nanoparticles)
攪拌装置、温度計及び還流冷却器を備えた内容積 100mlのガラス製容器に、液晶 分子混合物(MLC_6608 (メルク社製)) 0.50g、テトラヒドロフラン 47ml、水 0.05ml及び 亜鉛ァセチルァセトナート 7.8mg (0.03mmol)を加え、当該混合溶液を攪拌しながら 65 〜75°Cに加熱した。次いで、 0.01mol/lチオアセトアミドのテトラヒドロフラン溶液 3.0ml をゆるやかに滴下し反応させた。反応終了後、混合物を室温まで冷却し、無色の均 一な液体として、硫化亜鉛ナノ粒子分散液 50mlを得た。これを透過型電子顕微鏡に より分析した結果、硫化亜鉛ナノ粒子の粒径は 2〜10nmで均一であった(図 16)。更 に、得られた硫化亜鉛ナノ粒子を含む分散液を減圧下で濃縮し、淡黄色の均一な硫 化亜鉛ナノ粒子ペースト 0.50gを取得した。 Liquid crystal molecule mixture (MLC_6608 (Merck)) 0.50g, Tetrahydrofuran 47ml, Water 0.05ml and Zinc acetyl etherate 7.8mg in a 100ml glass container equipped with stirrer, thermometer and reflux condenser (0.03 mmol) was added and the mixture was heated to 65-75 ° C. with stirring. Then, 0.01ml / l thioacetamide in tetrahydrofuran solution 3.0ml Was slowly dropped to react. After completion of the reaction, the mixture was cooled to room temperature to obtain 50 ml of a zinc sulfide nanoparticle dispersion as a colorless uniform liquid. As a result of analysis using a transmission electron microscope, the zinc sulfide nanoparticles had a uniform particle size of 2 to 10 nm (Fig. 16). Further, the obtained dispersion containing zinc sulfide nanoparticles was concentrated under reduced pressure to obtain 0.50 g of a pale yellow uniform zinc sulfide nanoparticle paste.
[0039] 実施例 17 (テルル化亜鉛ナノ粒子の合成)  Example 17 (Synthesis of zinc telluride nanoparticles)
攪拌装置、温度計、還流冷却器を備えた内容積 100mlのガラス製容器に、液晶分 子混合物(ZLI-5100_100 (メルク社製)) 0.50g、テトラヒドロフラン 44.0ml、亜鉛ァセチ ルァセトナート 8.1mg(0.030mmol)、次いで、テルル 3.8mg(0.030mmol)を加え、当該混 合溶液を攪拌しながら 65〜75°Cに加熱し、反応させた。反応終了後、混合物を室温 まで冷却し、無色の均一な液体として、テルル化亜鉛ナノ粒子分散液 50mlを得た。こ れを透過型電子顕微鏡により分析した結果、テルル化亜鉛ナノ粒子の粒径は 3〜 15 匪で均一であった (図 17)。更に、得られたテルル化亜鉛ナノ粒子を含む分散液を減 圧下で濃縮し、無色の均一なテルル化亜鉛ナノ粒子ペースト 0.51gを取得した。  In a 100 ml glass container equipped with a stirrer, thermometer and reflux condenser, 0.50 g of liquid crystal molecule mixture (ZLI-5100_100 (Merck)), 44.0 ml of tetrahydrofuran, 8.1 mg (0.030 mmol) of zinc acetylacetonate Then, 3.8 mg (0.030 mmol) of tellurium was added, and the mixed solution was heated to 65 to 75 ° C. with stirring to be reacted. After completion of the reaction, the mixture was cooled to room temperature to obtain 50 ml of zinc telluride nanoparticle dispersion as a colorless and uniform liquid. As a result of analysis using a transmission electron microscope, the zinc telluride nanoparticles had a uniform particle size of 3 to 15 mm (FIG. 17). Further, the obtained dispersion containing zinc telluride nanoparticles was concentrated under reduced pressure to obtain 0.51 g of a colorless, uniform zinc telluride nanoparticle paste.
[0040] 実施例 18 (テルル化亜鉛ナノ粒子の合成)  Example 18 (Synthesis of zinc telluride nanoparticles)
攪拌装置、温度計、還流冷却器を備えた内容積 100mlのガラス製容器に、液晶分 子混合物(MLC_6054-100 (メルク社製)) 0.50g、テトラヒドロフラン 44.0ml、亜鉛ァセ チルァセトナート 8.1mg(0.030mmol)、次いで、テルル 3.8mg(0.030mmol)を加え、当該 混合溶液を攪拌しながら 65〜75°Cに加熱し、反応させた。反応終了後、混合物を室 温まで冷却し、無色の均一な液体として、テルル化亜鉛ナノ粒子分散液 50mlを得た 。これを透過型電子顕微鏡により分析した結果、テルル化亜鉛ナノ粒子の粒径は 3〜 15匪で均一であった (図 18)。更に、得られたテルル化亜鉛ナノ粒子を含む分散液を 減圧下で濃縮し、無色の均一なテルル化亜鉛ナノ粒子ペースト 0.51gを取得した。  In a 100 ml glass container equipped with a stirrer, thermometer and reflux condenser, 0.50 g of liquid crystal molecule mixture (MLC_6054-100 (Merck)), 44.0 ml of tetrahydrofuran, 8.1 mg of zinc acetyl cetate (0.030) mmol) and then 3.8 mg (0.030 mmol) of tellurium were added, and the mixed solution was heated to 65 to 75 ° C. with stirring to be reacted. After completion of the reaction, the mixture was cooled to room temperature to obtain 50 ml of zinc telluride nanoparticle dispersion as a colorless uniform liquid. As a result of transmission electron microscope analysis, the zinc telluride nanoparticles had a uniform particle size of 3 to 15 mm (FIG. 18). Further, the obtained dispersion containing zinc telluride nanoparticles was concentrated under reduced pressure to obtain 0.51 g of a colorless uniform zinc telluride nanoparticle paste.
[0041] 実施例 19 (テルル化亜鉛ナノ粒子の合成)  [0041] Example 19 (Synthesis of zinc telluride nanoparticles)
攪拌装置、温度計、還流冷却器を備えた内容積 100mlのガラス製容器に、液晶分 子混合物(MLC_6292-100 (メルク社製)) 0.50g、テトラヒドロフラン 44.0ml、亜鉛ァセ チルァセトナート 8.1mg(0.030mmol)、次いで、テルル 3.8mg(0.030mmol)を加え、当該 混合溶液を攪拌しながら 65〜75°Cに加熱し、反応させた。反応終了後、混合物を室 温まで冷却し、無色の均一な液体として、テルル化亜鉛ナノ粒子分散液 50mlを得た 。これを透過型電子顕微鏡により分析した結果、テルル化亜鉛ナノ粒子の粒径は 3〜 15nmで均一であった (図 19)。更に、得られたテルル化亜鉛ナノ粒子を含む分散液を 減圧下で濃縮し、無色の均一なテルル化亜鉛ナノ粒子ペースト 0.51gを取得した。 In a 100-ml glass container equipped with a stirrer, thermometer, and reflux condenser, 0.50 g of liquid crystal molecule mixture (MLC_6292-100 (Merck)), 44.0 ml of tetrahydrofuran, 8.1 mg of zinc acetyl cetateate (0.030) mmol) and then 3.8 mg (0.030 mmol) of tellurium were added, and the mixed solution was heated to 65 to 75 ° C. with stirring to be reacted. After the reaction is complete, the mixture is After cooling to a temperature, 50 ml of zinc telluride nanoparticle dispersion was obtained as a colorless uniform liquid. As a result of analysis with a transmission electron microscope, the zinc telluride nanoparticles had a uniform particle size of 3 to 15 nm (FIG. 19). Further, the obtained dispersion containing zinc telluride nanoparticles was concentrated under reduced pressure to obtain 0.51 g of a colorless uniform zinc telluride nanoparticle paste.
[0042] 実施例 20 (テルル化亜鉛ナノ粒子の合成)  Example 20 (Synthesis of zinc telluride nanoparticles)
攪拌装置、温度計、還流冷却器を備えた内容積 100mlのガラス製容器に、液晶分 子混合物(MLC_6608 (メルク社製)) 0.50g、テトラヒドロフラン 44.0ml、亜鉛ァセチルァ セトナート 8.1mg(0.030mmol)、次いで、テルル 3.8mg(0.030mmol)を加え、当該混合溶 液を攪拌しながら 65〜75°Cに加熱し、反応させた。反応終了後、混合物を室温まで 冷却し、無色の均一な液体として、テルル化亜鉛ナノ粒子分散液 50mlを得た。これを 透過型電子顕微鏡により分析した結果、テルル化亜鉛ナノ粒子の粒径は 3〜 15匪で 均一であった (図 20)。更に、得られたテルル化亜鉛ナノ粒子を含む分散液を減圧下 で濃縮し、無色の均一なテルル化亜鉛ナノ粒子ペースト 0.51gを取得した。  In a glass container with an internal volume of 100 ml equipped with a stirrer, thermometer and reflux condenser, 0.50 g of liquid crystal molecule mixture (MLC_6608 (Merck)), 44.0 ml of tetrahydrofuran, 8.1 mg (0.030 mmol) of zinc acetyl etherate, Next, 3.8 mg (0.030 mmol) of tellurium was added, and the mixed solution was heated to 65 to 75 ° C. with stirring to be reacted. After completion of the reaction, the mixture was cooled to room temperature to obtain 50 ml of zinc telluride nanoparticle dispersion as a colorless and uniform liquid. As a result of analysis using a transmission electron microscope, the zinc telluride nanoparticles had a uniform particle size of 3 to 15 mm (FIG. 20). Further, the obtained dispersion containing zinc telluride nanoparticles was concentrated under reduced pressure to obtain 0.51 g of a colorless and uniform zinc telluride nanoparticle paste.
[0043] 実施例 21 (テルル化亜鉛ナノ粒子の合成)  Example 21 (Synthesis of zinc telluride nanoparticles)
攪拌装置、温度計、還流冷却器を備えた内容積 100mlのガラス製容器に、液晶分 子混合物(MLC_6692 (メルク社製)) 0.50g、テトラヒドロフラン 44.0ml、亜鉛ァセチルァ セトナート 8.1mg(0.030mmol)、次いで、テルル 3.8mg(0.030mmol)を加え、当該混合溶 液を攪拌しながら 65〜75°Cに加熱し、反応させた。反応終了後、混合物を室温まで 冷却し、無色の均一な液体として、テルル化亜鉛ナノ粒子分散液 50mlを得た。これを 透過型電子顕微鏡により分析した結果、テルル化亜鉛ナノ粒子の粒径は 3〜 15匪で 均一であった (図 21)。更に、得られたテルル化亜鉛ナノ粒子を含む分散液を減圧下 で濃縮し、無色の均一なテルル化亜鉛ナノ粒子ペースト 0.51gを取得した。  In a glass container with an internal volume of 100 ml equipped with a stirrer, thermometer and reflux condenser, 0.50 g of liquid crystal molecule mixture (MLC_6692 (Merck)), 44.0 ml of tetrahydrofuran, 8.1 mg (0.030 mmol) of zinc acetyl cetate, Next, 3.8 mg (0.030 mmol) of tellurium was added, and the mixed solution was heated to 65 to 75 ° C. with stirring to be reacted. After completion of the reaction, the mixture was cooled to room temperature to obtain 50 ml of zinc telluride nanoparticle dispersion as a colorless and uniform liquid. As a result of transmission electron microscope analysis, the zinc telluride nanoparticles had a uniform particle size of 3 to 15 mm (Fig. 21). Further, the obtained dispersion containing zinc telluride nanoparticles was concentrated under reduced pressure to obtain 0.51 g of a colorless and uniform zinc telluride nanoparticle paste.
産業上の利用可能性  Industrial applicability
[0044] 本発明は、液晶分子を含む周期表第 11族又は第 12族金属カルコゲナイドナノ粒子 及びその製法に関する。周期表第 11族又は第 12族金属カルコゲナイドナノ粒子は、 例えば、液晶ディスプレイの駆動電圧を低下させるための有用な化合物である。 The present invention relates to Periodic Table Group 11 or Group 12 metal chalcogenide nanoparticles containing liquid crystal molecules and a method for producing the same. Periodic table Group 11 or Group 12 metal chalcogenide nanoparticles are useful compounds, for example, for reducing the drive voltage of a liquid crystal display.

Claims

請求の範囲 The scope of the claims
[1] 1種又は 2種以上の周期表第 11族又は第 12族金属カルコゲナイド、及び 1種又は 2 種以上の液晶分子を含む周期表第 11族又は第 12族金属カルコゲナイドナノ粒子。  [1] Group 11 or Group 12 metal chalcogenide nanoparticles containing one or more Group 11 or Group 12 metal chalcogenides and one or more liquid crystal molecules.
[2] 粒径力 ¾〜50nmである請求項 1記載のナノ粒子。 [2] The nanoparticle according to [1], wherein the particle size force is ¾ to 50 nm.
[3] 請求項 1又は 2記載のナノ粒子及び溶媒を含む分散液。 [3] A dispersion comprising the nanoparticles according to claim 1 or 2 and a solvent.
[4] 請求項 1又は 2記載のナノ粒子及び 1種又は 2種以上の液晶分子を含むペースト。  [4] A paste comprising the nanoparticles according to claim 1 or 2 and one or more liquid crystal molecules.
[5] 1種又は 2種以上の液晶分子、 1種又は 2種以上の周期表第 11族又は第 12族金属 塩、及び 1種又は 2種以上のカルコゲナイド前駆体を溶媒中で反応させる請求項 1又 は 2記載のナノ粒子の製法。 [5] Claim to react one or two or more liquid crystal molecules, one or two or more Group 11 or Group 12 metal salts and one or more chalcogenide precursors in a solvent Item 1. The method for producing nanoparticles according to item 1 or 2.
[6] 反応を 40〜100°Cで行う請求項 5記載のナノ粒子の製法。 [6] The method for producing nanoparticles according to claim 5, wherein the reaction is carried out at 40 to 100 ° C.
[7] 1種又は 2種以上の液晶分子、 1種又は 2種以上の周期表第 11族又は第 12族金属 塩、及び 1種又は 2種以上のカルコゲナイド前駆体を溶媒中で反応させる請求項 3記 載の分散液の製法。  [7] Claim to react one or two or more liquid crystal molecules, one or two or more group 11 or 12 metal salts of a periodic table, and one or more chalcogenide precursors in a solvent Item 3. Manufacturing method of dispersion liquid.
[8] 反応を 40〜100°Cで行う請求項 7記載の分散液の製法。  [8] The process for producing a dispersion according to claim 7, wherein the reaction is carried out at 40 to 100 ° C.
[9] 請求項 7又は 8記載の方法によって得られた分散液から取得される、請求項 4記載 のペースト。  [9] The paste according to claim 4, which is obtained from the dispersion obtained by the method according to claim 7 or 8.
[10] 分散液を濃縮することによってペーストを取得する請求項 9記載のペースト。  10. The paste according to claim 9, wherein the paste is obtained by concentrating the dispersion.
PCT/JP2007/064729 2006-07-27 2007-07-27 Periodic table group 11 or group 12 metal chalcogenide nanoparticle and method for producing the same WO2008013250A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008526824A JP5332612B2 (en) 2006-07-27 2007-07-27 Method for producing periodic table group 11 or group 12 metal chalcogenide nanoparticles

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006-205404 2006-07-27
JP2006205403 2006-07-27
JP2006205404 2006-07-27
JP2006-205403 2006-07-27

Publications (1)

Publication Number Publication Date
WO2008013250A1 true WO2008013250A1 (en) 2008-01-31

Family

ID=38981559

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/064729 WO2008013250A1 (en) 2006-07-27 2007-07-27 Periodic table group 11 or group 12 metal chalcogenide nanoparticle and method for producing the same

Country Status (3)

Country Link
JP (1) JP5332612B2 (en)
TW (1) TW200811051A (en)
WO (1) WO2008013250A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009249469A (en) * 2008-04-04 2009-10-29 Ube Ind Ltd Liquid crystal material containing metal chalcogenide nanoparticle, and liquid crystal display device comprising the same
JP2011011956A (en) * 2009-07-03 2011-01-20 Teijin Ltd Chalcopyrite type fine particle and production method thereof
JP2012076976A (en) * 2010-10-06 2012-04-19 National Institute For Materials Science Method for synthesizing powders of sulfide and selenide

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
HU230862B1 (en) * 2008-04-28 2018-10-29 DARHOLDING Vagyonkezelő Kft Device and method for continuous production of nanoparticles

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003149683A (en) * 2001-08-31 2003-05-21 Naoki Toshima Liquid crystal compatible particle, method for manufacturing the same, and liquid crystal display device
JP2003287498A (en) * 2002-03-27 2003-10-10 Hitachi Software Eng Co Ltd Semiconductor nanoparticle fluorescent reagent and method for measuring fluorescence
JP2004347618A (en) * 2003-04-14 2004-12-09 Dainippon Printing Co Ltd High-speed response liquid crystal element and method for driving same
JP2006291016A (en) * 2005-04-08 2006-10-26 Nano Opt Kenkyusho:Kk Liquid crystal compatible nanorod, method for producing the same, liquid crystal medium, and liquid crystal element

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003149683A (en) * 2001-08-31 2003-05-21 Naoki Toshima Liquid crystal compatible particle, method for manufacturing the same, and liquid crystal display device
JP2003287498A (en) * 2002-03-27 2003-10-10 Hitachi Software Eng Co Ltd Semiconductor nanoparticle fluorescent reagent and method for measuring fluorescence
JP2004347618A (en) * 2003-04-14 2004-12-09 Dainippon Printing Co Ltd High-speed response liquid crystal element and method for driving same
JP2006291016A (en) * 2005-04-08 2006-10-26 Nano Opt Kenkyusho:Kk Liquid crystal compatible nanorod, method for producing the same, liquid crystal medium, and liquid crystal element

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009249469A (en) * 2008-04-04 2009-10-29 Ube Ind Ltd Liquid crystal material containing metal chalcogenide nanoparticle, and liquid crystal display device comprising the same
JP2011011956A (en) * 2009-07-03 2011-01-20 Teijin Ltd Chalcopyrite type fine particle and production method thereof
JP2012076976A (en) * 2010-10-06 2012-04-19 National Institute For Materials Science Method for synthesizing powders of sulfide and selenide

Also Published As

Publication number Publication date
JPWO2008013250A1 (en) 2009-12-17
TW200811051A (en) 2008-03-01
JP5332612B2 (en) 2013-11-06

Similar Documents

Publication Publication Date Title
Ajibade et al. Group 12 dithiocarbamate complexes: Synthesis, characterization, and X-ray crystal structures of Zn (II) and Hg (II) complexes and their use as precursors for metal sulfide nanoparticles
Parikh et al. Characterization of chain molecular assemblies in long-chain, layered silver thiolates: a joint infrared spectroscopy and X-ray diffraction study
Dong et al. Green synthesis of monodisperse silver nanoparticles using hydroxy propyl methyl cellulose
Jung et al. Thermal decomposition mechanism of single-molecule precursors forming metal sulfide nanoparticles
Elbaum et al. Preparation and surface structure of nanocrystalline cadmium sulfide (Sulfoselenide) precipitated from dimethyl sulfoxide solutions
Chen et al. A facile route to ZnO nanoparticle superlattices: synthesis, functionalization, and self-assembly
Bobinihi et al. Synthesis, characterization, and cyclic voltammetry of nickel sulphide and nickel oxide nanoparticles obtained from Ni (II) dithiocarbamate
WO2008013250A1 (en) Periodic table group 11 or group 12 metal chalcogenide nanoparticle and method for producing the same
Singh et al. Easy, one-step synthesis of CdTe quantum dots via microwave irradiation for fingerprinting application
Davar et al. Temperature controlled synthesis of SrCO3 nanorods via a facile solid-state decomposition rout starting from a novel inorganic precursor
Deng et al. Synthesis of tin oxide nanocrystalline phases via use of tin (II) halide precursors
García-Gómez et al. Ionic liquid-assisted sonochemical synthesis of SnS nanostructures
Rebilly et al. Chiral II− VI semiconductor nanostructure superlattices based on an amino acid ligand
de Souza Magossi et al. Synthesis of a novel hybrid nanocomposite based on copper pentacyanonitrosylferrate and octa (aminopropyl) silsesquioxane and its behavior on l-cysteine electrooxidation
Bera et al. Synthesis of nanocrystalline CdS from cadmium (II) complex of S-benzyl dithiocarbazate as a precursor
Bryks et al. Metallomesogen templates for shape control of metal selenide nanocrystals
Brahma et al. Zinc acetylacetonate hydrate adducted with nitrogen donor ligands: Synthesis, spectroscopic characterization, and thermal analysis
Rishikeshi et al. Cu–ZnO nanocrystallites by aqueous thermolysis method: thermal and vibrational study
Premkumar et al. The chemistry of hydrazine derivatives—thermal behavior and characterisation of hydrazinium salts and metal hydrazine complexes of 4, 5-imidazoledicarboxylic acid
Mushtaq et al. Mixed-Ligand Cu (II) Carboxylates: Synthesis, Crystal Structure, FTIR, DNA Binding, Antidiabetic, and Anti-Alzheimer’s Studies
Menelaou et al. Coordination polymeric materials in binary and ternary Cu (II)–tetracarboxylato–bipy systems: structure–reactivity correlation in Cu (II)–(O, N) 1D–3D lattice assemblies
Srinivasan et al. Synthesis, spectroscopic, thermal and X-ray structure characterization of 1, 3-propanediammonium tetrathiomolybdate and N, N, N′, N′-tetramethylethylenediammonium tetrathiomolybdate
Oelkers et al. Molybdenum 1, 4-Diazabuta-1, 3-diene Tricarbonyl Solvento Complexes Revisited: From Solvatochromism to Attractive Ligand–Ligand Interaction
Gaidamavičienė et al. Synthesis, a structural and thermoanalytical study of Ca1-xSrxMoO4 ceramic
Jain et al. Synthesis and characterisation of zinc and cadmium thiosemicarbazones: potential precursors for nano sized metal oxides/sulphides

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07791423

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008526824

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 07791423

Country of ref document: EP

Kind code of ref document: A1