WO2008004560A1 - Flow velocity measurement device and ultrasonic flow rate meter - Google Patents

Flow velocity measurement device and ultrasonic flow rate meter Download PDF

Info

Publication number
WO2008004560A1
WO2008004560A1 PCT/JP2007/063326 JP2007063326W WO2008004560A1 WO 2008004560 A1 WO2008004560 A1 WO 2008004560A1 JP 2007063326 W JP2007063326 W JP 2007063326W WO 2008004560 A1 WO2008004560 A1 WO 2008004560A1
Authority
WO
WIPO (PCT)
Prior art keywords
pipe
flow velocity
measurement
line
transmitter
Prior art date
Application number
PCT/JP2007/063326
Other languages
French (fr)
Japanese (ja)
Inventor
Yasushi Takeda
Original Assignee
Yasushi Takeda
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yasushi Takeda filed Critical Yasushi Takeda
Priority to JP2008523695A priority Critical patent/JP5122453B2/en
Publication of WO2008004560A1 publication Critical patent/WO2008004560A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/66Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
    • G01F1/665Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters of the drag-type

Definitions

  • the present invention relates to a flow velocity distribution measuring apparatus suitable for measuring a flow velocity distribution of a fluid to be measured flowing through a pipe, particularly a gas fluid, using an ultrasonic wave, and an ultrasonic flowmeter using the same.
  • the Doppler type ultrasonic flow meter disclosed in Patent Document 1 is configured so that the ultrasonic transducer 101 is flowed in the flow direction of the fluid 103 to be measured by an angle oc with respect to the diameter direction of the fluid pipe 102. Tilt to the position.
  • a reflector such as bubbles or foreign matters uniformly distributed in the fluid 103 to be measured on the measurement line ML, and is shown in Fig.
  • the reflected echo a is incident on the ultrasonic transducer 101.
  • symbol b is a multiple reflection echo reflected on the tube wall on the ultrasonic pulse incident side
  • symbol c is a multiple reflection echo reflected on the opposite tube wall.
  • the transmission interval of the ultrasonic pulse transmitted from the ultrasonic transducer 101 is lZFrpf.
  • the Doppler shift method when an ultrasonic pulse is radiated into the fluid 103 to be measured flowing in the fluid pipe 102, the ultrasonic wave is reflected in the fluid 103 to be measured by a mixed or uniformly distributed reflector.
  • the change in the flow velocity is measured from the fundamental frequency of the ultrasonic pulse incident on the fluid 103 to be measured and the frequency of the ultrasonic echo that has undergone Doppler shift, and the flow velocity distribution in the measurement region along the measurement line ML is calculated.
  • Distribution can be measured.
  • the Doppler type ultrasonic flowmeter can determine the flow velocity distribution in the measurement region instantaneously in a time-dependent manner, so that the flow rate of the fluid 103 to be measured can be accurately measured regardless of whether it is steady or unsteady. You can often ask.
  • Patent Document 1 JP 2003-130699 A
  • the Doppler type ultrasonic flowmeter needs to uniformly distribute (mix) the reflector that reflects the incident ultrasonic pulse in the measured fluid, the measured fluid is a gaseous fluid. If this is the case, the problem was that the flow velocity distribution could not be measured accurately.
  • the present invention has been made in view of the points to be applied, and even when the fluid to be measured flowing in the fluid piping is a gas fluid, the flow velocity distribution measuring apparatus capable of accurately measuring the flow velocity distribution and An object is to provide an ultrasonic flow meter.
  • the flow velocity distribution measuring apparatus of the present invention includes a transmitter installed on a pipe wall of a fluid pipe to generate an ultrasonic pulse and entering the fluid to be measured flowing in the fluid pipe, and the transmitter in the fluid pipe.
  • a plurality of receivers that are two-dimensionally installed on the tube wall opposite to each other and output detection signals having an amplitude corresponding to the received ultrasonic intensity, and detecting a plurality of receivers arranged in the tube axis direction among the receivers Signal force
  • the amount of displacement of the ultrasonic pulse in the tube axis direction is detected, and the angle between the outgoing end force of the transmitter and the line passing through the outgoing end and the center of the pipe is taken as the opening angle, and the transmitter
  • the displacement force detected for each of the two measurement lines with slightly different opening angles is also determined by the perpendicular from the center of the pipe to the two measurement lines.
  • a means to measure the flow velocity at the position It is characterized by comprising.
  • the displacement force detected for each of the two measurement lines having slightly different opening angles, the flow velocity at a predetermined position determined by the perpendicular from the pipe center to the two measurement lines is obtained. Even when the measurement fluid is a gaseous fluid, it is possible to accurately measure the flow velocity distribution without uniformly distributing (mixing) the reflector in the fluid to be measured.
  • the flow velocity distribution measuring apparatus of the present invention is arranged in a line along the pipe axis direction on the pipe wall of the fluid pipe.
  • a plurality of transmitters that are installed to generate ultrasonic pulses and enter the fluid to be measured flowing in the fluid pipe from different positions in the pipe axis direction, and a pipe wall facing the transmitter along the pipe circumferential direction
  • a plurality of receivers that are installed in a row and each output a detection signal having an amplitude corresponding to the received ultrasonic intensity, a maximum peak value of the detection signal for each of the receivers, and a receiver that indicates the maximum peak value
  • a displacement amount in the tube axis direction of the ultrasonic pulse is detected from the relative relationship with the transmitter position where the ultrasonic pulse is emitted at that time, and a line passing through the emission end and the pipe center as seen from the emission end of the transmitter.
  • the opening angle is determined based on the relative relationship between the transmitters arranged in a line along the pipe axis direction and the receivers arranged in a line along the pipe circumferential direction on the opposite side of the pipe. Since the displacement amount is calculated using two slightly different measurement lines, the total number of transmitters and receivers can be reduced.
  • the flow velocity distribution measuring apparatus of the present invention is disposed on the pipe wall of the fluid pipe, generates an ultrasonic pulse, and enters the measured fluid flowing in the fluid pipe, and faces the transmitter.
  • a plurality of receivers arranged in a line along the tube circumferential direction at a predetermined position in the tube axis direction of the tube wall, each outputting a detection signal having an amplitude corresponding to the received ultrasonic intensity, and detection of each of the receivers
  • the time of flight until the ultrasonic pulse emitted from the transmitter reaches each receiver is detected from the signal, and is formed by a line segment passing through the output end and the pipe center as viewed from the output end of the transmitter.
  • the time-of-flight force of the ultrasonic pulse detected for two measurement lines with slightly different opening angles can be obtained as the flow velocity at a predetermined position determined by the perpendicular to the two measurement lines. Even if the fluid to be measured is a gaseous fluid, the reflector is measured Accurate measurement of flow velocity distribution without uniform distribution (mixed) in the fluid
  • An ultrasonic flowmeter includes the flow velocity distribution measuring device, and measures a flow rate of a fluid to be measured flowing in the pipe based on a flow velocity distribution measured by the flow velocity distribution measuring device.
  • the flow velocity distribution can be accurately measured using ultrasonic waves.
  • FIG. 1 A diagram showing a state in which an ultrasonic pulse having a divergence angle is irradiated.
  • FIG.2 Diagram showing the state of ultrasonic pulses displaced
  • FIG.3 Diagram showing the beam axis tilted at an angle ( ⁇ ) in the tube axis direction
  • FIG. 4 A diagram showing a state in which an ultrasonic beam is launched with a diametric force angle ⁇ opened
  • FIG. 5 A diagram showing two measurement lines with different opening angles
  • FIG. 7 is an overall configuration diagram of the ultrasonic flowmeter according to the first embodiment.
  • FIG. 8 is a diagram showing an arrangement state of receiving transducers in the first embodiment.
  • FIG. 9 (a) Vertical sectional view of the pipe in the first embodiment, (b) Cross sectional view in the pipe axis direction of the pipe in the first embodiment.
  • FIG. 11 Overall configuration diagram of ultrasonic flowmeter according to embodiment 2.
  • FIG. 12 is an overall configuration diagram of the ultrasonic flowmeter according to the third embodiment.
  • FIG. 13 is a diagram showing an arrangement state of a transmitting transducer and a receiving transducer in the third embodiment.
  • FIG. 14 (a) Vertical sectional view of the pipe in the third embodiment, (b) Cross section in the pipe axis direction of the pipe in the third embodiment.
  • FIG. 15 (a) The pipe showing the receiving transducer in the pipe circumferential direction in the second measurement principle. Vertical cross-sectional view, (b) Pipe cross-sectional view in the pipe axis direction showing the receiving transducer in the pipe axis direction in the second measurement principle
  • FIG. 16 is a diagram for explaining the measurement principle of a conventional Doppler type ultrasonic flowmeter
  • an ultrasonic pulse is emitted from an ultrasonic transducer 11 serving as a transmitter installed on a pipe wall of a pipe 10 having a circular pipe force toward an opposite pipe wall.
  • the ultrasonic pulse is fired with an appropriate divergence angle with respect to the transducer axis.
  • the movement (displacement) of the ultrasonic pulse in the cross section in the tube axis direction will be described.
  • the emitted ultrasonic pulse goes straight in the firing direction (hereinafter referred to as the "beam axis"), and the opposite pipe wall of the pipe 10 To reach.
  • the emitted ultrasonic pulse is displaced downstream as indicated by W1 in the figure due to the flow of the gaseous fluid.
  • the displacement amount at this time includes the flow velocity information.
  • m (r) is the local Mach number, which is the velocity distribution V (r) divided by the speed of sound c. From the assumption of axial symmetry, it is a function of only the radial position.
  • D represents the diameter of the pipe
  • coordinate X represents the position on the beam axis with the head position of the ultrasonic transducer 11 as the origin (in this case, the position on the diameter of pipe 10).
  • the beam axis passes through the diameter of the pipe 10 and is at an angle in the tube axis direction (
  • is a coordinate axis taken in the beam axis direction
  • L is a path length in the pipe 10.
  • the path length L is obtained by the following equation.
  • FIG. 5 shows two measurement lines (1, 2) with different opening angles ⁇ .
  • the amount of displacement of the ultrasonic beam at each measurement line 1 and 2 is as follows.
  • Equation 7 the first term is determined by the position of the measurement lines 1 and 2 set arbitrarily and is constant. Consider the integral difference of the second term in (Equation 7).
  • the flow velocity distribution is a function of only the radial position, so the integration on the beam axis is integral in the tube radial direction, twice the integration range from position h to radius R. equal.
  • the difference in displacement is equal to the integration of the flow velocity distribution between the two measurement lines 1 and 2 and the center distances hi and h2.
  • the distances hi and h2 are the distances from the center of the pipe to the intersection of the perpendicular lines drawn on the two measurement lines 1 and 2. Note that distance and position are synonymous because axial symmetry is assumed.
  • Equation 7 The force that can be assumed to be 12 (Equation 7) can be transformed as follows.
  • the flow velocity at hi, h2] is obtained as follows.
  • FIG. 7 is an overall configuration diagram of the ultrasonic flowmeter according to the first embodiment.
  • One transmitting transducer 11 is installed on one side of the tube wall of the pipe 10 that forms a circular pipe through which the fluid G to be measured flows, and an ultrasonic noise is placed on the opposite tube wall of the pipe 10.
  • a receiving transducer array comprising a plurality of receiving transducers 12 serving as receivers for receiving the signal is installed.
  • the transmitting transducer 11 is installed perpendicularly to the pipe wall outside or inside the pipe, and the center of the ultrasonic beam passes through the pipe center and faces the opposite pipe. Set the installation angle so that it is perpendicular to the wall.
  • the effective diameter of the transmitting transducer 11 is determined in consideration of the spread of the ultrasonic beam.
  • FIG. 8 and 9 (a) and 9 (b) are diagrams showing the arrangement state of the receiving transducer array.
  • the receiving transducer array is composed of a plurality of receiving transducers 12 arranged in a two-dimensional manner (planar) with reference to the position facing the transmitting transducer 11 correctly.
  • the receiving transducers 12 on both sides in the tube axis direction of the receiving transducer array are omitted.
  • the interval between the receiving transducers 12 constituting the receiving transducer array is selected so that the opening angle a of the beam axis of the ultrasonic beam is as small as possible.
  • the arrangement range of the receiving transducer in the tube axis direction shall be at least the radius of pipe 10.
  • the signal oscillator 13 outputs a transmission signal S1 to be supplied to the transmission transducer 11.
  • the fundamental frequency of the transmitted signal in the signal oscillator 13 is determined in consideration of the characteristics of the pipe wall material, the fluid to be measured, the spread of the ultrasonic pulse, and the like.
  • the signal waveform of the transmission signal is an acute triangular pulse signal, which is the same as the waveform used for the normal time difference method.
  • the repetition period f of the pulse signal is determined from the gas sound velocity, pipe diameter, average flow velocity, and so on. Pulse signal
  • the firing timing signal S2 is sent to the receiving side as a synchronization signal.
  • a detection circuit 14 is connected to the output terminal of each receiving transducer 12.
  • the detection circuit 14 includes a signal amplifier that amplifies a detection signal having a magnitude corresponding to the incident ultrasonic intensity output from the connected receiving transducer 12, and a peak detection circuit that reads a peak value of the signal amplifier output. Become. Since these detection circuits 14 obtain the flow velocity at a fast sampling rate, the outputs of the receiving transducers 12 are detected simultaneously.
  • Each detection circuit 14 has a pulse reception timing set by a timing signal S2 supplied from the signal oscillator 13.
  • the data acquisition circuit 15 includes a digital multiplexer that collects all peak values read by the detection circuits 14. Which detection in the data acquisition circuit 15 Decide whether to get as much information as the circuit.
  • the installation position of each detection circuit 14 can be converted into the opening angle (() of the measurement line and the position in the tube axis direction from the relationship with the corresponding receiving transducer 12.
  • Information on the installation position of the detection circuit 14 (or the installation position of the reception transducer 12) where the maximum peak value is detected among the plurality of reception transducers 12 arranged in the tube axis direction is output as a displacement amount detection signal.
  • the data processing device 20 includes a flow velocity distribution measuring circuit 21 that measures the flow velocity distribution as well as the displacement detection signal force output from the data acquisition circuit 15, and the flow velocity distribution data force measured by the flow velocity distribution measuring circuit 21 in the pipe 10.
  • a flow rate measurement circuit 22 that calculates the flow rate of the fluid to be measured flowing through and a display unit 23 that displays and outputs the measurement result.
  • the flow velocity distribution measurement circuit 21 calculates the average flow velocity m by performing data calculation based on the above-mentioned (Equation 11), the displacement force of two measurement lines with slightly different opening angles ⁇ .
  • a measurement trigger for instructing the signal oscillator 13 to start measurement is given.
  • the signal oscillator 13 applies a transmission signal S1 having a fundamental frequency to the transmission transducer 11 in response to a measurement trigger, and supplies a timing signal S2 to each detection circuit 14.
  • the transmission transducer 11 converts the transmission signal S1 into an ultrasonic pulse and enters the measured fluid G in the pipe 10. As shown in FIGS. 1 and 7, the ultrasonic pulse incident on the fluid G to be measured becomes an ultrasonic beam having a predetermined spread centered on the beam axis, and a receiving transducer array installed on the opposite tube wall. Is incident on. Each of the receiving transducers 12 constituting the receiving transducer array outputs a detection signal having an amplitude corresponding to the incident ultrasonic intensity.
  • All the detection circuits 14 use the timing signal S2 synchronized with the ultrasonic pulse emission time as a trigger, and determine the peak value of the detection signal output from each receiving transducer 12 that has received the first arrival wave. To detect.
  • the data acquisition circuit 15 takes in the peak value at each position (i, j) from all the detection circuits 14.
  • the spatial characteristics of the ultrasonic noise incident on the receiving transducer array will be described.
  • the spatial characteristics of the emitted ultrasonic pulse are centered on the beam axis. It has a Gaussian distribution shape.
  • the distribution in the tube axis direction has a substantially similar Gaussian distribution in terms of the opening angle.
  • Fig. 9 (b) shows the receiving transducer array in the tube axis direction where the ultrasonic beam of (a) is incident.
  • the detection signal output from the receiving transducer 12 installed at the position of the beam axis position force distance Zn
  • the peak value is the maximum value in the receiving transducer train shown in Fig. 9 (b). This distance Zn corresponds to the displacement Zi (0) in (Equation 5) or (Equation 6).
  • the data acquisition circuit 15 corresponds to each opening angle a of the ultrasonic beam axis, and the transducer array for reception in the tube axis direction shown in FIG.
  • the selected position is transmitted to the data processor 20 as the displacement Z from the original beam axis at the opening angle a.
  • the average flow velocity m force at each position in the different pipe diameter directions is also obtained as the flow velocity distribution v (r) in the pipe 10.
  • the flow rate measurement circuit 22 calculates the average flow rate in the pipe 10 based on the flow velocity distribution v (r) in the pipe 10 obtained by the flow velocity distribution measurement circuit 21 and outputs the average flow rate to the display unit 23.
  • the fluid G to be measured is a gaseous fluid such as a gas that does not include a reflector or is contained non-uniformly
  • the flow velocity is measured using ultrasonic waves. Distribution can be measured, and flow measurement with high accuracy becomes possible.
  • the transducer axis of the transmitting transducer 11 that emits the ultrasonic pulse is set perpendicular to the tube axis direction, and the amount of displacement of the ultrasonic pulse is determined by the receiving transducer provided on the opposite tube wall. Since it is configured to directly detect the flow velocity at a predetermined position on the vertical section of the pipe, it is possible to reduce the calibration work of the measurement value required for the conventional Doppler type ultrasonic flowmeter.
  • FIG. 11 is an overall configuration diagram of the ultrasonic flowmeter according to the second embodiment.
  • the arrangement of the transmitting transducer 11 and the receiving transducer 12 is the same as in the first embodiment.
  • the analog multiplexer 31 is connected to the output end of the receiving transducer 12, thereby reducing the number of M ⁇ N detection circuits 14 required in the first embodiment!
  • the analog multiplexer 31 operates to selectively input the detection signal from each receiving transducer 12 to the data acquisition circuit 32 at the subsequent stage.
  • the data acquisition circuit 32 is configured to include AD changes.
  • the peak value is detected from the detection signal converted into a digital signal by the AD conversion, and the receiving transducer 12 from which the information is obtained is determined, and the receiving transducer position of the maximum peak value is determined.
  • Information is output as a displacement detection signal.
  • a timing signal S2 for emitting a pulse signal is supplied to the data acquisition circuit 32 and used for sampling timing in AD conversion.
  • the ultrasonic flow meter configured as described above, detection from the receiving transducer 12 is performed. Signals are input to the data acquisition circuit 32 one by one via the analog multiplexer 31, and the peak value is detected. Each receiving transducer array force aligned in the tube axis direction detects the maximum peak value, and outputs position information (i, j) indicating the maximum peak value for each receiving transducer array to the flow velocity distribution measurement circuit 21 as displacement information. To do. The flow velocity distribution measurement circuit 21 calculates the average flow velocity m by substituting the displacement into (Equation 11).
  • the detection circuit 14 is reduced.
  • the circuit configuration can be simplified.
  • the detection signals of MXN reception transducers 12 are processed one by one, so that time is required as compared with the first embodiment, but the variation is small. Effective for measurement fluid G.
  • FIG. 12 is an overall configuration diagram of the ultrasonic flowmeter according to the third embodiment of the present invention.
  • One pipe wall of the pipe 10 is formed with a transmitting transducer array composed of a plurality of transmitting transducers 40 arranged in a line along the pipe axis direction.
  • a receiving transducer array composed of a plurality of receiving transducers 41 arranged in a line along the pipe circumferential direction at a predetermined position H in the direction is formed.
  • FIGS. 13 and 14 (a) and 14 (b) show the positional relationship between the transmitting transducer 40 and the receiving transducer 41.
  • FIG. FIG. 13 is an external view of the pipe 10, and a receiving transducer 41 indicated by a broken line is installed on the pipe wall opposite to the installation position of the transmitting transducer 40.
  • 14 (a) is a vertical sectional view with respect to the tube axis of the pipe 10, and
  • FIG. 14 (b) is a sectional view along the tube axis direction at the position of the transmitting transducer 40.
  • the receiving transducer 41 is continuously installed in the pipe circumferential direction.
  • the transducer array for reception is formed in the range of about 90 degrees when viewed from the center of the pipe.
  • a receiving transducer 41 is installed in the pipe circumferential direction.
  • the signal oscillator 42 generates a transmission signal S1 having a desired fundamental frequency for generating an ultrasonic pulse. Further, the transmitting transducer 40 supplies the timing signal S2 to the timing controller 45 described later in synchronization with the output of the transmitting signal S1.
  • each transmitting transducer 40 is installed perpendicular to the pipe wall outside or inside the pipe, and the center of the ultrasonic beam passes through the pipe center and is perpendicular to the opposite pipe wall. Set the installation angle so that it is incident on the. In addition, the effective diameter of the transmitting transducer 40 is reduced so that the directivity is as wide as possible.
  • the output terminals of all receiving transducers 41 installed in the pipe circumferential direction are connected to the receiving multiplexer 44.
  • the reception multiplexer 44 sequentially selects the detection signals output from the reception transducers 41 and outputs them to the data acquisition circuit 46.
  • the operation timing of the transmission multiplexer 43 and the reception multiplexer 44 is controlled by a timing controller 45.
  • the timing controller 45 controls the switching operation timing of the transmission multiplexer 43 and the reception multiplexer 44 using the timing signal S2 given from the signal oscillator 42 as a trigger. Specifically, when one transmission transducer 40 is selected by the transmission multiplexer 43, the transmission transducer 40 to be applied is not switched until the detection signal sampling is completed for all the reception transducers 41. Control as follows. When the sampling of the detection signals for all the receiving transducers 41 is completed, the next transmitting transducer 40 is selected by the transmitting multiplexer 43, and until the sampling of the detection signals for all the receiving transducers 41 is completed again. The transmitter 40 is controlled so as not to be switched. Such timing control is executed for all the transmission multiplexers 43.
  • the data acquisition circuit 46 is configured to include AD conversion. In data acquisition circuit 46 Detects the peak value from the detection signal converted into a digital signal by AD conversion, and stores the detected peak value in association with the transmitting transducer 40 selected by the transmitting multiplexer 43 at that time. To do.
  • the timing for switching the transmitting transducer 40 is given from the timing controller 45. For all the transmitting transducers 40, after acquiring information (peak values) regarding the ultrasonic reception intensity in the tube circumferential direction, the transmitting transducers 40 (in the tube axis direction) showing the maximum peak value at each opening angle (a).
  • the position information of the transmitting transducer 40 showing the maximum peak value is output as a displacement amount detection signal.
  • the displacement amount detection signal is output to the data processing device 20, but since it has the same configuration and function as those of the first and second embodiments, description thereof will be omitted.
  • the transmission signal S 1 is supplied from the signal oscillator 52 to the transmission multiplexer 43 and simultaneously the timing signal S 2 is supplied to the timing controller 45.
  • the timing controller 45 controls the transmitting multiplexer 43 so as to select the first transmitting transducer 40, and also controls the receiving multiplexer 44 so as to select the detection signal in order from the first receiving transducer 41. To do. Then, every time the reception multiplexer 44 finishes sampling the detection signals for all the reception transducers 41, the timing controller 45 switches the transmission transducer 40 to which the transmission signal S1 is applied.
  • the peak values of all the receiving transducers 41 are stored in correspondence with the respective transmitting transducers 40 (position information).
  • the data acquisition circuit 46 has a plurality of receiving positions with different launch angles (a) with respect to each launch position (position in the tube axis direction) of the ultrasonic beam shifted in the tube axis direction and each launch position.
  • the peak value of the ultrasonic reception intensity indicated by the transducer 41 is stored in association with each other.
  • the displacement amount in the tube axis direction is obtained by detecting the maximum peak values of a plurality of receiving transducers arranged in the tube axis direction.
  • the emission position of the ultrasonic beam (the position of the transmitting transducer 40 in the tube axis direction) is shifted, thereby making the relative
  • information equivalent to those in the first and second embodiments is obtained.
  • the data acquisition circuit 46 corresponds to each receiving transducer 41 to each launch position. Since the peak value at each position is stored, the launch position having the maximum peak value is specified from among the peak values. If the beam axis B shown in Fig. 12 is the reference position in the tube axis direction, the launch position showing the maximum peak value corresponds to the displacement of the ultrasonic beam. The data acquisition circuit 46 specifies the maximum peak value for all receiving transducers 41 with different opening angles), and sets the launch position showing the maximum peak value as the amount of displacement from the reference position in the tube axis direction. And output to the data processor 20 as a displacement detection signal.
  • the flow velocity distribution measurement circuit 21 assigns the displacement amount of the predetermined measurement lines 1 and 2 to (Equation 11) and calculates the average at each position. The flow velocity is obtained, and the flow meter measurement circuit 22 calculates the gas flow rate as well as the flow velocity distribution force in the vertical section of the pipe.
  • a line of transmitting transducers 40 is provided on the transmitting side in the tube axis direction, and a line of receiving transducers 41 is provided on the receiving side in the pipe circumferential direction. Since the amount of displacement of the ultrasonic beam can be detected, the number of transducers can be reduced compared to the first embodiment.
  • the displacement amount of the ultrasonic beam is used to directly determine the flow velocity distribution shape.
  • the flow velocity distribution shape is directly determined using the flight time of the ultrasonic pulse. You can also.
  • the second measurement principle for directly obtaining the flow velocity distribution shape using the time of flight of the ultrasonic pulse will be explained.
  • the fluid flowing in the pipe is assumed to be axisymmetric.
  • FIGS. 15 (a) and 15 (b) a receiving transducer arrangement as shown in FIGS. 15 (a) and 15 (b). That is, one transmitting transducer 50 is installed on one tube wall of the pipe 10 so that the beam axis is perpendicular to the tube wall, and a receiving transducer 51 is installed on the other opposite tube wall in the tube axis direction. It is assumed that one row is provided at position H in the pipe circumferential direction. The installation position in the tube axis direction of the receiving transducer 51 provided along the tube circumferential direction is such that the beam axis position force perpendicular to the tube wall is at a distance H in the tube axis direction as shown in Fig. 15 (b). Is provided.
  • T PZc.
  • This integrand with path length P can be approximated by using the fact that the local Mach number is 1 in the square root as follows.
  • the tilt angle 0 to the beam axis B is the beam launch angle necessary to reach the detection position, it is unknown at this stage.
  • the amount of displacement in this form is H, but the launch angle of the nozzle that reaches it can be obtained by reversing the following force.
  • Embodiment 4 in which the second measurement principle is applied to an ultrasonic flowmeter will be described. Since the ultrasonic flowmeter according to the fourth embodiment has substantially the same overall configuration as the ultrasonic flowmeter of the first embodiment (FIG. 7), the parts different from the first embodiment with reference to FIG. Mainly explained.
  • the arrangement of receiving transducers is different from that in the first embodiment.
  • one transmission transducer 50 is installed on one tube wall of the pipe 10 so that the beam axis is perpendicular to the tube wall, and the other tube facing the other. Only one row of receiving transducers 51 is provided on the wall in the tube circumferential direction at a position H in the tube axis direction.
  • each detection circuit 14 is connected to the output end of each receiving transducer 51 arranged in one line in the pipe circumferential direction.
  • Each detection circuit 14 includes a signal amplifier that amplifies a detection signal having a magnitude corresponding to the incident ultrasonic intensity output from the connected reception transducer 51, and a flight time T (transmission signal) from the signal amplifier output.
  • the delay time detection circuit detects the delay time from the S1 output timing.
  • the delay time detection circuit detects the flight time T until the ultrasonic pulse emitted from the transmitting transducer 50 reaches each receiving transducer 51 using the timing signal S1 input from the signal transmitter 13 as a reference time.
  • the flow velocity distribution measurement circuit 21 sets two measurement lines 1, 2 (Fig. 5) in the immediate vicinity, and the flight obtained from the output of the receiving transducer 51 corresponding to the two measurement lines 1, 2 Time T, T
  • the flow velocity distribution shape and flow rate can be obtained directly using the time of flight of ultrasonic pulses, and the number of receiving transducers that are difficult to install can be reduced. Is also possible.
  • the data acquisition circuit 32 detects the flight time T until the sound wave pulse reaches each receiving transducer 51, and the flow velocity distribution measurement circuit 21 determines that (Equation 14) and (Equation 15) Substituting flight times T and T to find the average flow velocity m at position [h, h]
  • the present invention is applicable to a flow velocity distribution measuring device and a flow meter of a gaseous fluid flowing in a pipe.

Landscapes

  • Physics & Mathematics (AREA)
  • Measuring Volume Flow (AREA)
  • Electromagnetism (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)

Abstract

A flow velocity measurement device for accurately measuring with the use of an ultrasonic pulse the distribution of the flow velocity of a gas flowing in a fluid piping. An ultrasonic pulse is caused to enter from a transmission transducer (11), placed on a wall of the fluid piping (10), into a target fluid (G) flowing in the fluid piping (10), and the ultrasonic pulse is detected by reception transducers (12) two-dimensionally arranged on the opposite wall in the fluid piping (10). The amount of displacement, relative to the axial direction of the piping, of the ultrasonic pulse is detected from signals received by those reception transducers among the receiving transducers (12) that are arranged in the axial direction of the piping. Two measurement lines (1, 2) having opening angles α slightly different from each other are set, and the flow velocities at predetermined positions [h1, h2] are each obtained from a difference in the amounts of displacements and in flying times detected for each measurement line (1, 2).

Description

明 細 書  Specification
流速分布測定装置および超音波流量計  Flow velocity distribution measuring device and ultrasonic flow meter
技術分野  Technical field
[0001] 本発明は、配管を流れる被測定流体、特に気体流体の流速分布を、超音波を用い て測定するのに好適な流速分布測定装置およびそれを用いた超音波流量計に関す る。  The present invention relates to a flow velocity distribution measuring apparatus suitable for measuring a flow velocity distribution of a fluid to be measured flowing through a pipe, particularly a gas fluid, using an ultrasonic wave, and an ultrasonic flowmeter using the same.
背景技術  Background art
[0002] 従来、超音波のドッブラシフトを利用して被測定流体の流量を測定するドッブラ式 超音波流量計が提案されている (例えば、特許文献 1参照)。同特許文献 1に開示さ れたドッブラ式超音波流量計は、図 16 (a)に示すように超音波トランスデューサ 101 を流体配管 102の直径方向に対して角度 ocだけ被測定流体 103の流れ方向に傾け て配置する。超音波トランスデューサ 101から所要周波数の超音波パルスを入射さ せると、測定線 ML上の被測定流体 103に一様に分布する気泡や異物等の反射体 に当たって反射し、図 16 (b)に示すように反射エコー aとなって超音波トランスデュー サ 101に入射する。図 16 (b)において符号 bは超音波パルス入射側の管壁で反射 する多重反射エコーであり、符号 cは、反対側管壁で反射する多重反射エコーである 。超音波トランスデューサ 101から発信される超音波パルスの発信間隔は lZFrpfで ある。超音波トランスデューサ 101で受信した超音波エコーをフィルタリング処理し、 ドッブラシフト法を利用して測定線 MLに沿って流速分布を計測すると、図 16 (c)のよ うに表示される。  Conventionally, there has been proposed a Doppler type ultrasonic flowmeter that measures the flow rate of a fluid to be measured using ultrasonic Doppler shift (see, for example, Patent Document 1). As shown in FIG. 16 (a), the Doppler type ultrasonic flow meter disclosed in Patent Document 1 is configured so that the ultrasonic transducer 101 is flowed in the flow direction of the fluid 103 to be measured by an angle oc with respect to the diameter direction of the fluid pipe 102. Tilt to the position. When an ultrasonic pulse of the required frequency is made incident from the ultrasonic transducer 101, it is reflected by a reflector such as bubbles or foreign matters uniformly distributed in the fluid 103 to be measured on the measurement line ML, and is shown in Fig. 16 (b). Thus, the reflected echo a is incident on the ultrasonic transducer 101. In FIG. 16 (b), symbol b is a multiple reflection echo reflected on the tube wall on the ultrasonic pulse incident side, and symbol c is a multiple reflection echo reflected on the opposite tube wall. The transmission interval of the ultrasonic pulse transmitted from the ultrasonic transducer 101 is lZFrpf. When the ultrasonic echo received by the ultrasonic transducer 101 is filtered and the flow velocity distribution is measured along the measurement line ML using the Doppler shift method, it is displayed as shown in FIG. 16 (c).
[0003] 上記ドッブラシフト法は、流体配管 102内を流れる被測定流体 103中に超音波パ ルスを放射すると、被測定流体 103中に混在あるいは一様分布の反射体によって反 射され、超音波エコーとなり、この超音波エコーの周波数が流速に比例した大きさだ け周波数シフトする原理を応用したものである。被測定流体 103に入射した超音波 パルスの基本周波数とドッブラシフトを受けた超音波エコーの周波数とから流速の変 化を計測し、測定線 MLに沿う測定領域の流速分布を算出する。さらに、測定領域の 流速分布を傾斜角 αで較正することにより、流体配管 102の垂直断面における流速 分布を計測することができる。 [0003] In the Doppler shift method, when an ultrasonic pulse is radiated into the fluid 103 to be measured flowing in the fluid pipe 102, the ultrasonic wave is reflected in the fluid 103 to be measured by a mixed or uniformly distributed reflector. This applies the principle that the frequency of this ultrasonic echo shifts by a magnitude proportional to the flow velocity. The change in the flow velocity is measured from the fundamental frequency of the ultrasonic pulse incident on the fluid 103 to be measured and the frequency of the ultrasonic echo that has undergone Doppler shift, and the flow velocity distribution in the measurement region along the measurement line ML is calculated. In addition, by calibrating the flow velocity distribution in the measurement area with the inclination angle α, Distribution can be measured.
[0004] 上記ドッブラ式超音波流量計は、測定領域の流速分布を時間依存で瞬時に求める ことができるので、被測定流体 103の流量を定常状態、非定常状態如何を問わず、 正確に精度よく求めることができる。  [0004] The Doppler type ultrasonic flowmeter can determine the flow velocity distribution in the measurement region instantaneously in a time-dependent manner, so that the flow rate of the fluid 103 to be measured can be accurately measured regardless of whether it is steady or unsteady. You can often ask.
特許文献 1 :特開 2003— 130699号公報  Patent Document 1: JP 2003-130699 A
発明の開示  Disclosure of the invention
[0005] しかしながら、上記ドッブラ式超音波流量計は、入射超音波パルスを反射する反射 体を被測定流体中に一様に分布 (混在)させることが必要であるので、被測定流体が 気体流体である場合には、流速分布を正確に計測することができな 、と 、つた問題 かあつた。  [0005] However, since the Doppler type ultrasonic flowmeter needs to uniformly distribute (mix) the reflector that reflects the incident ultrasonic pulse in the measured fluid, the measured fluid is a gaseous fluid. If this is the case, the problem was that the flow velocity distribution could not be measured accurately.
[0006] 本発明は、力かる点に鑑みてなされたものであり、流体配管内を流れる被測定流体 が気体流体であっても、流速分布を正確に計測することができる流速分布測定装置 および超音波流量計を提供することを目的とする。  [0006] The present invention has been made in view of the points to be applied, and even when the fluid to be measured flowing in the fluid piping is a gas fluid, the flow velocity distribution measuring apparatus capable of accurately measuring the flow velocity distribution and An object is to provide an ultrasonic flow meter.
[0007] 本発明の流速分布測定装置は、流体配管の管壁に設置され超音波パルスを生成 し前記流体配管内を流れる被測定流体へ入射する送信子と、前記流体配管におい て前記送信子と対向する管壁に二次元状に設置され受信超音波強度に応じた振幅 の検出信号を出力する複数の受信子と、前記受信子のうち管軸方向に配列された 複数の受信子の検出信号力 前記超音波パルスの管軸方向の変位量を検出し、前 記送信子の出射端力 みて当該出射端と配管中心とを通る線分とのなす角を開き角 とし、前記送信子から所定の受信子に至るまでの測定領域を測定線として、開き角の 僅かに異なる 2本の測定線について夫々検出される変位量力もその 2本の測定線に 対する配管中心からの垂線によって決まる所定位置の流速を求める流速分布計測 手段とを具備したことを特徴とする。  [0007] The flow velocity distribution measuring apparatus of the present invention includes a transmitter installed on a pipe wall of a fluid pipe to generate an ultrasonic pulse and entering the fluid to be measured flowing in the fluid pipe, and the transmitter in the fluid pipe. A plurality of receivers that are two-dimensionally installed on the tube wall opposite to each other and output detection signals having an amplitude corresponding to the received ultrasonic intensity, and detecting a plurality of receivers arranged in the tube axis direction among the receivers Signal force The amount of displacement of the ultrasonic pulse in the tube axis direction is detected, and the angle between the outgoing end force of the transmitter and the line passing through the outgoing end and the center of the pipe is taken as the opening angle, and the transmitter Using the measurement area up to the specified receiver as the measurement line, the displacement force detected for each of the two measurement lines with slightly different opening angles is also determined by the perpendicular from the center of the pipe to the two measurement lines. A means to measure the flow velocity at the position It is characterized by comprising.
[0008] この構成によれば、開き角の僅かに異なる 2本の測定線について夫々検出される 変位量力 その 2本の測定線に対する配管中心からの垂線によって決まる所定位置 の流速を求めるので、被測定流体が気体流体の場合であっても反射体を被測定流 体中に一様に分布 (混在)させることなぐ流速分布を正確に測定することができる。  [0008] According to this configuration, the displacement force detected for each of the two measurement lines having slightly different opening angles, the flow velocity at a predetermined position determined by the perpendicular from the pipe center to the two measurement lines is obtained. Even when the measurement fluid is a gaseous fluid, it is possible to accurately measure the flow velocity distribution without uniformly distributing (mixing) the reflector in the fluid to be measured.
[0009] また本発明の流速分布測定装置は、流体配管の管壁に管軸方向に沿って一列に 設置され超音波パルスを生成し前記流体配管内を流れる被測定流体へ管軸方向の 異なる位置から夫々入射する複数の送信子と、前記送信子と対向する管壁に管周方 向に沿って一列に設置され受信超音波強度に応じた振幅の検出信号を夫々出力す る複数の受信子と、前記各受信子について検出信号の最大ピーク値を検出し、最大 ピーク値を示した受信子とその時に超音波パルスを発射した送信子位置との相対関 係から前記超音波パルスの管軸方向の変位量を検出し、前記送信子の出射端から みて当該出射端と配管中心とを通る線分とのなす角を開き角とし、前記送信子から 所定の受信子に至るまでの測定領域を測定線として、開き角の僅かに異なる 2本の 測定線について夫々検出される変位量力 その 2本の測定線に対する配管中心から の垂線によって決まる所定位置の流速を求める流速分布計測手段とを具備したこと を特徴とする。 [0009] Further, the flow velocity distribution measuring apparatus of the present invention is arranged in a line along the pipe axis direction on the pipe wall of the fluid pipe. A plurality of transmitters that are installed to generate ultrasonic pulses and enter the fluid to be measured flowing in the fluid pipe from different positions in the pipe axis direction, and a pipe wall facing the transmitter along the pipe circumferential direction A plurality of receivers that are installed in a row and each output a detection signal having an amplitude corresponding to the received ultrasonic intensity, a maximum peak value of the detection signal for each of the receivers, and a receiver that indicates the maximum peak value A displacement amount in the tube axis direction of the ultrasonic pulse is detected from the relative relationship with the transmitter position where the ultrasonic pulse is emitted at that time, and a line passing through the emission end and the pipe center as seen from the emission end of the transmitter. Displacement force detected for each of two measurement lines with slightly different opening angles, with the angle formed by the minute as the opening angle and the measurement area from the transmitter to the predetermined receiver as the measurement line. From the center of the pipe to the measurement line Characterized by comprising a flow velocity distribution measuring means for determining the flow rate of the predetermined position determined by the line.
[0010] この構成により、管軸方向に沿って一列に設置された送信子と、配管の対向側に おいて管周方向に沿って一列に設置された受信子との相対関係から、開き角の僅か に異なる 2本の測定線にっ 、て変位量を求めるようにしたので、送信子及び受信子 の総設置数を削減することができる。  [0010] With this configuration, the opening angle is determined based on the relative relationship between the transmitters arranged in a line along the pipe axis direction and the receivers arranged in a line along the pipe circumferential direction on the opposite side of the pipe. Since the displacement amount is calculated using two slightly different measurement lines, the total number of transmitters and receivers can be reduced.
[0011] また本発明の流速分布測定装置は、流体配管の管壁に設置され超音波パルスを 生成し前記流体配管内を流れる被測定流体へ入射する送信子と、前記送信子と対 向する管壁であって管軸方向の所定位置において管周方向に沿って一列に設置さ れ受信超音波強度に応じた振幅の検出信号を夫々出力する複数の受信子と、前記 各受信子の検出信号から前記送信子から発射された超音波パルスが前記各受信子 に到達するまでの飛行時間を検出し、前記送信子の出射端からみて当該出射端と 配管中心とを通る線分とのなす角を開き角とし、前記送信子から所定の受信子に至 るまでの測定領域を測定線として、開き角の僅かに異なる 2本の測定線について夫 々検出される飛行時間からその 2本の測定線に対する垂線によって決まる所定位置 の流速を求める流速分布計測手段とを具備したことを特徴とする。  [0011] Further, the flow velocity distribution measuring apparatus of the present invention is disposed on the pipe wall of the fluid pipe, generates an ultrasonic pulse, and enters the measured fluid flowing in the fluid pipe, and faces the transmitter. A plurality of receivers arranged in a line along the tube circumferential direction at a predetermined position in the tube axis direction of the tube wall, each outputting a detection signal having an amplitude corresponding to the received ultrasonic intensity, and detection of each of the receivers The time of flight until the ultrasonic pulse emitted from the transmitter reaches each receiver is detected from the signal, and is formed by a line segment passing through the output end and the pipe center as viewed from the output end of the transmitter. With the angle as the opening angle, the measurement area from the transmitter to the predetermined receiver as the measurement line, and the two measurement lines with slightly different opening angles from the time of flight detected respectively. Flow at a predetermined position determined by a perpendicular to the measurement line Characterized by comprising a flow velocity distribution measuring means for obtaining.
[0012] この構成により、開き角の僅かに異なる 2本の測定線について夫々検出される超音 波パルスの飛行時間力 その 2本の測定線に対する垂線によって決まる所定位置の 流速を求めることができ、被測定流体が気体流体の場合であっても反射体を被測定 流体中に一様に分布 (混在)させることなぐ流速分布を正確に測定することができる[0012] With this configuration, the time-of-flight force of the ultrasonic pulse detected for two measurement lines with slightly different opening angles can be obtained as the flow velocity at a predetermined position determined by the perpendicular to the two measurement lines. Even if the fluid to be measured is a gaseous fluid, the reflector is measured Accurate measurement of flow velocity distribution without uniform distribution (mixed) in the fluid
。し力も、 1つの送信子と管周方向に沿って一列に設置された受信子とで超音波パ ルスの飛行時間を検出できるので、送信子及び受信子の総設置数を大幅に削減す ることがでさる。 . Since the time of flight of ultrasonic pulses can be detected with one transmitter and the receivers installed in a line along the circumferential direction, the total number of transmitters and receivers can be greatly reduced. That's right.
[0013] 本発明の超音波流量計は、上記流速分布測定装置を備え、前記流速分布測定装 置で計測された流速分布に基づいて前記配管内を流れる被測定流体の流量を計測 することを特徴とする。  [0013] An ultrasonic flowmeter according to the present invention includes the flow velocity distribution measuring device, and measures a flow rate of a fluid to be measured flowing in the pipe based on a flow velocity distribution measured by the flow velocity distribution measuring device. Features.
[0014] 本発明によれば、流体配管内を流れる被測定流体が気体流体であっても、超音波 を用いて流速分布を正確に計測することができる。  [0014] According to the present invention, even if the fluid to be measured flowing in the fluid pipe is a gaseous fluid, the flow velocity distribution can be accurately measured using ultrasonic waves.
図面の簡単な説明  Brief Description of Drawings
[0015] [図 1]拡がり角を持つ超音波パルスを照射した状態を示す図  [0015] [FIG. 1] A diagram showing a state in which an ultrasonic pulse having a divergence angle is irradiated.
[図 2]超音波パルスが変位した状態を示す図  [Fig.2] Diagram showing the state of ultrasonic pulses displaced
[図 3]ビーム軸を管軸方向にある角度( Θ )だけ傾けた状態を示す図  [Fig.3] Diagram showing the beam axis tilted at an angle (Θ) in the tube axis direction
[図 4]超音波ビームを直径力 角度 αだけ開いた状態で発射した状態を示す図 [図 5]開き角度の異なる 2本の測定線を示す図  [Fig. 4] A diagram showing a state in which an ultrasonic beam is launched with a diametric force angle α opened [Fig. 5] A diagram showing two measurement lines with different opening angles
[図 6]流速分布が半径方向位置のみの関数であることを示す図  [Figure 6] Diagram showing that the velocity distribution is a function of radial position only
[図 7]実施の形態 1に係る超音波流量計の全体構成図  FIG. 7 is an overall configuration diagram of the ultrasonic flowmeter according to the first embodiment.
[図 8]実施の形態 1における受信用トランスデューサの配置状態を示す図  FIG. 8 is a diagram showing an arrangement state of receiving transducers in the first embodiment.
[図 9] (a)実施の形態 1における配管の垂直断面図、(b)実施の形態 1における配管 の管軸方向の断面図  [Fig. 9] (a) Vertical sectional view of the pipe in the first embodiment, (b) Cross sectional view in the pipe axis direction of the pipe in the first embodiment.
[図 10]超音波ノ ルスの強度分布を説明するための図  [Fig. 10] Diagram for explaining the intensity distribution of the ultrasonic noise
[図 11]実施の形態 2に係る超音波流量計の全体構成図  [FIG. 11] Overall configuration diagram of ultrasonic flowmeter according to embodiment 2.
[図 12]実施の形態 3に係る超音波流量計の全体構成図  FIG. 12 is an overall configuration diagram of the ultrasonic flowmeter according to the third embodiment.
[図 13]実施の形態 3における送信用トランスデューサ及び受信用トランスデューサの 配置状態を示す図  FIG. 13 is a diagram showing an arrangement state of a transmitting transducer and a receiving transducer in the third embodiment.
[図 14] (a)実施の形態 3における配管の垂直断面図、 (b)実施の形態 3における配管 の管軸方向の断面図  [Fig. 14] (a) Vertical sectional view of the pipe in the third embodiment, (b) Cross section in the pipe axis direction of the pipe in the third embodiment.
[図 15] (a)第 2の測定原理における管周方向の受信用トランスデューサを示す配管の 垂直断面図、(b)第 2の測定原理における配管軸方向の受信用トランスデューサを示 す配管の管軸方向の断面図 [Fig. 15] (a) The pipe showing the receiving transducer in the pipe circumferential direction in the second measurement principle. Vertical cross-sectional view, (b) Pipe cross-sectional view in the pipe axis direction showing the receiving transducer in the pipe axis direction in the second measurement principle
[図 16]従来のドッブラ式超音波流量計の測定原理を説明するための図  FIG. 16 is a diagram for explaining the measurement principle of a conventional Doppler type ultrasonic flowmeter
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0016] 本発明の一実施の形態に係る超音波流量計を説明する前に、流速分布形状を直 接求めるための第 1の測定原理について説明する。配管内を流れる流体は軸対称で あると仮定する。 Before describing an ultrasonic flowmeter according to an embodiment of the present invention, a first measurement principle for directly obtaining a flow velocity distribution shape will be described. The fluid flowing in the pipe is assumed to be axisymmetric.
[0017] (第 1の測定原理) [0017] (First measurement principle)
軸対称流れの場合、円管内流量 (Q)と流体の流速分布 ( V (r))の関係は次式で表 される (rは半径方向座標、 Rは管の半径)。  In the case of an axisymmetric flow, the relationship between the flow rate inside the pipe (Q) and the flow velocity distribution (V (r)) is expressed by the following equation (r is the radial coordinate, R is the radius of the pipe).
[数 1]  [Number 1]
R  R
Q = l ^ v{r)rdr  Q = l ^ v (r) rdr
0  0
種々の設置拘束条件の緩和や精度の向上には、この数式に基づいた測定を行う のが最善であり、それは管内流速の瞬時空間分布を求めることであると言える。管内 流速の瞬時空間分布を求めることができれば、精度の向上、較正の不要、助走区間 を考慮する必要がない、などの抜本的改良をカ卩えることが可能となる。ここでは、気体 流体を念頭において説明する力 本発明は液体流体であっても適用可能である。  In order to alleviate various installation constraints and improve accuracy, it is best to perform measurements based on this formula, which is to determine the instantaneous spatial distribution of pipe flow velocity. If the instantaneous spatial distribution of the pipe flow velocity can be obtained, fundamental improvements such as improved accuracy, no need for calibration, and no need to consider the run-up section can be recognized. Here, the force explained with the gas fluid in mind The present invention is applicable even to a liquid fluid.
[0018] 図 1に示すように、円管力 なる配管 10の管壁に設置した送信子となる超音波トラ ンスデューサ 11から対向する管壁に向けて超音波パルスを発射する。超音波パルス はトランスデューサ軸に対して適当な拡がり角を持つように発射される。  As shown in FIG. 1, an ultrasonic pulse is emitted from an ultrasonic transducer 11 serving as a transmitter installed on a pipe wall of a pipe 10 having a circular pipe force toward an opposite pipe wall. The ultrasonic pulse is fired with an appropriate divergence angle with respect to the transducer axis.
[0019] はじめに、管軸方向断面での超音波パルスの移動(変位)について説明する。図 2 に示すように、発射された超音波パルスは配管 10内の気体が静止している場合は、 発射方向(以下、「ビーム軸」と呼ぶ)に直進し、配管 10の対向する管壁に到達する。 仮に、配管 10内の気体流体が矢印方向に流動している場合は、発射超音波パルス は気体流体の流れにより図中 W1で示すように下流方向に変位する。この時の変位 量が流速情報を含んで 、る。  First, the movement (displacement) of the ultrasonic pulse in the cross section in the tube axis direction will be described. As shown in Fig. 2, when the gas in the pipe 10 is stationary, the emitted ultrasonic pulse goes straight in the firing direction (hereinafter referred to as the "beam axis"), and the opposite pipe wall of the pipe 10 To reach. If the gaseous fluid in the pipe 10 is flowing in the direction of the arrow, the emitted ultrasonic pulse is displaced downstream as indicated by W1 in the figure due to the flow of the gaseous fluid. The displacement amount at this time includes the flow velocity information.
[0020] このとき、ビーム軸が管壁に垂直( Θ =0)で、配管 10の直径上を通る場合 (ケース 1)、超音波パルスの下流方向(管軸方向)への変位量 (Z)は、次式で表される。 [0020] At this time, when the beam axis is perpendicular to the tube wall (Θ = 0) and passes over the diameter of pipe 10 (case 1) The amount of displacement (Z) in the downstream direction (tube axis direction) of the ultrasonic pulse is expressed by the following equation.
[数 2]
Figure imgf000008_0001
[Equation 2]
Figure imgf000008_0001
No
ここで、 m(r)は局所マッハ数であり、速度分布 V (r)を音速 cで除したものである。軸 対称性の仮定から半径位置のみの関数である。 Dは配管の直径、座標 Xは超音波ト ランスデューサ 1 1の先頭位置を原点としたビーム軸上の位置を表す (この場合は配 管 10の直径上の位置)。  Here, m (r) is the local Mach number, which is the velocity distribution V (r) divided by the speed of sound c. From the assumption of axial symmetry, it is a function of only the radial position. D represents the diameter of the pipe, and coordinate X represents the position on the beam axis with the head position of the ultrasonic transducer 11 as the origin (in this case, the position on the diameter of pipe 10).
[0021] 次に、図 3に示すように、ビーム軸を、配管 10の直径上を通り管軸方向にある角度( Next, as shown in FIG. 3, the beam axis passes through the diameter of the pipe 10 and is at an angle in the tube axis direction (
Θ )だけ傾けた場合 (ケース 2)における、超音波パルスの配管 10の対向する管壁で の変移量を考える。ケース 2の場合における超音波パルスの変位量は、次式で表さ れる。  Let us consider the amount of displacement at the opposite pipe wall of the pipe 10 of the ultrasonic pulse when tilted by Θ) (case 2). The displacement of the ultrasonic pulse in case 2 is expressed by the following equation.
[数 3]
Figure imgf000008_0002
(式 2)
[Equation 3]
Figure imgf000008_0002
(Formula 2)
(式 2)において第一項 (D tan θ )はビーム軸が傾斜したことによる変移量、第二項( Mo sec θ )は流速分布による変移量である。  In (Equation 2), the first term (D tan θ) is the displacement due to the tilt of the beam axis, and the second term (Mo sec θ) is the displacement due to the flow velocity distribution.
[0022] 次に、図 4に示すように、配管 10の管軸方向に対して直交する垂直断面上で超音 波ビームを直径力も角度 αだけ開 、た状態で発射した場合 (ケース 3)につ 、て考え る。超音波トランスデューサ 1 1の出射端力 配管中心を通る線分 (直径)に対してな す角度を開き角( ex )と呼ぶものとする。このケース 3の場合における、超音波ビーム の対向する管壁での変移量は、次式となる。 Next, as shown in FIG. 4, when the ultrasonic beam is launched in a state where the diametric force is also opened at an angle α on a vertical section orthogonal to the pipe axis direction of the pipe 10 (case 3) Think about it. The output end force of the ultrasonic transducer 1 1 The angle formed with respect to the line segment (diameter) passing through the center of the pipe is called the opening angle (ex). In Case 3, the amount of displacement of the ultrasonic beam on the opposite tube wall is given by the following equation.
画 ί=° ί=° ° ί=° (式 3)  Ί = ° ί = ° ° ί = ° (Formula 3)
ここで、 ξはビーム軸方向にとった座標軸であり、 Lは配管 10内の経路長である。 経路長 Lは、次式で求まる。  Here, ξ is a coordinate axis taken in the beam axis direction, and L is a path length in the pipe 10. The path length L is obtained by the following equation.
L = Dcos α (式 4) [0023] 次に、超音波ビームを管軸の垂直断面上で直径から角度 ocだけ開き(開き角 oc )、 かつ管軸方向に角度 Θだけ傾斜させた場合 (ケース 4)の変移量を考える。ケース 4 の場合における超音波ビームの対向する管壁での変移量は、次式となる。 L = Dcos α (Equation 4) [0023] Next, let us consider the amount of displacement when the ultrasonic beam is opened from the diameter by an angle oc on the vertical section of the tube axis (opening angle oc) and tilted by the angle Θ in the tube axis direction (case 4). . In case 4, the amount of displacement of the ultrasonic beam on the opposite tube wall is as follows.
[数 5]  [Equation 5]
Ζ(θ)= j (ta ^ + w( )sec^)i3¾ = Ltan^+Mf sec^ Ζ (θ) = j (ta ^ + w () sec ^) i3¾ = Ltan ^ + M f sec ^
ί=° (式 5)  ί = ° (Formula 5)
[0024] 図 5に開き角 αの異なる二本の測定線(1, 2)を示す。それぞれの測定線 1, 2での 超音波ビームの変移量は次の通りである。  FIG. 5 shows two measurement lines (1, 2) with different opening angles α. The amount of displacement of the ultrasonic beam at each measurement line 1 and 2 is as follows.
[数 6]  [Equation 6]
ζ', - i, tnn9+Ml sec6ζ ',-i, tnn9 + M l sec6
2 = i2 tan ^ +Λ?2 sec^ , 2 = i 2 tan ^ + Λ? 2 sec ^,
(式 6)において、符号 Mはビーム軸に沿った積分であるから、二本の測定線 1, 2に ついて異なっている。この二本の測定線 1, 2に対する変移量の差は、次式のように 表せる。 In (Equation 6), the sign M is the integral along the beam axis, so the two measurement lines 1 and 2 are different. The difference in displacement between the two measurement lines 1 and 2 can be expressed as follows.
[数 7]  [Equation 7]
Z] - Z2 = £>tan^(cosof, -cosoi2) + sec^( 1 -M2) ' ヽ Z]-Z 2 = £> tan ^ (cosof, -cosoi 2 ) + sec ^ ( 1 -M 2 ) 'ヽ
(式 7)において、第一項は任意に設定した測定線 1, 2の位置によって決まり一定 である。(式 7)における第二項の積分差について検討する。 In (Equation 7), the first term is determined by the position of the measurement lines 1 and 2 set arbitrarily and is constant. Consider the integral difference of the second term in (Equation 7).
図 6に示すように、流速分布は半径方向位置のみの関数であることから、ビーム軸 上の積分は、管半径方向の積分で、積分範囲が位置 hから半径 Rまでとしたものの 2 倍と等しい。  As shown in Fig. 6, the flow velocity distribution is a function of only the radial position, so the integration on the beam axis is integral in the tube radial direction, twice the integration range from position h to radius R. equal.
すなわち、次式のようになる。  That is, the following equation is obtained.
[数 8]
Figure imgf000009_0001
(式 8)
[Equation 8]
Figure imgf000009_0001
(Formula 8)
したがって、(式 7)における第二項に含まれる変移量の差の積分項 (M — M )につい  Therefore, the integral term (M — M) of the difference of the displacement included in the second term in (Equation 7)
1 2 ては、次式のように表せる。 Mx -M2 = 2 md - 2j mdr = 2 mdr +1 2 can be expressed as: M x -M 2 = 2 md-2j mdr = 2 mdr +
Figure imgf000010_0001
Figure imgf000010_0001
= l^md  = l ^ md
(式 9)  (Formula 9)
すなわち、変移量の差は、二本の測定線 1, 2と中心の距離 hiと h2の間で流速分布 を積分したものと等しい。距離 hiと h2は、配管中心から二本の測定線 1, 2に引いた 垂線との交点までの距離である。なお、軸対称を仮定しているので、距離と位置は同 義となる。  That is, the difference in displacement is equal to the integration of the flow velocity distribution between the two measurement lines 1 and 2 and the center distances hi and h2. The distances hi and h2 are the distances from the center of the pipe to the intersection of the perpendicular lines drawn on the two measurement lines 1 and 2. Note that distance and position are synonymous because axial symmetry is assumed.
今、二本の測定線 1, 2間の角度を小さくとれば、その間での流速分布は一定値 m  Now, if the angle between the two measurement lines 1 and 2 is made small, the flow velocity distribution between them is a constant value m
12 と仮定することができる力 、(式 7)は次式のように変換できる。  The force that can be assumed to be 12 (Equation 7) can be transformed as follows.
[数 10] [Equation 10]
Ζλ - Ζ2 = Z) ta ^ (cos or, - cos<ar2 ) + 2sec^ - /w12 ( ^ ェ。) したがって、二本の測定線 1, 2について変移量 Z Zを測定することで、その位置 [ Λ λ2 = Z) ta ^ (cos or,-cos <ar 2 ) + 2sec ^-/ w 12 (^ ee.) Therefore, measure the displacement ZZ for the two measurement lines 1 and 2 And its position [
1, 2  1, 2
hi, h2]での流速が以下のように求まることになる。 The flow velocity at hi, h2] is obtained as follows.
[数 11] [Equation 11]
Z, - Z2 - tan^i cosoT] — cos"2 ) Z,-Z 2 -tan ^ i cosoT] — cos " 2 )
ffl ― ffl ―
12 2 sec^ (/¾ _ /¾ ) (式 u) そこで、測定領域となる多数の測定線を設置して、各位置での変移量 (Z)を測定す ることで、配管 10内の流速分布 v(r)を求めることができる。 12 2 sec ^ (/ ¾ _ / ¾) (Equation u) Therefore, by installing a large number of measurement lines as the measurement area and measuring the displacement (Z) at each position, The flow velocity distribution v (r) can be obtained.
(実施の形態 1)  (Embodiment 1)
第 1の測定原理を超音波流量計に適用した実施の形態 1について説明する。  A first embodiment in which the first measurement principle is applied to an ultrasonic flowmeter will be described.
図 7は、実施の形態 1に係る超音波流量計の全体構成図である。被測定流体 Gが 流れる円管状をなす配管 10の管壁片側に超音波パルスを発信する送信子となる 1 つの発信用トランスデューサ 11が設置され、配管 10の対向する管壁に超音波ノ ル スを受信する受信子となる複数の受信用トランスデューサ 12からなる受信用トランス デューサアレイが設置されている。発信用トランスデューサ 11は、配管外又は配管内 の管壁に垂直に設置され、超音波ビームの中心が配管中心を通り、かつ対向する管 壁に垂直に入射するように設置角度を設定する。発信用トランスデューサ 11の有効 直径は、超音波ビームの広がりを考慮して決めるが、本例では有効直径を小さくして 指向性が可能な限り広くなるようにすることが望ましい。図 8、図 9 (a) (b)は受信用トラ ンスデューサアレイの配置状態を示す図である。受信用トランスデューサアレイは、発 信用トランスデューサ 11と正しく対向する位置を基準として、二次元状 (面的)に N X M個配置された複数の受信用トランスデューサ 12から構成される。図 8では受信用ト ランスデューサアレイの管軸方向の両側の受信用トランスデューサ 12がー部省略さ れている。また、図 9 (a)に示すように、発信用トランスデューサ 11と正しく対向する位 置に設置された受信用トランスデューサ 12 (j = 0)力も周方向の一方向(図中反時計 回り)に j =Nまで所定間隔で設置している。これら受信用トランスデューサアレイを構 成する各受信用トランスデューサ 12の設置間隔は超音波ビームのビーム軸の開き角 aが可能な限り小さくなるように選ぶこととする。受信用トランスデューサの管軸方向 の配置範囲は配管 10の半径以上とする。 FIG. 7 is an overall configuration diagram of the ultrasonic flowmeter according to the first embodiment. One transmitting transducer 11 is installed on one side of the tube wall of the pipe 10 that forms a circular pipe through which the fluid G to be measured flows, and an ultrasonic noise is placed on the opposite tube wall of the pipe 10. A receiving transducer array comprising a plurality of receiving transducers 12 serving as receivers for receiving the signal is installed. The transmitting transducer 11 is installed perpendicularly to the pipe wall outside or inside the pipe, and the center of the ultrasonic beam passes through the pipe center and faces the opposite pipe. Set the installation angle so that it is perpendicular to the wall. The effective diameter of the transmitting transducer 11 is determined in consideration of the spread of the ultrasonic beam. In this example, it is desirable to reduce the effective diameter so that the directivity is as wide as possible. 8 and 9 (a) and 9 (b) are diagrams showing the arrangement state of the receiving transducer array. The receiving transducer array is composed of a plurality of receiving transducers 12 arranged in a two-dimensional manner (planar) with reference to the position facing the transmitting transducer 11 correctly. In FIG. 8, the receiving transducers 12 on both sides in the tube axis direction of the receiving transducer array are omitted. In addition, as shown in Fig. 9 (a), the receiving transducer 12 (j = 0) force installed at the position correctly facing the transmitting transducer 11 is also j in one circumferential direction (counterclockwise in the figure). Installed at predetermined intervals up to = N. The interval between the receiving transducers 12 constituting the receiving transducer array is selected so that the opening angle a of the beam axis of the ultrasonic beam is as small as possible. The arrangement range of the receiving transducer in the tube axis direction shall be at least the radius of pipe 10.
[0026] 信号発振器 13は、発信用トランスデューサ 11に供給する発信信号 S1を出力する。 [0026] The signal oscillator 13 outputs a transmission signal S1 to be supplied to the transmission transducer 11.
信号発振器 13における発信信号の基本周波数は配管壁材料や被測定流体の特性 、超音波パルスの拡がり等を考慮して決定する。発信信号の信号波形は鋭角な三角 波のパルス信号であり、通常の時間差法に用いる波形と同じである。パルス信号の 繰り返し周期 f は気体音速、配管直径、平均流速などから決定する。パルス信号を  The fundamental frequency of the transmitted signal in the signal oscillator 13 is determined in consideration of the characteristics of the pipe wall material, the fluid to be measured, the spread of the ultrasonic pulse, and the like. The signal waveform of the transmission signal is an acute triangular pulse signal, which is the same as the waveform used for the normal time difference method. The repetition period f of the pulse signal is determined from the gas sound velocity, pipe diameter, average flow velocity, and so on. Pulse signal
prf  prf
発射するタイミング信号 S2は同期信号として受信側へ送られる。  The firing timing signal S2 is sent to the receiving side as a synchronization signal.
[0027] 各受信用トランスデューサ 12の出力端には検出回路 14がそれぞれ接続されて ヽ る。検出回路 14は、接続された受信用トランスデューサ 12から出力される入射超音 波強度に応じた大きさの検出信号を増幅する信号増幅器と、当該信号増幅器出力 のピーク値を読み取るピーク検出回路とからなる。これらの検出回路 14は速いサンプ リングレートで流速を求めるため、各受信用トランスデューサ 12の出力を同時に検出 する。各検出回路 14は、信号発振器 13から供給されるタイミング信号 S2によりパル ス受信タイミングが設定される。 A detection circuit 14 is connected to the output terminal of each receiving transducer 12. The detection circuit 14 includes a signal amplifier that amplifies a detection signal having a magnitude corresponding to the incident ultrasonic intensity output from the connected receiving transducer 12, and a peak detection circuit that reads a peak value of the signal amplifier output. Become. Since these detection circuits 14 obtain the flow velocity at a fast sampling rate, the outputs of the receiving transducers 12 are detected simultaneously. Each detection circuit 14 has a pulse reception timing set by a timing signal S2 supplied from the signal oscillator 13.
[0028] データ取得回路 15は、各検出回路 14で読み取られたピーク値を全て収集するデ ジタル式マルチプレクサで構成されている。データ取得回路 15において、どの検出 回路 14力もの情報を得るかを決定する。個々の検出回路 14の設置位置は、各々対 応する受信用トランスデューサ 12との関係から、測定線の開き角(ひ)及び管軸方向 位置に変換できる。管軸方向に配列された複数の受信用トランスデューサ 12のうち 最大ピーク値が検出された検出回路 14の設置位置 (又は受信用トランスデューサ 12 の設置位置)情報を、変位量検出信号として出力する。 The data acquisition circuit 15 includes a digital multiplexer that collects all peak values read by the detection circuits 14. Which detection in the data acquisition circuit 15 Decide whether to get as much information as the circuit. The installation position of each detection circuit 14 can be converted into the opening angle (() of the measurement line and the position in the tube axis direction from the relationship with the corresponding receiving transducer 12. Information on the installation position of the detection circuit 14 (or the installation position of the reception transducer 12) where the maximum peak value is detected among the plurality of reception transducers 12 arranged in the tube axis direction is output as a displacement amount detection signal.
[0029] データ処理装置 20は、データ取得回路 15から出力される変位量検出信号力も流 速分布を計測する流速分布計測回路 21と、流速分布計測回路 21が計測した流速 分布データ力も配管 10内を流れる被測定流体の流量を計算する流量計測回路 22と 、計測結果を表示出力する表示部 23とを備えている。流速分布計測回路 21は、開 き角 αの僅かに異なる 2本の測定線の変位量力 前述した (式 11)に基づいたデー タ計算を行い平均流速 m を計算する。なお、流速分布データ又は流量計測データ [0029] The data processing device 20 includes a flow velocity distribution measuring circuit 21 that measures the flow velocity distribution as well as the displacement detection signal force output from the data acquisition circuit 15, and the flow velocity distribution data force measured by the flow velocity distribution measuring circuit 21 in the pipe 10. A flow rate measurement circuit 22 that calculates the flow rate of the fluid to be measured flowing through and a display unit 23 that displays and outputs the measurement result. The flow velocity distribution measurement circuit 21 calculates the average flow velocity m by performing data calculation based on the above-mentioned (Equation 11), the displacement force of two measurement lines with slightly different opening angles α. Flow velocity distribution data or flow rate measurement data
12  12
は記録媒体に記録し又は他の装置へデータ伝送するように構成しても良 、。  May be configured to record on a recording medium or transmit data to another device.
[0030] 次に、以上のように構成された本実施の形態の動作について説明する。  Next, the operation of the present embodiment configured as described above will be described.
信号発振器 13に対して計測開始を指示する計測トリガが与えられる。信号発振器 13は計測トリガを契機にして発信用トランスデューサ 11に対して基本周波数の発信 信号 S1を印加すると共に、タイミング信号 S2を各検出回路 14に供給する。  A measurement trigger for instructing the signal oscillator 13 to start measurement is given. The signal oscillator 13 applies a transmission signal S1 having a fundamental frequency to the transmission transducer 11 in response to a measurement trigger, and supplies a timing signal S2 to each detection circuit 14.
[0031] 発信用トランスデューサ 11は発信信号 S1を超音波パルスに変換して配管 10内の 被測定流体 Gに入射する。被測定流体 Gに入射された超音波パルスは、図 1及び図 7に示すようにビーム軸を中心にして所定の拡がりを持った超音波ビームとなり対向 する管壁に設置された受信用トランスデューサアレイに入射する。受信用トランスデュ ーサアレイを構成する各受信用トランスデューサ 12は、各々入射超音波強度に対応 した振幅の検出信号を出力する。  [0031] The transmission transducer 11 converts the transmission signal S1 into an ultrasonic pulse and enters the measured fluid G in the pipe 10. As shown in FIGS. 1 and 7, the ultrasonic pulse incident on the fluid G to be measured becomes an ultrasonic beam having a predetermined spread centered on the beam axis, and a receiving transducer array installed on the opposite tube wall. Is incident on. Each of the receiving transducers 12 constituting the receiving transducer array outputs a detection signal having an amplitude corresponding to the incident ultrasonic intensity.
[0032] 全ての検出回路 14は、超音波パルス発射時刻に同期したタイミング信号 S2をトリ ガにして、第一到達波を受波した各受信用トランスデューサ 12から出力される検出 信号のピーク値を検出する。データ取得回路 15は、全ての検出回路 14から各位置( i, j)でのピーク値を取り込む。  [0032] All the detection circuits 14 use the timing signal S2 synchronized with the ultrasonic pulse emission time as a trigger, and determine the peak value of the detection signal output from each receiving transducer 12 that has received the first arrival wave. To detect. The data acquisition circuit 15 takes in the peak value at each position (i, j) from all the detection circuits 14.
[0033] ここで、受信用トランスデューサアレイに入射する超音波ノ ルスの空間特性につい て説明する。図 10に示すように、発射超音波パルスの空間特性は、ビーム軸を中心 にしたガウス分布形をして 、る。各受信用トランスデューサ 12から出力される検出信 号においても管軸方向の分布は、開き角(ひ)においてほぼ同様のガウス分布形をし ている。 [0033] Here, the spatial characteristics of the ultrasonic noise incident on the receiving transducer array will be described. As shown in Figure 10, the spatial characteristics of the emitted ultrasonic pulse are centered on the beam axis. It has a Gaussian distribution shape. Also in the detection signal output from each receiving transducer 12, the distribution in the tube axis direction has a substantially similar Gaussian distribution in terms of the opening angle.
[0034] 今、図 9 (a)に示すように超音波ビームのビーム軸の開き角を α とした場合、開き角  [0034] Now, as shown in Fig. 9 (a), when the opening angle of the beam axis of the ultrasonic beam is α, the opening angle
( a )の超音波ビームが入射する管軸方向の受信用トランスデューサ列を図 9 (b)に 示している。同図に示すように、被測定流体の流速により本来のビーム軸位置から Z n変位したとすると、ビーム軸位置力 距離 Znの位置に設置された受信用トランスデ ユーサ 12から出力される検出信号のピーク値が、図 9 (b)に示す受信用トランスデュ ーサ列の中で最大値を示すこととなる。この距離 Znが(式 5)又は (式 6)における変位 量 Zi ( 0 )に相当する。  Fig. 9 (b) shows the receiving transducer array in the tube axis direction where the ultrasonic beam of (a) is incident. As shown in the figure, if the Zn displacement from the original beam axis position is caused by the flow velocity of the fluid to be measured, the detection signal output from the receiving transducer 12 installed at the position of the beam axis position force distance Zn The peak value is the maximum value in the receiving transducer train shown in Fig. 9 (b). This distance Zn corresponds to the displacement Zi (0) in (Equation 5) or (Equation 6).
[0035] データ取得回路 15は、超音波ビーム軸の夫々の開き角 aに対応して、図 9 (b)に 示す管軸方向の受信用トランスデューサ列カも最大ピーク値を示すトランスデューサ 12位置を選択し、当該選択位置をその開き角 aにおける本来のビーム軸からの変 位量 Zとしてデータ処理装置 20へ伝送する。  [0035] The data acquisition circuit 15 corresponds to each opening angle a of the ultrasonic beam axis, and the transducer array for reception in the tube axis direction shown in FIG. The selected position is transmitted to the data processor 20 as the displacement Z from the original beam axis at the opening angle a.
[0036] データ処理装置 20の流速分布計測回路 21では、データ取得回路 15から取り込ん だ変位量情報から、隣合った開き角 [ひ 、 a ]の  [0036] In the flow velocity distribution measurement circuit 21 of the data processing device 20, from the displacement amount information fetched from the data acquisition circuit 15, the adjacent opening angle [h, a]
i i+1 測定線 i, i+1での変位量 Z、 Z  i i + 1 Displacement Z, Z at measurement lines i and i + 1
i i+1を 抽出して (式 11)に代入し、 [h、 h ]での平均流速 m を求める。これは測定対象と  Extract i i + 1 and substitute it into (Equation 11) to find the average flow velocity m at [h, h]. This is the measurement target
i i+1 i,i+l  i i + 1 i, i + l
する一方の測定線 (ビーム軸)として開き角 [ α ]の測定線 1を設定し、測定線 1に開き 角度方向に隣接する他方の測定線 (ビーム軸)として開き角 [ α  Set measurement line 1 with an opening angle [α] as one measurement line (beam axis) to be opened, and open angle [α as the other measurement line (beam axis) that opens to measurement line 1 and is adjacent to the angle direction.
i+1 ]の測定線 2を設定 し、配管中心力も測定線 1に引いた垂線との交点(配管中心力も測定線 1までの距離 h )と、配管中心力も測定線 2に引いた垂線との交点(配管中心力も測定線 2までの距 離 h )との間の平均流速 m が求められたことになる。  i + 1] measurement line 2 and the intersection of the pipe center force with the perpendicular drawn to measurement line 1 (distance h to the pipe center force and measurement line 1) and the perpendicular to the pipe center force drawn to measurement line 2 This means that the average flow velocity m is obtained from the intersection of the pipes (the pipe center force is also the distance h to the measurement line 2).
i+1 i,i+l  i + 1 i, i + l
[0037] なお、配管中心から距離 hiと距離 h2との間の流速分布が一定値と仮定できる程度 に二本の測定線間の角度を小さくするとの仮定から、開き角 [ a 、 a ]のように隣合  [0037] From the assumption that the angle between the two measurement lines is reduced to such an extent that the flow velocity distribution between the distance hi and the distance h2 from the pipe center can be assumed to be a constant value, the opening angle [a, a] So
i i+1  i i + 1
つた測定線 1, 2を使用する。これにより、図 6に示す配管中心を中心とした半径 hの 円周上の一箇所の流速が求められたとみなすことができる。  Use measurement lines 1 and 2. Thus, it can be considered that the flow velocity at one location on the circumference of the radius h centering on the pipe center shown in FIG. 6 has been obtained.
[0038] 流速分布計測回路 21では、開き角 [ひ 、 α ]のように隣合った測定線の組を多数 [0038] In the flow velocity distribution measurement circuit 21, there are many pairs of adjacent measurement lines such as an opening angle [ひ, α].
i i+1  i i + 1
設定し、開き角 a nに応じた管径方向の異なる各位置の平均流速 mをそれぞれ求め る。これら管径方向の異なる各位置での平均流速 m力も配管 10内の流速分布 v(r)を 求める。 Set and calculate the average flow velocity m at each position in the pipe diameter direction according to the opening angle an. The The average flow velocity m force at each position in the different pipe diameter directions is also obtained as the flow velocity distribution v (r) in the pipe 10.
[0039] 流量計測回路 22では、流速分布計測回路 21で求めた配管 10内の流速分布 v(r) に基づいて配管 10内の平均流量を計算して、表示部 23に出力する。  The flow rate measurement circuit 22 calculates the average flow rate in the pipe 10 based on the flow velocity distribution v (r) in the pipe 10 obtained by the flow velocity distribution measurement circuit 21 and outputs the average flow rate to the display unit 23.
[0040] このように、本実施の形態によれば、被測定流体 Gが反射体が混在しな 、又は不 均一に含まれたガス等の気体流体であっても、超音波を用いて流速分布を計測する ことができ、精度の高い流量測定が可能になる。  [0040] Thus, according to the present embodiment, even if the fluid G to be measured is a gaseous fluid such as a gas that does not include a reflector or is contained non-uniformly, the flow velocity is measured using ultrasonic waves. Distribution can be measured, and flow measurement with high accuracy becomes possible.
[0041] し力も、超音波パルスを発射する発信用トランスデューサ 11のトランスデューサ軸を 管軸方向に対して垂直に設定し、対向側の管壁に設けた受信用トランスデューサで 超音波パルスの変位量を検出して管垂直断面上の所定位置での流速を直接求める 構成であるので、従来のドッブラ式超音波流量計で必要であった測定値の較正作業 を削減することができる。  [0041] As for the force, the transducer axis of the transmitting transducer 11 that emits the ultrasonic pulse is set perpendicular to the tube axis direction, and the amount of displacement of the ultrasonic pulse is determined by the receiving transducer provided on the opposite tube wall. Since it is configured to directly detect the flow velocity at a predetermined position on the vertical section of the pipe, it is possible to reduce the calibration work of the measurement value required for the conventional Doppler type ultrasonic flowmeter.
[0042] (実施の形態 2)  [0042] (Embodiment 2)
次に、上記実施の形態 1の超音波流量計から受信側の検出回路 14を削除して回 路構成を簡易化した超音波流量計を実施の形態 2として説明する。  Next, an ultrasonic flowmeter in which the receiving side detection circuit 14 is eliminated from the ultrasonic flowmeter of the first embodiment and the circuit configuration is simplified will be described as a second embodiment.
[0043] 図 11は実施の形態 2に係る超音波流量計の全体構成図である。発信用トランスデ ユーサ 11並びに受信用トランスデューサ 12の配置は、上記実施の形態 1と同様であ る。本実施の形態では、受信用トランスデューサ 12の出力端にアナログマルチプレク サ 31を接続することにより、実施の形態 1では M X N個必要であった検出回路 14を 削減して!/、る。アナログマルチプレクサ 31は各受信用トランスデューサ 12からの検出 信号を選択的に後段のデータ取得回路 32へ入力するように動作する。  FIG. 11 is an overall configuration diagram of the ultrasonic flowmeter according to the second embodiment. The arrangement of the transmitting transducer 11 and the receiving transducer 12 is the same as in the first embodiment. In the present embodiment, the analog multiplexer 31 is connected to the output end of the receiving transducer 12, thereby reducing the number of M × N detection circuits 14 required in the first embodiment! The analog multiplexer 31 operates to selectively input the detection signal from each receiving transducer 12 to the data acquisition circuit 32 at the subsequent stage.
[0044] データ取得回路 32は、 AD変 を含んで構成されて ヽる。データ取得回路 32で は、 AD変 がデジタル信号に変換した検出信号カゝらピーク値を検出し、どの受信 用トランスデューサ 12からの情報を得るかを決定し、最大ピーク値の受信用トランス デューサ位置情報を変位量検出信号として出力する。パルス信号を発射するタイミン グ信号 S2はデータ取得回路 32に供給され、 AD変 におけるサンプリングタイミン グに利用される。  The data acquisition circuit 32 is configured to include AD changes. In the data acquisition circuit 32, the peak value is detected from the detection signal converted into a digital signal by the AD conversion, and the receiving transducer 12 from which the information is obtained is determined, and the receiving transducer position of the maximum peak value is determined. Information is output as a displacement detection signal. A timing signal S2 for emitting a pulse signal is supplied to the data acquisition circuit 32 and used for sampling timing in AD conversion.
[0045] 以上のように構成された超音波流量計では、受信用トランスデューサ 12からの検出 信号がアナログマルチプレクサ 31を介して 1つずつデータ取得回路 32に入力され、 ピーク値を検出される。管軸方向に並んだ各受信用トランスデューサ列力 最大ピー ク値を検出し、各受信用トランスデューサ列について最大ピーク値を示す位置情報 (i , j)を変位量情報として流速分布計測回路 21へ出力する。流速分布計測回路 21で は、変位量を (式 11)に代入して平均流速 m を求める。 In the ultrasonic flow meter configured as described above, detection from the receiving transducer 12 is performed. Signals are input to the data acquisition circuit 32 one by one via the analog multiplexer 31, and the peak value is detected. Each receiving transducer array force aligned in the tube axis direction detects the maximum peak value, and outputs position information (i, j) indicating the maximum peak value for each receiving transducer array to the flow velocity distribution measurement circuit 21 as displacement information. To do. The flow velocity distribution measurement circuit 21 calculates the average flow velocity m by substituting the displacement into (Equation 11).
12  12
[0046] このように本実施の形態によれば、 M X N個の受信用トランスデューサ 12出力をァ ナログマルチプレクサ 31を介してデータ取得回路 32へ入力する構成としたので、検 出回路 14を削減して回路構成を簡素化することができる。  Thus, according to the present embodiment, since the MXN receiving transducer 12 outputs are input to the data acquisition circuit 32 via the analog multiplexer 31, the detection circuit 14 is reduced. The circuit configuration can be simplified.
[0047] 本実施の形態のように構成した場合、 M X N個の受信用トランスデューサ 12の検 出信号を 1つずつ処理するので、上記実施の形態 1に比べて時間を要するが、変動 が少ない被測定流体 Gの場合には有効である。  [0047] When configured as in the present embodiment, the detection signals of MXN reception transducers 12 are processed one by one, so that time is required as compared with the first embodiment, but the variation is small. Effective for measurement fluid G.
[0048] (実施の形態 3)  [0048] (Embodiment 3)
次に、本発明の実施の形態 3に係る超音波流量計ついて説明する。  Next, an ultrasonic flowmeter according to Embodiment 3 of the present invention will be described.
図 12は本発明の実施の形態 3に係る超音波流量計の全体構成図である。配管 10 の片方の管壁には管軸方向に沿って 1列に配列された複数の発信用トランスデュー サ 40からなる発信用トランスデューサ列が形成されており、反対側の管壁には管軸 方向の所定位置 Hにて管周方向に沿って 1列に配置された複数の受信用トランスデ ユーサ 41からなる受信用トランスデューサ列が形成されている。  FIG. 12 is an overall configuration diagram of the ultrasonic flowmeter according to the third embodiment of the present invention. One pipe wall of the pipe 10 is formed with a transmitting transducer array composed of a plurality of transmitting transducers 40 arranged in a line along the pipe axis direction. A receiving transducer array composed of a plurality of receiving transducers 41 arranged in a line along the pipe circumferential direction at a predetermined position H in the direction is formed.
[0049] 図 13及び図 14 (a) (b)に発信用トランスデューサ 40及び受信用トランスデューサ 4 1の配置関係を示している。図 13は配管 10の外観図であり、破線で示す受信用トラ ンスデューサ 41は発信用トランスデューサ 40の設置位置とは反対側の管壁に設置さ れている。図 14 (a)は配管 10の管軸に対する垂直断面図であり、同図 (b)は発信用 トランスデューサ 40位置での管軸方向に沿った断面図である。  FIGS. 13 and 14 (a) and 14 (b) show the positional relationship between the transmitting transducer 40 and the receiving transducer 41. FIG. FIG. 13 is an external view of the pipe 10, and a receiving transducer 41 indicated by a broken line is installed on the pipe wall opposite to the installation position of the transmitting transducer 40. 14 (a) is a vertical sectional view with respect to the tube axis of the pipe 10, and FIG. 14 (b) is a sectional view along the tube axis direction at the position of the transmitting transducer 40. FIG.
[0050] 図 14 (a)に示すように、受信用トランスデューサ列の一端 (j = 0)と、所定の発信用ト ランスデューサ 40とが配管中心を挟んで対向し、一端位置 (j = 0)力も管周方向に受 信用トランスデューサ 41が連続して設置されている。配管中心から見て約 90度の範 囲で受信用トランスデューサ列が形成されている。また、図 14 (b)に示すように、中央 の発信用トランスデューサ 40のビーム軸 Bから管軸方向に距離 Hの位置において、 受信用トランスデューサ 41が管周方向に設置されている。 [0050] As shown in FIG. 14 (a), one end (j = 0) of the receiving transducer array and a predetermined transmitting transducer 40 face each other across the center of the pipe, and one end position (j = 0). The receiving transducer 41 is continuously installed in the pipe circumferential direction. The transducer array for reception is formed in the range of about 90 degrees when viewed from the center of the pipe. In addition, as shown in FIG. 14 (b), at the position of the distance H in the tube axis direction from the beam axis B of the center transmitting transducer 40, A receiving transducer 41 is installed in the pipe circumferential direction.
[0051] 信号発振器 42は、超音波パルスを生成するための所望の基本周波数を有する発 信信号 S1を生成する。また、発信用トランスデューサ 40は発信信号 S1の出力と同 期してタイミング信号 S2を後述するタイミングコントローラ 45へ供給する。  [0051] The signal oscillator 42 generates a transmission signal S1 having a desired fundamental frequency for generating an ultrasonic pulse. Further, the transmitting transducer 40 supplies the timing signal S2 to the timing controller 45 described later in synchronization with the output of the transmitting signal S1.
[0052] 発信用マルチプレクサ 43は、信号発振器 42から出力される発信信号 S1の印加先 となる発信用トランスデューサ 40を切替えるように動作する。例えば、発信用マルチ プレクサ 43は、最上流側の発信用トランスデューサ 40 (1=0)から最下流側の発信用 トランスデューサ 40 (i=M)に向けて順番に選択するものとする。  [0052] The transmission multiplexer 43 operates to switch the transmission transducer 40 to which the transmission signal S1 output from the signal oscillator 42 is applied. For example, it is assumed that the transmission multiplexer 43 sequentially selects from the most upstream transmission transducer 40 (1 = 0) to the most downstream transmission transducer 40 (i = M).
[0053] 各発信用トランスデューサ 40は、上記実施の形態と同様に、配管外又は配管内の 管壁に垂直に設置され、超音波ビームの中心が配管中心を通り、かつ対向する管壁 に垂直に入射するように設置角度を設定する。また、発信用トランスデューサ 40の有 効直径を小さくして指向性が可能な限り広くなるようにする。  [0053] As in the above embodiment, each transmitting transducer 40 is installed perpendicular to the pipe wall outside or inside the pipe, and the center of the ultrasonic beam passes through the pipe center and is perpendicular to the opposite pipe wall. Set the installation angle so that it is incident on the. In addition, the effective diameter of the transmitting transducer 40 is reduced so that the directivity is as wide as possible.
[0054] 受信側において、管周方向に設置された全ての受信用トランスデューサ 41の出力 端子は受信用マルチプレクサ 44に接続されている。受信用マルチプレクサ 44は、各 受信用トランスデューサ 41の出力する検出信号を順番に選択してデータ取得回路 4 6へ出力する。発信用マルチプレクサ 43及び受信用マルチプレクサ 44の動作タイミ ングはタイミングコントローラ 45によって制御される。  On the receiving side, the output terminals of all receiving transducers 41 installed in the pipe circumferential direction are connected to the receiving multiplexer 44. The reception multiplexer 44 sequentially selects the detection signals output from the reception transducers 41 and outputs them to the data acquisition circuit 46. The operation timing of the transmission multiplexer 43 and the reception multiplexer 44 is controlled by a timing controller 45.
[0055] タイミングコントローラ 45は、信号発振器 42から与えられるタイミング信号 S2をトリガ にして、発信用マルチプレクサ 43及び受信用マルチプレクサ 44の切替動作タイミン グを制御している。具体的には、発信用マルチプレクサ 43にて 1つの発信用トランス デューサ 40を選択したら、全ての受信用トランスデューサ 41について検出信号のサ ンプリングが終了するまで、印加対象の発信用トランスデューサ 40を切替えな 、よう に制御する。そして、全ての受信用トランスデューサ 41について検出信号のサンプリ ングが終了したら、発信用マルチプレクサ 43にて次の発信用トランスデューサ 40を 選択し、再び全ての受信用トランスデューサ 41について検出信号のサンプリングが 終了するまで、発信用トランスデューサ 40を切替えないように制御する。このようなタ イミング制御を全ての発信用マルチプレクサ 43に対して実行する。  The timing controller 45 controls the switching operation timing of the transmission multiplexer 43 and the reception multiplexer 44 using the timing signal S2 given from the signal oscillator 42 as a trigger. Specifically, when one transmission transducer 40 is selected by the transmission multiplexer 43, the transmission transducer 40 to be applied is not switched until the detection signal sampling is completed for all the reception transducers 41. Control as follows. When the sampling of the detection signals for all the receiving transducers 41 is completed, the next transmitting transducer 40 is selected by the transmitting multiplexer 43, and until the sampling of the detection signals for all the receiving transducers 41 is completed again. The transmitter 40 is controlled so as not to be switched. Such timing control is executed for all the transmission multiplexers 43.
[0056] データ取得回路 46は、 AD変翻を含んで構成されて 、る。データ取得回路 46で は、 AD変 がデジタル信号に変換した検出信号カゝらピーク値を検出し、検出した ピーク値をその時に発信用マルチプレクサ 43にて選択されている発信用トランスデュ ーサ 40と対応させて記憶する。発信用トランスデューサ 40の切替タイミングはタイミン グコントローラ 45から与えられる。全ての発信用トランスデューサ 40について、管周 方向における超音波受信強度に関する情報 (ピーク値)を取得したら、各開き角度( a )にお 、て最大ピーク値を示した送信用トランスデューサ 40 (管軸方向の位置情報 )をそれぞれ決定し、最大ピーク値を示した送信用トランスデューサ 40の位置情報を 変位量検出信号として出力する。変位量検出信号はデータ処理装置 20へ出力され るが、上記実施の形態 1, 2と同様の構成及び機能であるので、説明を省略する。 [0056] The data acquisition circuit 46 is configured to include AD conversion. In data acquisition circuit 46 Detects the peak value from the detection signal converted into a digital signal by AD conversion, and stores the detected peak value in association with the transmitting transducer 40 selected by the transmitting multiplexer 43 at that time. To do. The timing for switching the transmitting transducer 40 is given from the timing controller 45. For all the transmitting transducers 40, after acquiring information (peak values) regarding the ultrasonic reception intensity in the tube circumferential direction, the transmitting transducers 40 (in the tube axis direction) showing the maximum peak value at each opening angle (a). The position information of the transmitting transducer 40 showing the maximum peak value is output as a displacement amount detection signal. The displacement amount detection signal is output to the data processing device 20, but since it has the same configuration and function as those of the first and second embodiments, description thereof will be omitted.
[0057] 以上のように構成された本実施の形態では、信号発振器 52から発信用マルチプレ クサ 43に発信信号 S1が与えられると同時にタイミングコントローラ 45にタイミング信 号 S2が与えられる。タイミングコントローラ 45が、 1番目の発信用トランスデューサ 40 を選択するように発信用マルチプレクサ 43を制御し、かつ 1番目の受信用トランスデ ユーサ 41から順番に検出信号を選択するように受信用マルチプレクサ 44を制御する 。そして、受信用マルチプレクサ 44が全ての受信用トランスデューサ 41について検 出信号のサンプリングが終了する度に、タイミングコントローラ 45が、発信信号 S1を 印加すべき発信用トランスデューサ 40を切替えて 、く。  In the present embodiment configured as described above, the transmission signal S 1 is supplied from the signal oscillator 52 to the transmission multiplexer 43 and simultaneously the timing signal S 2 is supplied to the timing controller 45. The timing controller 45 controls the transmitting multiplexer 43 so as to select the first transmitting transducer 40, and also controls the receiving multiplexer 44 so as to select the detection signal in order from the first receiving transducer 41. To do. Then, every time the reception multiplexer 44 finishes sampling the detection signals for all the reception transducers 41, the timing controller 45 switches the transmission transducer 40 to which the transmission signal S1 is applied.
[0058] データ取得回路 46では、各発信用トランスデューサ 40 (位置情報)に対応させて、 全ての受信用トランスデューサ 41のピーク値を記憶する。これにより、データ取得回 路 46には、管軸方向にずらした超音波ビームの各発射位置 (管軸方向の位置)と、 各発射位置に対して開き角度( a )の異なる複数の受信用トランスデューサ 41が示し た超音波受信強度のピーク値とが、対応付けて記憶される。  In the data acquisition circuit 46, the peak values of all the receiving transducers 41 are stored in correspondence with the respective transmitting transducers 40 (position information). As a result, the data acquisition circuit 46 has a plurality of receiving positions with different launch angles (a) with respect to each launch position (position in the tube axis direction) of the ultrasonic beam shifted in the tube axis direction and each launch position. The peak value of the ultrasonic reception intensity indicated by the transducer 41 is stored in association with each other.
[0059] ここで、上記実施の形態 1, 2では管軸方向の変位量を、管軸方向に配列された複 数の受信用トランスデューサの最大ピーク値を検出することで求めていた。本実施の 形態 3では、管軸方向の複数の受信用トランスデューサを使って検出する代わりに、 超音波ビームの発射位置 (発信用トランスデューサ 40の管軸方向の位置)をずらすこ とで、相対的に上記実施の形態 1, 2と同等の情報を得ようとするものである。  [0059] Here, in the first and second embodiments, the displacement amount in the tube axis direction is obtained by detecting the maximum peak values of a plurality of receiving transducers arranged in the tube axis direction. In the third embodiment, instead of detecting using a plurality of receiving transducers in the tube axis direction, the emission position of the ultrasonic beam (the position of the transmitting transducer 40 in the tube axis direction) is shifted, thereby making the relative In addition, information equivalent to those in the first and second embodiments is obtained.
[0060] そこで、データ取得回路 46は、各受信用トランスデューサ 41に対応して各発射位 置でのピーク値がそれぞれ記憶されているので、その中から最大のピーク値となって いる発射位置を特定する。図 12に示すビーム軸 Bを管軸方向の基準位置とすれば、 最大ピーク値を示した発射位置は、超音波ビームの変位に相当する。データ取得回 路 46は、開き角度 )の異なる全ての受信用トランスデューサ 41につ 、て最大ピー ク値をそれぞれ特定し、最大ピーク値を示した発射位置を管軸方向の基準位置から の変位量に変換し、変位量検出信号としてデータ処理装置 20へ出力する。 [0060] Therefore, the data acquisition circuit 46 corresponds to each receiving transducer 41 to each launch position. Since the peak value at each position is stored, the launch position having the maximum peak value is specified from among the peak values. If the beam axis B shown in Fig. 12 is the reference position in the tube axis direction, the launch position showing the maximum peak value corresponds to the displacement of the ultrasonic beam. The data acquisition circuit 46 specifies the maximum peak value for all receiving transducers 41 with different opening angles), and sets the launch position showing the maximum peak value as the amount of displacement from the reference position in the tube axis direction. And output to the data processor 20 as a displacement detection signal.
[0061] データ処理装置 20では、実施の形態 1, 2と同様に、流速分布計測回路 21が所定 の測定線 1, 2の変位量を (式 11)に代入して、各位置での平均流速を求め、流量計 測回路 22が配管垂直断面における流速分布力もガス流量を計算する。  [0061] In the data processing device 20, as in the first and second embodiments, the flow velocity distribution measurement circuit 21 assigns the displacement amount of the predetermined measurement lines 1 and 2 to (Equation 11) and calculates the average at each position. The flow velocity is obtained, and the flow meter measurement circuit 22 calculates the gas flow rate as well as the flow velocity distribution force in the vertical section of the pipe.
[0062] このように、本実施の形態によれば、発信側において管軸方向に一列の発信用トラ ンスデューサ 40を設け、受信側に管周方向に一列の受信用トランスデューサ 41を設 けることで超音波ビームの変位量を検出できるので、実施の形態 1に比べてトランス デューサ数を削減できる。  As described above, according to the present embodiment, a line of transmitting transducers 40 is provided on the transmitting side in the tube axis direction, and a line of receiving transducers 41 is provided on the receiving side in the pipe circumferential direction. Since the amount of displacement of the ultrasonic beam can be detected, the number of transducers can be reduced compared to the first embodiment.
[0063] 以上の第 1の測定原理では流速分布形状を直接求めるために超音波ビームの変 位量を利用して 、るが、超音波パルスの飛行時間を利用して流速分布形状を直接 求めることもできる。次に、超音波パルスの飛行時間を利用して流速分布形状を直接 求める第 2の測定原理について説明する。配管内を流れる流体は軸対称であると仮 定する。  [0063] In the first measurement principle described above, the displacement amount of the ultrasonic beam is used to directly determine the flow velocity distribution shape. However, the flow velocity distribution shape is directly determined using the flight time of the ultrasonic pulse. You can also. Next, the second measurement principle for directly obtaining the flow velocity distribution shape using the time of flight of the ultrasonic pulse will be explained. The fluid flowing in the pipe is assumed to be axisymmetric.
[0064] (第 2の測定原理)  [0064] (Second measurement principle)
先ず、図 15 (a) (b)に示すような受信用トランスデューサ配置を考える。すなわち、 配管 10の一方の管壁にビーム軸が管壁と垂直となるように送信用トランスデューサ 5 0を 1つ設置し、対向する他方の管壁には受信用トランスデューサ 51を管軸方向の 所定位置 Hに管周方向に一列設けた形態とする。管周方向に沿って設けられた受 信用トランスデューサ 51の管軸方向の設置位置は、図 15 (b)に示すように管壁に垂 直なビーム軸位置力も管軸方向に距離 Hのところに設けられている。  First, consider a receiving transducer arrangement as shown in FIGS. 15 (a) and 15 (b). That is, one transmitting transducer 50 is installed on one tube wall of the pipe 10 so that the beam axis is perpendicular to the tube wall, and a receiving transducer 51 is installed on the other opposite tube wall in the tube axis direction. It is assumed that one row is provided at position H in the pipe circumferential direction. The installation position in the tube axis direction of the receiving transducer 51 provided along the tube circumferential direction is such that the beam axis position force perpendicular to the tube wall is at a distance H in the tube axis direction as shown in Fig. 15 (b). Is provided.
[0065] 力かるトランスデューサ配置において、管軸方向に対して傾斜角 Θで発射された超 音波パルス力 位置 Hにある受信用トランスデューサ 51まで飛行する経路長は、次式 で表される。 [数 12] In a powerful transducer arrangement, the path length of flight to the receiving transducer 51 at the ultrasonic pulse force position H emitted at an inclination angle Θ with respect to the tube axis direction is expressed by the following equation. [Equation 12]
ΡΡ
Figure imgf000019_0001
(式 12)
Figure imgf000019_0001
(Formula 12)
飛行時間 Tとの関係は、 T=PZcである。  The relationship with flight time T is T = PZc.
この経路長 Pの被積分関数は、平方根の中を、局所マッハ数が mくく 1であることを使 つて、以下のように近似することができる。  This integrand with path length P can be approximated by using the fact that the local Mach number is 1 in the square root as follows.
[数 13] « 2 J(l + tan2 ^ + 2w tan (9 sec θ) dr [Equation 13] «2 J (l + tan 2 ^ + 2w tan (9 sec θ) dr
h  h
1 R 1 R
—— [(l + msin^ * (式 13)  —— [(l + msin ^ * (Equation 13)
h  h
= {R (1— sin a) + sin 6Mh } ここで、 Mは流速分布の積分である。 = {R (1− sin a) + sin 6M h } where M is the integral of the flow velocity distribution.
h  h
ビーム軸 Bへの傾斜角 0は検出位置に到達するのに必要なビーム発射角度である から、この段階では未知数である。  Since the tilt angle 0 to the beam axis B is the beam launch angle necessary to reach the detection position, it is unknown at this stage.
ごく近傍の二本の測定線での飛行時間の差を考え、上記傾斜角が 0 0 = 0  Considering the difference in flight time between two measurement lines in the immediate vicinity, the above tilt angle is 0 0 = 0
1 2 12す ると、次式のように表せる。  1 2 12 Then, it can be expressed as the following equation.
[数 14] = {R (卜 sin o, ) + sin M } [Equation 14] = {R (卜 sin o,) + sin M}
- sin a2) + sin 02Mh ) (式 14) cos02 -sin a 2 ) + sin 0 2 M h ) (Formula 14) cos0 2
c (Tj _ T2 ) = ~ - ~ {R(sin 2 - sin λ) + sin 0umu (/¾- ¾)} c (Tj _ T 2 ) = ~-~ {R (sin 2 -sin λ ) + sin 0 u m u (/ ¾- ¾)}
COS  COS
(式 14)では、実効傾斜角 0 と流速値 m が未知数である。  In (Equation 14), the effective tilt angle 0 and the flow velocity value m are unknown.
12 12  12 12
一方、この形態での変移量は Hであるが、そこに到達するノ ルスの発射角は、次式 力 逆に求めることができる。  On the other hand, the amount of displacement in this form is H, but the launch angle of the nozzle that reaches it can be obtained by reversing the following force.
[数 15] H - Dcos ax tan θ + sec θΜ^ [Equation 15] H-Dcos a x tan θ + sec θΜ ^
H - Dcos a2 tan θ2 + sec^2M¾ H-Dcos a 2 tan θ 2 + sec ^ 2 M ¾
0 - £)(cosa, - cos 2 ) tan θ + sec θη ^M^ -Μ、 (式 15) 0-£) (cosa,-cos 2 ) tan θ + sec θ η ^ M ^ -Μ, (Equation 15)
0 = Z)(cosQr, - cosar2)sin^12 +0^^ - ¾ j 0 = Z) (cosQr,-cosar 2 ) sin ^ 12 + 0 ^^- ¾ j
w (cos or, - cos"2)sin 2 + m12 ) 上記 (式 14)と (式 15)から 0 を消去することにより、流速値 m を求めることができ w (cos or,-cos " 2 ) sin 2 + m 12 ) By eliminating 0 from (Equation 14) and (Equation 15) above, the flow velocity value m can be obtained.
12 12  12 12
る。  The
[0068] (実施の形態 4)  [Embodiment 4]
第 2の測定原理を超音波流量計に適用した実施の形態 4について説明する。 本実施の形態 4に係る超音波流量計は、実施の形態 1の超音波流量計(図 7)と概 略同じ全体構成を有するので、図 7を参照して実施の形態 1と異なる部分を主に説明 する。  Embodiment 4 in which the second measurement principle is applied to an ultrasonic flowmeter will be described. Since the ultrasonic flowmeter according to the fourth embodiment has substantially the same overall configuration as the ultrasonic flowmeter of the first embodiment (FIG. 7), the parts different from the first embodiment with reference to FIG. Mainly explained.
[0069] 本実施の形態 4では、受信用トランスデューサの配置が実施の形態 1と異なる。上 記した図 15 (a) (b)に示すように、配管 10の一方の管壁にビーム軸が管壁と垂直と なるように送信用トランスデューサ 50を 1つ設置し、対向する他方の管壁には受信用 トランスデューサ 51を管軸方向の位置 Hにおいて管周方向に一列だけ設けている。  [0069] In the fourth embodiment, the arrangement of receiving transducers is different from that in the first embodiment. As shown in FIGS. 15 (a) and 15 (b) above, one transmission transducer 50 is installed on one tube wall of the pipe 10 so that the beam axis is perpendicular to the tube wall, and the other tube facing the other. Only one row of receiving transducers 51 is provided on the wall in the tube circumferential direction at a position H in the tube axis direction.
[0070] また、管周方向に 1列設置された各受信用トランスデューサ 51の出力端に検出回 路 14がそれぞれ接続されている。各検出回路 14は、接続された受信用トランスデュ ーサ 51から出力される入射超音波強度に応じた大きさの検出信号を増幅する信号 増幅器と、当該信号増幅器出力から飛行時間 T (発信信号 S 1の出力タイミングから の遅れ時間)を検出する遅れ時間検出回路とからなる。遅れ時間検出回路は、信号 発信器 13から入力するタイミング信号 S1を基準時間として、送信用トランスデューサ 50から発射した超音波パルスが各受信用トランスデューサ 51に到達するまでの飛行 時間 Tを検出する。  [0070] Further, the detection circuit 14 is connected to the output end of each receiving transducer 51 arranged in one line in the pipe circumferential direction. Each detection circuit 14 includes a signal amplifier that amplifies a detection signal having a magnitude corresponding to the incident ultrasonic intensity output from the connected reception transducer 51, and a flight time T (transmission signal) from the signal amplifier output. The delay time detection circuit detects the delay time from the S1 output timing. The delay time detection circuit detects the flight time T until the ultrasonic pulse emitted from the transmitting transducer 50 reaches each receiving transducer 51 using the timing signal S1 input from the signal transmitter 13 as a reference time.
[0071] 流速分布計測回路 21は、ごく近傍の 2本の測定線 1, 2 (図 5)を設定し、この 2本の 測定線 1, 2に対応した受信用トランスデューサ 51出力から求めた飛行時間 T、Tを  [0071] The flow velocity distribution measurement circuit 21 sets two measurement lines 1, 2 (Fig. 5) in the immediate vicinity, and the flight obtained from the output of the receiving transducer 51 corresponding to the two measurement lines 1, 2 Time T, T
1 2 特定し、(式 14) (式 15)に飛行時間 Τ、 Τを代入して位置 [h、 h ]における平均流  1 2 Specify and substitute the time of flight Τ and に into (Equation 14) and (Equation 15) to calculate the average flow at position [h, h].
1 2 1 2  1 2 1 2
速 m を求める。同様に、ごく近傍の 2本の測定線 1, 2 (図 5)を順次設定していき、 各測定線 1, 2での飛行時間 T、 Tを特定して、垂直断面上での各位置の平均流速 Find the speed m. Similarly, set two measuring lines 1, 2 (Fig. 5) in close proximity, Specify the time of flight T and T on each measurement line 1 and 2, and determine the average flow velocity at each position on the vertical section.
1 2  1 2
m を求める。  Find m.
12  12
[0072] このような本実施の形態 4によれば、超音波パルスの飛行時間を利用して流速分布 形状及び流量を直接求めることができ、さらに設置が困難な受信用トランスデューサ 数を削減することも可能である。  [0072] According to the fourth embodiment, the flow velocity distribution shape and flow rate can be obtained directly using the time of flight of ultrasonic pulses, and the number of receiving transducers that are difficult to install can be reduced. Is also possible.
[0073] なお、第 2の測定原理を上記実施の形態 2の超音波流量計に適用することも可能 である。この場合、データ取得回路 32において音波パルスが各受信用トランスデュ ーサ 51に到達するまでの飛行時間 Tを検出し、流速分布計測回路 21にお 、て (式 1 4) (式 15)に飛行時間 T、 Tを代入して位置 [h、 h ]における平均流速 m を求める  [0073] It is possible to apply the second measurement principle to the ultrasonic flowmeter of the second embodiment. In this case, the data acquisition circuit 32 detects the flight time T until the sound wave pulse reaches each receiving transducer 51, and the flow velocity distribution measurement circuit 21 determines that (Equation 14) and (Equation 15) Substituting flight times T and T to find the average flow velocity m at position [h, h]
1 2 1 2 12 産業上の利用可能性  1 2 1 2 12 Industrial applicability
[0074] 本発明は、配管内を流れる気体流体の流速分布測定装置及び流量計に適用可能 である。 [0074] The present invention is applicable to a flow velocity distribution measuring device and a flow meter of a gaseous fluid flowing in a pipe.

Claims

請求の範囲 The scope of the claims
[1] 流体配管の管壁に設置され超音波パルスを生成し前記流体配管内を流れる被測 定流体へ入射する送信子と、  [1] A transmitter installed on the pipe wall of the fluid pipe to generate an ultrasonic pulse and to enter the measured fluid flowing in the fluid pipe;
前記流体配管において前記送信子と対向する管壁に二次元状に設置され受信超 音波強度に応じた振幅の検出信号を出力する複数の受信子と、  A plurality of receivers that are two-dimensionally installed on a pipe wall facing the transmitter in the fluid pipe and output detection signals having an amplitude corresponding to the received ultrasonic intensity;
前記受信子のうち管軸方向に配列された複数の受信子の検出信号から前記超音 波パルスの管軸方向の変位量を検出し、前記送信子の出射端からみて当該出射端 と配管中心とを通る線分とのなす角を開き角とし、前記送信子から所定の受信子に 至るまでの測定領域を測定線として、開き角の僅かに異なる 2本の測定線について 夫々検出される変位量力 その 2本の測定線に対する配管中心力 の垂線によって 決まる所定位置の流速を求める流速分布計測手段と、  A displacement amount in the tube axis direction of the ultrasonic pulse is detected from detection signals of a plurality of receivers arranged in the tube axis direction among the receivers, and the emission end and the center of the pipe are viewed from the emission end of the transmitter. Displacement detected for each of the two measurement lines with slightly different opening angles, with the angle formed by the line segment passing through and the measurement area from the transmitter to the predetermined receiver as the measurement line A force distribution measuring means for obtaining a flow velocity at a predetermined position determined by a perpendicular to the central force of the pipe with respect to the two measurement lines;
を具備したことを特徴とする流速分布測定装置。  A flow velocity distribution measuring apparatus comprising:
[2] 流体配管の管壁に管軸方向に沿って一列に設置され超音波パルスを生成して前 記流体配管内を流れる被測定流体へ管軸方向の異なる位置から夫々入射する複数 の送信子と、 [2] Multiple transmissions installed in a line along the pipe axis direction on the pipe wall of the fluid pipe to generate ultrasonic pulses and enter the measured fluid flowing in the fluid pipe from different positions in the pipe axis direction. With the child,
前記送信子と対向する管壁に管周方向に沿って一列に設置され受信超音波強度 に応じた振幅の検出信号を夫々出力する複数の受信子と、  A plurality of receivers that are installed in a line along the pipe circumferential direction on the tube wall facing the transmitter and that output detection signals having amplitudes corresponding to the received ultrasonic intensity, respectively;
前記各受信子について検出信号の最大ピーク値を検出し、最大ピーク値を示した 受信子とその時に超音波パルスを発射した送信子位置との相対関係力 前記超音 波パルスの管軸方向の変位量を検出し、前記送信子の出射端からみて当該出射端 と配管中心とを通る線分とのなす角を開き角とし、前記送信子から所定の受信子に 至るまでの測定領域を測定線として、開き角の僅かに異なる 2本の測定線について 夫々検出される変位量力 その 2本の測定線に対する配管中心力 の垂線によって 決まる所定位置の流速を求める流速分布計測手段と、  The maximum peak value of the detection signal is detected for each of the receivers, and the relative force between the receiver showing the maximum peak value and the transmitter position where the ultrasonic pulse was emitted at that time in the tube axis direction of the ultrasonic pulse The amount of displacement is detected, and the measurement area from the transmitter to the specified receiver is measured using the angle between the output end and the line passing through the center of the pipe as viewed from the output end of the transmitter. As a line, a flow velocity distribution measuring means for obtaining a flow velocity at a predetermined position determined by a perpendicular force of a pipe center force with respect to the two measurement lines, with respect to two measurement lines having slightly different opening angles,
を具備したことを特徴とする流速分布測定装置。  A flow velocity distribution measuring apparatus comprising:
[3] 前記流速分布計測手段は、下式に基づいて所定位置 [h ]と [h ]との間の平均流速 [3] The flow velocity distribution measuring means calculates the average flow velocity between the predetermined positions [h] and [h] based on the following formula:
1 2  1 2
を計算することを特徴とする請求項 1又は請求項 2記載の流速分布測定装置。  The flow velocity distribution measuring apparatus according to claim 1 or 2, wherein the flow velocity distribution measuring device is calculated.
Z— Z2 -Dtan^icosc !— cos"2) Z— Z 2 -Dtan ^ icosc! — Cos " 2 )
ffj ―  ffj ―
12 2 Qc9i - /¾ ) 但し、 m は所定位置 [h ]と [h ]との間の平均流速 12 2 Qc9i-/ ¾) Where m is the average flow velocity between the specified positions [h] and [h]
12 1 2  12 1 2
Zは一方の測定線について検出された変位量  Z is the displacement detected for one measurement line
Zは他方の測定線について検出された変位量  Z is the displacement detected for the other measurement line
2  2
a は前記一方の測定線の開き角  a is the opening angle of the one measurement line
a は前記他方の測定線の開き角  a is the opening angle of the other measurement line
2  2
Θは各測定線の管軸方向への傾き  Θ is the inclination of each measurement line in the tube axis direction
Dは配管の直径  D is the pipe diameter
hは前記一方の測定線の管軸方向の位置にお!/、て配管中心から前記一方の 測定  h is the position in the pipe axis direction of the one measurement line! /
線に下ろした垂線が交差する半径方向の位置  Radial position where the vertical line intersects the line
hは前記他方の測定線の管軸方向の位置にお 、て配管中心から前記他方の h is the position of the other measurement line in the pipe axis direction and the other measurement line from the pipe center to the other measurement line.
2 2
測定  Measurement
線に下ろした垂線が交差する半径方向の位置  Radial position where the vertical line intersects the line
[4] 流体配管の管壁に設置され超音波パルスを生成し前記流体配管内を流れる被測 定流体へ入射する送信子と、 [4] A transmitter installed on the pipe wall of the fluid pipe to generate an ultrasonic pulse and to enter the measured fluid flowing in the fluid pipe;
前記送信子と対向する管壁であって管軸方向の所定位置において管周方向に沿 つて一列に設置され受信超音波強度に応じた振幅の検出信号を夫々出力する複数 の受信子と、  A plurality of receivers that are arranged in a line along the pipe circumferential direction at a predetermined position in the pipe axis direction and that each output a detection signal having an amplitude corresponding to the received ultrasonic intensity, at a predetermined position in the pipe axis direction.
前記各受信子の検出信号から前記送信子から発射された超音波パルスが前記各 受信子に到達するまでの飛行時間を検出し、前記送信子の出射端からみて当該出 射端と配管中心とを通る線分とのなす角を開き角とし、前記送信子から所定の受信 子に至るまでの測定領域を測定線として、開き角の僅かに異なる 2本の測定線につ いて夫々検出される飛行時間からその 2本の測定線に対する垂線によって決まる所 定位置の流速を求める流速分布計測手段と、  The time of flight from the detection signal of each receiver to the time when the ultrasonic pulse emitted from the transmitter reaches each receiver is detected, and the emission end and the pipe center as viewed from the emission end of the transmitter are detected. The angle formed by the line segment passing through is defined as the opening angle, and the measurement area from the transmitter to the predetermined receiver is defined as the measurement line, and two measurement lines having slightly different opening angles are detected. A flow velocity distribution measuring means for obtaining a flow velocity at a predetermined position determined by a perpendicular to the two measurement lines from the flight time;
を具備したことを特徴とする流速分布測定装置。  A flow velocity distribution measuring apparatus comprising:
[5] 前記流速分布計測手段は、下式に基づいて所定位置 [h ]と [h ]との間の平均流速 [5] The flow velocity distribution measuring means calculates the average flow velocity between the predetermined positions [h] and [h] based on the following formula:
1 2  1 2
を計算することを特徴とする請求項 4記載の流速分布測定装置。 ο Τ - T2) = {R(sin 2 - sin λ )+ sin 9nmn ) } 5. The flow velocity distribution measuring device according to claim 4, wherein the flow velocity distribution measuring device is calculated. ο Τ-T 2 ) = (R (sin 2 -sin λ ) + sin 9 n m n )}
cos^12 cos ^ 12
0 = ^(cosoi, - cos"2 )sin θ12 + mu (h2 - A, ) 0 = ^ (cosoi,-cos " 2 ) sin θ 12 + m u (h 2 -A,)
但し、 m は所定位置 [h ]と [h ]との間の平均流速  Where m is the average flow velocity between the specified positions [h] and [h]
12 1 2  12 1 2
cは音速  c is the speed of sound
Tは一方の測定線について検出された飛行時間  T is the time of flight detected for one measurement line
Tは他方の測定線について検出された飛行時間  T is the time of flight detected for the other measurement line
2  2
a は前記一方の測定線の開き角  a is the opening angle of the one measurement line
a は前記他方の測定線の開き角  a is the opening angle of the other measurement line
2  2
Θ は各測定線の管軸方向への傾き  Θ is the inclination of each measurement line in the tube axis direction
12  12
Dは配管の直径  D is the pipe diameter
hは前記一方の測定線の管軸方向の位置にお!/、て配管中心から前記一方の 測定  h is the position in the pipe axis direction of the one measurement line! /
線に下ろした垂線が交差する半径方向の位置  Radial position where the vertical line intersects the line
hは前記他方の測定線の管軸方向の位置にお 、て配管中心から前記他方の h is the position of the other measurement line in the pipe axis direction and the other measurement line from the pipe center to the other measurement line.
2 2
測定  Measurement
線に下ろした垂線が交差する半径方向の位置  Radial position where the vertical line intersects the line
[6] 請求項 1から請求項 5の 、ずれかに記載の流速分布測定装置を備え、前記流速分 布測定装置で計測された流速分布に基づいて前記配管内を流れる被測定流体の 流量を計測することを特徴とする超音波流量計。 [6] The flow velocity distribution measuring device according to any one of claims 1 to 5 is provided, and the flow rate of the fluid to be measured flowing in the pipe is determined based on the flow velocity distribution measured by the flow velocity distribution measuring device. An ultrasonic flowmeter characterized by measuring.
[7] 流体配管の管壁に設置された送信子力 当該流体配管内を流れる被測定流体へ 超音波パルスを入射し、 [7] Transmitter force installed on the pipe wall of the fluid pipe. An ultrasonic pulse is incident on the fluid to be measured flowing in the pipe.
前記流体配管において前記送信子と対向する管壁に二次元状に設置され複数の 受信子にて前記超音波パルスを検出し、  In the fluid pipe, the ultrasonic pulse is detected by a plurality of receivers installed two-dimensionally on a tube wall facing the transmitter.
前記受信子のうち管軸方向に配列された複数の受信子の検出信号から前記超音 波パルスの管軸方向の変位量を検出し、  Detecting a displacement amount of the ultrasonic pulse in the tube axis direction from detection signals of a plurality of receivers arranged in the tube axis direction among the receivers;
前記送信子の出射端力 みて当該出射端と配管中心とを通る線分とのなす角を開 き角とし、前記送信子から所定の受信子に至るまでの測定領域を測定線として、開き 角の僅かに異なる 2本の測定線について夫々検出される変位量力 その 2本の測定 線に対する配管中心力 の垂線によって決まる所定位置の流速を求めることを特徴 とする流速分布測定方法。 The angle between the outgoing end force of the transmitter and the line passing through the outgoing end and the center of the pipe is the opening angle, and the measurement area from the transmitter to the predetermined receiver is the measurement line. Displacement force detected for two measuring lines with slightly different angles. A flow velocity distribution measuring method characterized in that the flow velocity at a predetermined position determined by the perpendicular of the pipe center force with respect to the two measuring lines is obtained.
[8] 流体配管の管壁に設置された送信子力 当該流体配管内を流れる被測定流体へ 超音波パルスを入射し、 [8] Transmitter force installed on the pipe wall of the fluid pipe. An ultrasonic pulse is incident on the fluid to be measured flowing in the pipe.
前記送信子と対向する管壁であって管軸方向の所定位置において管周方向に沿 つて一列に設置された複数の受信子で前記超音波パルスを検出し、  The ultrasonic pulse is detected by a plurality of receivers arranged in a line along the pipe circumferential direction at a predetermined position in the pipe axis direction on the pipe wall facing the transmitter,
前記各受信子の検出信号から前記送信子から発射された超音波パルスが前記各 受信子に到達するまでの飛行時間を検出し、  Detecting the time of flight until the ultrasonic pulse emitted from the transmitter reaches each receiver from the detection signal of each receiver;
前記送信子の出射端力 みて当該出射端と配管中心とを通る線分とのなす角を開 き角とし、前記送信子から所定の受信子に至るまでの測定領域を測定線として、開き 角の僅かに異なる 2本の測定線について夫々検出される飛行時間からその 2本の測 定線に対する配管中心力 の垂線によって決まる所定位置の流速を求めることを特 徴とする流速分布測定方法。  The angle between the outgoing end force of the transmitter and the line passing through the outgoing end and the center of the pipe is the opening angle, and the measurement area from the transmitter to the predetermined receiver is the measuring line. A flow velocity distribution measuring method characterized in that the flow velocity at a predetermined position determined by the perpendicular of the pipe center force with respect to the two measurement lines is obtained from the time of flight detected for two slightly different measurement lines.
PCT/JP2007/063326 2006-07-04 2007-07-03 Flow velocity measurement device and ultrasonic flow rate meter WO2008004560A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008523695A JP5122453B2 (en) 2006-07-04 2007-07-03 Flow velocity distribution measuring device and ultrasonic flow meter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006183990 2006-07-04
JP2006-183990 2006-07-04

Publications (1)

Publication Number Publication Date
WO2008004560A1 true WO2008004560A1 (en) 2008-01-10

Family

ID=38894528

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/063326 WO2008004560A1 (en) 2006-07-04 2007-07-03 Flow velocity measurement device and ultrasonic flow rate meter

Country Status (2)

Country Link
JP (1) JP5122453B2 (en)
WO (1) WO2008004560A1 (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101080711B1 (en) 2010-08-20 2011-11-10 한국건설기술연구원 Apparatus and method for measuring vertical velocity profile of river
JP2014507667A (en) * 2011-03-07 2014-03-27 フレクシム フレクシブレ インドゥストリーメステヒニーク ゲーエムベーハー Method for ultrasonic clamp-on flow measurement and apparatus for carrying out the method
US8857269B2 (en) 2010-08-05 2014-10-14 Hospira, Inc. Method of varying the flow rate of fluid from a medical pump and hybrid sensor system performing the same
JP2017075834A (en) * 2015-10-14 2017-04-20 東京電力ホールディングス株式会社 Flow rate measurement device and flow rate measurement method
JP6321316B1 (en) * 2017-11-14 2018-05-09 有限会社フロウビズ・リサーチ Ultrasonic flow measuring device and ultrasonic flow measuring method
US10022498B2 (en) 2011-12-16 2018-07-17 Icu Medical, Inc. System for monitoring and delivering medication to a patient and method of using the same to minimize the risks associated with automated therapy
CN108593959A (en) * 2018-06-12 2018-09-28 南京海普水文科技有限公司 A kind of transmitting detection circuit based on ADCP systems
US10166328B2 (en) 2013-05-29 2019-01-01 Icu Medical, Inc. Infusion system which utilizes one or more sensors and additional information to make an air determination regarding the infusion system
JP2019090777A (en) * 2018-02-22 2019-06-13 有限会社フロウビズ・リサーチ Ultrasonic flow rate measurement device and ultrasonic flow rate measurement method
US10342917B2 (en) 2014-02-28 2019-07-09 Icu Medical, Inc. Infusion system and method which utilizes dual wavelength optical air-in-line detection
US10430761B2 (en) 2011-08-19 2019-10-01 Icu Medical, Inc. Systems and methods for a graphical interface including a graphical representation of medical data
US10463788B2 (en) 2012-07-31 2019-11-05 Icu Medical, Inc. Patient care system for critical medications
US10578474B2 (en) 2012-03-30 2020-03-03 Icu Medical, Inc. Air detection system and method for detecting air in a pump of an infusion system
US10596316B2 (en) 2013-05-29 2020-03-24 Icu Medical, Inc. Infusion system and method of use which prevents over-saturation of an analog-to-digital converter
US10635784B2 (en) 2007-12-18 2020-04-28 Icu Medical, Inc. User interface improvements for medical devices
US10656894B2 (en) 2017-12-27 2020-05-19 Icu Medical, Inc. Synchronized display of screen content on networked devices
US10850024B2 (en) 2015-03-02 2020-12-01 Icu Medical, Inc. Infusion system, device, and method having advanced infusion features
US10874793B2 (en) 2013-05-24 2020-12-29 Icu Medical, Inc. Multi-sensor infusion system for detecting air or an occlusion in the infusion system
US11135360B1 (en) 2020-12-07 2021-10-05 Icu Medical, Inc. Concurrent infusion with common line auto flush
US11246985B2 (en) 2016-05-13 2022-02-15 Icu Medical, Inc. Infusion pump system and method with common line auto flush
US11278671B2 (en) 2019-12-04 2022-03-22 Icu Medical, Inc. Infusion pump with safety sequence keypad
US11324888B2 (en) 2016-06-10 2022-05-10 Icu Medical, Inc. Acoustic flow sensor for continuous medication flow measurements and feedback control of infusion
US11344673B2 (en) 2014-05-29 2022-05-31 Icu Medical, Inc. Infusion system and pump with configurable closed loop delivery rate catch-up
US11344668B2 (en) 2014-12-19 2022-05-31 Icu Medical, Inc. Infusion system with concurrent TPN/insulin infusion
US11883361B2 (en) 2020-07-21 2024-01-30 Icu Medical, Inc. Fluid transfer devices and methods of use

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59161037U (en) * 1983-04-14 1984-10-29 オムロン株式会社 ultrasonic flow meter
JPS59161035U (en) * 1983-04-14 1984-10-29 オムロン株式会社 ultrasonic flow meter
JP2001074528A (en) * 1999-09-03 2001-03-23 Kaijo Corp Ultrasonic flow meter
JP3274101B2 (en) * 1999-03-09 2002-04-15 株式会社東邦計測研究所 Method and apparatus for measuring flow velocity in open channel and calibration inspection method
JP3649028B2 (en) * 1999-03-16 2005-05-18 富士電機システムズ株式会社 Ultrasonic flow meter and measuring method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59161037U (en) * 1983-04-14 1984-10-29 オムロン株式会社 ultrasonic flow meter
JPS59161035U (en) * 1983-04-14 1984-10-29 オムロン株式会社 ultrasonic flow meter
JP3274101B2 (en) * 1999-03-09 2002-04-15 株式会社東邦計測研究所 Method and apparatus for measuring flow velocity in open channel and calibration inspection method
JP3649028B2 (en) * 1999-03-16 2005-05-18 富士電機システムズ株式会社 Ultrasonic flow meter and measuring method thereof
JP2001074528A (en) * 1999-09-03 2001-03-23 Kaijo Corp Ultrasonic flow meter

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10635784B2 (en) 2007-12-18 2020-04-28 Icu Medical, Inc. User interface improvements for medical devices
US8857269B2 (en) 2010-08-05 2014-10-14 Hospira, Inc. Method of varying the flow rate of fluid from a medical pump and hybrid sensor system performing the same
WO2012023668A1 (en) * 2010-08-20 2012-02-23 한국건설기술연구원 Device and method for measuring vertical velocity distribution of river
KR101080711B1 (en) 2010-08-20 2011-11-10 한국건설기술연구원 Apparatus and method for measuring vertical velocity profile of river
JP2014507667A (en) * 2011-03-07 2014-03-27 フレクシム フレクシブレ インドゥストリーメステヒニーク ゲーエムベーハー Method for ultrasonic clamp-on flow measurement and apparatus for carrying out the method
US10430761B2 (en) 2011-08-19 2019-10-01 Icu Medical, Inc. Systems and methods for a graphical interface including a graphical representation of medical data
US11972395B2 (en) 2011-08-19 2024-04-30 Icu Medical, Inc. Systems and methods for a graphical interface including a graphical representation of medical data
US11004035B2 (en) 2011-08-19 2021-05-11 Icu Medical, Inc. Systems and methods for a graphical interface including a graphical representation of medical data
US11599854B2 (en) 2011-08-19 2023-03-07 Icu Medical, Inc. Systems and methods for a graphical interface including a graphical representation of medical data
US11376361B2 (en) 2011-12-16 2022-07-05 Icu Medical, Inc. System for monitoring and delivering medication to a patient and method of using the same to minimize the risks associated with automated therapy
US10022498B2 (en) 2011-12-16 2018-07-17 Icu Medical, Inc. System for monitoring and delivering medication to a patient and method of using the same to minimize the risks associated with automated therapy
US11933650B2 (en) 2012-03-30 2024-03-19 Icu Medical, Inc. Air detection system and method for detecting air in a pump of an infusion system
US10578474B2 (en) 2012-03-30 2020-03-03 Icu Medical, Inc. Air detection system and method for detecting air in a pump of an infusion system
US10463788B2 (en) 2012-07-31 2019-11-05 Icu Medical, Inc. Patient care system for critical medications
US11623042B2 (en) 2012-07-31 2023-04-11 Icu Medical, Inc. Patient care system for critical medications
US10874793B2 (en) 2013-05-24 2020-12-29 Icu Medical, Inc. Multi-sensor infusion system for detecting air or an occlusion in the infusion system
US10596316B2 (en) 2013-05-29 2020-03-24 Icu Medical, Inc. Infusion system and method of use which prevents over-saturation of an analog-to-digital converter
US11596737B2 (en) 2013-05-29 2023-03-07 Icu Medical, Inc. Infusion system and method of use which prevents over-saturation of an analog-to-digital converter
US11433177B2 (en) 2013-05-29 2022-09-06 Icu Medical, Inc. Infusion system which utilizes one or more sensors and additional information to make an air determination regarding the infusion system
US10166328B2 (en) 2013-05-29 2019-01-01 Icu Medical, Inc. Infusion system which utilizes one or more sensors and additional information to make an air determination regarding the infusion system
US10342917B2 (en) 2014-02-28 2019-07-09 Icu Medical, Inc. Infusion system and method which utilizes dual wavelength optical air-in-line detection
US11344673B2 (en) 2014-05-29 2022-05-31 Icu Medical, Inc. Infusion system and pump with configurable closed loop delivery rate catch-up
US11344668B2 (en) 2014-12-19 2022-05-31 Icu Medical, Inc. Infusion system with concurrent TPN/insulin infusion
US10850024B2 (en) 2015-03-02 2020-12-01 Icu Medical, Inc. Infusion system, device, and method having advanced infusion features
JP2017075834A (en) * 2015-10-14 2017-04-20 東京電力ホールディングス株式会社 Flow rate measurement device and flow rate measurement method
US11246985B2 (en) 2016-05-13 2022-02-15 Icu Medical, Inc. Infusion pump system and method with common line auto flush
US11324888B2 (en) 2016-06-10 2022-05-10 Icu Medical, Inc. Acoustic flow sensor for continuous medication flow measurements and feedback control of infusion
WO2019097570A1 (en) * 2017-11-14 2019-05-23 有限会社フロウビズ・リサーチ Ultrasonic flow-rate measurement device and ultrasonic flow-amount measurement method
US11280648B2 (en) 2017-11-14 2022-03-22 Flowbiz Research Inc. Ultrasonic flow-rate measurement device and ultrasonic flow-rate measurement method
JP6321316B1 (en) * 2017-11-14 2018-05-09 有限会社フロウビズ・リサーチ Ultrasonic flow measuring device and ultrasonic flow measuring method
US10656894B2 (en) 2017-12-27 2020-05-19 Icu Medical, Inc. Synchronized display of screen content on networked devices
US11868161B2 (en) 2017-12-27 2024-01-09 Icu Medical, Inc. Synchronized display of screen content on networked devices
US11029911B2 (en) 2017-12-27 2021-06-08 Icu Medical, Inc. Synchronized display of screen content on networked devices
JP2019090777A (en) * 2018-02-22 2019-06-13 有限会社フロウビズ・リサーチ Ultrasonic flow rate measurement device and ultrasonic flow rate measurement method
CN108593959A (en) * 2018-06-12 2018-09-28 南京海普水文科技有限公司 A kind of transmitting detection circuit based on ADCP systems
US11278671B2 (en) 2019-12-04 2022-03-22 Icu Medical, Inc. Infusion pump with safety sequence keypad
US11883361B2 (en) 2020-07-21 2024-01-30 Icu Medical, Inc. Fluid transfer devices and methods of use
US11135360B1 (en) 2020-12-07 2021-10-05 Icu Medical, Inc. Concurrent infusion with common line auto flush

Also Published As

Publication number Publication date
JP5122453B2 (en) 2013-01-16
JPWO2008004560A1 (en) 2009-12-03

Similar Documents

Publication Publication Date Title
JP5122453B2 (en) Flow velocity distribution measuring device and ultrasonic flow meter
US7437948B2 (en) Ultrasonic flowmeter and ultrasonic flow rate measurement method
KR0170815B1 (en) Ultrasonic multi circuit flowmeter
CN100401022C (en) Ultrasonic flowmeter and ultrasonic flow rate measurement method
EP1736741B1 (en) Ultrasonic method for measuring a flow rate of liquid and/or gaseous media and device for carrying out said method
JP2001356034A (en) Method and apparatus for ultrasonic flow measurement
EP2816327B1 (en) Ultrasonic flowmeter
EP1726920B1 (en) Method for ultrasonic Doppler fluid flow measurement
CN114088151A (en) External clamping type multi-channel ultrasonic flow detection device and detection method
Haugwitz et al. Multipath flow metering of high-velocity gas using ultrasonic phased-arrays
Jäger et al. Ultrasonic phased array for sound drift compensation in gas flow metering
KR100979286B1 (en) Apparatus and method for detecting distance and orientation between objects under water
JP3350501B2 (en) Flow measurement device
JP2005181268A (en) Ultrasonic flowmeter
US20230243682A1 (en) Ultrasonic flow measurement
JP2006317187A (en) Ultrasonic flowmeter
JP2005091332A (en) Ultrasonic flowmeter
US10571320B2 (en) Flow measurement using ultrasound to detect a time of flight difference using noise measurements
RU2422777C1 (en) Ultrasonic procedure for measurement of flow rate of liquid and/or gaseous mediums and device for its implementation
Kupnik et al. PS-16 adaptive asymmetric double-path ultrasonic transit-time gas flowmeter
WO2019097570A1 (en) Ultrasonic flow-rate measurement device and ultrasonic flow-amount measurement method
JP2009270882A (en) Ultrasonic flowmeter
JP2019090777A (en) Ultrasonic flow rate measurement device and ultrasonic flow rate measurement method
CN115790727A (en) Ultrasonic open channel flowmeter and flow velocity calculation method
JPH01100414A (en) Ultrasonic-wave flow velocity measuring apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07768096

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008523695

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 07768096

Country of ref document: EP

Kind code of ref document: A1