WO2008010444A1 - Display panel and display apparatus using same - Google Patents

Display panel and display apparatus using same Download PDF

Info

Publication number
WO2008010444A1
WO2008010444A1 PCT/JP2007/063830 JP2007063830W WO2008010444A1 WO 2008010444 A1 WO2008010444 A1 WO 2008010444A1 JP 2007063830 W JP2007063830 W JP 2007063830W WO 2008010444 A1 WO2008010444 A1 WO 2008010444A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
liquid crystal
display panel
film
conductive film
Prior art date
Application number
PCT/JP2007/063830
Other languages
French (fr)
Japanese (ja)
Inventor
Ippei Inoh
Original Assignee
Sharp Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Kabushiki Kaisha filed Critical Sharp Kabushiki Kaisha
Publication of WO2008010444A1 publication Critical patent/WO2008010444A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/13718Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on a change of the texture state of a cholesteric liquid crystal
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes

Definitions

  • the present invention relates to a display panel and a display device using the display panel.
  • Patent Document 1 discloses a liquid crystal display device including a liquid crystal display element that performs display by controlling the alignment state of a liquid crystal having memory properties! There is disclosed a liquid crystal display device comprising means for making the alignment state of the liquid crystal positioned in the outer portion of the display area of the liquid crystal display element uniform. According to such a configuration, it is described that a liquid crystal display device capable of eliminating the disorder of the alignment state of the liquid crystal with respect to the outer portion of the display region can be obtained.
  • Patent Document 1 Japanese Patent Laid-Open No. 2003-066490
  • a display device is provided with a pixel electrode in the display region, and a lead-out wiring for electrically connecting the pixel electrode and a display driving driver.
  • Such pixel electrodes and routing wirings are easily subjected to external static electricity.
  • the display medium layer has a memory property, so that the display medium initially set to a desired state is used.
  • the body changes to another state and then cannot return to the original state. Therefore, there is a problem that the display quality of the display device becomes unstable. Further, in such a display device, unless it is always in a driving state, display defects due to external static electricity cannot be solved, and as a result, it is difficult to realize low power consumption of the memory display element. .
  • the present invention has been made in view of the above-mentioned points, and its object is to display To provide a display panel having excellent quality stability and a display device using the display panel
  • a display panel according to the present invention is provided with a first substrate having a pixel electrode formed thereon and having an insulating substrate, the first substrate facing the first substrate via a memory-type display medium layer, and provided on the display surface side. And a second substrate having an insulating substrate, wherein the first and / or second substrate is provided with a conductive film over at least the entire display region in a plan view. And
  • the conductive film is provided over the entire first and / or second substrate in a plan view!
  • the conductive film may be composed of a metal film having an oxide film formed on the surface.
  • the conductive film can be provided with an antireflection function by the oxide film. Furthermore, the conductive film can have an interference color by adjusting the thickness of the oxide film.
  • the conductive film is formed on the insulating substrate of the first substrate, and the insulating film is provided between the conductive film and the pixel electrode of the first substrate.
  • the conductive film is formed on the insulating substrate of the first substrate, and the insulating film is provided between the conductive film and the pixel electrode of the first substrate. Therefore, the conductive film that diffuses static electricity applied from the outside does not come into contact with the pixel electrode. Therefore, guiding Suppresses the influence of the electric film on the electric signal passing through the pixel electrode, and obtains a better display quality with the force S.
  • the display medium layer is a cholesteric liquid crystal layer
  • the insulating film is formed of a coloring material
  • the display medium layer is a cholesteric liquid crystal layer and the insulating film is formed of a coloring material, when the cholesteric liquid crystal layer has a focal conic alignment, the second substrate side Light that is incident and transmitted through the liquid crystal layer is absorbed by the insulating film. Therefore, it is possible to simplify the manufacture of a display panel that does not require a black film for light absorption on the surface of the first substrate.
  • the insulating film is formed by an electrodeposition method using a conductive film as an electrodeposition conductive film.
  • the insulating film is formed by the electrodeposition method using the conductive film as an electrodeposition conductive film, the insulating film can be provided on the conductive film uniformly and with good adhesion. it can. In addition, the thickness of the insulating film to be formed can be easily designed.
  • a display device is provided on the display surface side with a first substrate having a pixel electrode formed thereon and having an insulating substrate, facing the first substrate with a memory display medium layer interposed therebetween.
  • a second substrate having an insulating substrate, and the first and / or second substrate includes a display panel in which a conductive film is provided over at least the entire display region in plan view.
  • the first and / or second substrate is provided with the conductive film over at least the entire display region in a plan view. Even when is applied, static electricity is diffused at least over the entire display region by the conductive film. Therefore, it is possible to suppress the change of the state of the memory-type display medium due to the applied static electricity, and it is possible to stabilize the display quality of the display device.
  • FIG. 1 A cross-sectional view of a liquid crystal display panel 10 and a liquid crystal display device 20 using the same according to Embodiment 1 of the present invention.
  • FIG 2 is a cross-sectional view of the insulating film 26 having the oxide film 38 formed on the surface thereof.
  • FIG. 3 is a cross-sectional view of a liquid crystal display panel 40 and a liquid crystal display device 50 using the same according to Embodiment 2 of the present invention.
  • FIG. 4 is a cross-sectional view of a liquid crystal display panel 70 and a liquid crystal display device 80 using the same according to Embodiment 3 of the present invention.
  • FIG. 5 is a cross-sectional view of a liquid crystal display panel 100 and a liquid crystal display device 110 using the same according to Embodiment 4 of the present invention.
  • FIG. 1 is a cross-sectional view of the liquid crystal display panel 10 and the liquid crystal display device 20 using the same according to Embodiment 1 of the present invention.
  • the liquid crystal display panel 10 includes a first substrate 21, a second substrate 22 provided so as to face the first substrate 21, and a cholesteric liquid crystal layer (memory display medium layer) 23 sandwiched therebetween. And spacer 24!
  • the first substrate 21 includes a glass substrate 25, a conductive film 26 formed on the inner surface of the glass substrate 25, an insulating film 27 formed on the conductive film 26, and a pixel electrode 28 formed on the insulating film 27. And / or an alignment film (not shown) formed on the pixel electrode 28.
  • the first substrate 21 is formed of a glass substrate 25 and other substrates, for example, a substrate such as a resin film such as polyethersulfone (PES), polycarbonate (PC), polyethylene terephthalate (PET). Les, even okay.
  • a substrate such as a resin film such as polyethersulfone (PES), polycarbonate (PC), polyethylene terephthalate (PET). Les, even okay.
  • the conductive film 26 is formed over the entire inner surface of the glass substrate 25, and is configured to diffuse static electricity from outside to the entire conductive film 26.
  • the conductive film 26 is made of platinum, gold, silver, palladium, tantalum, nickel, chromium, or an alloy thereof, as well as tin oxide, indium tin oxide (ITO), zinc oxide, indium oxide. It is formed of a metal such as zinc oxide (IZ 2 O: Indium Zinc Oxide) and a metal oxide film.
  • the conductive film 26 may not be formed on the entire inner surface of the glass substrate 25 as described above, and is formed over at least the entire display region in a plan view of the liquid crystal display panel 10. Let's do it.
  • the conductive film 26 may be, for example, one in which the surface of an opaque metal film 37 is covered with its oxide (oxide film 38). At this time, the oxide film 38 can give the conductive film 26 an antireflection function. Furthermore, an interference color can be provided by adjusting the thickness of the oxide film 38. For example, when the conductive film 26 is made of titanium and its oxide, a specific interference color can be satisfactorily given.
  • the planar axis of the substrate is perpendicular to the substrate, the helical axis is parallel to the cell thickness direction in the cell, and the helical axis is in the cell. so
  • it reflects specific light obtained from the helical pitch P and the refractive index N of the cholesteric liquid crystal. This is called selective reflection.
  • light cannot be reflected in the focal-conic arrangement.
  • the conductive film 26 becomes an antireflection film due to the oxide on the surface, the conductive film 26 becomes black, so that a black display is obtained in the focal conic arrangement. Therefore, the display is obtained by switching the selective reflection ⁇ at the time of planar display and the black of the focal conic array.
  • the conductive film 26 exhibits a specific interference color due to the surface oxide, the interference color is obtained in the focal conic arrangement, and the interference color and the selective reflection wavelength are obtained in the planar arrangement.
  • the power to print colored ink on the back side of the substrate 21 and the color in the focal conic arrangement can be obtained by sticking a colored film! /, But it is not effective for preventing static electricity! /, .
  • the conductive film 26 may be formed not only on the first substrate 21 but also on the second substrate 22. This is because it becomes easier to spread static electricity from the outside to the entire liquid crystal display panel 10.
  • transparent conductive metal oxides such as soot, soot and zinc oxide are preferred.
  • the insulating film 27 is formed on the inner surface of the conductive film 26 so as to cover the entire conductive film 26 by, for example, an electrodeposition method, and the pixel electrode 28 and the conductive film 26 are electrically insulated from each other. I have to.
  • the insulating film 27 is formed by adding a predetermined color to a resin material such as an acrylic resin, a phenol resin, an epoxy resin, or a urea resin, and giving a desired color.
  • the desired color is given to the insulating film 27 when a predetermined voltage is applied to the pixel electrode 28 and the cholesteric liquid crystal is set in a light transmission state that transmits visible light. 2 In 7 to absorb the transmitted light and display the desired color (focal conic layout IJ).
  • the insulating film 27 does not have to be formed so as to cover the entire conductive film 26 as described above, and is provided so as to partition at least the pixel electrode 28 and the conductive film 26. That's fine.
  • the insulating film 27 is not limited to the resin material, and may be formed of any insulating material!
  • the color of the insulating film 27 may be transparent or may be a composite color with an interference color.
  • the insulating film 27 may be colored by attaching a colored film or the like to the surface of a transparent resin material or the like that does not have to be colored by containing a pigment in the resin material. May be.
  • Pixel electrode 28 is formed on the insulating film 27.
  • Pixel electrode 28 is a liquid crystal display panel
  • Patterns are formed so as to correspond to 10 display areas.
  • the pixel electrode 28 is formed of a transparent electrode such as indium oxide / tin oxide (ITO) or indium zinc / oxide (IZO).
  • ITO indium oxide / tin oxide
  • IZO indium zinc / oxide
  • the pixel electrode 28 is connected to a driving IC (not shown), and a predetermined pulse voltage is applied to each of the electrodes.
  • a later-described chiral nematic liquid crystal changes to a planar or focal conic arrangement, and the display state is switched.
  • the liquid crystal maintains bistability (memory property) in any alignment state even after the application of voltage is stopped.
  • the alignment film (not shown) on the pixel electrode 28 is a polymer film such as polyimide and is not rubbed.
  • the second substrate 22 is a glass substrate from the opposite side to the opposing first substrate 21, that is, from the display surface side.
  • the second substrate 22 is formed of a transparent substrate such as a glass substrate S, and other transparent substrates such as polyethersulfone (PES), polycarbonate (PC), polyethylene terephthalate (PET), etc. It is made of a transparent substrate such as a resin film! /!
  • the alignment film 30 is a polymer film such as polyimide and is not rubbed.
  • the cholesteric liquid crystal layer 23 is composed of chiral nematic liquid crystal (cholesteric liquid crystal) having a memory property obtained by adding a sufficient amount of a chiral material to exhibit a cholesteric liquid crystal phase to nematic liquid crystal. .
  • nematic liquid crystal conventionally known nematic liquid crystals such as biphenyl, phenylcyclohexyl, terphenyl, tolan, pyrimidine, and stilbene can be used.
  • a chiral material is a material that twists nematic liquid crystal molecules when added to the nematic liquid crystal. Is an additive having a use.
  • various conventionally known chiral materials containing an optically active group such as a cholesterol ring, such as an ester compound, a pyrimidine compound, an azoxy compound, and a tolan compound can be used.
  • the helical pitch of the cholesteric liquid crystal is too long, bistability cannot be secured, and therefore it is preferably 1 am or less, which is excellent in bistability.
  • the spacer 24 includes a first substrate 21 for maintaining a gap between the first substrate 21 and the second substrate 22.
  • a plurality of devices are provided between 21 and the second substrate 22.
  • the spacer 24 is formed in a column shape using an inorganic material or an organic material.
  • the spacer 24 is not limited to a columnar shape, and may be formed in a bead shape using an inorganic material or an organic material.
  • a glass substrate 25 having a thickness of, for example, 0.5 to several mm is prepared.
  • ITO or the like is vapor-deposited on the surface of the glass substrate 25 to form a conductive film 26 having a thickness of, for example, several to several hundred nm.
  • an insulating film 27 is formed on the conductive film 26 by electrodeposition.
  • the electrodeposition method will be described in detail.
  • an electrodeposition paint such as an anion type acrylic resin is used as the insulating film 27.
  • a DC voltage is applied to the conductive film 26 in this electrodeposition paint.
  • the conductive film 26 becomes a positive electrode portion, and oxygen gas and hydrogen gas are generated on the surface thereof, and acidification proceeds.
  • the ionized insulating electrodeposition paint is attracted to the surface and electrodeposits.
  • the insulating film 27 having a thickness of, for example, several to several tens of meters is formed on the entire surface of the conductive film 26.
  • an ITO film having a thickness of, for example, several to several hundreds of nm is formed on the insulating film 27 by sputtering, and then patterned into a desired shape by the PEP technique to form the pixel electrode 28. Formation To do.
  • a rubbing treatment is performed to form an alignment film having a thickness of, for example, several to several tens of nm.
  • the first substrate 21 is completed through the above steps.
  • a glass substrate 29 having a thickness of, for example, 0.5 to several mm is prepared.
  • an alignment film 30 having a thickness of, for example, several to several tens of nm.
  • a spacer 24 made of a photosensitive resin or the like is formed on the first substrate 21.
  • a plurality of spacers 24 are formed on the first substrate 21 by photolithography.
  • a bead-shaped one may be used instead of a columnar one.
  • a dispersion liquid in which spherical plastic beads having a diameter of 3 to 10 111 are dispersed in a solvent such as water / IPA, water / ethylene glycol, or ethylene glycol is dispersed on the first substrate 21 by an ink jet method.
  • a solvent such as water / IPA, water / ethylene glycol, or ethylene glycol
  • the spacer is dispersed by a wet spraying method in which the spacer dispersion liquid is volatilized and dispersed during spraying from the spray nozzle or by a dry air stream. It is possible to dispose the member (including the case where it is charged) on the first substrate 21 by a dry spraying method in which the material is dispersed and sprayed.
  • a sealing material made of resin or the like is continuously applied on the first substrate 21 so as to surround the display area without interruption.
  • thermosetting resin may be formed on the substrate (second substrate 22) side by screen printing.
  • cholesteric liquid crystal per shot is dropped onto the first substrate 21 using a dispenser or the like. At this time, the cholesteric liquid crystal is placed inside the sealing material of the first substrate 21. Dripping.
  • the second substrate 22 is aligned with the first substrate 21 onto which the cholesteric liquid crystal has been dropped, and the shell is occupied.
  • a liquid crystal display cell is formed in a region surrounded by the sealing material on the first substrate 21 and the second substrate 22 occupied by the shellfish. This step is performed in a vacuum.
  • the sealing material is cured by irradiating the sealing material with UV light while moving the UV light source along the application region of the sealing material.
  • the diffused cholesteric liquid crystal is sealed between the first substrate 21 and the second substrate 22 to form a liquid crystal display cell.
  • liquid crystal display cell may not be formed as in the present embodiment.
  • the first substrate 21 and the second substrate 22 are divided into desired panel frames to form the liquid crystal display panel 10, and a driver, a controller, etc. (not shown) are provided on the liquid crystal display panel 10.
  • the display device 20 is completed.
  • FIG. 3 shows a cross-sectional view of the liquid crystal display device 50.
  • the liquid crystal display device 50 includes a first substrate 51, a second substrate 52 provided so as to face the first substrate 51, and a cholesterol liquid crystal layer (memory display medium layer) 53 sandwiched therebetween. It consists of spacers 54.
  • the first substrate 51 includes a glass substrate 55 having a colored layer 56 formed on the outer surface, a pixel electrode 58 formed on the inner surface of the glass substrate 55, and an alignment film (not shown) formed on the pixel electrode 58. It consists of
  • the first substrate 51 is formed of a glass substrate and other substrates, for example, a substrate such as a resin film such as polyethylene sulfonate (PES), polycarbonate (PC), or polyethylene terephthalate (PET)! /
  • a substrate such as a resin film such as polyethylene sulfonate (PES), polycarbonate (PC), or polyethylene terephthalate (PET)! /
  • the colored layer 56 is formed of a metal vapor-deposited film or a colored film.
  • the colored layer 56 is provided when a predetermined voltage is applied to the pixel electrode 58 to set the cholesteric liquid crystal in a light transmission state that transmits visible light. This is to absorb the transmitted light and display black (focal conic arrangement I]).
  • the pixel electrode 58 is formed on the inner surface of the glass substrate 55.
  • the pixel electrode 58 is patterned to correspond to the display area of the liquid crystal display panel 40! /.
  • the pixel electrode 58 is composed of a transparent electrode such as ITO or IZO, for example.
  • the pixel electrode 58 is connected to a driving IC (not shown), and a predetermined pulse voltage is applied to each electrode. In response to this applied voltage, a later-described chiral nematic liquid crystal changes to a planar one or a focal conic arrangement, and the display state is switched. In addition, this liquid crystal maintains bistability (memory property) in any alignment state even after the application of voltage is stopped.
  • An alignment film (not shown) on the pixel electrode 58 is formed of polyimide or the like.
  • the second substrate 52 is a glass substrate from the opposite side to the opposing first substrate 51, that is, from the display surface side.
  • the second substrate 52 is a force S formed of a transparent substrate such as a glass substrate, and other transparent substrates such as polyethersulfone (PES), polycarbonate (PC), and polyethylene terephthalate (PET). It is made of a transparent substrate such as a resin film! /!
  • the conductive film 60 is formed over the entire inner surface of the glass substrate 59, and is configured to diffuse static electricity from the outside over the entire film.
  • the conductive film 60 is formed of a transparent metal film such as ITO or IZO.
  • the conductive film 60 does not have to be formed on the entire inner surface of the glass substrate 59 as described above, and is formed over at least the entire display region in a plan view of the liquid crystal display panel 40. Let's do it.
  • the alignment film 61 is a polymer film such as polyimide.
  • the cholesteric liquid crystal layer 53 is obtained by adding a sufficient amount of chiral material to exhibit a cholesteric liquid crystal phase in the nematic liquid crystal, as in the first embodiment. It is composed of chiral nematic liquid crystal (cholesteric liquid crystal) with memory!
  • the helical pitch of the cholesteric liquid crystal is too long, bistability cannot be ensured. Therefore, it is preferably 1 am or less, which is excellent in bistability.
  • the spacer 54 includes a first substrate 51 for maintaining a gap between the first substrate 51 and the second substrate 52.
  • the spacer 54 is formed in a column shape using an inorganic material or an organic material.
  • the spacer 54 is not limited to a columnar shape, and may be formed in a bead shape using an inorganic material or an organic material.
  • a glass substrate 55 having a thickness of, for example, 0.5 to several mm is prepared.
  • a colored layer 56 such as a metal vapor deposition film or a colored film having a thickness of, for example, several tens of nm is formed on the glass substrate 55.
  • an ITO film having a thickness of, for example, several to several tens of nm is formed on the surface of the glass substrate 55 opposite to the colored layer 56 by sputtering, and then patterned into a desired shape by PEP technology. Then, the pixel electrode 58 is formed.
  • polyimide or the like is applied and baked to form an alignment film having a thickness of, for example, several to several tens of meters.
  • the first substrate 51 is completed through the above steps.
  • a glass substrate 59 having a thickness of, for example, 0.5 to several mm is prepared.
  • ITO or the like is deposited on the surface of the glass substrate 59 to form a conductive film 60 having a thickness of, for example, several to several hundred nm.
  • polyimide or the like is applied onto the conductive film 60 to form an alignment film 61 having a thickness of, for example, several to several tens of nm.
  • spacer 54 made of a photosensitive resin or the like is formed on the first substrate 51.
  • a plurality of 4 are formed on the first substrate 51 by photolithography.
  • a sealing material such as an ultraviolet curing type is applied continuously and continuously so as to surround the display area.
  • cholesteric liquid crystal per shot is dropped onto the first substrate 51 using a dispenser or the like. At this time, the cholesteric liquid crystal is dropped inside the sealing material of the first substrate 51.
  • the second substrate 52 is aligned with the first substrate 51 on which the cholesteric liquid crystal has been dropped, and the shells are occupied.
  • a liquid crystal display cell is formed in a region surrounded by the sealing material in the first substrate 51 and the second substrate 52 occupied by the shellfish. This step is performed in a vacuum.
  • the sealing material is cured by irradiating the sealing material with UV light while moving the UV light source along the application region of the sealing material.
  • the diffused cholesteric liquid crystal is sealed between the first substrate 51 and the second substrate 52 to form a liquid crystal display cell.
  • liquid crystal display cell may be provided with a liquid crystal injection port on the side of the liquid crystal display panel 40, which may not be formed as in the present embodiment, and cholesteric liquid crystal is injected into the liquid crystal display panel 40. Can be sealed with UV curable resin! /.
  • the first substrate 51 and the second substrate 52 are divided into desired panel frames to form the liquid crystal display panel 40, which is provided with a driver, a controller, etc. (not shown).
  • the display device 50 is completed.
  • liquid crystal display panel 70 according to Embodiment 3 of the present invention, and a liquid crystal display using the same.
  • the display device 80 will be described.
  • the liquid crystal display device 80 is provided with a conductive film on the first substrate side, but a polarizing plate is used instead of cholesteric liquid crystal as a liquid crystal material.
  • Bistable twist nematic (BTN BTN
  • Bistable Twisted Nematic typical example is BiNem (Bistable Nematic liquid crystal) and ferroelectric liquid crystal.
  • FIG. 4 is a cross-sectional view of a liquid crystal display panel 70 and a liquid crystal display device 80 using the same according to Embodiment 3 of the present invention.
  • the liquid crystal display panel 70 includes a first substrate 81, a second substrate 82 provided so as to face the first substrate 81, and a BTN liquid crystal layer (memory display medium layer) 83 sandwiched therebetween.
  • Spacer is composed of 84! /, Ru.
  • the first substrate 81 includes a glass substrate 85, a polarizing plate 92 formed on the outer surface of the glass substrate 85, a conductive film 86 formed on the inner surface of the glass substrate 85, and an insulation formed on the conductive film 86.
  • the first substrate 81 is formed of a glass substrate 85 and other substrates such as a substrate such as a resin film such as polyethersulfone (PES), polycarbonate (PC), polyethylene terephthalate (PET). Les, even okay.
  • a resin film such as polyethersulfone (PES), polycarbonate (PC), polyethylene terephthalate (PET).
  • the polarizing plate 92 is formed on the outer surface of the glass substrate 85.
  • the polarizing plate 92 is formed, for example, by adsorbing or dyeing a dichroic dye such as iodine or a dye on a polybulal alcohol (PVA) film and stretching it uniaxially with high accuracy.
  • a dichroic dye such as iodine or a dye on a polybulal alcohol (PVA) film
  • the conductive film 86 is formed over the entire inner surface of the glass substrate 85, and is configured to diffuse static electricity from the outside over the entire film.
  • the conductive film 86 is formed of a transparent metal film such as ITO or IZO so that light can pass therethrough.
  • the conductive film 86 does not have to be formed on the entire inner surface of the glass substrate 85 as described above, and is formed over at least the entire display region in a plan view of the liquid crystal display panel 70. Let's do it.
  • the conductive film 86 is formed not only on the first substrate 81 but also on the second substrate 82 as well as! /, May! /. It is possible to spread static electricity from outside to the entire LCD panel 70. This is because it becomes easy.
  • the insulating film 87 is formed on the inner surface of the conductive film 86 so as to cover the entire conductive film 86 by, for example, an electrodeposition method, and the pixel electrode 88 and the conductive film 86 are electrically insulated. I have to.
  • the insulating film 87 is formed of a transparent resin such as an acrylic resin so that light can be transmitted.
  • the insulating film 87 does not have to be formed so as to cover the entire conductive film 86, but is provided so as to partition at least the pixel electrode 88 and the conductive film 86. That's fine.
  • Pixel electrode 88 is formed on the insulating film 87.
  • Pixel electrode 88 is a liquid crystal display panel
  • a pattern is formed so as to correspond to 70 display areas.
  • the pixel electrode 88 is composed of a transparent electrode such as ITO or IZO, for example.
  • the pixel electrode 88 is connected to a driving IC (not shown), and a predetermined pulse voltage is applied to each of the electrodes. In response to this applied voltage, the alignment of the pinematic liquid crystal changes and the display state is switched. In addition, this liquid crystal maintains its alignment state even after the voltage application is stopped, and has a memory property.
  • An alignment film (not shown) on the pixel electrode 88 is formed by rubbing the surface of a polymer film such as polyimide in the same direction.
  • the second substrate 82 is composed of a polarizing plate 91, a glass substrate 89, and an alignment film 90 from the opposite side to the opposing first substrate 81, that is, from the display surface side, such as an ultraviolet curable type.
  • the first substrate 81 is bonded with the sealing material.
  • the second substrate 82 is formed of a transparent substrate such as a glass substrate.
  • a transparent substrate such as a glass substrate.
  • Other transparent substrates for example, resin films such as polyethersulfone (PES), polycarbonate (PC), polyethylene terephthalate (PET), etc. It is formed with a transparent substrate!
  • the polarizing plate 91 is formed on the outer surface of the glass substrate 89.
  • the polarizing plate 91 is formed, for example, by adsorbing or dyeing a dichroic dye such as iodine or a dye on a polybulal alcohol (PVA) film and stretching it uniaxially with high accuracy.
  • the polarizing plate 91 is arranged so that the transmission axis is orthogonal to the polarizing plate 92 of the first substrate 81.
  • the alignment film 90 is formed by subjecting the surface of a polymer film such as polyimide to rubbing treatment in the same direction.
  • the alignment film of the first substrate 81 and the alignment film 90 of the second substrate 82 are each subjected to a specific process on the operating principle of the liquid crystal display device 80 using BTN liquid crystal.
  • BTN The force S explained by BiNem, specifically, the alignment film of the first substrate 81 does not have a pretilt angle and has been subjected to an alignment process to obtain a weak polar angle anchoring.
  • the film 90 has a relatively large pretilt angle and is subjected to an alignment treatment that provides a strong polar angle anchoring. Therefore, a voltage noise is applied to the liquid crystal display device 80 to reverse the direction of the director on the first substrate 81 having a weak polar angle anchoring due to the effect of the liquid crystal flow.
  • a bi-stable transition is induced between two orientation states, ie, a state with a twist angle of 0 ° (Twoform state) and a state with a twist angle of 180 ° (Twist state).
  • the spacer 84 has a first substrate 81 in order to maintain a gap between the first substrate 81 and the second substrate 82.
  • a plurality of terminals 81 and the second substrate 82 are provided.
  • the spacer 84 is formed in a column shape using an inorganic material or an organic material.
  • the spacer 84 is not limited to a columnar shape, and may be formed in a bead shape using an inorganic material or an organic material.
  • BTN's representative BiNem liquid crystal is used as the liquid crystal material.
  • the present invention is not limited to this, and a liquid crystal material having a memory property such as a ferroelectric liquid crystal may be used! /, .
  • a glass substrate 85 having a thickness of, for example, 0 ⁇ 8 to several mm is prepared.
  • ITO or the like is vapor-deposited on the surface of the glass substrate 85 to form a conductive film 86 having a thickness of, for example, several to several hundred nm.
  • an insulating film 87 having a thickness of, for example, several to several tens of meters is formed on the entire surface of the conductive film 86 by electrodeposition on the conductive film 86.
  • an ITO film having a thickness of, for example, several to several hundreds of nanometers is formed on the insulating film 87 by sputtering, and then patterned into a desired shape by the PEP technique to form the pixel electrode 88. Form.
  • a glass substrate 89 having a thickness of, for example, 0 ⁇ 8 to several mm is prepared.
  • an alignment film 90 having a thickness of, for example, several to several tens of nm.
  • a spacer 84 made of a photosensitive resin or the like is formed on the first substrate 81.
  • a plurality of 4 are formed on the first substrate 81 by photolithography.
  • a sealing material such as an ultraviolet curing type is applied continuously and continuously so as to surround the display region.
  • BTN liquid crystal per shot 2 mg is dropped onto the first substrate 81 using a dispenser or the like. At this time, the BTN liquid crystal is dropped inside the sealing material of the first substrate 81.
  • the second substrate 82 is aligned and attached to the first substrate 81 on which the BTN liquid crystal is dropped. At this time, a liquid crystal display cell is formed in a region surrounded by the sealing material in the first substrate 81 and the second substrate 82 occupied by the shellfish. This step is performed in a vacuum.
  • N liquid crystal diffuses by atmospheric pressure.
  • the seal material is cured by irradiating the seal material with UV light while moving the UV light source along the application area of the seal material.
  • the diffused BTN liquid crystal is sealed between the first substrate 81 and the second substrate 82 to form a liquid crystal display cell.
  • liquid crystal display panel may not be formed as in the present embodiment.
  • a liquid crystal injection port may be provided on the side of 70, and BTN liquid crystal may be injected there, and then the liquid crystal injection port may be sealed with an ultraviolet curable resin or the like.
  • the first substrate 81 and the second substrate 82 are divided into desired panel frames, and then polarizing plates 91 and 92 are arranged on both surfaces of the panel so as to be orthogonal to each other.
  • table Display panel 70 is produced.
  • a liquid crystal display device 80 is completed by providing the liquid crystal display panel 70 with a driver or a controller (not shown).
  • BTN Bistable Twisted Nematic
  • FIG. 5 shows a cross-sectional view of the liquid crystal display device 110.
  • the liquid crystal display device 110 includes a first substrate 111, a second substrate 112 provided so as to face the first substrate 111, and a BTN liquid crystal layer (memory display medium layer) 113 and a storage sandwiched between them. It is composed of spacers 114.
  • the first substrate 111 is a glass substrate 115 having a polarizing plate 123 formed on the outer surface, a glass substrate
  • the pixel electrode 118 is formed on the inner surface of 115, and an alignment film (not shown) formed on the pixel electrode 118 is formed.
  • the first substrate 111 is formed of a glass substrate and other substrates such as a resin film such as polyethersulfone (PES), polycarbonate (PC), polyethylene terephthalate (PET), and the like. It ’s okay.
  • a resin film such as polyethersulfone (PES), polycarbonate (PC), polyethylene terephthalate (PET), and the like. It ’s okay.
  • the polarizing plate 123 is formed on the outer surface of the glass substrate 115.
  • the polarizing plate 123 is formed, for example, by adsorbing or dyeing a dichroic dye such as iodine or a dye on a polybulal alcohol (PVA) film and stretching it uniaxially with high accuracy.
  • a dichroic dye such as iodine or a dye on a polybulal alcohol (PVA) film
  • the pixel electrode 118 is formed on the inner surface of the glass substrate 115.
  • the pixel electrode 118 is patterned so as to correspond to the display area of the liquid crystal display panel 100.
  • the pixel electrode 118 is composed of a transparent electrode such as ITO or IZO, for example.
  • the pixel electrodes 118 are connected to a driving IC (not shown), and a predetermined pulse voltage is applied to each of the electrodes.
  • the alignment of the BTN liquid crystal changes according to this applied voltage, and the display state is switched. In addition, this liquid crystal maintains its alignment state even after voltage application is stopped, and has a memory property. is doing.
  • An alignment film (not shown) on the pixel electrode 118 is formed by rubbing a polymer film surface such as polyimide in the same direction.
  • the second substrate 112 is formed on the polarizing plate 1 from the opposite side of the opposing first substrate 111, ie, from the display surface side.
  • a glass substrate 119 a glass substrate 119, a conductive film 120, and an alignment film 121, which are bonded to the first substrate 111 with an ultraviolet curable sealing material.
  • the second substrate 112 is formed of a transparent substrate such as a glass substrate 115.
  • a transparent substrate such as a glass substrate 115.
  • Other transparent substrates for example, resin films such as polyethersulfone (PES), polycarbonate (PC), and polyethylene terephthalate (PET) It is formed with a transparent substrate such as! /
  • the polarizing plate 122 is formed on the outer surface of the glass substrate 115.
  • the polarizing plate 122 is formed, for example, by adsorbing or dyeing a dichroic dye such as iodine or a dye on a polybulal alcohol (PVA) film and stretching it uniaxially with high accuracy.
  • a dichroic dye such as iodine or a dye on a polybulal alcohol (PVA) film
  • the conductive film 120 is formed over the entire inner surface of the glass substrate 119, and is configured to diffuse an external electrostatic force throughout the film.
  • the conductive film 120 is formed of a transparent metal film such as ITO or IZO!
  • the conductive film 120 does not have to be formed on the entire inner surface of the glass substrate 119 as described above, and is formed over at least the entire display region in the plan view of the liquid crystal display panel 100. I'll do it.
  • the alignment film 121 is formed by subjecting the surface of a polymer film such as polyimide to rubbing treatment in the same direction. Further, the alignment film 121 of the first substrate 111 and the alignment film 121 of the second substrate 112 are each subjected to the same alignment treatment as the alignment film described in Embodiment 3 in terms of the operation principle of the liquid crystal display device 110 using the venematic liquid crystal. Is given.
  • a plurality of spacers 114 are provided between the first substrate 111 and the second substrate 112 in order to maintain a gap between the first substrate 111 and the second substrate 112.
  • the spacer 114 is formed in a column shape using an inorganic material or an organic material.
  • the spacer 114 is not limited to a columnar shape, and may be formed in a bead shape using an inorganic material or an organic material.
  • a glass substrate 115 having a thickness of, for example, 0 ⁇ 8 to several mm is prepared.
  • a thickness of, for example, several to several hundred nm is formed on the glass substrate 115 by sputtering.
  • the pixel electrode 118 is formed by patterning into a desired shape by the PEP technique.
  • a rubbing treatment is performed to form an alignment film having a thickness of, for example, several to several tens of nm.
  • a glass substrate 119 having a thickness of, for example, 0 ⁇ 8 to several mm is prepared.
  • ITO or the like is deposited on the surface of the glass substrate 119 to form a conductive film 120 having a thickness of, for example, several to several tens of meters.
  • polyimide or the like is applied onto the conductive film 120 and baked, and then a rubbing process is performed to form an alignment film 121 having a thickness of, for example, several to several tens of nm.
  • a spacer 114 made of a photosensitive resin or the like is formed on the first substrate 111.
  • a plurality of spacers 114 are formed on the first substrate 111 by photolithography.
  • a sealing material such as an ultraviolet curing type is applied continuously and continuously so as to surround the display region.
  • the BTN liquid crystal is dropped inside the sealing material of the first substrate 111.
  • the second substrate 112 is aligned and attached to the first substrate 111 on which the BTN liquid crystal is dropped. At this time, the sealing material on the first substrate 111 and the second substrate 112 occupied by the shellfish A liquid crystal display cell is formed in the enclosed region. This step is performed in a vacuum.
  • the sealing material is cured by irradiating the sealing material with UV light while moving the UV light source along the application area of the sealing material.
  • the diffused BTN liquid crystal is sealed between the first substrate 111 and the second substrate 112 to form a liquid crystal display cell.
  • liquid crystal display cell may not be formed as in the present embodiment.
  • a liquid crystal injection port may be provided on the side of 100, BTN liquid crystal may be injected therein, and then the liquid crystal injection port may be sealed with an ultraviolet curable resin or the like.
  • the first substrate 111 and the second substrate 112 are divided into desired panel frames, and then polarizing plates 122 and 123 are arranged on both surfaces of the panel so as to be orthogonal to each other.
  • a display panel 100 is manufactured.
  • a driver controller (not shown) is provided on the liquid crystal display panel 100 to complete the liquid crystal display device 110.
  • the power PD plasma display
  • PALC plasma addressed liquid crystal display
  • Address liquid crystal display organic EL (organic electro luminescence), inorganic EL (inorganic electro luminescence), FED (field emission display), SED (surface-conduct ion electron-emitter display), etc. It may be a display device according to the above.
  • the liquid crystal display panels 10, 40, 70, 100 are formed with pixel electrodes 28, 58, 88, 118 force S and glass substrates 25, 55, 85, 125.
  • the first substrate 21, 51, 81, 111 having the first substrate 21, 51, 81, 111 is opposed to the first substrate 21, 51, 81, 111 via the memory active display medium layer 23, 53, 83, 11 3 and provided on the display surface side
  • a second substrate 22, 52, 82, 112 having glass substrates 29, 59, 89, 119, and a first substrate 21, 51, 81, 111 and / or (2nd substrate 22, 52, 82, 112 forces Both are characterized in that conductive films 26, 60, 86, 120 are provided over the entire display area.
  • the first substrate 21, 51, 81, 111 and / or the second substrate 22, 52, 82, 112 is electrically conductive film 26 over at least the entire display region in plan view. , 60, 86, 120, so that it is outside the screen of the night crystal display 10, 40, 70, 100)), even if static electricity is applied, the static electricity will remain in the conductive film 26, 60, 86, 120 diffuses at least over the entire display area. Therefore, the state of the memory-type display medium can be prevented from changing due to the applied static electricity, and the display quality of the liquid crystal display panels 10, 40, 70, 100 can be stabilized.
  • liquid crystal display panels 10, 40, 70, 100 include the first substrates 21, 51, 51, 81, 111 and / or (also the second substrate 22, 52, 82, 112 is provided throughout.
  • the conductive film 26, 60, 86, 120 force is spread over the entire first substrate 21, 51, 81, 111 and / or the second substrate 22, 52, 82, 112 in plan view. Therefore, static electricity applied from the outside is diffused over a wider area. Therefore, the display quality of the liquid crystal display panels 10, 40, 70, 100 can be stabilized more satisfactorily.
  • the conductive films 26, 60, 86, 120 are the metal films 37 on which the oxide films 38 are formed. It may consist of
  • the conductive film 26, 60, 86, 120 can be imparted with an antireflection function by the oxide film 38. Further, by adjusting the thickness of the oxide film 38, the conductive films 26, 60, 86, 120 can be given an interference color.
  • the conductive films 26 and 86 are formed on the glass substrates 25 and 85 of the first substrates 21 and 81, and the conductive Insulating films 27 and 87 are provided between the films 26 and 86 and the pixel electrodes 28 and 88 of the first substrates 21 and 81, respectively.
  • the conductive films 26 and 86 are formed on the glass substrates 25 and 85 of the first substrates 21 and 81, and the conductive films 26 and 86 and the first substrates 21 and 81 are formed.
  • Pixel electrode 28, 88 Since insulating films 27 and 87 are provided between them, the conductive films 26 and 86 that diffuse static electricity applied from the outside do not come into contact with the pixel electrodes 28 and 88. Therefore, it is possible to suppress the influence of the conductive films 26 and 86 on the electrical signal passing through the pixel electrodes 28 and 88 and to obtain better display quality with the force S.
  • the liquid crystal display panel 10 according to Embodiment 1 of the present invention is characterized in that the display medium layer is the cholesteric liquid crystal layer 23 and the insulating film 27 is formed of a coloring material. .
  • the surface of the conductive film 26 is covered with an oxide, the interference color of the oxide is exhibited.
  • the display medium layer is the cholesteric liquid crystal layer 23 and the insulating film 27 is formed of the coloring material
  • the cholesteric liquid crystal layer 23 is in the focal conic state
  • Light incident from the second substrate 22 side and transmitted through the cholesteric liquid crystal layer 23 can see the color of the insulating film 27 (for example, black if the insulating film 27 is black). Therefore, the manufacturing of the liquid crystal display panel 10 that does not require a colored film or the like on the surface of the first substrate 21 is simplified.
  • the insulating films 27 and 87 are formed by electrodeposition using the conductive films 26 and 86 as electrodeposition conductive films. Characterized by
  • the insulating films 27 and 87 are formed by the electrodeposition method using the conductive films 26 and 86 as the electrodeposition conductive films, the insulating films 27 and 87 are formed as the conductive films 26 and 86. It can be provided uniformly and with good adhesion. In addition, the thickness of the insulating films 27 and 87 to be formed can be easily designed with a force S.
  • the liquid crystal display devices 20, 50, 80, 110 according to the embodiments of the present invention !! to 4 are formed with pixel electrodes 28, 58, 88, 118 force S and glass substrates 25, 55, 85, First substrate 21, 51, 81, 111 having 125, opposed to first substrate 21, 51, 81, 111 via memory generation display medium layer 23, 53, 83, 113 and provided on the display surface side And a second substrate 22, 52, 82, 112 having a glass substrate 29, 59, 89, 119, and a first substrate 21, 51, 81, 111 and / or a second substrate 22, 52 , 82, and 112 are provided with conductive film 26, 60, 86, 120 conductive films 26, 60, 86, 120 over at least the entire display area in plan view. It is characterized by having.
  • the first substrate 21, 51, 81, 111 and / or the second substrate 22, 52, 82, 112 is electrically conductive film 26 over at least the entire display region in plan view.
  • 60, 86, 120 are provided, so that even if static electricity is applied from the outside of the liquid crystal display device 20, 50, 80, 110, the static electricity is at least in the entire display area by the conductive films 26, 60, 86, 120. Is spread over. Therefore, the state of the memory-type display medium can be prevented from changing due to the applied static electricity, and the display quality of the liquid crystal display devices 20, 50, 80, 110 can be stabilized.
  • the present invention is useful for a display panel and a display device using the same.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)
  • Mathematical Physics (AREA)

Abstract

A display panel is provided with a first substrate which has a pixel electrode formed thereon and also has an insulating substrate. The display panel is also provided with a second substrate, which faces the first substrate through a display medium layer having memory characteristics, and is arranged on the display side with an insulating substrate. A conductive film is arranged at least over the entire display region in plain view on the first and/or the second substrate.

Description

明 細 書  Specification
表示パネル及びそれを用レ、た表示装置  Display panel and display device using the same
技術分野  Technical field
[0001] 本発明は、表示パネル及びそれを用いた表示装置に関する。  The present invention relates to a display panel and a display device using the display panel.
背景技術  Background art
[0002] 近年、低消費電力性を実現する表示装置として、メモリ性を有する表示媒体を用い た表示装置が研究 ·開発されている。  In recent years, a display device using a display medium having a memory property has been researched and developed as a display device realizing low power consumption.
[0003] このような表示装置として、例えば、特許文献 1には、メモリ性を有する液晶の配向 状態を制御することで表示を行う液晶表示素子を備えた液晶表示装置にお!/、て、前 記液晶表示素子の表示領域の外側部分に位置する液晶の配向状態を均一にする 手段を備えたことを特徴とする液晶表示装置が開示されている。そして、このような構 成によれば、表示領域の外側部分に関して液晶の配向状態の乱れを解消できる液 晶表示装置を得ることができる、と記載されている。  [0003] As such a display device, for example, Patent Document 1 discloses a liquid crystal display device including a liquid crystal display element that performs display by controlling the alignment state of a liquid crystal having memory properties! There is disclosed a liquid crystal display device comprising means for making the alignment state of the liquid crystal positioned in the outer portion of the display area of the liquid crystal display element uniform. According to such a configuration, it is described that a liquid crystal display device capable of eliminating the disorder of the alignment state of the liquid crystal with respect to the outer portion of the display region can be obtained.
特許文献 1:特開 2003-066490号公報  Patent Document 1: Japanese Patent Laid-Open No. 2003-066490
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0004] ところで、表示装置は、一般的に表示領域に画素電極や、その画素電極と表示駆 動用ドライバとを電気的に接続するための引き回し配線等が設けられている。このよう な画素電極や引き回し配線等は、外部からの静電気の印加を受けやすい。  [0004] By the way, in general, a display device is provided with a pixel electrode in the display region, and a lead-out wiring for electrically connecting the pixel electrode and a display driving driver. Such pixel electrodes and routing wirings are easily subjected to external static electricity.
[0005] このような場合、上述したような表示装置では、外部から静電気が印加されると、そ の表示媒体層がメモリ性を有するため、初めに所望の状態に設定しておいた表示媒 体が他の状態に変化し、且つ、その後元の状態に戻らなくなる。従って、表示装置の 表示品質が不安定となる、という問題がある。また、このような表示装置では、常時駆 動状態にしておかない限り、外部からの静電気の印加による表示不具合を解消でき ず、結果としてメモリ性表示素子の低消費電力化の実現が困難となる。  In such a case, in the display device as described above, when static electricity is applied from the outside, the display medium layer has a memory property, so that the display medium initially set to a desired state is used. The body changes to another state and then cannot return to the original state. Therefore, there is a problem that the display quality of the display device becomes unstable. Further, in such a display device, unless it is always in a driving state, display defects due to external static electricity cannot be solved, and as a result, it is difficult to realize low power consumption of the memory display element. .
課題を解決するための手段  Means for solving the problem
[0006] 本発明は、斯カ、る諸点に鑑みてなされたものであり、その目的とするところは、表示 品質の安定性に優れた表示パネル及びこれを用いた表示装置を提供することである [0006] The present invention has been made in view of the above-mentioned points, and its object is to display To provide a display panel having excellent quality stability and a display device using the display panel
[0007] 本発明に係る表示パネルは、画素電極が形成され、且つ、絶縁性基板を有する第 1基板と、第 1基板とメモリ性表示媒体層を介して対向すると共に表示面側に設けら れ、且つ、絶縁性基板を有する第 2基板と、を備え、第 1及び/又は第 2基板が、平 面視において少なくともその表示領域全体に渡って導電膜が設けられていることを特 徴とする。 [0007] A display panel according to the present invention is provided with a first substrate having a pixel electrode formed thereon and having an insulating substrate, the first substrate facing the first substrate via a memory-type display medium layer, and provided on the display surface side. And a second substrate having an insulating substrate, wherein the first and / or second substrate is provided with a conductive film over at least the entire display region in a plan view. And
[0008] このような構成によれば、第 1及び/又は第 2基板が、平面視において少なくともそ の表示領域全体に渡って導電膜が設けられているため、表示パネルの外部から静 電気が印加されても、静電気は導電膜によって少なくとも表示領域全体に渡って拡 散される。従って、印加された静電気によってメモリ性表示媒体の状態が変化するの を抑制することができ、表示パネルの表示品位を安定化させることができる。  [0008] According to such a configuration, since the conductive film is provided on the first and / or second substrate over at least the entire display region in plan view, an electrostatic charge is generated from the outside of the display panel. Even if it is applied, static electricity is diffused at least over the entire display region by the conductive film. Therefore, the state of the memory-type display medium can be prevented from changing due to the applied static electricity, and the display quality of the display panel can be stabilized.
[0009] また、本発明に係る表示パネルは、導電膜が、平面視にお!/、て第 1及び/又は第 2 基板全体に渡って設けられて!/、てもよレ、。  [0009] Further, in the display panel according to the present invention, the conductive film is provided over the entire first and / or second substrate in a plan view!
[0010] このような構成によれば、導電膜が、平面視において第 1及び/又は第 2基板全体 に渡って設けられているため、外部から印加された静電気がより広範囲に渡って拡 散される。従って、表示パネルの表示品位をより良好に安定化させることができる。  [0010] According to such a configuration, since the conductive film is provided over the entire first and / or second substrate in plan view, static electricity applied from the outside is spread over a wider range. Is done. Therefore, the display quality of the display panel can be stabilized better.
[0011] さらに、本発明に係る表示パネルは、導電膜が、表面に酸化膜が形成された金属 膜で構成されていてもよい。  Furthermore, in the display panel according to the present invention, the conductive film may be composed of a metal film having an oxide film formed on the surface.
[0012] このような構成によれば、酸化膜によって導電膜に反射防止機能を持たせることが できる。さらに、酸化膜の膜厚を調整することにより導電膜に干渉色を持たせることが できる。  According to such a configuration, the conductive film can be provided with an antireflection function by the oxide film. Furthermore, the conductive film can have an interference color by adjusting the thickness of the oxide film.
[0013] また、本発明に係る表示パネルは、導電膜が第 1基板の絶縁性基板上に形成され ていると共に、導電膜と第 1基板の画素電極との間に絶縁膜が設けられていてもよい  In the display panel according to the present invention, the conductive film is formed on the insulating substrate of the first substrate, and the insulating film is provided between the conductive film and the pixel electrode of the first substrate. May
[0014] このような構成によれば、導電膜が第 1基板の絶縁性基板上に形成されていると共 に、導電膜及び第 1基板の画素電極の間に絶縁膜が設けられているため、外部から 印加される静電気を拡散する導電膜が、画素電極と接触することがない。従って、導 電膜が画素電極を通る電気信号に影響を与えることを抑制して、より良好な表示品 位を得ること力 Sでさる。 According to such a configuration, the conductive film is formed on the insulating substrate of the first substrate, and the insulating film is provided between the conductive film and the pixel electrode of the first substrate. Therefore, the conductive film that diffuses static electricity applied from the outside does not come into contact with the pixel electrode. Therefore, guiding Suppresses the influence of the electric film on the electric signal passing through the pixel electrode, and obtains a better display quality with the force S.
[0015] さらに、本発明に係る表示パネルは、表示媒体層がコレステリック液晶層であると共 に、絶縁膜が着色材料で形成されてレ、てもよレ、。  [0015] Further, in the display panel according to the present invention, the display medium layer is a cholesteric liquid crystal layer, and the insulating film is formed of a coloring material.
[0016] このような構成によれば、表示媒体層がコレステリック液晶層であると共に、絶縁膜 が着色材料で形成されているため、コレステリック液晶層がフォーカルコニック配列の ときに、第 2基板側から入射して液晶層を透過した光が、絶縁膜で吸収される。従つ て、第 1基板の表面等に光吸収用の黒色フィルム等を設けなくてよぐ表示パネルの 製造が簡略化する。  According to such a configuration, since the display medium layer is a cholesteric liquid crystal layer and the insulating film is formed of a coloring material, when the cholesteric liquid crystal layer has a focal conic alignment, the second substrate side Light that is incident and transmitted through the liquid crystal layer is absorbed by the insulating film. Therefore, it is possible to simplify the manufacture of a display panel that does not require a black film for light absorption on the surface of the first substrate.
[0017] また、本発明に係る表示パネルは、絶縁膜が、導電膜を電着用導電膜として電着 法により形成されて!/、てもよ!/、。  [0017] In the display panel according to the present invention, the insulating film is formed by an electrodeposition method using a conductive film as an electrodeposition conductive film.
[0018] このような構成によれば、絶縁膜が、導電膜を電着用導電膜として電着法により形 成されているため、絶縁膜を導電膜上に均一に且つ密着性良く設けることができる。 また、形成する絶縁膜の厚さの設計を容易に行うことができる。  [0018] According to such a configuration, since the insulating film is formed by the electrodeposition method using the conductive film as an electrodeposition conductive film, the insulating film can be provided on the conductive film uniformly and with good adhesion. it can. In addition, the thickness of the insulating film to be formed can be easily designed.
[0019] 本発明に係る表示装置は、画素電極が形成され、且つ、絶縁性基板を有する第 1 基板と、第 1基板とメモリ性表示媒体層を介して対向すると共に表示面側に設けられ 、且つ、絶縁性基板を有する第 2基板と、を有し、第 1及び/又は第 2基板は、平面 視において少なくともその表示領域全体に渡って導電膜が設けられている表示パネ ルを備えて!/、ることを特徴とする。  [0019] A display device according to the present invention is provided on the display surface side with a first substrate having a pixel electrode formed thereon and having an insulating substrate, facing the first substrate with a memory display medium layer interposed therebetween. And a second substrate having an insulating substrate, and the first and / or second substrate includes a display panel in which a conductive film is provided over at least the entire display region in plan view. /!
[0020] このような構成によれば、第 1及び/又は第 2基板が、平面視において少なくともそ の表示領域全体に渡って導電膜が設けられているため、表示装置の外部から静電 気が印加されても、静電気は導電膜によって少なくとも表示領域全体に渡って拡散さ れる。従って、印加された静電気によってメモリ性表示媒体の状態が変化するのを抑 制することができ、表示装置の表示品位を安定化させることができる。  [0020] According to such a configuration, the first and / or second substrate is provided with the conductive film over at least the entire display region in a plan view. Even when is applied, static electricity is diffused at least over the entire display region by the conductive film. Therefore, it is possible to suppress the change of the state of the memory-type display medium due to the applied static electricity, and it is possible to stabilize the display quality of the display device.
発明の効果  The invention's effect
[0021] 以上説明したように、本発明によれば、表示品質の安定性に優れた表示パネル及 びこれを用いた表示装置を提供することができる。  [0021] As described above, according to the present invention, it is possible to provide a display panel having excellent display quality stability and a display device using the display panel.
図面の簡単な説明 園 1]本発明の実施形態 1に係る液晶表示パネル 10及びそれを用いた液晶表示装 置 20の断面図である。 Brief Description of Drawings 1] A cross-sectional view of a liquid crystal display panel 10 and a liquid crystal display device 20 using the same according to Embodiment 1 of the present invention.
園 2]表面に酸化膜 38が形成された絶縁膜 26の断面図である。 2 is a cross-sectional view of the insulating film 26 having the oxide film 38 formed on the surface thereof.
[図 3]本発明の実施形態 2に係る液晶表示パネル 40及びそれを用いた液晶表示装 置 50の断面図である。  FIG. 3 is a cross-sectional view of a liquid crystal display panel 40 and a liquid crystal display device 50 using the same according to Embodiment 2 of the present invention.
[図 4]本発明の実施形態 3に係る液晶表示パネル 70及びそれを用いた液晶表示装 置 80の断面図である。  FIG. 4 is a cross-sectional view of a liquid crystal display panel 70 and a liquid crystal display device 80 using the same according to Embodiment 3 of the present invention.
[図 5]本発明の実施形態 4に係る液晶表示パネル 100及びそれを用いた液晶表示装 置 110の断面図である。  FIG. 5 is a cross-sectional view of a liquid crystal display panel 100 and a liquid crystal display device 110 using the same according to Embodiment 4 of the present invention.
符号の説明 Explanation of symbols
10, 40, 70, 100 液晶表示パネノレ  10, 40, 70, 100 LCD panel
20, 50, 80, 110 液晶表示装置  20, 50, 80, 110 LCD
21 , 51 , 81 , 111 第 1基板  21, 51, 81, 111 First substrate
22, 52, 82, 112 第 2基板  22, 52, 82, 112 Second board
23, 53 コレステリ'ック液晶層  23, 53 Cholesteric Liquid Crystal Layer
24, 54, 84, 114 スぺーサ  24, 54, 84, 114 Spacer
25, 29, 55, 59, 85, 89, 115, 119 ガラス基板  25, 29, 55, 59, 85, 89, 115, 119 Glass substrate
26, 60, 86, 120 導電膜  26, 60, 86, 120 conductive film
27, 87 絶縁膜  27, 87 Insulating film
28, 58, 88, 118 画素電極  28, 58, 88, 118 Pixel electrode
30, 61 , 90, 121 配向膜  30, 61, 90, 121 Alignment film
38 酸化膜  38 Oxide film
56 着色層 56 Colored layer
83, 113 バイネマティック液晶層  83, 113 Vinematic liquid crystal layer
91 , 92, 122, 123 偏光板 91, 92, 122, 123 Polarizing plate
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
以下、本発明の実施形態に係る表示パネル及びそれを用いた表示装置について 、液晶表示パネル及び液晶表示装置を例にして、図面に基づいて詳細に説明する。 尚、本発明は、以下の実施形態に限定されるものではない。 Hereinafter, a display panel and a display device using the same according to an embodiment of the present invention will be described in detail with reference to the drawings using a liquid crystal display panel and a liquid crystal display device as examples. The present invention is not limited to the following embodiment.
[0025] (実施形態 1)  [Embodiment 1]
(液晶表示パネル 10、及び、それを用いた液晶表示装置 20の構成) 図 1は本発明の実施形態 1に係る液晶表示パネル 10及びそれを用いた液晶表示 装置 20の断面図を表す。液晶表示パネル 10は、第 1基板 21、第 1基板 21と対向す るように設けられた第 2基板 22、及び、これらの間に挟まれたコレステリック液晶層(メ モリ性表示媒体層) 23及びスぺーサ 24で構成されて!/、る。  (Configuration of Liquid Crystal Display Panel 10 and Liquid Crystal Display Device 20 Using the Same) FIG. 1 is a cross-sectional view of the liquid crystal display panel 10 and the liquid crystal display device 20 using the same according to Embodiment 1 of the present invention. The liquid crystal display panel 10 includes a first substrate 21, a second substrate 22 provided so as to face the first substrate 21, and a cholesteric liquid crystal layer (memory display medium layer) 23 sandwiched therebetween. And spacer 24!
[0026] 第 1基板 21は、ガラス基板 25、ガラス基板 25の内側表面に形成された導電膜 26、 導電膜 26上に形成された絶縁膜 27、絶縁膜 27上に形成された画素電極 28、及び 、画素電極 28上に形成された不図示の配向膜等で構成されて!/、る。  The first substrate 21 includes a glass substrate 25, a conductive film 26 formed on the inner surface of the glass substrate 25, an insulating film 27 formed on the conductive film 26, and a pixel electrode 28 formed on the insulating film 27. And / or an alignment film (not shown) formed on the pixel electrode 28.
[0027] 第 1基板 21はガラス基板 25で形成されている力 その他の基板、例えば、ポリエー テルスルホン(PES)、ポリカーボネート(PC)、ポリエチレンテレフタレート(PET)など の樹脂フィルム等の基板で形成されてレ、てもよレ、。  [0027] The first substrate 21 is formed of a glass substrate 25 and other substrates, for example, a substrate such as a resin film such as polyethersulfone (PES), polycarbonate (PC), polyethylene terephthalate (PET). Les, even okay.
[0028] 導電膜 26は、ガラス基板 25の内側表面全体に渡り形成されて、外部からの静電気 を導電膜 26全体に拡散するように構成されている。導電膜 26は、白金、金、銀、パラ ジゥム、タンタル、ニッケル、クロム、或いはこれらの合金、さらに、酸化スズ、酸化イン ジゥム ·酸化スズ(ITO : Indium Tin Oxide)、酸化亜鉛、酸化インジウム ·酸化亜鉛(IZ O : Indium Zinc Oxide)等の金属及び金属酸化物膜で形成されている。  [0028] The conductive film 26 is formed over the entire inner surface of the glass substrate 25, and is configured to diffuse static electricity from outside to the entire conductive film 26. The conductive film 26 is made of platinum, gold, silver, palladium, tantalum, nickel, chromium, or an alloy thereof, as well as tin oxide, indium tin oxide (ITO), zinc oxide, indium oxide. It is formed of a metal such as zinc oxide (IZ 2 O: Indium Zinc Oxide) and a metal oxide film.
[0029] 尚、導電膜 26は、上述のようにガラス基板 25の内側表面全体に形成されていなく てもよく、液晶表示パネル 10の平面視において、少なくともその表示領域全体に渡 つて形成されてレ、ればよレ、。  [0029] Note that the conductive film 26 may not be formed on the entire inner surface of the glass substrate 25 as described above, and is formed over at least the entire display region in a plan view of the liquid crystal display panel 10. Let's do it.
[0030] また、導電膜 26は、図 2に示すように、例えば不透明な金属膜 37の表面をその酸 化物(酸化膜 38)で被覆させたものであってもよい。このとき、酸化膜 38によって導電 膜 26に反射防止機能を持たせることができる。さらに、酸化膜 38の膜厚を調整する ことにより干渉色を持たせることができる。例えば、導電膜 26をチタン及びその酸化 物で構成すると、良好に特定の干渉色を持たせることができる。  In addition, as shown in FIG. 2, the conductive film 26 may be, for example, one in which the surface of an opaque metal film 37 is covered with its oxide (oxide film 38). At this time, the oxide film 38 can give the conductive film 26 an antireflection function. Furthermore, an interference color can be provided by adjusting the thickness of the oxide film 38. For example, when the conductive film 26 is made of titanium and its oxide, a specific interference color can be satisfactorily given.
[0031] ここで、コレステリック液晶は螺旋ピッチを可視光と同等の長さにした時、螺旋軸が セル内でセル厚方向に平行な、基板と鉛直なプレーナ一配列と、螺旋軸がセル内で 基板方向と平行(セル厚方向と鉛直)なフォーカルコニック配列と、をとる。プレーナ 一配列のときは螺旋ピッチ Pとコレステリック液晶の屈折率 Nから求まる特定の光を反 射する。これを選択反射と呼ぶ。この光の波長は λ =NPで求められる。一方、フォ 一カルコニック配列のときは光を反射できない。ゆえに導電膜 26が表面の酸化物に よって反射防止膜となった時、導電膜 26は黒色となるため、フォーカルコニック配列 では黒色表示を得る。よってプレーナ一表示時の選択反射 λとフォーカルコニック配 列の黒を切り替えることで表示を得る。一方、導電膜 26が表面の酸化物によって特 定の干渉色を呈する時、フォーカルコニック配列ではその干渉色を、プレーナー配 列では干渉色と選択反射の波長の合成色を得る。通常、基板 21の裏面に色付イン クを印刷する力、、色付フィルムを貼ることによってフォーカルコニック配列のときの色を 得て!/、るが、静電気防止には有効ではな!/、。 [0031] Here, when the cholesteric liquid crystal has a helical pitch equivalent to that of visible light, the planar axis of the substrate is perpendicular to the substrate, the helical axis is parallel to the cell thickness direction in the cell, and the helical axis is in the cell. so A focal conic arrangement parallel to the substrate direction (perpendicular to the cell thickness direction). In the case of a planar arrangement, it reflects specific light obtained from the helical pitch P and the refractive index N of the cholesteric liquid crystal. This is called selective reflection. The wavelength of this light is obtained by λ = NP. On the other hand, light cannot be reflected in the focal-conic arrangement. Therefore, when the conductive film 26 becomes an antireflection film due to the oxide on the surface, the conductive film 26 becomes black, so that a black display is obtained in the focal conic arrangement. Therefore, the display is obtained by switching the selective reflection λ at the time of planar display and the black of the focal conic array. On the other hand, when the conductive film 26 exhibits a specific interference color due to the surface oxide, the interference color is obtained in the focal conic arrangement, and the interference color and the selective reflection wavelength are obtained in the planar arrangement. Usually, the power to print colored ink on the back side of the substrate 21 and the color in the focal conic arrangement can be obtained by sticking a colored film! /, But it is not effective for preventing static electricity! /, .
[0032] また、導電膜 26は、第 1基板 21に形成されているだけでなぐ第 2基板 22にも形成 されていてもよい。より外部からの静電気を液晶表示パネル 10全体に拡散することが 容易となるためである。この場合 ΙΤΟ、 ΙΖΟ、酸化亜鉛などの透明な導電性金属酸化 物が好ましい。 In addition, the conductive film 26 may be formed not only on the first substrate 21 but also on the second substrate 22. This is because it becomes easier to spread static electricity from the outside to the entire liquid crystal display panel 10. In this case, transparent conductive metal oxides such as soot, soot and zinc oxide are preferred.
[0033] 絶縁膜 27は、導電膜 26の内側表面に、例えば電着法等により導電膜 26全体を覆 うように形成されており、画素電極 28と導電膜 26とを電気的に絶縁状態にしている。 絶縁膜 27は、アクリル樹脂、フエノール樹脂、エポキシ樹脂、又は、尿素樹脂等の樹 脂材料に所定の色素を含有させて形成し、所望する色を与えて!/、る。  [0033] The insulating film 27 is formed on the inner surface of the conductive film 26 so as to cover the entire conductive film 26 by, for example, an electrodeposition method, and the pixel electrode 28 and the conductive film 26 are electrically insulated from each other. I have to. The insulating film 27 is formed by adding a predetermined color to a resin material such as an acrylic resin, a phenol resin, an epoxy resin, or a urea resin, and giving a desired color.
[0034] ここで、絶縁膜 27に所望する色を与えたのは、画素電極 28に所定の電圧を印加し てコレステリック液晶が可視光を透過する光透過状態に設定された際、この絶縁膜 2 7でその透過光を吸収して所望する色(フォーカルコニック配歹 IJ)を表示するためであ  Here, the desired color is given to the insulating film 27 when a predetermined voltage is applied to the pixel electrode 28 and the cholesteric liquid crystal is set in a light transmission state that transmits visible light. 2 In 7 to absorb the transmitted light and display the desired color (focal conic layout IJ).
[0035] 尚、絶縁膜 27は、上述のように、導電膜 26全体を覆うように形成されていなくてもよ ぐ少なくとも画素電極 28と導電膜 26との間を仕切るように設けられていればよい。 Note that the insulating film 27 does not have to be formed so as to cover the entire conductive film 26 as described above, and is provided so as to partition at least the pixel electrode 28 and the conductive film 26. That's fine.
[0036] また、絶縁膜 27は、上述のように、樹脂材料に限らず絶縁性材料であればどのよう なもので形成されて!/、てもよレ、。  [0036] In addition, as described above, the insulating film 27 is not limited to the resin material, and may be formed of any insulating material!
[0037] さらに、絶縁膜 27の色は、透明であってもよぐ干渉色との合成色であってもよい。 [0038] また、絶縁膜 27は、上述のように、樹脂材料に色素を含有することにより発色するも のでなくてもよぐ透明樹脂材料等の表面に着色フィルム等を貼り付けて発色を与え てもよい。 [0037] Further, the color of the insulating film 27 may be transparent or may be a composite color with an interference color. [0038] Further, as described above, the insulating film 27 may be colored by attaching a colored film or the like to the surface of a transparent resin material or the like that does not have to be colored by containing a pigment in the resin material. May be.
[0039] 画素電極 28は、絶縁膜 27上に形成されている。画素電極 28は、液晶表示パネル  The pixel electrode 28 is formed on the insulating film 27. Pixel electrode 28 is a liquid crystal display panel
10の表示領域に対応するようにパターン形成されている。画素電極 28は、例えば、 酸化インジウム ·酸化スズ(ITO : Indium Tin Oxide)や酸化インジウム ·酸化亜鉛(IZ O: Indium Zinc Oxide)等の透明電極で構成されている。画素電極 28は、図示しない 駆動 ICに接続されており、電極にそれぞれ所定のパルス電圧が印加される。この印 加電圧に応じて後述するカイラルネマチック液晶がプレーナ一配列又はフォーカル コニック配列に変化し、表示状態が切り換えられる。また、この液晶はいずれの配列 状態であっても電圧の印加を停止した後もその配列状態を維持し、双安定性 (メモリ 性)を有している。  Patterns are formed so as to correspond to 10 display areas. The pixel electrode 28 is formed of a transparent electrode such as indium oxide / tin oxide (ITO) or indium zinc / oxide (IZO). The pixel electrode 28 is connected to a driving IC (not shown), and a predetermined pulse voltage is applied to each of the electrodes. In response to this applied voltage, a later-described chiral nematic liquid crystal changes to a planar or focal conic arrangement, and the display state is switched. In addition, the liquid crystal maintains bistability (memory property) in any alignment state even after the application of voltage is stopped.
[0040] 画素電極 28上の不図示の配向膜は、ポリイミド等の高分子膜であり、ラビングされ ていない。  The alignment film (not shown) on the pixel electrode 28 is a polymer film such as polyimide and is not rubbed.
[0041] 第 2基板 22は、対向する第 1基板 21とは反対側、即ち、表示面側から、ガラス基板  [0041] The second substrate 22 is a glass substrate from the opposite side to the opposing first substrate 21, that is, from the display surface side.
29、及び、ガラス基板 29の表面に形成された配向膜 30で構成されており、エポキシ 樹脂などからなるシール材によって第 1基板 21と貼り合わされている。  29 and an alignment film 30 formed on the surface of the glass substrate 29, and is bonded to the first substrate 21 by a sealing material made of epoxy resin or the like.
[0042] 第 2基板 22はガラス基板等の透明基板で形成されている力 S、その他の透明基板、 例えば、ポリエーテルスルホン(PES)、ポリカーボネート(PC)、ポリエチレンテレフタ レート (PET)などの樹脂フィルム等の透明基板で形成されて!/、てもよ!/、。  [0042] The second substrate 22 is formed of a transparent substrate such as a glass substrate S, and other transparent substrates such as polyethersulfone (PES), polycarbonate (PC), polyethylene terephthalate (PET), etc. It is made of a transparent substrate such as a resin film! /!
[0043] 配向膜 30は、ポリイミド等の高分子膜であり、ラビングされていない。  The alignment film 30 is a polymer film such as polyimide and is not rubbed.
[0044] コレステリック液晶層 23は、ネマチック液晶にコレステリック液晶相を示すのに十分 な量のカイラル材を添加することによって得られるメモリ性を有するカイラルネマチック 液晶(コレステリック液晶)で構成されてレ、る。  [0044] The cholesteric liquid crystal layer 23 is composed of chiral nematic liquid crystal (cholesteric liquid crystal) having a memory property obtained by adding a sufficient amount of a chiral material to exhibit a cholesteric liquid crystal phase to nematic liquid crystal. .
[0045] ネマチック液晶としては、ビフエ二ル系、フエニルシクロへキシル系、ターフェニル系 、トラン系、ピリミジン系、スチルベン系等の従来公知のネマチック液晶を用いることが できる。  As the nematic liquid crystal, conventionally known nematic liquid crystals such as biphenyl, phenylcyclohexyl, terphenyl, tolan, pyrimidine, and stilbene can be used.
[0046] カイラル材は、ネマチック液晶に添加された場合にネマチック液晶の分子を捩る作 用を有する添加剤である。カイラル材としては、コレステロール環などの光学活性基 を含む、エステル化合物、ピリミジン化合物、ァゾキシ化合物、トラン化合物等の従来 公知の各種のカイラル材を用いることができる。カイラル材をネマチック液晶に添カロ することにより、所定の捩れ間隔を有する液晶分子の螺旋構造が生じ、これにより、 液晶組成物がコレステリック液晶相を示す。 [0046] A chiral material is a material that twists nematic liquid crystal molecules when added to the nematic liquid crystal. Is an additive having a use. As the chiral material, various conventionally known chiral materials containing an optically active group such as a cholesterol ring, such as an ester compound, a pyrimidine compound, an azoxy compound, and a tolan compound can be used. By adding a chiral material to a nematic liquid crystal, a helical structure of liquid crystal molecules having a predetermined twist interval is generated, whereby the liquid crystal composition exhibits a cholesteric liquid crystal phase.
[0047] コレステリック液晶の螺旋ピッチは、長すぎると双安定性が確保できなくなるため、 双安定性に優れた 1 a m以下であることが好ましい。  [0047] If the helical pitch of the cholesteric liquid crystal is too long, bistability cannot be secured, and therefore it is preferably 1 am or less, which is excellent in bistability.
[0048] スぺーサ 24は、第 1基板 21と第 2基板 22とのギャップを保持するために、第 1基板  [0048] The spacer 24 includes a first substrate 21 for maintaining a gap between the first substrate 21 and the second substrate 22.
21及び第 2基板 22間に複数設けられている。スぺーサ 24は、無機材又は有機材を 用いて柱状に形成されてレ、る。  A plurality of devices are provided between 21 and the second substrate 22. The spacer 24 is formed in a column shape using an inorganic material or an organic material.
[0049] 尚、スぺーサ 24は、柱状のものに限らず、無機材又は有機材を用いてビーズ状に 形成されていてもよい。  Note that the spacer 24 is not limited to a columnar shape, and may be formed in a bead shape using an inorganic material or an organic material.
[0050] (液晶表示装置 20の製造方法)  [0050] (Method for Manufacturing Liquid Crystal Display Device 20)
次に、本実施形態 1に係る液晶表示装置 20の製造方法について詳細に説明する  Next, a manufacturing method of the liquid crystal display device 20 according to the first embodiment will be described in detail.
[0051] (第 1基板 21の製造工程) [0051] (Process for manufacturing first substrate 21)
まず、厚さが、例えば 0· 5〜数 mmのガラス基板 25を用意する。  First, a glass substrate 25 having a thickness of, for example, 0.5 to several mm is prepared.
[0052] 次に、ガラス基板 25表面に ITO等を蒸着して、厚さが、例えば数〜数百 nmの導電 膜 26を形成する。 Next, ITO or the like is vapor-deposited on the surface of the glass substrate 25 to form a conductive film 26 having a thickness of, for example, several to several hundred nm.
[0053] 次に、導電膜 26上に電着法により絶縁膜 27を形成する。ここで、電着法を詳細に 説明する。まず、絶縁膜 27として、ァニオン型アクリル系樹脂等の電着塗料を用いる 。この電着塗料中で、導電膜 26に直流電圧を印加しておく。すると、導電膜 26が陽 極部となり、その表面では酸素ガスと水素ガスとが発生して酸性化が進行する。そし て、この表面にイオン化された絶縁性の電着塗料が引きつけられて電着する。このよ うにして、厚さが、例えば数〜数十 mの絶縁膜 27を導電膜 26の表面全体に形成 する。  Next, an insulating film 27 is formed on the conductive film 26 by electrodeposition. Here, the electrodeposition method will be described in detail. First, as the insulating film 27, an electrodeposition paint such as an anion type acrylic resin is used. A DC voltage is applied to the conductive film 26 in this electrodeposition paint. Then, the conductive film 26 becomes a positive electrode portion, and oxygen gas and hydrogen gas are generated on the surface thereof, and acidification proceeds. Then, the ionized insulating electrodeposition paint is attracted to the surface and electrodeposits. In this way, the insulating film 27 having a thickness of, for example, several to several tens of meters is formed on the entire surface of the conductive film 26.
[0054] 次に、絶縁膜 27上に、スパッタリング法により、厚さが、例えば数〜数百 nmの ITO 膜を成膜した後、 PEP技術により所望の形状にパターン形成して画素電極 28を形成 する。 Next, an ITO film having a thickness of, for example, several to several hundreds of nm is formed on the insulating film 27 by sputtering, and then patterned into a desired shape by the PEP technique to form the pixel electrode 28. Formation To do.
[0055] 次に、画素電極 28上に、ポリイミド等を塗布し焼成した後、ラビング処理を施すこと により、厚さが、例えば数〜数十 nmの配向膜を形成する。  Next, after applying polyimide or the like on the pixel electrode 28 and baking it, a rubbing treatment is performed to form an alignment film having a thickness of, for example, several to several tens of nm.
[0056] 以上の工程により、第 1基板 21が完成する。 The first substrate 21 is completed through the above steps.
[0057] (第 2基板 22の製造工程) [0057] (Manufacturing process of second substrate 22)
まず、厚さが、例えば 0· 5〜数 mmのガラス基板 29を用意する。  First, a glass substrate 29 having a thickness of, for example, 0.5 to several mm is prepared.
[0058] 次に、ガラス基板 29上に、ポリイミド等を塗布し焼成した後、ラビング処理を施すこと により、厚さが、例えば数〜数十 nmの配向膜 30を形成する。 Next, after applying polyimide or the like on the glass substrate 29 and baking, a rubbing treatment is performed to form an alignment film 30 having a thickness of, for example, several to several tens of nm.
[0059] 以上の工程により、第 2基板 22が完成する。 [0059] Through the above steps, the second substrate 22 is completed.
[0060] (液晶表示パネル 10の製造工程) [0060] (Manufacturing process of liquid crystal display panel 10)
次に、第 1基板 21及び第 2基板 22を用いた液晶表示パネル 10の製造工程を説明 する。  Next, a manufacturing process of the liquid crystal display panel 10 using the first substrate 21 and the second substrate 22 will be described.
[0061] まず、第 1基板 21上に、感光性樹脂等からなるスぺーサ 24を形成する。スぺーサ 2 4は、フォトリソグラフィ法により、第 1基板 21上に複数形成する。  First, a spacer 24 made of a photosensitive resin or the like is formed on the first substrate 21. A plurality of spacers 24 are formed on the first substrate 21 by photolithography.
[0062] 尚、スぺーサ 24として、柱状のものを用いる代わりにビーズ状のものを用いてもよい 。この場合、例えば、直径 3〜10 111の球状プラスチックビーズを例えば水/ IPA、 水/エチレングリコール、エチレングリコール等の溶媒に分散させた分散液をインク ジェット法により第 1基板 21上に散布することにより、スぺーサ 24を配置する。  [0062] As the spacer 24, a bead-shaped one may be used instead of a columnar one. In this case, for example, a dispersion liquid in which spherical plastic beads having a diameter of 3 to 10 111 are dispersed in a solvent such as water / IPA, water / ethylene glycol, or ethylene glycol is dispersed on the first substrate 21 by an ink jet method. To place the spacer 24.
[0063] また、上記の位置選択的にビーズスぺーサを配置する定点散布法以外に、スぺー サ分散液をスプレーノズルから噴霧中に揮発 ·分散させる湿式散布法やドライ気流に よってスぺーサ部材(帯電処理する場合も含む)を第 1基板 21上に分散 '散布させる 乾式散布法などによっても配置することができる。  [0063] In addition to the fixed-point spraying method in which the bead spacers are arranged selectively as described above, the spacer is dispersed by a wet spraying method in which the spacer dispersion liquid is volatilized and dispersed during spraying from the spray nozzle or by a dry air stream. It is possible to dispose the member (including the case where it is charged) on the first substrate 21 by a dry spraying method in which the material is dispersed and sprayed.
[0064] 次に、第 1基板 21上において、表示領域を囲むように連続して途切れなく樹脂製 等のシール材を塗布する。  Next, a sealing material made of resin or the like is continuously applied on the first substrate 21 so as to surround the display area without interruption.
[0065] ここで、シール材は、熱硬化樹脂を被散布基板(第 2基板 22)側にスクリーン印刷で 形成してもよい。  [0065] Here, as the sealing material, a thermosetting resin may be formed on the substrate (second substrate 22) side by screen printing.
[0066] 次に、デイスペンサ等を用いて、例えば 1ショット当り 2mgのコレステリック液晶を第 1 基板 21に滴下する。この際、コレステリック液晶は第 1基板 21のシール材の内方に 滴下する。 Next, for example, 2 mg of cholesteric liquid crystal per shot is dropped onto the first substrate 21 using a dispenser or the like. At this time, the cholesteric liquid crystal is placed inside the sealing material of the first substrate 21. Dripping.
[0067] 次に、コレステリック液晶が滴下された第 1基板 21に第 2基板 22を位置合わせして 貝占り付ける。このとき、貝占り付けられた第 1基板 21及び第 2基板 22におけるシール材 で囲まれた領域に、液晶表示セルが形成される。この工程は真空中で行われる。  [0067] Next, the second substrate 22 is aligned with the first substrate 21 onto which the cholesteric liquid crystal has been dropped, and the shell is occupied. At this time, a liquid crystal display cell is formed in a region surrounded by the sealing material on the first substrate 21 and the second substrate 22 occupied by the shellfish. This step is performed in a vacuum.
[0068] 次に、これを大気中に戻すと、貼り合わされた第 1基板 21及び第 2基板 22間のコレ ステリック液晶が大気圧により拡散する。 Next, when this is returned to the atmosphere, the cholesteric liquid crystal between the first substrate 21 and the second substrate 22 bonded together is diffused by atmospheric pressure.
[0069] 次に、シール材の塗布領域に沿って UV光源を移動させながら UV光をシール材 に照射し、シール材を硬化させる。このようにして、拡散したコレステリック液晶は第 1 基板 21及び第 2基板 22間に封止されて液晶表示セルを形成する。 Next, the sealing material is cured by irradiating the sealing material with UV light while moving the UV light source along the application region of the sealing material. In this way, the diffused cholesteric liquid crystal is sealed between the first substrate 21 and the second substrate 22 to form a liquid crystal display cell.
[0070] また、液晶表示セルは、本実施形態のように形成されなくてもよぐ液晶表示パネル Further, the liquid crystal display cell may not be formed as in the present embodiment.
10の側方に液晶注入口を設けて、そこへコレステリック液晶を注入し、その後液晶注 入口を紫外線硬化樹脂等で封止するものであってもよ!/、。  It is also possible to provide a liquid crystal inlet on the side of 10, inject cholesteric liquid crystal into it, and then seal the liquid crystal inlet with UV curable resin!
[0071] 次に、必要であれば第 1基板 21及び第 2基板 22を所望のパネル枠に分断して液 晶表示パネル 10を形成し、これに不図示のドライバやコントローラ等を設けて液晶表 示装置 20を完成させる。 Next, if necessary, the first substrate 21 and the second substrate 22 are divided into desired panel frames to form the liquid crystal display panel 10, and a driver, a controller, etc. (not shown) are provided on the liquid crystal display panel 10. The display device 20 is completed.
[0072] (実施形態 2) [0072] (Embodiment 2)
次に、本発明の実施形態 2に係る液晶表示パネル 40、及び、それを用いた液晶表 示装置 50について説明する。  Next, a liquid crystal display panel 40 according to Embodiment 2 of the present invention and a liquid crystal display device 50 using the same will be described.
[0073] (液晶表示パネル 40、及び、それを用いた液晶表示装置 50の構成) [Configuration of liquid crystal display panel 40 and liquid crystal display device 50 using the same]
図 3は液晶表示装置 50の断面図を表す。液晶表示装置 50は、第 1基板 51、第 1 基板 51と対向するように設けられた第 2基板 52、及び、これらの間に挟まれたコレス テリック液晶層(メモリ性表示媒体層) 53及びスぺーサ 54で構成されている。  FIG. 3 shows a cross-sectional view of the liquid crystal display device 50. The liquid crystal display device 50 includes a first substrate 51, a second substrate 52 provided so as to face the first substrate 51, and a cholesterol liquid crystal layer (memory display medium layer) 53 sandwiched therebetween. It consists of spacers 54.
[0074] 第 1基板 51は、着色層 56が外側表面に形成されたガラス基板 55、ガラス基板 55 の内側表面に形成された画素電極 58、画素電極 58上に形成された不図示の配向 膜で構成されている。 [0074] The first substrate 51 includes a glass substrate 55 having a colored layer 56 formed on the outer surface, a pixel electrode 58 formed on the inner surface of the glass substrate 55, and an alignment film (not shown) formed on the pixel electrode 58. It consists of
[0075] 第 1基板 51はガラス基板で形成されている力 その他の基板、例えば、ポリエーテ ノレスルホン(PES)、ポリカーボネート(PC)、ポリエチレンテレフタレート(PET)などの 樹脂フィルム等の基板で形成されて!/、てもよレ、。 [0076] 着色層 56は、金属蒸着フィルム又は着色フィルム等で形成されている。 [0075] The first substrate 51 is formed of a glass substrate and other substrates, for example, a substrate such as a resin film such as polyethylene sulfonate (PES), polycarbonate (PC), or polyethylene terephthalate (PET)! / [0076] The colored layer 56 is formed of a metal vapor-deposited film or a colored film.
[0077] ここで、着色層 56を設けたのは、画素電極 58に所定の電圧を印加してコレステリッ ク液晶が可視光を透過する光透過状態に設定された際、この着色層 56でその透過 光を吸収して黒色(フォーカルコニック配歹 I])を表示するためである。  Here, the colored layer 56 is provided when a predetermined voltage is applied to the pixel electrode 58 to set the cholesteric liquid crystal in a light transmission state that transmits visible light. This is to absorb the transmitted light and display black (focal conic arrangement I]).
[0078] 画素電極 58は、ガラス基板 55の内側表面に形成されている。画素電極 58は、液 晶表示パネル 40の表示領域に対応するようにパターン形成されて!/、る。画素電極 5 8は、例えば、 ITOや IZO等の透明電極で構成されている。画素電極 58は、図示し ない駆動 ICに接続されており、電極にそれぞれ所定のパルス電圧が印加される。こ の印加電圧に応じて後述するカイラルネマチック液晶がプレーナ一配列又はフォー カルコニック配列に変化し、表示状態が切り換えられる。また、この液晶はいずれの 配列状態であっても電圧の印加を停止した後もその配列状態を維持し、双安定性 (メ モリ性)を有している。  The pixel electrode 58 is formed on the inner surface of the glass substrate 55. The pixel electrode 58 is patterned to correspond to the display area of the liquid crystal display panel 40! /. The pixel electrode 58 is composed of a transparent electrode such as ITO or IZO, for example. The pixel electrode 58 is connected to a driving IC (not shown), and a predetermined pulse voltage is applied to each electrode. In response to this applied voltage, a later-described chiral nematic liquid crystal changes to a planar one or a focal conic arrangement, and the display state is switched. In addition, this liquid crystal maintains bistability (memory property) in any alignment state even after the application of voltage is stopped.
[0079] 画素電極 58上の不図示の配向膜は、ポリイミド等で形成されている。  An alignment film (not shown) on the pixel electrode 58 is formed of polyimide or the like.
[0080] 第 2基板 52は、対向する第 1基板 51とは反対側、即ち、表示面側から、ガラス基板  [0080] The second substrate 52 is a glass substrate from the opposite side to the opposing first substrate 51, that is, from the display surface side.
59、導電膜 60、及び、配向膜 61で構成されており、紫外線硬化型等のシール材に よって第 1基板 51と貼り合わされている。  59, a conductive film 60, and an alignment film 61, which are bonded to the first substrate 51 by an ultraviolet curable sealing material.
[0081] 第 2基板 52はガラス基板等の透明基板で形成されている力 S、その他の透明基板、 例えば、ポリエーテルスルホン(PES)、ポリカーボネート(PC)、ポリエチレンテレフタ レート (PET)などの樹脂フィルム等の透明基板で形成されて!/、てもよ!/、。  [0081] The second substrate 52 is a force S formed of a transparent substrate such as a glass substrate, and other transparent substrates such as polyethersulfone (PES), polycarbonate (PC), and polyethylene terephthalate (PET). It is made of a transparent substrate such as a resin film! /!
[0082] 導電膜 60は、ガラス基板 59の内側表面全体に渡り形成されて、外部からの静電気 を膜全体に拡散するように構成されている。導電膜 60は、 ITOや IZO等の透明金属 膜で形成されている。  The conductive film 60 is formed over the entire inner surface of the glass substrate 59, and is configured to diffuse static electricity from the outside over the entire film. The conductive film 60 is formed of a transparent metal film such as ITO or IZO.
[0083] 尚、導電膜 60は、上述のようにガラス基板 59の内側表面全体に形成されていなく てもよく、液晶表示パネル 40の平面視において、少なくともその表示領域全体に渡 つて形成されてレ、ればよレ、。  Note that the conductive film 60 does not have to be formed on the entire inner surface of the glass substrate 59 as described above, and is formed over at least the entire display region in a plan view of the liquid crystal display panel 40. Let's do it.
[0084] 配向膜 61は、ポリイミド等の高分子膜である。  The alignment film 61 is a polymer film such as polyimide.
[0085] コレステリック液晶層 53は、実施形態 1で示したものと同様に、ネマチック液晶にコ レステリック液晶相を示すのに十分な量のカイラル材を添加することによって得られる メモリ性を有するカイラルネマチック液晶(コレステリック液晶)で構成されて!/、る。 [0085] The cholesteric liquid crystal layer 53 is obtained by adding a sufficient amount of chiral material to exhibit a cholesteric liquid crystal phase in the nematic liquid crystal, as in the first embodiment. It is composed of chiral nematic liquid crystal (cholesteric liquid crystal) with memory!
[0086] コレステリック液晶の螺旋ピッチは、長すぎると双安定性が確保できなくなるため、 双安定性に優れた 1 a m以下であることが好ましい。 [0086] If the helical pitch of the cholesteric liquid crystal is too long, bistability cannot be ensured. Therefore, it is preferably 1 am or less, which is excellent in bistability.
[0087] スぺーサ 54は、第 1基板 51と第 2基板 52とのギャップを保持するために、第 1基板 [0087] The spacer 54 includes a first substrate 51 for maintaining a gap between the first substrate 51 and the second substrate 52.
51及び第 2基板 52間に複数設けられている。スぺーサ 54は、無機材又は有機材を 用いて柱状に形成されてレ、る。  A plurality are provided between 51 and the second substrate 52. The spacer 54 is formed in a column shape using an inorganic material or an organic material.
[0088] 尚、スぺーサ 54は、柱状のものに限らず、無機材又は有機材を用いてビーズ状に 形成されていてもよい。 Note that the spacer 54 is not limited to a columnar shape, and may be formed in a bead shape using an inorganic material or an organic material.
[0089] (液晶表示装置 50の製造方法) [0089] (Method for Manufacturing Liquid Crystal Display Device 50)
次に、本実施形態 2に係る液晶表示装置 50の製造方法について詳細に説明する  Next, a manufacturing method of the liquid crystal display device 50 according to the second embodiment will be described in detail.
[0090] (第 1基板 51の製造工程) [0090] (Process for manufacturing first substrate 51)
まず、厚さが、例えば 0· 5〜数 mmのガラス基板 55を用意する。  First, a glass substrate 55 having a thickness of, for example, 0.5 to several mm is prepared.
[0091] 次に、ガラス基板 55上に、厚さが、例えば数十 nmの金属蒸着フィルム又は着色フ イルム等の着色層 56を形成する。 [0091] Next, a colored layer 56 such as a metal vapor deposition film or a colored film having a thickness of, for example, several tens of nm is formed on the glass substrate 55.
[0092] 次に、ガラス基板 55の着色層 56と反対側表面に、スパッタリング法により、厚さが、 例えば数〜数十 nmの ITO膜を成膜した後、 PEP技術により所望の形状にパターン 形成して画素電極 58を形成する。 Next, an ITO film having a thickness of, for example, several to several tens of nm is formed on the surface of the glass substrate 55 opposite to the colored layer 56 by sputtering, and then patterned into a desired shape by PEP technology. Then, the pixel electrode 58 is formed.
[0093] 次に、画素電極 58上に、ポリイミド等を塗布し焼成し、厚さが、例えば数〜数十 mの配向膜を形成する。 Next, on the pixel electrode 58, polyimide or the like is applied and baked to form an alignment film having a thickness of, for example, several to several tens of meters.
[0094] 以上の工程により、第 1基板 51が完成する。 The first substrate 51 is completed through the above steps.
[0095] (第 2基板 52の製造工程) [0095] (Manufacturing process of second substrate 52)
まず、厚さが、例えば 0· 5〜数 mmのガラス基板 59を用意する。  First, a glass substrate 59 having a thickness of, for example, 0.5 to several mm is prepared.
次に、ガラス基板 59表面に ITO等を蒸着して、厚さが、例えば数〜数百 nmの導電 膜 60を形成する。  Next, ITO or the like is deposited on the surface of the glass substrate 59 to form a conductive film 60 having a thickness of, for example, several to several hundred nm.
[0096] 次に、導電膜 60上にポリイミド等を塗布し、厚さが、例えば数〜数十 nmの配向膜 6 1を形成する。  Next, polyimide or the like is applied onto the conductive film 60 to form an alignment film 61 having a thickness of, for example, several to several tens of nm.
[0097] 以上の工程により、第 2基板 52が完成する。 [0098] (液晶表示パネル 40の製造工程) Through the above steps, the second substrate 52 is completed. [0098] (Manufacturing process of liquid crystal display panel 40 )
次に、第 1基板 51及び第 2基板 52を用いた液晶表示パネル 40の製造工程を説明 する。  Next, a manufacturing process of the liquid crystal display panel 40 using the first substrate 51 and the second substrate 52 will be described.
[0099] まず、第 1基板 51上に、感光性樹脂等からなるスぺーサ 54を形成する。スぺーサ 5 First, a spacer 54 made of a photosensitive resin or the like is formed on the first substrate 51. Spacer 5
4は、フォトリソグラフィ法により、第 1基板 51上に複数形成する。 A plurality of 4 are formed on the first substrate 51 by photolithography.
[0100] 尚、スぺーサとして、柱状のものを用いる代わりに、実施形態 1で示したように、ビー ズ状のもの等を用いてもょレ、。 [0100] Instead of using columnar spacers, as shown in Embodiment 1, bead-shaped ones may be used.
[0101] 次に、第 1基板 51上において、表示領域を囲むように連続して途切れなく紫外線 硬化型等のシール材を塗布する。  Next, on the first substrate 51, a sealing material such as an ultraviolet curing type is applied continuously and continuously so as to surround the display area.
[0102] 次に、デイスペンサ等を用いて、例えば 1ショット当り 2mgのコレステリック液晶を第 1 基板 51に滴下する。この際、コレステリック液晶は第 1基板 51のシール材の内方に 滴下する。 Next, for example, 2 mg of cholesteric liquid crystal per shot is dropped onto the first substrate 51 using a dispenser or the like. At this time, the cholesteric liquid crystal is dropped inside the sealing material of the first substrate 51.
[0103] 次に、コレステリック液晶が滴下された第 1基板 51に第 2基板 52を位置合わせして 貝占り付ける。このとき、貝占り付けられた第 1基板 51及び第 2基板 52におけるシール材 で囲まれた領域に、液晶表示セルが形成される。この工程は真空中で行われる。  [0103] Next, the second substrate 52 is aligned with the first substrate 51 on which the cholesteric liquid crystal has been dropped, and the shells are occupied. At this time, a liquid crystal display cell is formed in a region surrounded by the sealing material in the first substrate 51 and the second substrate 52 occupied by the shellfish. This step is performed in a vacuum.
[0104] 次に、これを大気中に戻すと、貼り合わされた第 1基板 51及び第 2基板 52間のコレ ステリック液晶が大気圧により拡散する。  Next, when this is returned to the atmosphere, the cholesteric liquid crystal between the first substrate 51 and the second substrate 52 bonded together is diffused by atmospheric pressure.
[0105] 次に、シール材の塗布領域に沿って UV光源を移動させながら UV光をシール材 に照射し、シール材を硬化させる。このようにして、拡散したコレステリック液晶は第 1 基板 51及び第 2基板 52間に封止されて液晶表示セルを形成する。  [0105] Next, the sealing material is cured by irradiating the sealing material with UV light while moving the UV light source along the application region of the sealing material. In this manner, the diffused cholesteric liquid crystal is sealed between the first substrate 51 and the second substrate 52 to form a liquid crystal display cell.
[0106] また、液晶表示セルは、本実施形態のように形成されなくてもよぐ液晶表示パネル 40の側方に液晶注入口を設けて、そこへコレステリック液晶を注入し、その後液晶注 入口を紫外線硬化樹脂等で封止するものであってもよ!/、。  In addition, the liquid crystal display cell may be provided with a liquid crystal injection port on the side of the liquid crystal display panel 40, which may not be formed as in the present embodiment, and cholesteric liquid crystal is injected into the liquid crystal display panel 40. Can be sealed with UV curable resin! /.
[0107] 次に、必要であれば第 1基板 51及び第 2基板 52を所望のパネル枠に分断して液 晶表示パネル 40を形成し、これに不図示のドライバやコントローラ等を設けて液晶表 示装置 50を完成させる。  [0107] Next, if necessary, the first substrate 51 and the second substrate 52 are divided into desired panel frames to form the liquid crystal display panel 40, which is provided with a driver, a controller, etc. (not shown). The display device 50 is completed.
[0108] (実施形態 3)  [Embodiment 3]
次に、本発明の実施形態 3に係る液晶表示パネル 70、及び、それを用いた液晶表 示装置 80について説明する。ここで、液晶表示装置 80は、実施形態 1で示した液晶 表示装置 20と同様に、第 1基板側に導電膜を設けたものであるが、液晶材料としてコ レステリック液晶の代わりに、偏光板を必要とする双安定ツイストネマティック(BTN =Next, a liquid crystal display panel 70 according to Embodiment 3 of the present invention, and a liquid crystal display using the same. The display device 80 will be described. Here, like the liquid crystal display device 20 shown in the first embodiment, the liquid crystal display device 80 is provided with a conductive film on the first substrate side, but a polarizing plate is used instead of cholesteric liquid crystal as a liquid crystal material. Bistable twist nematic (BTN =
Bistable Twisted Nematic,代表例は BiNem : Bistable Nematic液晶)や強誘電液晶 等のメモリ性液晶材料を用いて!/、る点で異なって!/、る。 Bistable Twisted Nematic, typical example is BiNem (Bistable Nematic liquid crystal) and ferroelectric liquid crystal.
[0109] (液晶表示パネル 70、及び、それを用いた液晶表示装置 80の構成) [Configuration of liquid crystal display panel 70 and liquid crystal display device 80 using the same]
図 4は本発明の実施形態 3に係る液晶表示パネル 70及びそれを用いた液晶表示 装置 80の断面図を表す。液晶表示パネル 70は、第 1基板 81、第 1基板 81と対向す るように設けられた第 2基板 82、及び、これらの間に挟まれた BTN液晶層(メモリ性 表示媒体層) 83及びスぺーサ 84で構成されて!/、る。  FIG. 4 is a cross-sectional view of a liquid crystal display panel 70 and a liquid crystal display device 80 using the same according to Embodiment 3 of the present invention. The liquid crystal display panel 70 includes a first substrate 81, a second substrate 82 provided so as to face the first substrate 81, and a BTN liquid crystal layer (memory display medium layer) 83 sandwiched therebetween. Spacer is composed of 84! /, Ru.
[0110] 第 1基板 81は、ガラス基板 85、ガラス基板 85の外側表面に形成された偏光板 92、 ガラス基板 85の内側表面に形成された導電膜 86、導電膜 86上に形成された絶縁 膜 87、絶縁膜 87上に形成された画素電極 88、及び、画素電極 88上に形成された 不図示の配向膜等で構成されている。 [0110] The first substrate 81 includes a glass substrate 85, a polarizing plate 92 formed on the outer surface of the glass substrate 85, a conductive film 86 formed on the inner surface of the glass substrate 85, and an insulation formed on the conductive film 86. The film 87, the pixel electrode 88 formed on the insulating film 87, the alignment film (not shown) formed on the pixel electrode 88, and the like.
[0111] 第 1基板 81はガラス基板 85で形成されている力 その他の基板、例えば、ポリエー テルスルホン(PES)、ポリカーボネート(PC)、ポリエチレンテレフタレート(PET)など の樹脂フィルム等の基板で形成されてレ、てもよレ、。 [0111] The first substrate 81 is formed of a glass substrate 85 and other substrates such as a substrate such as a resin film such as polyethersulfone (PES), polycarbonate (PC), polyethylene terephthalate (PET). Les, even okay.
[0112] 偏光板 92は、ガラス基板 85の外側表面に形成されている。偏光板 92は、例えば、 ポリビュルアルコール(PVA)フィルムにヨウ素や染料などの二色性色素を吸着或い は染色させ、高精度に一軸延伸させて形成されている。 [0112] The polarizing plate 92 is formed on the outer surface of the glass substrate 85. The polarizing plate 92 is formed, for example, by adsorbing or dyeing a dichroic dye such as iodine or a dye on a polybulal alcohol (PVA) film and stretching it uniaxially with high accuracy.
[0113] 導電膜 86は、ガラス基板 85の内側表面全体に渡り形成されて、外部からの静電気 を膜全体に拡散するように構成されている。導電膜 86は、光が透過するように、 ITO や IZO等の透明金属膜で形成されて!/、る。 The conductive film 86 is formed over the entire inner surface of the glass substrate 85, and is configured to diffuse static electricity from the outside over the entire film. The conductive film 86 is formed of a transparent metal film such as ITO or IZO so that light can pass therethrough.
[0114] 尚、導電膜 86は、上述のようにガラス基板 85の内側表面全体に形成されていなく てもよく、液晶表示パネル 70の平面視において、少なくともその表示領域全体に渡 つて形成されてレ、ればよレ、。 [0114] Note that the conductive film 86 does not have to be formed on the entire inner surface of the glass substrate 85 as described above, and is formed over at least the entire display region in a plan view of the liquid crystal display panel 70. Let's do it.
[0115] また、導電膜 86は、第 1基板 81に形成されているだけでなぐ第 2基板 82にも形成 されて!/、てもよ!/、。より外部からの静電気を液晶表示パネル 70全体に拡散することが 容易となるためである。 [0115] Further, the conductive film 86 is formed not only on the first substrate 81 but also on the second substrate 82 as well as! /, May! /. It is possible to spread static electricity from outside to the entire LCD panel 70. This is because it becomes easy.
[0116] 絶縁膜 87は、導電膜 86の内側表面に、例えば電着法等により導電膜 86全体を覆 うように形成されており、画素電極 88と導電膜 86とを電気的に絶縁状態にしている。 絶縁膜 87は、光が透過するように、アクリル樹脂等の透明樹脂で形成されている。  [0116] The insulating film 87 is formed on the inner surface of the conductive film 86 so as to cover the entire conductive film 86 by, for example, an electrodeposition method, and the pixel electrode 88 and the conductive film 86 are electrically insulated. I have to. The insulating film 87 is formed of a transparent resin such as an acrylic resin so that light can be transmitted.
[0117] 尚、絶縁膜 87は、上述のように、導電膜 86全体を覆うように形成されていなくてもよ ぐ少なくとも画素電極 88と導電膜 86との間を仕切るように設けられていればよい。  [0117] As described above, the insulating film 87 does not have to be formed so as to cover the entire conductive film 86, but is provided so as to partition at least the pixel electrode 88 and the conductive film 86. That's fine.
[0118] 画素電極 88は、絶縁膜 87上に形成されている。画素電極 88は、液晶表示パネル  The pixel electrode 88 is formed on the insulating film 87. Pixel electrode 88 is a liquid crystal display panel
70の表示領域に対応するようにパターン形成されている。画素電極 88は、例えば、 I TOや IZO等の透明電極で構成されている。画素電極 88は、図示しない駆動 ICに接 続されており、電極にそれぞれ所定のパルス電圧が印加される。この印加電圧に応 じてパイネマティック液晶の配列が変化し、表示状態が切り換えられる。また、この液 晶は電圧の印加を停止した後もその配列状態を維持し、メモリ性を有して!/、る。  A pattern is formed so as to correspond to 70 display areas. The pixel electrode 88 is composed of a transparent electrode such as ITO or IZO, for example. The pixel electrode 88 is connected to a driving IC (not shown), and a predetermined pulse voltage is applied to each of the electrodes. In response to this applied voltage, the alignment of the pinematic liquid crystal changes and the display state is switched. In addition, this liquid crystal maintains its alignment state even after the voltage application is stopped, and has a memory property.
[0119] 画素電極 88上の不図示の配向膜は、ポリイミド等の高分子膜表面に同一方向にラ ビング処理を施して形成されて!/、る。  [0119] An alignment film (not shown) on the pixel electrode 88 is formed by rubbing the surface of a polymer film such as polyimide in the same direction.
[0120] 第 2基板 82は、対向する第 1基板 81とは反対側、即ち、表示面側から、偏光板 91 、ガラス基板 89、及び、配向膜 90で構成されており、紫外線硬化型等のシール材に よって第 1基板 81と貼り合わされている。  [0120] The second substrate 82 is composed of a polarizing plate 91, a glass substrate 89, and an alignment film 90 from the opposite side to the opposing first substrate 81, that is, from the display surface side, such as an ultraviolet curable type. The first substrate 81 is bonded with the sealing material.
[0121] 第 2基板 82はガラス基板等の透明基板で形成されている力 その他の透明基板、 例えば、ポリエーテルスルホン(PES)、ポリカーボネート(PC)、ポリエチレンテレフタ レート (PET)などの樹脂フィルム等の透明基板で形成されて!/、てもよ!/、。  [0121] The second substrate 82 is formed of a transparent substrate such as a glass substrate. Other transparent substrates, for example, resin films such as polyethersulfone (PES), polycarbonate (PC), polyethylene terephthalate (PET), etc. It is formed with a transparent substrate!
[0122] 偏光板 91は、ガラス基板 89の外側表面に形成されている。偏光板 91は、例えば、 ポリビュルアルコール(PVA)フィルムにヨウ素や染料などの二色性色素を吸着或い は染色させ、高精度に一軸延伸させて形成されている。偏光板 91は、第 1基板 81の 偏光板 92に対して透過軸が直交するように配置されて!/、る。  The polarizing plate 91 is formed on the outer surface of the glass substrate 89. The polarizing plate 91 is formed, for example, by adsorbing or dyeing a dichroic dye such as iodine or a dye on a polybulal alcohol (PVA) film and stretching it uniaxially with high accuracy. The polarizing plate 91 is arranged so that the transmission axis is orthogonal to the polarizing plate 92 of the first substrate 81.
[0123] 配向膜 90は、ポリイミド等の高分子膜表面に同一方向にラビング処理を施して形成 されている。  [0123] The alignment film 90 is formed by subjecting the surface of a polymer film such as polyimide to rubbing treatment in the same direction.
[0124] ここで、第 1基板 81の配向膜及び第 2基板 82の配向膜 90は、 BTN液晶を用いた 液晶表示装置 80の動作原理上、各々、特有の処理が施されている。 BTNの代表的 な BiNemで説明する力 S、具体的には、第 1基板 81の配向膜は、プレチルト角を持た ず、弱い極角アンカリングが得られる配向処理が施されており、第 2基板 82の配向膜 90は、比較的大きなプレチルト角を持ち、強い極角アンカリングが得られる配向処理 が施されている。このため、液晶表示装置 80に電圧ノ ルスを印加して極角アンカリン グが弱い第 1基板 81上のダイレクターの向きを液晶のフローの効果により反転させる 。そして、ツイスト角 0度の状態(ュュフォーム状態)及びツイスト角 180度の状態(ツイ スト状態)の二つの配向状態間で双安定な遷移を誘起させている。 [0124] Here, the alignment film of the first substrate 81 and the alignment film 90 of the second substrate 82 are each subjected to a specific process on the operating principle of the liquid crystal display device 80 using BTN liquid crystal. Representative of BTN The force S explained by BiNem, specifically, the alignment film of the first substrate 81 does not have a pretilt angle and has been subjected to an alignment process to obtain a weak polar angle anchoring. The film 90 has a relatively large pretilt angle and is subjected to an alignment treatment that provides a strong polar angle anchoring. Therefore, a voltage noise is applied to the liquid crystal display device 80 to reverse the direction of the director on the first substrate 81 having a weak polar angle anchoring due to the effect of the liquid crystal flow. A bi-stable transition is induced between two orientation states, ie, a state with a twist angle of 0 ° (Twoform state) and a state with a twist angle of 180 ° (Twist state).
[0125] スぺーサ 84は、第 1基板 81と第 2基板 82とのギャップを保持するために、第 1基板  [0125] The spacer 84 has a first substrate 81 in order to maintain a gap between the first substrate 81 and the second substrate 82.
81及び第 2基板 82間に複数設けられている。スぺーサ 84は、無機材又は有機材を 用いて柱状に形成されてレ、る。  A plurality of terminals 81 and the second substrate 82 are provided. The spacer 84 is formed in a column shape using an inorganic material or an organic material.
[0126] 尚、スぺーサ 84は、柱状のものに限らず、無機材又は有機材を用いてビーズ状に 形成されていてもよい。  [0126] Note that the spacer 84 is not limited to a columnar shape, and may be formed in a bead shape using an inorganic material or an organic material.
[0127] また、本実施形態では、液晶材料に BTNの代表的な BiNem液晶を用いたが、こ れに限定されず、強誘電液晶等のメモリ性の液晶材料であってもよ!/、。  [0127] In the present embodiment, BTN's representative BiNem liquid crystal is used as the liquid crystal material. However, the present invention is not limited to this, and a liquid crystal material having a memory property such as a ferroelectric liquid crystal may be used! /, .
[0128] (液晶表示装置 80の製造方法) [0128] (Manufacturing method of liquid crystal display device 80)
次に、本実施形態 3に係る液晶表示装置 80の製造方法について詳細に説明する  Next, a manufacturing method of the liquid crystal display device 80 according to Embodiment 3 will be described in detail.
[0129] (第 1基板 81の製造工程) [0129] (Process for manufacturing first substrate 81)
まず、厚さが、例えば 0· 8〜数 mmのガラス基板 85を用意する。  First, a glass substrate 85 having a thickness of, for example, 0 · 8 to several mm is prepared.
[0130] 次に、ガラス基板 85表面に ITO等を蒸着して、厚さが、例えば数〜数百 nmの導電 膜 86を形成する。 Next, ITO or the like is vapor-deposited on the surface of the glass substrate 85 to form a conductive film 86 having a thickness of, for example, several to several hundred nm.
[0131] 次に、導電膜 86上に電着法により、厚さが、例えば数〜数十 mの絶縁膜 87を導 電膜 86の表面全体に形成する。  Next, an insulating film 87 having a thickness of, for example, several to several tens of meters is formed on the entire surface of the conductive film 86 by electrodeposition on the conductive film 86.
[0132] 次に、絶縁膜 87上に、スパッタリング法により、厚さが、例えば数〜数百 nmの ITO 膜を成膜した後、 PEP技術により所望の形状にパターン形成して画素電極 88を形成 する。 [0132] Next, an ITO film having a thickness of, for example, several to several hundreds of nanometers is formed on the insulating film 87 by sputtering, and then patterned into a desired shape by the PEP technique to form the pixel electrode 88. Form.
[0133] 次に、画素電極 88上に、ポリイミド等を塗布し焼成した後、ラビング処理を施すこと により、厚さが、例えば数〜数十 nmの配向膜を形成する。 [0134] (第 2基板 82の製造工程) Next, after applying polyimide or the like on the pixel electrode 88 and baking it, a rubbing treatment is performed to form an alignment film having a thickness of, for example, several to several tens of nm. [0134] (Manufacturing process of second substrate 82)
まず、厚さが、例えば 0· 8〜数 mmのガラス基板 89を用意する。  First, a glass substrate 89 having a thickness of, for example, 0 · 8 to several mm is prepared.
[0135] 次に、ガラス基板 89上に、ポリイミド等を塗布し焼成した後、ラビング処理を施すこと により、厚さが、例えば数〜数十 nmの配向膜 90を形成する。 Next, after applying polyimide or the like on the glass substrate 89 and baking, a rubbing treatment is performed to form an alignment film 90 having a thickness of, for example, several to several tens of nm.
[0136] (液晶表示パネル 70の製造工程) [0136] (Manufacturing process of liquid crystal display panel 70)
次に、第 1基板 81及び第 2基板 82を用いた液晶表示パネル 70の製造工程を説明 する。  Next, a manufacturing process of the liquid crystal display panel 70 using the first substrate 81 and the second substrate 82 will be described.
[0137] まず、第 1基板 81上に、感光性樹脂等からなるスぺーサ 84を形成する。スぺーサ 8 First, a spacer 84 made of a photosensitive resin or the like is formed on the first substrate 81. Spacer 8
4は、フォトリソグラフィ法により、第 1基板 81上に複数形成する。 A plurality of 4 are formed on the first substrate 81 by photolithography.
[0138] 尚、スぺーサ 84として、柱状のものを用いる代わりに、実施形態 1に示したように、 ビーズ状のもの等を用いてもよ!/、。 [0138] Instead of using a columnar one as the spacer 84, a bead-like one may be used as shown in the first embodiment!
[0139] 次に、第 1基板 81上において、表示領域を囲むように連続して途切れなく紫外線 硬化型等のシール材を塗布する。 [0139] Next, on the first substrate 81, a sealing material such as an ultraviolet curing type is applied continuously and continuously so as to surround the display region.
[0140] 次に、デイスペンサ等を用いて、例えば 1ショット当り 2mgの BTN液晶を第 1基板 81 に滴下する。この際、 BTN液晶は第 1基板 81のシール材の内方に滴下する。 Next, for example, 2 mg of BTN liquid crystal per shot is dropped onto the first substrate 81 using a dispenser or the like. At this time, the BTN liquid crystal is dropped inside the sealing material of the first substrate 81.
[0141] 次に、 BTN液晶が滴下された第 1基板 81に第 2基板 82を位置合わせして貼り付け る。このとき、貝占り付けられた第 1基板 81及び第 2基板 82におけるシール材で囲まれ た領域に、液晶表示セルが形成される。この工程は真空中で行われる。 [0141] Next, the second substrate 82 is aligned and attached to the first substrate 81 on which the BTN liquid crystal is dropped. At this time, a liquid crystal display cell is formed in a region surrounded by the sealing material in the first substrate 81 and the second substrate 82 occupied by the shellfish. This step is performed in a vacuum.
[0142] 次に、これを大気中に戻すと、貼り合わされた第 1基板 81及び第 2基板 82間の BT[0142] Next, when this is returned to the atmosphere, the BT between the first substrate 81 and the second substrate 82 bonded together
N液晶が大気圧により拡散する。 N liquid crystal diffuses by atmospheric pressure.
[0143] 次に、シール材の塗布領域に沿って UV光源を移動させながら UV光をシール材 に照射し、シール材を硬化させる。このようにして、拡散した BTN液晶は第 1基板 81 及び第 2基板 82間に封止されて液晶表示セルを形成する。 [0143] Next, the seal material is cured by irradiating the seal material with UV light while moving the UV light source along the application area of the seal material. In this way, the diffused BTN liquid crystal is sealed between the first substrate 81 and the second substrate 82 to form a liquid crystal display cell.
[0144] また、液晶表示セルは、本実施形態のように形成されなくてもよぐ液晶表示パネル[0144] Further, the liquid crystal display panel may not be formed as in the present embodiment.
70の側方に液晶注入口を設けて、そこへ BTN液晶を注入し、その後液晶注入口を 紫外線硬化樹脂等で封止するものであってもよい。 A liquid crystal injection port may be provided on the side of 70, and BTN liquid crystal may be injected there, and then the liquid crystal injection port may be sealed with an ultraviolet curable resin or the like.
[0145] 次に、必要であれば第 1基板 81及び第 2基板 82を所望のパネル枠に分断した後、 パネルの両表面にそれぞれ偏光板 91 , 92を互いに直交するように配置して液晶表 示パネル 70を作製する。そして、この液晶表示パネル 70に不図示のドライバやコント ローラ等を設けて液晶表示装置 80を完成させる。 Next, if necessary, the first substrate 81 and the second substrate 82 are divided into desired panel frames, and then polarizing plates 91 and 92 are arranged on both surfaces of the panel so as to be orthogonal to each other. table Display panel 70 is produced. Then, a liquid crystal display device 80 is completed by providing the liquid crystal display panel 70 with a driver or a controller (not shown).
[0146] (実施形態 4)  [Embodiment 4]
次に、本発明の実施形態 4に係る液晶表示パネル 100、及び、それを用いた液晶 表示装置 110について説明する。ここで、液晶表示装置 110は、実施形態 2で示し た液晶表示装置 50と同様に、第 2基板側に導電膜を設けたものであるが、液晶材料 としてコレステリック液晶の代わりに、偏光板を必要とする双安定ツイストネマティック( BTN = Bistable Twisted Nematic,代表例は BiNem : Bistable Nematic液晶)や強誘 電液晶等のメモリ性液晶材料を用いてレ、る点で異なってレ、る。  Next, a liquid crystal display panel 100 according to Embodiment 4 of the present invention and a liquid crystal display device 110 using the same will be described. Here, like the liquid crystal display device 50 shown in the second embodiment, the liquid crystal display device 110 is provided with a conductive film on the second substrate side, but a polarizing plate is used instead of cholesteric liquid crystal as a liquid crystal material. It is different in that it uses memory liquid crystal materials such as the required bistable twisted nematic (BTN = Bistable Twisted Nematic, representative example is BiNem).
[0147] (液晶表示パネル 100、及び、それを用いた液晶表示装置 110の構成)  [Configuration of liquid crystal display panel 100 and liquid crystal display device 110 using the same]
図 5は液晶表示装置 110の断面図を表す。液晶表示装置 110は、第 1基板 111、 第 1基板 111と対向するように設けられた第 2基板 112、及び、これらの間に挟まれた BTN液晶層(メモリ性表示媒体層) 113及びスぺーサ 114で構成されている。  FIG. 5 shows a cross-sectional view of the liquid crystal display device 110. The liquid crystal display device 110 includes a first substrate 111, a second substrate 112 provided so as to face the first substrate 111, and a BTN liquid crystal layer (memory display medium layer) 113 and a storage sandwiched between them. It is composed of spacers 114.
[0148] 第 1基板 111は、偏光板 123が外側表面に形成されたガラス基板 115、ガラス基板  [0148] The first substrate 111 is a glass substrate 115 having a polarizing plate 123 formed on the outer surface, a glass substrate
115の内側表面に形成された画素電極 118、画素電極 118上に形成された不図示 の配向膜で構成されている。  The pixel electrode 118 is formed on the inner surface of 115, and an alignment film (not shown) formed on the pixel electrode 118 is formed.
[0149] 第 1基板 111はガラス基板で形成されている力 その他の基板、例えば、ポリエー テルスルホン(PES)、ポリカーボネート(PC)、ポリエチレンテレフタレート(PET)など の樹脂フィルム等の基板で形成されてレ、てもよレ、。  [0149] The first substrate 111 is formed of a glass substrate and other substrates such as a resin film such as polyethersulfone (PES), polycarbonate (PC), polyethylene terephthalate (PET), and the like. It ’s okay.
[0150] 偏光板 123は、ガラス基板 115の外側表面に形成されている。偏光板 123は、例え ば、ポリビュルアルコール(PVA)フィルムにヨウ素や染料などの二色性色素を吸着 或いは染色させ、高精度に一軸延伸させて形成されて!/、る。  [0150] The polarizing plate 123 is formed on the outer surface of the glass substrate 115. The polarizing plate 123 is formed, for example, by adsorbing or dyeing a dichroic dye such as iodine or a dye on a polybulal alcohol (PVA) film and stretching it uniaxially with high accuracy.
[0151] 画素電極 118は、ガラス基板 115の内側表面に形成されている。画素電極 118は 、液晶表示パネル 100の表示領域に対応するようにパターン形成されている。画素 電極 118は、例えば、 ITOや IZO等の透明電極で構成されている。画素電極 118は 、図示しない駆動 ICに接続されており、電極にそれぞれ所定のパルス電圧が印加さ れる。この印加電圧に応じて BTN液晶の配列が変化し、表示状態が切り換えられる 。また、この液晶は電圧の印加を停止した後もその配列状態を維持し、メモリ性を有 している。 [0151] The pixel electrode 118 is formed on the inner surface of the glass substrate 115. The pixel electrode 118 is patterned so as to correspond to the display area of the liquid crystal display panel 100. The pixel electrode 118 is composed of a transparent electrode such as ITO or IZO, for example. The pixel electrodes 118 are connected to a driving IC (not shown), and a predetermined pulse voltage is applied to each of the electrodes. The alignment of the BTN liquid crystal changes according to this applied voltage, and the display state is switched. In addition, this liquid crystal maintains its alignment state even after voltage application is stopped, and has a memory property. is doing.
[0152] 画素電極 118上の不図示の配向膜は、ポリイミド等の高分子膜表面に同一方向に ラビング処理を施して形成されて!/、る。  [0152] An alignment film (not shown) on the pixel electrode 118 is formed by rubbing a polymer film surface such as polyimide in the same direction.
[0153] 第 2基板 112は、対向する第 1基板 111とは反対側、即ち、表示面側から、偏光板 1[0153] The second substrate 112 is formed on the polarizing plate 1 from the opposite side of the opposing first substrate 111, ie, from the display surface side.
22、ガラス基板 119、導電膜 120、及び、配向膜 121で構成されており、紫外線硬化 型等のシール材によって第 1基板 111と貼り合わされて!/、る。 22, a glass substrate 119, a conductive film 120, and an alignment film 121, which are bonded to the first substrate 111 with an ultraviolet curable sealing material.
[0154] 第 2基板 112はガラス基板 115等の透明基板で形成されている力 その他の透明 基板、例えば、ポリエーテルスルホン(PES)、ポリカーボネート(PC)、ポリエチレンテ レフタレート(PET)などの樹脂フィルム等の透明基板で形成されて!/、てもよレ、。 [0154] The second substrate 112 is formed of a transparent substrate such as a glass substrate 115. Other transparent substrates, for example, resin films such as polyethersulfone (PES), polycarbonate (PC), and polyethylene terephthalate (PET) It is formed with a transparent substrate such as! /
[0155] 偏光板 122は、ガラス基板 115の外側表面に形成されている。偏光板 122は、例え ば、ポリビュルアルコール(PVA)フィルムにヨウ素や染料などの二色性色素を吸着 或いは染色させ、高精度に一軸延伸させて形成されて!/、る。 [0155] The polarizing plate 122 is formed on the outer surface of the glass substrate 115. The polarizing plate 122 is formed, for example, by adsorbing or dyeing a dichroic dye such as iodine or a dye on a polybulal alcohol (PVA) film and stretching it uniaxially with high accuracy.
[0156] 導電膜 120は、ガラス基板 119の内側表面全体に渡り形成されて、外部からの静 電気を膜全体に拡散するように構成されている。導電膜 120は、 ITOや IZO等の透 明金属膜で形成されて!/、る。 [0156] The conductive film 120 is formed over the entire inner surface of the glass substrate 119, and is configured to diffuse an external electrostatic force throughout the film. The conductive film 120 is formed of a transparent metal film such as ITO or IZO!
[0157] 尚、導電膜 120は、上述のようにガラス基板 119の内側表面全体に形成されていな くてもよく、液晶表示パネル 100の平面視において、少なくともその表示領域全体に 渡って形成されてレ、ればよレ、。 Note that the conductive film 120 does not have to be formed on the entire inner surface of the glass substrate 119 as described above, and is formed over at least the entire display region in the plan view of the liquid crystal display panel 100. I'll do it.
[0158] 配向膜 121は、ポリイミド等の高分子膜表面に同一方向にラビング処理を施して形 成されている。また、第 1基板 111の配向膜及び第 2基板 112の配向膜 121は、バイ ネマティック液晶を用いた液晶表示装置 110の動作原理上、各々、実施形態 3で示 した配向膜と同様の配向処理が施されている。 The alignment film 121 is formed by subjecting the surface of a polymer film such as polyimide to rubbing treatment in the same direction. Further, the alignment film 121 of the first substrate 111 and the alignment film 121 of the second substrate 112 are each subjected to the same alignment treatment as the alignment film described in Embodiment 3 in terms of the operation principle of the liquid crystal display device 110 using the venematic liquid crystal. Is given.
[0159] スぺーサ 114は、第 1基板 111と第 2基板 112とのギャップを保持するために、第 1 基板 111及び第 2基板 112間に複数設けられている。スぺーサ 114は、無機材又は 有機材を用いて柱状に形成されて!/、る。 A plurality of spacers 114 are provided between the first substrate 111 and the second substrate 112 in order to maintain a gap between the first substrate 111 and the second substrate 112. The spacer 114 is formed in a column shape using an inorganic material or an organic material.
[0160] 尚、スぺーサ 114は、柱状のものに限らず、無機材又は有機材を用いてビーズ状 に形成されていてもよい。 [0160] Note that the spacer 114 is not limited to a columnar shape, and may be formed in a bead shape using an inorganic material or an organic material.
[0161] (液晶表示装置 110の製造方法) 次に、本実施形態 4に係る液晶表示装置 110の製造方法について詳細に説明す [0161] (Manufacturing method of liquid crystal display device 110) Next, a manufacturing method of the liquid crystal display device 110 according to the fourth embodiment will be described in detail.
[0162] (第 1基板 111の製造工程) [0162] (Process for manufacturing the first substrate 111)
まず、厚さが、例えば 0· 8〜数 mmのガラス基板 115を用意する。  First, a glass substrate 115 having a thickness of, for example, 0 · 8 to several mm is prepared.
[0163] 次に、ガラス基板 115上に、スパッタリング法により、厚さが、例えば数〜数百 nmの[0163] Next, a thickness of, for example, several to several hundred nm is formed on the glass substrate 115 by sputtering.
ITO膜を成膜した後、 PEP技術により所望の形状にパターン形成して画素電極 118 を形成する。 After the ITO film is formed, the pixel electrode 118 is formed by patterning into a desired shape by the PEP technique.
[0164] 次に、画素電極 118上に、ポリイミド等を塗布し焼成した後、ラビング処理を施すこ とにより、厚さが、例えば数〜数十 nmの配向膜を形成する。  Next, after applying polyimide or the like on the pixel electrode 118 and baking, a rubbing treatment is performed to form an alignment film having a thickness of, for example, several to several tens of nm.
[0165] (第 2基板 112の製造工程) [0165] (Manufacturing process of second substrate 112)
まず、厚さが、例えば 0· 8〜数 mmのガラス基板 119を用意する。  First, a glass substrate 119 having a thickness of, for example, 0 · 8 to several mm is prepared.
次に、ガラス基板 119表面に ITO等を蒸着して、厚さが、例えば数〜数十 mの導 電膜 120を形成する。  Next, ITO or the like is deposited on the surface of the glass substrate 119 to form a conductive film 120 having a thickness of, for example, several to several tens of meters.
[0166] 次に、導電膜 120上にポリイミド等を塗布し焼成した後、ラビング処理を施すことに より、厚さが、例えば数〜数十 nmの配向膜 121を形成する。  [0166] Next, polyimide or the like is applied onto the conductive film 120 and baked, and then a rubbing process is performed to form an alignment film 121 having a thickness of, for example, several to several tens of nm.
[0167] (液晶表示パネル 100の製造工程) [0167] (Manufacturing process of liquid crystal display panel 100)
次に、第 1基板 111及び第 2基板 112を用いた液晶表示パネル 100の製造工程を 説明する。  Next, a manufacturing process of the liquid crystal display panel 100 using the first substrate 111 and the second substrate 112 will be described.
[0168] まず、第 1基板 111上に、感光性樹脂等からなるスぺーサ 114を形成する。スぺー サ 114は、フォトリソグラフィ法により、第 1基板 111上に複数形成する。  First, a spacer 114 made of a photosensitive resin or the like is formed on the first substrate 111. A plurality of spacers 114 are formed on the first substrate 111 by photolithography.
[0169] 尚、スぺーサ 114として、柱状のものを用いる代わりに、実施形態 1で示したように、 ビーズ状のもの等を用いてもよ!/、。 [0169] Instead of using a columnar one as the spacer 114, a bead-like one or the like may be used as shown in the first embodiment!
[0170] 次に、第 1基板 111上において、表示領域を囲むように連続して途切れなく紫外線 硬化型等のシール材を塗布する。 [0170] Next, on the first substrate 111, a sealing material such as an ultraviolet curing type is applied continuously and continuously so as to surround the display region.
[0171] 次に、デイスペンサ等を用いて、例えば 1ショット当り 2mgの BTN液晶を第 1基板 11Next, using a dispenser or the like, for example, 2 mg of BTN liquid crystal per shot is added to the first substrate 11.
1に滴下する。この際、 BTN液晶は第 1基板 111のシール材の内方に滴下する。 Drip into 1. At this time, the BTN liquid crystal is dropped inside the sealing material of the first substrate 111.
[0172] 次に、 BTN液晶が滴下された第 1基板 111に第 2基板 112を位置合わせして貼り 付ける。このとき、貝占り付けられた第 1基板 111及び第 2基板 112におけるシール材で 囲まれた領域に、液晶表示セルが形成される。この工程は真空中で行われる。 [0172] Next, the second substrate 112 is aligned and attached to the first substrate 111 on which the BTN liquid crystal is dropped. At this time, the sealing material on the first substrate 111 and the second substrate 112 occupied by the shellfish A liquid crystal display cell is formed in the enclosed region. This step is performed in a vacuum.
[0173] 次に、これを大気中に戻すと、貼り合わされた第 1基板 111及び第 2基板 112間の BTN液晶が大気圧により拡散する。  Next, when this is returned to the atmosphere, the BTN liquid crystal between the bonded first substrate 111 and second substrate 112 diffuses due to atmospheric pressure.
[0174] 次に、シール材の塗布領域に沿って UV光源を移動させながら UV光をシール材 に照射し、シール材を硬化させる。このようにして、拡散した BTN液晶は第 1基板 11 1及び第 2基板 112間に封止されて液晶表示セルを形成する。  Next, the sealing material is cured by irradiating the sealing material with UV light while moving the UV light source along the application area of the sealing material. In this way, the diffused BTN liquid crystal is sealed between the first substrate 111 and the second substrate 112 to form a liquid crystal display cell.
[0175] また、液晶表示セルは、本実施形態のように形成されなくてもよぐ液晶表示パネル  [0175] Further, the liquid crystal display cell may not be formed as in the present embodiment.
100の側方に液晶注入口を設けて、そこへ BTN液晶を注入し、その後液晶注入口 を紫外線硬化樹脂等で封止するものであってもよい。  A liquid crystal injection port may be provided on the side of 100, BTN liquid crystal may be injected therein, and then the liquid crystal injection port may be sealed with an ultraviolet curable resin or the like.
[0176] 次に、必要であれば第 1基板 111及び第 2基板 112を所望のパネル枠に分断した 後、パネルの両表面にそれぞれ偏光板 122, 123を互いに直交するように配置して 液晶表示パネル 100を作製する。そして、この液晶表示パネル 100に不図示のドライ バゃコントローラ等を設けて液晶表示装置 1 10を完成させる。  Next, if necessary, the first substrate 111 and the second substrate 112 are divided into desired panel frames, and then polarizing plates 122 and 123 are arranged on both surfaces of the panel so as to be orthogonal to each other. A display panel 100 is manufactured. Then, a driver controller (not shown) is provided on the liquid crystal display panel 100 to complete the liquid crystal display device 110.
[0177] 尚、本実施形態では、表示装置として、 LCD (liquid crystal display;液晶表示ディ スプレイ)に係るものについて示した力 PD (plasma display;プラズマディスプレイ)、 PALC (plasma addressed liquid crystal display;プラズマアドレス液晶ディスプレイ)、 有機 EL (organic electro luminescence )、無機 EL (inorganic electro luminescence ) 、 FED (field emission display ;電界放出ディスプレイ)、又は、 SED (surface-conduct ion electron-emitter display;表面電界ディスプレイ)等に係る表示装置であってもよ い。  [0177] In the present embodiment, as the display device, the power PD (plasma display), PALC (plasma addressed liquid crystal display), which are related to the LCD (liquid crystal display) are shown. Address liquid crystal display), organic EL (organic electro luminescence), inorganic EL (inorganic electro luminescence), FED (field emission display), SED (surface-conduct ion electron-emitter display), etc. It may be a display device according to the above.
[0178] (作用効果)  [0178] (Function and effect)
次に、作用効果について説明する。  Next, operational effects will be described.
[0179] 本発明の実施形態 1〜4に係る液晶表示パネル 10, 40, 70, 100は、画素電極 28 , 58, 88, 118力 S形成され、且つ、ガラス基板 25, 55, 85, 125を有する第 1基板 21 , 51 , 81 , 111と、第 1基板 21 , 51 , 81 , 111とメモリ十生表示媒体層 23, 53, 83, 11 3を介して対向すると共に表示面側に設けられ、且つ、ガラス基板 29, 59, 89, 119 を有する第 2基板 22, 52, 82, 112と、を備えた液晶表示パネルであって、第 1基板 21 , 51 , 81 , 111及び/又 (ま第 2基板 22, 52, 82, 112力 平面視におレヽて,少なく ともその表示領域全体に渡って導電膜 26, 60, 86, 120が設けられていることを特 徴とする。 The liquid crystal display panels 10, 40, 70, 100 according to Embodiments 1 to 4 of the present invention are formed with pixel electrodes 28, 58, 88, 118 force S and glass substrates 25, 55, 85, 125. The first substrate 21, 51, 81, 111 having the first substrate 21, 51, 81, 111 is opposed to the first substrate 21, 51, 81, 111 via the memory active display medium layer 23, 53, 83, 11 3 and provided on the display surface side And a second substrate 22, 52, 82, 112 having glass substrates 29, 59, 89, 119, and a first substrate 21, 51, 81, 111 and / or (2nd substrate 22, 52, 82, 112 forces Both are characterized in that conductive films 26, 60, 86, 120 are provided over the entire display area.
[0180] このような構成によれば、第 1基板 21 , 51 , 81 , 111及び/又は第 2基板 22, 52, 82, 112が、平面視において少なくともその表示領域全体に渡って導電膜 26, 60, 86 , 120カ設けられているため、 ί夜晶表示ノ ネノレ 10, 40, 70, 100の外き^)、ら静電 気が印加されても、静電気は導電膜 26, 60, 86, 120によって少なくとも表示領域 全体に渡って拡散される。従って、印加された静電気によってメモリ性表示媒体の状 態が変化するのを抑制することができ、液晶表示パネル 10, 40, 70, 100の表示品 位を安定化させることができる。  According to such a configuration, the first substrate 21, 51, 81, 111 and / or the second substrate 22, 52, 82, 112 is electrically conductive film 26 over at least the entire display region in plan view. , 60, 86, 120, so that it is outside the screen of the night crystal display 10, 40, 70, 100)), even if static electricity is applied, the static electricity will remain in the conductive film 26, 60, 86, 120 diffuses at least over the entire display area. Therefore, the state of the memory-type display medium can be prevented from changing due to the applied static electricity, and the display quality of the liquid crystal display panels 10, 40, 70, 100 can be stabilized.
[0181] また、本発明の実施形態 1〜4に係る液晶表示パネル 10, 40, 70, 100は、導電 膜 26 , 60, 86, 120力 平面視におレヽて第 1基板 21 , 51 , 81 , 111及び/又 (ま第 2 基板 22, 52, 82, 112全体に渡って設けられていることを特徴とする。  In addition, the liquid crystal display panels 10, 40, 70, 100 according to the first to fourth embodiments of the present invention include the first substrates 21, 51, 51, 81, 111 and / or (also the second substrate 22, 52, 82, 112 is provided throughout.
[0182] このような構成によれば、導電膜 26, 60, 86, 120力 平面視において第 1基板 21 , 51 , 81 , 111及び/又は第 2基板 22, 52, 82, 112全体に渡って設けられている ため、外部から印加された静電気がより広範囲に渡って拡散される。従って、液晶表 示パネル 10, 40, 70, 100の表示品位をより良好に安定化させることができる。  [0182] According to such a configuration, the conductive film 26, 60, 86, 120 force is spread over the entire first substrate 21, 51, 81, 111 and / or the second substrate 22, 52, 82, 112 in plan view. Therefore, static electricity applied from the outside is diffused over a wider area. Therefore, the display quality of the liquid crystal display panels 10, 40, 70, 100 can be stabilized more satisfactorily.
[0183] さらに、本発明の実施形態 1〜4に係る液晶表示パネル 10, 40, 70, 100は、導電 膜 26 , 60, 86, 120が、表面に酸化膜 38が形成された金属膜 37で構成されていて あよい。  Furthermore, in the liquid crystal display panels 10, 40, 70, 100 according to the first to fourth embodiments of the present invention, the conductive films 26, 60, 86, 120 are the metal films 37 on which the oxide films 38 are formed. It may consist of
[0184] このような構成によれば、酸化膜 38によって導電膜 26, 60, 86, 120に反射防止 機能を持たせること力できる。さらに、酸化膜 38の膜厚を調整することにより導電膜 2 6, 60, 86, 120に干渉色を持たせることカできる。  [0184] According to such a configuration, the conductive film 26, 60, 86, 120 can be imparted with an antireflection function by the oxide film 38. Further, by adjusting the thickness of the oxide film 38, the conductive films 26, 60, 86, 120 can be given an interference color.
[0185] また、本発明の実施形態 1 , 3に係る液晶表示パネル 10, 70は、導電膜 26, 86が 第 1基板 21 , 81のガラス基板 25, 85上に形成されていると共に、導電膜 26, 86と第 1基板 21 , 81の画素電極 28, 88との間に絶縁膜 27, 87カ設けられていることを特 徴とする。  In addition, in the liquid crystal display panels 10 and 70 according to Embodiments 1 and 3 of the present invention, the conductive films 26 and 86 are formed on the glass substrates 25 and 85 of the first substrates 21 and 81, and the conductive Insulating films 27 and 87 are provided between the films 26 and 86 and the pixel electrodes 28 and 88 of the first substrates 21 and 81, respectively.
[0186] このような構成によれば、導電膜 26, 86が第 1基板 21 , 81のガラス基板 25, 85上 に形成されていると共に、導電膜 26, 86及び第 1基板 21 , 81の画素電極 28, 88の 間に絶縁膜 27, 87が設けられているため、外部から印加される静電気を拡散する導 電膜 26, 86力 画素電極 28, 88と接触することがない。従って、導電膜 26, 86が画 素電極 28, 88を通る電気信号に影響を与えることを抑制して、より良好な表示品位 を得ること力 Sでさる。 According to such a configuration, the conductive films 26 and 86 are formed on the glass substrates 25 and 85 of the first substrates 21 and 81, and the conductive films 26 and 86 and the first substrates 21 and 81 are formed. Pixel electrode 28, 88 Since insulating films 27 and 87 are provided between them, the conductive films 26 and 86 that diffuse static electricity applied from the outside do not come into contact with the pixel electrodes 28 and 88. Therefore, it is possible to suppress the influence of the conductive films 26 and 86 on the electrical signal passing through the pixel electrodes 28 and 88 and to obtain better display quality with the force S.
[0187] さらに、本発明の実施形態 1に係る液晶表示パネル 10は、表示媒体層がコレステリ ック液晶層 23であると共に、絶縁膜 27が着色材料で形成されていることを特徴とす る。または導電膜 26の表面が酸化物に被覆されるため酸化物の干渉色を呈している ことを特徴とする。  [0187] Further, the liquid crystal display panel 10 according to Embodiment 1 of the present invention is characterized in that the display medium layer is the cholesteric liquid crystal layer 23 and the insulating film 27 is formed of a coloring material. . Alternatively, since the surface of the conductive film 26 is covered with an oxide, the interference color of the oxide is exhibited.
[0188] このような構成によれば、表示媒体層がコレステリック液晶層 23であると共に、絶縁 膜 27が着色材料で形成されているため、コレステリック液晶層 23がフォーカルコニッ ク状態のときに、第 2基板 22側から入射してコレステリック液晶層 23を透過した光が、 絶縁膜 27の色が見える (例えば、絶縁膜 27が黒なら黒色に見える)。従って、第 1基 板 21の表面等に着色フィルム等を設けなくてよぐ液晶表示パネル 10の製造が簡略 化する。  [0188] According to such a configuration, since the display medium layer is the cholesteric liquid crystal layer 23 and the insulating film 27 is formed of the coloring material, when the cholesteric liquid crystal layer 23 is in the focal conic state, Light incident from the second substrate 22 side and transmitted through the cholesteric liquid crystal layer 23 can see the color of the insulating film 27 (for example, black if the insulating film 27 is black). Therefore, the manufacturing of the liquid crystal display panel 10 that does not require a colored film or the like on the surface of the first substrate 21 is simplified.
[0189] また、本発明の実施形態 1, 3に係る液晶表示パネル 10, 70は、絶縁膜 27, 87が 、導電膜 26, 86を電着用導電膜として電着法により形成されていることを特徴とする  In addition, in the liquid crystal display panels 10 and 70 according to the first and third embodiments of the present invention, the insulating films 27 and 87 are formed by electrodeposition using the conductive films 26 and 86 as electrodeposition conductive films. Characterized by
[0190] このような構成によれば、絶縁膜 27, 87が、導電膜 26, 86を電着用導電膜として 電着法により形成されているため、絶縁膜 27, 87を導電膜 26, 86上に均一に且つ 密着性良く設けることができる。また、形成する絶縁膜 27, 87の厚さの設計を容易に fiうこと力 Sでさる。 According to such a configuration, since the insulating films 27 and 87 are formed by the electrodeposition method using the conductive films 26 and 86 as the electrodeposition conductive films, the insulating films 27 and 87 are formed as the conductive films 26 and 86. It can be provided uniformly and with good adhesion. In addition, the thickness of the insulating films 27 and 87 to be formed can be easily designed with a force S.
[0191] 本発明の実施形態;!〜 4に係る液晶表示装置 20, 50, 80, 110は、画素電極 28, 58, 88, 118力 S形成され、且つ、ガラス基板 25, 55, 85, 125を有する第 1基板 21, 51, 81, 111と、第 1基板 21, 51, 81, 111とメモリ十生表示媒体層 23, 53, 83, 113 を介して対向すると共に表示面側に設けられ、且つ、ガラス基板 29, 59, 89, 119を 有する第 2基板 22, 52, 82, 112と、を有し、第 1基板 21, 51, 81, 111及び/又は 第 2基板 22, 52, 82, 112が、平面視において少なくともその表示領域全体に渡つ て導電膜 26, 60, 86, 120カ設けられている ί夜晶表示ノ ネノレ 10, 40, 70, 100を 備えていることを特徴とする。 [0191] The liquid crystal display devices 20, 50, 80, 110 according to the embodiments of the present invention !! to 4 are formed with pixel electrodes 28, 58, 88, 118 force S and glass substrates 25, 55, 85, First substrate 21, 51, 81, 111 having 125, opposed to first substrate 21, 51, 81, 111 via memory generation display medium layer 23, 53, 83, 113 and provided on the display surface side And a second substrate 22, 52, 82, 112 having a glass substrate 29, 59, 89, 119, and a first substrate 21, 51, 81, 111 and / or a second substrate 22, 52 , 82, and 112 are provided with conductive film 26, 60, 86, 120 conductive films 26, 60, 86, 120 over at least the entire display area in plan view. It is characterized by having.
[0192] このような構成によれば、第 1基板 21 , 51 , 81 , 111及び/又は第 2基板 22, 52, 82, 112が、平面視において少なくともその表示領域全体に渡って導電膜 26, 60, 86, 120が設けられているため、液晶表示装置 20, 50, 80, 110の外部から静電気 が印加されても、静電気は導電膜 26, 60, 86, 120によって少なくとも表示領域全 体に渡って拡散される。従って、印加された静電気によってメモリ性表示媒体の状態 が変化するのを抑制することができ、液晶表示装置 20, 50, 80, 110の表示品位を 安定化させることができる。 According to such a configuration, the first substrate 21, 51, 81, 111 and / or the second substrate 22, 52, 82, 112 is electrically conductive film 26 over at least the entire display region in plan view. , 60, 86, 120 are provided, so that even if static electricity is applied from the outside of the liquid crystal display device 20, 50, 80, 110, the static electricity is at least in the entire display area by the conductive films 26, 60, 86, 120. Is spread over. Therefore, the state of the memory-type display medium can be prevented from changing due to the applied static electricity, and the display quality of the liquid crystal display devices 20, 50, 80, 110 can be stabilized.
産業上の利用可能性  Industrial applicability
[0193] 以上説明したように、本発明は、表示パネル及びこれを用いた表示装置について 有用である。 [0193] As described above, the present invention is useful for a display panel and a display device using the same.

Claims

請求の範囲 The scope of the claims
[1] 画素電極が形成され、且つ、絶縁性基板を有する第 1基板と、  [1] a first substrate on which a pixel electrode is formed and having an insulating substrate;
上記第 1基板とメモリ性表示媒体層を介して対向すると共に表示面側に設けられ、 且つ、絶縁性基板を有する第 2基板と、  A second substrate facing the first substrate via the memory-type display medium layer and provided on the display surface side, and having an insulating substrate;
を備え、  With
上記第 1及び/又は第 2基板は、平面視において少なくともその表示領域全体に 渡って導電膜が設けられて!/、る表示パネル。  The first and / or second substrate is provided with a conductive film over at least the entire display region in plan view! /.
[2] 請求項 1に記載された表示パネルにお!/ヽて、 [2] Contact the display panel according to claim 1!
上記導電膜は、平面視にお!/、て上記第 1及び/又は第 2基板全体に渡って設けら れた表示パネル。  The conductive film is a display panel provided over the entire first and / or second substrate in a plan view.
[3] 請求項 1に記載された表示パネルにお!/ヽて、 [3] Contact the display panel according to claim 1!
上記導電膜は、表面に酸化膜が形成された金属膜で構成されている表示パネル。  The said electrically conductive film is a display panel comprised by the metal film in which the oxide film was formed in the surface.
[4] 請求項 1に記載された表示パネルにお!/、て、 [4] The display panel according to claim 1 has a! /,
上記導電膜は上記第 1基板の絶縁性基板上に形成されていると共に、 上記導電膜と上記第 1基板の画素電極との間に絶縁膜が設けられている表示パネ ル。  The display panel, wherein the conductive film is formed on the insulating substrate of the first substrate, and an insulating film is provided between the conductive film and the pixel electrode of the first substrate.
[5] 請求項 4に記載された表示パネルにおいて、  [5] In the display panel according to claim 4,
上記表示媒体層はコレステリック液晶層であると共に、  The display medium layer is a cholesteric liquid crystal layer,
上記絶縁膜は着色材料で形成されている表示パネル。  A display panel in which the insulating film is formed of a coloring material.
[6] 請求項 4に記載された表示パネルにおいて、 [6] In the display panel according to claim 4,
上記絶縁膜は、上記導電膜を電着用導電膜として電着法により形成されている表 示パネル。  The display panel is a display panel formed by an electrodeposition method using the conductive film as an electrodeposition conductive film.
[7] 請求項 1乃至 6のいずれかに記載された表示パネルを備えた表示装置。  7. A display device comprising the display panel according to any one of claims 1 to 6.
PCT/JP2007/063830 2006-07-19 2007-07-11 Display panel and display apparatus using same WO2008010444A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-196514 2006-07-19
JP2006196514 2006-07-19

Publications (1)

Publication Number Publication Date
WO2008010444A1 true WO2008010444A1 (en) 2008-01-24

Family

ID=38956777

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/063830 WO2008010444A1 (en) 2006-07-19 2007-07-11 Display panel and display apparatus using same

Country Status (1)

Country Link
WO (1) WO2008010444A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI502245B (en) * 2010-11-16 2015-10-01 Shenzhen Super Perfect Optics Ltd Liquid crystal lens and its control method and 3d display device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06208123A (en) * 1993-01-13 1994-07-26 Seiko Instr Inc Polychromatic liquid crystal display device
JPH10301136A (en) * 1997-04-25 1998-11-13 Ricoh Co Ltd Liquid crystal display device
JP2002107713A (en) * 2000-09-29 2002-04-10 Asahi Glass Co Ltd Liquid crystal display device
JP2003255391A (en) * 2002-02-28 2003-09-10 Optrex Corp Method for manufacturing liquid crystal display element
JP2005234547A (en) * 2004-01-20 2005-09-02 Sharp Corp Display element and display device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06208123A (en) * 1993-01-13 1994-07-26 Seiko Instr Inc Polychromatic liquid crystal display device
JPH10301136A (en) * 1997-04-25 1998-11-13 Ricoh Co Ltd Liquid crystal display device
JP2002107713A (en) * 2000-09-29 2002-04-10 Asahi Glass Co Ltd Liquid crystal display device
JP2003255391A (en) * 2002-02-28 2003-09-10 Optrex Corp Method for manufacturing liquid crystal display element
JP2005234547A (en) * 2004-01-20 2005-09-02 Sharp Corp Display element and display device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI502245B (en) * 2010-11-16 2015-10-01 Shenzhen Super Perfect Optics Ltd Liquid crystal lens and its control method and 3d display device

Similar Documents

Publication Publication Date Title
CN103513463B (en) Liquid crystal display device and the method for manufacturing liquid crystal display device
KR20020002248A (en) Liquid crystal display element and method of producing the same
JP2018525665A (en) Device for controlling light transmission
KR20080026599A (en) Multilayer reflective liquid crystal display element
JP2001172634A (en) Liquid crystal composition and liquid crystal photomodulation element using the same composition
JPH1138393A (en) Production of liquid crystal element
US7593082B2 (en) Rubbing membrane material and liquid crystal display device using the same
KR102100459B1 (en) Liquid crystal device and Liquid crystal display device
KR970004880B1 (en) A liquid crystal electro-optical device and tis making method
WO2008010444A1 (en) Display panel and display apparatus using same
JP2012194402A (en) Liquid crystal element and liquid crystal display device
JPH11142829A (en) Production of liquid crystal display element
KR102036620B1 (en) Liquid crystal device and liquid crystal display
JP2007254526A (en) Liquid crystal composition and liquid crystal display element
US8687257B2 (en) Optical device
JP5267066B2 (en) Liquid crystal display
KR20050109177A (en) Polymer dispersed liquid crystal display device and method for fabricating the same
JP2002287136A (en) Reflective liquid crystal display element
JPH03287127A (en) Liquid crystal display device and its manufacture
JP2002207225A (en) Liquid crystal display element
JP4378893B2 (en) Liquid crystal display element
JP2001147444A (en) Laminated liquid crystal device
JP2003029268A (en) Reflection type liquid crystal display element and manufacturing method therefor
JP2001188241A (en) Liquid crystal device and laminated liquid crystal device
KR100852815B1 (en) Polymer dispersed lcd

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07790634

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 07790634

Country of ref document: EP

Kind code of ref document: A1