WO2008007592A1 - Dust collector - Google Patents

Dust collector Download PDF

Info

Publication number
WO2008007592A1
WO2008007592A1 PCT/JP2007/063393 JP2007063393W WO2008007592A1 WO 2008007592 A1 WO2008007592 A1 WO 2008007592A1 JP 2007063393 W JP2007063393 W JP 2007063393W WO 2008007592 A1 WO2008007592 A1 WO 2008007592A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
particles
gas
unit
treated
Prior art date
Application number
PCT/JP2007/063393
Other languages
French (fr)
Japanese (ja)
Inventor
Toshio Tanaka
Kanji Motegi
Ryuji Akiyama
Tooru Fujimoto
Yasuhiro Oda
Kenkichi Kagawa
Original Assignee
Daikin Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries, Ltd. filed Critical Daikin Industries, Ltd.
Publication of WO2008007592A1 publication Critical patent/WO2008007592A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/28Arrangement or mounting of filters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D45/00Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces
    • B01D45/02Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces by utilising gravity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D45/00Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces
    • B01D45/12Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces by centrifugal forces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/0027Filters or filtering processes specially modified for separating dispersed particles from gases or vapours with additional separating or treating functions
    • B01D46/0032Filters or filtering processes specially modified for separating dispersed particles from gases or vapours with additional separating or treating functions using electrostatic forces to remove particles, e.g. electret filters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/18Particle separators, e.g. dust precipitators, using filtering belts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/42Auxiliary equipment or operation thereof
    • B01D46/48Removing dust other than cleaning filters, e.g. by using collecting trays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/56Filters or filtering processes specially modified for separating dispersed particles from gases or vapours with multiple filtering elements, characterised by their mutual disposition
    • B01D46/62Filters or filtering processes specially modified for separating dispersed particles from gases or vapours with multiple filtering elements, characterised by their mutual disposition connected in series
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/66Regeneration of the filtering material or filter elements inside the filter
    • B01D46/68Regeneration of the filtering material or filter elements inside the filter by means acting on the cake side involving movement with regard to the filter elements
    • B01D46/681Regeneration of the filtering material or filter elements inside the filter by means acting on the cake side involving movement with regard to the filter elements by scrapers, brushes or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/66Regeneration of the filtering material or filter elements inside the filter
    • B01D46/69Regeneration of the filtering material or filter elements inside the filter by means acting on the cake side without movement with respect to the filter elements, e.g. fixed nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D50/00Combinations of methods or devices for separating particles from gases or vapours
    • B01D50/20Combinations of devices covered by groups B01D45/00 and B01D46/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/01Pretreatment of the gases prior to electrostatic precipitation
    • B03C3/011Prefiltering; Flow controlling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/02Plant or installations having external electricity supply
    • B03C3/04Plant or installations having external electricity supply dry type
    • B03C3/08Plant or installations having external electricity supply dry type characterised by presence of stationary flat electrodes arranged with their flat surfaces parallel to the gas stream
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/02Plant or installations having external electricity supply
    • B03C3/04Plant or installations having external electricity supply dry type
    • B03C3/14Plant or installations having external electricity supply dry type characterised by the additional use of mechanical effects, e.g. gravity
    • B03C3/155Filtration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2273/00Operation of filters specially adapted for separating dispersed particles from gases or vapours
    • B01D2273/28Making use of vacuum or underpressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2273/00Operation of filters specially adapted for separating dispersed particles from gases or vapours
    • B01D2273/30Means for generating a circulation of a fluid in a filtration system, e.g. using a pump or a fan
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2221/00Details or features not otherwise provided for
    • F24F2221/22Cleaning ducts or apparatus

Definitions

  • the present invention relates to a dust collecting device for removing airborne particles to be treated such as air and combustion exhaust gas.
  • a dust collector has been used to collect dust and dust in indoor air, dust in combustion exhaust gas, and the like.
  • an electrostatic dust collector as disclosed in Patent Document 1 As this dust collector, for example, an electrostatic dust collector as disclosed in Patent Document 1 is known.
  • This electrostatic precipitator charges the suspended particles to be collected in advance and collects the charged suspended particles with an electric attractive force.
  • the electrostatic precipitator of Patent Document 1 includes an ion collector for charging floating particles, and a dust collector disposed downstream of the ion collector. In the dust collection section, flat dust collection electrode plates and counter electrode plates are alternately arranged. In this electrostatic precipitator, suspended particles that are positively (+) charged at the ion collector are collected by a dust collecting electrode plate that is a negative electrode plate of the dust collector.
  • HEPA High Efficiency Particulate AirFilter
  • the gas to be treated is sent to the high-performance filter, and the suspended gas is removed by filtering the gas to be treated with a high-performance filter.
  • Patent Document 1 Japanese Patent Laid-Open No. 6-254437
  • the present invention has been made in view of the strong point, and an object of the present invention is to provide a small dust collector capable of collecting even fine particles and having a small pressure loss of the gas to be treated. There is to do.
  • a first invention is directed to a dust collector. And a gas passage through which the gas to be treated flows
  • agglomerated part (70) that aggregates suspended particles (100) in the gas to be treated to form agglomerated particles (101) and scatters the formed agglomerated particles (101) in the gas to be treated (70 )
  • a collecting part (50) that is disposed downstream of the aggregation part (70) in the gas passage (23) and collects the aggregated particles (101) in the gas to be treated that has passed through the aggregation part (70).
  • the suspended particles (100) in the air to be treated are once collected in the aggregation part (70).
  • the collected plurality of suspended particles (100) aggregate to form aggregated particles (101) that are aggregates of the plurality of suspended particles (100).
  • the agglomerated particles (101) reach a certain size, the agglomerated part (70) is separated and flows to the collecting part (50) together with the gas to be treated.
  • fine suspended particles (100) with a particle size of about 1 ⁇ m collected in the agglomerated part (70) become part of the relatively large agglomerated particles (101) and are collected in the collecting part (50 ).
  • the collection unit (50) collects the aggregated particles (101) flowing from the collection unit (70) together with the gas to be processed.
  • the second invention is the agglomeration operation for aggregating floating particles (100) in the gas to be treated in the aggregating part (70) to form aggregated particles (101) in the first invention.
  • a scattering operation for scattering the agglomerated particles (101) formed in the agglomerated part (70) into the gas to be treated is performed.
  • the aggregation operation and the scattering operation are performed by the dust collector.
  • aggregated particles (101) are formed by aggregating a plurality of suspended particles (100).
  • the agglomerated particles (101) are peeled off by the agglomerated part (70) and sent to the collecting part (50) together with the gas to be processed that passes through the agglomerated part (70).
  • the aggregating part (70) includes a particle charging part (71) for charging the suspended particles (100) in the gas to be treated, A particle capturing unit (74) that captures and aggregates the suspended particles (100) charged by the particle charging unit (71) by an electric attractive force.
  • the suspended particles (100) in the gas to be treated are charged positively (+) or negatively (-) by the particle charging portion (71).
  • the charged suspended particles (100) are attracted and captured by the particle capturing part (74) by an electric attractive force.
  • the particle trapping part (74) the plurality of trapped suspended particles (100) are aggregated to form aggregated particles (101).
  • the particle trapping part (74) includes a first electrode (75) and a second electrode (76), and the first electrode (75) By forming an electric field between the second electrodes (76), the suspended particles (100) charged by the particle charging unit (71) are adhered to the first electrode (75) and aggregated. It is composed.
  • the fourth invention in the particle trapping part (74), by applying a potential difference between the first electrode (75) and the second electrode (76), the first electrode (75) and the second electrode An electric field is formed in the space between (76).
  • the suspended particle (100) is positively (+) charged by the particle charging unit (71)
  • the charged suspended particle (100) is attracted to the first electrode (75) on the negative electrode side.
  • the suspended particle (100) is negatively (one) charged by the particle charging unit (71)
  • the charged suspended particle (100) is attracted to the first electrode (75) on the positive electrode side.
  • the trapped suspended particles (100) aggregate together to form aggregated particles (101).
  • the contact surface of the first electrode (75) with the air to be treated is subjected to a surface treatment for promoting separation of the aggregated particles (101). It is to be done.
  • the surface of the first electrode (75) is subjected to a surface treatment for promoting the separation of the aggregated particles (101).
  • the surface treatment include a process of finishing the surface into a mirror surface and a process of reducing the surface free energy by forming a water-repellent film, a fluorine resin film, or the like.
  • a large number of projection (78) forces S are formed on the contact surface of the first electrode (75) with the air to be treated.
  • the projection (78) is formed on the surface of the first electrode (75).
  • the electric field formed between the first electrode (75) and the second electrode (76) is concentrated in the vicinity of the protrusion (78). Therefore, the suspended particles (100) that have moved from the particle charging unit (71) to the particle trapping unit (74) are concentrated and attached in the vicinity of the protrusion (78) of the first electrode (75). That is, in the first electrode (75), aggregated particles (101) are formed in the vicinity of the protrusions (78). Aggregated particles (101) that have grown to a certain size are peeled off from the first electrode (75) by the flow of the gas to be treated.
  • the particle trapping portion (74) includes a plurality of gas flow paths (77) through which the gas to be processed passes and the first electrode (75) and the first electrode. It is formed by two electrodes (76), and the cross-sectional area of each gas flow path (77) gradually narrows toward the downstream side of the flow of the gas to be processed.
  • the gas to be processed that passes through the particle trapping portion (74) passes through the gas flow path (77) formed by the first electrode (75) and the second electrode (76).
  • the sectional area of the gas flow path (77) is narrower toward the downstream side of the flow of the gas to be processed. Therefore, the flow velocity of the gas to be processed that passes through the gas flow path (77) gradually increases as it proceeds downstream.
  • the operation for increasing the flow velocity of the gas to be processed in the aggregation section (70) as compared with that during the aggregation operation is performed as the scattering operation.
  • the flow rate of the gas to be processed that passes through the aggregation portion (70) has a larger value during the scattering operation than a value during the aggregation operation.
  • Processed gas that passes through the agglomeration part (70) Force The force received by the agglomerated particles (101) is proportional to the cube of the flow velocity of the gas to be processed. Therefore, in the agglomeration part (70) during the scattering operation, the force that the agglomerated particles (101) receive from the gas to be treated (that is, the force for peeling off the agglomerated particles (101)) is larger than that during the agglomeration operation. .
  • the particle trapping part (74) includes a first electrode (75) and a second electrode (76), and the first electrode (75) By forming an electric field between the second electrodes (76), the suspended particles (100) charged by the particle charging unit (71) are adhered to the first electrode (75) and aggregated.
  • an operation for increasing the flow velocity of the gas to be processed in the vicinity of the first electrode (75) as compared with that during the aggregation operation is performed as the scattering operation.
  • the particle trapping part (74) is provided with the first electrode (75) and the second electrode (76), and the first electrode (75) An electric field is formed in the space between the second electrodes (76).
  • the suspended particles (100) charged by the particle charging unit (71) are attracted by the electric attractive force and adhere to the first electrode (75).
  • the adhering suspended particles (100) aggregate together to form aggregated particles (101).
  • the flow velocity of the gas to be treated in the vicinity of the first electrode (75) of the particle trapping portion (74) is a value during the scattering operation as compared with a value during the agglomeration operation. Will be bigger.
  • the force that the aggregated particles (101) on the first electrode (75) receive from the gas to be processed is proportional to the cube of the flow velocity of the gas to be processed. Therefore, in the particle trapping part (74) during the scattering operation, the force that the agglomerated particles (101) receive also the gas force to be treated (that is, the force that tries to peel off the agglomerated particles (101)) is greater than that during the agglomeration operation. growing.
  • a tenth invention is the method according to the ninth invention, wherein the flow of the gas to be processed is partially blocked so that the gas to be processed flows intensively in the vicinity of the first electrode (75).
  • a shielding mechanism (80) is provided, and during the scattering operation, the shielding mechanism (80) partially blocks the flow of the gas to be processed, whereby the flow velocity of the gas to be processed in the vicinity of the first electrode (75).
  • the shielding mechanism (80) is provided in the dust collector.
  • This shielding mechanism (80) partially blocks the flow of the gas to be processed and concentrates the gas to be processed in the vicinity of the first electrode (75). Shed.
  • the operation of the shielding mechanism (80) is performed as a scattering operation.
  • the flow velocity of the gas to be processed passing through the particle trapping part (74) is the first flow rate. It rises locally near the electrode (75). Therefore, the force that the agglomerated particles (101) attached to the first electrode (75) are subjected to the gas force to be processed increases, and the agglomerated particles (101) are easily peeled off from the first electrode (75).
  • the vibration mechanism (90) for vibrating the aggregation portion (70) is provided, and the aggregation portion (70) is provided by the vibration mechanism (90).
  • the operation of causing the aggregated part (70) force to scatter and scatter the aggregated particles (101) is performed as the above-described scattering operation.
  • the vibration exciting mechanism (90) is provided in the dust collector. During the scattering operation of the dust collector, the vibration exciter vibrates the agglomerated part (70) and re-scatters the agglomerated particles (101) with the force of the agglomerated part (70).
  • the particle trapping part (74) includes a first electrode (75) and a second electrode (76), and the first electrode (75) By forming an electric field between the second electrodes (76), the suspended particles (100) charged by the particle charging portion (71) are adhered to the first electrode (75) and aggregated.
  • the operation of temporarily inverting the polarity of the first electrode (75) and the polarity of the second electrode (76) is performed as the scattering operation.
  • the particle trapping part (74) includes a first electrode (75) and a second electrode (76), and the first electrode (75) By forming an electric field between the second electrodes (76), the suspended particles (100) charged by the particle charging portion (71) are adhered to the first electrode (75) and aggregated.
  • the operation of generating a spark between the first electrode (75) and the second electrode (76) is performed as the scattering operation.
  • the particle capturing section (74) is provided with the first electrode (75) and the second electrode (76), and the first electrode An electric field is formed in the space between (75) and the second electrode (76).
  • the suspended particles (100) charged by the particle charging unit (71) are attracted by the electric attractive force and adhere to the first electrode (75).
  • the attached suspended particles (100) Aggregate each other to form aggregated particles (101).
  • the polarities of the first electrode (75) and the second electrode (76) are opposite to those during the aggregation operation.
  • the first electrode (75) is on the negative electrode side and the second electrode (76) is on the positive electrode side during the aggregation operation.
  • the first electrode (75) is on the positive electrode side and the second electrode (76) is on the negative electrode side.
  • the aggregated particles (101) on the first electrode (75) are positively charged (+). Then, when the first electrode (75) is switched to the positive electrode side during the scattering operation, the positively (+) charged aggregated particles (101) on the first electrode (75) become the first due to the electric repulsive force. It is peeled off from the electrode (75).
  • the thirteenth invention in the dust collector during the scattering operation, a spark is generated between the first electrode (75) and the second electrode (76).
  • a spark is generated between the first electrode (75) and the second electrode (76)
  • the agglomerated particles (101) are peeled off from the first electrode (75) by an electric shock, and the process gas is discharged. Re-splash.
  • the aggregated particles (101) are formed by aggregating a plurality of suspended particles (100) in the aggregation part (70), and the aggregated particles (101) formed in the aggregation part (70) are captured. Collected at Shubu (50).
  • fine suspended particles (100) having a particle size of about 1 ⁇ m are combined with a part of relatively large aggregated particles (101) having a force of a plurality of suspended particles (100). It is collected in the collection part (50).
  • the particle size is about 1 ⁇ m from the gas to be treated. Fine suspended particles (100) can be removed. Therefore, according to the present invention, fine suspended particles (100) can be removed from the gas to be processed, and the pressure loss of the gas to be processed is low, and a dust collector can be realized.
  • the agglomerated particles (101) formed in the aggregating portion (70) can be reliably re-scattered into the gas to be treated. For this reason, the agglomerated part (7 The accumulated amount of the aggregated particles (101) in 0) can be suppressed to a certain level or less, and the performance of the aggregated part (70) can be reliably maintained.
  • the particle charging unit (71) and the particle trapping unit (74) are provided in the aggregation unit (70), and the suspended particles (100) charged by the particle charging unit (71) are provided. ) Is trapped in the particle trapping part (74) by electrical attraction. For this reason, the particle trapping part (74) can reliably capture the fine suspended particles (100) while suppressing the pressure loss of the gas to be processed when passing through the particle trapping part (74). Therefore, according to the present invention, it is possible to improve the performance of the dust collector while keeping the pressure loss of the gas to be processed low.
  • the first electrode (75) force aggregated particles (101) is easy to peel off. Therefore, according to the present invention, the amount of aggregated particles (101) remaining on the first electrode (75) can be reduced, and the performance of the particle trapping part (74) can be reliably maintained.
  • the protrusion (78) is formed on the surface of the first electrode (75), and the aggregated particles (101) are formed in the vicinity of the protrusion (78). go.
  • the aggregated particles (101) can be formed with such a size that the first electrode (75) force is peeled off by the flow of the gas to be treated, and the suspended particles (100) are collected in the dust collector. It can improve efficiency.
  • the gas channel (77) through which the gas to be treated flows is formed in the particle trapping portion (74), and the cross-sectional area of the gas channel (77) is narrowed toward the downstream side.
  • the flow of the gas to be treated is gradually increased.
  • the agglomerated particles (101) formed by the particle trapping part (74) can be reliably peeled off by the first electrode (75) and collected by the trapping part (50).
  • the collection efficiency of suspended particles (100) can be improved.
  • the flow velocity of the gas to be processed that passes through the agglomeration part (70) during the scattering operation is increased, and the force that the aggregated particles (101) receive also the gas force to be processed is increased.
  • the flow rate of the air to be treated in the vicinity of the first electrode (75) of the particle trapping part (74) is increased during the scattering operation, and the aggregated particles (101) on the first electrode (75) are increased. Is increasing the force received by the gas force to be treated. Therefore, in these eighth and ninth inventions, the aggregated part (70) is changed into the aggregated particles (1
  • the flow velocity of the gas to be processed in the vicinity of the first electrode (75) is increased by partially blocking the flow of the gas to be processed by the shielding mechanism (80). For this reason, the flow rate of the gas to be processed in the vicinity of the first electrode (75) can be increased without changing the flow rate of the gas to be processed that passes through the condensing part (70). (75) Re-scattering of powerful aggregated particles (101) can be promoted. Therefore, according to the present invention, while avoiding problems such as noise caused by an increase in the flow rate of the gas to be processed, the amount of aggregated particles (101) staying in the agglomerated portion (70) is reduced, thereby collecting the particles. The performance of the dust device can be kept high
  • the aggregated part (70) is also re-scattered by the force of the aggregated part (70) by vibrating the aggregated part (70) by the vibration mechanism (90). Therefore, according to the present invention, the amount of the agglomerated particles (101) staying in the agglomeration part (70) can be reduced, and the performance of the dust collector can be kept high.
  • the operation of switching the polarities of the first electrode (75) and the second electrode (76) in the opposite direction to that during the aggregation operation is performed as a scattering operation.
  • the operation of generating a spark between the first electrode (75) and the second electrode (76) is performed as a scattering operation. Therefore, according to these twelfth and thirteenth inventions, the first electrode (75) force can also surely rescatter the agglomerated particles (101), and the agglomerated particles (101) staying in the agglomerated part (70). The amount of dust can be reduced and the performance of the dust collector can be kept high.
  • FIG. 1 is a schematic side view showing an internal structure of an air cleaner according to a first embodiment.
  • FIG. 2 is a schematic front view of the pre-filter cue or the collection unit in a state where it is installed in the air cleaner of the first embodiment.
  • FIG. 3 is an enlarged cross-sectional view showing a main part of the purification unit in the first embodiment.
  • FIG. 4 is a schematic side view showing the aggregation unit of the first embodiment.
  • FIG. 5 is an enlarged view of a main part schematically showing the operation of the aggregating unit.
  • FIG. 6 is an enlarged view of the main part of the particle trapping part in Modification 1 of Embodiment 1.
  • FIG. 7 is a schematic side view showing the aggregation unit of Modification 2 of Embodiment 1.
  • Fig. 8 is a schematic side view showing the aggregation unit of Embodiment 2, wherein (A) shows the first state of the shielding unit, and (B) shows the second state of the shielding unit. Show.
  • FIG. 9 is a schematic side view showing an aggregation unit of Modification 1 of Embodiment 2.
  • FIG. 10 is a schematic perspective view showing a main part of an air cleaner according to Modification 3 of Embodiment 2.
  • FIG. 11 is an enlarged side view showing the main part of the particle trapping part in Modification 4 of Embodiment 2.
  • FIG. 12 is a schematic side view showing the internal structure of the air cleaner according to the third embodiment.
  • FIG. 13 is a schematic side view showing the internal structure of the air cleaner according to the fourth embodiment.
  • FIG. 14 is a schematic front view of a prefilter unit or a collection unit in a state where it is installed in an air cleaner according to a fifth embodiment.
  • FIG. 15 is a schematic front view of a prefilter unit or a collection unit in a state where it is installed in an air cleaner according to a modification of the fifth embodiment.
  • FIG. 16 is a schematic perspective view of a particle trapping portion in a first modification of another embodiment.
  • FIG. 17 is an enlarged cross-sectional view showing a main part of a purification unit in a second modification of the other embodiment.
  • FIG. 18 is an enlarged cross-sectional view showing a main part of a purification unit in a second modification of the other embodiment.
  • FIG. 19 is an enlarged side view showing a main part of a purification unit in a third modification of the other embodiment.
  • FIG. 20 is a schematic side view showing the internal structure of an air cleaner according to a fourth modification of the other embodiment.
  • FIG. 21 is a schematic side view showing a main part of an air cleaner in a fifth modification of the other embodiment.
  • FIG. 22 is a schematic configuration diagram showing a main part of an air cleaner according to a sixth modified example of the other embodiment.
  • FIG. 23 shows a main part of an air cleaner according to a sixth modification of the other embodiment. It is a schematic block diagram.
  • FIG. 24 is a schematic side view showing the internal structure of the indoor unit in the seventh modification example of the other embodiment.
  • Embodiment 1 of the present invention will be described.
  • the air cleaner (10) of the present embodiment constitutes a dust collector according to the present invention.
  • the air cleaner (10) of the first embodiment includes a box-shaped casing (20).
  • a suction port (21) is formed on the front surface, and an air outlet (22) is formed on the upper surface near the back surface.
  • the air passage (23) constitutes a gas passage for circulating the air to be treated as the gas to be treated.
  • a collecting unit (50) as a collecting unit, and a fan (25) are installed in order from the suction port (21) to the blowout port (22).
  • the prefilter unit (30) includes a prefilter (31), a pair of rollers (32, 33) for winding the prefilter (31), and a first filter for purifying the prefilter (31). And a purification unit (40).
  • the prefilter (31) is a filter for collecting relatively large suspended matters (dust) such as “dust” contained in the air to be treated.
  • the prefilter (31) is formed into a thin and flexible endless sheet, and is provided so as to cross the air passage (23).
  • the coarseness of the prefilter (31) is, for example, about the same as that of a filter installed in an indoor unit of a general air conditioner. Details of the pre-filter unit (30) will be described later.
  • the agglomeration unit (70) is a suspended particle remaining in the air to be treated that has passed through the prefilter (31)
  • the collection unit (50) includes a dust collection filter (51), a pair of rollers (52, 53) for winding the dust collection filter (51), and a dust collection filter (51). And a second purification unit (60).
  • the dust collection filter (51) is a filter for collecting the aggregated particles (101) contained in the air to be treated that has passed through the aggregation unit (70).
  • the dust collection filter (51) is formed in a thin and flexible endless sheet shape, and is provided so as to cross the air passage (23).
  • the coarseness of the dust collection filter (51) is, for example, the same level as that of a filter installed in a general air conditioner indoor unit, or slightly weaker than that. Details of the collection unit (50) will be described later.
  • the fan (25) is arranged directly under the outlet (22)! This fan (25) is a loose centrifugal fan (25), which is configured to suck in air from the front and blow out the trapped air upward.
  • the pre-filter unit (30) and the collection unit (50) are a force dust collector equipped with a pre-filter (31). Forces that differ in terms of whether or not a filter (51) is provided.
  • each of the pre-filter unit (30) and the collection unit (50) includes a filter (31, 51), a pair of rollers (32, 33, 52, 53), and a purification mechanism. And a purification unit (40, 60).
  • one of the pair of rollers (32, 33, 52, 53) is an air passage (23 ) On the upper end side and the other on the lower end side of the air passage (23).
  • the first roller (32, 52) on the upper end side of the air passage (23) is installed almost directly above the second roller (33, 53) on the lower end side of the air passage (23).
  • Each roller (32, 33, 52, 53) is formed in a round bar shape extending in the width direction of the casing (20) (left-right direction in FIG. 2).
  • the filter (31,51) formed in an endless loop is stretched over the first roller (32,52) and the second roller (33,53)! /
  • the second roller (33, 53) is rotated at one end of the second roller (33, 53).
  • the motors (34, 54) are connected.
  • the filter (31, 51) circulates between the first roller (32, 52) and the second roller (33, 53).
  • the first roller (32, 52), the second roller (33, 53), and the motor (34, 54) are a drive mechanism that moves the endless filter (31, 51) in one direction ( 36/56)!
  • the first purification unit (40) is arranged immediately below the second roller (33).
  • the second purification unit (60) is arranged directly under the second outlet (53).
  • the first purification unit (40) of the pre-filter unit (30) and the second purification unit (60) of the collection unit (50) are either the pre-filter (31) or the dust collection filter ( 51) Forces that differ in that respect Other aspects are similarly constructed.
  • the first purification unit (40) and the second purification unit (60) are each composed of a scraping brush (41, 61) and a storage case (42, 62).
  • the storage case (42, 62) is formed in an elongated hollow box shape.
  • the storage case (42, 62) is disposed below the second roller (33, 53) in a posture along the second roller (33, 53).
  • the scraping brush (41, 61) is accommodated in the storage case (42, 62).
  • This scraping brush (41,61) has a filter (3 1, 51) is placed upward so as to come into contact with the outer surface of the portion wound around the second roller (33, 53), and is used for removing dust from the filter (31, 51). Constructs a scraping member. Dust and the like that have been scraped off from the filter (31, 51) by the scraping brush (41, 61) accumulate in the storage case (42, 62).
  • each storage case (42, 62) is provided with an openable / closable nozzle connection (43, 63).
  • the nozzle connecting portion (43, 63) is disposed near one end (closest to the left end in FIG. 2) of the housing case (42, 62). Further, the nozzle connecting portion (43, 63) is configured to be able to connect to the suction nozzle (68) of the vacuum cleaner and to open and close in conjunction with the attachment / detachment of the suction nozzle (68).
  • the nozzle connection part (43, 63) is opened and the internal space of the housing case (42, 62) becomes the suction nozzle ( 68), while the suction nozzle (68) is pulled out from the nozzle connection (43, 63), the suction bow I nozzle (68) is closed and the storage case (42, 62 ) Internal space is blocked by external force.
  • the aggregation unit (70) includes a particle charging section (71) and a particle trapping section (74), and constitutes an aggregation section.
  • the particle charging unit (71) is for charging the floating particles (100) remaining in the air to be processed that has passed through the prefilter (31).
  • the particle charging unit (71) is provided with a plurality of ionization lines (72) and a plurality of counter electrodes (73).
  • the counter electrodes (73) are each formed in an elongated flat plate shape extending in the vertical direction on the paper surface of FIG. 1, and are arranged at equal intervals in the vertical direction so as to face each other.
  • One ion underline is arranged between the counter electrodes (73) arranged one above the other.
  • a DC voltage is applied between the ionization line (72) and the counter electrode (73), and the air is suspended in the air to be treated that passes between the ionization line (72) and the counter electrode.
  • Particle (100) is positively (+) charged.
  • the particle trapping section (74) is for temporarily trapping and aggregating the floating particles (100) charged by the particle charging section (71).
  • the particle trapping part (74) includes a dust collecting electrode (75) as a first electrode and a counter electrode (76) as a second electrode.
  • the dust collection electrode (75) and the counter electrode (76) are both elongated in the direction perpendicular to the paper surface of FIG. It is formed in a flat plate shape.
  • the dust collection electrode (75) and the counter electrode (76) are approximately the same size.
  • the dust collecting electrodes (75) and the counter electrodes (76) are alternately arranged in the vertical direction.
  • the dust collection electrode (75) and the counter electrode (76) are arranged at equal intervals in a posture in which they face each other.
  • the space between the dust collection electrode (75) and the counter electrode (76) is an air flow path (77) for flowing the air to be treated.
  • the air flow path (77) constitutes a gas flow path.
  • the material of the dust collection electrode (75) and the counter electrode (76) is a slightly conductive resin with a V deviation. Dust collecting electrode
  • the material for (75) and the counter electrode (76) it is desirable to use a fine conductive resin having a volume resistivity of 10 8 ⁇ 'cm or more and less than ⁇ ⁇ ⁇ 'cm.
  • a DC voltage is applied between the dust collection electrode (75) and the counter electrode (76). Specifically, each dust collecting electrode (75) is connected to the negative electrode (one pole) of the power source (79), and each counter electrode (76) is connected to the positive electrode (+ pole) of the power source (79).
  • the suspended particles (100) charged positively (+) by the particle charging unit (71) are attracted to the dust collecting electrode (75) connected to the negative electrode (one pole) of the power source (79) and are brought to the surface. It adheres and aggregates with other suspended particles (100) to form aggregated particles (101).
  • the surface of the dust collection electrode (75) is subjected to a surface treatment for promoting the separation of the aggregated particles (101).
  • the surface treatment include forming a film with a fluorine resin or a water repellent, or performing a mirror finish to extremely reduce the surface roughness.
  • the surface treatment may include forming a coating film with an antifouling paint.
  • An example of this antifouling paint is: “A hydrophilic material, a hydrophobic polymer for paint, an organic solvent for the hydrophobic polymer for paint, and another organic solvent, and the other organic solvent is used for the hydrophobic polymer for paint.
  • the air to be treated When the fan (25) is operated, the air to be treated is taken into the air passage (23) through the suction port (21) (see FIG. 1).
  • the air to be treated that has flowed into the air passage (23) first passes through the prefilter (31) of the prefilter unit (30). Relatively large dust such as cotton dust contained in the air to be treated is collected by the prefilter (31) and removed from the air to be treated.
  • the to-be-processed air that has passed through the prefilter (31) continues to flow into the aggregation unit (70).
  • the air to be treated that has flowed into the aggregation unit (70) first passes through the particle charging section (71) (see Fig. 3).
  • the suspended particles (100) remaining in the air to be treated are positively (+) charged.
  • the suspended particles (100) charged by the particle charging unit (71) include extremely fine particles having a particle diameter of 1 ⁇ m or less, such as those contained in tobacco smoke.
  • the air flow path (77) which is a space between the dust collecting electrode (75) and the counter electrode (76).
  • a DC voltage is applied between the dust collection electrode (75) and the counter electrode (76)
  • an electric field is formed in the air flow path (77).
  • the positive (+) charged particles (100) in the air to be treated are attracted to the dust collecting electrode (75) and adhere to the surface.
  • the adhering suspended particles (100) aggregate together to form aggregated particles (101) having a large particle size.
  • the dust collection electrode (75) force is also peeled off and scattered. This point will be described with reference to FIG.
  • the suspended particles (100) charged positively (+) by the particle charging portion (71) on the surface of the dust collection electrode (75) are electrically attracted (ie, Coulomb force). It is attracted and attached.
  • the surface force of the flat dust collection electrode (75) becomes suspended and adhered.
  • the electric field is slightly concentrated near the suspended particles (100). For this reason, the floating particles (100) flying afterwards have a higher probability of adhering to the floating particles (100) that first adhere to the dust collecting electrode (75).
  • the air to be treated that has passed through the aggregation unit (70) passes through the dust collection filter (51) of the collection unit (50) in a state including the aggregation particles (101).
  • the dust collecting filter (51) captures the aggregated particles (101) in the air to be treated.
  • the air to be treated from which the aggregated particles (101) have been removed by the dust collecting filter (51) is sucked into the fan (25) and then blown out of the air outlet (22) force casing (20).
  • the pre-filter unit (30) performs the cleaning operation of the pre-filter (31), and the collection unit (50) performs the cleaning operation of the dust-collecting filter (51). These cleaning operations are performed, for example, every time the operating time of the air cleaner (10) reaches a predetermined reference value.
  • the cleaning operation of the prefilter unit (30) and the cleaning operation of the collection unit (50) need not be performed at the same timing, and may be performed individually at different timings. For example, when the cleaning operation is performed according to the operation time of the air purifier (10), the cleaning operation of the prefilter unit (30) and the cleaning operation of the collection unit (50) are performed respectively.
  • the reference value for the operation time may be set individually.
  • the second roller (33) is driven by the motor (34), and the prefilter (31) moves.
  • the moving pre-filter (31) has its outer surface rubbed against the scraping brush (41) of the first cleaning unit (40).
  • the relatively large dust collected by the prefilter (31) is swept away by the prefilter (31) by the scraping brush (41) and collected in the housing case (42).
  • the second roller (53) is driven by the motor (54), and the dust collection filter (51) moves.
  • the moving dust collection filter (51) is rubbed with the scrub brush (61) of the second cleaning unit (60) on its outer surface.
  • the agglomerated particles (101) collected by the dust collection filter (51) are scraped off from the dust collection filter (51) by the scraping brush (61) and collected in the storage case (62). Go.
  • the aggregated particles (101) are formed by aggregating a plurality of suspended particles (100) in the aggregation unit (70), and the aggregates formed by the aggregation unit (70) are formed.
  • the particles (101) are collected and collected by the dust collection filter (51) of the collection unit (50).
  • fine suspended particles (100) having a particle size of 1 ⁇ m or less are aggregated particles (101) having a relatively large particle size consisting of a plurality of suspended particles (100). ) And collected by the dust collection filter (51).
  • this air cleaner (10) fine suspended particles with a particle size of 1 ⁇ m or less from the air to be treated using a coarser dust collection filter (51) than a high-performance filter such as HEPA, for example. (100) can be removed. Therefore, according to this embodiment, it is possible to realize an air cleaner (10) that can remove fine suspended particles (100) from the air to be treated and that has a low pressure loss of the air to be treated. As a result, power consumption in the fan (25) can be reduced, and noise such as blowing noise can be reduced.
  • the aggregation unit (70) is provided with the particle charging unit (71) and the particle capturing unit (74), and the floating unit charged by the particle charging unit (71) is provided.
  • the particles (100) are trapped on the dust collection electrode (75) of the particle trapping part (74) by electrical attraction. Therefore, the particle trapping part (74) can reliably capture the fine suspended particles (100) while suppressing the pressure loss of the air to be treated when passing through the particle trapping part (74). Therefore, according to the present embodiment, it is possible to improve the performance of the air cleaner (10) while keeping the pressure loss of the air to be treated low.
  • the surface of the dust collection electrode (75) is subjected to a surface treatment for promoting the separation of the aggregated particles (101). Aggregated particles (101) are easily peeled off from (75). Therefore, according to the present embodiment, the amount of the aggregated particles (101) remaining on the dust collection electrode (75) can be reduced, and the performance of the particle trapping part (74) can be reliably maintained. .
  • the dust collecting filter (51) force is also removed by the first purification unit (60) to remove the agglomerated particles (101).
  • the aggregation unit (70) is The trapped suspended particles (100) are aggregated and then dispersed again into the air to be treated as aggregated particles (101). For this reason, suspended particles (100) and aggregated particles (101) do not continue to accumulate on the dust collection electrode (75) of the aggregation unit (70).
  • the agglomerated particles (101) scattered from the agglomeration unit (70) are collected by the dust collecting filter (51).
  • the agglomerated particles (101) are collected by the second filter unit (60).
  • the aggregated particles (101) do not continue to accumulate in the dust collection filter (51). Therefore, according to the present embodiment, it is not necessary to clean the aggregation unit (70) and the dust collection filter (51) by a single user, and the labor required for the maintenance work of the air cleaner (10) can be reduced.
  • the storage case can be obtained simply by connecting the suction nozzle (68) of the vacuum cleaner to the nozzle connection part (43, 63) of the storage case (42, 62). Aggregated particles (101) can be discharged from (42,62). Therefore, according to the present embodiment, it becomes easy to discard dust and agglomerated particles (101) collected in the storage case (42, 62), and the labor required for the maintenance work of the air cleaner (10) can be reduced. .
  • the aggregation unit (70) of the present embodiment includes the particle charging unit (71) and the particle capturing unit.
  • the particle trapping part (74) of this embodiment the suspended particles (100) aggregate on the surface of the dust collecting electrode (75) to form aggregated particles (101), and the aggregated particles have a certain size.
  • Dust collecting electrode (75) The force is peeled off and scattered.
  • the size of the dust collecting electrode (75) used in the particle trapping portion (74) of the present embodiment is significantly smaller than that used in a general electric dust collector. Therefore, according to this embodiment, the size of the air cleaner (10) can be made smaller than that of an electric dust collector having equivalent performance.
  • a large number of fine protrusions (78) may be formed on the surface of the dust collecting electrode (75)!
  • the protrusion (78) may be an elongated bowl-like shape extending in the longitudinal direction of the dust collecting electrode (75) (perpendicular to the paper surface of FIG. 6), or a columnar or rectangular parallelepiped shape.
  • a projection (78) is formed on the surface of the dust collection electrode (75)
  • an electric field is concentrated in the vicinity of the projection (78), and suspended particles (100) are concentrated on the projection (78). Adhere to.
  • the aggregated particles are large enough to be removed from the dust collection electrode (75) by the flow of air to be treated ( 101) can be reliably formed in a short time, and the collection efficiency of suspended particles (100) in the dust collector can be improved.
  • the distance between the dust collection electrode (75) and the counter electrode (76) is gradually narrowed toward the downstream side of the processing air, and the air flow path ( 77) Let's make the cross-sectional area smaller.
  • the cross-sectional shape of the dust collection electrode (75) is changed from a rectangular shape to a trapezoidal shape.
  • the cross-sectional shape of the dust collection electrode (75) is an isosceles trapezoid in which the upper base is positioned upstream of the air to be treated and the lower base is positioned downstream thereof.
  • the distance between the dust collection electrode (75) and the counter electrode (76) is d at the upstream end of the air to be treated, but is reduced to d '(d' d d) at the downstream end of the air to be treated.
  • the cross-sectional area of the air flow path (77) formed between the dust collection electrode (75) and the counter electrode (76) gradually decreases from the upstream side to the downstream side of the air to be treated. .
  • the agglomerated particles (101) formed by the particle trapping part (74) can be reliably peeled off from the agglomerated electrode cover and collected by the dust collecting filter (51), The collection efficiency of suspended particles (100) in the cleaner (10) can be improved.
  • the cross-sectional area of the air flow path (77) is changed by changing the shape of the dust collecting electrode (75).
  • the means for changing the value is not limited to this.
  • changing the shape of the counter electrode (76) By changing the shape of both (75) and the counter electrode (76), or by changing their arrangement without changing the shape of the dust collection electrode (75) or counter electrode (76), the air flow path ( 77) The cross-sectional area may be changed.
  • Embodiment 2 of the present invention will be described.
  • the air cleaner (10) of this embodiment is obtained by adding a shielding unit (80), which is a shielding mechanism, to Embodiment 1 described above.
  • the air cleaner (10) of the present embodiment will be described with respect to differences from the first embodiment.
  • the shielding unit (80) is provided in the aggregation unit (70).
  • the shielding unit (80) includes a shielding sheet (81) and a pair of rollers (84, 85) for winding up the shielding sheet (81).
  • Each of the pair of rollers (84, 85) is formed in an elongated round bar shape extending in a direction perpendicular to the paper surface of FIG.
  • One of the pair of rollers (84, 85) is arranged at the upper part on the front side of the particle trapping part (74) and the other is arranged at the lower part on the front side of the particle trapping part (74)! .
  • a motor for rotating the rollers (84, 85) is attached to each roller (84, 85).
  • the shielding sheet (81) is formed in a flexible sheet shape.
  • the shielding sheet (81) includes a mesh-like ventilation portion (82) that allows passage of air and a shielding portion (83) that blocks passage of air.
  • the shielding sheet (81) is provided with a portion where only the ventilation portion (82) is formed and a portion where the ventilation portion (82) and the shielding portion (83) are alternately formed.
  • the vertical width of the ventilation portion (82) is slightly larger than the thickness of the dust collection electrode (75).
  • the distance between the ventilation portions (82) is set to be approximately the same as the distance between the dust collection electrodes (75).
  • the shielding sheet (81) has its upper end fixed to the first roller (84) and its lower end fixed to the second roller (85).
  • the shielding sheet (81) is stretched from the first roller (84) to the second roller (85), and the dust collecting electrode (75) and the counter electrode (76) constituting the particle trapping part (74). ) To cover the front side.
  • the ventilation portion (82) of the shielding sheet (81) is formed by rotating the rollers (84, 85) to move the shielding sheet (81). Trapped part is particle trap
  • the first state (the state shown in FIG. 8 (A)) covering the front of the part (74) and the part of the shielding sheet (81) where the ventilation part (82) and the shielding part (83) are alternately formed It switches to the second state (the state shown in Fig. 8 (B)) covering the front surface of the particle trapping part (74).
  • the air cleaner (10) of the present embodiment alternately performs the aggregation operation and the scattering operation.
  • This air cleaner (10) normally performs an aggregating operation, and temporarily performs a scattering operation, for example, every time the duration of the aggregating operation reaches a predetermined value.
  • the aggregating operation is an operation for forming the agglomerated particles (101) by the particle trapping part (74) of the aggregating unit (70).
  • the shielding unit (80) is set to the first state (the state shown in FIG. 8 (A)), and the portion of the shielding sheet (81) where only the ventilation portion (82) is formed is used.
  • the front surface of the particle trap (74) is covered.
  • the air to be treated that has passed through the particle charging unit (71) flows into the front surface of the particle trapping unit (74) on the average. Therefore, the flow velocity of the air to be treated in the air channel (77) of the particle trapping part (74) is substantially constant in the cross section of the air channel (77).
  • the particle trapping part (74) charged floating particles (100) in the air to be treated are attracted and attached to the dust collecting electrode (75), and the aggregated particles (101) are formed on the surface of the dust collecting electrode (75). Growing up.
  • the scattering operation is an operation for separating the agglomerated particles (101) again into the air to be treated by peeling off the force of the dust collecting electrode (75).
  • the shielding unit (80) is set to the second state (the state shown in FIG. 8 (B)), and the ventilation portion (82) and the shielding portion (83) of the shielding sheet (81) are alternately arranged.
  • the front surface of the particle trapping portion (74) is covered by the portion formed on the surface.
  • the position of the shielding sheet (81) is set so that the ventilation part (82) faces the front end face of the dust collection electrode (75).
  • the shielding unit (80) constitutes a speed increasing means for increasing the flow velocity of the air to be processed in the vicinity of the dust collecting electrode (75) as compared with that during the coagulation operation.
  • the flow of the air to be treated flowing into the particle trapping part (74) of the aggregation unit (70) is partially blocked by the shielding sheet (81), so that the dust collection electrode (
  • the flow velocity of air to be treated near the surface of 75) is increased. For this reason, the flow rate of the air to be treated in the vicinity of the dust collecting electrode (75) can be increased without changing the flow rate of the air to be treated passing through the aggregation unit (70). 75) The re-scattering of the aggregated particles (101) from 75) can be promoted. Therefore, according to the present embodiment, while avoiding problems such as noise caused by an increase in the flow rate of the air to be treated, the aggregated particles staying in the dust collection electrode (75) of the aggregation unit (70) ( By reducing the amount of 101), the performance of the air cleaner (10) can be kept high.
  • the dust collecting electrode (75) and the counter electrode (76) of the particle trapping part (74) are made movable so that the air passage (23) of the particle trapping part (74) is movable. Let's change the flow rate of the air to be treated.
  • the particle trapping portion (74) of the present modification includes each dust collecting electrode (75) and each counter electrode.
  • the dust collection electrode (75) and the counter electrode (76) are configured to be rotatable about their front end portions as axes. Specifically, the dust collection electrode (75) and the counter electrode (76) are inclined by a force that is generally horizontal (the posture shown by the two-dot chain line in FIG. 9) and downstream of the flow of the air to be treated. Rotate between postures (posture shown by solid line in the figure).
  • the dust collection electrode (75) and the counter electrode (76) are in a substantially horizontal posture (the posture indicated by the two-dot chain line in Fig. 9). Set to In this state, the distance between the dust collecting electrode (75) and the counter electrode (76) is “d”. Meanwhile, particles during scattering In the child trapping part (74), the dust collecting electrode (75) and the counter electrode (76) are set in an inclined posture (the posture shown by a solid line in the figure). In this state, the distance between the dust collection electrode (75) and the counter electrode (76) is “d”, which is shorter than “d”.
  • the cross-sectional area of the air flow path (77) formed between the dust collection electrode (75) and the counter electrode (76) is smaller during the scattering operation than during the aggregating operation. For this reason, during the scattering operation, the flow speed of the air to be treated in the air flow path (77) increases compared to that during the agglomeration operation, and the agglomerated particles (101) are easily peeled off from the dust collecting electrode (75). .
  • the aggregation operation and the scattering operation may be switched by changing the flow rate of the air to be treated.
  • the flow rate of the air to be processed in the air passage (23) increases compared to that during the agglomeration operation.
  • the flow rate of the air to be treated is adjusted by adjusting the rotational speed of the fan (25).
  • the flow velocity of the air to be treated in the air flow path (77) of the particle agglomeration portion increases accordingly. For this reason, the force that the dust collecting electrode (75) -like aggregated particles (101) are subjected to the processing air force increases, and the aggregated particles (101) are easily peeled off from the dust collecting electrode (75).
  • the operation of vibrating the aggregation unit (70) may be performed as a scattering operation.
  • the air cleaner (10) of the present modification is provided with a vibration unit (90) as a vibration mechanism.
  • the vibration unit (90) includes a vibration motor (91) and a vibration disk (92).
  • the vibration disk (92) is attached in an eccentric state with respect to the output shaft of the vibration motor (91).
  • the vibration unit (90) is installed at a position where the outer peripheral surface of the vibration disk (92) contacts the aggregation unit (70).
  • energization of the vibration motor (91) is performed during the scattering operation, and power distribution to the vibration motor (91) is stopped during the aggregation operation.
  • the excitation motor (91) is energized, the excitation disk (92) attached to the output shaft rotates and the aggregation unit (70) is shaken in the vertical direction.
  • the dust collecting electrode (75) of the particle trapping part (74) also vibrates, and the aggregated particles (101) are not easily separated from the dust collecting electrode (75).
  • the operation of switching the connection state between the dust collecting electrode (75) and the counter electrode (76) and the power source (79) in the aggregation unit (70) is performed as a scattering operation. May be.
  • the dust collecting electrode (75) is connected to the positive electrode (+ electrode) of the power source (79), and the counter electrode (76) is connected to the negative electrode (one pole) of the power supply (79).
  • the aggregated particles (101) on the dust collection electrode (75) are positively (+) charged.
  • the dust collecting electrode (75) is connected to the positive electrode (+ electrode) of the power source (79)
  • the positively (+) charged aggregated particles (101) on the surface are collected by the electric repulsive force. It is pulled away from the dust electrode (75) and scattered into the air to be treated.
  • the operation of switching the connection state between the dust collecting electrode (75) and the counter electrode (76) and the power source (79) may be performed using a mechanical or electrical switch.
  • the AC voltage may be temporarily applied to the dust collection electrode (75) and the counter electrode (76).
  • Modification 5 of Embodiment 2 In the air cleaner (10) of the present embodiment, the operation of generating a spark between the dust collection electrode (75) and the counter electrode (76) of the aggregation unit (70) may be performed as a scattering operation.
  • a spark is forcibly generated between the dust collection electrode (75) and the counter electrode (76)
  • an electrical or physical impact force acts on the aggregated particles (101) on the dust collection electrode (75).
  • the agglomerated particles (101) are peeled off by the impact of the dust collecting electrode (75) and scattered into the air to be treated.
  • Embodiment 3 of the present invention will be described.
  • the air cleaner (10) of the present embodiment is obtained by changing the configurations of the prefilter unit (30) and the collection unit (50) in the first embodiment.
  • the air cleaner (10) of the present embodiment will be described with respect to differences from the first embodiment.
  • the prefilter (31) of the prefilter unit (30) and the dust collection filter (51) of the collection unit (50) In the endless shape as in the first embodiment, it is formed in a single sheet shape having an end portion.
  • one end of the filter (31, 51) is fixed to the first roller (32, 52), and the other end of the filter (31, 51). The end is fixed to the second roller (33, 53).
  • both the first roller (32, 52) and the second roller (33, 53) are driven by motors not shown. .
  • the filter (31, 51) moves upward.
  • the filter (31, 51) is wound around the second roller (33, 53) by rotating the second roller (33, 53) by rotating the second roller (33, 53), the filter (31, 51) moves downward.
  • Embodiment 4 of the present invention will be described.
  • the air cleaner (10) of the present embodiment is In the first embodiment, the configurations of the pre-filter unit (30) and the collection unit (50) are changed.
  • the air cleaner (10) of the present embodiment will be described with respect to differences from the first embodiment.
  • one filter sheet (58) serves as both the pre-filter (31) and the dust collection filter (51)! /
  • the filter sheet (58) is formed in a flexible endless loop shape.
  • the filter sheet (58) includes a first roller (32) and a second roller (33) of the prefilter unit (30), and a first roller (52) and a second roller (53) of the collecting unit (50). It ’s over!
  • the portion located upstream of the aggregation unit (70) (that is, the portion extending from the first roller (32) to the second roller (33) of the prefilter unit (30)) is pre-filtered ( 31) and the part located downstream of the aggregation unit (70) (that is, the part of the collection unit (50) that spans the first roller (52) force and the second roller (53)) is the dust collection filter ( 51).
  • the arrangement of (60) is different from that of the first embodiment.
  • the first purification unit (40) is disposed along the outer peripheral surface of the filter sheet (58) at a position below the aggregation unit (70).
  • the scraping brush (41) of the first purification unit (40) is in contact with the outer peripheral surface of the filter sheet (58).
  • the second purification unit (60) is disposed along the inner peripheral surface of the filter sheet (58) at a position above the aggregation unit (70).
  • the scraping brush (61) of the second purification unit (60) contacts the inner peripheral surface of the filter sheet (58).
  • Embodiment 5 of the present invention will be described.
  • the air cleaner (10) of the present embodiment is obtained by changing the configurations of the prefilter unit (30) and the collection unit (50) in the first embodiment.
  • the air cleaner (10) of the present embodiment will be described with respect to differences from the first embodiment.
  • a power generation mechanism (35,55) is provided instead of the motor (34,54). Yes.
  • the power generation mechanism (35, 55) is configured to generate rotational power by the suction force of the vacuum cleaner when the suction nozzle (68) of the vacuum cleaner is connected to the nozzle connection (43, 63). Has been.
  • the power generation mechanism (35, 55) is composed of a cylindrical impeller with one or more spiral blades, similar to the turbine brush of the suction tool of a commercial vacuum cleaner. Yes.
  • the impeller is made of a material with a low specific gravity such as synthetic resin so that it can be rotated by the suction force of the vacuum cleaner.
  • the power generating mechanism (35) of the prefilter unit (30) is connected to the second roller (33) of the prefilter unit (30) via a gear or the like.
  • the power generation mechanism (55) of the collection unit (50) is connected to the second roller (53) of the collection unit (50) via a gear or the like.
  • the filter is generated by the driving force generated by the power generation mechanism (35, 55) using the suction force of the vacuum cleaner. (31,51) It is moved. This eliminates the need for a power source such as a motor to move the dust collection filter (51), simplifies the configuration of the air cleaner (10), and reduces the power consumption of the air cleaner (10). .
  • a transport member (37, 57) is added to each of the first purification unit (40) and the second purification unit (60). Even so.
  • This conveying member (37, 57) is formed in the shape of an elongated round bar having a spiral ridge, and is disposed along the scraping brush (4 1, 61).
  • the conveying members (37, 57) are rotationally driven by the power obtained by the power generation mechanism (35, 55). When the conveying member (37, 57) rotates, dust and agglomerated particles (101) scraped off from the filter (31, 51) by the scraping brush (41, 61) are transferred to the conveying member (37, 57).
  • the conveying member (37, 57) of the present modified example uses the power generated by the power generation mechanism (35, 55) using the suction force of the vacuum cleaner to remove dust and aggregated particles (101). Conveying. Therefore, according to this modification, a power source such as a motor for driving the conveying members (37, 57) is not required, and the air cleaner (10) is complicated and the power consumption of the air cleaner (10) is reduced. Can be avoided.
  • the dust collecting electrode (75) and the counter electrode (76) of the particle trapping part (74) are both formed in a flat plate shape!
  • the shape of the electrode (75) and the counter electrode (76) is not limited to a flat plate shape.
  • the dust collecting electrodes (75) are formed in a lattice shape, and one rod-like counter electrode (76) is arranged in each compartment formed in the dust collecting electrode (75). Also good.
  • a dust collector with a counter electrode (76) is inserted.
  • Each section of the pole (75) constitutes an air flow path (77). The suspended particles (100) in the air to be treated flowing through the air channel (77) adhere to the surface of the dust collection electrode (75) surrounding the air channel (77).
  • the cleaning unit (40, 60) of each of the above embodiments has a scraping brush (41, 61) as a member for scraping dust and agglomerated particles (101) from the filter (31, 51).
  • the filter (31, 51) force is not limited to the scraping brush (41, 61) as a member for removing the agglomerated particles (101).
  • a round bar-shaped rotating brush (65) as shown in Fig. 17 is provided in the purification unit (40, 60), and the rotating brush (65) is rotated simultaneously with the movement of the filter (31, 51).
  • dust or agglomerated particles (101) may be removed from the filter (31, 51).
  • a scraping pad (66) as shown in FIG. 18 is provided, and the scraping pad (66) is brought into contact with the filter (31, 51), so that the filter (31, 51) force dust Or you can drop the agglomerated particles (101)! /.
  • the scraping brush (41, 61) is omitted, and only the suction force of the vacuum cleaner connected to the nozzle connection (43, 63) is used. Dust and aggregate particles (101) may be removed from the filter (31,51)! ,.
  • a suction part (67) is formed on the upper part of the housing case (42, 62).
  • the suction portion (67) is formed in a tapered nozzle shape, and the opening at the tip thereof is disposed in the vicinity of the filter (31, 51) along the second roller (33, 53). .
  • the suction nozzle (68) of the vacuum cleaner is connected to the nozzle connection part (43,63) of the storage case (42,62)
  • the housing case (42, 62) may be detachable.
  • the storage cases (42, 62) of this modification form a holding container.
  • the storage case (42, 62) can be attached and detached as it is detachable.
  • the nozzle connection (43, 63) is omitted from the case (42, 62).
  • the dust and the aggregated particles (101) that have been scraped off from the filter (31, 51) accumulate in the housing case (42, 62).
  • the user of the air cleaner (10) removes the storage case (42, 62), for example, every week or every month, and removes dust or agglomerated particles (101) accumulated in the storage case (42, 62). Discard.
  • the filter (31, 51) may be reciprocated up and down.
  • the drive mechanism (36, 56) is configured to reciprocate the filter (31, 51) linearly.
  • the drive mechanism (36, 56) of this modification has a rack provided at the side end of the filter (31, 51) and a pion that engages with this rack attached to the drive shaft. The filter (31, 51) is moved linearly by rotating the pinion.
  • the first purification unit (40) is at the lower end of the front side of the pre-filter (31), and the second purification unit (60) is at the front side of the dust collection filter (51). It is arranged at the lower end of the.
  • the scraping brush (41, 61) is installed so as to face the front surface of the filter (31, 51).
  • the aggregated particles (101) are collected using the dust collection filter (51).
  • the collection unit (50) It is not limited to using (51).
  • the collection unit (50) may be configured to separate the air to be treated and the aggregated particles (101) using a cyclone (95).
  • the air to be treated containing the agglomerated particles (101) swirls, and the agglomerated particles (101) are collected near the outer peripheral wall by centrifugal force.
  • the air to be treated from which the agglomerated particles (101) have been removed is discharged to the outside from the vicinity of the center of the cyclone (95).
  • the collection unit (50) may be configured to separate the aggregated particles (101) from the air to be treated using gravity.
  • the collection unit (50) is constituted by a duct (96) installed on the downstream side of the aggregation unit (70).
  • This duct ( 96) has a shape in which the cross-sectional area abruptly narrows at a position that has advanced a predetermined distance downstream from the collection unit (50). Specifically, the cross-sectional area of the duct (96) is narrowed by raising the bottom of the duct (96) stepwise.
  • the agglomerated particles (101) that have flowed out of the agglomeration unit (70) together with the air to be treated are gathered below the duct (96) due to the action of gravity while flowing through the wide section of the duct (96). .
  • the agglomerated particles (101) collected below the duct (96) hit the bottom surface of the stepped duct (96) and stay in the duct (96).
  • the aggregated particles (101) contained in the air to be treated are reduced.
  • the air to be treated flows into the duct (96) having a narrow cross-sectional area and is discharged to the outside.
  • Aggregated particles (101) accumulated in the duct (96) are taken out from the duct (96) by opening the open / close door (97) formed in the stepped portion.
  • the collection unit (50) may be configured to spray the water into the air to be treated and collect the aggregated particles (101) together with the water! /.
  • the air cleaner (10) is configured by the dust collector according to the present invention.
  • the dust collector according to the present invention may be incorporated in the air conditioner.
  • the dust collector according to the present invention is incorporated in the indoor unit (15) of the air conditioner.
  • This indoor unit (15) is configured in the same manner as the air cleaner (10) of each of the above embodiments, except that the indoor heat exchanger (26) is provided.
  • the indoor heat exchanger (26) is disposed between the collection unit (50) and the fan (25). That is, in this indoor unit (15), the indoor heat exchanger (26) is arranged downstream of the dust collector composed of the prefilter unit (30), the aggregating unit (70), and the collecting unit (50). ing.
  • the indoor heat exchange (26) heat is exchanged between the refrigerant circulated between the outdoor units (not shown) and the air to be treated.
  • the air cleaner (10) is constituted by the dust collector according to the present invention, and the suspended particles (100) are removed from the air! Is not limited to air.
  • air for example, combustion exhaust gas from boilers etc. is treated and You may make it collect the included fine dust etc. with a dust collector.
  • the present invention is useful for a dust collector for removing force floating particles (100) such as air and combustion exhaust gas.

Abstract

A prefilter unit (30), a flocculation unit (70), and a collection unit (50) are installed in a casing (20) of an air cleaner (10). Air to be treated, from which large-sized dust and dirt are removed by the prefilter (31), flows into the flocculation unit (70). In the flocculation unit (70), fine airborne particles in the air to be treated are captured by a dust collection electrode. The airborne particles flocculate on the dust collecting electrode to become flocculated particles. The flocculated particles are separated from the dust collection electrode when they grow to a certain size and dispersed in the air to be treated. In the dust collecting unit (50) disposed on the downstream side of the flocculation unit (70), the flocculated particles in the air to be treated are captured by a dust collection filter (51).

Description

明 細 書  Specification
集塵装置  Dust collector
技術分野  Technical field
[0001] 本発明は、空気や燃焼排ガス等の被処理気体力 浮遊粒子を除去するための集 塵装置に関するものである。  [0001] The present invention relates to a dust collecting device for removing airborne particles to be treated such as air and combustion exhaust gas.
背景技術  Background art
[0002] 従来より、室内空気中のノ、ウスダストや燃焼排ガス中の粉塵などを捕集するために 集塵装置が用いられている。  Conventionally, a dust collector has been used to collect dust and dust in indoor air, dust in combustion exhaust gas, and the like.
[0003] この集塵装置としては、例えば特許文献 1に開示されて!ヽるような電気集塵装置が 知られている。この電気集塵装置は、捕集対象の浮遊粒子を予め帯電させ、帯電し た浮遊粒子を電気的な引力で捕集するものである。具体的に、特許文献 1の電気集 塵装置は、浮遊粒子を帯電させるためのイオンィ匕部と、イオンィ匕部の下流に配置さ れた集塵部とを備えている。集塵部では、共に平板状の集塵極板と対向極板とが交 互に配置されている。そして、この電気集塵装置では、イオンィ匕部で正(+ )に帯電さ せられた浮遊粒子が集塵部の負極板である集塵極板に捕集される。  [0003] As this dust collector, for example, an electrostatic dust collector as disclosed in Patent Document 1 is known. This electrostatic precipitator charges the suspended particles to be collected in advance and collects the charged suspended particles with an electric attractive force. Specifically, the electrostatic precipitator of Patent Document 1 includes an ion collector for charging floating particles, and a dust collector disposed downstream of the ion collector. In the dust collection section, flat dust collection electrode plates and counter electrode plates are alternately arranged. In this electrostatic precipitator, suspended particles that are positively (+) charged at the ion collector are collected by a dust collecting electrode plate that is a negative electrode plate of the dust collector.
[0004] また、集塵装置としては、 HEPA (High Efficiency Particulate AirFilter)などの高 性能フィルターを用いたものも知られている。この種の集塵装置では、高性能フィル ターへ被処理気体を送り込み、被処理気体を高性能フィルターで濾過して浮遊物質 を除去している。  [0004] Further, as a dust collector, one using a high performance filter such as HEPA (High Efficiency Particulate AirFilter) is also known. In this type of dust collector, the gas to be treated is sent to the high-performance filter, and the suspended gas is removed by filtering the gas to be treated with a high-performance filter.
特許文献 1:特開平 6— 254437号公報  Patent Document 1: Japanese Patent Laid-Open No. 6-254437
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0005] 上述した電気集塵装置では、浮遊粒子を電気的な引力で捕集するため、集塵極板 と対向極板の間隔をそれほど狭めなくても、例えば粒径 1 μ m程度の微細な粒子ま で捕集できる。従って、微細な粒子を捕集する場合でも、電気集塵装置を通過する 際の被処理気体の圧力損失はそれ程大きくならない。ところが、この電気集塵装置 は、浮遊粒子を集塵極板の表面に付着させる構造となっているため、集塵性能を高 めるには集塵極板の表面積を拡大しなければならず、装置の大型化を招くという問 題がある。 [0005] In the above-described electrostatic precipitator, suspended particles are collected by an electric attractive force, so even if the distance between the dust collecting electrode plate and the counter electrode plate is not so narrow, for example, a fine particle having a particle diameter of about 1 μm. It can collect up to particles. Therefore, even when collecting fine particles, the pressure loss of the gas to be treated when passing through the electrostatic precipitator is not so large. However, this electrostatic precipitator has a structure that allows airborne particles to adhere to the surface of the precipitator electrode plate. For this purpose, the surface area of the dust collecting electrode plate must be increased, which increases the size of the device.
[0006] 一方、高性能フィルタを用いた集塵装置では、例えばガラス繊維等を高密度で集 積したフィルタで浮遊粒子を捕捉するため、装置が大型化するという問題は電気集 塵装置の場合ほど深刻ではない。ところが、この種の集塵装置では、微細な粒子ま で捕集しょうとすればする程、フィルタを通過する際の被処理気体の圧力損失が大き くなるという問題がある。  [0006] On the other hand, in a dust collector using a high-performance filter, for example, a problem that the size of the device is increased is the case of an electrostatic dust collector because trapped particles are captured by a filter in which glass fibers and the like are collected at high density. Not as serious. However, in this type of dust collector, there is a problem that the pressure loss of the gas to be processed when passing through the filter increases as the fine particles are collected.
[0007] 本発明は、力かる点に鑑みてなされたものであり、その目的は、微細な粒子をも捕 集可能で、しかも被処理気体の圧力損失が小さくて小型の集塵装置を提供すること にある。  [0007] The present invention has been made in view of the strong point, and an object of the present invention is to provide a small dust collector capable of collecting even fine particles and having a small pressure loss of the gas to be treated. There is to do.
課題を解決するための手段  Means for solving the problem
[0008] 第 1の発明は、集塵装置を対象としている。そして、被処理気体が流れる気体通路 [0008] A first invention is directed to a dust collector. And a gas passage through which the gas to be treated flows
(23)に配置され、該被処理気体中の浮遊粒子(100)を凝集させて凝集粒子(101)を 形成すると共に形成した凝集粒子(101)を被処理気体中に飛散させる凝集部 (70)と 、上記気体通路 (23)における上記凝集部(70)の下流に配置され、該凝集部(70)を 通過した被処理気体中の凝集粒子(101)を捕集する捕集部 (50)とを備えるものであ る。  (23), agglomerated part (70) that aggregates suspended particles (100) in the gas to be treated to form agglomerated particles (101) and scatters the formed agglomerated particles (101) in the gas to be treated (70 ) And a collecting part (50) that is disposed downstream of the aggregation part (70) in the gas passage (23) and collects the aggregated particles (101) in the gas to be treated that has passed through the aggregation part (70). ).
[0009] 第 1の発明では、被処理空気中の浮遊粒子(100)が凝集部(70)に一旦捕集される 。凝集部 (70)では、捕集された複数の浮遊粒子 (100)が凝集し、複数の浮遊粒子 (1 00)の集合体である凝集粒子(101)が形成される。凝集粒子(101)は、ある程度の大 きさになると凝集部(70)力 離れ、被処理気体と共に捕集部 (50)へと流れる。例えば 、凝集部(70)に捕集された粒径 1 μ m程度の微細な浮遊粒子(100)は、比較的粒径 の大きな凝集粒子(101)の一部となって捕集部 (50)へ送られる。捕集部 (50)は、凝 集部 (70)から被処理気体と共に流れてきた凝集粒子 (101)を捕集する。  [0009] In the first invention, the suspended particles (100) in the air to be treated are once collected in the aggregation part (70). In the aggregation part (70), the collected plurality of suspended particles (100) aggregate to form aggregated particles (101) that are aggregates of the plurality of suspended particles (100). When the agglomerated particles (101) reach a certain size, the agglomerated part (70) is separated and flows to the collecting part (50) together with the gas to be treated. For example, fine suspended particles (100) with a particle size of about 1 μm collected in the agglomerated part (70) become part of the relatively large agglomerated particles (101) and are collected in the collecting part (50 ). The collection unit (50) collects the aggregated particles (101) flowing from the collection unit (70) together with the gas to be processed.
[0010] 第 2の発明は、上記第 1の発明において、上記凝集部(70)で被処理気体中の浮遊 粒子(100)を凝集させて凝集粒子(101)を形成するための凝集動作と、上記凝集動 作中に上記凝集部(70)で形成された凝集粒子(101)を被処理気体中に飛散させる ための飛散動作とを行うものである。 [0011] 第 2の発明では、凝集動作と飛散動作とが集塵装置で行われる。凝集動作中の凝 集部(70)では、複数の浮遊粒子(100)が凝集することによって凝集粒子(101)が形 成される。一方、飛散動作中には、凝集粒子(101)が凝集部(70)力 引き剥がされ、 凝集部(70)を通過する被処理気体と共に捕集部 (50)へ送られる。 [0010] The second invention is the agglomeration operation for aggregating floating particles (100) in the gas to be treated in the aggregating part (70) to form aggregated particles (101) in the first invention. During the agglomeration operation, a scattering operation for scattering the agglomerated particles (101) formed in the agglomerated part (70) into the gas to be treated is performed. [0011] In the second invention, the aggregation operation and the scattering operation are performed by the dust collector. In the aggregating part (70) during the aggregating operation, aggregated particles (101) are formed by aggregating a plurality of suspended particles (100). On the other hand, during the scattering operation, the agglomerated particles (101) are peeled off by the agglomerated part (70) and sent to the collecting part (50) together with the gas to be processed that passes through the agglomerated part (70).
[0012] 第 3の発明は、上記第 1又は第 2の発明において、上記凝集部(70)は、被処理気 体中の浮遊粒子(100)を帯電させる粒子帯電部 (71)と、該粒子帯電部 (71)で帯電さ せた浮遊粒子 (100)を電気的な引力で捕捉して凝集させる粒子捕捉部 (74)とを備え るものである。  [0012] In a third invention according to the first or second invention, the aggregating part (70) includes a particle charging part (71) for charging the suspended particles (100) in the gas to be treated, A particle capturing unit (74) that captures and aggregates the suspended particles (100) charged by the particle charging unit (71) by an electric attractive force.
[0013] 第 3の発明では、被処理気体中の浮遊粒子(100)が粒子帯電部(71)で正(+ )又 は負(―)に帯電させられる。帯電した浮遊粒子(100)は、電気的な引力によって粒 子捕捉部 (74)へ引き寄せられて捕捉される。そして、粒子捕捉部 (74)では、捕捉さ れた複数の浮遊粒子(100)が互いに凝集することによって凝集粒子(101)が形成さ れる。  [0013] In the third invention, the suspended particles (100) in the gas to be treated are charged positively (+) or negatively (-) by the particle charging portion (71). The charged suspended particles (100) are attracted and captured by the particle capturing part (74) by an electric attractive force. Then, in the particle trapping part (74), the plurality of trapped suspended particles (100) are aggregated to form aggregated particles (101).
[0014] 第 4の発明は、上記第 3の発明において、上記粒子捕捉部(74)は、第 1電極 (75)と 第 2電極 (76)とを備え、上記第 1電極 (75)と上記第 2電極 (76)の間に電界を形成す ることによって、上記粒子帯電部(71)で帯電させた浮遊粒子(100)を上記第 1電極( 75)に付着させて凝集させるように構成されるものである。  [0014] In a fourth aspect based on the third aspect, the particle trapping part (74) includes a first electrode (75) and a second electrode (76), and the first electrode (75) By forming an electric field between the second electrodes (76), the suspended particles (100) charged by the particle charging unit (71) are adhered to the first electrode (75) and aggregated. It is composed.
[0015] 第 4の発明において、粒子捕捉部(74)では、第 1電極 (75)と第 2電極 (76)の間に 電位差を付与することによって、第 1電極 (75)と第 2電極 (76)の間の空間に電界が 形成される。例えば、粒子帯電部(71)で浮遊粒子(100)を正(+ )に帯電させる場合 は、負極側となった第 1電極 (75)に帯電した浮遊粒子(100)が引き寄せられる。また 、粒子帯電部 (71)で浮遊粒子(100)を負(一)に帯電させる場合は、正極側となった 第 1電極 (75)に帯電した浮遊粒子(100)が引き寄せられる。第 1電極 (75)の表面上 では、捕捉された浮遊粒子(100)が互いに凝集することによって凝集粒子(101)が形 成されてゆく。  [0015] In the fourth invention, in the particle trapping part (74), by applying a potential difference between the first electrode (75) and the second electrode (76), the first electrode (75) and the second electrode An electric field is formed in the space between (76). For example, when the suspended particle (100) is positively (+) charged by the particle charging unit (71), the charged suspended particle (100) is attracted to the first electrode (75) on the negative electrode side. Further, when the suspended particle (100) is negatively (one) charged by the particle charging unit (71), the charged suspended particle (100) is attracted to the first electrode (75) on the positive electrode side. On the surface of the first electrode (75), the trapped suspended particles (100) aggregate together to form aggregated particles (101).
[0016] 第 5の発明は、上記第 4の発明において、上記第 1電極 (75)における被処理空気と の接触面には、凝集粒子(101)の剥離を促進するための表面処理が施されるもので ある。 [0017] 第 5の発明では、第 1電極 (75)の表面に凝集粒子(101)の剥離を促進するための 表面処理が施される。この表面処理としては、表面を鏡面に仕上げる加工や、撥水 性の被膜やフッ素榭脂の被膜等を形成して表面自由エネルギーを低下させる加工 などが例示される。このような表面処理を第 1電極 (75)に施すと、凝集粒子(101)が 第 1電極 (75)の表面力 剥がれやすくなり、第 1電極 (75)に残留する凝集粒子(101) の量が抑えられる。 [0016] In a fourth aspect based on the fourth aspect, the contact surface of the first electrode (75) with the air to be treated is subjected to a surface treatment for promoting separation of the aggregated particles (101). It is to be done. [0017] In the fifth invention, the surface of the first electrode (75) is subjected to a surface treatment for promoting the separation of the aggregated particles (101). Examples of the surface treatment include a process of finishing the surface into a mirror surface and a process of reducing the surface free energy by forming a water-repellent film, a fluorine resin film, or the like. When such a surface treatment is applied to the first electrode (75), the aggregated particles (101) are easily peeled off from the surface force of the first electrode (75), and the aggregated particles (101) remaining on the first electrode (75) are removed. The amount is reduced.
[0018] 第 6の発明は、上記第 4の発明において、上記第 1電極 (75)における被処理空気と の接触面には、多数の突起(78)力 S形成されるものである。  [0018] In a sixth aspect based on the fourth aspect, a large number of projection (78) forces S are formed on the contact surface of the first electrode (75) with the air to be treated.
[0019] 第 6の発明では、第 1電極 (75)の表面に突起 (78)が形成されている。第 1電極 (75) と第 2電極 (76)の間に形成される電界は、この突起(78)の近傍に集中することになる 。そのため、粒子帯電部(71)から粒子捕捉部(74)へ移動してきた浮遊粒子(100)は 、第 1電極 (75)の突起 (78)の近傍に集中して付着することになる。つまり、第 1電極( 75)では、突起(78)の近傍に集中して凝集粒子(101)が形成される。ある程度の大き さにまで成長した凝集粒子(101)は、被処理気体の流れによって第 1電極 (75)から 引き剥がされる。  [0019] In the sixth invention, the projection (78) is formed on the surface of the first electrode (75). The electric field formed between the first electrode (75) and the second electrode (76) is concentrated in the vicinity of the protrusion (78). Therefore, the suspended particles (100) that have moved from the particle charging unit (71) to the particle trapping unit (74) are concentrated and attached in the vicinity of the protrusion (78) of the first electrode (75). That is, in the first electrode (75), aggregated particles (101) are formed in the vicinity of the protrusions (78). Aggregated particles (101) that have grown to a certain size are peeled off from the first electrode (75) by the flow of the gas to be treated.
[0020] 第 7の発明は、上記第 4の発明において、上記粒子捕捉部(74)では、被処理気体 が通過する複数の気体流路 (77)が上記第 1電極 (75)と上記第 2電極 (76)によって 形成され、上記各気体流路 (77)の断面積が被処理気体の流れの下流側へ向かって 次第に狭まるものである。  [0020] In a seventh aspect based on the fourth aspect, the particle trapping portion (74) includes a plurality of gas flow paths (77) through which the gas to be processed passes and the first electrode (75) and the first electrode. It is formed by two electrodes (76), and the cross-sectional area of each gas flow path (77) gradually narrows toward the downstream side of the flow of the gas to be processed.
[0021] 第 7の発明において、粒子捕捉部(74)を通過する被処理気体は、第 1電極 (75)と 第 2電極 (76)によって形成された気体流路(77)を通過する。この気体流路(77)の断 面積は、被処理気体の流れの下流側ほど狭くなつている。そのため、気体流路(77) を通過する被処理気体の流速は、下流側へ進むにつれて次第に上昇してゆく。  In the seventh invention, the gas to be processed that passes through the particle trapping portion (74) passes through the gas flow path (77) formed by the first electrode (75) and the second electrode (76). The sectional area of the gas flow path (77) is narrower toward the downstream side of the flow of the gas to be processed. Therefore, the flow velocity of the gas to be processed that passes through the gas flow path (77) gradually increases as it proceeds downstream.
[0022] 第 8の発明は、上記第 2の発明において、上記凝集部(70)における被処理気体の 流速を上記凝集動作中に比べて増大させる動作を、上記飛散動作として行うもので ある。  [0022] In an eighth aspect based on the second aspect, the operation for increasing the flow velocity of the gas to be processed in the aggregation section (70) as compared with that during the aggregation operation is performed as the scattering operation.
[0023] 第 8の発明にお 、て、凝集部(70)を通過する被処理気体の流速は、凝集動作中の 値に比べて飛散動作中の値の方が大きくなる。凝集部(70)を通過する被処理気体 力 凝集粒子(101)が受ける力は、被処理気体の流速の三乗に比例する。従って、 飛散動作中の凝集部 (70)では、凝集粒子(101)が被処理気体から受ける力(即ち、 凝集粒子(101)を引き剥がそうとする力)が凝集動作中に比べて大きくなる。 [0023] In the eighth invention, the flow rate of the gas to be processed that passes through the aggregation portion (70) has a larger value during the scattering operation than a value during the aggregation operation. Processed gas that passes through the agglomeration part (70) Force The force received by the agglomerated particles (101) is proportional to the cube of the flow velocity of the gas to be processed. Therefore, in the agglomeration part (70) during the scattering operation, the force that the agglomerated particles (101) receive from the gas to be treated (that is, the force for peeling off the agglomerated particles (101)) is larger than that during the agglomeration operation. .
[0024] 第 9の発明は、上記第 8の発明において、上記粒子捕捉部(74)は、第 1電極 (75)と 第 2電極 (76)とを備え、上記第 1電極 (75)と上記第 2電極 (76)の間に電界を形成す ることによって、上記粒子帯電部(71)で帯電させた浮遊粒子(100)を上記第 1電極( 75)に付着させて凝集させるように構成される一方、上記第 1電極 (75)の近傍におけ る被処理気体の流速を上記凝集動作中に比べて増大させる動作を、上記飛散動作 として行うものである。 [0024] In a ninth aspect based on the eighth aspect, the particle trapping part (74) includes a first electrode (75) and a second electrode (76), and the first electrode (75) By forming an electric field between the second electrodes (76), the suspended particles (100) charged by the particle charging unit (71) are adhered to the first electrode (75) and aggregated. On the other hand, an operation for increasing the flow velocity of the gas to be processed in the vicinity of the first electrode (75) as compared with that during the aggregation operation is performed as the scattering operation.
[0025] 第 9の発明では、上記第 4の発明と同様に、粒子捕捉部(74)に第 1電極 (75)と第 2 電極 (76)とが設けられ、第 1電極 (75)と第 2電極 (76)の間の空間に電界が形成され る。粒子帯電部(71)で帯電した浮遊粒子(100)は、電気的な引力で引き寄せられて 第 1電極 (75)に付着する。第 1電極 (75)では、付着した浮遊粒子(100)が互いに凝 集することによって凝集粒子(101)が形成される。これらの点も、上記第 4の発明と同 様である。  [0025] In the ninth invention, similarly to the fourth invention, the particle trapping part (74) is provided with the first electrode (75) and the second electrode (76), and the first electrode (75) An electric field is formed in the space between the second electrodes (76). The suspended particles (100) charged by the particle charging unit (71) are attracted by the electric attractive force and adhere to the first electrode (75). In the first electrode (75), the adhering suspended particles (100) aggregate together to form aggregated particles (101). These points are also the same as in the fourth invention.
[0026] この第 9の発明にお 、て、粒子捕捉部(74)の第 1電極 (75)付近における被処理気 体の流速は、凝集動作中の値に比べて飛散動作中の値の方が大きくなる。第 1電極 (75)上の凝集粒子(101)が被処理気体から受ける力は、被処理気体の流速の三乗 に比例する。従って、飛散動作中の粒子捕捉部(74)では、凝集粒子(101)が被処理 気体力も受ける力 (即ち、凝集粒子 (101)を引き剥がそうとする力)が凝集動作中に 比べて大きくなる。  [0026] In the ninth aspect of the invention, the flow velocity of the gas to be treated in the vicinity of the first electrode (75) of the particle trapping portion (74) is a value during the scattering operation as compared with a value during the agglomeration operation. Will be bigger. The force that the aggregated particles (101) on the first electrode (75) receive from the gas to be processed is proportional to the cube of the flow velocity of the gas to be processed. Therefore, in the particle trapping part (74) during the scattering operation, the force that the agglomerated particles (101) receive also the gas force to be treated (that is, the force that tries to peel off the agglomerated particles (101)) is greater than that during the agglomeration operation. growing.
[0027] 第 10の発明は、上記第 9の発明において、被処理気体が上記第 1電極 (75)の近 傍を集中的に流れるように被処理気体の流れを部分的に遮断するための遮蔽機構( 80)を備え、上記飛散動作中には、上記遮蔽機構 (80)が被処理気体の流れを部分 的に遮断することによって上記第 1電極 (75)の近傍における被処理気体の流速を増 大さ ·¾:るちのである。  [0027] A tenth invention is the method according to the ninth invention, wherein the flow of the gas to be processed is partially blocked so that the gas to be processed flows intensively in the vicinity of the first electrode (75). A shielding mechanism (80) is provided, and during the scattering operation, the shielding mechanism (80) partially blocks the flow of the gas to be processed, whereby the flow velocity of the gas to be processed in the vicinity of the first electrode (75). Increased · ¾: It is a round.
[0028] 第 10の発明では、遮蔽機構 (80)が集塵装置に設けられる。この遮蔽機構 (80)は、 被処理気体の流れを部分的に遮断し、被処理気体を第 1電極 (75)の近傍へ集中的 に流す。集塵装置では、この遮蔽機構 (80)の動作が飛散動作として行われる。つま り、遮蔽機構 (80)の動作によって被処理気体が第 1電極 (75)の近傍を集中して流れ る状態になると、粒子捕捉部(74)を通過する被処理気体の流速が第 1電極 (75)の近 傍で局所的に高まる。そのため、第 1電極 (75)に付着した凝集粒子(101)が被処理 気体力も受ける力が大きくなり、凝集粒子(101)が第 1電極 (75)から引き剥がされ易く なる。 [0028] In the tenth invention, the shielding mechanism (80) is provided in the dust collector. This shielding mechanism (80) partially blocks the flow of the gas to be processed and concentrates the gas to be processed in the vicinity of the first electrode (75). Shed. In the dust collector, the operation of the shielding mechanism (80) is performed as a scattering operation. In other words, when the gas to be processed flows in the vicinity of the first electrode (75) by the operation of the shielding mechanism (80), the flow velocity of the gas to be processed passing through the particle trapping part (74) is the first flow rate. It rises locally near the electrode (75). Therefore, the force that the agglomerated particles (101) attached to the first electrode (75) are subjected to the gas force to be processed increases, and the agglomerated particles (101) are easily peeled off from the first electrode (75).
[0029] 第 11の発明は、上記第 2の発明において、上記凝集部(70)を振動させるための加 振機構 (90)を備え 上記加振機構 (90)によって上記凝集部 (70)を振動させて該凝 集部(70)力 凝集粒子(101)を飛散させる動作を、上記飛散動作として行うものであ る。  [0029] In an eleventh aspect based on the second aspect, the vibration mechanism (90) for vibrating the aggregation portion (70) is provided, and the aggregation portion (70) is provided by the vibration mechanism (90). The operation of causing the aggregated part (70) force to scatter and scatter the aggregated particles (101) is performed as the above-described scattering operation.
[0030] 第 11の発明では、加振機構 (90)が集塵装置に設けられる。集塵装置の飛散動作 中には、加振装置が凝集部 (70)を振動させて凝集粒子(101)を凝集部 (70)力 再 飛散させる。  [0030] In the eleventh invention, the vibration exciting mechanism (90) is provided in the dust collector. During the scattering operation of the dust collector, the vibration exciter vibrates the agglomerated part (70) and re-scatters the agglomerated particles (101) with the force of the agglomerated part (70).
[0031] 第 12の発明は、上記第 2の発明において、上記粒子捕捉部(74)は、第 1電極 (75) と第 2電極 (76)とを備え、上記第 1電極 (75)と上記第 2電極 (76)の間に電界を形成 することによって、上記粒子帯電部(71)で帯電させた浮遊粒子(100)を上記第 1電 極 (75)に付着させて凝集させるように構成される一方、上記第 1電極 (75)の極性と 上記第 2電極 (76)の極性とを一時的に反転させる動作を、上記飛散動作として行うも のである。  [0031] In a twelfth aspect based on the second aspect, the particle trapping part (74) includes a first electrode (75) and a second electrode (76), and the first electrode (75) By forming an electric field between the second electrodes (76), the suspended particles (100) charged by the particle charging portion (71) are adhered to the first electrode (75) and aggregated. On the other hand, the operation of temporarily inverting the polarity of the first electrode (75) and the polarity of the second electrode (76) is performed as the scattering operation.
[0032] 第 13の発明は、上記第 2の発明において、上記粒子捕捉部(74)は、第 1電極 (75) と第 2電極 (76)とを備え、上記第 1電極 (75)と上記第 2電極 (76)の間に電界を形成 することによって、上記粒子帯電部(71)で帯電させた浮遊粒子(100)を上記第 1電 極 (75)に付着させて凝集させるように構成される一方、上記第 1電極 (75)と上記第 2 電極 (76)の間でスパークを発生させる動作を、上記飛散動作として行うものである。  [0032] In a thirteenth aspect based on the second aspect, the particle trapping part (74) includes a first electrode (75) and a second electrode (76), and the first electrode (75) By forming an electric field between the second electrodes (76), the suspended particles (100) charged by the particle charging portion (71) are adhered to the first electrode (75) and aggregated. On the other hand, the operation of generating a spark between the first electrode (75) and the second electrode (76) is performed as the scattering operation.
[0033] 第 12及び第 13の発明では、上記第 4の発明と同様に、粒子捕捉部(74)に第 1電 極 (75)と第 2電極 (76)とが設けられ、第 1電極 (75)と第 2電極 (76)の間の空間に電 界が形成される。粒子帯電部 (71)で帯電した浮遊粒子(100)は、電気的な引力で引 き寄せられて第 1電極 (75)に付着する。第 1電極 (75)では、付着した浮遊粒子(100) が互いに凝集することによって凝集粒子(101)が形成される。これらの点も、上記第 4 の発明と同様である。 [0033] In the twelfth and thirteenth inventions, as in the fourth invention, the particle capturing section (74) is provided with the first electrode (75) and the second electrode (76), and the first electrode An electric field is formed in the space between (75) and the second electrode (76). The suspended particles (100) charged by the particle charging unit (71) are attracted by the electric attractive force and adhere to the first electrode (75). In the first electrode (75), the attached suspended particles (100) Aggregate each other to form aggregated particles (101). These points are also the same as in the fourth invention.
[0034] 上記第 12の発明において、飛散動作中の集塵装置では、第 1電極 (75)及び第 2 電極 (76)の極性が凝集動作中とは逆になる。例えば、粒子帯電部 (71)で浮遊粒子 ( 100)を正(+ )に帯電させる場合、凝集動作中には第 1電極 (75)が負極側となって第 2電極 (76)が正極側となるが、飛散動作中には第 1電極 (75)が正極側となって第 2 電極 (76)が負極側となる。凝集動作中に第 1電極 (75)に付着した浮遊粒子(100)の 電荷は、その殆どは第 1電極 (75)へ逃げてしまうが、一部は浮遊粒子(100)に留まる 。そのため、上記の例において、第 1電極 (75)上の凝集粒子(101)は、正(+ )に帯 電した状態となる。そして、飛散動作中に第 1電極 (75)が正極側に切り換わると、第 1 電極 (75)上の正(+ )に帯電した凝集粒子(101)は、電気的な反発力によって第 1電 極 (75)から引き剥がされる。  [0034] In the twelfth aspect of the invention, in the dust collector during the scattering operation, the polarities of the first electrode (75) and the second electrode (76) are opposite to those during the aggregation operation. For example, when the suspended particle (100) is charged positively (+) by the particle charging unit (71), the first electrode (75) is on the negative electrode side and the second electrode (76) is on the positive electrode side during the aggregation operation. However, during the scattering operation, the first electrode (75) is on the positive electrode side and the second electrode (76) is on the negative electrode side. Most of the charge of the suspended particles (100) adhering to the first electrode (75) during the agglomeration operation escapes to the first electrode (75), but a part of the charges stays in the suspended particles (100). Therefore, in the above example, the aggregated particles (101) on the first electrode (75) are positively charged (+). Then, when the first electrode (75) is switched to the positive electrode side during the scattering operation, the positively (+) charged aggregated particles (101) on the first electrode (75) become the first due to the electric repulsive force. It is peeled off from the electrode (75).
[0035] 一方、第 13の発明では、において、飛散動作中の集塵装置では、第 1電極 (75)と 第 2電極 (76)の間でスパークが発生する。第 1電極 (75)と第 2電極 (76)の間でスパ ークを発生させると、電気的な衝撃で凝集粒子(101)が第 1電極 (75)から引き剥がさ れ、被処理気体中に再飛散する。  On the other hand, in the thirteenth invention, in the dust collector during the scattering operation, a spark is generated between the first electrode (75) and the second electrode (76). When a spark is generated between the first electrode (75) and the second electrode (76), the agglomerated particles (101) are peeled off from the first electrode (75) by an electric shock, and the process gas is discharged. Re-splash.
発明の効果  The invention's effect
[0036] 本発明では、凝集部(70)で複数の浮遊粒子(100)を凝集させることによって凝集 粒子(101)を形成し、凝集部 (70)で形成された凝集粒子(101)を捕集部 (50)で捕集 している。本発明の集塵装置において、例えば粒径 1 μ m程度の微細な浮遊粒子(1 00)は、複数の浮遊粒子(100)力 なる比較的粒径の大きな凝集粒子(101)の一部と なって捕集部(50)に捕集される。つまり、この集塵装置では、例えば HEPA等の高 性能フィルターに比べて目の粗 ヽフィルターで捕集部(50)を構成した場合であって も、被処理気体から粒径 1 μ m程度の微細な浮遊粒子(100)を除去することが可能と なる。従って、本発明によれば、被処理気体から微細な浮遊粒子(100)を除去可能 で、しかも被処理気体の圧力損失が低!、集塵装置を実現できる。  [0036] In the present invention, the aggregated particles (101) are formed by aggregating a plurality of suspended particles (100) in the aggregation part (70), and the aggregated particles (101) formed in the aggregation part (70) are captured. Collected at Shubu (50). In the dust collector of the present invention, for example, fine suspended particles (100) having a particle size of about 1 μm are combined with a part of relatively large aggregated particles (101) having a force of a plurality of suspended particles (100). It is collected in the collection part (50). In other words, in this dust collector, even if the collection part (50) is composed of a coarse filter of eyes compared to a high-performance filter such as HEPA, for example, the particle size is about 1 μm from the gas to be treated. Fine suspended particles (100) can be removed. Therefore, according to the present invention, fine suspended particles (100) can be removed from the gas to be processed, and the pressure loss of the gas to be processed is low, and a dust collector can be realized.
[0037] 上記第 2の発明では、飛散動作を行うことによって、凝集部 (70)で形成された凝集 粒子(101)を確実に被処理気体中へ再飛散させることができる。このため、凝集部(7 0)における凝集粒子(101)の蓄積量をある程度以下に抑えることができ、凝集部(70 )の性能を確実に維持することができる。 [0037] In the second invention, by performing the scattering operation, the agglomerated particles (101) formed in the aggregating portion (70) can be reliably re-scattered into the gas to be treated. For this reason, the agglomerated part (7 The accumulated amount of the aggregated particles (101) in 0) can be suppressed to a certain level or less, and the performance of the aggregated part (70) can be reliably maintained.
[0038] 上記第 3及び第 4の発明では、粒子帯電部 (71)と粒子捕捉部 (74)とが凝集部 (70) に設けられ、粒子帯電部 (71)で帯電した浮遊粒子(100)が電気的な引力によって粒 子捕捉部(74)に捕捉される。このため、粒子捕捉部(74)では、そこを通過する際の 被処理気体の圧力損失を低く抑えながら、微細な浮遊粒子(100)を確実に捕捉する ことができる。従って、この発明によれば、被処理気体の圧力損失を低く抑えながら 集塵装置の性能向上を図ることができる。  [0038] In the third and fourth inventions, the particle charging unit (71) and the particle trapping unit (74) are provided in the aggregation unit (70), and the suspended particles (100) charged by the particle charging unit (71) are provided. ) Is trapped in the particle trapping part (74) by electrical attraction. For this reason, the particle trapping part (74) can reliably capture the fine suspended particles (100) while suppressing the pressure loss of the gas to be processed when passing through the particle trapping part (74). Therefore, according to the present invention, it is possible to improve the performance of the dust collector while keeping the pressure loss of the gas to be processed low.
[0039] 上記第 5の発明では、凝集粒子(101)の剥離を促進するための表面処理を第 1電 極 (75)の表面に施して 、るため、第 1電極 (75)力 凝集粒子(101)が剥がれやすく なる。従って、この発明によれば、第 1電極 (75)に残留する凝集粒子(101)の量を低 減することができ、粒子捕捉部(74)の性能を確実に維持することができる。  [0039] In the fifth aspect of the invention, since the surface treatment for promoting the separation of the aggregated particles (101) is performed on the surface of the first electrode (75), the first electrode (75) force aggregated particles (101) is easy to peel off. Therefore, according to the present invention, the amount of aggregated particles (101) remaining on the first electrode (75) can be reduced, and the performance of the particle trapping part (74) can be reliably maintained.
[0040] 上記第 6の発明では、第 1電極 (75)の表面に突起 (78)が形成されており、その突 起 (78)の近傍に集中して凝集粒子(101)が形成されてゆく。このため、被処理気体 の流れによって第 1電極 (75)力 引き剥がされる程度の大きさの凝集粒子(101)を確 実に形成することができ、集塵装置における浮遊粒子(100)の捕集効率を向上させ ることがでさる。  [0040] In the sixth invention, the protrusion (78) is formed on the surface of the first electrode (75), and the aggregated particles (101) are formed in the vicinity of the protrusion (78). go. For this reason, the aggregated particles (101) can be formed with such a size that the first electrode (75) force is peeled off by the flow of the gas to be treated, and the suspended particles (100) are collected in the dust collector. It can improve efficiency.
[0041] 上記第 7の発明では、被処理気体の流れる気体流路 (77)を粒子捕捉部 (74)に形 成し、その気体流路(77)の断面積を下流側へ向かって狭めることで被処理気体の流 れを次第に増速させている。このため、粒子捕捉部(74)で形成された凝集粒子(101 )を第 1電極 (75)力も確実に引き剥がして捕集部 (50)で捕集することができ、集塵装 置における浮遊粒子(100)の捕集効率を向上させることができる。  [0041] In the seventh aspect of the invention, the gas channel (77) through which the gas to be treated flows is formed in the particle trapping portion (74), and the cross-sectional area of the gas channel (77) is narrowed toward the downstream side. As a result, the flow of the gas to be treated is gradually increased. For this reason, the agglomerated particles (101) formed by the particle trapping part (74) can be reliably peeled off by the first electrode (75) and collected by the trapping part (50). The collection efficiency of suspended particles (100) can be improved.
[0042] 上記第 8の発明では、飛散動作中に凝集部(70)を通過する被処理気体の流速を 高め、凝集粒子(101)が被処理気体力も受ける力を増大させている。また、上記第 9 の発明では、飛散動作中に粒子捕捉部(74)の第 1電極 (75)近傍における被処理空 気の流速を高め、第 1電極 (75)上の凝集粒子(101)が被処理気体力 受ける力を増 大させている。従って、これら第 8及び第 9の発明では、凝集部(70)から凝集粒子(1 [0042] In the eighth aspect of the invention, the flow velocity of the gas to be processed that passes through the agglomeration part (70) during the scattering operation is increased, and the force that the aggregated particles (101) receive also the gas force to be processed is increased. In the ninth aspect of the invention, the flow rate of the air to be treated in the vicinity of the first electrode (75) of the particle trapping part (74) is increased during the scattering operation, and the aggregated particles (101) on the first electrode (75) are increased. Is increasing the force received by the gas force to be treated. Therefore, in these eighth and ninth inventions, the aggregated part (70) is changed into the aggregated particles (1
01)を確実に再飛散させることができ、凝集部(70)に滞留する凝集粒子(101)の量を 削減することによって集塵装置の性能を高く保つことができる。 01) can be reliably re-scattered, and the amount of aggregated particles (101) staying in the agglomerated part (70) can be reduced. By reducing it, the performance of the dust collector can be kept high.
[0043] 上記第 10の発明では、被処理気体の流れを遮蔽機構 (80)によって部分的に遮る ことで、第 1電極 (75)の近傍における被処理気体の流速を高めている。このため、凝 集部(70)を通過する被処理気体の流量を変化させずに第 1電極 (75)の近傍におけ る被処理気体の流速を高めることができ、それによつて第 1電極 (75)力もの凝集粒子 (101)の再飛散を促進させることができる。従って、この発明によれば、被処理気体の 流量増大に起因して生じる騒音等の問題を回避した上で、凝集部(70)に滞留する 凝集粒子(101)の量を削減することによって集塵装置の性能を高く保つことができる  In the tenth aspect of the invention, the flow velocity of the gas to be processed in the vicinity of the first electrode (75) is increased by partially blocking the flow of the gas to be processed by the shielding mechanism (80). For this reason, the flow rate of the gas to be processed in the vicinity of the first electrode (75) can be increased without changing the flow rate of the gas to be processed that passes through the condensing part (70). (75) Re-scattering of powerful aggregated particles (101) can be promoted. Therefore, according to the present invention, while avoiding problems such as noise caused by an increase in the flow rate of the gas to be processed, the amount of aggregated particles (101) staying in the agglomerated portion (70) is reduced, thereby collecting the particles. The performance of the dust device can be kept high
[0044] 上記第 11の発明では、加振機構 (90)によって凝集部(70)を振動させることによつ て、凝集部(70)力も凝集粒子(101)を再飛散させている。従って、この発明によれば 、凝集部 (70)に滞留する凝集粒子 (101)の量を削減して集塵装置の性能を高く保つ ことができる。 [0044] In the eleventh aspect of the invention, the aggregated part (70) is also re-scattered by the force of the aggregated part (70) by vibrating the aggregated part (70) by the vibration mechanism (90). Therefore, according to the present invention, the amount of the agglomerated particles (101) staying in the agglomeration part (70) can be reduced, and the performance of the dust collector can be kept high.
[0045] 上記第 12の発明では、第 1電極 (75)及び第 2電極 (76)の極性を凝集動作中と逆 に切り換える動作が飛散動作として行われる。また、上記第 13の発明では、第 1電極 (75)と第 2電極 (76)の間でスパークを発生させる動作が飛散動作として行われる。従 つて、これら第 12及び第 13の発明によれば、第 1電極 (75)力も凝集粒子(101)を確 実に再飛散させることができ、凝集部 (70)に滞留する凝集粒子(101)の量を削減し て集塵装置の性能を高く保つことができる。  [0045] In the twelfth aspect of the invention, the operation of switching the polarities of the first electrode (75) and the second electrode (76) in the opposite direction to that during the aggregation operation is performed as a scattering operation. In the thirteenth aspect, the operation of generating a spark between the first electrode (75) and the second electrode (76) is performed as a scattering operation. Therefore, according to these twelfth and thirteenth inventions, the first electrode (75) force can also surely rescatter the agglomerated particles (101), and the agglomerated particles (101) staying in the agglomerated part (70). The amount of dust can be reduced and the performance of the dust collector can be kept high.
図面の簡単な説明  Brief Description of Drawings
[0046] [図 1]図 1は、実施形態 1の空気清浄機の内部構造を示す概略側面図である。  FIG. 1 is a schematic side view showing an internal structure of an air cleaner according to a first embodiment.
[図 2]図 2は、実施形態 1の空気清浄機に設置された状態におけるプレフィルタュ-ッ ト又は捕集ユニットの概略正面図である。  FIG. 2 is a schematic front view of the pre-filter cue or the collection unit in a state where it is installed in the air cleaner of the first embodiment.
[図 3]図 3は、実施形態 1における浄ィ匕ユニットの要部を示す拡大断面図である。  FIG. 3 is an enlarged cross-sectional view showing a main part of the purification unit in the first embodiment.
[図 4]図 4は、実施形態 1の凝集ユニットを示す概略側面図である。  FIG. 4 is a schematic side view showing the aggregation unit of the first embodiment.
[図 5]図 5は、凝集ユニットの動作を模式的に示す要部拡大図である。  FIG. 5 is an enlarged view of a main part schematically showing the operation of the aggregating unit.
[図 6]図 6は、実施形態 1の変形例 1における粒子捕捉部の要部拡大図である。  FIG. 6 is an enlarged view of the main part of the particle trapping part in Modification 1 of Embodiment 1.
[図 7]図 7は、実施形態 1の変形例 2の凝集ユニットを示す概略側面図である。 [図 8]図 8は、実施形態 2の凝集ユニットを示す概略側面図であって、(A)は遮蔽ュ- ットの第 1状態を示し、(B)は遮蔽ユニットの第 2状態を示す。 FIG. 7 is a schematic side view showing the aggregation unit of Modification 2 of Embodiment 1. [Fig. 8] Fig. 8 is a schematic side view showing the aggregation unit of Embodiment 2, wherein (A) shows the first state of the shielding unit, and (B) shows the second state of the shielding unit. Show.
[図 9]図 9は、実施形態 2の変形例 1の凝集ユニットを示す概略側面図である。  FIG. 9 is a schematic side view showing an aggregation unit of Modification 1 of Embodiment 2.
[図 10]図 10は、実施形態 2の変形例 3における空気清浄機の要部を示す概略斜視 図である。  FIG. 10 is a schematic perspective view showing a main part of an air cleaner according to Modification 3 of Embodiment 2.
[図 11]図 11は、実施形態 2の変形例 4における粒子捕捉部の要部を示す拡大側面 図である。  FIG. 11 is an enlarged side view showing the main part of the particle trapping part in Modification 4 of Embodiment 2.
[図 12]図 12は、実施形態 3の空気清浄機の内部構造を示す概略側面図である。  FIG. 12 is a schematic side view showing the internal structure of the air cleaner according to the third embodiment.
[図 13]図 13は、実施形態 4の空気清浄機の内部構造を示す概略側面図である。 FIG. 13 is a schematic side view showing the internal structure of the air cleaner according to the fourth embodiment.
[図 14]図 14は、実施形態 5の空気清浄機に設置された状態におけるプレフィルタュ ニット又は捕集ユニットの概略正面図である。 FIG. 14 is a schematic front view of a prefilter unit or a collection unit in a state where it is installed in an air cleaner according to a fifth embodiment.
[図 15]図 15は、実施形態 5の変形例の空気清浄機に設置された状態におけるプレフ ィルタユニット又は捕集ユニットの概略正面図である。  FIG. 15 is a schematic front view of a prefilter unit or a collection unit in a state where it is installed in an air cleaner according to a modification of the fifth embodiment.
[図 16]図 16は、その他の実施形態の第 1変形例における粒子捕捉部の概略斜視図 である。  FIG. 16 is a schematic perspective view of a particle trapping portion in a first modification of another embodiment.
[図 17]図 17は、その他の実施形態の第 2変形例における浄ィ匕ユニットの要部を示す 拡大断面図である。  FIG. 17 is an enlarged cross-sectional view showing a main part of a purification unit in a second modification of the other embodiment.
[図 18]図 18は、その他の実施形態の第 2変形例における浄ィ匕ユニットの要部を示す 拡大断面図である。  FIG. 18 is an enlarged cross-sectional view showing a main part of a purification unit in a second modification of the other embodiment.
[図 19]図 19は、その他の実施形態の第 3変形例における浄ィ匕ユニットの要部を示す 拡大側面図である。  FIG. 19 is an enlarged side view showing a main part of a purification unit in a third modification of the other embodiment.
[図 20]図 20は、その他の実施形態の第 4変形例における空気清浄機の内部構造を 示す概略側面図である。  FIG. 20 is a schematic side view showing the internal structure of an air cleaner according to a fourth modification of the other embodiment.
[図 21]図 21は、その他の実施形態の第 5変形例における空気清浄機の要部を示す 概略側面図である。  FIG. 21 is a schematic side view showing a main part of an air cleaner in a fifth modification of the other embodiment.
[図 22]図 22は、その他の実施形態の第 6変形例における空気清浄機の要部を示す 概略構成図である。  FIG. 22 is a schematic configuration diagram showing a main part of an air cleaner according to a sixth modified example of the other embodiment.
[図 23]図 23は、その他の実施形態の第 6変形例における空気清浄機の要部を示す 概略構成図である。 FIG. 23 shows a main part of an air cleaner according to a sixth modification of the other embodiment. It is a schematic block diagram.
[図 24]図 24は、その他の実施形態の第 7変形例における室内ユニットの内部構造を 示す概略側面図である。  FIG. 24 is a schematic side view showing the internal structure of the indoor unit in the seventh modification example of the other embodiment.
符号の説明  Explanation of symbols
23 空気通路 (気体通路)  23 Air passage (gas passage)
50 捕集ユニット (捕集部)  50 collection unit (collection part)
70 凝集ユニット (凝集部)  70 Aggregation unit (aggregation part)
71 粒子帯電部  71 Particle charging unit
74 粒子捕捉部  74 Particle trap
75 集塵電極 (第 1電極)  75 Dust collection electrode (first electrode)
76 対向電極 (第 2電極)  76 Counter electrode (second electrode)
77 空気流路(気体流路)  77 Air channel (gas channel)
78 突起  78 Protrusions
80 遮蔽ユニット(遮蔽機構)  80 Shielding unit (shielding mechanism)
90 加振ュ-ット (加振機構)  90 Excitation mechanism (Excitation mechanism)
100 浮遊粒子  100 airborne particles
101 凝集粒子  101 Agglomerated particles
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0048] 以下、本発明の実施形態を図面に基づいて詳細に説明する。  Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0049] 《発明の実施形態 1》  [Embodiment 1 of the Invention]
本発明の実施形態 1について説明する。本実施形態の空気清浄機(10)は、本発 明に係る集塵装置を構成して 、る。  Embodiment 1 of the present invention will be described. The air cleaner (10) of the present embodiment constitutes a dust collector according to the present invention.
[0050] 〈空気清浄機の全体構成〉  [0050] <Overall configuration of air purifier>
図 1に示すように、本実施形態 1の空気清浄機(10)は、箱形のケーシング (20)を備 えている。このケーシング (20)では、その前面に吸込口(21)が、その上面の背面寄り に吹出口(22)がそれぞれ形成されている。ケーシング (20)の内部には、吸込口(21) 力 吹出口(22)に至る空気通路 (23)が形成されて!、る。この空気通路 (23)は、被処 理気体としての被処理空気を流通させるための気体通路を構成している。 [0051] 上記ケーシング (20)内の空気通路(23)には、吸込口(21)から吹出口(22)へ向か つて順に、プレフィルタユニット(30)と、凝集部である凝集ユニット (70)と、捕集部であ る捕集ユニット(50)と、ファン (25)とが設置されて 、る。 As shown in FIG. 1, the air cleaner (10) of the first embodiment includes a box-shaped casing (20). In the casing (20), a suction port (21) is formed on the front surface, and an air outlet (22) is formed on the upper surface near the back surface. Inside the casing (20), there is formed an air passage (23) leading to the suction port (21) and the force outlet (22). The air passage (23) constitutes a gas passage for circulating the air to be treated as the gas to be treated. [0051] In the air passage (23) in the casing (20), in order from the suction port (21) to the blowout port (22), the prefilter unit (30) and the aggregation unit ( 70), a collecting unit (50) as a collecting unit, and a fan (25) are installed.
[0052] プレフィルタユニット(30)は、プレフィルタ(31)と、プレフィルタ(31)を巻き取るため の一対のローラ(32,33)と、プレフィルタ(31)を浄化するための第 1浄化ユニット(40) とを備えている。プレフィルタ(31)は、被処理空気に含まれる「ほこり」等の比較的大 きな浮遊物 (塵埃)を捕集するためのフィルタである。このプレフィルタ (31)は、薄くて 柔軟なエンドレスのシート状に形成されており、空気通路 (23)を横断するように設け られている。プレフィルタ (31)の目の粗さは、例えば一般的な空調機の室内機に取り 付けられているフィルタと同程度となっている。プレフィルタユニット(30)の詳細は後 述する。  [0052] The prefilter unit (30) includes a prefilter (31), a pair of rollers (32, 33) for winding the prefilter (31), and a first filter for purifying the prefilter (31). And a purification unit (40). The prefilter (31) is a filter for collecting relatively large suspended matters (dust) such as “dust” contained in the air to be treated. The prefilter (31) is formed into a thin and flexible endless sheet, and is provided so as to cross the air passage (23). The coarseness of the prefilter (31) is, for example, about the same as that of a filter installed in an indoor unit of a general air conditioner. Details of the pre-filter unit (30) will be described later.
[0053] 凝集ユニット(70)は、プレフィルタ (31)を通過した被処理空気に残存する浮遊粒子  [0053] The agglomeration unit (70) is a suspended particle remaining in the air to be treated that has passed through the prefilter (31)
(100)を一旦捕捉して凝集させ、それによつて得られた凝集粒子(101)を再び被処理 空気中へ飛散させるように構成されて 、る。この凝集ユニット(70)の詳細は後述する  (100) is once captured and aggregated, and the aggregated particles (101) obtained thereby are scattered again into the air to be treated. Details of the aggregation unit (70) will be described later.
[0054] 捕集ユニット (50)は、集塵フィルタ (51)と、集塵フィルタ (51)を巻き取るための一対 のローラ (52,53)と、集塵フィルタ (51)を浄ィ匕するための第 2浄ィ匕ユニット (60)とを備 えている。集塵フィルタ (51)は、凝集ユニット(70)を通過した被処理空気に含まれる 凝集粒子(101)を捕集するためのフィルタである。この集塵フィルタ (51)は、薄くて柔 軟なエンドレスのシート状に形成されており、空気通路 (23)を横断するように設けら れている。集塵フィルタ (51)の目の粗さは、例えば一般的な空調機の室内機に取り 付けられて 、るフィルタと同程度、あるいはそれよりもやや細力 、程度となって 、る。 捕集ユニット (50)の詳細は後述する。 [0054] The collection unit (50) includes a dust collection filter (51), a pair of rollers (52, 53) for winding the dust collection filter (51), and a dust collection filter (51). And a second purification unit (60). The dust collection filter (51) is a filter for collecting the aggregated particles (101) contained in the air to be treated that has passed through the aggregation unit (70). The dust collection filter (51) is formed in a thin and flexible endless sheet shape, and is provided so as to cross the air passage (23). The coarseness of the dust collection filter (51) is, for example, the same level as that of a filter installed in a general air conditioner indoor unit, or slightly weaker than that. Details of the collection unit (50) will be described later.
[0055] ファン(25)は、吹出口(22)の真下に配置されて!、る。このファン(25)は、 ヽゎゆる 遠心ファン (25)であって、前方から吸!、込んだ空気を上方へ吹き出すように構成さ れている。  [0055] The fan (25) is arranged directly under the outlet (22)! This fan (25) is a loose centrifugal fan (25), which is configured to suck in air from the front and blow out the trapped air upward.
[0056] 〈プレフィルタユニット、捕集ユニット〉  [0056] <Prefilter unit, collection unit>
プレフィルタユニット(30)と捕集ユニット(50)とは、プレフィルタ(31)を備える力集塵 フィルタ (51)を備えるかの点で相違する力 それ以外の点では同様に構成されてい る。 The pre-filter unit (30) and the collection unit (50) are a force dust collector equipped with a pre-filter (31). Forces that differ in terms of whether or not a filter (51) is provided.
[0057] 上述したように、プレフィルタユニット(30)及び捕集ユニット(50)は、それぞれがフィ ルタ(31,51)と、一対のローラ(32,33,52,53)と、浄化機構である浄化ユニット(40,60) とを備えている。  [0057] As described above, each of the pre-filter unit (30) and the collection unit (50) includes a filter (31, 51), a pair of rollers (32, 33, 52, 53), and a purification mechanism. And a purification unit (40, 60).
[0058] 図 2にも示すように、プレフィルタユニット(30)と捕集ユニット(50)のそれぞれにおい て、一対のローラ(32,33,52,53)は、その一方が空気通路 (23)の上端側に、他方が空 気通路 (23)の下端側にそれぞれ配置されて 、る。空気通路 (23)の上端側の第 1口 ーラ (32,52)は、空気通路 (23)の下端側の第 2ローラ (33,53)のほぼ真上に設置され ている。各ローラ(32,33,52,53)は、ケーシング(20)の幅方向(図 2における左右方向 )へ延びる丸棒状に形成されている。無端のループ状に形成されたフィルタ (31,51) は、第 1ローラ(32,52)と第 2ローラ(33,53)に掛け渡されて!/、る。  As shown in FIG. 2, in each of the pre-filter unit (30) and the collection unit (50), one of the pair of rollers (32, 33, 52, 53) is an air passage (23 ) On the upper end side and the other on the lower end side of the air passage (23). The first roller (32, 52) on the upper end side of the air passage (23) is installed almost directly above the second roller (33, 53) on the lower end side of the air passage (23). Each roller (32, 33, 52, 53) is formed in a round bar shape extending in the width direction of the casing (20) (left-right direction in FIG. 2). The filter (31,51) formed in an endless loop is stretched over the first roller (32,52) and the second roller (33,53)! /
[0059] プレフィルタユニット(30)と捕集ユニット(50)のそれぞれにお!/、て、第 2ローラ(33,5 3)の一端には、第 2ローラ(33,53)を回転させるためのモータ(34,54)が連結されて ヽ る。このモータ(34,54)によって第 2ローラ(33,53)を駆動すると、フィルタ(31,51)が第 1ローラ (32,52)と第 2ローラ (33,53)の間を循環する。このように、第 1ローラ (32,52)と 第 2ローラ (33,53)とモータ(34,54)とは、無端状のフィルタ (31,51)を一方向へ移動さ せる駆動機構 (36,56)を構成して!/ヽる。  [0059] In each of the pre-filter unit (30) and the collection unit (50), the second roller (33, 53) is rotated at one end of the second roller (33, 53). The motors (34, 54) are connected. When the second roller (33, 53) is driven by the motor (34, 54), the filter (31, 51) circulates between the first roller (32, 52) and the second roller (33, 53). In this way, the first roller (32, 52), the second roller (33, 53), and the motor (34, 54) are a drive mechanism that moves the endless filter (31, 51) in one direction ( 36/56)!
[0060] プレフィルタユニット(30)にお!/、て、第 1浄化ユニット(40)は、第 2ローラ(33)の直下 に配置されている。また、捕集ユニット(50)において、第 2浄ィ匕ユニット (60)は、第 2口 ーラ(53)の直下に配置されて!、る。プレフィルタユニット(30)の第 1浄化ユニット(40) と捕集ユニット (50)の第 2浄ィ匕ユニット (60)とは、浄ィ匕する対象がプレフィルタ (31)か 集塵フィルタ (51)かの点で相違する力 それ以外の点では同様に構成されている。  [0060] In the pre-filter unit (30), the first purification unit (40) is arranged immediately below the second roller (33). In the collecting unit (50), the second purification unit (60) is arranged directly under the second outlet (53). The first purification unit (40) of the pre-filter unit (30) and the second purification unit (60) of the collection unit (50) are either the pre-filter (31) or the dust collection filter ( 51) Forces that differ in that respect Other aspects are similarly constructed.
[0061] 図 3に示すように、第 1浄ィ匕ユニット (40)と第 2浄ィ匕ユニット (60)とは、それぞれが搔 き取りブラシ (41,61)と収容ケース (42,62)とを備えている。収容ケース (42,62)は、細 長い中空の箱状に形成されている。収容ケース (42,62)は、第 2ローラ (33,53)に沿う 姿勢で、第 2ローラ (33,53)の下方に配置されている。搔き取りブラシ (41,61)は、収 容ケース (42,62)の内部に収容されている。この搔き取りブラシ (41,61)は、フィルタ(3 1,51)のうち第 2ローラ(33,53)に卷回する部分の外側面と接触するように上向きに配 置されており、フィルタ (31,51)から塵埃等を搔き落とすための搔き取り部材を構成し ている。搔き取りブラシ (41,61)によってフィルタ (31,51)から搔き落とされた塵埃等は 、収容ケース (42,62)の内部に溜まる。 [0061] As shown in FIG. 3, the first purification unit (40) and the second purification unit (60) are each composed of a scraping brush (41, 61) and a storage case (42, 62). ). The storage case (42, 62) is formed in an elongated hollow box shape. The storage case (42, 62) is disposed below the second roller (33, 53) in a posture along the second roller (33, 53). The scraping brush (41, 61) is accommodated in the storage case (42, 62). This scraping brush (41,61) has a filter (3 1, 51) is placed upward so as to come into contact with the outer surface of the portion wound around the second roller (33, 53), and is used for removing dust from the filter (31, 51). Constructs a scraping member. Dust and the like that have been scraped off from the filter (31, 51) by the scraping brush (41, 61) accumulate in the storage case (42, 62).
[0062] 第 1浄ィ匕ユニット (40)と第 2浄ィ匕ユニット (60)では、それぞれの収容ケース (42,62) に開閉自在のノズル接続部(43,63)が設けられている。このノズル接続部(43,63)は、 収容ケース (42,62)の一方の端部寄り(図 2における左端寄り)に配置されて 、る。ま た、ノズル接続部 (43,63)は、掃除機の吸引ノズル (68)が接続可能となると共に、吸 引ノズル (68)の着脱に連動して開閉するように構成されている。つまり、ノズル接続 部 (43,63)に吸引ノズル (68)が挿入されると、ノズル接続部 (43,63)が開状態となって 収容ケース (42,62)の内部空間が吸引ノズル (68)と連通する一方、ノズル接続部 (43 ,63)から吸引ノズル (68)が弓 Iき抜かれると、吸弓 Iノズル (68)が閉状態となって収容ケ ース (42,62)の内部空間が外部力 遮断される。  [0062] In the first purification unit (40) and the second purification unit (60), each storage case (42, 62) is provided with an openable / closable nozzle connection (43, 63). . The nozzle connecting portion (43, 63) is disposed near one end (closest to the left end in FIG. 2) of the housing case (42, 62). Further, the nozzle connecting portion (43, 63) is configured to be able to connect to the suction nozzle (68) of the vacuum cleaner and to open and close in conjunction with the attachment / detachment of the suction nozzle (68). That is, when the suction nozzle (68) is inserted into the nozzle connection part (43, 63), the nozzle connection part (43, 63) is opened and the internal space of the housing case (42, 62) becomes the suction nozzle ( 68), while the suction nozzle (68) is pulled out from the nozzle connection (43, 63), the suction bow I nozzle (68) is closed and the storage case (42, 62 ) Internal space is blocked by external force.
[0063] 〈凝集ユニット〉  [0063] <Aggregating unit>
図 4に示すように、凝集ユニット (70)は、粒子帯電部 (71)と粒子捕捉部 (74)とを備 えており、凝集部を構成している。  As shown in FIG. 4, the aggregation unit (70) includes a particle charging section (71) and a particle trapping section (74), and constitutes an aggregation section.
[0064] 粒子帯電部(71)は、プレフィルタ (31)を通過した被処理空気中に残存する浮遊粒 子(100)を帯電させるためのものである。粒子帯電部(71)には、イオン化線 (72)と対 向電極 (73)とが複数ずつ設けられている。対向電極 (73)は、それぞれが図 1の紙面 に垂直方向へ延びる細長い平板状に形成されており、互いに対向する姿勢で上下 方向に等間隔に並べられている。イオン下線は、上下に配列された対向電極 (73)の 間に 1本ずつ配置されている。粒子帯電部(71)では、イオン化線 (72)と対向電極 (7 3)との間に直流電圧が印加され、イオンィ匕線 (72)と対向電極の間を通過する被処理 空気中の浮遊粒子( 100)が正( + )に帯電する。  [0064] The particle charging unit (71) is for charging the floating particles (100) remaining in the air to be processed that has passed through the prefilter (31). The particle charging unit (71) is provided with a plurality of ionization lines (72) and a plurality of counter electrodes (73). The counter electrodes (73) are each formed in an elongated flat plate shape extending in the vertical direction on the paper surface of FIG. 1, and are arranged at equal intervals in the vertical direction so as to face each other. One ion underline is arranged between the counter electrodes (73) arranged one above the other. In the particle charging unit (71), a DC voltage is applied between the ionization line (72) and the counter electrode (73), and the air is suspended in the air to be treated that passes between the ionization line (72) and the counter electrode. Particle (100) is positively (+) charged.
[0065] 粒子捕捉部 (74)は、粒子帯電部 (71)で帯電した浮遊粒子(100)を一時的に捕捉 して凝集させるためのものである。この粒子捕捉部(74)は、第 1電極である集塵電極 (75)と、第 2電極である対向電極 (76)とを備えている。  [0065] The particle trapping section (74) is for temporarily trapping and aggregating the floating particles (100) charged by the particle charging section (71). The particle trapping part (74) includes a dust collecting electrode (75) as a first electrode and a counter electrode (76) as a second electrode.
[0066] 集塵電極(75)と対向電極(76)は、いずれも図 1の紙面に垂直方向へ延びる細長い 平板状に形成されている。また、集塵電極 (75)と対向電極 (76)は、互いにほぼ同じ 大きさとなっている。粒子捕捉部(74)では、集塵電極 (75)と対向電極 (76)とが上下 方向に交互に配置されている。また、集塵電極 (75)と対向電極 (76)とは、互いに向 力い合う姿勢で等間隔に配置されている。集塵電極 (75)と対向電極 (76)の間の空 間は、被処理空気を流すための空気流路(77)となっている。この空気流路(77)は、 気体流路を構成している。 [0066] The dust collection electrode (75) and the counter electrode (76) are both elongated in the direction perpendicular to the paper surface of FIG. It is formed in a flat plate shape. The dust collection electrode (75) and the counter electrode (76) are approximately the same size. In the particle trapping part (74), the dust collecting electrodes (75) and the counter electrodes (76) are alternately arranged in the vertical direction. The dust collection electrode (75) and the counter electrode (76) are arranged at equal intervals in a posture in which they face each other. The space between the dust collection electrode (75) and the counter electrode (76) is an air flow path (77) for flowing the air to be treated. The air flow path (77) constitutes a gas flow path.
[0067] 集塵電極 (75)と対向電極 (76)の材質は、 Vヽずれも微導電性榭脂である。集塵電極  [0067] The material of the dust collection electrode (75) and the counter electrode (76) is a slightly conductive resin with a V deviation. Dust collecting electrode
(75)と対向電極(76)の材料としては、体積抵抗率が 108 Ω 'cm以上 ΙΟ^ Ω 'cm未 満の微導電性榭脂を用いるのが望まし 、。 As the material for (75) and the counter electrode (76), it is desirable to use a fine conductive resin having a volume resistivity of 10 8 Ω'cm or more and less than ΙΟ ^ Ω'cm.
[0068] 集塵電極 (75)と対向電極 (76)の間には、直流電圧が印加されている。具体的に、 各集塵電極 (75)は電源 (79)の負極(一極)に、各対向電極 (76)は電源 (79)の正極( +極)にそれぞれ接続されている。粒子帯電部(71)で正(+ )に帯電した浮遊粒子(1 00)は、電源(79)の負極(一極)に接続された集塵電極 (75)に引き寄せられてその表 面に付着し、他の浮遊粒子(100)と凝集して凝集粒子(101)を形成する。  A DC voltage is applied between the dust collection electrode (75) and the counter electrode (76). Specifically, each dust collecting electrode (75) is connected to the negative electrode (one pole) of the power source (79), and each counter electrode (76) is connected to the positive electrode (+ pole) of the power source (79). The suspended particles (100) charged positively (+) by the particle charging unit (71) are attracted to the dust collecting electrode (75) connected to the negative electrode (one pole) of the power source (79) and are brought to the surface. It adheres and aggregates with other suspended particles (100) to form aggregated particles (101).
[0069] 集塵電極 (75)の表面には、凝集粒子(101)の剥離を促進するための表面処理が 施されている。この表面処理としては、フッ素榭脂ゃ撥水剤による被膜を形成するこ とや、表面粗さを極めて小さくする鏡面仕上げを行うこと等が挙げられる。また、この 表面処理としては、防汚塗料による塗膜を形成することも挙げられる。この防汚塗料 の一例としては、 "親水性材料と塗料用疎水性ポリマーと塗料用疎水性ポリマー用の 有機溶剤と他の有機溶剤とからなり、他の有機溶剤が塗料用疎水性ポリマー用の有 機溶剤の沸点よりも 5°C以上高い高沸点有機溶剤であり、さらに該親水性材料 Z疎 水性ポリマーの割合が 1Z99〜50Z50 (質量%比)である組成物"が挙げられる。  [0069] The surface of the dust collection electrode (75) is subjected to a surface treatment for promoting the separation of the aggregated particles (101). Examples of the surface treatment include forming a film with a fluorine resin or a water repellent, or performing a mirror finish to extremely reduce the surface roughness. In addition, the surface treatment may include forming a coating film with an antifouling paint. An example of this antifouling paint is: “A hydrophilic material, a hydrophobic polymer for paint, an organic solvent for the hydrophobic polymer for paint, and another organic solvent, and the other organic solvent is used for the hydrophobic polymer for paint. A composition having a high boiling point higher than the boiling point of the organic solvent by 5 ° C. or more and a ratio of the hydrophilic material Z hydrophobic polymer of 1Z99 to 50Z50 (mass% ratio).
[0070] 運転動作  [0070] Driving action
空気清浄機 (10)の運転動作にっ 、て説明する。  The operation of the air cleaner (10) will be explained.
[0071] ファン (25)を運転すると、被処理空気が吸込口(21)を通って空気通路 (23)へ取り 込まれる(図 1を参照)。空気通路 (23)へ流入した被処理空気は、最初にプレフィル タユニット(30)のプレフィルタ(31)を通過する。被処理空気に含まれる綿ぼこり等の 比較的大きな塵埃は、プレフィルタ (31)に捕集されて被処理空気から除去される。 [0072] プレフィルタ(31)を通過した被処理空気は、続、て凝集ユニット(70)へ流入する。 凝集ユニット (70)へ流入した被処理空気は、まず粒子帯電部(71)を通過する(図 3を 参照)。プレフィルタ (31)を通過した被処理空気が粒子帯電部(71)を通過する間に は、その被処理空気に残存する浮遊粒子(100)が、正(+ )に帯電する。この粒子帯 電部(71)で帯電する浮遊粒子(100)には、例えばタバコの煙などに含まれるような粒 径 1 μ m以下の極めて微細な粒子も含まれる。 When the fan (25) is operated, the air to be treated is taken into the air passage (23) through the suction port (21) (see FIG. 1). The air to be treated that has flowed into the air passage (23) first passes through the prefilter (31) of the prefilter unit (30). Relatively large dust such as cotton dust contained in the air to be treated is collected by the prefilter (31) and removed from the air to be treated. The to-be-processed air that has passed through the prefilter (31) continues to flow into the aggregation unit (70). The air to be treated that has flowed into the aggregation unit (70) first passes through the particle charging section (71) (see Fig. 3). While the air to be treated that has passed through the prefilter (31) passes through the particle charging unit (71), the suspended particles (100) remaining in the air to be treated are positively (+) charged. The suspended particles (100) charged by the particle charging unit (71) include extremely fine particles having a particle diameter of 1 μm or less, such as those contained in tobacco smoke.
[0073] 粒子帯電部(71)を通過した被処理空気は、続 、て粒子捕捉部(74)へ流入する。  [0073] The air to be treated that has passed through the particle charging unit (71) then flows into the particle trapping unit (74).
粒子捕捉部(74)へ流入した被処理空気は、集塵電極 (75)と対向電極 (76)の間の空 間である空気流路(77)を流れる。上述したように集塵電極 (75)と対向電極 (76)の間 には直流電圧が印加されているため、この空気流路(77)には電界が形成されている 。被処理空気中の正(+ )に帯電した浮遊粒子(100)は、集塵電極 (75)に引き寄せら れてその表面に付着する。  The air to be treated that has flowed into the particle trapping part (74) flows through the air flow path (77), which is a space between the dust collecting electrode (75) and the counter electrode (76). As described above, since a DC voltage is applied between the dust collection electrode (75) and the counter electrode (76), an electric field is formed in the air flow path (77). The positive (+) charged particles (100) in the air to be treated are attracted to the dust collecting electrode (75) and adhere to the surface.
[0074] 集塵電極 (75)の表面では、付着した浮遊粒子(100)同士が互いに凝集し、粒径の 大きな凝集粒子(101)が形成される。集塵電極 (75)の表面上で形成された凝集粒子 (101)は、ある程度の大きさになると集塵電極 (75)力も剥がれて飛散してゆく。この点 について、図 5を参照しながら説明する。  [0074] On the surface of the dust collection electrode (75), the adhering suspended particles (100) aggregate together to form aggregated particles (101) having a large particle size. When the aggregated particles (101) formed on the surface of the dust collection electrode (75) reach a certain size, the dust collection electrode (75) force is also peeled off and scattered. This point will be described with reference to FIG.
[0075] 上述したように、集塵電極 (75)の表面には、粒子帯電部(71)で正(+ )に帯電した 浮遊粒子(100)が電気的な引力(即ち、クーロン力)によって引き寄せられて付着す る。図 5(a)に示すように、集塵電極 (75)に浮遊粒子(100)が付着すると、平らな集塵 電極 (75)の表面力 浮遊粒子(100)が突出した状態となり、付着した浮遊粒子(100) の近傍に電界が僅かに集中する。このため、後から飛んできた浮遊粒子(100)は、最 初に集塵電極 (75)に付着した浮遊粒子(100)に付着する確率が高くなる。  [0075] As described above, the suspended particles (100) charged positively (+) by the particle charging portion (71) on the surface of the dust collection electrode (75) are electrically attracted (ie, Coulomb force). It is attracted and attached. As shown in Fig. 5 (a), when suspended particles (100) adhere to the dust collection electrode (75), the surface force of the flat dust collection electrode (75) becomes suspended and adhered. The electric field is slightly concentrated near the suspended particles (100). For this reason, the floating particles (100) flying afterwards have a higher probability of adhering to the floating particles (100) that first adhere to the dust collecting electrode (75).
[0076] その結果、集塵電極 (75)の表面上では、図 5(b)や図 5(c)に示すように、最初に付 着した浮遊粒子(100)の近傍に後から飛来した浮遊粒子(100)が集中的に付着し、 浮遊粒子(100)同士が互いに凝集することで形成された凝集粒子(101)が次第に成 長してゆく。それぞれの浮遊粒子(100)は非常に微細なものなので、それらは互いに ファンデルワールス力(分子間力)によって強固に合体している。そして、ある程度の 粒径 (例えば 10 m〜: LOO /z m程度)にまで成長した凝集粒子(101)は、図 5(d)に 示すように、空気流路 (77)を流れる被処理空気から力を受けて集塵電極 (75)から引 き剥がされ、被処理空気と共に下流側へ飛散してゆく。 [0076] As a result, on the surface of the dust collection electrode (75), as shown in Fig. 5 (b) and Fig. 5 (c), it flew later in the vicinity of the suspended particles (100) attached first. The suspended particles (100) adhere intensively and the aggregated particles (101) formed by the aggregation of the suspended particles (100) with each other gradually grow. Since each suspended particle (100) is very fine, they are firmly united with each other by van der Waals force (intermolecular force). Aggregated particles (101) grown to a certain particle size (for example, about 10 m to about LOO / zm) are shown in Fig. 5 (d). As shown, it receives a force from the air to be treated flowing through the air flow path (77), is peeled off from the dust collecting electrode (75), and is scattered downstream together with the air to be treated.
[0077] 凝集ユニット (70)を通過した被処理空気は、凝集粒子(101)を含んだ状態で捕集 ユニット(50)の集塵フィルタ(51)を通過する。集塵フィルタ(51)では、被処理空気中 の凝集粒子(101)が捕捉される。集塵フィルタ (51)で凝集粒子(101)を除去された被 処理空気は、ファン (25)に吸い込まれ、その後に吹出口(22)力 ケーシング (20)の 外部へ吹き出される。 [0077] The air to be treated that has passed through the aggregation unit (70) passes through the dust collection filter (51) of the collection unit (50) in a state including the aggregation particles (101). The dust collecting filter (51) captures the aggregated particles (101) in the air to be treated. The air to be treated from which the aggregated particles (101) have been removed by the dust collecting filter (51) is sucked into the fan (25) and then blown out of the air outlet (22) force casing (20).
[0078] プレフィルタユニット(30)ではプレフィルタ(31)の洗浄動作が、捕集ユニット(50)で は集塵フィルタ(51)の洗浄動作がそれぞれ行われる。これらの洗浄動作は、例えば 空気清浄機(10)の運転時間が所定の基準値に達する毎に行われる。なお、プレフィ ルタユニット(30)の洗浄動作と、捕集ユニット (50)の洗浄動作とは、同じタイミングで 行われる必要は無ぐ異なるタイミングで個別に行われてもよい。また、例えば空気清 浄機(10)の運転時間に応じて洗浄動作を行う場合には、プレフィルタユニット(30)の 洗浄動作と捕集ユニット (50)の洗浄動作とのそれぞれにつ 、て、運転時間の基準値 を個別に設定してもよい。  [0078] The pre-filter unit (30) performs the cleaning operation of the pre-filter (31), and the collection unit (50) performs the cleaning operation of the dust-collecting filter (51). These cleaning operations are performed, for example, every time the operating time of the air cleaner (10) reaches a predetermined reference value. Note that the cleaning operation of the prefilter unit (30) and the cleaning operation of the collection unit (50) need not be performed at the same timing, and may be performed individually at different timings. For example, when the cleaning operation is performed according to the operation time of the air purifier (10), the cleaning operation of the prefilter unit (30) and the cleaning operation of the collection unit (50) are performed respectively. The reference value for the operation time may be set individually.
[0079] プレフィルタユニット(30)の洗浄動作では、モータ(34)によって第 2ローラ(33)が駆 動され、プレフィルタ(31)が移動する。移動中のプレフィルタ(31)は、その外側面が 第 1浄ィ匕ユニット (40)の搔き取りブラシ (41)と擦りあわされる。そして、プレフィルタ (3 1)に捕集された比較的大きな塵埃は、搔き取りブラシ (41)によってプレフィルタ (31) 力 搔き落とされて収容ケース (42)内に溜まってゆく。  In the cleaning operation of the prefilter unit (30), the second roller (33) is driven by the motor (34), and the prefilter (31) moves. The moving pre-filter (31) has its outer surface rubbed against the scraping brush (41) of the first cleaning unit (40). The relatively large dust collected by the prefilter (31) is swept away by the prefilter (31) by the scraping brush (41) and collected in the housing case (42).
[0080] 一方、捕集ユニット (50)の洗浄動作では、モータ (54)によって第 2ローラ (53)が駆 動され、集塵フィルタ (51)が移動する。移動中の集塵フィルタ (51)は、その外側面が 第 2浄ィ匕ユニット (60)の搔き取りブラシ (61)と擦りあわされる。そして、集塵フィルタ (5 1)に捕集された凝集粒子(101)は、搔き取りブラシ (61)によって集塵フィルタ (51)か ら搔き落とされて収容ケース (62)内に溜まってゆく。  On the other hand, in the cleaning operation of the collection unit (50), the second roller (53) is driven by the motor (54), and the dust collection filter (51) moves. The moving dust collection filter (51) is rubbed with the scrub brush (61) of the second cleaning unit (60) on its outer surface. The agglomerated particles (101) collected by the dust collection filter (51) are scraped off from the dust collection filter (51) by the scraping brush (61) and collected in the storage case (62). Go.
[0081] これら浄化ユニット(40,60)にお!/、て、収容ケース(42,62)のノズル接続部(43,63)に 掃除機の吸引ノズル (68)を挿入すると、ノズル接続部 (43,63)を介して収容ケース (4 2,62)の内部空間が掃除機の吸引ノズル (68)と連通する。その状態で掃除機を運転 すると、収容ケース (42,62)内に溜まった塵埃や凝集粒子(101)が収容ケース (42,62 )力 掃除機へと吸 、出される。 [0081] When the suction nozzle (68) of the vacuum cleaner is inserted into the nozzle connection part (43, 63) of the storage case (42, 62)! The internal space of the storage case (4 2, 62) communicates with the suction nozzle (68) of the vacuum cleaner via (43, 63). Driving the vacuum cleaner in that state Then, dust and agglomerated particles (101) accumulated in the storage case (42, 62) are sucked into and discharged from the storage case (42, 62) vacuum cleaner.
[0082] 一実施形態 1の効果  [0082] Effect of Embodiment 1
本実施形態の空気清浄機(10)では、凝集ユニット(70)で複数の浮遊粒子(100)を 凝集させることによって凝集粒子(101)を形成し、凝集ユニット(70)で形成された凝 集粒子(101)を捕集ユニット (50)の集塵フィルタ (51)で捕集して ヽる。本実施形態の 空気清浄機(10)において、例えば粒径 1 μ m以下の微細な浮遊粒子(100)は、複数 の浮遊粒子(100)カゝらなる比較的粒径の大きな凝集粒子(101)の一部となって集塵 フィルタ (51)に捕集される。つまり、この空気清浄機(10)では、例えば HEPA等の高 性能フィルターに比べて目の粗 、集塵フィルタ (51)を用いて、被処理空気から粒径 1 μ m以下の微細な浮遊粒子(100)を除去することができる。従って、本実施形態に よれば、被処理空気から微細な浮遊粒子(100)を除去可能で、しかも被処理空気の 圧力損失が低い空気清浄機(10)を実現できる。その結果、ファン (25)での消費電力 を削減できると共に、送風音等の騒音を低減することができる。  In the air cleaner (10) of the present embodiment, the aggregated particles (101) are formed by aggregating a plurality of suspended particles (100) in the aggregation unit (70), and the aggregates formed by the aggregation unit (70) are formed. The particles (101) are collected and collected by the dust collection filter (51) of the collection unit (50). In the air cleaner (10) of the present embodiment, for example, fine suspended particles (100) having a particle size of 1 μm or less are aggregated particles (101) having a relatively large particle size consisting of a plurality of suspended particles (100). ) And collected by the dust collection filter (51). In other words, in this air cleaner (10), fine suspended particles with a particle size of 1 μm or less from the air to be treated using a coarser dust collection filter (51) than a high-performance filter such as HEPA, for example. (100) can be removed. Therefore, according to this embodiment, it is possible to realize an air cleaner (10) that can remove fine suspended particles (100) from the air to be treated and that has a low pressure loss of the air to be treated. As a result, power consumption in the fan (25) can be reduced, and noise such as blowing noise can be reduced.
[0083] また、本実施形態の空気清浄機(10)では、凝集ユニット (70)に粒子帯電部(71)と 粒子捕捉部 (74)とを設け、粒子帯電部 (71)で帯電した浮遊粒子(100)を電気的な 引力によって粒子捕捉部(74)の集塵電極 (75)に捕捉している。このため、粒子捕捉 部(74)では、そこを通過する際の被処理空気の圧力損失を低く抑えながら、微細な 浮遊粒子(100)を確実に捕捉することができる。従って、本実施形態によれば、被処 理空気の圧力損失を低く抑えながら空気清浄機(10)の性能向上を図ることができる  In the air cleaner (10) of the present embodiment, the aggregation unit (70) is provided with the particle charging unit (71) and the particle capturing unit (74), and the floating unit charged by the particle charging unit (71) is provided. The particles (100) are trapped on the dust collection electrode (75) of the particle trapping part (74) by electrical attraction. Therefore, the particle trapping part (74) can reliably capture the fine suspended particles (100) while suppressing the pressure loss of the air to be treated when passing through the particle trapping part (74). Therefore, according to the present embodiment, it is possible to improve the performance of the air cleaner (10) while keeping the pressure loss of the air to be treated low.
[0084] また、本実施形態の空気清浄機(10)では、凝集粒子(101)の剥離を促進するため の表面処理を集塵電極 (75)の表面に施して ヽるため、集塵電極 (75)から凝集粒子( 101)が剥がれやすくなる。従って、本実施形態によれば、集塵電極 (75)に残留する 凝集粒子 (101)の量を低減することができ、粒子捕捉部 (74)の性能を確実に維持す ることがでさる。 [0084] In the air cleaner (10) of the present embodiment, the surface of the dust collection electrode (75) is subjected to a surface treatment for promoting the separation of the aggregated particles (101). Aggregated particles (101) are easily peeled off from (75). Therefore, according to the present embodiment, the amount of the aggregated particles (101) remaining on the dust collection electrode (75) can be reduced, and the performance of the particle trapping part (74) can be reliably maintained. .
[0085] また、本実施形態の空気清浄機(10)では、第 1浄化ユニット (60)によって集塵フィ ルタ(51)力も凝集粒子(101)を除去するようにしている。ここで、凝集ユニット(70)は 、一旦捕捉した浮遊粒子(100)を凝集させてから凝集粒子(101)として再び被処理空 気中へ飛散させている。このため、凝集ユニット(70)の集塵電極 (75)に浮遊粒子(10 0)や凝集粒子(101)が蓄積され続けることはない。一方、凝集ユニット (70)から飛散 した凝集粒子(101)は集塵フィルタ (51)に捕集されるが、この凝集粒子(101)は第 2 净ィ匕ユニット (60)によって集塵フィルタ(51)から除去されるため、集塵フィルタ (51)に 凝集粒子(101)が蓄積され続けることもない。従って、本実施形態によれば、ユーザ 一〖こよる凝集ユニット(70)や集塵フィルタ (51)の洗浄作業が不要となり、空気清浄機 (10)の保守作業に要する労力を削減できる。 [0085] In the air cleaner (10) of the present embodiment, the dust collecting filter (51) force is also removed by the first purification unit (60) to remove the agglomerated particles (101). Here, the aggregation unit (70) is The trapped suspended particles (100) are aggregated and then dispersed again into the air to be treated as aggregated particles (101). For this reason, suspended particles (100) and aggregated particles (101) do not continue to accumulate on the dust collection electrode (75) of the aggregation unit (70). On the other hand, the agglomerated particles (101) scattered from the agglomeration unit (70) are collected by the dust collecting filter (51). The agglomerated particles (101) are collected by the second filter unit (60). 51), the aggregated particles (101) do not continue to accumulate in the dust collection filter (51). Therefore, according to the present embodiment, it is not necessary to clean the aggregation unit (70) and the dust collection filter (51) by a single user, and the labor required for the maintenance work of the air cleaner (10) can be reduced.
[0086] また、本実施形態の空気清浄機(10)では、収容ケース (42,62)のノズル接続部 (43, 63)に掃除機の吸引ノズル (68)を接続するだけで、収容ケース (42,62)から凝集粒子 (101)を排出することができる。従って、本実施形態によれば、収容ケース (42,62)に 溜まった塵埃や凝集粒子 (101)を破棄する作業が容易となり、空気清浄機 (10)の保 守作業に要する労力を削減できる。  [0086] Further, in the air cleaner (10) of the present embodiment, the storage case can be obtained simply by connecting the suction nozzle (68) of the vacuum cleaner to the nozzle connection part (43, 63) of the storage case (42, 62). Aggregated particles (101) can be discharged from (42,62). Therefore, according to the present embodiment, it becomes easy to discard dust and agglomerated particles (101) collected in the storage case (42, 62), and the labor required for the maintenance work of the air cleaner (10) can be reduced. .
[0087] 上述したように、本実施形態の凝集ユニット (70)は、粒子帯電部(71)と粒子捕捉部  [0087] As described above, the aggregation unit (70) of the present embodiment includes the particle charging unit (71) and the particle capturing unit.
(74)とを備えており、一般的な電気集塵機と同様の構造となっている。ところが、本実 施形態の粒子捕捉部(74)では、集塵電極 (75)の表面上で浮遊粒子(100)が凝集し て凝集粒子(101)となり、ある程度の大きさになった凝集粒子(101)は集塵電極 (75) 力も剥がれて飛散してゆく。つまり、この粒子捕捉部(74)では、一般的な電気集塵機 のように集塵電極 (75)上に浮遊粒子(100)を保持し続ける必要が無ぐ一時的に浮 遊粒子(100)を保持できれば充分である。このため、本実施形態の粒子捕捉部(74) で用いられる集塵電極 (75)の大きさは、一般的な電気集塵機で用いられるものに比 ベて大幅に小さくなる。従って、本実施形態によれば、空気清浄機(10)の大きさを、 同等の性能をもつ電気集塵機に比べて小さくすることができる。  (74), and has the same structure as a general electric dust collector. However, in the particle trapping part (74) of this embodiment, the suspended particles (100) aggregate on the surface of the dust collecting electrode (75) to form aggregated particles (101), and the aggregated particles have a certain size. (101) Dust collecting electrode (75) The force is peeled off and scattered. In other words, in this particle trapping part (74), it is not necessary to keep the suspended particles (100) on the dust collecting electrode (75) like a general electric dust collector. It is sufficient if it can be retained. For this reason, the size of the dust collecting electrode (75) used in the particle trapping portion (74) of the present embodiment is significantly smaller than that used in a general electric dust collector. Therefore, according to this embodiment, the size of the air cleaner (10) can be made smaller than that of an electric dust collector having equivalent performance.
[0088] 実施形態 1の変形例 1  [0088] Modification 1 of Embodiment 1
本実施形態の凝集ユニット(70)では、図 6に示すように、集塵電極 (75)の表面に微 細な突起 (78)を多数形成してもよ!/、。この突起 (78)は、集塵電極 (75)の長手方向( 図 6の紙面に対して垂直方向)へ延びる細長い畝状ものであってもよいし、柱状ある いは直方体状のものであってもよ 、。 [0089] 集塵電極 (75)の表面に突起 (78)を形成すると、その突起 (78)の付近に電界が集 中し、その突起 (78)に対して浮遊粒子(100)が集中的に付着する。そのため、集塵 電極 (75)の表面に平均的に浮遊粒子(100)が付着する場合に比べ、被処理空気の 流れによって集塵電極 (75)から引き剥がされる程度の大きさの凝集粒子(101)を確 実に短時間で形成することができ、集塵装置における浮遊粒子(100)の捕集効率を 向上させることができる。 In the aggregation unit (70) of the present embodiment, as shown in FIG. 6, a large number of fine protrusions (78) may be formed on the surface of the dust collecting electrode (75)! The protrusion (78) may be an elongated bowl-like shape extending in the longitudinal direction of the dust collecting electrode (75) (perpendicular to the paper surface of FIG. 6), or a columnar or rectangular parallelepiped shape. Anyway. [0089] When a projection (78) is formed on the surface of the dust collection electrode (75), an electric field is concentrated in the vicinity of the projection (78), and suspended particles (100) are concentrated on the projection (78). Adhere to. Therefore, compared to the case where airborne particles (100) are deposited on the surface of the dust collection electrode (75) on average, the aggregated particles are large enough to be removed from the dust collection electrode (75) by the flow of air to be treated ( 101) can be reliably formed in a short time, and the collection efficiency of suspended particles (100) in the dust collector can be improved.
[0090] 一実施形態 1の変形例 2—  [0090] Modification 2 of Embodiment 1
本実施形態の凝集ユニット (70)では、集塵電極 (75)と対向電極 (76)の間隔を被処 理空気の下流側へ向かって次第に狭め、被処理空気の下流側ほど空気流路(77)の 断面積が小さくなるようにしてもょ 、。  In the aggregation unit (70) of the present embodiment, the distance between the dust collection electrode (75) and the counter electrode (76) is gradually narrowed toward the downstream side of the processing air, and the air flow path ( 77) Let's make the cross-sectional area smaller.
[0091] 本変形例では、図 7に示すように、集塵電極 (75)の断面形状を長方形状から台形 状に変更している。具体的に、集塵電極 (75)の断面形状は、被処理空気の上流側 に上底が、その下流側に下底がそれぞれ位置する等脚台形となっている。集塵電極 (75)と対向電極 (76)との間隔は、被処理空気の上流端では dであるのに対し、被処 理空気の下流端では d'(d 'く d)にまで縮まる。その結果、集塵電極 (75)と対向電極( 76)との間に形成される空気流路(77)の断面積は、被処理空気の上流側から下流側 へ向かって次第に縮小してゆく。  In this modification, as shown in FIG. 7, the cross-sectional shape of the dust collection electrode (75) is changed from a rectangular shape to a trapezoidal shape. Specifically, the cross-sectional shape of the dust collection electrode (75) is an isosceles trapezoid in which the upper base is positioned upstream of the air to be treated and the lower base is positioned downstream thereof. The distance between the dust collection electrode (75) and the counter electrode (76) is d at the upstream end of the air to be treated, but is reduced to d '(d' d d) at the downstream end of the air to be treated. . As a result, the cross-sectional area of the air flow path (77) formed between the dust collection electrode (75) and the counter electrode (76) gradually decreases from the upstream side to the downstream side of the air to be treated. .
[0092] 凝集ユニット(70)の粒子捕捉部(74)にお 、て、空気流路(77)の断面積が被処理 空気の下流側へ向かつて次第に狭まつていると、空気流路(77)を流れる被処理空気 の流速は、下流側へ進むにつれて次第に上昇してゆく。このため、集塵電極 (75)上 の凝集粒子(101)が被処理空気力 受ける力は被処理空気の下流側ほど大きくなり 、集塵電極 (75)力 凝集粒子(101)が剥がれやすくなる。従って、本変形例によれば 、粒子捕捉部 (74)で形成された凝集粒子(101)を凝集電極カゝら確実に引き剥がして 集塵フィルタ (51)で捕集することができ、空気清浄機(10)における浮遊粒子(100)の 捕集効率を向上させることができる。  In the particle trapping part (74) of the aggregation unit (70), when the cross-sectional area of the air channel (77) gradually narrows toward the downstream side of the air to be treated, 77) The flow velocity of the air to be processed gradually increases as it goes downstream. For this reason, the force that the agglomerated particles (101) on the dust collecting electrode (75) are subjected to the air pressure to be treated increases toward the downstream side of the air to be treated, and the dust collecting electrode (75) force agglomerated particles (101) are likely to peel off . Therefore, according to this modification, the agglomerated particles (101) formed by the particle trapping part (74) can be reliably peeled off from the agglomerated electrode cover and collected by the dust collecting filter (51), The collection efficiency of suspended particles (100) in the cleaner (10) can be improved.
[0093] なお、本変形例の凝集ユニット (70)では、集塵電極 (75)の形状を変更することによ つて空気流路 (77)の断面積を変化させているが、その断面積を変化させる手段はこ れに限定されるものではない。例えば、対向電極 (76)の形状を変更したり、集塵電極 (75)と対向電極 (76)の両方の形状を変更したり、集塵電極 (75)や対向電極 (76)の 形状は変更せずにそれらの配置を変更することによって、空気流路(77)の断面積を 変化させてもよい。 [0093] In the aggregation unit (70) of this modification, the cross-sectional area of the air flow path (77) is changed by changing the shape of the dust collecting electrode (75). The means for changing the value is not limited to this. For example, changing the shape of the counter electrode (76) By changing the shape of both (75) and the counter electrode (76), or by changing their arrangement without changing the shape of the dust collection electrode (75) or counter electrode (76), the air flow path ( 77) The cross-sectional area may be changed.
[0094] 《発明の実施形態 2》  [Embodiment 2 of the Invention]
本発明の実施形態 2について説明する。本実施形態の空気清浄機(10)は、上記 実施形態 1に遮蔽機構である遮蔽ユニット(80)を追加したものである。ここでは、本 実施形態の空気清浄機(10)について、上記実施形態 1と異なる点を説明する。  Embodiment 2 of the present invention will be described. The air cleaner (10) of this embodiment is obtained by adding a shielding unit (80), which is a shielding mechanism, to Embodiment 1 described above. Here, the air cleaner (10) of the present embodiment will be described with respect to differences from the first embodiment.
[0095] 図 8に示すように、遮蔽ユニット(80)は、凝集ユニット(70)に設けられている。この遮 蔽ユニット (80)は、遮蔽用シート (81)と、遮蔽用シート (81)を巻き取るための一対の ローラ(84,85)とを備えて!/、る。  [0095] As shown in FIG. 8, the shielding unit (80) is provided in the aggregation unit (70). The shielding unit (80) includes a shielding sheet (81) and a pair of rollers (84, 85) for winding up the shielding sheet (81).
[0096] 一対のローラ(84,85)は、それぞれが図 8の紙面に垂直な方向へ延びる細長い丸 棒状に形成されている。この一対のローラ(84,85)は、その一方が粒子捕捉部(74)の 前面側の上部に、他方が粒子捕捉部(74)の前面側の下部にそれぞれ配置されて!、 る。また、各ローラ(84,85)には、図示しないが、ローラ(84,85)を回転させるためのモ ータが取り付けられている。  [0096] Each of the pair of rollers (84, 85) is formed in an elongated round bar shape extending in a direction perpendicular to the paper surface of FIG. One of the pair of rollers (84, 85) is arranged at the upper part on the front side of the particle trapping part (74) and the other is arranged at the lower part on the front side of the particle trapping part (74)! . Further, although not shown, a motor for rotating the rollers (84, 85) is attached to each roller (84, 85).
[0097] 遮蔽用シート (81)は、柔軟なシート状に形成されている。遮蔽用シート (81)は、空 気の通過を許容する網目状の通気部(82)と、空気の通過を遮断する遮蔽部(83)と を備えている。また、遮蔽用シート (81)には、通気部(82)だけが形成された部分と、 通気部 (82)と遮蔽部 (83)が交互に形成された部分とが設けられている。また、遮蔽 用シート (81)のうち通気部(82)と遮蔽部(83)が交互に形成された部分では、通気部 (82)の上下幅が集塵電極 (75)の厚みよりも幾分広くなるように設定されると共に、通 気部(82)の間隔が集塵電極 (75)の間隔とほぼ同じ値に設定されている。  The shielding sheet (81) is formed in a flexible sheet shape. The shielding sheet (81) includes a mesh-like ventilation portion (82) that allows passage of air and a shielding portion (83) that blocks passage of air. In addition, the shielding sheet (81) is provided with a portion where only the ventilation portion (82) is formed and a portion where the ventilation portion (82) and the shielding portion (83) are alternately formed. In the portion of the shielding sheet (81) where the ventilation portions (82) and the shielding portions (83) are alternately formed, the vertical width of the ventilation portion (82) is slightly larger than the thickness of the dust collection electrode (75). The distance between the ventilation portions (82) is set to be approximately the same as the distance between the dust collection electrodes (75).
[0098] 遮蔽用シート (81)は、その上端部分が第 1ローラ (84)に固定され、その下端部分が 第 2ローラ (85)に固定されて 、る。そして、遮蔽用シート (81)は、第 1ローラ (84)から 第 2ローラ (85)に亘つて張り渡され、粒子捕捉部(74)を構成する集塵電極 (75)及び 対向電極 (76)の前面側を覆うように設けられる。  The shielding sheet (81) has its upper end fixed to the first roller (84) and its lower end fixed to the second roller (85). The shielding sheet (81) is stretched from the first roller (84) to the second roller (85), and the dust collecting electrode (75) and the counter electrode (76) constituting the particle trapping part (74). ) To cover the front side.
[0099] 遮蔽ユニット (80)は、ローラ(84,85)を回転させて遮蔽用シート (81)を移動させるこ とによって、遮蔽用シート (81)のうち通気部 (82)だけが形成された部分が粒子捕捉 部 (74)の前面を覆う第 1状態 (図 8(A)に示す状態)と、遮蔽用シート (81)のうち通気 部 (82)と遮蔽部 (83)が交互に形成された部分が粒子捕捉部 (74)の前面を覆う第 2 状態(図 8(B)に示す状態)とに切り換わる。 [0099] In the shielding unit (80), only the ventilation portion (82) of the shielding sheet (81) is formed by rotating the rollers (84, 85) to move the shielding sheet (81). Trapped part is particle trap The first state (the state shown in FIG. 8 (A)) covering the front of the part (74) and the part of the shielding sheet (81) where the ventilation part (82) and the shielding part (83) are alternately formed It switches to the second state (the state shown in Fig. 8 (B)) covering the front surface of the particle trapping part (74).
[0100] 運転動作  [0100] Driving operation
本実施形態の空気清浄機 (10)は、凝集動作と飛散動作とを交互に行う。この空気 清浄機 (10)は、通常は凝集動作を行い、例えば凝集動作の継続時間が所定値に達 する毎に飛散動作を一時的に行う。  The air cleaner (10) of the present embodiment alternately performs the aggregation operation and the scattering operation. This air cleaner (10) normally performs an aggregating operation, and temporarily performs a scattering operation, for example, every time the duration of the aggregating operation reaches a predetermined value.
[0101] 凝集動作は、凝集ユニット (70)の粒子捕捉部 (74)で凝集粒子(101)を形成するた めの動作である。凝集動作中には、遮蔽ユニット (80)が第 1状態(図 8(A)に示す状 態)に設定され、遮蔽用シート (81)のうち通気部 (82)だけが形成された部分によって 粒子捕捉部 (74)の前面が覆われる。  The aggregating operation is an operation for forming the agglomerated particles (101) by the particle trapping part (74) of the aggregating unit (70). During the agglomeration operation, the shielding unit (80) is set to the first state (the state shown in FIG. 8 (A)), and the portion of the shielding sheet (81) where only the ventilation portion (82) is formed is used. The front surface of the particle trap (74) is covered.
[0102] この状態において、粒子帯電部(71)を通過した被処理空気は、粒子捕捉部(74)の 前面に全体に亘つて平均的に流入する。従って、粒子捕捉部(74)の空気流路(77) における被処理空気の流速は、空気流路(77)の断面内において概ね一定となる。 粒子捕捉部(74)では、被処理空気中の帯電した浮遊粒子(100)が集塵電極 (75)に 引き寄せられて付着し、集塵電極 (75)の表面上で凝集粒子(101)が成長してゆく。  [0102] In this state, the air to be treated that has passed through the particle charging unit (71) flows into the front surface of the particle trapping unit (74) on the average. Therefore, the flow velocity of the air to be treated in the air channel (77) of the particle trapping part (74) is substantially constant in the cross section of the air channel (77). In the particle trapping part (74), charged floating particles (100) in the air to be treated are attracted and attached to the dust collecting electrode (75), and the aggregated particles (101) are formed on the surface of the dust collecting electrode (75). Growing up.
[0103] 飛散動作は、凝集粒子(101)を集塵電極 (75)力 引き剥がして被処理空気中へ再 び飛散させるための動作である。飛散動作中には、遮蔽ユニット (80)が第 2状態(図 8(B)に示す状態)に設定され、遮蔽用シート (81)のうち通気部 (82)と遮蔽部 (83)が 交互に形成された部分によって粒子捕捉部 (74)の前面が覆われる。その際、遮蔽用 シート (81)の位置は、通気部 (82)が集塵電極 (75)の前端面と対向するように設定さ れる。  [0103] The scattering operation is an operation for separating the agglomerated particles (101) again into the air to be treated by peeling off the force of the dust collecting electrode (75). During the scattering operation, the shielding unit (80) is set to the second state (the state shown in FIG. 8 (B)), and the ventilation portion (82) and the shielding portion (83) of the shielding sheet (81) are alternately arranged. The front surface of the particle trapping portion (74) is covered by the portion formed on the surface. At that time, the position of the shielding sheet (81) is set so that the ventilation part (82) faces the front end face of the dust collection electrode (75).
[0104] この状態の粒子捕捉部(74)では、空気流路 (77)の大部分と対向電極 (76)とが遮 蔽用シート (81)の遮蔽部(83)によって覆われた状態となり、遮蔽用シート (81)の通 気部 (82)を通った被処理空気が集塵電極 (75)の表面付近を集中的に流れる。粒子 捕捉部(74)では、集塵電極 (75)の表面付近における被処理空気の流速が、凝集動 作中に比べて上昇する。そのため飛散動作中には、集塵電極 (75)上の凝集粒子(1 01)が被処理空気の流れ力 受ける力が大きくなり、凝集粒子(101)が集塵電極 (75) 力も引き剥がされやすくなる。集塵電極 (75)から引き剥がされた凝集粒子(101)は、 捕集ユニット (50)の集塵フィルタ(51)に捕捉される。 [0104] In the particle trapping part (74) in this state, most of the air flow path (77) and the counter electrode (76) are covered by the shielding part (83) of the shielding sheet (81). Then, the air to be treated that has passed through the ventilation portion (82) of the shielding sheet (81) flows intensively near the surface of the dust collection electrode (75). In the particle trapping part (74), the flow velocity of the air to be treated near the surface of the dust collection electrode (75) is increased compared to that during the agglomeration operation. Therefore, during the scattering operation, the force that the aggregated particles (101) on the dust collection electrode (75) are subjected to the flow force of the air to be treated increases, and the aggregated particles (101) are collected by the dust collection electrode (75). The force is also easily peeled off. Aggregated particles (101) peeled off from the dust collection electrode (75) are captured by the dust collection filter (51) of the collection unit (50).
[0105] このように、本実施形態の遮蔽ユニット (80)を第 2状態に設定すると、粒子捕捉部([0105] Thus, when the shielding unit (80) of the present embodiment is set to the second state, the particle trapping part (
74)では集塵電極 (75)の近傍における被処理空気の流速が局所的に上昇する。つ まり、この遮蔽ユニット(80)は、集塵電極 (75)の近傍における被処理空気の流速を 凝集動作中に比べて増大させるための増速手段を構成して 、る。 In 74), the flow velocity of the air to be treated in the vicinity of the dust collecting electrode (75) increases locally. In other words, the shielding unit (80) constitutes a speed increasing means for increasing the flow velocity of the air to be processed in the vicinity of the dust collecting electrode (75) as compared with that during the coagulation operation.
[0106] 一実施形態 2の効果  [0106] Effect of Embodiment 2
本実施形態の空気清浄機(10)では、凝集ユニット (70)の粒子捕捉部 (74)へ流入 する被処理空気の流れを遮蔽用シート (81)によって部分的に遮ることで、集塵電極( In the air cleaner (10) of the present embodiment, the flow of the air to be treated flowing into the particle trapping part (74) of the aggregation unit (70) is partially blocked by the shielding sheet (81), so that the dust collection electrode (
75)の表面付近における被処理空気の流速を高めている。このため、凝集ユニット(7 0)を通過する被処理空気の流量は変化させずに集塵電極 (75)の近傍における被処 理空気の流速を高めることができ、それによつて集塵電極 (75)からの凝集粒子(101) の再飛散を促進させることができる。従って、本実施形態によれば、被処理空気の流 量増大に起因して生じる騒音等の問題を回避した上で、凝集ユニット(70)の集塵電 極 (75)に滞留する凝集粒子(101)の量を削減することによって空気清浄機(10)の性 能を高く保つことができる。 The flow velocity of air to be treated near the surface of 75) is increased. For this reason, the flow rate of the air to be treated in the vicinity of the dust collecting electrode (75) can be increased without changing the flow rate of the air to be treated passing through the aggregation unit (70). 75) The re-scattering of the aggregated particles (101) from 75) can be promoted. Therefore, according to the present embodiment, while avoiding problems such as noise caused by an increase in the flow rate of the air to be treated, the aggregated particles staying in the dust collection electrode (75) of the aggregation unit (70) ( By reducing the amount of 101), the performance of the air cleaner (10) can be kept high.
[0107] 一実施形態 2の変形例 1  [0107] Modification 1 of Embodiment 2
本実施形態の空気清浄機(10)では、粒子捕捉部 (74)の集塵電極 (75)及び対向 電極 (76)を可動とすることによって、粒子捕捉部(74)の空気通路 (23)における被処 理空気の流速を変化させるようにしてもょ 、。  In the air cleaner (10) of the present embodiment, the dust collecting electrode (75) and the counter electrode (76) of the particle trapping part (74) are made movable so that the air passage (23) of the particle trapping part (74) is movable. Let's change the flow rate of the air to be treated.
[0108] 図 9に示すように、本変形例の粒子捕捉部(74)は、各集塵電極 (75)と各対向電極  [0108] As shown in FIG. 9, the particle trapping portion (74) of the present modification includes each dust collecting electrode (75) and each counter electrode.
(76)とがそれぞれの前端部を軸として回動できるように構成されている。具体的に、 集塵電極 (75)と対向電極 (76)は、概ね水平となる姿勢 (図 9に二点鎖線で示す姿勢 )と、被処理空気の流れの下流側へ向力つて傾斜した姿勢(同図に実線で示す姿勢 )との間を回動する。  (76) are configured to be rotatable about their front end portions as axes. Specifically, the dust collection electrode (75) and the counter electrode (76) are inclined by a force that is generally horizontal (the posture shown by the two-dot chain line in FIG. 9) and downstream of the flow of the air to be treated. Rotate between postures (posture shown by solid line in the figure).
[0109] 本変形例において、凝集動作中の粒子捕捉部 (74)では、集塵電極 (75)と対向電 極 (76)が概ね水平となる姿勢 (図 9に二点鎖線で示す姿勢)に設定される。この状態 における集塵電極 (75)と対向電極 (76)の間隔を「d」とする。一方、飛散動作中の粒 子捕捉部 (74)では、集塵電極 (75)と対向電極 (76)が傾斜した姿勢 (同図に実線で 示す姿勢)に設定される。この状態において、集塵電極 (75)と対向電極 (76)の間隔 は、「d」よりも短い「d"」となる。つまり、集塵電極 (75)と対向電極 (76)の間に形成さ れた空気流路 (77)の断面積は、凝集動作中に比べて飛散動作中の方が小さくなる 。このため、飛散動作中には、空気流路(77)における被処理空気の流速が凝集動 作中に比べて上昇し、集塵電極 (75)から凝集粒子(101)が引き剥がされやすくなる。 [0109] In this modified example, in the particle trapping part (74) during the agglomeration operation, the dust collection electrode (75) and the counter electrode (76) are in a substantially horizontal posture (the posture indicated by the two-dot chain line in Fig. 9). Set to In this state, the distance between the dust collecting electrode (75) and the counter electrode (76) is “d”. Meanwhile, particles during scattering In the child trapping part (74), the dust collecting electrode (75) and the counter electrode (76) are set in an inclined posture (the posture shown by a solid line in the figure). In this state, the distance between the dust collection electrode (75) and the counter electrode (76) is “d”, which is shorter than “d”. That is, the cross-sectional area of the air flow path (77) formed between the dust collection electrode (75) and the counter electrode (76) is smaller during the scattering operation than during the aggregating operation. For this reason, during the scattering operation, the flow speed of the air to be treated in the air flow path (77) increases compared to that during the agglomeration operation, and the agglomerated particles (101) are easily peeled off from the dust collecting electrode (75). .
[0110] 一実施形態 2の変形例 2— [0110] Modification 2 of Embodiment 2—
本実施形態の空気清浄機(10)では、被処理空気の流量を変更することによって凝 集動作と飛散動作を切り換えるようにしてもよい。具体的に、本変形例の飛散動作で は、空気通路 (23)における被処理空気の流量が凝集動作中に比べて増大する。被 処理空気の流量調節は、ファン (25)の回転速度を調節することによって行われる。 被処理空気の流量が増えると、それに伴って粒子凝集部の空気流路 (77)における 被処理空気の流速も上昇する。このため、集塵電極 (75)状の凝集粒子(101)が被処 理空気力 受ける力が増大し、凝集粒子(101)が集塵電極 (75)から引き剥がされや すくなる。  In the air cleaner (10) of the present embodiment, the aggregation operation and the scattering operation may be switched by changing the flow rate of the air to be treated. Specifically, in the scattering operation of this modification, the flow rate of the air to be processed in the air passage (23) increases compared to that during the agglomeration operation. The flow rate of the air to be treated is adjusted by adjusting the rotational speed of the fan (25). As the flow rate of the air to be treated increases, the flow velocity of the air to be treated in the air flow path (77) of the particle agglomeration portion increases accordingly. For this reason, the force that the dust collecting electrode (75) -like aggregated particles (101) are subjected to the processing air force increases, and the aggregated particles (101) are easily peeled off from the dust collecting electrode (75).
[0111] 実施形態 2の変形例 3—  [0111] Modification 3 of Embodiment 2—
本実施形態の空気清浄機 (10)では、凝集ユニット (70)を振動させる動作を飛散動 作として行ってもよ 、。  In the air cleaner (10) of the present embodiment, the operation of vibrating the aggregation unit (70) may be performed as a scattering operation.
[0112] 図 10に示すように、本変形例の空気清浄機(10)には、加振機構である加振ュニッ ト(90)が設けられて 、る。加振ユニット (90)は、加振用モータ (91)と加振用円板 (92) とを備えている。加振用円板 (92)は、加振用モータ (91)の出力軸に対して偏心した 状態で取り付けられている。  [0112] As shown in FIG. 10, the air cleaner (10) of the present modification is provided with a vibration unit (90) as a vibration mechanism. The vibration unit (90) includes a vibration motor (91) and a vibration disk (92). The vibration disk (92) is attached in an eccentric state with respect to the output shaft of the vibration motor (91).
[0113] 加振ユニット (90)は、加振用円板 (92)の外周面が凝集ユニット (70)と接触する位 置に設置されている。加振ユニット (90)において、飛散動作中には加振用モータ (91 )への通電が行われ、凝集動作中には加振用モータ(91)への通電が停止される。加 振用モータ (91)に通電すると、その出力軸に取り付けられた加振用円板 (92)が回転 し、凝集ユニット (70)が上下方向に揺さぶられる。その結果、粒子捕捉部(74)の集塵 電極 (75)も振動することとなり、凝集粒子(101)が集塵電極 (75)から剥離しやすくな る。 [0113] The vibration unit (90) is installed at a position where the outer peripheral surface of the vibration disk (92) contacts the aggregation unit (70). In the vibration unit (90), energization of the vibration motor (91) is performed during the scattering operation, and power distribution to the vibration motor (91) is stopped during the aggregation operation. When the excitation motor (91) is energized, the excitation disk (92) attached to the output shaft rotates and the aggregation unit (70) is shaken in the vertical direction. As a result, the dust collecting electrode (75) of the particle trapping part (74) also vibrates, and the aggregated particles (101) are not easily separated from the dust collecting electrode (75). The
[0114] 一実施形態 2の変形例 4  [0114] Modification 4 of Embodiment 2
本実施形態の空気清浄機(10)では、凝集ユニット (70)における集塵電極 (75)及 び対向電極 (76)と電源 (79)との接続状態を切り換える動作を、飛散動作として行つ てもよい。  In the air cleaner (10) of this embodiment, the operation of switching the connection state between the dust collecting electrode (75) and the counter electrode (76) and the power source (79) in the aggregation unit (70) is performed as a scattering operation. May be.
[0115] 本変形例において、凝集動作中の粒子捕捉部(74)では、図 11(a)に示すように、 対向電極 (76)が電源 (79)の正極( +極)に接続され、集塵電極 (75)が電源 (79)の 負極(—極)に接続される。この状態では、粒子帯電部(71)で正(+ )に帯電した浮 遊粒子(100)が集塵電極 (75)に引き寄せられて付着し、集塵電極 (75)に付着した浮 遊粒子(100)同士が互いに凝集して凝集粒子(101)が形成されてゆく。  [0115] In this modification, in the particle trapping part (74) during the agglomeration operation, as shown in Fig. 11 (a), the counter electrode (76) is connected to the positive electrode (+ electrode) of the power source (79), The dust collection electrode (75) is connected to the negative electrode (-) of the power supply (79). In this state, floating particles (100) charged positively (+) by the particle charging unit (71) are attracted to and attached to the dust collection electrode (75), and the floating particles attached to the dust collection electrode (75). (100) are aggregated together to form aggregated particles (101).
[0116] 浮遊粒子(100)が集塵電極 (75)に付着すると、それまで浮遊粒子(100)が持って V、た電荷が集塵電極 (75)へ逃げるため、浮遊粒子(100)の電位は集塵電極 (75)の 電位 (この場合は 0(ゼロ)ボルト)と等しくなる。ところが、浮遊粒子(100)自体の導電 率はさほど高くないことが多いため、集塵電極 (75)に付着した浮遊粒子(100)に対し て更に付着する浮遊粒子(100)の電荷は、直ぐには集塵電極 (75)へ逃げない。その ため、凝集粒子(101)がある程度以上の大きさになると、その凝集粒子(101)には正( + )の電荷が残った状態となる。  [0116] When the suspended particles (100) adhere to the dust collection electrode (75), the suspended particles (100) have previously held V and the electric charge escapes to the dust collection electrode (75). The potential is equal to the potential of the dust collection electrode (75) (in this case 0 (zero) volts). However, the electrical conductivity of the suspended particles (100) themselves is often not so high, so the charge of the suspended particles (100) adhering to the suspended particles (100) adhering to the dust collecting electrode (75) is immediately increased. Does not escape to the dust collection electrode (75). Therefore, when the aggregated particles (101) are larger than a certain size, the aggregated particles (101) are left with a positive (+) charge.
[0117] 一方、飛散動作中の粒子捕捉部(74)では、図 11(b)に示すように、集塵電極 (75) が電源 (79)の正極( +極)に接続され、対向電極 (76)が電源 (79)の負極(一極)〖こ 接続される。上述したように、集塵電極 (75)上の凝集粒子(101)は、正( + )に帯電し た状態となっている。このため、集塵電極 (75)を電源(79)の正極(+極)に接続する と、その表面上の正(+ )に帯電した凝集粒子(101)は、電気的な反発力によって集 塵電極 (75)から引き離されて被処理空気中へ飛散してゆく。  [0117] On the other hand, in the particle trapping part (74) during the scattering operation, as shown in FIG. 11 (b), the dust collecting electrode (75) is connected to the positive electrode (+ electrode) of the power source (79), and the counter electrode (76) is connected to the negative electrode (one pole) of the power supply (79). As described above, the aggregated particles (101) on the dust collection electrode (75) are positively (+) charged. For this reason, when the dust collecting electrode (75) is connected to the positive electrode (+ electrode) of the power source (79), the positively (+) charged aggregated particles (101) on the surface are collected by the electric repulsive force. It is pulled away from the dust electrode (75) and scattered into the air to be treated.
[0118] なお、本変形例において集塵電極 (75)及び対向電極 (76)と電源(79)との接続状 態を切り換える動作は、機械的あるいは電気的なスィッチを用いて行ってもょ 、し、 集塵電極 (75)及び対向電極 (76)に対して一時的に交流電圧を印加することによつ て行ってもよい。  [0118] In this modification, the operation of switching the connection state between the dust collecting electrode (75) and the counter electrode (76) and the power source (79) may be performed using a mechanical or electrical switch. Alternatively, the AC voltage may be temporarily applied to the dust collection electrode (75) and the counter electrode (76).
[0119] 一実施形態 2の変形例 5— 本実施形態の空気清浄機 (10)では、凝集ユニット (70)の集塵電極 (75)と対向電 極 (76)との間でスパークを発生させる動作を、飛散動作として行ってもよい。集塵電 極 (75)と対向電極 (76)との間で強制的にスパークを発生させると、電気的あるいは 物理的な衝撃力が集塵電極 (75)上の凝集粒子(101)に作用する。凝集粒子(101) は、衝撃力を受けて集塵電極 (75)力 引き剥がされ、被処理空気中へと飛散してゆ[0119] Modification 5 of Embodiment 2— In the air cleaner (10) of the present embodiment, the operation of generating a spark between the dust collection electrode (75) and the counter electrode (76) of the aggregation unit (70) may be performed as a scattering operation. When a spark is forcibly generated between the dust collection electrode (75) and the counter electrode (76), an electrical or physical impact force acts on the aggregated particles (101) on the dust collection electrode (75). To do. The agglomerated particles (101) are peeled off by the impact of the dust collecting electrode (75) and scattered into the air to be treated.
<o <o
[0120] 《発明の実施形態 3》  << Embodiment 3 of the Invention >>
本発明の実施形態 3について説明する。本実施形態の空気清浄機(10)は、上記 実施形態 1にお ヽて、プレフィルタユニット (30)と捕集ユニット (50)の構成を変更した ものである。ここでは、本実施形態の空気清浄機(10)について、上記実施形態 1と異 なる点を説明する。  Embodiment 3 of the present invention will be described. The air cleaner (10) of the present embodiment is obtained by changing the configurations of the prefilter unit (30) and the collection unit (50) in the first embodiment. Here, the air cleaner (10) of the present embodiment will be described with respect to differences from the first embodiment.
[0121] 図 12に示すように、本実施形態の空気清浄機(10)では、プレフィルタユニット(30) のプレフィルタ(31)や捕集ユニット (50)の集塵フィルタ(51)が、上記実施形態 1のよ うな無端状ではなぐ端部を有する 1枚のシート状に形成されている。  [0121] As shown in Fig. 12, in the air cleaner (10) of the present embodiment, the prefilter (31) of the prefilter unit (30) and the dust collection filter (51) of the collection unit (50) In the endless shape as in the first embodiment, it is formed in a single sheet shape having an end portion.
[0122] プレフィルタユニット(30)と捕集ユニット(50)のそれぞれでは、フィルタ(31,51)の一 端が第 1ローラ (32,52)に固定され、フィルタ (31,51)の他端が第 2ローラ (33,53)に固 定される。また、プレフィルタユニット(30)と捕集ユニット(50)のそれぞれでは、第 1口 ーラ(32,52)と第 2ローラ(33,53)の何れもが図外のモータによって駆動される。第 1口 ーラ(32,52)を回転させてフィルタ(31,51)を第 1ローラ(32,52)へ巻き取ってゆくと、フ ィルタ (31,51)が上方へ移動する。一方、第 2ローラ (33,53)を回転させてフィルタ (31, 51)を第 2ローラ(33,53)へ巻き取ってゆくと、フィルタ(31,51)が下方へ移動する。  [0122] In each of the pre-filter unit (30) and the collection unit (50), one end of the filter (31, 51) is fixed to the first roller (32, 52), and the other end of the filter (31, 51). The end is fixed to the second roller (33, 53). In each of the pre-filter unit (30) and the collection unit (50), both the first roller (32, 52) and the second roller (33, 53) are driven by motors not shown. . When the first roller (32, 52) is rotated and the filter (31, 51) is wound around the first roller (32, 52), the filter (31, 51) moves upward. On the other hand, when the filter (31, 51) is wound around the second roller (33, 53) by rotating the second roller (33, 53), the filter (31, 51) moves downward.
[0123] プレフィルタユニット(30)でプレフィルタ(31)を移動させると、プレフィルタ(31)に付 着した塵埃などが第 1浄ィ匕ユニット (40)の搔き取りブラシ (41)によって搔き落とされる 。また、捕集ユニット (50)で集塵フィルタ (51)を移動させると、集塵フィルタ (51)に付 着した凝集粒子(101)が第 2浄ィ匕ユニット (60)の搔き取りブラシ (61)によって搔き落と される。  [0123] When the prefilter (31) is moved by the prefilter unit (30), the dust attached to the prefilter (31) is removed by the scrub brush (41) of the first cleaning unit (40). Be struck down. When the dust collection filter (51) is moved by the collection unit (50), the aggregated particles (101) attached to the dust collection filter (51) are removed by the scrub brush of the second purification unit (60). Defeated by (61).
[0124] 《発明の実施形態 4》  [Embodiment 4 of the Invention]
本発明の実施形態 4について説明する。本実施形態の空気清浄機(10)は、上記 実施形態 1にお ヽて、プレフィルタユニット (30)と捕集ユニット (50)の構成を変更した ものである。ここでは、本実施形態の空気清浄機(10)について、上記実施形態 1と異 なる点を説明する。 Embodiment 4 of the present invention will be described. The air cleaner (10) of the present embodiment is In the first embodiment, the configurations of the pre-filter unit (30) and the collection unit (50) are changed. Here, the air cleaner (10) of the present embodiment will be described with respect to differences from the first embodiment.
[0125] 図 13に示すように、本実施形態の空気清浄機(10)では、 1つのフィルタシート (58) がプレフィルタ(31)と集塵フィルタ(51)の両方を兼ねて!/、る。フィルタシート(58)は、 柔軟な無端のループ状に形成されている。このフィルタシート(58)は、プレフィルタュ ニット (30)の第 1ローラ (32)及び第 2ローラ (33)と、捕集ユニット (50)の第 1ローラ (52 )及び第 2ローラ (53)とに掛け渡されて!/、る。フィルタシート (58)は、凝集ユニット(70) の上流側に位置する部分 (即ち、プレフィルタユニット(30)の第 1ローラ (32)から第 2 ローラ (33)に亘る部分)がプレフィルタ (31)として機能し、凝集ユニット(70)の下流側 に位置する部分 (即ち、捕集ユニット (50)の第 1ローラ (52)力 第 2ローラ (53)に亘る 部分)が集塵フィルタ (51)として機能する。  As shown in FIG. 13, in the air cleaner (10) of the present embodiment, one filter sheet (58) serves as both the pre-filter (31) and the dust collection filter (51)! / The The filter sheet (58) is formed in a flexible endless loop shape. The filter sheet (58) includes a first roller (32) and a second roller (33) of the prefilter unit (30), and a first roller (52) and a second roller (53) of the collecting unit (50). It ’s over! In the filter sheet (58), the portion located upstream of the aggregation unit (70) (that is, the portion extending from the first roller (32) to the second roller (33) of the prefilter unit (30)) is pre-filtered ( 31) and the part located downstream of the aggregation unit (70) (that is, the part of the collection unit (50) that spans the first roller (52) force and the second roller (53)) is the dust collection filter ( 51).
[0126] また、本実施形態の空気清浄機(10)では、第 1浄ィ匕ユニット (40)と第 2浄ィ匕ユニット  [0126] In the air cleaner (10) of the present embodiment, the first purification unit (40) and the second purification unit
(60)の配置が上記実施形態 1と異なっている。第 1浄ィ匕ユニット (40)は、凝集ユニット (70)の下方の位置にフィルタシート(58)の外周面に沿って配置されている。第 1浄化 ユニット (40)の搔き取りブラシ (41)は、フィルタシート (58)の外周面と接触する。第 2 浄化ユニット(60)は、凝集ユニット(70)の上方の位置にフィルタシート(58)の内周面 に沿って配置されている。第 2浄ィ匕ユニット(60)の搔き取りブラシ (61)は、フィルタシ ート(58)の内周面と接触する。  The arrangement of (60) is different from that of the first embodiment. The first purification unit (40) is disposed along the outer peripheral surface of the filter sheet (58) at a position below the aggregation unit (70). The scraping brush (41) of the first purification unit (40) is in contact with the outer peripheral surface of the filter sheet (58). The second purification unit (60) is disposed along the inner peripheral surface of the filter sheet (58) at a position above the aggregation unit (70). The scraping brush (61) of the second purification unit (60) contacts the inner peripheral surface of the filter sheet (58).
[0127] また、本実施形態の空気清浄機(10)では、 4本のローラ(32,33,52,53)のうちの何 れカ 1つだけがモータによって回転駆動される。何れかのローラ(32,33,52,53)を回 転させると、フィルタシート(58)がローラ(32,33,52,53)によって案内されながら移動す る。  [0127] In the air cleaner (10) of this embodiment, only one of the four rollers (32, 33, 52, 53) is rotationally driven by the motor. When any of the rollers (32, 33, 52, 53) is rotated, the filter sheet (58) moves while being guided by the rollers (32, 33, 52, 53).
[0128] 空気通路 (23)における凝集ユニット(70)の上流側では、フィルタシート(58)の外側 面に被処理空気中の塵埃等が捕捉される。フィルタシート (58)の外側面に付着した 塵埃等は、第 1浄ィ匕ユニット (40)の搔き取りブラシ (41)によって搔き落とされる。一方 、空気通路 (23)における凝集ユニット(70)の下流側では、フィルタシート(58)の内側 面に被処理空気中の凝集粒子(101)が捕捉される。フィルタシート (58)の内側面に 付着した凝集粒子(101)は、第 2浄ィ匕ユニット (60)の搔き取りブラシ (61)によって搔き 落とされる。 [0128] On the upstream side of the aggregation unit (70) in the air passage (23), dust or the like in the air to be treated is trapped on the outer surface of the filter sheet (58). Dust adhering to the outer surface of the filter sheet (58) is scraped off by the scraping brush (41) of the first cleaning unit (40). On the other hand, on the downstream side of the aggregation unit (70) in the air passage (23), the aggregated particles (101) in the air to be treated are captured by the inner surface of the filter sheet (58). On the inner surface of the filter sheet (58) The adhering aggregated particles (101) are scraped off by the scraping brush (61) of the second purification unit (60).
[0129] 《発明の実施形態 5》 << Embodiment 5 of the Invention >>
本発明の実施形態 5について説明する。本実施形態の空気清浄機(10)は、上記 実施形態 1にお ヽて、プレフィルタユニット (30)と捕集ユニット (50)の構成を変更した ものである。ここでは、本実施形態の空気清浄機(10)について、上記実施形態 1と異 なる点を説明する。  Embodiment 5 of the present invention will be described. The air cleaner (10) of the present embodiment is obtained by changing the configurations of the prefilter unit (30) and the collection unit (50) in the first embodiment. Here, the air cleaner (10) of the present embodiment will be described with respect to differences from the first embodiment.
[0130] 図 14に示すように、本実施形態のプレフィルタユニット(30)及び捕集ユニット(50) では、モータ (34,54)に代えて動力発生機構 (35,55)が設けられている。この動力発 生機構 (35,55)は、ノズル接続部 (43,63)に掃除機の吸引ノズル (68)を接続した際に 、その掃除機の吸引力によって回転動力を発生させるように構成されている。  As shown in FIG. 14, in the prefilter unit (30) and the collection unit (50) of the present embodiment, a power generation mechanism (35,55) is provided instead of the motor (34,54). Yes. The power generation mechanism (35, 55) is configured to generate rotational power by the suction force of the vacuum cleaner when the suction nozzle (68) of the vacuum cleaner is connected to the nozzle connection (43, 63). Has been.
[0131] プレフィルタユニット (30)の動力発生機構 (35)と捕集ユニット (50)の動力発生機構  [0131] Power generation mechanism (35) of prefilter unit (30) and power generation mechanism of collection unit (50)
(55)とは、何れも同様の構造となっている。具体的に、動力発生機構 (35,55)は、巿 販の掃除機の吸込具のタービンブラシと同様に、 1つ又は複数の螺旋状の羽根を備 えた円筒状の羽根車から構成されている。この羽根車は、掃除機の吸引力で回転で きるように、その材質が合成樹脂等の比重の軽い材料となっている。そして、プレフィ ルタユニット(30)の動力発生機構 (35)は、歯車等を介してプレフィルタユニット(30) の第 2ローラ (33)に連結されて 、る。また、捕集ユニット (50)の動力発生機構 (55)は 、歯車等を介して捕集ユニット (50)の第 2ローラ (53)に連結されている。  (55) all have the same structure. Specifically, the power generation mechanism (35, 55) is composed of a cylindrical impeller with one or more spiral blades, similar to the turbine brush of the suction tool of a commercial vacuum cleaner. Yes. The impeller is made of a material with a low specific gravity such as synthetic resin so that it can be rotated by the suction force of the vacuum cleaner. The power generating mechanism (35) of the prefilter unit (30) is connected to the second roller (33) of the prefilter unit (30) via a gear or the like. The power generation mechanism (55) of the collection unit (50) is connected to the second roller (53) of the collection unit (50) via a gear or the like.
[0132] 浄ィ匕ユニット (40,60)に掃除機の吸引ノズル (68)が接続されると、動力発生機構 (3 5,55)が掃除機の吸引力を利用して発生させた回転動力によって第 2ローラ (33,53) を駆動する。第 2ローラ(33,53)が回転してフィルタ (31,51)が移動すると、フィルタ (31 ,51)に付着した塵埃や凝集粒子(101)が搔き取りブラシ (41,61)によって搔き落とされ る。フィルタ (31,51)から搔き取られた塵埃や凝集粒子(101)は、ノズル接続部 (43,63 )に接続された掃除機の吸引ノズル (68)へ吸 、込まれる。  [0132] When the suction nozzle (68) of the vacuum cleaner is connected to the purification unit (40, 60), the rotation generated by the power generation mechanism (3, 55) using the suction force of the vacuum cleaner The second roller (33, 53) is driven by the power. When the second roller (33, 53) rotates and the filter (31, 51) moves, dust and agglomerated particles (101) adhering to the filter (31, 51) are removed by the scraping brush (41, 61). It will be dropped off. Dust and agglomerated particles (101) removed from the filter (31, 51) are sucked into the suction nozzle (68) of the vacuum cleaner connected to the nozzle connecting portion (43, 63).
[0133] 一実施形態 5の効果  [0133] Effect of Embodiment 5
本実施形態の第 1浄ィ匕ユニット (40)及び第 2浄ィ匕ユニット (60)では、掃除機の吸引 力を利用して動力発生機構 (35,55)が発生させた駆動力によってフィルタ (31,51)を 移動させている。このため、集塵フィルタ(51)を移動させるためのモータ等の動力源 が不要となり、空気清浄機 (10)の構成を簡素化できると共に、空気清浄機 (10)の消 費電力を削減できる。 In the first purification unit (40) and the second purification unit (60) of this embodiment, the filter is generated by the driving force generated by the power generation mechanism (35, 55) using the suction force of the vacuum cleaner. (31,51) It is moved. This eliminates the need for a power source such as a motor to move the dust collection filter (51), simplifies the configuration of the air cleaner (10), and reduces the power consumption of the air cleaner (10). .
[0134] 実施形態 5の変形例  [0134] Modification of Embodiment 5
本実施形態の空気清浄機(10)では、図 15に示すように、第 1浄ィ匕ユニット (40)と第 2浄ィ匕ユニット (60)のそれぞれに搬送部材 (37,57)を追加してもよ 、。この搬送部材( 37,57)は、螺旋状の突条を有する細長い丸棒状に形成されており、搔き取りブラシ (4 1,61)に沿って配置されている。また、搬送部材 (37,57)は、動力発生機構 (35,55)で 得られた動力によって回転駆動される。搬送部材 (37,57)が回転すると、搔き取りブラ シ (41,61)によってフィルタ (31,51)から搔き落とされた塵埃や凝集粒子(101)が、搬 送部材 (37,57)によってノズル接続部 (43,63)の近傍へ搬送される。ノズル接続部 (43 ,63)の近傍へ運ばれた塵埃や凝集粒子(101)は、ノズル接続部 (43,63)へ挿入され た掃除機の吸弓 Iノズル (68)へと吸 、出される。  In the air cleaner (10) of the present embodiment, as shown in FIG. 15, a transport member (37, 57) is added to each of the first purification unit (40) and the second purification unit (60). Even so. This conveying member (37, 57) is formed in the shape of an elongated round bar having a spiral ridge, and is disposed along the scraping brush (4 1, 61). The conveying members (37, 57) are rotationally driven by the power obtained by the power generation mechanism (35, 55). When the conveying member (37, 57) rotates, dust and agglomerated particles (101) scraped off from the filter (31, 51) by the scraping brush (41, 61) are transferred to the conveying member (37, 57). ) To the vicinity of the nozzle connection (43, 63). Dust and agglomerated particles (101) carried to the vicinity of the nozzle connection (43, 63) are sucked into and out of the vacuum suction I nozzle (68) of the vacuum cleaner inserted into the nozzle connection (43, 63). It is.
[0135] 本変形例の第 1浄ィ匕ユニット (40)及び第 2浄ィ匕ユニット(60)では、搬送部材 (37,57 )によって塵埃や凝集粒子(101)をノズル接続部 (43,63)の付近へ集めて 、る。従つ て、フィルタ (31,51)から除去された塵埃や凝集粒子(101)を、ノズル接続部 (43,63) に接続された掃除機によって確実に吸い出すことができる。また、本変形例の搬送部 材 (37,57)は、動力発生機構 (35,55)が掃除機の吸引力を利用して発生させた動力 を用いて、塵埃や凝集粒子(101)を搬送している。従って、本変形例によれば、搬送 部材 (37,57)を駆動するためのモータ等の動力源が不要となり、空気清浄機(10)の 複雑化や、空気清浄機(10)の消費電力の増大を回避できる。  [0135] In the first purification unit (40) and the second purification unit (60) of this modification, dust and agglomerated particles (101) are removed from the nozzle connecting portion (43, 57) by the conveying member (37, 57). Gather it near 63). Therefore, the dust and the aggregated particles (101) removed from the filter (31, 51) can be surely sucked out by the cleaner connected to the nozzle connecting portion (43, 63). In addition, the conveying member (37, 57) of the present modified example uses the power generated by the power generation mechanism (35, 55) using the suction force of the vacuum cleaner to remove dust and aggregated particles (101). Conveying. Therefore, according to this modification, a power source such as a motor for driving the conveying members (37, 57) is not required, and the air cleaner (10) is complicated and the power consumption of the air cleaner (10) is reduced. Can be avoided.
[0136] 《その他の実施形態》  [0136] << Other Embodiments >>
第 1変形例  First modification
上記各実施形態の凝集ユニット (70)では、粒子捕捉部(74)の集塵電極 (75)と対 向電極 (76)とを共に平板状に形成して!/ヽるが、これら集塵電極 (75)及び対向電極 ( 76)の形状は、平板状に限定されるものではない。例えば、図 16に示すように、集塵 電極 (75)を格子状に形成し、その集塵電極 (75)に形成された各区画に棒状の対向 電極 (76)を 1本ずつ配置してもよい。この場合、対向電極 (76)が挿入された集塵電 極 (75)の各区画が空気流路(77)を構成する。この空気流路(77)を流れる被処理空 気中の浮遊粒子(100)は、空気流路 (77)の周囲を囲む集塵電極 (75)の表面に付着 する。 In the aggregation unit (70) of each of the above embodiments, the dust collecting electrode (75) and the counter electrode (76) of the particle trapping part (74) are both formed in a flat plate shape! The shape of the electrode (75) and the counter electrode (76) is not limited to a flat plate shape. For example, as shown in FIG. 16, the dust collecting electrodes (75) are formed in a lattice shape, and one rod-like counter electrode (76) is arranged in each compartment formed in the dust collecting electrode (75). Also good. In this case, a dust collector with a counter electrode (76) is inserted. Each section of the pole (75) constitutes an air flow path (77). The suspended particles (100) in the air to be treated flowing through the air channel (77) adhere to the surface of the dust collection electrode (75) surrounding the air channel (77).
[0137] 第 2変形例  [0137] Second modification
上記各実施形態の浄ィ匕ユニット (40,60)には、フィルタ (31,51)から塵埃や凝集粒 子(101)を搔き落とすための部材として搔き取りブラシ (41,61)が設けられているが、 フィルタ (31,51)力も凝集粒子(101)などを除去するための部材は搔き取りブラシ (41, 61)に限定されるものではない。  The cleaning unit (40, 60) of each of the above embodiments has a scraping brush (41, 61) as a member for scraping dust and agglomerated particles (101) from the filter (31, 51). Although provided, the filter (31, 51) force is not limited to the scraping brush (41, 61) as a member for removing the agglomerated particles (101).
[0138] 例えば、図 17に示すような丸棒状の回転ブラシ (65)を浄ィ匕ユニット (40,60)に設け 、フィルタ(31,51)を移動させると同時に回転ブラシ (65)を回転させることによって、フ ィルタ (31,51)から塵埃や凝集粒子(101)を搔き落としてもよい。また、図 18に示すよ うな搔き取りパッド (66)を設け、この搔き取りパッド (66)をフィルタ (31,51)に接触させ ること〖こよって、フィルタ(31,51)力 塵埃や凝集粒子(101)を搔き落としてもよ!/、。  [0138] For example, a round bar-shaped rotating brush (65) as shown in Fig. 17 is provided in the purification unit (40, 60), and the rotating brush (65) is rotated simultaneously with the movement of the filter (31, 51). By doing so, dust or agglomerated particles (101) may be removed from the filter (31, 51). Also, a scraping pad (66) as shown in FIG. 18 is provided, and the scraping pad (66) is brought into contact with the filter (31, 51), so that the filter (31, 51) force dust Or you can drop the agglomerated particles (101)! /.
[0139] 第 3変形例  [0139] Third modification
上記各実施形態の浄化ユニット (40,60)では、搔き取りブラシ (41,61)を省略し、ノズ ル接続部 (43,63)に接続された掃除機の吸引力だけを利用して、フィルタ (31,51)か ら塵埃や凝集粒子(101)を除去するようにしてもよ!、。  In the purification units (40, 60) of the above embodiments, the scraping brush (41, 61) is omitted, and only the suction force of the vacuum cleaner connected to the nozzle connection (43, 63) is used. Dust and aggregate particles (101) may be removed from the filter (31,51)! ,.
[0140] 図 19に示すように、本変形例の浄化ユニット(40,60)では、収容ケース(42,62)の上 部に吸引部(67)が形成される。この吸引部(67)は、先細のノズル状に形成されてお り、その先端の開口部が第 2ローラ(33,53)に沿ったフィルタ (31,51)の近傍に配置さ れている。収容ケース (42,62)のノズル接続部 (43,63)に掃除機の吸引ノズル (68)を 接続すると、吸引部(67)の開口端から収容ケース (42,62)の内部へ空気が吸い込ま れ、その際に生じた気流によって塵埃や凝集粒子(101)がフィルタ (31,51)から引き 剥がされる。  [0140] As shown in FIG. 19, in the purification unit (40, 60) of the present modification, a suction part (67) is formed on the upper part of the housing case (42, 62). The suction portion (67) is formed in a tapered nozzle shape, and the opening at the tip thereof is disposed in the vicinity of the filter (31, 51) along the second roller (33, 53). . When the suction nozzle (68) of the vacuum cleaner is connected to the nozzle connection part (43,63) of the storage case (42,62), air flows from the open end of the suction part (67) into the storage case (42,62). Dust and agglomerated particles (101) are peeled off from the filter (31, 51) by the airflow generated during the suction.
[0141] 第 4変形例  [0141] Fourth modification
上記各実施形態の浄化ユニット (40,60)では、図 20に示すように、収容ケース (42,6 2)が着脱自在になっていてもよい。本変形例の収容ケース (42,62)は、保持容器を 構成している。本変形例では、収容ケース (42,62)を着脱自在とするのに伴って、収 容ケース (42,62)からノズル接続部(43,63)を省略している。本変形例においても、フ ィルタ (31,51)から搔き落とされた塵埃や凝集粒子(101)は、収容ケース (42,62)内に 溜まる。空気清浄機(10)のユーザーは、例えば 1週間毎あるいは 1ヶ月毎に収容ケ ース (42,62)を取り外し、収容ケース (42,62)内に溜まった塵埃や凝集粒子(101)を廃 棄する。 In the purification units (40, 60) of the above embodiments, as shown in FIG. 20, the housing case (42, 62) may be detachable. The storage cases (42, 62) of this modification form a holding container. In this modification, the storage case (42, 62) can be attached and detached as it is detachable. The nozzle connection (43, 63) is omitted from the case (42, 62). Also in this modification, the dust and the aggregated particles (101) that have been scraped off from the filter (31, 51) accumulate in the housing case (42, 62). The user of the air cleaner (10) removes the storage case (42, 62), for example, every week or every month, and removes dust or agglomerated particles (101) accumulated in the storage case (42, 62). Discard.
[0142] 第 5変形例  [0142] Fifth modification
上記各実施形態のプレフィルタユニット(30)及び捕集ユニット (50)では、図 21に示 すように、フィルタ (31,51)を上下に往復動させるようにしてもよい。この場合、駆動機 構 (36,56)は、フィルタ (31,51)を直線的に往復動させるように構成される。図示しな いが、本変形例の駆動機構 (36,56)は、フィルタ (31,51)の側端部に設けられたラック と、このラックと係合するピ-オンが駆動軸に取り付けられたモータとで構成され、ピ ユオンを回転させることでフィルタ (31,51)を直線的に移動させる。  In the pre-filter unit (30) and the collection unit (50) of each of the embodiments described above, as shown in FIG. 21, the filter (31, 51) may be reciprocated up and down. In this case, the drive mechanism (36, 56) is configured to reciprocate the filter (31, 51) linearly. Although not shown, the drive mechanism (36, 56) of this modification has a rack provided at the side end of the filter (31, 51) and a pion that engages with this rack attached to the drive shaft. The filter (31, 51) is moved linearly by rotating the pinion.
[0143] 本変形例において、第 1浄ィ匕ユニット (40)はプレフィルタ (31)の前面側の下端部に 、第 2浄ィ匕ユニット (60)は集塵フィルタ (51)の前面側の下端部に配置される。  [0143] In this modification, the first purification unit (40) is at the lower end of the front side of the pre-filter (31), and the second purification unit (60) is at the front side of the dust collection filter (51). It is arranged at the lower end of the.
これら浄化ユニット(40,60)では、搔き取りブラシ(41,61)がフィルタ(31,51)の前面と 向かい合うように設置される。  In these purification units (40, 60), the scraping brush (41, 61) is installed so as to face the front surface of the filter (31, 51).
[0144] 第 6変形例  [0144] Sixth Modification
上記各実施形態の捕集ユニット (50)では、集塵フィルタ (51)を用いて凝集粒子(10 1)を捕集するようにして 、るが、この捕集ユニット (50)は集塵フィルタ(51)を用いるも のに限定されない。  In the collection unit (50) of each of the embodiments described above, the aggregated particles (101) are collected using the dust collection filter (51). However, the collection unit (50) It is not limited to using (51).
[0145] 例えば、図 22に示すように、捕集ユニット(50)は、サイクロン (95)を用いて被処理 空気と凝集粒子(101)を分離するように構成されて 、てもよ 、。サイクロン (95)では、 凝集粒子(101)を含んだ被処理空気が旋回し、遠心力によって凝集粒子(101)が外 周壁の近傍へ集められる。凝集粒子(101)を除去された被処理空気は、サイクロン (9 5)の中央付近から外部へ排出される。  For example, as shown in FIG. 22, the collection unit (50) may be configured to separate the air to be treated and the aggregated particles (101) using a cyclone (95). In the cyclone (95), the air to be treated containing the agglomerated particles (101) swirls, and the agglomerated particles (101) are collected near the outer peripheral wall by centrifugal force. The air to be treated from which the agglomerated particles (101) have been removed is discharged to the outside from the vicinity of the center of the cyclone (95).
[0146] また、図 23に示すように、捕集ユニット(50)は、重力を利用して被処理空気から凝 集粒子(101)を分離するように構成されていてもよい。この場合、捕集ユニット (50)は 、凝集ユニット(70)の下流側に設置されたダクト(96)によって構成される。このダクト( 96)は、捕集ユニット (50)から所定距離だけ下流側へ進んだ位置で、その断面積が 急激に狭まる形状となっている。具体的には、ダクト (96)の底面が階段状に一段高く なることによって、その断面積が狭められている。凝集ユニット(70)から被処理空気と 共に流出した凝集粒子(101)は、ダクト (96)のうち断面積の広い部分を流れる間に、 重力の作用によってダクト(96)の下方へ集まってくる。ダクト(96)の下方へ集まった 凝集粒子(101)は、階段状になったダクト (96)の底面に当たってダクト (96)内に留ま る。一方、ダクト(96)内の上部では、被処理空気に含まれる凝集粒子(101)が減少す る。そして、被処理空気は、ダクト(96)のうち断面積の狭い部分へ流入して外部へ排 出される。ダクト(96)内に溜まった凝集粒子(101)は、段差部に形成された開閉扉(9 7)を開くことによってダクト (96)から取り出される。 Further, as shown in FIG. 23, the collection unit (50) may be configured to separate the aggregated particles (101) from the air to be treated using gravity. In this case, the collection unit (50) is constituted by a duct (96) installed on the downstream side of the aggregation unit (70). This duct ( 96) has a shape in which the cross-sectional area abruptly narrows at a position that has advanced a predetermined distance downstream from the collection unit (50). Specifically, the cross-sectional area of the duct (96) is narrowed by raising the bottom of the duct (96) stepwise. The agglomerated particles (101) that have flowed out of the agglomeration unit (70) together with the air to be treated are gathered below the duct (96) due to the action of gravity while flowing through the wide section of the duct (96). . The agglomerated particles (101) collected below the duct (96) hit the bottom surface of the stepped duct (96) and stay in the duct (96). On the other hand, in the upper part in the duct (96), the aggregated particles (101) contained in the air to be treated are reduced. Then, the air to be treated flows into the duct (96) having a narrow cross-sectional area and is discharged to the outside. Aggregated particles (101) accumulated in the duct (96) are taken out from the duct (96) by opening the open / close door (97) formed in the stepped portion.
[0147] また、捕集ユニット (50)は、被処理空気中に水を噴霧して凝集粒子(101)を水と共 に回収するように構成されて 、てもよ!/、。  [0147] The collection unit (50) may be configured to spray the water into the air to be treated and collect the aggregated particles (101) together with the water! /.
[0148] 第 7変形例  [0148] Seventh Modification
上記の各実施形態は、何れも本発明に係る集塵装置によって空気清浄機(10)を 構成したものであつたが、本発明に係る集塵装置を空気調和装置に組み込んでもよ い。  In each of the above embodiments, the air cleaner (10) is configured by the dust collector according to the present invention. However, the dust collector according to the present invention may be incorporated in the air conditioner.
[0149] 図 24に示すように、本変形例では、本発明に係る集塵装置を空気調和装置の室 内ユニット(15)に組み込んでいる。この室内ユニット(15)は、室内熱交^^ (26)を備 える点を除き、上記各実施形態の空気清浄機(10)と同様に構成されている。室内ュ ニット(15)のケーシング (20)内では、捕集ユニット(50)とファン (25)の間に室内熱交 换器 (26)が配置される。即ち、この室内ユニット(15)では、プレフィルタユニット(30) と凝集ユニット (70)と捕集ユニット (50)とで構成された集塵装置の下流側に室内熱交 (26)が配置されている。室内熱交 (26)は、図外の室外ユニットとの間で循 環する冷媒を被処理空気と熱交換させる。  As shown in FIG. 24, in this modification, the dust collector according to the present invention is incorporated in the indoor unit (15) of the air conditioner. This indoor unit (15) is configured in the same manner as the air cleaner (10) of each of the above embodiments, except that the indoor heat exchanger (26) is provided. In the casing (20) of the indoor unit (15), the indoor heat exchanger (26) is disposed between the collection unit (50) and the fan (25). That is, in this indoor unit (15), the indoor heat exchanger (26) is arranged downstream of the dust collector composed of the prefilter unit (30), the aggregating unit (70), and the collecting unit (50). ing. In the indoor heat exchange (26), heat is exchanged between the refrigerant circulated between the outdoor units (not shown) and the air to be treated.
[0150] 第 8変形例  [0150] Eighth Modification
上記各実施形態では、本発明に係る集塵装置によって空気清浄機(10)を構成し、 空気から浮遊粒子(100)を除去するようにして!/、たが、この集塵装置の処理対象は 空気に限定されない。例えば、ボイラ等の燃焼排ガスを処理対象とし、燃焼ガス中に 含まれる微細な粉塵等を集塵装置によって捕集するようにしてもよい。 In each of the above embodiments, the air cleaner (10) is constituted by the dust collector according to the present invention, and the suspended particles (100) are removed from the air! Is not limited to air. For example, combustion exhaust gas from boilers etc. is treated and You may make it collect the included fine dust etc. with a dust collector.
[0151] なお、以上の実施形態は、本質的に好ましい例示であって、本発明、その適用物、 あるいはその用途の範囲を制限することを意図するものではない。  [0151] The above embodiments are essentially preferable examples, and are not intended to limit the scope of the present invention, its application, or its use.
産業上の利用可能性  Industrial applicability
[0152] 以上説明したように、本発明は、空気や燃焼排ガスなど力 浮遊粒子(100)を除去 するための集塵装置について有用である。 [0152] As described above, the present invention is useful for a dust collector for removing force floating particles (100) such as air and combustion exhaust gas.

Claims

請求の範囲 The scope of the claims
[1] 被処理気体が流れる気体通路 (23)に配置され、該被処理気体中の浮遊粒子(100 [1] Arranged in the gas passage (23) through which the gas to be treated flows, and suspended particles (100
)を凝集させて凝集粒子(101)を形成すると共に形成した凝集粒子(101)を被処理気 体中に飛散させる凝集部 (70)と、 ) Are aggregated to form aggregated particles (101), and the aggregated particles (101) are scattered in the gas to be treated (70),
上記気体通路 (23)における上記凝集部(70)の下流に配置され、該凝集部(70)を 通過した被処理気体中の凝集粒子(101)を捕集する捕集部 (50)とを備えて!/ヽる ことを特徴とする集塵装置。  A collecting part (50) disposed downstream of the aggregation part (70) in the gas passage (23) and collecting the aggregated particles (101) in the gas to be treated that has passed through the aggregation part (70); Dust collector characterized by providing!
[2] 請求項 1において、 [2] In claim 1,
上記凝集部(70)で被処理気体中の浮遊粒子(100)を凝集させて凝集粒子(101)を 形成するための凝集動作と、上記凝集動作中に上記凝集部 (70)で形成された凝集 粒子(101)を被処理気体中に飛散させるための飛散動作とを行う  Aggregation operation for aggregating floating particles (100) in the gas to be treated in the aggregation part (70) to form aggregated particles (101), and formed in the aggregation part (70) during the aggregation operation Aggregation Performs scattering operation to disperse particles (101) into the gas to be treated
ことを特徴とする集塵装置。  A dust collector characterized by that.
[3] 請求項 1又は 2において、 [3] In claim 1 or 2,
上記凝集部(70)は、被処理気体中の浮遊粒子(100)を帯電させる粒子帯電部(71 The agglomeration part (70) is a particle charging part (71 for charging floating particles (100) in the gas to be treated.
)と、該粒子帯電部 (71)で帯電させた浮遊粒子(100)を電気的な引力で捕捉して凝 集させる粒子捕捉部 (74)とを備えて!/ヽる ) And a particle trapping part (74) that traps and aggregates the suspended particles (100) charged by the particle charging part (71) by electrical attraction!
ことを特徴とする集塵装置。  A dust collector characterized by that.
[4] 請求項 3において、 [4] In claim 3,
上記粒子捕捉部(74)は、第 1電極 (75)と第 2電極 (76)とを備え、上記第 1電極 (75 The particle capturing part (74) includes a first electrode (75) and a second electrode (76), and the first electrode (75
)と上記第 2電極 (76)の間に電界を形成することによって、上記粒子帯電部(71)で帯 電させた浮遊粒子(100)を上記第 1電極 (75)に付着させて凝集させるように構成され ている ) And the second electrode (76), the suspended particles (100) charged by the particle charging part (71) are adhered to the first electrode (75) and aggregated. Is configured as
ことを特徴とする集塵装置。  A dust collector characterized by that.
[5] 請求項 4において、 [5] In claim 4,
上記第 1電極 (75)における被処理空気との接触面には、凝集粒子(101)の剥離を 促進するための表面処理が施されて 、る  The surface of the first electrode (75) in contact with the air to be treated is subjected to a surface treatment for promoting the separation of the agglomerated particles (101).
ことを特徴とする集塵装置。  A dust collector characterized by that.
[6] 請求項 4において、 上記第 1電極 (75)における被処理空気との接触面には、多数の突起(78)が形成さ れている [6] In claim 4, A large number of protrusions (78) are formed on the contact surface of the first electrode (75) with the air to be treated.
ことを特徴とする集塵装置。  A dust collector characterized by that.
[7] 請求項 4において、 [7] In claim 4,
上記粒子捕捉部 (74)では、被処理気体が通過する複数の気体流路 (77)が上記第 In the particle trapping part (74), a plurality of gas passages (77) through which the gas to be processed passes are
1電極 (75)と上記第 2電極 (76)によって形成され、上記各気体流路(77)の断面積が 被処理気体の流れの下流側へ向かって次第に狭まっている It is formed by one electrode (75) and the second electrode (76), and the cross-sectional area of each gas channel (77) is gradually narrowed toward the downstream side of the flow of the gas to be processed.
ことを特徴とする集塵装置。  A dust collector characterized by that.
[8] 請求項 2において、 [8] In claim 2,
上記凝集部(70)における被処理気体の流速を上記凝集動作中に比べて増大させ る動作を、上記飛散動作として行う  The operation of increasing the flow rate of the gas to be processed in the aggregation part (70) as compared with that during the aggregation operation is performed as the scattering operation.
ことを特徴とする集塵装置。  A dust collector characterized by that.
[9] 請求項 2において、 [9] In claim 2,
上記粒子捕捉部(74)は、第 1電極 (75)と第 2電極 (76)とを備え、上記第 1電極 (75 The particle capturing part (74) includes a first electrode (75) and a second electrode (76), and the first electrode (75
)と上記第 2電極 (76)の間に電界を形成することによって、上記粒子帯電部(71)で帯 電させた浮遊粒子(100)を上記第 1電極 (75)に付着させて凝集させるように構成され る一方、 ) And the second electrode (76), the suspended particles (100) charged by the particle charging part (71) are adhered to the first electrode (75) and aggregated. While configured as
上記第 1電極 (75)の近傍における被処理気体の流速を上記凝集動作中に比べて 増大させる動作を、上記飛散動作として行う  The operation of increasing the flow velocity of the gas to be processed in the vicinity of the first electrode (75) as compared with that during the aggregation operation is performed as the scattering operation.
ことを特徴とする集塵装置。  A dust collector characterized by that.
[10] 請求項 9において、 [10] In claim 9,
被処理気体が上記第 1電極 (75)の近傍を集中的に流れるように被処理気体の流 れを部分的に遮断するための遮蔽機構 (80)を備え、  A shielding mechanism (80) for partially blocking the flow of the gas to be processed so that the gas to be processed flows intensively in the vicinity of the first electrode (75);
上記飛散動作中には、上記遮蔽機構 (80)が被処理気体の流れを部分的に遮断す ることによって上記第 1電極 (75)の近傍における被処理気体の流速を増大させる ことを特徴とする集塵装置。  During the scattering operation, the shielding mechanism (80) partially blocks the flow of the gas to be processed, thereby increasing the flow velocity of the gas to be processed in the vicinity of the first electrode (75). Dust collector.
[11] 請求項 2において、 [11] In claim 2,
上記凝集部 (70)を振動させるための加振機構 (90)を備え 上記加振機構 (90)によって上記凝集部 (70)を振動させて該凝集部 (70)から凝集 粒子(101)を飛散させる動作を、上記飛散動作として行う Provided with a vibration mechanism (90) for vibrating the agglomeration part (70) An operation of causing the agglomerated part (70) to vibrate by the vibration mechanism (90) and scattering the agglomerated particles (101) from the agglomerated part (70) is performed as the scattering action.
ことを特徴とする集塵装置。  A dust collector characterized by that.
[12] 請求項 2において、 [12] In claim 2,
上記粒子捕捉部(74)は、第 1電極 (75)と第 2電極 (76)とを備え、上記第 1電極 (75 )と上記第 2電極 (76)の間に電界を形成することによって、上記粒子帯電部(71)で帯 電させた浮遊粒子(100)を上記第 1電極 (75)に付着させて凝集させるように構成され る一方、  The particle trapping part (74) includes a first electrode (75) and a second electrode (76), and forms an electric field between the first electrode (75) and the second electrode (76). The suspended particles (100) charged by the particle charging unit (71) are adhered to the first electrode (75) and aggregated,
上記第 1電極 (75)の極性と上記第 2電極 (76)の極性とを一時的に反転させる動作 を、上記飛散動作として行う  The operation of temporarily inverting the polarity of the first electrode (75) and the polarity of the second electrode (76) is performed as the scattering operation.
ことを特徴とする集塵装置。  A dust collector characterized by that.
[13] 請求項 2において、 [13] In claim 2,
上記粒子捕捉部(74)は、第 1電極 (75)と第 2電極 (76)とを備え、上記第 1電極 (75 )と上記第 2電極 (76)の間に電界を形成することによって、上記粒子帯電部(71)で帯 電させた浮遊粒子(100)を上記第 1電極 (75)に付着させて凝集させるように構成され る一方、  The particle trapping part (74) includes a first electrode (75) and a second electrode (76), and forms an electric field between the first electrode (75) and the second electrode (76). The suspended particles (100) charged by the particle charging unit (71) are adhered to the first electrode (75) and aggregated,
上記第 1電極 (75)と上記第 2電極 (76)の間でスパークを発生させる動作を、上記飛 散動作として行う  The operation of generating a spark between the first electrode (75) and the second electrode (76) is performed as the scattering operation.
ことを特徴とする集塵装置。  A dust collector characterized by that.
PCT/JP2007/063393 2006-07-14 2007-07-04 Dust collector WO2008007592A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006194757A JP4270233B2 (en) 2006-07-14 2006-07-14 Dust collector
JP2006-194757 2006-07-14

Publications (1)

Publication Number Publication Date
WO2008007592A1 true WO2008007592A1 (en) 2008-01-17

Family

ID=38923154

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/063393 WO2008007592A1 (en) 2006-07-14 2007-07-04 Dust collector

Country Status (2)

Country Link
JP (1) JP4270233B2 (en)
WO (1) WO2008007592A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010051988A1 (en) * 2008-11-04 2010-05-14 Brandenburgische Technische Universität Cottbus Method for the electric deposition of aerosols and device for performing the method
WO2018147777A1 (en) * 2017-02-08 2018-08-16 Envac Ab Air filtration
WO2019197660A1 (en) * 2018-04-13 2019-10-17 Hengst Se Air filter
US20220055456A1 (en) * 2020-08-20 2022-02-24 Denso International America, Inc. Particulate control systems and methods for olfaction sensors

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101115605B1 (en) 2009-12-14 2012-03-05 한국기계연구원 electrostatic precipitator
JP5879470B2 (en) * 2010-01-18 2016-03-08 パナソニックIpマネジメント株式会社 Dust collector
JP2018051414A (en) * 2015-02-06 2018-04-05 パナソニックIpマネジメント株式会社 Dust collector
CN104819519B (en) * 2015-05-19 2017-09-29 常熟市东神电子器件有限公司 A kind of compound intersection static electric field air cleaning unit
JP6168109B2 (en) * 2015-06-30 2017-07-26 三菱電機株式会社 Air purifier
JP2019173998A (en) * 2018-03-27 2019-10-10 東京瓦斯株式会社 Kitchen range hood
KR102256745B1 (en) * 2019-08-26 2021-05-25 재단법인 철원플라즈마 산업기술연구원 Air purification apparatus and air purification method using the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6233565A (en) * 1985-08-08 1987-02-13 Shinwa Tec Kk Electrostatic type dust precipitator
JPH01156721U (en) * 1988-04-18 1989-10-27
JPH0334584U (en) * 1989-08-07 1991-04-04
JPH0731147U (en) * 1993-11-22 1995-06-13 東陶機器株式会社 Multi-layer disc air purifier
JPH07275626A (en) * 1994-04-13 1995-10-24 Yoshibumi Ishii Automatic cleaning device for air conditioner filter

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6233565A (en) * 1985-08-08 1987-02-13 Shinwa Tec Kk Electrostatic type dust precipitator
JPH01156721U (en) * 1988-04-18 1989-10-27
JPH0334584U (en) * 1989-08-07 1991-04-04
JPH0731147U (en) * 1993-11-22 1995-06-13 東陶機器株式会社 Multi-layer disc air purifier
JPH07275626A (en) * 1994-04-13 1995-10-24 Yoshibumi Ishii Automatic cleaning device for air conditioner filter

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010051988A1 (en) * 2008-11-04 2010-05-14 Brandenburgische Technische Universität Cottbus Method for the electric deposition of aerosols and device for performing the method
WO2018147777A1 (en) * 2017-02-08 2018-08-16 Envac Ab Air filtration
CN110461732A (en) * 2017-02-08 2019-11-15 恩华特公司 Air filtration
EP3580149A4 (en) * 2017-02-08 2021-01-20 Envac AB Air filtration
CN110461732B (en) * 2017-02-08 2022-04-22 恩华特公司 Air filter assembly
WO2019197660A1 (en) * 2018-04-13 2019-10-17 Hengst Se Air filter
US20220055456A1 (en) * 2020-08-20 2022-02-24 Denso International America, Inc. Particulate control systems and methods for olfaction sensors
US11760169B2 (en) * 2020-08-20 2023-09-19 Denso International America, Inc. Particulate control systems and methods for olfaction sensors

Also Published As

Publication number Publication date
JP2008018406A (en) 2008-01-31
JP4270233B2 (en) 2009-05-27

Similar Documents

Publication Publication Date Title
JP4270234B2 (en) Dust collector and air conditioner
JP4270233B2 (en) Dust collector
KR101074724B1 (en) Electrostatic precipitator
KR20180043561A (en) Static electricity air filter
JP3958020B2 (en) Electric dust collector
JP2009198077A (en) Automatic electrified dust collector and air conditioner incorporated with the same
KR20180086899A (en) Dust collecting unit and air conditioner having the same
KR20200066790A (en) Dust collector using magnetic particles
JP2660635B2 (en) Air purifier
KR100669022B1 (en) Air purifier
JP3007770B2 (en) Dust collector for vacuum cleaner
JP2016064410A (en) Air purification device
JP2004251536A (en) Air cleaner
JP2011252653A (en) Air cleaner, and air cleaner with humidifying function
JP2660627B2 (en) Air purifier
JP2009119362A (en) Air cleaning apparatus
JP2000046358A (en) Electrostatic air cleaner
JP2660626B2 (en) Air purifier
JP5514468B2 (en) Electric dust collector, electric dust collection system, and maintenance method of the device
JP2660618B2 (en) Air purifier
JP2002028533A (en) Electric precipitator
JPH0713449U (en) air purifier
JP2001078939A (en) Electrostatic type cleaner and electrostatic type cleaner unit
JP2660632B2 (en) Air purifier
JP2660634B2 (en) Air purifier

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07768145

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 07768145

Country of ref document: EP

Kind code of ref document: A1