WO2008004554A1 - Luminance calculation method, luminance calculation device, inspection device, luminance calculation program, and computer-readable recording medium - Google Patents

Luminance calculation method, luminance calculation device, inspection device, luminance calculation program, and computer-readable recording medium Download PDF

Info

Publication number
WO2008004554A1
WO2008004554A1 PCT/JP2007/063312 JP2007063312W WO2008004554A1 WO 2008004554 A1 WO2008004554 A1 WO 2008004554A1 JP 2007063312 W JP2007063312 W JP 2007063312W WO 2008004554 A1 WO2008004554 A1 WO 2008004554A1
Authority
WO
WIPO (PCT)
Prior art keywords
luminance value
luminance
pixel
defective pixel
value
Prior art date
Application number
PCT/JP2007/063312
Other languages
French (fr)
Japanese (ja)
Inventor
Shuhei Yamamoto
Original Assignee
Sharp Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Kabushiki Kaisha filed Critical Sharp Kabushiki Kaisha
Publication of WO2008004554A1 publication Critical patent/WO2008004554A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J1/4228Photometry, e.g. photographic exposure meter using electric radiation detectors arrangements with two or more detectors, e.g. for sensitivity compensation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/10Photometry, e.g. photographic exposure meter by comparison with reference light or electric value provisionally void
    • G01J1/16Photometry, e.g. photographic exposure meter by comparison with reference light or electric value provisionally void using electric radiation detectors
    • G01J1/18Photometry, e.g. photographic exposure meter by comparison with reference light or electric value provisionally void using electric radiation detectors using comparison with a reference electric value
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/956Inspecting patterns on the surface of objects
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/1306Details
    • G02F1/1309Repairing; Testing

Definitions

  • Luminance calculation method luminance calculation device, inspection device, luminance calculation program, and computer-readable recording medium
  • the present invention relates to a method and apparatus for inspecting a display panel such as a liquid crystal panel, and more particularly to a method and apparatus for calculating a luminance value of a picture element included in a display panel.
  • the panel is turned on to check its quality.
  • the visual inspection of the illuminated display device is performed by the operator's visual inspection, and the signal obtained by imaging the illuminated display device with a sensor such as a line sensor or area sensor is processed. There is automatic inspection.
  • the display pixel is a unit composed of three picture elements (display picture elements) R, G, and B.
  • a display device such as a liquid crystal panel has a structure in which picture elements such as RGB are regularly arranged. This picture element is a regular arrangement of RGB filters on a glass substrate.
  • a black matrix (hereinafter referred to as BM) is arranged in the gap between each filter to prevent light from leaking. Yes. Therefore, the region through which RGB light actually passes is a region smaller than the pixel pitch (this region is called the pixel aperture).
  • the rules in the display device The captured image data is obtained by sampling the picture elements arranged in a regular manner with a regularly arranged image sensor of the sensor camera. Therefore, for example, when a defective picture element that becomes a bright spot is sampled with an image sensor, the aperture of the defective picture element and the BM are averaged together, so a value lower than the actual luminance is Output as captured image data.
  • both the display device and the image sensor have a regular lattice pattern, a frequency component corresponding to the difference between the spatial frequencies of the two patterns is generated and a moire is generated. This moire becomes a noise component and decreases the inspection accuracy.
  • a moire component is also extracted from the captured image data force, the period of this moire component is detected, pixel values arranged for each period are connected, and defective components are removed.
  • the smooth curve is obtained.
  • the difference between the pixel values located on the plurality of smooth curves and the original image data is obtained to obtain defect image data, the average of the plurality of smooth curves is obtained, and smooth image data not including moire is obtained. Is getting. Further, this smoothed image data and defect image data are added, and the addition result is used as inspection image data. Thereby, it becomes possible to detect a defect without being affected by the moire component.
  • the positional relationship between the picture element and the sensor camera is set as a reference position, and the luminance information obtained by the image sensor is multiplied by the corresponding position correction coefficient extracted at the reference position. This generates the luminous intensity information of the picture element.
  • Patent Document 1 Japanese Patent Publication “Japanese Patent Laid-Open No. 11-352011 (Publication Date: February 24, 1999)”
  • Patent Document 2 Japanese Patent Publication “JP-A-5-240802 (Publication Date: September 21, 1993)”
  • the present invention has been made to solve the above-described problem, and its purpose is to calculate the luminance value of the defective pixel opening itself so as to correlate with visual sensitivity with high accuracy.
  • the luminance calculation method according to the present invention is obtained by imaging a display panel in which a plurality of picture elements are arranged in a fixed direction with an imaging unit having an imaging element.
  • a normal luminance value calculating step for calculating a normal luminance value, which is a luminance value when the imaging element showing the abnormal luminance value is capturing a normal pixel, and an opening of the defective pixel that is the cause of the abnormal luminance value A defective pixel rate calculation step of calculating a defective pixel rate that is a ratio of an area within an imaging range of a certain imaging device to an area of the imaging range, and the abnormal luminance value and the normal luminance value Multiply the difference by the reciprocal of the defective pixel rate and get
  • the luminance calculation device is obtained by imaging a display panel in which a plurality of picture elements are arranged in a fixed direction by an imaging means having an imaging element.
  • a luminance calculation device included in an inspection device that inspects the display panel by analyzing captured image data and detecting an abnormal luminance value that is a luminance value that is out of a reference range.
  • a defective pixel rate calculating means for calculating a defective pixel rate that is a ratio of an area within an imaging range of an imaging device to the imaging range; the abnormal luminance value and the positive By multiplying the difference from the normal luminance value by the reciprocal of the defective pixel rate, and adding the standard luminance value, which is the luminance value of a normal pixel of the same color as the defective pixel, to the obtained value, the aperture And a luminance value correcting means for calculating the luminance value of the part.
  • the defective pixel rate calculating unit calculates the defective pixel rate
  • the luminance value correcting unit calculates the luminance value of the defective pixel using the defective pixel rate.
  • the luminance value correcting means multiplies the difference between the abnormal luminance value and the normal luminance value calculated by the normal luminance value calculating means by the reciprocal of the missing pixel rate, and adds the standard luminance value to the obtained value. Calculate the luminance value of the defective pixel.
  • the luminance value of the defective pixel opening itself can be calculated without being affected by the positional relationship between the imaging range of the imaging element and the picture element. Therefore, by applying the luminance calculation device to the inspection device, it is possible to perform accurate defect determination correlated with the visual sensitivity of the defective pixel.
  • the standard luminance value may be set in advance, or may be input every time a luminance value is calculated via an input unit provided in the luminance calculation device.
  • the luminance calculation method further includes a pixel determination step of determining which color the defective pixel is and setting the standard luminance value corresponding to the determination result. Is preferred.
  • the luminance calculation apparatus determines which color the defective pixel is, and outputs the standard luminance value corresponding to the determination result to the luminance value correcting unit. It is preferable to further comprise determination means.
  • the picture element determination unit determines which color the defective pixel is, and outputs a standard luminance value corresponding to the determined color to the luminance value correction unit. Therefore, missing The luminance value of the defective pixel aperture can be accurately calculated regardless of the color of the pixel.
  • the waveform of the signal component is plotted by plotting the signal component of the imaging data at intervals corresponding to the number of moles in the pixel array direction that occur in the captured image data.
  • a signal dividing step to be formed is further included before the pixel determination step, and in the pixel determination step, by comparing the coordinates of the peak of the waveform with the coordinates of the signal component caused by the defective pixel It is preferable to determine which color the defective pixel is.
  • the luminance calculation device plots the signal component waveform by plotting the signal component of the imaged data at intervals corresponding to the number of moles in the pixel array direction that occur in the captured image data. And further comprising a signal dividing means for forming, and the picture element judging means compares the coordinates of the peak of the waveform with the coordinates of the signal component caused by the defective picture element to determine which of the defective picture elements is. It is preferable to determine whether the pixel is a color picture element.
  • the signal dividing unit plots the signal component (pixel value) of the imaging data at intervals corresponding to the number of moire in the pixel array direction, and forms a waveform of the signal component.
  • the picture element determination means compares the coordinates of the peak of the formed waveform with the coordinates of the signal component caused by the defective picture element. Since the peak position of the waveform corresponds to the type (color) of the picture element, it is possible to determine the color of the defective picture element from the above comparison.
  • the defective pixel rate calculating means calculates a distance between the center line of the defective pixel element and the center line of the imaging range of the image sensor that has captured the defective pixel element, and sets the distance to the distance. Based on this, it is preferable to calculate the area of the opening within the imaging range.
  • the distance between the center line of the defective picture element and the center line of the imaging range of the imaging device that has imaged the defective picture element is obtained, and this distance force.
  • the area within the range can be calculated. Therefore, the defective pixel rate can be easily calculated.
  • a display panel in which a plurality of picture elements are arranged in a certain direction is imaged by an imaging means having an imaging element, and the obtained captured image data is analyzed to obtain a luminance value that is out of the reference range.
  • An inspection apparatus for inspecting the display panel by detecting an abnormal luminance value, and comparing the luminance value of the defective picture element calculated by the luminance calculation apparatus and the luminance calculation apparatus with a reference value.
  • an inspection apparatus provided with inspection means for reinspecting the display panel for defects is also included in the technical scope of the present invention.
  • a brightness calculation program for causing a computer to function as each of the means of the brightness calculation device and a computer-readable recording medium on which the brightness calculation program is recorded are also included in the technical scope of the present invention.
  • FIG. 1 is a schematic diagram showing a configuration of a correction unit provided in an inspection apparatus according to an embodiment.
  • FIG. 2 is a schematic diagram showing a configuration of an inspection apparatus according to an embodiment.
  • FIG. 3 is a schematic diagram showing a configuration of a control device provided in the inspection device of the embodiment.
  • FIG. 4 is a schematic diagram showing the configuration of a display device.
  • FIG. 5 is a graph showing the output signal of the image sensor obtained when the display device is imaged.
  • A shows the image sensor obtained when the image resolution is 1.5% smaller than the pixel pitch. The output signal is shown.
  • (B) shows the output signal of the image sensor obtained when the imaging resolution is 21.5% smaller than the pixel pitch.
  • FIG. 6 is a diagram for illustrating an example of signal division in a signal division unit provided in the inspection apparatus of the embodiment.
  • FIG. 7 is a diagram for explaining a method for calculating a signal component waveform force peak value, (a) is a graph showing a signal component waveform, and (b) is a graph plotting adjacent difference values. is there
  • FIG. 8 is a diagram for explaining a method of determining the type of defective pixel based on the waveform of the signal component, (a) is a graph showing the waveform of the signal component, and (b) is a graph of the pixel. It is a graph showing the assigned part.
  • FIG. 9 Normal luminance value calculation method in the normal luminance estimation unit provided in the inspection apparatus of one embodiment It is a figure for demonstrating a law.
  • FIG. 10 is a diagram for explaining a method of calculating a defective pixel rate.
  • FIG. 11 is a diagram for explaining a method of calculating the distance between the center line of the image sensor that images the defective pixel aperture and the center line of the pixel aperture.
  • FIG. 13 is a diagram illustrating a correspondence relationship between the signal component divided by the signal dividing unit and the imaging range of the imaging device.
  • FIG. 14 is a flowchart showing a flow of processing in the control device.
  • FIG. 15 is a flowchart showing a flow of processing in the inspection apparatus.
  • FIG. 2 is a schematic diagram showing the configuration of the inspection apparatus 1 of the present embodiment.
  • the inspection apparatus 1 includes an imaging apparatus 2, a display device 3 (a display panel) stage 4, a lighting circuit 5 that supplies a drive signal to the display device 3, and a contact portion with the display device 3. 6. It is equipped with illumination 7, control device 8 (inspection device).
  • the imaging device 2 is for imaging the display device 3, and has a plurality of imaging elements arranged in a matrix.
  • Examples of the imaging device 2 include a CCD camera and a cMOS camera.
  • FIG. 3 is a schematic diagram showing the configuration of the control device 8.
  • the control device 8 includes an input unit 9 for inputting various set values, an output unit 10 for outputting defect detection results, a main control unit 11 for controlling each unit, and an inspection unit for performing inspection. Equipped with 12 (inspection means), correction unit 13 (brightness calculation device) for brightness correction!
  • the inspection unit 12 analyzes captured image data obtained by the imaging device 2 imaging the display device 3, and detects an abnormal luminance value that is a luminance value outside the reference range. This detects a defective pixel in the display device 3.
  • the inspection unit 12 outputs the coordinates of the detected defective picture element and the luminance value data of the captured image captured by the imaging device 2 to the correction unit 13 to correct the luminance value of the opening of the defective picture element.
  • the defect determination is performed by causing the unit 13 to calculate and comparing the calculated luminance value with a preset inspection threshold (reference value).
  • the defect detection algorithm of the inspection unit 12 may be a generally known algorithm.
  • the defective pixel is a pixel having a luminance value that is out of the reference range force
  • the normal pixel is a pixel having a luminance value within the reference range.
  • a captured image of the display device 3 captured by the imaging device 2 is simply referred to as a captured image, and data that forms the captured image is referred to as captured image data.
  • the correction unit 13 calculates the luminance value of the opening of the defective picture element detected by the inspection unit 12 based on the captured image data.
  • the correction unit 13 outputs the calculated luminance value of the defective pixel element opening to the inspection unit 12.
  • FIG. 1 is a schematic diagram showing the configuration of the correction unit 13.
  • the correction unit 13 is necessary for correction such as the coordinates of the defective picture element output from the inspection unit 12 and the captured image data.
  • An input unit 14 for inputting correction information
  • an output unit 15 for outputting a correction result (luminance value of the defective pixel opening)
  • a signal dividing unit 16 for dividing a signal component of captured image data
  • captured image data The pixel determination unit 17 (picture element determination means) that calculates the type and ratio of the pixel contained in the abnormal part from the normal part, and the normal brightness estimation part 18 that estimates the brightness value of the imaging region when the defective picture element is normal 18 (Normal luminance value calculation means), luminance correction section 19 (luminance value correction means) for calculating the luminance value of the aperture of the defective pixel, and defective pixel ratio calculation section 20 (defect) for calculating the defective pixel ratio described later. Picture rate calculation means). Details of each part constituting the correction unit 13 will be described later.
  • the abnormal part means an imaging area of the imaging element corresponding to the coordinates of the defective picture element output from the inspection unit 12.
  • FIG. 4 is a schematic diagram showing the configuration of the display device 3.
  • the display device 3 is a color filter in which picture elements 3a to 3c of three colors R (red), G (green), and B (blue) are arranged in a matrix. As shown in FIG. 4, the rectangle indicates each picture element, and a repeating array of R picture element 3a, G picture element 3b, and B picture element 3c is formed in a line on the filter. Such a direction of picture element arrangement is referred to as a picture element arrangement direction (direction of arrow 21).
  • the distance between the picture elements in the picture element arrangement direction is referred to as a picture element pitch. More precisely, the picture element pitch is the distance between the center line of the picture element perpendicular to the picture element arrangement direction and the center line of the picture element adjacent to the picture element. Between each picture element, light absorbing film BM is exposed! /.
  • the imaging device 2 When such a display device 3 is imaged, the imaging device 2 is arranged so that the picture element arrangement direction is parallel to the arrangement direction of the imaging elements included in the imaging device 2.
  • the grid indicates the imaging range (imaging area) of each image sensor.
  • the imaging range of each imaging element is substantially square, and the length of one side of this square is called imaging resolution.
  • the imaging resolution is slightly smaller than the pixel pitch.
  • the direction in which the picture elements are arranged is also a force that is present in a direction perpendicular to the direction of the arrow 21. In the direction of A description will be given of the pixel array direction.
  • FIG. Fig. 5 (a) shows the output signal of the image sensor obtained when the imaging resolution is 1.5% smaller than the pixel pitch
  • Fig. 5 (b) shows that the imaging resolution is 21.
  • the output signal of the image sensor obtained when it is 5% smaller is shown.
  • Both (a) in FIG. 5 and (b) in FIG. 5 display the output signal of the image sensor in the pixel array direction of the display device 3 for one line (for example, the round frame in FIG. 4).
  • moire occurs as a low-frequency component when imaging is performed with a resolution such that the imaging resolution is close to the pixel pitch.
  • moiré occurs as a high-frequency component when imaging is performed with a resolution that increases the difference between the imaging resolution and the pixel pitch. In this manner, the occurrence pattern of the change varies depending on the imaging resolution of the imaging device 2. Such moire prevents accurate detection of defects in the display device 3.
  • the signal dividing unit 16 receives data of the captured image from the input unit 14 and divides the signal component in the pixel array direction of the captured image.
  • FIG. 6 is a diagram for illustrating an example of signal division in the signal division unit 16. As shown in the figure, three signal components (waveforms A, B, and C) that are out of phase are obtained when the image is picked up with a resolution close to the pixel pitch. By plotting every two signal components in the pixel array direction and connecting these output signals, a divided signal is obtained.
  • waveform A is a waveform obtained by connecting the 3n (where n is a positive integer) output signal
  • waveform B is the 3n + 1th output signal
  • waveform C is the 3n + 2nd output signal. This is the waveform obtained.
  • six signal components that are out of phase are obtained. In this case, every five signal components in the pixel array direction are plotted, and these output signals are connected to obtain a divided signal.
  • the number of plots may be set in advance or may be input by the operator via the input unit 9.
  • the signal dividing unit 16 outputs the divided signal component to the pixel determining unit 17 and the defective pixel rate calculating unit 20.
  • the picture element determination unit 17 determines which picture element power of RGB or a state in which BM is sandwiched between defective picture elements of the display device 3 included in the abnormal part of the captured image data. That is, the picture element determination unit 17 calculates the positional relationship between the picture element of the display device 3 and the image sensor.
  • the waveform A among the plotted signal components includes a signal component resulting from a defective picture element.
  • the maximum, minimum peak value, and intermediate value are calculated from the waveform A.
  • the display device 3 is imaged in advance, a divided signal is calculated, and the operator can set the maximum, minimum peak value, and intermediate value based on the spectral sensitivity characteristics of the image sensor. May be calculated automatically.
  • FIG. 7 is a diagram for explaining a method for calculating the waveform force peak value of a signal component
  • (a) is a graph showing the waveform of the signal component
  • (b) is a plot of adjacent difference values. It is a graph.
  • the adjacent difference value of waveform A is calculated and plotted, and the coordinates where the difference value sandwiches 0 are set to the maximum and minimum peak values. .
  • the one with the negative slope of the straight line connecting the plotted difference values is the maximum peak value
  • the one with the positive slope is the minimum peak value.
  • the maximum and minimum peak values are calculated by detecting a point where the slope of the tangent line drawn with respect to the waveform of the signal component is parallel to the horizontal coordinate axis (X axis).
  • FIG. 8 is a diagram for explaining a method of determining the type of defective pixel based on the waveform of the signal component.
  • (a) shows the waveform of the signal component
  • (b) shows the picture element allocation portion.
  • the pixel corresponding to the maximum peak value and the minimum peak value are corrected.
  • the corresponding pixel type and the pixel type corresponding to the intermediate peak value are determined. That is, since the sensitivity characteristic of the image sensor is R ⁇ B ⁇ G, the pixel corresponding to the maximum peak value is G, the pixel corresponding to the minimum peak value is R, and the pixel corresponding to the intermediate peak value is B.
  • FIG. 8 (b) it is determined which region of the region delimited by the signal force maximum peak value, intermediate peak value, and minimum peak value due to the defective picture element belongs. Thus, it is possible to determine which color the defective pixel is.
  • the region between the minimum peak value and the maximum peak value is called the RG pixel allocation portion
  • the region between the maximum peak value and the intermediate peak value is called the GB pixel allocation portion.
  • the area between the intermediate peak value and the minimum peak value is called the BR picture element allocation part.
  • the signal attributed to the missing picture element is in the GB picture element allocation part.
  • a signal due to the defective pixel is also generated in other divided signals.
  • G is a defective pixel
  • B is a defective pixel
  • the above-mentioned defective pixel is assigned to the BR assigned part of the other divided signal.
  • the resulting signal is generated. That is, in cases other than the case where there is a signal due to a defective pixel at the peak position of the waveform of the signal component, a signal due to the defective pixel is generated in a plurality of divided signals.
  • the picture element determining unit 17 determines which color picture element the defective picture element is by comparing the waveforms of a plurality of signal components (three in the example shown in FIG. 6). To do.
  • the pixel determination unit 17 outputs the determination result of the defective pixel to the normal luminance estimation unit 18, the luminance correction unit 19, and the defective pixel rate calculation unit 20.
  • FIG. 9 is a diagram for explaining a normal luminance value calculation method in the normal luminance estimation unit 18, and the lower diagram in FIG. 9 is an enlarged view of a part of the upper diagram.
  • the normal luminance estimation unit 18 calculates the average value of the luminance values of the signals located on both sides of the signal caused by the defective pixel included in the plotted signal component, and calculates the average value. Defective pixel It is assumed that the luminance value of the image sensor when normal (hereinafter referred to as a normal luminance value).
  • the normal luminance estimation unit 18 outputs the calculated normal luminance value to the luminance correction unit 19.
  • FIG. 10 is a diagram for explaining a method of calculating the defective pixel rate.
  • FIG. 11 is a diagram for explaining a method of calculating the distance between the center line of the image sensor that images the defective pixel aperture and the center line of the pixel aperture. In this case, the signal due to the defective pixel opening is located between
  • the defective picture element rate calculation unit 20 is based on the signal component output from the signal dividing unit 16 and the determination result of the defective pixel output from the pixel determination unit 17, and the imaging range of a certain image sensor.
  • the defective pixel ratio which is the ratio of the area (Ar) of the defective pixel opening in the inside to the area of the imaging range, is calculated as follows.
  • the area (Ar) of the defective picture element opening can be calculated by the following equation.
  • Lr is the width in the pixel array direction of the defective pixel aperture (R picture element) included in the imaging range of the imaging element
  • S is the imaging resolution
  • Lbml is the BM width in the pixel arrangement direction in the image sensor of interest, and is the distance between the defective pixel aperture and the center line of the image sensor.
  • Lbml can be calculated by the following equation.
  • N is between the center line of the image sensor that images the defective pixel aperture and the center line of the defective pixel aperture (R pixel) adjacent to the center line of the image sensor.
  • Distance. Pm is the width of the pixel opening in the pixel arrangement direction.
  • the value of N is the coordinates of the signal caused by the defective pixel and the signal. It is also possible to calculate the differential force with the coordinates of the peaks located on both sides of (the combination of any two of the maximum peak, intermediate peak, and minimum peak).
  • Pm is a unique value (design value), and may be stored in a memory (not shown) included in the control device 8, or may be input each time by an operator. These values are output to the defective pixel rate calculation unit 20 via the input unit 14.
  • the defective pixel rate calculation unit 20 calculates the area (Ar) of the defective pixel opening by the following equation.
  • the defective pixel rate calculation unit 20 calculates the distance between the center line of the defective pixel opening and the center line of the imaging range of the image sensor that has captured the defective pixel element, and the defective image is calculated from this distance. Calculate the area of the aperture in the imaging range.
  • the defective pixel rate calculation unit 20 calculates the defective pixel rate by dividing the area (Ar) in the imaging range of the defective pixel opening by the area (Accd) of the imaging range of the imaging element. To do.
  • the defective pixel rate calculation unit 20 outputs the calculated defective pixel rate to the luminance correction unit 19.
  • the luminance correction unit 19 calculates the actual luminance value of the defective pixel opening from the luminance value of the image sensor that images the region including the defective pixel opening. More specifically, the luminance correction unit 19 outputs the defect pixel determination result output from the pixel determination unit 17, the normal luminance value output from the normal luminance estimation unit 18 and the defect pixel rate calculation unit 20 output. Based on the defective pixel ratio, the luminance value of the actual defective pixel opening is calculated.
  • FIG. 12 is a diagram showing the positional relationship between the imaging range of the imaging device and the picture elements. Since the brightness value of the image sensor is the average of the imaging range, as shown in Fig. 12, the average value of the luminance values of the defective pixel aperture and BM (upper part of Fig. 12), or In some cases, the average value of the luminance values of the elementary openings, adjacent openings, and BM (lower part of Fig. 12).
  • the luminance correction unit 19 calculates the luminance value of the defective pixel opening as well as the luminance value of such an image sensor.
  • FIG. 13 is a diagram illustrating a correspondence relationship between the divided signal components and the imaging range of the imaging device. For example, as shown in FIG. 13, there is a bright spot defect in the R pixel opening, and a part of the defective pixel opening is included in the imaging range of the imaging elements Pl and P2 adjacent to each other.
  • the image element PI includes a part of the G picture element opening and the image pickup element P2 includes a part of the B picture element opening will be described.
  • the luminance value of the imaging device including the defective pixel opening is an average value of the luminance values of the defective pixel opening, the pixel opening adjacent to the defective pixel opening, and the BM. ing.
  • YrP 1 (Yrd * Ar 1 + Yg * Ag + Ybm * Abm 1) / Accd (1)
  • YrP 2 (Yrd * Ar 2 + Yb * Ab + Ybm * Abm2) / Accd (2)
  • Yrd is the actual luminance value of the R pixel bright spot opening
  • Yg is the G pixel luminance value
  • Ybm is the BM luminance value.
  • Arl is the area of the R pixel luminescent spot opening in the image sensor P1
  • Ar2 is the area of the R pixel luminescent spot opening in the image sensor P2
  • Ag is the area of the G pixel opening in the image sensor P1
  • Ab is the area of the B pixel opening in the image sensor P2
  • Abml is the area of the BM in the image sensor P1
  • Abm2 is the area of the BM in the image sensor P2.
  • the brightness value (standard brightness value) of the actual R, G, and B pixel apertures in the state without defects, and the brightness value of BM are displayed in high resolution in advance. Take an image of device 3 and obtain the image data.
  • the luminance values of the image pickup devices P1 and P2 when the defective pixel aperture is normal are YrPnl and YrPn2.
  • the following formulas (3) and (4) hold.
  • YrPnl (Yr * Arl + Yg * Ag + Ybm * Abml) / Accd '' (3)
  • YrPn2 (Yr * Ar2 + Yb * Ab + Ybm * Abm2) / Accd (4)
  • Equation (5) the luminance value (standard luminance value) of the R picture element opening when normal. Therefore, from Equations (1) and (3), the luminance value Yrd of the R picture element bright spot opening can be expressed by the following Equation (5).
  • Yrd ⁇ Accd * (YrP 1-YrPn 1) / Ar 1 ⁇ + Yr ⁇ (5)
  • the value of AccdZArl is the reciprocal of the defective pixel rate output from the defective pixel rate calculation unit 20.
  • the luminance value of the R picture element bright spot opening can be calculated from the equations (2) and (4) (omitted).
  • the luminance value of the R pixel bright spot opening may be calculated using the luminance value of one of the image sensors P1 and P2.
  • the luminance value of the R picture element bright spot opening may be calculated using the luminance values of both the image sensors P1 and P2, and the average value may be taken.
  • Abml and Abm2 can be calculated as follows. In the following, the case where equation (4) is applied will be described.
  • the imaging resolution is S, and the BM width in the image sensor
  • FIG. 4 is a flowchart showing the flow of processing in the control device 8. As shown in FIG. 14, first, in accordance with a command from the main control unit 11, the inspection unit 12 detects defective picture elements from the captured image (S10).
  • the defect detection algorithm may be a general algorithm. For example, there is an algorithm for comparing every image element with the brightness value of its neighboring elements. At this time, the defective pixel area may be detected across multiple image sensors due to the setting of the image resolution. Force The brightness value is the highest !, the part (or the lowest part) is the defect coordinate. ⁇ .
  • a defect means a defect of a picture element.
  • the inspection unit 12 outputs the coordinates of the detected defective picture element to the signal division unit 16 via the input unit 14 of the correction unit 13.
  • the signal dividing unit 16 stores the signal component in the pixel arrangement direction in a temporary storage memory (not shown) provided for itself based on the coordinates of the defective pixel obtained by the inspection unit 12. , That picture element
  • the signal components in the arrangement direction are plotted at intervals according to the moire number (S11) (picture element dividing step).
  • the signal dividing unit 16 outputs the plotted signal components to the pixel determination unit 17, the normal luminance estimation unit 18, and the defective pixel rate calculation unit 20.
  • the pixel determination unit 17 performs defective pixel determination using the plotted signal components, (S12) (pixel determination step), and the determination result is sent to the luminance correction unit 19 and the defective image. Output to the prime factor calculator 20.
  • the normal luminance estimating unit 18 calculates a normal luminance value using the signal component (S13) (normal luminance value calculating unit). About). Then, the normal luminance estimation unit 18 outputs the calculated normal luminance value to the luminance correction unit 19.
  • the defective pixel rate calculation unit 20 receives the signal component plotted from the signal dividing unit 16 and the pixel determination result from the pixel determination unit 17, as described above, the defective pixel rate is calculated. (S14) (Defect pixel rate calculation step). The defective pixel rate calculation unit 20 outputs the calculated defective pixel rate to the luminance correction unit 19.
  • the luminance correction unit 19 calculates the luminance value of the defective pixel opening by the method described above. (S15) (luminance value correction step). Then, the luminance correction unit 19 outputs the calculated luminance value of the defective pixel opening to the output unit 15.
  • the output unit 15 Upon receiving the luminance value of the defective pixel element opening, the output unit 15 outputs the luminance value to the inspection unit 12 (S16).
  • FIG. 15 is a flowchart showing the flow of processing in the inspection apparatus 1.
  • the display device 3 is first placed on the stage 4 and then placed in contact with the contact portion 6 (Sl).
  • the main control unit 11 passes through the lighting circuit 5.
  • the display device 3 Upon receiving this drive signal, the display device 3 displays an inspectable image. In addition, If the contact has failed, the contact must be redone (return to SI).
  • the main control unit 11 adjusts the illuminance of the illumination 7 so as to be suitable for the captured image (S3). If the display device 3 is a self-luminous type, adjust the amount of light emitted.
  • the main control unit 11 controls the stage 4 holding the display device 3 (S4). Then, the imaging device 2 images the display device 3 with a preset resolution (S5).
  • the main control unit 11 detects the rotational deviation of the display device 3, and outputs a alignment error if it is larger than the preset rotation angle limit value (YES in S6).
  • the method for detecting the rotation deviation of the display device may be a generally known method. For example, you can calculate the edge component force in the X and y directions for the corners of the display part of the display device! /, And do pattern matching!
  • the defect detection is performed by the inspection unit 12, and the luminance of the detected defect is calculated by the correction unit 13.
  • the inspection unit 12 performs a defect detection process by comparing the luminance value calculated by the correction unit 13 with a preset inspection threshold (S7).
  • the main control unit 11 outputs the inspection result and ends the series of processes.
  • the inspection unit 12 tentatively detects the defective pixel of the display device 3 from the luminance value of the imaging element (the luminance value of the imaging range including the defective pixel opening).
  • the correction unit 13 calculates the luminance value of the opening of the defective pixel itself.
  • the inspection unit 12 compares the luminance value calculated by the correction unit 13 with the inspection threshold value, and re-inspects whether or not the defective pixel is actually defective.
  • the inspection accuracy can be further increased.
  • the pixel determination unit 17 compares the coordinates of the peak of the waveform of the signal component with the coordinates of the signal component caused by the defective pixel, so that the color of the defective pixel is the defective pixel. Therefore, even if an image is taken at a low resolution (about the pixel pitch or more), the color of the defective pixel can be set to half U.
  • the inspection apparatus 1 can perform inspection at low cost. In order to accurately capture the brightness of only the pixel aperture, a force that requires a high-pixel camera or multiple cameras is required. Also, the method of attaching a micro inspection camera (a method of inspecting the whole with a macro camera and inspecting defect candidates in detail with a micro camera) requires a tact. Inspecting device 1 can reduce the cost of inspection by correctly estimating the defective pixel even in a camera configuration that does not have sufficient resolution (below the pixel aperture).
  • the display device 3 may be a color filter or a filter for monochrome display. Also, the number of picture elements is not limited to three. Further, the arrangement order of the picture elements is not limited to the above.
  • each block of the above-described inspection apparatus 1, in particular, the control unit 8, the inspection unit 12, and the correction unit 13 may be configured by hardware logic, or by software using a CPU as follows. It may be realized.
  • the inspection apparatus 1 has a CPU (Central Processing Unit) that executes instructions of a control program that realizes each function, a ROM (read only memory) in the upper program, and a RAM ( random access memory), and a storage device (recording medium) such as a memory for storing the program and various data.
  • the object of the present invention is to read the program code (execution format program, intermediate code program, source program) of the control program (brightness calculation program) of the inspection apparatus 1, which is software that realizes the functions described above, by a computer.
  • the recorded recording medium is supplied to the inspection device 1 and the computer (or CPU or MPU) is recorded on the recording medium. This can also be achieved by reading and executing the program code.
  • Examples of the recording medium include a tape system such as a magnetic tape and a cassette tape, a magnetic disk such as a floppy (registered trademark) disk Z hard disk, and an optical disk such as CD-ROMZMOZ MD / DVD / CD-R. Disk systems, IC cards (including memory cards) Z optical cards and other card systems, or mask ROMZEPROMZEEPROMZ flash ROM and other semiconductor memory systems can be used.
  • the inspection apparatus 1 may be configured to be connectable to a communication network, and the program code may be supplied via the communication network.
  • the communication network is not particularly limited.
  • the Internet intranet, extranet, LAN, ISDN, VAN, CATV communication network, virtual private network, telephone line network, mobile communication network, satellite communication A net or the like is available.
  • the transmission medium constituting the communication network is not particularly limited.
  • wired communication such as IEEE1394, USB, power line carrier, cable TV line, telephone line, ADSL line, infrared rays such as IrDA and remote control, Bluetooth (registered trademark), 802.11 wireless, HDR, mobile phone network, satellite line, and terrestrial digital network can also be used.
  • the present invention can also be realized in the form of a computer data signal embedded in a carrier wave in which the program code is embodied by electronic transmission.
  • the present invention can also be expressed as follows.
  • the display screen of a display device having a color filter is used as an inspection screen, and an image is picked up by an imaging unit.
  • a method for calculating luminance in an inspection the step of inputting the number of moire in either the X-axis direction or the Y-axis direction generated in the captured image data, and pixels of the captured data at intervals corresponding to the number of moire
  • a step of plotting values a step of detecting an abnormal portion from the plotted data string, a step of determining the type and ratio of display picture elements included in the detected abnormal portion, and the detected From the process of calculating the data when the abnormal part is normal, the type and ratio of the determined display picture element, the data of the abnormal part, and the data when the abnormal part is normal, the defective pixel Brightness
  • the process of calculating is included.
  • the step of determining the type and ratio of display picture elements included in the abnormal part includes the step of calculating the plotted data string force maximum, minimum peak value, and intermediate value, and the spectral sensitivity characteristics of the image sensor. To correlate the maximum and minimum peak values and intermediate values with the pixel pattern of the color filter, and to determine the type and ratio of the display pixel included in the abnormal portion from the plotted data string. I prefer that.
  • the step of calculating the luminance of the defective picture element is included in the abnormal portion and the step of inputting the luminance of the display picture element and the black matrix of the display device obtained by imaging in advance with high resolution. It is preferable to include a step of calculating the luminance of the defective pixel from the type and ratio of the display pixel and the luminance of the input display device and the black matrix.
  • the brightness calculation apparatus for a display device of the present invention uses the display screen of the display device having a color filter as an inspection screen, images it at the imaging unit, and determines the quality of the display device based on the obtained captured image data.
  • a brightness calculation apparatus in an inspection wherein the number of moires in either the X-axis direction or the Y-axis direction generated in the captured image data is input, and the pixels of the captured data at intervals corresponding to the number of moires Means for plotting values; means for detecting an abnormal portion from the plotted data string; means for determining the type and ratio of display picture elements included in the detected abnormal portion; and the detected From the means for calculating the data when the abnormal part is normal, the type and ratio of the determined display picture element, the abnormal part data, and the data when the abnormal part is normal, the defective picture element is obtained. Brightness And means for calculating.
  • the means for determining the type and ratio of the display picture element included in the abnormal portion includes the means for calculating the plotted data string force maximum, minimum peak value, and intermediate value, and the spectral sensitivity characteristics of the image sensor. And means for associating the maximum and minimum peak values and intermediate values with the pixel pattern of the color filter, and means for determining the type and ratio of the display pixel included in the abnormal portion from the plotted data string. I prefer to be prepared.
  • the means for calculating the luminance of the defective picture element is included in the abnormal part, and means for inputting the luminance of the display picture element and the black matrix of the display device obtained in advance in a state of high resolution.
  • the type and ratio of the display picture element and the display picture element of the input display device It is preferable to include a means for calculating the luminance of the defective picture element from the luminance of the black matrix.
  • the luminance calculation method calculates a normal luminance value that calculates a normal luminance value that is a luminance value when an imaging element that shows an abnormal luminance value captures a normal picture element.
  • Defective picture which calculates the defective picture element ratio which is the ratio of the area within the imaging range of a certain imaging device and the area of the imaging area of the opening of the defective picture element causing the abnormal luminance value Multiplying the difference between the abnormal luminance value and the normal luminance value by the reciprocal of the defective pixel rate and multiplying the obtained value by the luminance value of a normal pixel of the same color as the defective pixel.
  • the luminance calculation apparatus calculates a normal luminance value that is a luminance value when the imaging element that indicates the abnormal luminance value captures a normal picture element.
  • a defective pixel rate that calculates a defective pixel rate that is the ratio of the area within the imaging range of a certain image sensor to the imaging means and the aperture of the defective pixel that is the cause of the abnormal luminance value
  • the difference between the abnormal luminance value and the normal luminance value multiplied by the reciprocal of the defective pixel rate, and the resulting value is a standard luminance that is the luminance value of a normal pixel of the same color as the defective pixel.
  • a luminance value correcting means for calculating the luminance value of the opening by adding the values.
  • the luminance value of the defective pixel opening itself can be calculated without being affected by the positional relationship between the imaging range of the imaging device and the picture element. Therefore, by applying the brightness calculation device to the inspection device, it is possible to perform accurate defect determination correlated with the visual sensitivity of the defective picture element.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Liquid Crystal (AREA)
  • Liquid Crystal Display Device Control (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

A luminance calculation device includes: a normal luminance estimation unit (18) for calculating a normal luminance value as a luminance value obtained when an imaging element indicating an abnormal luminance value has captured a normal picture element; a defective picture element ratio calculation unit (20) for calculating a defective picture element ratio as a ratio of an area of a defective picture element opening causing an abnormal luminance value within an imaging range of a certain imaging element against an area of its imaging range; and a luminance correction unit (19) for calculating a luminance value of the defective picture element opening by adding a standard luminance value of a luminance value of a normal picture element of the same color as the defective picture element to the value obtained by multiplying a difference between the abnormal luminance value and the normal luminance value by the reciprocal of the defective picture element ratio. Thus, it is possible to provide an inspection device, a luminance calculation device, and a luminance calculation method capable of performing highly accurate defect detection having a high correlation with visual sensitivity by calculating the luminance value of the defective picture element.

Description

明 細 書  Specification
輝度算出方法、輝度算出装置、検査装置、輝度算出プログラムおよびコ ンピュータ読み取り可能な記録媒体  Luminance calculation method, luminance calculation device, inspection device, luminance calculation program, and computer-readable recording medium
技術分野  Technical field
[0001] 本発明は、液晶パネルなどの表示用パネルの検査方法とその装置に関するもので あり、特に表示用パネルが有する絵素の輝度値を算出する方法とその装置に関する ものである。  The present invention relates to a method and apparatus for inspecting a display panel such as a liquid crystal panel, and more particularly to a method and apparatus for calculating a luminance value of a picture element included in a display panel.
背景技術  Background art
[0002] 表示デバイスは、その製造後半工程において、パネルを点灯させて、その良否が 検査される。この検査には、点灯された表示デバイスを作業者の目視により検査する 目視検査と、点灯された表示デバイスをラインセンサやエリアセンサのようなセンサ力 メラで撮像して得られた信号を処理する自動検査とがある。  [0002] In the latter half of the manufacturing process of a display device, the panel is turned on to check its quality. For this inspection, the visual inspection of the illuminated display device is performed by the operator's visual inspection, and the signal obtained by imaging the illuminated display device with a sensor such as a line sensor or area sensor is processed. There is automatic inspection.
[0003] しかし、目視検査の場合、見逃しや個人差による判定のばらつきがある。さらに表 示デバイスは近年、高精細化しており、表示画素の数が何百万画素のオーダーにな つているため、目視によって見つけた欠陥位置、欠陥種類を正確に記録し、修正や プロセス改善のためのフィードバック情報とすることは難しい。なお、上記表示画素と は、 R、 G、 Bの 3つの絵素(表示絵素)を 1つの単位としたものである。  [0003] However, in the case of visual inspection, there are variations in determination due to oversight or individual differences. In addition, display devices have become more sophisticated in recent years, and the number of display pixels is on the order of millions of pixels. Therefore, the position and type of defects found by visual observation are recorded accurately for correction and process improvement. It is difficult to make feedback information. The display pixel is a unit composed of three picture elements (display picture elements) R, G, and B.
[0004] また、自動検査の場合、タクトの制限が厳しいことから、高解像度で検査することが 困難であり、撮像分解能を R、 G、 B各絵素の間隔である絵素ピッチ付近、または、そ の 1Z2程度に合わせるマクロ検査が主流となっている。  [0004] Also, in the case of automatic inspection, since the tact limit is severe, it is difficult to inspect with high resolution, and the imaging resolution is near the pixel pitch, which is the interval between R, G, and B pixel elements, or Macro inspections that fit around 1Z2 are the mainstream.
[0005] このような撮像分解能で撮像した場合、どのような問題が発生するかにつ!ヽて説明 を行う。液晶パネルのような表示デバイスでは、 RGBといった絵素が規則的に配置さ れた構造をしている。この絵素は、ガラス基板上に RGBのフィルタを規則正しく配置 したものである力 各フィルタの隙間には、光が漏れないように遮光するためのブラッ ク 'マトリックス(以下、 BM)が配置されている。従って、実際に RGBの光が通過する 領域は、絵素ピッチよりも小さな領域 (この領域を絵素開口部と呼ぶ)となる。  [0005] A description will be given of what kind of problem occurs when imaging is performed with such an imaging resolution. A display device such as a liquid crystal panel has a structure in which picture elements such as RGB are regularly arranged. This picture element is a regular arrangement of RGB filters on a glass substrate. A black matrix (hereinafter referred to as BM) is arranged in the gap between each filter to prevent light from leaking. Yes. Therefore, the region through which RGB light actually passes is a region smaller than the pixel pitch (this region is called the pixel aperture).
[0006] このような表示デバイスをセンサカメラにて撮像する場合、表示デバイス内の規則 的に配置された絵素を、センサカメラの規則的に配置された撮像素子で標本ィ匕する ことにより撮像画像データを得る。従って、例えば、輝点となるような欠陥絵素を撮像 素子にて標本ィ匕した場合、欠陥絵素の開口部と BMとを合わせて平均化するため、 実際の輝度よりも低い値が、撮像画像データとして出力される。 [0006] When such a display device is imaged by a sensor camera, the rules in the display device The captured image data is obtained by sampling the picture elements arranged in a regular manner with a regularly arranged image sensor of the sensor camera. Therefore, for example, when a defective picture element that becomes a bright spot is sampled with an image sensor, the aperture of the defective picture element and the BM are averaged together, so a value lower than the actual luminance is Output as captured image data.
[0007] さらに、表示デバイス、及び撮像素子がいずれも規則的な格子パターンとなってい るため、両パターンの空間周波数の差分に応じた周波数成分が生じて、モアレとして 発生することになる。このモアレがノイズ成分となり、検査精度を低下させる。  [0007] Furthermore, since both the display device and the image sensor have a regular lattice pattern, a frequency component corresponding to the difference between the spatial frequencies of the two patterns is generated and a moire is generated. This moire becomes a noise component and decreases the inspection accuracy.
[0008] そのため、モアレの影響を除去し、検査精度を向上させる技術が提案されている。  [0008] Therefore, a technique for removing the influence of moire and improving the inspection accuracy has been proposed.
例えば、特許文献 1に記載の発明では、撮像画像データ力もモアレ成分を抽出し、こ のモアレ成分の周期を検出して、周期ごとに配置される画素値を結んで、欠陥成分 を除去した複数の平滑曲線を求めている。そして、この複数の平滑曲線上に位置す る画素値と、元の画像データとの差を求めて欠陥画像データを取得し、複数の平滑 曲線の平均を求めて、モアレを含まない平滑画像データを取得している。さらに、こ の平滑画像データと欠陥画像データとを加算し、この加算結果を検査用画像データ としている。これにより、モアレ成分に影響されることなく欠陥検出が可能となる。  For example, in the invention described in Patent Document 1, a moire component is also extracted from the captured image data force, the period of this moire component is detected, pixel values arranged for each period are connected, and defective components are removed. The smooth curve is obtained. Then, the difference between the pixel values located on the plurality of smooth curves and the original image data is obtained to obtain defect image data, the average of the plurality of smooth curves is obtained, and smooth image data not including moire is obtained. Is getting. Further, this smoothed image data and defect image data are added, and the addition result is used as inspection image data. Thereby, it becomes possible to detect a defect without being affected by the moire component.
[0009] また、特許文献 2に記載の発明では、絵素とセンサカメラの位置関係を基準位置に 設定し、撮像素子が得た輝度情報に基準位置で抽出した対応位置補正係数を乗じ ることにより絵素の光度情報を生成して 、る。  In the invention described in Patent Document 2, the positional relationship between the picture element and the sensor camera is set as a reference position, and the luminance information obtained by the image sensor is multiplied by the corresponding position correction coefficient extracted at the reference position. This generates the luminous intensity information of the picture element.
特許文献 1 :日本国公開特許公報「特開平 11— 352011号公報 (公開日: 1999年 1 2月 24日)」  Patent Document 1: Japanese Patent Publication “Japanese Patent Laid-Open No. 11-352011 (Publication Date: February 24, 1999)”
特許文献 2 :日本国公開特許公報「特開平 5— 240802号公報 (公開日: 1993年 9月 21日)」  Patent Document 2: Japanese Patent Publication “JP-A-5-240802 (Publication Date: September 21, 1993)”
発明の開示  Disclosure of the invention
[0010] ところが、上記従来技術では、以下の問題が発生する。  However, the following problems occur in the above-described conventional technology.
[0011] 特許文献 1に記載の発明では、モアレ成分を除去したとしても、実際の絵素開口部 の輝度を算出することはできない。従って、目視感度との相関が取れずに、輝度が非 常に弱 、弱欠陥にぉ 、ては、ノイズ成分に埋もれてしま 、検出できな 、可能性があ る。 [0012] 特許文献 2に記載の発明では、特許文献 1の発明と同様に、算出する欠陥輝度値 は、絵素開口部の輝度ではない。また、予め基準位置を設定し、対応補正係数を作 成する手段においては、検査パネルで位置ずれが発生した時に、補正する手段がな い。 [0011] In the invention described in Patent Document 1, even if the moire component is removed, the actual luminance of the pixel opening cannot be calculated. Therefore, there is a possibility that the correlation with the visual sensitivity cannot be obtained, the luminance is very weak, the weak defect is buried in the noise component, and cannot be detected. [0012] In the invention described in Patent Document 2, as in the invention of Patent Document 1, the calculated defect luminance value is not the luminance of the pixel opening. In addition, in the means for setting the reference position in advance and creating the corresponding correction coefficient, there is no means for correcting when a displacement occurs in the inspection panel.
[0013] 本発明は、上記の問題を解決するためになされたものであり、その目的は、欠陥絵 素開口部そのものの輝度値を算出することにより、目視感度と相関のとれた高い精度 の欠陥検出を行う検査装置、輝度算出装置及び輝度算出方法を提供することにある  [0013] The present invention has been made to solve the above-described problem, and its purpose is to calculate the luminance value of the defective pixel opening itself so as to correlate with visual sensitivity with high accuracy. To provide an inspection apparatus, a luminance calculation apparatus, and a luminance calculation method for performing defect detection
[0014] 本発明に係る輝度算出方法は、上記の課題を解決するために、複数の絵素が一 定方向に配列した表示用パネルを、撮像素子を有する撮像手段で撮像し、得られた 撮像画像データを解析し、基準範囲カゝら外れた輝度値である異常輝度値を検出する ことにより上記表示用パネルの検査を行う検査装置が備える輝度算出装置における 輝度算出方法であって、上記異常輝度値を示す撮像素子が正常な絵素を撮像して いた場合の輝度値である正常輝度値を算出する正常輝度値算出工程と、上記異常 輝度値の原因である欠陥絵素の開口部の、或る撮像素子の撮像範囲内における面 積と当該撮像範囲の面積との比である欠陥絵素率を算出する欠陥絵素率算出工程 と、上記異常輝度値と上記正常輝度値との差に上記欠陥絵素率の逆数を乗じ、得ら れた値に、上記欠陥絵素と同色の正常な絵素の輝度値である標準輝度値を加算す ることにより上記開口部の輝度値を算出する輝度値補正工程とを含むことを特徴とし ている。 [0014] In order to solve the above-described problem, the luminance calculation method according to the present invention is obtained by imaging a display panel in which a plurality of picture elements are arranged in a fixed direction with an imaging unit having an imaging element. A luminance calculation method in a luminance calculation apparatus provided in an inspection apparatus that inspects the display panel by analyzing captured image data and detecting an abnormal luminance value that is a luminance value that is out of a reference range. A normal luminance value calculating step for calculating a normal luminance value, which is a luminance value when the imaging element showing the abnormal luminance value is capturing a normal pixel, and an opening of the defective pixel that is the cause of the abnormal luminance value A defective pixel rate calculation step of calculating a defective pixel rate that is a ratio of an area within an imaging range of a certain imaging device to an area of the imaging range, and the abnormal luminance value and the normal luminance value Multiply the difference by the reciprocal of the defective pixel rate and get A luminance value correction step of calculating a luminance value of the opening by adding a standard luminance value that is a luminance value of a normal pixel of the same color as the defective pixel to the obtained value. ing.
[0015] 本発明に係る輝度算出装置は、上記の課題を解決するために、複数の絵素が一 定方向に配列した表示用パネルを、撮像素子を有する撮像手段で撮像し、得られた 撮像画像データを解析し、基準範囲カゝら外れた輝度値である異常輝度値を検出する ことにより上記表示用パネルの検査を行う検査装置が備える輝度算出装置であって 、上記異常輝度値を示す撮像素子が正常な絵素を撮像して 、た場合の輝度値であ る正常輝度値を算出する正常輝度値算出手段と、上記異常輝度値の原因である欠 陥絵素の開口部の、或る撮像素子の撮像範囲内における面積と当該撮像範囲との 比である欠陥絵素率を算出する欠陥絵素率算出手段と、上記異常輝度値と上記正 常輝度値との差に上記欠陥絵素率の逆数を乗じ、得られた値に、上記欠陥絵素と同 色の正常な絵素の輝度値である標準輝度値を加算することにより上記開口部の輝度 値を算出する輝度値補正手段とを備えることを特徴としている。 [0015] In order to solve the above problems, the luminance calculation device according to the present invention is obtained by imaging a display panel in which a plurality of picture elements are arranged in a fixed direction by an imaging means having an imaging element. A luminance calculation device included in an inspection device that inspects the display panel by analyzing captured image data and detecting an abnormal luminance value that is a luminance value that is out of a reference range. A normal luminance value calculating means for calculating a normal luminance value, which is a luminance value when the imaging element shown in the figure captures a normal pixel, and an opening of the defective pixel element that causes the abnormal luminance value. A defective pixel rate calculating means for calculating a defective pixel rate that is a ratio of an area within an imaging range of an imaging device to the imaging range; the abnormal luminance value and the positive By multiplying the difference from the normal luminance value by the reciprocal of the defective pixel rate, and adding the standard luminance value, which is the luminance value of a normal pixel of the same color as the defective pixel, to the obtained value, the aperture And a luminance value correcting means for calculating the luminance value of the part.
[0016] 絵素が一定方向に配列した表示用パネルを撮像手段で撮像した場合、撮像素子 の撮像範囲と各絵素との位置関係は一定にはならない。すなわち、ある撮像素子の 撮像範囲に含まれる絵素の面積の割合は一定にはならない。そのため、輝度値が一 定の絵素が配列した表示用パネルを撮像したとしても各撮像素子の輝度値は一定 にはならない。それゆえ、欠陥絵素の判定を行う場合に、当該欠陥絵素の正確な輝 度値が得られず、欠陥判定の精度が低下してしまう。  [0016] When a display panel in which picture elements are arranged in a certain direction is imaged by the imaging means, the positional relationship between the imaging range of the imaging element and each picture element is not constant. That is, the ratio of the area of the picture element included in the imaging range of a certain imaging device is not constant. For this reason, even if a display panel in which picture elements with a constant luminance value are arranged is imaged, the luminance value of each image sensor is not constant. Therefore, when a defective pixel is determined, an accurate brightness value of the defective pixel cannot be obtained, and the accuracy of the defect determination is lowered.
[0017] 上記の構成によれば、欠陥絵素率算出手段は、欠陥絵素率を算出し、輝度値補正 手段は、この欠陥絵素率を用いて欠陥絵素の輝度値を算出する。このとき、輝度値 補正手段は、異常輝度値と正常輝度値算出手段が算出した正常輝度値との差に欠 陥絵素率の逆数を乗じ、得られた値に標準輝度値を加算することにより欠陥絵素の 輝度値を算出する。  [0017] According to the above configuration, the defective pixel rate calculating unit calculates the defective pixel rate, and the luminance value correcting unit calculates the luminance value of the defective pixel using the defective pixel rate. At this time, the luminance value correcting means multiplies the difference between the abnormal luminance value and the normal luminance value calculated by the normal luminance value calculating means by the reciprocal of the missing pixel rate, and adds the standard luminance value to the obtained value. Calculate the luminance value of the defective pixel.
[0018] それゆえ、撮像素子の撮像範囲と絵素との位置関係に影響されずに欠陥絵素開 口部そのものの輝度値を算出することができる。したがって、輝度算出装置を検査装 置に適用することにより、欠陥絵素の目視感度と相関のとれた正確な欠陥判定を行う ことができる。  [0018] Therefore, the luminance value of the defective pixel opening itself can be calculated without being affected by the positional relationship between the imaging range of the imaging element and the picture element. Therefore, by applying the luminance calculation device to the inspection device, it is possible to perform accurate defect determination correlated with the visual sensitivity of the defective pixel.
[0019] なお、上記標準輝度値は予め設定されていてもよいし、輝度算出装置に入力手段 を設け、当該入力手段を介して輝度値を算出する処理ごとに入力されてもよい。  Note that the standard luminance value may be set in advance, or may be input every time a luminance value is calculated via an input unit provided in the luminance calculation device.
[0020] また、上記輝度算出方法は、上記欠陥絵素がどの色の絵素であるかを判定し、そ の判定結果に対応した上記標準輝度値を設定する絵素判定工程をさらに含むことが 好ましい。  [0020] The luminance calculation method further includes a pixel determination step of determining which color the defective pixel is and setting the standard luminance value corresponding to the determination result. Is preferred.
[0021] また、上記輝度算出装置は、上記欠陥絵素がどの色の絵素であるかを判定し、そ の判定結果に対応した上記標準輝度値を上記輝度値補正手段へ出力する絵素判 定手段をさらに備えることが好ましい。  [0021] Further, the luminance calculation apparatus determines which color the defective pixel is, and outputs the standard luminance value corresponding to the determination result to the luminance value correcting unit. It is preferable to further comprise determination means.
[0022] 上記の構成によれば、絵素判定手段は、欠陥絵素がどの色の絵素であるかを判定 し、判定した色に対応する標準輝度値を輝度値補正手段へ出力する。それゆえ、欠 陥絵素がどの色の絵素であっても、正確に欠陥絵素開口部の輝度値を算出すること ができる。 [0022] According to the above configuration, the picture element determination unit determines which color the defective pixel is, and outputs a standard luminance value corresponding to the determined color to the luminance value correction unit. Therefore, missing The luminance value of the defective pixel aperture can be accurately calculated regardless of the color of the pixel.
[0023] また、上記輝度算出方法は、上記撮像画像データに発生する、絵素配列方向のモ ァレの数に対応した間隔で当該撮像データの信号成分をプロットすることにより信号 成分の波形を形成する信号分割工程を上記絵素判定工程の前にさらに含み、上記 絵素判定工程において、上記波形のピークの座標と上記欠陥絵素に起因する信号 成分の座標とを比較することにより、当該欠陥絵素がどの色の絵素であるかを判定す ることが好ましい。  [0023] Further, in the luminance calculation method, the waveform of the signal component is plotted by plotting the signal component of the imaging data at intervals corresponding to the number of moles in the pixel array direction that occur in the captured image data. A signal dividing step to be formed is further included before the pixel determination step, and in the pixel determination step, by comparing the coordinates of the peak of the waveform with the coordinates of the signal component caused by the defective pixel It is preferable to determine which color the defective pixel is.
[0024] また、上記輝度算出装置は、上記撮像画像データに発生する、絵素配列方向のモ ァレの数に対応した間隔で当該撮像データの信号成分をプロットすることにより信号 成分の波形を形成する信号分割手段をさらに備え、上記絵素判定手段は、上記波 形のピークの座標と上記欠陥絵素に起因する信号成分の座標とを比較することによ り、当該欠陥絵素がどの色の絵素であるかを判定することが好ましい。  [0024] Further, the luminance calculation device plots the signal component waveform by plotting the signal component of the imaged data at intervals corresponding to the number of moles in the pixel array direction that occur in the captured image data. And further comprising a signal dividing means for forming, and the picture element judging means compares the coordinates of the peak of the waveform with the coordinates of the signal component caused by the defective picture element to determine which of the defective picture elements is. It is preferable to determine whether the pixel is a color picture element.
[0025] 上記の構成によれば、信号分割手段は、絵素配列方向のモアレの数に対応した間 隔で撮像データの信号成分 (画素値)をプロットし、信号成分の波形を形成すること により撮像画像データに発生するモアレを除去する。そして、絵素判定手段は、形成 された波形のピークの座標と欠陥絵素に起因する信号成分の座標とを比較する。波 形のピークの位置は、絵素の種類 (色)と対応しているため、上記の比較により欠陥 絵素が何色の絵素であるかを判定できる。  [0025] According to the above configuration, the signal dividing unit plots the signal component (pixel value) of the imaging data at intervals corresponding to the number of moire in the pixel array direction, and forms a waveform of the signal component. Thus, moire generated in the captured image data is removed. Then, the picture element determination means compares the coordinates of the peak of the formed waveform with the coordinates of the signal component caused by the defective picture element. Since the peak position of the waveform corresponds to the type (color) of the picture element, it is possible to determine the color of the defective picture element from the above comparison.
[0026] また、上記欠陥絵素率算出手段は、上記欠陥絵素の中心線と当該欠陥絵素を撮 像した撮像素子の撮像範囲の中心線との間の距離を算出し、当該距離に基づいて、 上記開口部の、上記撮像範囲内における面積を算出することが好ましい。  [0026] Further, the defective pixel rate calculating means calculates a distance between the center line of the defective pixel element and the center line of the imaging range of the image sensor that has captured the defective pixel element, and sets the distance to the distance. Based on this, it is preferable to calculate the area of the opening within the imaging range.
[0027] 上記の構成により、欠陥絵素の中心線と当該欠陥絵素を撮像した撮像素子の撮像 範囲の中心線との間の距離が求まり、この距離力 欠陥絵素開口部の、上記撮像範 囲内の面積を算出することができる。それゆえ、欠陥絵素率を容易に算出することが できる。  [0027] With the above configuration, the distance between the center line of the defective picture element and the center line of the imaging range of the imaging device that has imaged the defective picture element is obtained, and this distance force. The area within the range can be calculated. Therefore, the defective pixel rate can be easily calculated.
[0028] また、複数の絵素が一定方向に配列した表示用パネルを、撮像素子を有する撮像 手段で撮像し、得られた撮像画像データを解析し、基準範囲から外れた輝度値であ る異常輝度値を検出することにより上記表示用パネルの検査を行う検査装置であつ て、上記輝度算出装置と、上記輝度算出装置が算出した上記欠陥絵素の輝度値を 基準値と比較することにより上記表示用パネルの欠陥を再検査する検査手段とを備 える検査装置も本発明の技術的範囲に含まれる。 [0028] Further, a display panel in which a plurality of picture elements are arranged in a certain direction is imaged by an imaging means having an imaging element, and the obtained captured image data is analyzed to obtain a luminance value that is out of the reference range. An inspection apparatus for inspecting the display panel by detecting an abnormal luminance value, and comparing the luminance value of the defective picture element calculated by the luminance calculation apparatus and the luminance calculation apparatus with a reference value. Thus, an inspection apparatus provided with inspection means for reinspecting the display panel for defects is also included in the technical scope of the present invention.
[0029] また、上記輝度算出装置の上記各手段としてコンピュータを機能させるための輝度 算出プログラムおよび当該輝度算出プログラムを記録したコンピュータ読み取り可能 な記録媒体も本発明の技術的範囲に含まれる。  [0029] Further, a brightness calculation program for causing a computer to function as each of the means of the brightness calculation device and a computer-readable recording medium on which the brightness calculation program is recorded are also included in the technical scope of the present invention.
[0030] 本発明の他の目的、特徴、および優れた点は、以下に示す記載によって十分分か るであろう。また、本発明の利点は、添付図面を参照した次の説明によって明白にな るであろう。 [0030] Other objects, features, and advantages of the present invention will be sufficiently understood from the following description. The advantages of the present invention will become apparent from the following description with reference to the accompanying drawings.
図面の簡単な説明  Brief Description of Drawings
[0031] [図 1]一実施形態の検査装置が備える補正部の構成を示す概略図である。 FIG. 1 is a schematic diagram showing a configuration of a correction unit provided in an inspection apparatus according to an embodiment.
[図 2]—実施形態の検査装置の構成を示す概略図である。  FIG. 2 is a schematic diagram showing a configuration of an inspection apparatus according to an embodiment.
[図 3]—実施形態の検査装置が備える制御装置の構成を示す概略図である。  FIG. 3 is a schematic diagram showing a configuration of a control device provided in the inspection device of the embodiment.
[図 4]表示デバイスの構成を示す概略図である。  FIG. 4 is a schematic diagram showing the configuration of a display device.
[図 5]表示デバイスを撮像した場合に、得られる撮像素子の出力信号を示すグラフで あり、(a)は、撮像分解能が絵素ピッチよりも 1. 5%小さい場合に得られる撮像素子 の出力信号を示し、(b)は、撮像分解能が絵素ピッチよりも 21. 5%小さい場合に得 られる撮像素子の出力信号を示して ヽる。  FIG. 5 is a graph showing the output signal of the image sensor obtained when the display device is imaged. (A) shows the image sensor obtained when the image resolution is 1.5% smaller than the pixel pitch. The output signal is shown. (B) shows the output signal of the image sensor obtained when the imaging resolution is 21.5% smaller than the pixel pitch.
[図 6]—実施形態の検査装置が備える信号分割部における信号分割の例を示すた めの図である。  FIG. 6 is a diagram for illustrating an example of signal division in a signal division unit provided in the inspection apparatus of the embodiment.
[図 7]信号成分の波形力 ピーク値を算出する方法を説明するための図であり、 (a) は信号成分の波形を示すグラフであり、 (b)は隣接差分値をプロットしたグラフである  FIG. 7 is a diagram for explaining a method for calculating a signal component waveform force peak value, (a) is a graph showing a signal component waveform, and (b) is a graph plotting adjacent difference values. is there
[図 8]信号成分の波形を基に欠陥絵素の種類を判定する方法を説明するための図で あり、(a)は信号成分の波形を示すグラフであり、(b)は絵素の割当て部分を示すグ ラフである。 FIG. 8 is a diagram for explaining a method of determining the type of defective pixel based on the waveform of the signal component, (a) is a graph showing the waveform of the signal component, and (b) is a graph of the pixel. It is a graph showing the assigned part.
[図 9]一実施形態の検査装置が備える正常輝度推定部における正常輝度値算出方 法を説明するための図である。 FIG. 9: Normal luminance value calculation method in the normal luminance estimation unit provided in the inspection apparatus of one embodiment It is a figure for demonstrating a law.
圆 10]欠陥絵素率を算出する方法を説明するための図である。 [10] FIG. 10 is a diagram for explaining a method of calculating a defective pixel rate.
圆 11]欠陥絵素開口部を撮像した撮像素子の中心線と絵素開口部の中心線との間 の距離を算出する方法を説明するための図である。 [11] FIG. 11 is a diagram for explaining a method of calculating the distance between the center line of the image sensor that images the defective pixel aperture and the center line of the pixel aperture.
圆 12]撮像素子の撮像範囲と絵素との位置関係を示す図である。 12] This is a diagram showing the positional relationship between the imaging range of the imaging device and the picture elements.
圆 13]信号分割部によって分割された信号成分と撮像素子の撮像範囲との対応関 係を示す図である。 [13] FIG. 13 is a diagram illustrating a correspondence relationship between the signal component divided by the signal dividing unit and the imaging range of the imaging device.
[図 14]制御装置における処理の流れを示すフローチャートである。  FIG. 14 is a flowchart showing a flow of processing in the control device.
[図 15]検査装置における処理の流れを示すフローチャートである。 FIG. 15 is a flowchart showing a flow of processing in the inspection apparatus.
符号の説明 Explanation of symbols
1 検査装置  1 Inspection equipment
3 表示デバイス(表示用パネル)  3 Display device (display panel)
3a R絵素 (絵素)  3a R picture element (picture element)
3b G絵素 (絵素)  3b G picture element (picture element)
3c B絵素 (絵素)  3c B picture element (picture element)
8 制御装置 (検査装置)  8 Control device (Inspection device)
12 検査部 (検査手段)  12 Inspection Department (Inspection means)
13 補正部 (輝度算出装置)  13 Correction unit (luminance calculation device)
16 信号分割部 (信号分割手段)  16 Signal divider (signal divider)
17 絵素判定部 (絵素判定手段)  17 Picture element judgment unit (picture element judgment means)
18 正常輝度推定部 (正常輝度値算出手段)  18 Normal luminance estimation unit (normal luminance value calculation means)
19 輝度補正部 (輝度値補正手段)  19 Brightness correction unit (Brightness value correction means)
20 欠陥絵素率算出部 (欠陥絵素率算出手段)  20 Defect pixel rate calculation unit (Defect pixel rate calculation means)
PI 撮像素子  PI image sensor
P2 撮像素子  P2 image sensor
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
本発明の実施の一形態について図 1〜図 15に基づいて説明すれば、以下のとお りである。 [0034] 図 2は、本実施形態の検査装置 1の構成を示す概略図である。図 2に示すように、 検査装置 1は、撮像装置 2、表示デバイス 3 (表示用パネル)を載置するステージ 4、 表示デバイス 3に駆動信号を与える点灯回路 5、表示デバイス 3とのコンタクト部 6、照 明 7、制御装置 8 (検査装置)を備えている。 One embodiment of the present invention will be described below with reference to FIGS. FIG. 2 is a schematic diagram showing the configuration of the inspection apparatus 1 of the present embodiment. As shown in FIG. 2, the inspection apparatus 1 includes an imaging apparatus 2, a display device 3 (a display panel) stage 4, a lighting circuit 5 that supplies a drive signal to the display device 3, and a contact portion with the display device 3. 6. It is equipped with illumination 7, control device 8 (inspection device).
[0035] 撮像装置 2は、表示デバイス 3を撮像するためのものであり、マトリクス状に配置され た複数の撮像素子を有している。撮像装置 2として、例えば、 CCDカメラ、 cMOSカメ ラを挙げることがでさる。  [0035] The imaging device 2 is for imaging the display device 3, and has a plurality of imaging elements arranged in a matrix. Examples of the imaging device 2 include a CCD camera and a cMOS camera.
[0036] 制御装置 8は、検査装置 1を制御するものである。図 3は、制御装置 8の構成を示す 概略図である。図 3に示すように、制御装置 8は、各種の設定値を入力するための入 力部 9、欠陥検出結果を出力する出力部 10、各部を制御する主制御部 11、検査を 行う検査部 12 (検査手段)、輝度補正を行う補正部 13 (輝度算出装置)を備えて!/ヽる  The control device 8 controls the inspection device 1. FIG. 3 is a schematic diagram showing the configuration of the control device 8. As shown in FIG. 3, the control device 8 includes an input unit 9 for inputting various set values, an output unit 10 for outputting defect detection results, a main control unit 11 for controlling each unit, and an inspection unit for performing inspection. Equipped with 12 (inspection means), correction unit 13 (brightness calculation device) for brightness correction!
[0037] 検査部 12は、撮像装置 2が表示デバイス 3を撮像することにより得られた撮像画像 データを解析し、基準範囲カゝら外れた輝度値である異常輝度値を検出することにより 、表示デバイス 3の欠陥絵素を検出するものである。この検査部 12は、検出された欠 陥絵素の座標と撮像装置 2で撮像した撮像画像の輝度値のデータとを補正部 13へ 出力し、当該欠陥絵素の開口部の輝度値を補正部 13に算出させ、算出された輝度 値を予め設定された検査閾値 (基準値)と比較することにより欠陥判定を行う。この時 、検査部 12の欠陥検出アルゴリズムは、一般的に既知のアルゴリズムでよい。 [0037] The inspection unit 12 analyzes captured image data obtained by the imaging device 2 imaging the display device 3, and detects an abnormal luminance value that is a luminance value outside the reference range. This detects a defective pixel in the display device 3. The inspection unit 12 outputs the coordinates of the detected defective picture element and the luminance value data of the captured image captured by the imaging device 2 to the correction unit 13 to correct the luminance value of the opening of the defective picture element. The defect determination is performed by causing the unit 13 to calculate and comparing the calculated luminance value with a preset inspection threshold (reference value). At this time, the defect detection algorithm of the inspection unit 12 may be a generally known algorithm.
[0038] ここで、欠陥絵素とは、基準範囲力も外れた輝度値を有する絵素であり、正常な絵 素とは、基準範囲内の輝度値を有する絵素である。  [0038] Here, the defective pixel is a pixel having a luminance value that is out of the reference range force, and the normal pixel is a pixel having a luminance value within the reference range.
[0039] なお、以下の説明では、撮像装置 2が撮像した表示デバイス 3の撮像画像を単に撮 像画像と称し、当該撮像画像を形成するデータを撮像画像データと称する。  In the following description, a captured image of the display device 3 captured by the imaging device 2 is simply referred to as a captured image, and data that forms the captured image is referred to as captured image data.
[0040] 補正部 13は、撮像画像データを基に、検査部 12により検出された欠陥絵素の開 口部の輝度値を算出するものである。この補正部 13は、算出した欠陥絵素開口部の 輝度値を検査部 12に出力する。  The correction unit 13 calculates the luminance value of the opening of the defective picture element detected by the inspection unit 12 based on the captured image data. The correction unit 13 outputs the calculated luminance value of the defective pixel element opening to the inspection unit 12.
[0041] 図 1は、補正部 13の構成を示す概略図である。図 1に示すように、補正部 13は、検 查部 12から出力された欠陥絵素の座標、および撮像画像データ等、補正に必要な 補正情報を入力する入力部 14、補正結果 (欠陥絵素開口部の輝度値)を出力する 出力部 15、撮像画像データの信号成分を分割する信号分割部 16 (信号分割手段) 、撮像画像データから異常部に含まれる絵素の種類および割合を算出する絵素判 定部 17 (絵素判定手段)、欠陥絵素が正常である場合の撮像領域の輝度値を推定 する正常輝度推定部 18 (正常輝度値算出手段)、欠陥絵素の開口部の輝度値を算 出する輝度補正部 19 (輝度値補正手段)、後述する欠陥絵素率を算出する欠陥絵 素率算出部 20 (欠陥絵素率算出手段)を備えている。補正部 13を構成する各部の 詳細については後述する。 FIG. 1 is a schematic diagram showing the configuration of the correction unit 13. As shown in FIG. 1, the correction unit 13 is necessary for correction such as the coordinates of the defective picture element output from the inspection unit 12 and the captured image data. An input unit 14 for inputting correction information, an output unit 15 for outputting a correction result (luminance value of the defective pixel opening), a signal dividing unit 16 (signal dividing means) for dividing a signal component of captured image data, and captured image data The pixel determination unit 17 (picture element determination means) that calculates the type and ratio of the pixel contained in the abnormal part from the normal part, and the normal brightness estimation part 18 that estimates the brightness value of the imaging region when the defective picture element is normal 18 (Normal luminance value calculation means), luminance correction section 19 (luminance value correction means) for calculating the luminance value of the aperture of the defective pixel, and defective pixel ratio calculation section 20 (defect) for calculating the defective pixel ratio described later. Picture rate calculation means). Details of each part constituting the correction unit 13 will be described later.
[0042] なお、上記異常部とは、検査部 12から出力された欠陥絵素の座標に対応する、撮 像素子の撮像領域を意味する。  Note that the abnormal part means an imaging area of the imaging element corresponding to the coordinates of the defective picture element output from the inspection unit 12.
[0043] (表示デバイス 3の構成)  [0043] (Configuration of display device 3)
次に、検査装置 1の検査対象となる表示デバイス 3の構成について、図 4を参照し つつ説明する。図 4は、表示デバイス 3の構成を示す概略図である。  Next, the configuration of the display device 3 to be inspected by the inspection apparatus 1 will be described with reference to FIG. FIG. 4 is a schematic diagram showing the configuration of the display device 3.
[0044] 表示デバイス 3は、 R (赤)、 G (緑)、 B (青)の 3色の絵素 3a〜3cがマトリクス状に配 置されたカラーフィルターである。図 4に示すように、矩形は各絵素を示しており、 R絵 素 3a、 G絵素 3b、 B絵素 3cの繰返し配列がフィルター上に一列に形成されている。 このような絵素の配列の方向を絵素配列方向(矢印 21の方向)と称する。  The display device 3 is a color filter in which picture elements 3a to 3c of three colors R (red), G (green), and B (blue) are arranged in a matrix. As shown in FIG. 4, the rectangle indicates each picture element, and a repeating array of R picture element 3a, G picture element 3b, and B picture element 3c is formed in a line on the filter. Such a direction of picture element arrangement is referred to as a picture element arrangement direction (direction of arrow 21).
[0045] そして、この絵素配列方向における絵素と絵素との距離を絵素ピッチと称する。より 正確には、絵素ピッチは、絵素配列方向に対して垂直な、絵素の中心線と、当該絵 素に隣接する絵素の中心線との間の距離である。各絵素の間には、光吸収性の膜 である BMが露出して!/、る。  [0045] The distance between the picture elements in the picture element arrangement direction is referred to as a picture element pitch. More precisely, the picture element pitch is the distance between the center line of the picture element perpendicular to the picture element arrangement direction and the center line of the picture element adjacent to the picture element. Between each picture element, light absorbing film BM is exposed! /.
[0046] このような表示デバイス 3を撮像する場合に、絵素配列方向と、撮像装置 2が有する 撮像素子の配列方向とが平行になるように、撮像装置 2を配置する。図 4において、 格子は各撮像素子の撮像範囲 (撮像領域)を示して!/、る。各撮像素子の撮像範囲は 略正方形であり、この正方形の一辺の長さを撮像分解能と称する。図 4において、撮 像分解能は、絵素ピッチよりもわずかに小さいものになっている。  When such a display device 3 is imaged, the imaging device 2 is arranged so that the picture element arrangement direction is parallel to the arrangement direction of the imaging elements included in the imaging device 2. In Fig. 4, the grid indicates the imaging range (imaging area) of each image sensor. The imaging range of each imaging element is substantially square, and the length of one side of this square is called imaging resolution. In Fig. 4, the imaging resolution is slightly smaller than the pixel pitch.
[0047] なお、絵素は 2次元的に配列しているため、絵素配列方向は矢印 21の方向に対し て垂直な方向にも存在する力 以下では、説明を簡略化するため、矢印 21の方向の 絵素配列方向に関する説明を行う。 [0047] Since the picture elements are two-dimensionally arranged, the direction in which the picture elements are arranged is also a force that is present in a direction perpendicular to the direction of the arrow 21. In the direction of A description will be given of the pixel array direction.
[0048] (撮像素子の出力信号の例)  [0048] (Example of output signal of image sensor)
次に、表示デバイス 3を撮像した場合に、得られる撮像素子の出力信号の例につ いて、図 5を参照しつつ説明する。図 5の (a)は、撮像分解能が絵素ピッチよりも 1. 5 %小さい場合に得られる撮像素子の出力信号を示し、図 5の (b)は撮像分解能が絵 素ピッチよりも 21. 5%小さい場合に得られる撮像素子の出力信号を示している。図 5 の(a)、図 5の (b)共に表示デバイス 3の絵素配列方向の撮像素子の出力信号を 1ラ イン分表示したものである(例えば、図 4の丸枠)。  Next, an example of the output signal of the image sensor obtained when the display device 3 is imaged will be described with reference to FIG. Fig. 5 (a) shows the output signal of the image sensor obtained when the imaging resolution is 1.5% smaller than the pixel pitch, and Fig. 5 (b) shows that the imaging resolution is 21. The output signal of the image sensor obtained when it is 5% smaller is shown. Both (a) in FIG. 5 and (b) in FIG. 5 display the output signal of the image sensor in the pixel array direction of the display device 3 for one line (for example, the round frame in FIG. 4).
[0049] 図 5の (a)に示すように、撮像分解能が絵素ピッチに近くなるような分解能で撮像し た場合には、モアレは低周波成分として発生する。反対に、図 5の(b)に示すように、 撮像分解能と絵素ピッチとの差が大きくなるような分解能で撮像した場合には、モア レは高周波成分として発生する。このように撮像装置 2の撮像分解能に依存して、モ ァレの発生パターンは変化する。このようなモアレにより、表示デバイス 3の欠陥を正 確に検出することが妨げられる。  [0049] As shown in (a) of Fig. 5, moire occurs as a low-frequency component when imaging is performed with a resolution such that the imaging resolution is close to the pixel pitch. On the other hand, as shown in FIG. 5B, moiré occurs as a high-frequency component when imaging is performed with a resolution that increases the difference between the imaging resolution and the pixel pitch. In this manner, the occurrence pattern of the change varies depending on the imaging resolution of the imaging device 2. Such moire prevents accurate detection of defects in the display device 3.
[0050] (補正部 13を構成する各部の詳細)  [0050] (Details of each part constituting correction unit 13)
(信号分割部 16における信号分割の方法)  (Signal division method in the signal division unit 16)
信号分割部 16は、入力部 14から撮像画像のデータを受け取り、当該撮像画像の 絵素配列方向の信号成分を分割するものである。図 6は、信号分割部 16における信 号分割の例を示すための図である。同図に示すように、撮像分解能が絵素ピッチに 近くなるような分解能で撮像した場合には、位相がずれた 3つの信号成分 (波形 A、 B 、 C)が得られる。これらの絵素配列方向の信号成分を 2つおきにプロットし、これらの 出力信号を結ぶことにより、分割された信号を得る。  The signal dividing unit 16 receives data of the captured image from the input unit 14 and divides the signal component in the pixel array direction of the captured image. FIG. 6 is a diagram for illustrating an example of signal division in the signal division unit 16. As shown in the figure, three signal components (waveforms A, B, and C) that are out of phase are obtained when the image is picked up with a resolution close to the pixel pitch. By plotting every two signal components in the pixel array direction and connecting these output signals, a divided signal is obtained.
[0051] すなわち、波形 Aは 3n (nは正の整数)番目の出力信号を結ぶことにより得られる波 形であり、波形 Bは 3n+ l番目、波形 Cは 3n+ 2番目の出力信号を結ぶことにより得 られる波形である。また、例えば撮像分解能が絵素ピッチの 1Z2に近いような分解 能で撮像した場合には、位相がずれた 6つの信号成分が得られる。この場合には、 絵素配列方向の信号成分を 5つおきにプロットし、これらの出力信号を結ぶことにより 、分割された信号を得る。 [0052] なお、いくつおきにプロットするかは予め設定されていてもよいし、入力部 9を介して オペレータによって入力されてもよ 、。 [0051] That is, waveform A is a waveform obtained by connecting the 3n (where n is a positive integer) output signal, waveform B is the 3n + 1th output signal, and waveform C is the 3n + 2nd output signal. This is the waveform obtained. In addition, for example, when imaging is performed with a resolution such that the imaging resolution is close to 1Z2 of the pixel pitch, six signal components that are out of phase are obtained. In this case, every five signal components in the pixel array direction are plotted, and these output signals are connected to obtain a divided signal. [0052] It should be noted that the number of plots may be set in advance or may be input by the operator via the input unit 9.
[0053] 信号分割部 16は、分割した信号成分を絵素判定部 17および欠陥絵素率算出部 2 0へ出力する。  The signal dividing unit 16 outputs the divided signal component to the pixel determining unit 17 and the defective pixel rate calculating unit 20.
[0054] (絵素判定部 17における絵素種類判定方法)  (Picture Element Type Determination Method in Picture Element Determination Unit 17)
絵素判定部 17は、撮像画像データの異常部に含まれる表示デバイス 3の欠陥絵 素が RGBのどの絵素力、又は BMを挟んだ状態であるかを判定するものである。つ まり、絵素判定部 17は、表示デバイス 3の絵素と撮像素子との位置関係を算出する。  The picture element determination unit 17 determines which picture element power of RGB or a state in which BM is sandwiched between defective picture elements of the display device 3 included in the abnormal part of the captured image data. That is, the picture element determination unit 17 calculates the positional relationship between the picture element of the display device 3 and the image sensor.
[0055] 上記のように 3つの信号成分が得られるのは、撮像素子の R、 G、 Bそれぞれに対す る分光感度特性が異なるためである。ここでは、信号分割部 16にてプロットされた (分 割された)信号成分に基づき、絵素判定を行う。 The reason why the three signal components are obtained as described above is that the spectral sensitivity characteristics for R, G, and B of the image sensor are different. Here, pixel determination is performed based on the signal components plotted (divided) by the signal divider 16.
[0056] 例えば、プロットされた信号成分のうち波形 Aに、欠陥絵素に起因する信号成分が 含まれているとする。 [0056] For example, it is assumed that the waveform A among the plotted signal components includes a signal component resulting from a defective picture element.
[0057] この場合、まず、この波形 Aから最大、最小ピーク値、中間値を算出する。算出方 法としては、予め表示デバイス 3を撮像しておき、分割信号を算出し、撮像素子の分 光感度特性に基づきオペレータが最大、最小ピーク値、中間値を設定してもよいし、 動的に算出してもよい。  In this case, first, the maximum, minimum peak value, and intermediate value are calculated from the waveform A. As a calculation method, the display device 3 is imaged in advance, a divided signal is calculated, and the operator can set the maximum, minimum peak value, and intermediate value based on the spectral sensitivity characteristics of the image sensor. May be calculated automatically.
[0058] 図 7は、信号成分の波形力 ピーク値を算出する方法を説明するための図であり、 ( a)は信号成分の波形を示すグラフであり、 (b)は隣接差分値をプロットしたグラフであ る。動的に算出する方法としては、例えば、図 7の(b)に示すように、波形 Aの隣接差 分値を算出、プロットし、差分値が 0を挟む座標を最大、最小ピーク値とする。これら ピーク値のうち、プロットした差分値を結ぶ直線の傾きがマイナスになるものが最大ピ ーク値、プラスになるものが最小ピーク値となる。  FIG. 7 is a diagram for explaining a method for calculating the waveform force peak value of a signal component, (a) is a graph showing the waveform of the signal component, and (b) is a plot of adjacent difference values. It is a graph. As a method of dynamic calculation, for example, as shown in (b) of FIG. 7, the adjacent difference value of waveform A is calculated and plotted, and the coordinates where the difference value sandwiches 0 are set to the maximum and minimum peak values. . Among these peak values, the one with the negative slope of the straight line connecting the plotted difference values is the maximum peak value, and the one with the positive slope is the minimum peak value.
[0059] すなわち、信号成分の波形に対して引いた接線の傾きが水平方向の座標軸 (X軸) と平行になる点を検出することにより最大および最小ピーク値を算出する。  That is, the maximum and minimum peak values are calculated by detecting a point where the slope of the tangent line drawn with respect to the waveform of the signal component is parallel to the horizontal coordinate axis (X axis).
[0060] 次に、最大ピーク値と最小ピーク値との間の範囲うち、より広い方の範囲の真ん中 を中間ピーク値とする。中間値の位置は、 RGB絵素の並び順に依存する。図 8は、 信号成分の波形を基に欠陥絵素の種類を判定する方法を説明するための図であり、 (a)は信号成分の波形を示し、(b)は絵素の割当て部分を示している。ここで、図 8の (a)に示すように、予め入力された補正情報のうち、撮像素子の R、 G、 Bに対する感 度特性から、最大ピーク値に対応する絵素、最小ピーク値に対応する絵素種類、中 間ピーク値に対応する絵素種類が決定する。すなわち、撮像素子の感度特性が R< B< Gであるため、最大ピーク値に対応する絵素は G、最小ピーク値に対応する絵素 は Rであり、中間ピーク値に対応する絵素は Bである。 Next, the middle peak value is set to the middle of the wider range of the range between the maximum peak value and the minimum peak value. The position of the intermediate value depends on the order of RGB picture elements. FIG. 8 is a diagram for explaining a method of determining the type of defective pixel based on the waveform of the signal component. (a) shows the waveform of the signal component, and (b) shows the picture element allocation portion. Here, as shown in FIG. 8 (a), from the sensitivity characteristics of the image sensor with respect to R, G, and B, the pixel corresponding to the maximum peak value and the minimum peak value are corrected. The corresponding pixel type and the pixel type corresponding to the intermediate peak value are determined. That is, since the sensitivity characteristic of the image sensor is R <B <G, the pixel corresponding to the maximum peak value is G, the pixel corresponding to the minimum peak value is R, and the pixel corresponding to the intermediate peak value is B.
[0061] 従って、図 8の (b)に示すように、欠陥絵素に起因する信号力 最大ピーク値、中間 ピーク値、最小ピーク値によって区切られる領域のどの領域に属するかを判定するこ とにより、当該欠陥絵素がどの色の絵素であるのかを判定することができる。図 8の(b )では、最小ピーク値と最大ピーク値との間の領域を RG絵素割当て部分と称し、最 大ピーク値と中間ピーク値との間の領域を GB絵素割当て部分と称し、中間ピーク値 と最小ピーク値との間の領域を BR絵素割当て部分と称している。図 8の (b)では、欠 陥絵素に起因する信号は、 GB絵素割当て部分にある。  Accordingly, as shown in FIG. 8 (b), it is determined which region of the region delimited by the signal force maximum peak value, intermediate peak value, and minimum peak value due to the defective picture element belongs. Thus, it is possible to determine which color the defective pixel is. In Fig. 8 (b), the region between the minimum peak value and the maximum peak value is called the RG pixel allocation portion, and the region between the maximum peak value and the intermediate peak value is called the GB pixel allocation portion. The area between the intermediate peak value and the minimum peak value is called the BR picture element allocation part. In Fig. 8 (b), the signal attributed to the missing picture element is in the GB picture element allocation part.
[0062] GB絵素割り当て部分に欠陥絵素に起因する信号がある場合、他の分割信号にも 当該欠陥絵素に起因する信号が発生する。例えば、 Gが欠陥絵素である場合には、 他の分割信号の RG割り当て部分に、また、 Bが欠陥絵素である場合には、他の分割 信号の BR割り当て部分に上記欠陥絵素に起因する信号が発生する。すなわち、信 号成分の波形のピーク位置に欠陥絵素に起因する信号がある場合以外の場合には 、複数の分割信号に欠陥絵素に起因する信号が発生する。  [0062] When there is a signal due to a defective pixel in the GB pixel allocation portion, a signal due to the defective pixel is also generated in other divided signals. For example, when G is a defective pixel, the above-mentioned defective pixel is assigned to the RG allocation part of another divided signal, and when B is a defective pixel, the above-mentioned defective pixel is assigned to the BR assigned part of the other divided signal. The resulting signal is generated. That is, in cases other than the case where there is a signal due to a defective pixel at the peak position of the waveform of the signal component, a signal due to the defective pixel is generated in a plurality of divided signals.
[0063] そこで、絵素判定部 17は、複数(図 6に示した例の場合は 3つ)の信号成分の波形 を比較することにより欠陥絵素がどの色の絵素であるのかを判定する。  [0063] Therefore, the picture element determining unit 17 determines which color picture element the defective picture element is by comparing the waveforms of a plurality of signal components (three in the example shown in FIG. 6). To do.
[0064] 絵素判定部 17は、欠陥絵素の判定結果を正常輝度推定部 18、輝度補正部 19お よび欠陥絵素率算出部 20へ出力する。  The pixel determination unit 17 outputs the determination result of the defective pixel to the normal luminance estimation unit 18, the luminance correction unit 19, and the defective pixel rate calculation unit 20.
[0065] (正常輝度推定部 18における輝度推定方法)  [0065] (Luminance estimation method in normal luminance estimation unit 18)
図 9は、正常輝度推定部 18における正常輝度値算出方法を説明するための図で あり、同図の下段の図は上段の図の一部を拡大したものである。正常輝度推定部 18 は、図 9に示すように、プロットされた信号成分に含まれる欠陥絵素に起因する信号 の両隣に位置する信号の輝度値の平均値を算出し、この平均値を当該欠陥絵素が 仮に正常であった場合の撮像素子の輝度値 (以下、正常輝度値と称する)とする。 FIG. 9 is a diagram for explaining a normal luminance value calculation method in the normal luminance estimation unit 18, and the lower diagram in FIG. 9 is an enlarged view of a part of the upper diagram. As shown in FIG. 9, the normal luminance estimation unit 18 calculates the average value of the luminance values of the signals located on both sides of the signal caused by the defective pixel included in the plotted signal component, and calculates the average value. Defective pixel It is assumed that the luminance value of the image sensor when normal (hereinafter referred to as a normal luminance value).
[0066] 正常輝度推定部 18は、算出した正常輝度値を輝度補正部 19へ出力する。  The normal luminance estimation unit 18 outputs the calculated normal luminance value to the luminance correction unit 19.
[0067] (欠陥絵素率算出部 20における欠陥絵素率算出方法)  [0067] (Defect pixel rate calculation method in defect pixel rate calculation unit 20)
次に、欠陥絵素率算出部 20における欠陥絵素率算出方法について図 10および 図 11を参照しつつ説明する。図 10は、欠陥絵素率を算出する方法を説明するため の図である。図 11は、欠陥絵素開口部を撮像した撮像素子の中心線と絵素開口部 の中心線との間の距離を算出する方法を説明するための図であり、中間ピークと最 小ピークとの間に欠陥絵素開口部に起因する信号が位置して 、る場合を示して 、る  Next, a defective pixel rate calculation method in the defective pixel rate calculation unit 20 will be described with reference to FIG. 10 and FIG. FIG. 10 is a diagram for explaining a method of calculating the defective pixel rate. FIG. 11 is a diagram for explaining a method of calculating the distance between the center line of the image sensor that images the defective pixel aperture and the center line of the pixel aperture. In this case, the signal due to the defective pixel opening is located between
[0068] 欠陥絵素率算出部 20は、信号分割部 16から出力された信号成分および絵素判定 部 17から出力された欠陥絵素の判定結果をもとに、或る撮像素子の撮像範囲内に おける欠陥絵素開口部の面積 (Ar)と当該撮像範囲の面積との比である欠陥絵素率 を以下のように算出する。 [0068] The defective picture element rate calculation unit 20 is based on the signal component output from the signal dividing unit 16 and the determination result of the defective pixel output from the pixel determination unit 17, and the imaging range of a certain image sensor. The defective pixel ratio, which is the ratio of the area (Ar) of the defective pixel opening in the inside to the area of the imaging range, is calculated as follows.
[0069] R絵素に輝点欠陥があるとすると、図 10に示すように、上記欠陥絵素開口部の面 積 (Ar)は以下の式により算出することができる。  [0069] Assuming that the R picture element has a bright spot defect, as shown in FIG. 10, the area (Ar) of the defective picture element opening can be calculated by the following equation.
Ar=Lr水 S  Ar = Lr water S
ここで、 Lrは、撮像素子の撮像範囲に含まれる欠陥絵素開口部 (R絵素)の、絵素 配列方向における幅であり、 Sは撮像分解能である。  Here, Lr is the width in the pixel array direction of the defective pixel aperture (R picture element) included in the imaging range of the imaging element, and S is the imaging resolution.
[0070] 上記 Lrは以下の式により算出することができる。 [0070] The above Lr can be calculated by the following equation.
Lr=S/2— Lbml  Lr = S / 2— Lbml
ここで、 Lbmlは、注目する撮像素子内の絵素配列方向における BM幅であって、 欠陥絵素開口部と撮像素子の中心線との間の距離である。  Here, Lbml is the BM width in the pixel arrangement direction in the image sensor of interest, and is the distance between the defective pixel aperture and the center line of the image sensor.
[0071] さらに、 Lbmlは、以下の式により算出することができる。 [0071] Further, Lbml can be calculated by the following equation.
[0072] Lbml =N-Pm/2 [0072] Lbml = N-Pm / 2
ここで、 Nの値は、欠陥絵素開口部を撮像した撮像素子の中心線と、当該撮像素 子の中心線に隣接する欠陥絵素開口部 (R絵素)の中心線との間の距離である。ま た、 Pmは、絵素配列方向における絵素開口部の幅である。  Here, the value of N is between the center line of the image sensor that images the defective pixel aperture and the center line of the defective pixel aperture (R pixel) adjacent to the center line of the image sensor. Distance. Pm is the width of the pixel opening in the pixel arrangement direction.
[0073] 上記 Nの値は、図 11に示すように、欠陥絵素に起因する信号の座標と、当該信号 の両隣に位置するピーク(最大ピーク、中間ピーク、最小ピークのうちのいずれか 2つ の組み合わせ)の座標との差力も算出することができる。 [0073] As shown in Fig. 11, the value of N is the coordinates of the signal caused by the defective pixel and the signal. It is also possible to calculate the differential force with the coordinates of the peaks located on both sides of (the combination of any two of the maximum peak, intermediate peak, and minimum peak).
[0074] なお、 Pmは、固有の値 (設計値)であり、制御装置 8が備えるメモリ(不図示)に格納 されていてもよいし、オペレータによってその都度入力されてもよい。これらの値は、 入力部 14を介して欠陥絵素率算出部 20へ出力される。  Note that Pm is a unique value (design value), and may be stored in a memory (not shown) included in the control device 8, or may be input each time by an operator. These values are output to the defective pixel rate calculation unit 20 via the input unit 14.
[0075] 以上をまとめると、欠陥絵素率算出部 20は、以下の式により欠陥絵素開口部の面 積 (Ar)を算出する。  Summarizing the above, the defective pixel rate calculation unit 20 calculates the area (Ar) of the defective pixel opening by the following equation.
Ar= {S/2- (N-Pm/2) } * S  Ar = {S / 2- (N-Pm / 2)} * S
つまり、欠陥絵素率算出部 20は、欠陥絵素開口部の中心線と当該欠陥絵素を撮 像した撮像素子の撮像範囲の中心線との間の距離を算出し、この距離から欠陥絵素 開口部の撮像範囲内における面積を算出する。  In other words, the defective pixel rate calculation unit 20 calculates the distance between the center line of the defective pixel opening and the center line of the imaging range of the image sensor that has captured the defective pixel element, and the defective image is calculated from this distance. Calculate the area of the aperture in the imaging range.
[0076] そして、欠陥絵素率算出部 20は、欠陥絵素開口部の撮像範囲内の面積 (Ar)を撮 像素子の撮像範囲の面積 (Accd)で割ることにより欠陥絵素率を算出する。欠陥絵 素率算出部 20は、算出した欠陥絵素率を輝度補正部 19へ出力する。  [0076] Then, the defective pixel rate calculation unit 20 calculates the defective pixel rate by dividing the area (Ar) in the imaging range of the defective pixel opening by the area (Accd) of the imaging range of the imaging element. To do. The defective pixel rate calculation unit 20 outputs the calculated defective pixel rate to the luminance correction unit 19.
[0077] (輝度補正部 19における輝度補正の方法)  [0077] (Brightness correction method in the brightness correction unit 19)
輝度補正部 19は、欠陥絵素開口部を含む領域を撮像した撮像素子の輝度値から 、実際の欠陥絵素開口部の輝度値を算出するものである。より具体的には、輝度補 正部 19は、絵素判定部 17から出力された欠陥絵素判定結果、正常輝度推定部 18 力も出力された正常輝度値および欠陥絵素率算出部 20から出力された欠陥絵素率 をもとに、実際の欠陥絵素開口部の輝度値を算出する。  The luminance correction unit 19 calculates the actual luminance value of the defective pixel opening from the luminance value of the image sensor that images the region including the defective pixel opening. More specifically, the luminance correction unit 19 outputs the defect pixel determination result output from the pixel determination unit 17, the normal luminance value output from the normal luminance estimation unit 18 and the defect pixel rate calculation unit 20 output. Based on the defective pixel ratio, the luminance value of the actual defective pixel opening is calculated.
[0078] 図 12は、撮像素子の撮像範囲と絵素との位置関係を示す図である。撮像素子の輝 度値は、撮像範囲の平均となるため、図 12に示すように、欠陥絵素開口部及び BM の輝度値の平均値となる場合 (図 12の上段)、または、欠陥絵素開口部、隣接開口 部及び BMの輝度値の平均値となる場合(図 12の下段)がある。輝度補正部 19は、 このような撮像素子の輝度値力も欠陥絵素開口部の輝度値を算出する。  FIG. 12 is a diagram showing the positional relationship between the imaging range of the imaging device and the picture elements. Since the brightness value of the image sensor is the average of the imaging range, as shown in Fig. 12, the average value of the luminance values of the defective pixel aperture and BM (upper part of Fig. 12), or In some cases, the average value of the luminance values of the elementary openings, adjacent openings, and BM (lower part of Fig. 12). The luminance correction unit 19 calculates the luminance value of the defective pixel opening as well as the luminance value of such an image sensor.
[0079] 図 13は、分割された信号成分と撮像素子の撮像範囲との対応関係を示す図である 。例えば、図 13に示すように、 R絵素開口部に輝点欠陥があり、互いに隣接する撮像 素子 Pl、 P2の撮像範囲にそれぞれ当該欠陥絵素開口部の一部が含まれており、撮 像素子 PIには G絵素開口部の一部が、撮像素子 P2には B絵素開口部の一部が含 まれて 、る場合にっ 、て説明する。 FIG. 13 is a diagram illustrating a correspondence relationship between the divided signal components and the imaging range of the imaging device. For example, as shown in FIG. 13, there is a bright spot defect in the R pixel opening, and a part of the defective pixel opening is included in the imaging range of the imaging elements Pl and P2 adjacent to each other. The case where the image element PI includes a part of the G picture element opening and the image pickup element P2 includes a part of the B picture element opening will be described.
[0080] この場合、欠陥絵素開口部を含む撮像素子の輝度値は、当該欠陥絵素開口部、 当該欠陥絵素開口部に隣接する絵素開口部、 BMの輝度値の平均値となっている。 [0080] In this case, the luminance value of the imaging device including the defective pixel opening is an average value of the luminance values of the defective pixel opening, the pixel opening adjacent to the defective pixel opening, and the BM. ing.
[0081] この時、欠陥絵素開口部を撮像した撮像素子 Pl、 P2の輝度値 (異常輝度値)をそ れぞれ YrPl、 YrP2とすると、この撮像素子の輝度値に関して以下の(1)及び(2)式 が成立する。 [0081] At this time, assuming that the luminance values (abnormal luminance values) of the image sensors Pl and P2 that image the defective pixel aperture are YrPl and YrP2, respectively, the following (1) And (2) holds.
YrP 1 = (Yrd * Ar 1 + Yg * Ag + Ybm * Abm 1 ) / Accd · · ( 1 )  YrP 1 = (Yrd * Ar 1 + Yg * Ag + Ybm * Abm 1) / Accd (1)
YrP 2 = (Yrd * Ar 2 + Yb * Ab + Ybm * Abm2) /Accd · · (2)  YrP 2 = (Yrd * Ar 2 + Yb * Ab + Ybm * Abm2) / Accd (2)
ここで、 Yrdは、実際の R絵素輝点開口部の輝度値、 Ygは G絵素開口部の輝度値 、 Ybmは BMの輝度値である。また、 Arlは撮像素子 P1内の R絵素輝点開口部の面 積、 Ar2は撮像素子 P2内の R絵素輝点開口部の面積、 Agは撮像素子 P1内の G絵 素開口部の面積、 Abは撮像素子 P2内の B絵素開口部の面積、 Abmlは撮像素子 P1内の BMの面積、 Abm2は撮像素子 P2内の BMの面積である。このようなパラメ ータのうち、欠陥がな 、状態の実際の R · G · B絵素開口部の輝度値 (標準輝度値)、 及び BMの輝度値については、予め、高分解能にて表示デバイス 3を撮像し、その撮 像画像データを取得しておく。  Here, Yrd is the actual luminance value of the R pixel bright spot opening, Yg is the G pixel luminance value, and Ybm is the BM luminance value. Arl is the area of the R pixel luminescent spot opening in the image sensor P1, Ar2 is the area of the R pixel luminescent spot opening in the image sensor P2, Ag is the area of the G pixel opening in the image sensor P1, Ab is the area of the B pixel opening in the image sensor P2, Abml is the area of the BM in the image sensor P1, and Abm2 is the area of the BM in the image sensor P2. Among these parameters, the brightness value (standard brightness value) of the actual R, G, and B pixel apertures in the state without defects, and the brightness value of BM are displayed in high resolution in advance. Take an image of device 3 and obtain the image data.
[0082] 次に、欠陥絵素開口部が仮に正常であった場合の撮像素子 P1及び P2の輝度値、 すなわち、正常輝度推定部 18により算出された正常輝度値を YrPnl、 YrPn2とする と、 YrPnl及び YrPn2〖こ関して、以下の(3)及び (4)式が成立する。 Next, assuming that the luminance values of the image pickup devices P1 and P2 when the defective pixel aperture is normal, that is, the normal luminance values calculated by the normal luminance estimating unit 18, are YrPnl and YrPn2. Regarding YrPnl and YrPn2, the following formulas (3) and (4) hold.
YrPnl = (Yr*Arl +Yg *Ag+Ybm *Abml) /Accd' ' (3)  YrPnl = (Yr * Arl + Yg * Ag + Ybm * Abml) / Accd '' (3)
YrPn2 = (Yr * Ar2+Yb * Ab + Ybm * Abm2) /Accd · · (4)  YrPn2 = (Yr * Ar2 + Yb * Ab + Ybm * Abm2) / Accd (4)
ここで、 Yrは、正常である場合の R絵素開口部の輝度値 (標準輝度値)である。従 つて、(1)式及び(3)式より、 R絵素輝点開口部の輝度値 Yrdは、以下の(5)式によ つて表すことができる。  Here, Yr is the luminance value (standard luminance value) of the R picture element opening when normal. Therefore, from Equations (1) and (3), the luminance value Yrd of the R picture element bright spot opening can be expressed by the following Equation (5).
Yrd = {Accd * (YrP 1 - YrPn 1 ) / Ar 1 } + Yr · · (5)  Yrd = {Accd * (YrP 1-YrPn 1) / Ar 1} + Yr · (5)
ここで、 AccdZArlの値は、欠陥絵素率算出部 20から出力された欠陥絵素率の 逆数である。 [0083] 同様にして、(2)式及び (4)式より、 R絵素輝点開口部の輝度値を算出することがで きる (省略)。この場合、撮像素子 P1または P2のどちらか一方の輝度値を用いて R絵 素輝点開口部の輝度値を算出すればよい。より精度を上げるならば、撮像素子 P1及 び P2の両方の輝度値を用いて R絵素輝点開口部の輝度値を算出し、その平均値を とってもよい。 Here, the value of AccdZArl is the reciprocal of the defective pixel rate output from the defective pixel rate calculation unit 20. Similarly, the luminance value of the R picture element bright spot opening can be calculated from the equations (2) and (4) (omitted). In this case, the luminance value of the R pixel bright spot opening may be calculated using the luminance value of one of the image sensors P1 and P2. For higher accuracy, the luminance value of the R picture element bright spot opening may be calculated using the luminance values of both the image sensors P1 and P2, and the average value may be taken.
[0084] なお、 Abml、 Abm2は、以下のように算出することができる。以下では、(4)式を 適用する場合について説明する。撮像分解能を S、注目する撮像素子内の BM幅を [0084] Abml and Abm2 can be calculated as follows. In the following, the case where equation (4) is applied will be described. The imaging resolution is S, and the BM width in the image sensor
Lbmとすると、 Ab、 Abm2は、 Assuming Lbm, Ab and Abm2 are
Ab=Lb水 S、  Ab = Lb water S,
Abm2=Lbm水 S、  Abm2 = Lbm water S,
と表すことができる。  It can be expressed as.
[0085] (制御装置 8における処理の流れ) [0085] (Processing flow in control device 8)
次に、制御装置 8における処理の流れについて、図 14を参照しつつ説明する。図 1 Next, the flow of processing in the control device 8 will be described with reference to FIG. Figure 1
4は、制御装置 8における処理の流れを示すフローチャートである。図 14に示すよう に、まず、主制御部 11の命令に従い、検査部 12は、撮像画像から欠陥絵素を検出 する(S10)。 FIG. 4 is a flowchart showing the flow of processing in the control device 8. As shown in FIG. 14, first, in accordance with a command from the main control unit 11, the inspection unit 12 detects defective picture elements from the captured image (S10).
[0086] 欠陥検出のアルゴリズムは、一般的なアルゴリズムでかまわな 、。例えば、全ての撮 像素子ごとにその近傍素子の輝度値と比較するアルゴリズムなどがある。この時、撮 像分解能の設定上、複数の撮像素子に跨って欠陥絵素領域が検出されることもある 力 輝度値の最も高!、部分 (または最も低 ヽ部分)を欠陥座標としてもょ ヽ。  [0086] The defect detection algorithm may be a general algorithm. For example, there is an algorithm for comparing every image element with the brightness value of its neighboring elements. At this time, the defective pixel area may be detected across multiple image sensors due to the setting of the image resolution. Force The brightness value is the highest !, the part (or the lowest part) is the defect coordinate.ヽ.
[0087] また、欠陥絵素の他に、表示デバイス 3表面上の異物や、表示デバイス 3を構成す る各層上の異物、カラーフィルター破れなどが欠陥として検出される可能性があるが 、欠陥絵素との形状比較、またはパターンマッチングにより、欠陥絵素のみを補正す る構成としてもよい。以下では、欠陥とは、絵素の欠陥を意味するものとする。  [0087] In addition to the defective picture element, foreign matter on the surface of the display device 3, foreign matter on each layer constituting the display device 3, and color filter breakage may be detected as defects. A configuration may be adopted in which only defective pixel elements are corrected by shape comparison with pixel elements or pattern matching. Hereinafter, a defect means a defect of a picture element.
[0088] 検査部 12は、検出した欠陥絵素の座標を補正部 13の入力部 14を介して信号分 割部 16へ出力する。  The inspection unit 12 outputs the coordinates of the detected defective picture element to the signal division unit 16 via the input unit 14 of the correction unit 13.
[0089] 次に、信号分割部 16は、検査部 12にて得られた欠陥絵素の座標に基づいて、絵 素配列方向の信号成分を自らが備える一時記憶メモリ(不図示)に記憶し、その絵素 配列方向の信号成分をモアレ数に応じた間隔でプロットする(S11) (絵素分割工程) 。信号分割部 16は、プロットした信号成分を絵素判定部 17、正常輝度推定部 18及 び欠陥絵素率算出部 20へ出力する。 Next, the signal dividing unit 16 stores the signal component in the pixel arrangement direction in a temporary storage memory (not shown) provided for itself based on the coordinates of the defective pixel obtained by the inspection unit 12. , That picture element The signal components in the arrangement direction are plotted at intervals according to the moire number (S11) (picture element dividing step). The signal dividing unit 16 outputs the plotted signal components to the pixel determination unit 17, the normal luminance estimation unit 18, and the defective pixel rate calculation unit 20.
[0090] 次に、絵素判定部 17は、プロットされた信号成分を用いて、欠陥絵素判定を行 、 ( S12) (絵素判定工程)、その判定結果を輝度補正部 19及び欠陥絵素率算出部 20 へ出力する。 Next, the pixel determination unit 17 performs defective pixel determination using the plotted signal components, (S12) (pixel determination step), and the determination result is sent to the luminance correction unit 19 and the defective image. Output to the prime factor calculator 20.
[0091] 一方、信号分割部 16からプロットされた信号成分を受け取ると、正常輝度推定部 1 8は、当該信号成分を用いて、正常輝度値の算出を行う(S13) (正常輝度値算出ェ 程)。そして、正常輝度推定部 18は、算出した正常輝度値を輝度補正部 19へ出力 する。  On the other hand, when the signal component plotted from the signal dividing unit 16 is received, the normal luminance estimating unit 18 calculates a normal luminance value using the signal component (S13) (normal luminance value calculating unit). About). Then, the normal luminance estimation unit 18 outputs the calculated normal luminance value to the luminance correction unit 19.
[0092] また、欠陥絵素率算出部 20は、信号分割部 16からプロットされた信号成分を、絵 素判定部 17から絵素の判定結果を受け取ると、上述したように、欠陥絵素率を算出 する (S14) (欠陥絵素率算出工程)。欠陥絵素率算出部 20は、算出した欠陥絵素率 を輝度補正部 19へ出力する。  Further, when the defective pixel rate calculation unit 20 receives the signal component plotted from the signal dividing unit 16 and the pixel determination result from the pixel determination unit 17, as described above, the defective pixel rate is calculated. (S14) (Defect pixel rate calculation step). The defective pixel rate calculation unit 20 outputs the calculated defective pixel rate to the luminance correction unit 19.
[0093] 絵素判定部 17から絵素の判定結果を、正常輝度推定部 18から正常輝度値を受け 取ると、輝度補正部 19は、上述した方法で欠陥絵素開口部の輝度値を算出する(S 15) (輝度値補正工程)。そして、輝度補正部 19は、算出した欠陥絵素開口部の輝 度値を出力部 15へ出力する。  [0093] When the pixel determination result is received from the pixel determination unit 17 and the normal luminance value is received from the normal luminance estimation unit 18, the luminance correction unit 19 calculates the luminance value of the defective pixel opening by the method described above. (S15) (luminance value correction step). Then, the luminance correction unit 19 outputs the calculated luminance value of the defective pixel opening to the output unit 15.
[0094] 欠陥絵素開口部の輝度値を受け取ると、出力部 15は、当該輝度値を検査部 12へ 出力する(S16)。  [0094] Upon receiving the luminance value of the defective pixel element opening, the output unit 15 outputs the luminance value to the inspection unit 12 (S16).
[0095] (検査装置 1における処理の流れ)  [0095] (Processing flow in inspection apparatus 1)
次に、検査装置 1における処理の流れについて、図 15を参照しつつ説明する。図 1 5は、検査装置 1における処理の流れを示すフローチャートである。図 15に示すよう に、まず、表示デバイス 3は、ステージ 4に載置された後に、コンタクト部 6と接触する ように配置される(Sl)。  Next, the flow of processing in the inspection apparatus 1 will be described with reference to FIG. FIG. 15 is a flowchart showing the flow of processing in the inspection apparatus 1. As shown in FIG. 15, the display device 3 is first placed on the stage 4 and then placed in contact with the contact portion 6 (Sl).
[0096] 表示デバイス 3が配置されたことを検出すると、主制御部 11は、点灯回路 5を介して When it is detected that the display device 3 is arranged, the main control unit 11 passes through the lighting circuit 5.
、表示デバイス 3に駆動信号を与える(S2)。 Then, a drive signal is given to the display device 3 (S2).
[0097] この駆動信号を受け取ると、表示デバイス 3は、検査可能な画像を表示する。なお、 コンタクトが失敗している場合には、コンタクトをやり直す必要がある(SIに戻る)。 [0097] Upon receiving this drive signal, the display device 3 displays an inspectable image. In addition, If the contact has failed, the contact must be redone (return to SI).
[0098] 次に、主制御部 11は、撮像画像に適するように照明 7の照度を調整する(S3)。な お、表示デバイス 3が自発光型である場合は、その発光量を調整する。 Next, the main control unit 11 adjusts the illuminance of the illumination 7 so as to be suitable for the captured image (S3). If the display device 3 is a self-luminous type, adjust the amount of light emitted.
[0099] 次に、主制御部 11は、表示デバイス 3を保持したステージ 4を制御する(S4)。そし て、撮像装置 2は、予め設定された分解能で表示デバイス 3を撮像する(S5)。 Next, the main control unit 11 controls the stage 4 holding the display device 3 (S4). Then, the imaging device 2 images the display device 3 with a preset resolution (S5).
[0100] そして、主制御部 11は、表示デバイス 3の回転のずれを検出し、予め設定していた 回転角度限界値よりも大きい場合には(S6にて YES)、ァライメントエラーを出力し (S[0100] Then, the main control unit 11 detects the rotational deviation of the display device 3, and outputs a alignment error if it is larger than the preset rotation angle limit value (YES in S6). (S
9)、ステージ 4の制御を行うか、表示デバイス 3のコンタクトをやり直す必要がある旨 のメッセージを出力する。 9) Output a message indicating that it is necessary to control stage 4 or contact display device 3 again.
[0101] 表示デバイスの回転ずれを検出する方法については、一般的に既知な方法でかま わない。例えば、表示デバイスの表示部の角について、 X方向、 y方向のエッジ成分 力も算出してもよ!/、し、パターンマッチングを行ってもよ!、。 [0101] The method for detecting the rotation deviation of the display device may be a generally known method. For example, you can calculate the edge component force in the X and y directions for the corners of the display part of the display device! /, And do pattern matching!
[0102] 表示デバイス 3の回転ずれ力 回転角度限界値よりも小さい場合には(S6にて NO[0102] Rotational deviation force of display device 3 If smaller than rotation angle limit value (NO in S6)
)、検査部 12にて欠陥検出を行い、補正部 13にて、検出された欠陥の輝度を算出す る。 ), The defect detection is performed by the inspection unit 12, and the luminance of the detected defect is calculated by the correction unit 13.
[0103] そして、検査部 12は、補正部 13が算出した輝度値と予め設定されている検査閾値 とを比較することにより欠陥検出処理を行う(S7)。欠陥の有無が判定されると、主制 御部 11は、検査結果を出力し、一連の処理を終了する。  Then, the inspection unit 12 performs a defect detection process by comparing the luminance value calculated by the correction unit 13 with a preset inspection threshold (S7). When it is determined whether there is a defect, the main control unit 11 outputs the inspection result and ends the series of processes.
[0104] (検査装置 1の効果)  [0104] (Effect of inspection device 1)
以上のように、検査装置 1では、まず、検査部 12が撮像素子の輝度値 (欠陥絵素開 口部を含む撮像範囲の輝度値)から表示デバイス 3の欠陥絵素を暫定的に検出し、 補正部 13は、当該欠陥絵素の開口部そのものの輝度値を算出する。検査部 12は、 補正部 13が算出した輝度値と検査閾値とを比較することにより、当該欠陥絵素に本 当に欠陥があるかどうかを再度検査する。  As described above, in the inspection apparatus 1, first, the inspection unit 12 tentatively detects the defective pixel of the display device 3 from the luminance value of the imaging element (the luminance value of the imaging range including the defective pixel opening). The correction unit 13 calculates the luminance value of the opening of the defective pixel itself. The inspection unit 12 compares the luminance value calculated by the correction unit 13 with the inspection threshold value, and re-inspects whether or not the defective pixel is actually defective.
[0105] それゆえ、欠陥絵素の検査精度を高めることができ、目視検査と相関のとれた検査 を行うことができる。  [0105] Therefore, the inspection accuracy of defective picture elements can be improved, and inspection correlated with visual inspection can be performed.
[0106] また、信号分割部 16において、モアレの影響を除去しているため、検査精度をさら に高めることができる。 [0107] また、絵素判定部 17において、信号成分の波形のピークの座標と欠陥絵素に起因 する信号成分の座標とを比較することにより、当該欠陥絵素がどの色の絵素であるか を判定して ヽるため、低解像度 (絵素ピッチ程度以上)で撮像しても欠陥絵素の色を 半 U定することができる。 [0106] Further, since the influence of moire is removed in the signal dividing unit 16, the inspection accuracy can be further increased. [0107] Further, the pixel determination unit 17 compares the coordinates of the peak of the waveform of the signal component with the coordinates of the signal component caused by the defective pixel, so that the color of the defective pixel is the defective pixel. Therefore, even if an image is taken at a low resolution (about the pixel pitch or more), the color of the defective pixel can be set to half U.
[0108] また、検査装置 1では、低コストに検査を行うことが可能である。絵素開口部のみの 輝度を正確に捉えようとすると、高画素のカメラが必要となる力、または複数台のカメ ラが必要となる。また、ミクロ検査用カメラを付属させる方法 (マクロカメラで全体を検 查し、ミクロカメラで欠陥候補を詳細検査する方法)では、タクトがかかる。検査装置 1 では、(絵素開口部以下の)十分な分解能を持たないカメラ構成でも、欠陥絵素を正 常に推定することにより、検査のコストを下げることができる。  [0108] In addition, the inspection apparatus 1 can perform inspection at low cost. In order to accurately capture the brightness of only the pixel aperture, a force that requires a high-pixel camera or multiple cameras is required. Also, the method of attaching a micro inspection camera (a method of inspecting the whole with a macro camera and inspecting defect candidates in detail with a micro camera) requires a tact. Inspecting device 1 can reduce the cost of inspection by correctly estimating the defective pixel even in a camera configuration that does not have sufficient resolution (below the pixel aperture).
[0109] (変更例)  [0109] (Modification example)
表示デバイス 3は、カラーフィルターであってもよいし、白黒表示のためのフィルター であってもよい。また、絵素の種類も 3種類に限定されない。また、絵素の配列順序も 上述のものに限定されない。  The display device 3 may be a color filter or a filter for monochrome display. Also, the number of picture elements is not limited to three. Further, the arrangement order of the picture elements is not limited to the above.
[0110] また、上述の説明では、基準範囲より高い輝度値を有する欠陥絵素について説明 したが、本発明は、基準範囲より低い輝度値を有する欠陥絵素を検出する場合にも 適用できる。 [0110] In the above description, a defective pixel having a luminance value higher than the reference range has been described. However, the present invention can also be applied to the case of detecting a defective pixel having a luminance value lower than the reference range.
[0111] また、上述した検査装置 1の各ブロック、特に制御装置 8、検査部 12、補正部 13は 、ハードウェアロジックによって構成してもよいし、次のように CPUを用いてソフトゥェ ァによって実現してもよい。  [0111] Further, each block of the above-described inspection apparatus 1, in particular, the control unit 8, the inspection unit 12, and the correction unit 13 may be configured by hardware logic, or by software using a CPU as follows. It may be realized.
[0112] すなわち、検査装置 1は、各機能を実現する制御プログラムの命令を実行する CP U central processing unit)、上 dプログフム 格糸内した ROM (read only memory)、 上記プログラムを展開する RAM (random access memory) ,上記プログラムおよび各 種データを格納するメモリ等の記憶装置 (記録媒体)などを備えている。そして、本発 明の目的は、上述した機能を実現するソフトウェアである検査装置 1の制御プロダラ ム (輝度算出プログラム)のプログラムコード (実行形式プログラム、中間コードプログ ラム、ソースプログラム)をコンピュータで読み取り可能に記録した記録媒体を、上記 検査装置 1に供給し、そのコンピュータ (または CPUや MPU)が記録媒体に記録さ れているプログラムコードを読み出し実行することによつても、達成可能である。 [0112] That is, the inspection apparatus 1 has a CPU (Central Processing Unit) that executes instructions of a control program that realizes each function, a ROM (read only memory) in the upper program, and a RAM ( random access memory), and a storage device (recording medium) such as a memory for storing the program and various data. The object of the present invention is to read the program code (execution format program, intermediate code program, source program) of the control program (brightness calculation program) of the inspection apparatus 1, which is software that realizes the functions described above, by a computer. The recorded recording medium is supplied to the inspection device 1 and the computer (or CPU or MPU) is recorded on the recording medium. This can also be achieved by reading and executing the program code.
[0113] 上記記録媒体としては、例えば、磁気テープやカセットテープ等のテープ系、フロッ ピー(登録商標)ディスク Zハードディスク等の磁気ディスクや CD— ROMZMOZ MD/DVD/CD—R等の光ディスクを含むディスク系、 ICカード (メモリカードを含 む) Z光カード等のカード系、あるいはマスク ROMZEPROMZEEPROMZフラッ シュ ROM等の半導体メモリ系などを用いることができる。  [0113] Examples of the recording medium include a tape system such as a magnetic tape and a cassette tape, a magnetic disk such as a floppy (registered trademark) disk Z hard disk, and an optical disk such as CD-ROMZMOZ MD / DVD / CD-R. Disk systems, IC cards (including memory cards) Z optical cards and other card systems, or mask ROMZEPROMZEEPROMZ flash ROM and other semiconductor memory systems can be used.
[0114] また、検査装置 1を通信ネットワークと接続可能に構成し、上記プログラムコードを 通信ネットワークを介して供給してもよい。この通信ネットワークとしては、特に限定さ れず、例えば、インターネット、イントラネット、エキストラネット、 LAN, ISDN, VAN, CATV通信網、仮想専用網(virtual private network)、電話回線網、移動体通信網 、衛星通信網等が利用可能である。また、通信ネットワークを構成する伝送媒体とし ては、特に限定されず、例えば、 IEEE1394、 USB、電力線搬送、ケーブル TV回 線、電話線、 ADSL回線等の有線でも、 IrDAやリモコンのような赤外線、 Bluetooth (登録商標)、 802. 11無線、 HDR、携帯電話網、衛星回線、地上波デジタル網等 の無線でも利用可能である。なお、本発明は、上記プログラムコードが電子的な伝送 で具現化された、搬送波に埋め込まれたコンピュータデータ信号の形態でも実現さ れ得る。 [0114] The inspection apparatus 1 may be configured to be connectable to a communication network, and the program code may be supplied via the communication network. The communication network is not particularly limited. For example, the Internet, intranet, extranet, LAN, ISDN, VAN, CATV communication network, virtual private network, telephone line network, mobile communication network, satellite communication A net or the like is available. In addition, the transmission medium constituting the communication network is not particularly limited. For example, in the case of wired communication such as IEEE1394, USB, power line carrier, cable TV line, telephone line, ADSL line, infrared rays such as IrDA and remote control, Bluetooth (registered trademark), 802.11 wireless, HDR, mobile phone network, satellite line, and terrestrial digital network can also be used. The present invention can also be realized in the form of a computer data signal embedded in a carrier wave in which the program code is embodied by electronic transmission.
[0115] また、本発明は、以下のようにも表現できる。  [0115] The present invention can also be expressed as follows.
[0116] 本発明の表示デバイスの輝度算出方法は、カラーフィルタを持つ表示デバイスの 表示画面を検査画面として、撮像部にて撮像し、得られた撮像画像データにより表 示デバイスの良否を判定する検査における輝度算出方法であって、上記撮像画像 データに発生する X軸方向、 Y軸方向の何れか一方のモアレの数を入力する工程と、 上記モアレの数に対応した間隔で撮像データの画素値をプロットする工程と、上記プ ロットされたデータ列から異常部を検出する工程と、上記検出された異常部に含まれ る表示絵素の種類と割合を判定する工程と、上記検出された異常部が正常である場 合のデータを算出する工程と、上記判定された表示絵素の種類と割合と、異常部の データ、上記異常部が正常である場合のデータとから、欠陥絵素の輝度を算出する 工程を含んでいる。 [0117] 上記異常部に含まれる表示絵素の種類と割合を判定する工程は、上記プロットされ たデータ列力 最大、最小ピーク値、中間値を算出する工程と、撮像素子の分光感 度特性から、上記最大、最小ピーク値、中間値とカラーフィルタの絵素パターンとを 対応付ける工程と、上記プロットされたデータ列から異常部に含まれる表示絵素の種 類と割合を判定する工程を含むことが好まし 、。 [0116] In the luminance calculation method for a display device of the present invention, the display screen of a display device having a color filter is used as an inspection screen, and an image is picked up by an imaging unit. A method for calculating luminance in an inspection, the step of inputting the number of moire in either the X-axis direction or the Y-axis direction generated in the captured image data, and pixels of the captured data at intervals corresponding to the number of moire A step of plotting values, a step of detecting an abnormal portion from the plotted data string, a step of determining the type and ratio of display picture elements included in the detected abnormal portion, and the detected From the process of calculating the data when the abnormal part is normal, the type and ratio of the determined display picture element, the data of the abnormal part, and the data when the abnormal part is normal, the defective pixel Brightness The process of calculating is included. [0117] The step of determining the type and ratio of display picture elements included in the abnormal part includes the step of calculating the plotted data string force maximum, minimum peak value, and intermediate value, and the spectral sensitivity characteristics of the image sensor. To correlate the maximum and minimum peak values and intermediate values with the pixel pattern of the color filter, and to determine the type and ratio of the display pixel included in the abnormal portion from the plotted data string. I prefer that.
[0118] 上記欠陥絵素の輝度を算出する工程は、予め解像度の高い状態で撮像し、得られ た表示デバイスの表示絵素、ブラックマトリックスの輝度を入力する工程と、上記異常 部に含まれる表示絵素の種類と割合と、上記入力された表示デバイスの表示絵素、 ブラックマトリックスの輝度とから欠陥絵素の輝度を算出する工程を含むことが好まし い。  [0118] The step of calculating the luminance of the defective picture element is included in the abnormal portion and the step of inputting the luminance of the display picture element and the black matrix of the display device obtained by imaging in advance with high resolution. It is preferable to include a step of calculating the luminance of the defective pixel from the type and ratio of the display pixel and the luminance of the input display device and the black matrix.
[0119] 本発明の表示デバイスの輝度算出装置は、カラーフィルタを持つ表示デバイスの 表示画面を検査画面として、撮像部にて撮像し、得られた撮像画像データにより表 示デバイスの良否を判定する検査における輝度算出装置であって、上記撮像画像 データに発生する X軸方向、 Y軸方向の何れか一方のモアレの数を入力する手段と、 上記モアレの数に対応した間隔で撮像データの画素値をプロットする手段と、上記プ ロットされたデータ列から異常部を検出する手段と、上記検出された異常部に含まれ る表示絵素の種類と割合を判定する手段と、上記検出された異常部が正常である場 合のデータを算出する手段と、上記判定された表示絵素の種類と割合と、異常部の データ、上記異常部が正常である場合のデータとから、欠陥絵素の輝度を算出する 手段とを備えている。  [0119] The brightness calculation apparatus for a display device of the present invention uses the display screen of the display device having a color filter as an inspection screen, images it at the imaging unit, and determines the quality of the display device based on the obtained captured image data. A brightness calculation apparatus in an inspection, wherein the number of moires in either the X-axis direction or the Y-axis direction generated in the captured image data is input, and the pixels of the captured data at intervals corresponding to the number of moires Means for plotting values; means for detecting an abnormal portion from the plotted data string; means for determining the type and ratio of display picture elements included in the detected abnormal portion; and the detected From the means for calculating the data when the abnormal part is normal, the type and ratio of the determined display picture element, the abnormal part data, and the data when the abnormal part is normal, the defective picture element is obtained. Brightness And means for calculating.
[0120] 上記異常部に含まれる表示絵素の種類と割合を判定する手段は、上記プロットされ たデータ列力 最大、最小ピーク値、中間値を算出する手段と、撮像素子の分光感 度特性から、上記最大、最小ピーク値、中間値とカラーフィルタの絵素パターンとを 対応付ける手段と、上記プロットされたデータ列から異常部に含まれる表示絵素の種 類と割合を判定する手段とを備えて 、ることが好ま 、。  [0120] The means for determining the type and ratio of the display picture element included in the abnormal portion includes the means for calculating the plotted data string force maximum, minimum peak value, and intermediate value, and the spectral sensitivity characteristics of the image sensor. And means for associating the maximum and minimum peak values and intermediate values with the pixel pattern of the color filter, and means for determining the type and ratio of the display pixel included in the abnormal portion from the plotted data string. I prefer to be prepared.
[0121] 上記欠陥絵素の輝度を算出する手段は、予め解像度の高い状態で撮像し、得られ た表示デバイスの表示絵素、ブラックマトリックスの輝度を入力する手段と、上記異常 部に含まれる表示絵素の種類と割合と、上記入力された表示デバイスの表示絵素、 ブラックマトリックスの輝度とから欠陥絵素の輝度を算出する手段とを備えていること が好ましい。 [0121] The means for calculating the luminance of the defective picture element is included in the abnormal part, and means for inputting the luminance of the display picture element and the black matrix of the display device obtained in advance in a state of high resolution. The type and ratio of the display picture element and the display picture element of the input display device It is preferable to include a means for calculating the luminance of the defective picture element from the luminance of the black matrix.
[0122] なお、本発明は上述した実施の形態に限定されるものではなぐ請求項に示した範 囲で種々の変更が可能であり、実施の形態に開示された技術的手段を適宜組み合 わせて得られる実施形態についても本発明の技術的範囲に含まれる。  [0122] It should be noted that the present invention is not limited to the above-described embodiment, and various modifications are possible within the scope of the claims, and the technical means disclosed in the embodiment are appropriately combined. Embodiments obtained in this manner are also included in the technical scope of the present invention.
[0123] 本発明に係る輝度算出方法は、以上のように、異常輝度値を示す撮像素子が正常 な絵素を撮像していた場合の輝度値である正常輝度値を算出する正常輝度値算出 工程と、上記異常輝度値の原因である欠陥絵素の開口部の、或る撮像素子の撮像 範囲内における面積と当該撮像範囲の面積との比である欠陥絵素率を算出する欠 陥絵素率算出工程と、上記異常輝度値と上記正常輝度値との差に上記欠陥絵素率 の逆数を乗じ、得られた値に、上記欠陥絵素と同色の正常な絵素の輝度値である標 準輝度値を加算することにより上記開口部の輝度値を算出する輝度値補正工程とを 含む構成である。  [0123] As described above, the luminance calculation method according to the present invention calculates a normal luminance value that calculates a normal luminance value that is a luminance value when an imaging element that shows an abnormal luminance value captures a normal picture element. Defective picture which calculates the defective picture element ratio which is the ratio of the area within the imaging range of a certain imaging device and the area of the imaging area of the opening of the defective picture element causing the abnormal luminance value Multiplying the difference between the abnormal luminance value and the normal luminance value by the reciprocal of the defective pixel rate and multiplying the obtained value by the luminance value of a normal pixel of the same color as the defective pixel. A luminance value correcting step of calculating a luminance value of the opening by adding a certain standard luminance value.
[0124] 本発明に係る輝度算出装置は、以上のように、上記異常輝度値を示す撮像素子が 正常な絵素を撮像していた場合の輝度値である正常輝度値を算出する正常輝度値 算出手段と、異常輝度値の原因である欠陥絵素の開口部の、或る撮像素子の撮像 範囲内における面積と当該撮像範囲との比である欠陥絵素率を算出する欠陥絵素 率算出手段と、上記異常輝度値と上記正常輝度値との差に上記欠陥絵素率の逆数 を乗じ、得られた値に、上記欠陥絵素と同色の正常な絵素の輝度値である標準輝度 値を加算することにより上記開口部の輝度値を算出する輝度値補正手段とを備える 構成である。  [0124] As described above, the luminance calculation apparatus according to the present invention calculates a normal luminance value that is a luminance value when the imaging element that indicates the abnormal luminance value captures a normal picture element. Calculating a defective pixel rate that calculates a defective pixel rate that is the ratio of the area within the imaging range of a certain image sensor to the imaging means and the aperture of the defective pixel that is the cause of the abnormal luminance value And the difference between the abnormal luminance value and the normal luminance value multiplied by the reciprocal of the defective pixel rate, and the resulting value is a standard luminance that is the luminance value of a normal pixel of the same color as the defective pixel. And a luminance value correcting means for calculating the luminance value of the opening by adding the values.
[0125] それゆえ、撮像素子の撮像範囲と絵素との位置関係に影響されずに欠陥絵素開 口部そのものの輝度値を算出することができる。したがって、輝度算出装置を検査装 置に適用することにより、欠陥絵素の目視感度と相関のとれた正確な欠陥判定を行う ことができると!/、う効果を奏する。  Therefore, the luminance value of the defective pixel opening itself can be calculated without being affected by the positional relationship between the imaging range of the imaging device and the picture element. Therefore, by applying the brightness calculation device to the inspection device, it is possible to perform accurate defect determination correlated with the visual sensitivity of the defective picture element.
[0126] 発明の詳細な説明の項においてなされた具体的な実施形態または実施例は、あく までも、本発明の技術内容を明らかにするものであって、そのような具体例にのみ限 定して狭義に解釈されるべきものではなぐ本発明の精神と次に記載する請求の範 囲内にお!、て、 、ろ 、ろと変更して実施することができるものである。 [0126] The specific embodiments or examples made in the detailed description section of the invention are to clarify the technical contents of the present invention, and are limited to such specific examples. Accordingly, the spirit of the present invention and the scope of the following claims should not be construed in a narrow sense. It can be implemented with changes in the range!
産業上の利用可能性 Industrial applicability
目視感度と相関のとれた高い精度の欠陥検出を行うことができるため、液晶パネル などの表示用パネルの検査装置に適用できる。  Since it can detect defects with high accuracy correlated with visual sensitivity, it can be applied to inspection devices for display panels such as liquid crystal panels.

Claims

請求の範囲 The scope of the claims
[1] 複数の絵素が一定方向に配列した表示用パネルを、撮像素子を有する撮像手段 で撮像し、得られた撮像画像データを解析し、基準範囲から外れた輝度値である異 常輝度値を検出することにより上記表示用パネルの検査を行う検査装置が備える輝 度算出装置における輝度算出方法であって、  [1] A display panel in which a plurality of picture elements are arranged in a certain direction is imaged by an imaging means having an image sensor, and the obtained captured image data is analyzed, and an abnormal luminance that is a luminance value out of the reference range A luminance calculation method in a luminance calculation apparatus provided in an inspection apparatus that inspects the display panel by detecting a value,
上記異常輝度値を示す撮像素子が正常な絵素を撮像していた場合の輝度値であ る正常輝度値を算出する正常輝度値算出工程と、  A normal luminance value calculating step of calculating a normal luminance value, which is a luminance value when the imaging element showing the abnormal luminance value is capturing a normal pixel;
上記異常輝度値の原因である欠陥絵素の開口部の、或る撮像素子の撮像範囲内 における面積と当該撮像範囲の面積との比である欠陥絵素率を算出する欠陥絵素 率算出工程と、  Defect pixel rate calculation step of calculating a defect pixel rate that is a ratio of an area within the imaging range of a certain imaging device to the area of the imaging range of the opening of the defective pixel that is the cause of the abnormal luminance value When,
上記異常輝度値と上記正常輝度値との差に上記欠陥絵素率の逆数を乗じ、得ら れた値に、上記欠陥絵素と同色の正常な絵素の輝度値である標準輝度値を加算す ることにより上記開口部の輝度値を算出する輝度値補正工程とを含むことを特徴とす る輝度算出方法。  The difference between the abnormal luminance value and the normal luminance value is multiplied by the reciprocal of the defective pixel rate, and the resulting value is a standard luminance value that is the luminance value of a normal pixel of the same color as the defective pixel. A luminance value correction step of calculating a luminance value of the opening by adding the luminance value.
[2] 上記欠陥絵素がどの色の絵素であるかを判定し、その判定結果に対応した上記標 準輝度値を設定する絵素判定工程をさらに含むことを特徴とする請求の範囲第 1項 に記載の輝度算出方法。  [2] The method further includes a pixel determination step of determining which color the defective pixel is and setting the standard luminance value corresponding to the determination result. The luminance calculation method according to item 1.
[3] 上記撮像画像データに発生する、絵素配列方向のモアレの数に対応した間隔で 当該撮像データの信号成分をプロットすることにより信号成分の波形を形成する信号 分割工程を上記絵素判定工程の前にさらに含み、  [3] The pixel division is performed in the signal division process in which the signal component waveform is formed by plotting the signal component of the imaging data at intervals corresponding to the number of moire in the pixel arrangement direction, which occurs in the captured image data. Including further before the process,
上記絵素判定工程において、上記波形のピークの座標と上記欠陥絵素に起因す る信号成分の座標とを比較することにより、当該欠陥絵素がどの色の絵素であるかを 判定することを特徴とする請求の範囲第 2項に記載の輝度算出方法。  In the pixel determination step, by comparing the coordinates of the peak of the waveform and the coordinates of the signal component caused by the defective pixel, it is determined which color the defective pixel is. The luminance calculation method according to claim 2, wherein:
[4] 複数の絵素が一定方向に配列した表示用パネルを、撮像素子を有する撮像手段 で撮像し、得られた撮像画像データを解析し、基準範囲から外れた輝度値である異 常輝度値を検出することにより上記表示用パネルの検査を行う検査装置が備える輝 度算出装置であって、  [4] A display panel in which a plurality of picture elements are arranged in a certain direction is imaged by an imaging means having an image sensor, and the obtained captured image data is analyzed, and an abnormal luminance that is a luminance value out of the reference range A brightness calculation device provided in an inspection device that inspects the display panel by detecting a value,
上記異常輝度値を示す撮像素子が正常な絵素を撮像していた場合の輝度値であ る正常輝度値を算出する正常輝度値算出手段と、 This is the brightness value when the image sensor showing the abnormal brightness value is capturing a normal picture element. Normal luminance value calculating means for calculating a normal luminance value,
上記異常輝度値の原因である欠陥絵素の開口部の、或る撮像素子の撮像範囲内 における面積と当該撮像範囲との比である欠陥絵素率を算出する欠陥絵素率算出 手段と、  A defective pixel rate calculating means for calculating a defective pixel rate that is a ratio of an area of an imaging element in an imaging range of an aperture of a defective pixel that is the cause of the abnormal luminance value to the imaging range;
上記異常輝度値と上記正常輝度値との差に上記欠陥絵素率の逆数を乗じ、得ら れた値に、上記欠陥絵素と同色の正常な絵素の輝度値である標準輝度値を加算す ることにより上記開口部の輝度値を算出する輝度値補正手段とを備えることを特徴と する輝度算出装置。  The difference between the abnormal luminance value and the normal luminance value is multiplied by the reciprocal of the defective pixel rate, and the resulting value is a standard luminance value that is the luminance value of a normal pixel of the same color as the defective pixel. A luminance calculation device comprising: luminance value correction means for calculating the luminance value of the opening by adding.
[5] 上記欠陥絵素がどの色の絵素であるかを判定し、その判定結果に対応した上記標 準輝度値を上記輝度値補正手段へ出力する絵素判定手段をさらに備えることを特 徴とする請求の範囲第 4項に記載の輝度算出装置。  [5] The image processing apparatus further includes a pixel determination unit that determines which color the defective pixel is and outputs the standard luminance value corresponding to the determination result to the luminance value correction unit. The brightness calculation device according to claim 4, wherein
[6] 上記撮像画像データに発生する、絵素配列方向のモアレの数に対応した間隔で 当該撮像データの信号成分をプロットすることにより信号成分の波形を形成する信号 分割手段をさらに備え、 [6] The apparatus further includes a signal dividing unit that forms a waveform of the signal component by plotting the signal component of the imaging data at intervals corresponding to the number of moire in the pixel array direction, which occurs in the captured image data.
上記絵素判定手段は、上記波形のピークの座標と上記欠陥絵素に起因する信号 成分の座標とを比較することにより、当該欠陥絵素がどの色の絵素であるかを判定す ることを特徴とする請求の範囲第 5項に記載の輝度算出装置。  The pixel determination means determines the color of the defective pixel by comparing the coordinates of the peak of the waveform and the coordinates of the signal component caused by the defective pixel. The brightness calculation apparatus according to claim 5, wherein:
[7] 上記欠陥絵素率算出手段は、上記欠陥絵素の中心線と当該欠陥絵素を撮像した 撮像素子の撮像範囲の中心線との間の距離を算出し、当該距離に基づいて上記開 口部の、上記撮像範囲内における面積を算出することを特徴とする請求の範囲第 4 項に記載の輝度算出装置。 [7] The defective pixel rate calculation means calculates a distance between a center line of the defective pixel and a center line of an imaging range of an imaging device that images the defective pixel, and based on the distance, 5. The luminance calculating apparatus according to claim 4, wherein an area of the opening in the imaging range is calculated.
[8] 複数の絵素が一定方向に配列した表示用パネルを、撮像素子を有する撮像手段 で撮像し、得られた撮像画像データを解析し、基準範囲から外れた輝度値である異 常輝度値を検出することにより上記表示用パネルの検査を行う検査装置であって、 請求の範囲第 4項〜第 7項のいずれか 1項に記載の輝度算出装置と、 上記輝度算出装置が算出した上記開口部の輝度値を基準値と比較することにより 上記表示用パネルの欠陥を再検査する検査手段とを備えることを特徴とする検査装 置。 請求の範囲第 4項〜第 7項のいずれか 1項に記載の輝度算出装置の上記各手段と してコンピュータを機能させるための輝度算出プログラム。 [8] A display panel in which a plurality of picture elements are arranged in a certain direction is imaged by an imaging means having an image sensor, and the obtained captured image data is analyzed, and an abnormal luminance that is a luminance value out of the reference range An inspection apparatus for inspecting the display panel by detecting a value, wherein the luminance calculation apparatus according to any one of claims 4 to 7 and the luminance calculation apparatus An inspection apparatus comprising: inspection means for reinspecting a defect of the display panel by comparing a luminance value of the opening with a reference value. A luminance calculation program for causing a computer to function as each of the means of the luminance calculation device according to any one of claims 4 to 7.
請求の範囲第 9項に記載の輝度算出プログラムを記録したコンピュータ読み取り可 能な記録媒体。  A computer-readable recording medium on which the luminance calculation program according to claim 9 is recorded.
PCT/JP2007/063312 2006-07-05 2007-07-03 Luminance calculation method, luminance calculation device, inspection device, luminance calculation program, and computer-readable recording medium WO2008004554A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006186085A JP4053571B2 (en) 2006-07-05 2006-07-05 Luminance calculation method, luminance calculation device, inspection device, luminance calculation program, and computer-readable recording medium
JP2006-186085 2006-07-05

Publications (1)

Publication Number Publication Date
WO2008004554A1 true WO2008004554A1 (en) 2008-01-10

Family

ID=38894523

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/063312 WO2008004554A1 (en) 2006-07-05 2007-07-03 Luminance calculation method, luminance calculation device, inspection device, luminance calculation program, and computer-readable recording medium

Country Status (2)

Country Link
JP (1) JP4053571B2 (en)
WO (1) WO2008004554A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111487257A (en) * 2020-04-01 2020-08-04 武汉精立电子技术有限公司 Method and device for detecting and repairing abnormal pixels of display panel in real time

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103592787B (en) * 2013-11-13 2016-03-02 合肥京东方光电科技有限公司 Luminance detection device
JP7173763B2 (en) * 2018-06-20 2022-11-16 株式会社日本マイクロニクス Image generation device and image generation method
US20230067287A1 (en) * 2020-02-07 2023-03-02 Semiconductor Energy Laboratory Co., Ltd. Image processing system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0875542A (en) * 1994-09-05 1996-03-22 Otsuka Denshi Kk Method for measuring quantity of light for display pixel, and method and apparatus for inspecting display screen
JPH0989660A (en) * 1995-09-28 1997-04-04 Ishikawajima Harima Heavy Ind Co Ltd Detection method for luminance of color filter

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0875542A (en) * 1994-09-05 1996-03-22 Otsuka Denshi Kk Method for measuring quantity of light for display pixel, and method and apparatus for inspecting display screen
JPH0989660A (en) * 1995-09-28 1997-04-04 Ishikawajima Harima Heavy Ind Co Ltd Detection method for luminance of color filter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111487257A (en) * 2020-04-01 2020-08-04 武汉精立电子技术有限公司 Method and device for detecting and repairing abnormal pixels of display panel in real time

Also Published As

Publication number Publication date
JP4053571B2 (en) 2008-02-27
JP2008014790A (en) 2008-01-24

Similar Documents

Publication Publication Date Title
US8391585B2 (en) Defect detecting device, defect detecting method, image sensor device, image sensor module, defect detecting program, and computer-readable recording medium
US7978903B2 (en) Defect detecting method and defect detecting device
JP6000356B2 (en) Liquid crystal display panel inspection method and liquid crystal display panel inspection apparatus
JP2007315967A (en) Defect detection apparatus, defect detection method, defect detection program, and computer-readable recording medium stored with the progtram
JP5236241B2 (en) Defect inspection apparatus, defect inspection method, image processing apparatus, program, and computer-readable recording medium recording the program
JP4053571B2 (en) Luminance calculation method, luminance calculation device, inspection device, luminance calculation program, and computer-readable recording medium
JP2009229197A (en) Linear defect detecting method and device
JP2008180602A (en) Inspection apparatus, testing method, inspection program, and computer readable medium
WO2013118306A1 (en) Defect-detecting device, defect-detecting method, computer-readable recording medium for recording defect-detecting program
JP2009036582A (en) Inspection method, inspection device and inspection program of plane display panel
JP4244046B2 (en) Image processing method and image processing apparatus
JP3618713B2 (en) Display screen inspection method and display screen inspection apparatus
JP2006133196A (en) Detection method of pixel uneveness defection, detection device for pixel uneveness defection, detection program for pixel uneveness defection, and recording medium with the program stored
US7668344B2 (en) Stain inspection method and apparatus
JP2005249415A (en) Stain defect detecting method and stain defect detector
JP2002290994A (en) Foreign matter inspection method and apparatus for small camera module
CN107545556B (en) Signal lamp image processing method and system
JP2009250937A (en) Pattern inspection device and method
WO2013118304A1 (en) Inspection device, inspection method, and recording medium
JP2005140655A (en) Method of detecting stain flaw, and stain flaw detector
JP2011114760A (en) Method for inspecting camera module
JPH08327497A (en) Method for inspecting color liquid crystal display panel
JP2004226272A (en) Method and apparatus for detecting stain defect
JP2009053019A (en) Chart, system and method for testing resolution
JP2007198850A (en) Irregularity inspection method and apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07768086

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 07768086

Country of ref document: EP

Kind code of ref document: A1