WO2008000845A1 - Método y sistema de optimización de procesos de laminación de acero - Google Patents

Método y sistema de optimización de procesos de laminación de acero Download PDF

Info

Publication number
WO2008000845A1
WO2008000845A1 PCT/ES2006/000359 ES2006000359W WO2008000845A1 WO 2008000845 A1 WO2008000845 A1 WO 2008000845A1 ES 2006000359 W ES2006000359 W ES 2006000359W WO 2008000845 A1 WO2008000845 A1 WO 2008000845A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel
stage
rolling
parameters
module
Prior art date
Application number
PCT/ES2006/000359
Other languages
English (en)
French (fr)
Inventor
Aitor Herrera Celaya
Ana Carrillo Fernandez
Jose Ignacio Barbero Arribas
Original Assignee
Fundacion Labein
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fundacion Labein filed Critical Fundacion Labein
Priority to PCT/ES2006/000359 priority Critical patent/WO2008000845A1/es
Publication of WO2008000845A1 publication Critical patent/WO2008000845A1/es

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/0205Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric not using a model or a simulator of the controlled system
    • G05B13/026Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric not using a model or a simulator of the controlled system using a predictor
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D11/00Process control or regulation for heat treatments
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips

Definitions

  • the present invention relates to a method and system of optimization of steel rolling processes that has application in the steel industry, and more specifically in the field of forming steel sheets, allowing automatic analysis of process variables for select a specific configuration of a rolling mill, prior to the execution of the rolling process, which allows to obtain certain characteristics and properties of the final product, previously selected, avoiding the need for subsequent thermal treatments, with the consequent reduction in production costs.
  • the purpose of steel rolling processes is to achieve a reduction in the thickness or edge of a steel sheet until required dimensions are achieved, which is carried out by means of operations comprising subjecting the sheet to successive mechanical deformations.
  • the main objective in the processes of lamination is to achieve the greatest precision in the geometry, dimensions and shape of the final product, minimizing inconveniences such as the existence of defects in the sheets or the wear suffered by the equipment and the tooling that intervenes in the process.
  • the objective referred to in the previous paragraph does not contemplate the influence that other aspects have on the rolling process, such as the successive microstructural transformations that take place during the process and that occur as a result of deformation and thermal variations to which the sheets are subjected.
  • thermomechanical control of the rolling process that is, towards obtaining certain characteristics and mechanical properties, taking care not only of the thermal component of the process but also of the influence that the mechanical component has on it.
  • a control is made of the thickness reductions that are imposed on the sheet during each pass through the rolling rollers, that is to say in each box, obtaining a more refined microstructure, which results in an improvement of the mechanical properties of the final product.
  • Some of these methods allow obtaining an optimal value for a single parameter or a single variable without considering the rest, there being no method that takes into account the evolution of the microstructure of steel during the rolling process, which is a fundamental aspect that determines the properties of the product finally obtained, as explained above.
  • U.S. Patent No. US 2005267612 refers to a mathematical model for a metallurgical plant, and a method for optimizing the operation of said plant, which optimizes the operation of a metallurgical plant from the point of view of energy consumption, times and costs, but does not consider the mechanical properties of the final product.
  • Chinese Patent No. CN 1556487 refers to a method of hierarchical and planned coordination of steel production, presenting a method of production control and planning based on operation signals collected on the production line, without having predictive models or considering the properties mechanics of the final product.
  • Chinese Patent No. CN 1589986 refers to a method for the optimization and automatic control of technical parameters of a sheet mill, defining an automatic control system that records operational data in the production line for the optimization of the forces of the rolling rollers, not having thermomechanical or mycostructural predictive models, and not taking into account, like the previous patents, the mechanical properties of the product finally obtained.
  • the Russian patent No. 0 . RU 2263552 refers to a calibration method of a continuous rolling plant, in which certain operating parameters are recorded, such as the size of the laminated material or the speed regimes of the rolling rollers, so that depending on these registered parameters, these are predicted for the following laminations in order to minimize the electrical consumption of the installation, without having thermomechanical, microstructural predictive models neither tension, nor having as its object the optimization of the mechanical properties of rolled steel.
  • the possibility of predicting the behavior and properties of steel during rolling processes is especially interesting, taking into account the microstructural evolution of steel, through its modeling, especially in view of the wide variety of microalloyed steels currently available, They are used in many different applications specialized in different industrial fields.
  • the present invention relates to a method and system for optimizing steel rolling processes, which allows to automatically analyze, prior to performing the rolling process, ranges of process variables to select an optimal train configuration of lamination in order to obtain a final product with certain characteristics and properties, which have been previously selected, in accordance with the industrial application of the final product, without the need for subsequent heat treatments to obtain said characteristics.
  • the method and the system that the invention proposes allow to obtain optimum values for process variables that intervene and influence the properties of the steel obtained during the rolling process, while contemplating a series of restrictions, so that it achieves a steel with the required characteristics, notably optimizing production, reducing costs, allowing to dispense with heat treatments after the rolling process, obtaining a final product with characteristics and properties determined prior to the rolling process or final forming of the steel, taking into account from the heat treatment prior to rolling, for example in a reheating furnace, until cooling after rolling .
  • the method and system of the invention allow, in the first place, a precise control of the dimensions of the sheets obtained, as well as their geometry, achieving perfectly flat sheets.
  • the method and system of the invention make it possible to reduce the number of alloying elements, as well as the proportion thereof in the ferrous alloy, required to obtain a steel with certain mechanical properties, thereby reducing Production costs
  • the method of the invention can be applied to any type of sheet steel section, such as slab, round or billet.
  • the system of the invention is configured to automatically analyze plant parameters, steel parameters and process variables involved in the rolling process, and influence the characteristics and properties of the final product, analyzing values or ranges of values than said and process variables.
  • the optimization method allows obtaining optimal values for all process variables at the same time, in order to obtain a rolled steel with certain characteristics and properties, taking into account, in addition to the thermal evolution experienced by the steel during the process of rolling, the changes that occur in the microstructure of steel.
  • the optimization system for steel rolling processes that the invention proposes comprises:
  • an optimization module configured to relate the different process variables to obtain optimum values of said process variables, so that having the process variables said optimum values, a steel is obtained with at least a certain characteristics, and it may be necessary to obtain a steel with more than one specific characteristic, said characteristics constituting to obtain objective functions.
  • the optimization module is configured to use any mathematical function or optimization algorithm, whose objective is to evaluate some variables that minimize at least one objective function, as required, such as for example SQP-Sequential Quadratic Programming algorithms, line, genetic or a cost function
  • the optimization module is configured to be implemented as a program, or software tool, in a mathematical calculation device or a computer, which manages the definition and solution of general optimization problems, that is, those in which the objective is to find certain values of some variables in order to minimize at least one function that needs to be optimized, that is to say at least one objective function.
  • the optimization module can work in two ways. In the first place, the optimization module is configured to operate from initial values of the process variables, with an initial point being defined in advance from which the optimization module will obtain optimum values of said process variables.
  • the optimization module can work to design experiments.
  • a series of experiments are defined for the evaluation of the simulations taking into account different values of certain data, such as the reductions in each rolling box.
  • the data can be analyzed by a user to study the experiment that best approximates the target value. From this experiment, an optimization is performed as described in the previous paragraph, which is already very close to the optimal value sought. This way of operation allows an approximation to the optimal solution and a faster calculation than in the first mode of the optimal values.
  • the optimization module takes into account the restrictions that exist or are imposed for the process variables and the objective functions.
  • the analyzer module comprises two types of restrictions, for consideration:
  • process restrictions are the restrictions that have the process variables determined by the limits that the rolling plant has, according to its characteristics, such as for example rolling forces, winding temperatures, maximum thickness reduction in the different passes or Maximum and minimum limit input speed.
  • the process variables are defined in a range of variation through the process restrictions, to ensure that the operational operating limits of the installation are not exceeded, which is extremely important to ensure the integrity of the equipment, such as boxes lamination, and
  • the system reduces the operating time of the method and the solutions are filtered so that obtaining an optimal result is achieved before; finally the system comprises
  • a predictive module which in turn comprises different integrated modules that represent different processes that take place together in the lamination process.
  • the deformation of the hot material produces a series of phenomena of thickness reduction, or section, of the product, which have an associated heat generation, which is produced by the friction that occurs between the surface and volumetric heat generation due to deformation, while at the contact with the rollers there is a conduction heat evacuation.
  • some stresses are generated and in the rolled product creep stresses that directly influence the microstructure of the steel.
  • Other parameters that also directly influence the mechanical properties of the final product are the existence of cracks or pores.
  • the predictive module is configured to consider three models of steel behavior during the rolling process, and is configured to calculate the mechanical properties of the final product at from the plant parameters and the steel parameters, for which it includes:
  • thermomechanical module that collects the thermal and mechanical behavior of steel, which includes a theoretical evolution of the temperature and deformation to which the steel is subjected during the rolling process.
  • the thermomechanical module comprises two submodules, each of which is configured to perform a different calculation that is then automatically integrated, a thermal submodule and a deformation submodule, which work as follows.
  • the thermal submodule is configured to calculate, mathematically, a heat conduction in an analytical mesh that characterizes the material to be laminated.
  • the heat transfer inside the piece and between it and the surrounding environment is analyzed, as well as the generation of heat due to the deformations suffered by the piece, such as due to contact with the rollers or friction, for which it is required it takes into account the variation in the thickness of the piece during the rolling process, which is configured to calculate the deformation submodule, according to a deformation rate.
  • the deformation submodule to from the deformation that has been imposed on the sheet, a deformation speed and a speed of the mesh nodes defined above, is configured
  • a tension module that is configured
  • the tension module is configured to calculate and obtain force values of the rollers, determining the rolling forces, a number of necessary pairs of rollers, flatness values at the exit
  • microstructural module that includes a theoretical evolution of the microstructure of the
  • the microstructural module is configured to calculate a microstructural history
  • the microstructural module is configured to record, in the event that it has been required, a growth of a layer of oxide on the sheet material, also called scale, as well as its subsequent elimination in each of the stages.
  • the predictive module is configured to calculate values of the mechanical properties of the final product, such as the elastic modulus, creep stress or elongation, also obtaining another series of results, such as for example thermal and mechanical data, data of rolling forces and torques, flatness and geometric shape of the sheet, as well as data of the microstructure of the piece, such as grain sizes, present or precipitated phases.
  • the predictive module is configured to be implemented as a program, or software tool, in a mathematical calculation device or a computer.
  • the optimization module is configured to define some cases to be analyzed in the predictive module, which is configured to evaluate them based on the constraints included in the analyzer module, said predictive module being configured to rule out cases in which these are not met. restrictions
  • the optimization module is configured to decide the evaluation of new cases until an optimum is achieved.
  • the system of the invention is configured to calculate and arrange, by means of its storage and sample as required, not only results related to the mechanical properties of the laminated material, but also results of intermediate processes, the results obtained being classified into four groups:
  • the system is
  • the system is configured to record the change in size and percentage of phases present in the material.
  • the method of optimizing steel rolling processes comprises the following steps:
  • a stage A which comprises having, obtaining or compiling, some plant parameters whose values are fixed and are determined by technical characteristics of a rolling plant in which the process to be optimized is carried out.
  • the previously defined system can be configured to acquire or collect plant parameters automatically.
  • the plant parameters are classified into three groups:
  • rolling mill parameters for each rolling box the diameter of its rollers, the materials of said rolling mills are available rollers, thickness reduction, positions and distances between boxes, secondary refrigeration arrangement or not,
  • Parameters of thermal processes that is to say a cooling table, during the rolling process, with data relative to flow rates of nozzles comprising each section of the cooling table, allowing the deactivation of sections, flow rates of cooling fluids, positions of the cooling systems inside or outside the train as well as active lengths, characteristics of the cooling fluids such as temperature and composition, position of the furnace, tunnel or equivalent, and temperatures at the exit of the system.
  • Initial and final operating parameters of the product with a steel temperature, initial thickness and target thickness, initial speed at the entrance of the system and temperature at the entrance of the system.
  • the method comprises a step B, which in turn comprises having, obtaining or collecting manually or by means of computer supports, some parameters of the steel to be laminated, which define it, whose values are fixed and are determined by the chemical composition of the steel and therefore related to its properties.
  • the steel parameters comprise other parameters that characterize the steel at different temperatures, such as parameters that define the mechanical behavior of the steel as a function of temperature, such as specific heat, density, modulus of Young's elasticity or modulus and the conductivity of steel.
  • the plant parameters and the steel parameters define the lamination process to be optimized.
  • the method comprises a stage C, which in turn comprises determining, or selecting, certain values, theoretical or arbitrary, for process variables, which in the case of adopting different values different steel characteristics are obtained after the process of lamination.
  • the method of the invention allows obtaining an optimal value for each process variable, according to conditions related to the properties of the steel that are to be obtained after the rolling process, which is the one applied in the execution of the rolling process .
  • the process variables are variables that the The method of the invention is configured to optimize, according to an objective function, that is, to obtain a type of steel to be obtained with certain properties.
  • the method comprises the following process variables:
  • Temperature at the outlet of the reheating furnace it can also be temperature at the inlet of the laminator.
  • Thickness reductions to be applied at each stage, or box, of rolling.
  • Cooling after the lamination process having the type, such as air cooling or cooling through cooling tunnel.
  • the method comprises a step D, which comprises determining, or selecting, at least one objective function, or weighting function, that is required to be optimized, and for which the method is configured to find the optimal values of the process variables.
  • the objective functions represent some characteristics of the rolling process, as well as the characteristics of the steel, which allow the system to be optimized, in view of a particular installation, that is, once the plant parameters are available, in stage A, depending on the characteristics installation techniques, and the parameters of the steel, in stage B, the objective functions that are to be achieved in the final product are selected, depending on the needs of the production, in view of the resources available for its production.
  • the method and the system are configured to allow the determination of a single objective function to optimize, or several at the same time, to obtain certain optimal values for the process variables. These optimal values will be used later for the execution of the rolling process.
  • the objective functions are characteristics and properties of the steel to be obtained that are determined or selected as the objective, and for which the method optimizes the values that the process variables must have.
  • the objective functions included in the method are:
  • an oxide layer also called a scale
  • generation of an oxide layer during the heat treatment process prior to lamination, which can be carried out in a tunnel oven, a furnace or equivalent.
  • Geometry of the final product that is, the shape characteristics such as flatness or deviations from the axis.
  • the method comprises a stage E which in turn comprises determining, or arranging, restrictions that exist or are imposed arbitrarily, both for the process variables and for the objective functions.
  • the optimization module is configured to consider the restrictions through the analyzer module.
  • the method comprises a step F, comprising entering, supplying or entering, the plant parameters, the steel parameters, the process variables and the objective functions in a mathematical calculation device, or a support such as a computer, which Understand the optimization module.
  • the method comprises a step F ', in which the optimization module is configured to calculate optimum values of the process variables.
  • This stage includes analyzing, by the optimization module, according to the objective functions determined in stage D, a lamination process configuration that best meets the defined objectives, by means of a calculation algorithm that manages to obtain values of the process variables that allow to obtain a final product that meets the conditions set, selected, through the objective functions to optimize.
  • the method comprises a stage G, which comprises entering, supplying or entering, the plant parameters of stage A, the steel parameters of stage B and the optimum values obtained in stage F 'in a mathematical calculation device , or a support such as a computer, comprising the predictive module, defined above in the system of the invention.
  • the method comprises a stage G ', in which the predictive module is configured to perform a calculation considering the three steel behavior modules, which as explained above are a thermomechanical module, a microstructural module and a module tensional, and provides as a result theoretical data of the objective functions, that is, theoretical objective functions.
  • the predictive module is configured to perform a calculation considering the three steel behavior modules, which as explained above are a thermomechanical module, a microstructural module and a module tensional, and provides as a result theoretical data of the objective functions, that is, theoretical objective functions.
  • the predictive module is configured to simulate the rolling process and Obtain theoretical results of the objective functions, that is, it is configured to obtain results of the combinations of steel parameters, plant parameters and the optimum values of the process variables.
  • the method of the invention is configured to simulate the rolling process and check the characteristics and properties of the laminated material obtained, in view of a combination of process parameters and variables, all without the need to test and execute in the reality in the process of lamination, with the consequent wear of the installation and loss of material, which is necessary to test to finally obtain the required results.
  • the method of the invention may comprise a stage G '', which comprises entering, introducing or supplying the theoretical objective functions obtained in G ', again in the optimization module, that is to say repeating stage F and stage F', being configured to obtain optimum seconds of the process variables.
  • This serves to check if the second optimal values coincide with the optimal values that were initially obtained after step F, verifying whether the optimal values were valid for the objective functions. Otherwise, that is, if it does not match, the optimization module is configured to calculate optimal third values of the process variables that are subsequently performed again in stage G and stage G ', are analyzed by the predictive module, repeating itself This process, stages FG ', iterative until the optimization module achieves optimal values for the process variables.
  • the process described in the previous paragraph is an iterative process, through which different values for the objective functions are obtained, so that after several iterations, a curve is obtained that represents the values of the objective functions and selects those in the which are maximum or minimum as required.
  • the method comprises a stage H, which comprises having the optimum values of the process variables, obtained in the stages described above, for application in the execution of the steel rolling process.
  • the method and system of optimization of steel rolling processes that the invention proposes constitutes an advance in the optimization methods used up to now, and solves in a fully satisfactory and simple manner the problem set forth above. , in the line of allowing a complete simulation of the rolling process, as well as the prediction of optimal values of some process variables, in order to optimize objective functions, that is to say characteristics and properties of the steel obtained, with the consequent saving in the cost of production, as well as advantages in the investigation of new steels. DESCRIPTION OF THE DRAWINGS
  • Figure 1 shows a scheme of the optimization system of steel rolling processes that the invention proposes.
  • Figure 2. Shows a perspective view of a steel rolling plant, in which a plurality of rolling boxes can be seen.
  • Figure 3 shows a phase diagram of the steel, in which the phase change from austenite (Y) to ferrite ( ⁇ ) can be seen, depending on the temperature and the percentage of carbon present in the alloy.
  • Figure 4.- Shows a flow chart of the steps comprising the method of optimization of steel rolling processes of the invention.
  • the system for optimizing steel rolling processes comprises: - an optimization module, configured to calculate optimal values of process variables from plant parameters, steel parameters, process variables, restrictions and objective functions, which include characteristics and properties of steel to be obtained after the rolling process, in which the plant parameters are fixed values and are determined by technical characteristics of a rolling plant in which the process to be optimized is carried out, comprising:
  • the system can be configured to acquire or collect plant parameters automatically.
  • the parameters of the steel to be rolled comprise fixed values and are determined by the chemical composition of the steel and parameters that characterize the behavior of the steel at different temperatures, as well as the behavior of the microstructure as a function of temperature.
  • the process variables also include:
  • Temperature at the outlet of the reheating furnace can also be Laminator inlet temperature. - Thickness reductions to be applied at each lamination stage.
  • the objective functions which include characteristics and properties of the steel to be obtained after the rolling process, include:
  • the optimization module is configured to use any mathematical function or optimization algorithm, whose objective is to evaluate some variables that minimize at least one objective function, as required, such as for example SQP-Sequential algorithms
  • the optimization module is configured to be implemented as a program, or software tool, in a mathematical calculation device or a computer.
  • the optimization module can work in two ways. First, the optimization module is configured to operate from initial values of the process variables from which the optimization module will obtain optimum values of said process variables.
  • the optimization module can work to design experiments.
  • a series of experiments are defined for the evaluation of the simulations taking into account different values of certain data, such as the reductions in each rolling box.
  • the data can be analyzed by a user to study the experiment that best approximates the target value. From this experiment, an optimization is performed as described in the previous paragraph, which is already very close to the optimal value sought. This way of operation allows an approximation to the optimal solution and a faster calculation than in the first mode of the optimal values.
  • system of the invention comprises:
  • an analyzer module configured to consider lamination process restrictions, which are limitations for obtaining the optimum values of the process variables that maximize or minimize an objective function.
  • the analyzer module comprises two types of restrictions: process restrictions, are the restrictions that have the process variables determined by the limits that the rolling plant has, and objective restrictions, are the restrictions for each objective function.
  • system of the invention comprises:
  • a predictive module configured to consider three models of steel behavior during the rolling process, and configured to calculate the mechanical properties of the final product from the plant parameters and the steel parameters, for which it comprises:
  • thermomechanical module that collects the thermal and mechanical behavior of steel, which comprises a thermal submodule and a deformation submodule, configured to calculate a heat conduction in an analytical mesh that characterizes the material to be laminated and to calculate a deformation velocity and a velocity of the mesh nodes defined above, is configured to calculate a heat generation in the sheet, with the combined calculation of both thermal and deformation submodules a thermal history of the sheet under analysis is obtained, a tension module that is configured to calculate stresses to which the steel sheet is subjected as well as train roller forces of rolling, and a microstructural module comprising a theoretical evolution of the microstructure of steel during the rolling process.
  • the predictive module is configured to be implemented as a program, or software tool, in a mathematical calculation device or a computer.
  • the system of the invention is configured to calculate and arrange, by means of its storage and sample as required, not only results related to the mechanical properties of the laminated material, but also results of intermediate processes, the results obtained being classified into four groups:
  • Configuration results which are the process variables and define the optimal configuration, are also the values of the objective functions.
  • thermomechanical results of the thermomechanical history of the material Thermomechanical results of the thermomechanical history of the material.
  • a second aspect of the invention relates to a method of optimizing steel rolling processes, which comprises the system above. defined, and which, as can be seen in Figure 4, comprises the following stages:
  • stage A that includes having, obtaining or compiling some plant parameters.
  • stage B comprising arranging, obtaining or collecting manually or by means of computer supports, some parameters of the steel to be rolled.
  • a stage C which comprises determining, or selecting, certain values, theoretical or arbitrary, for process variables.
  • stage D which comprises determining, or selecting, at least one objective function, or weighting function, that is required to optimize, and for which the method is configured to find the optimal values of the process variables.
  • stage E which in turn comprises determining, or arranging, restrictions that exist or are imposed arbitrarily, both for process variables and for objective functions.
  • stage F comprising entering, supplying or entering, the plant parameters, the steel parameters, the process variables and the objective functions in a mathematical calculation device, or a support such as a computer, comprising the module of optimization
  • a stage F ' in which the optimization module is configured to calculate optimum values of the process variables.
  • This stage includes analyze, by the optimization module, according to the objective functions determined in stage D, a configuration of the lamination process that best meets the defined objectives, by means of a calculation algorithm that manages to obtain values of the process variables that allow to obtain a final product that meets the conditions set, selected, through the objective functions to optimize.
  • stage G comprising entering, supplying or entering, the plant parameters of stage A, the steel parameters of stage B and the optimal values obtained in stage F 'in a mathematical calculation device, or a support as a computer, comprising the predictive module, defined above in the system of the invention.
  • the predictive module is configured to perform a calculation considering the three steel behavior modules, which as explained above are a thermomechanical module, a microstructural module and a tension module, and provides as Theoretical data of the objective functions, that is, theoretical objective functions.
  • the method of the invention may comprise a stage G '', comprising entering, introducing or supplying the theoretical objective functions obtained in G ', again in the optimization module, that is to say repeating stage F and stage F', being configured to obtain optimum seconds of the process variables.
  • stage H which It comprises having the optimum values of the process variables, obtained in the stages described above, for application in the execution of the steel rolling process.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Thermal Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Health & Medical Sciences (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Metal Rolling (AREA)

Abstract

Método y sistema de optimización de procesos de laminación de acero que tiene aplicación en la industria siderúrgica, permitiendo analizar de manera automática unas variables de proceso para seleccionar una configuración determinada de un tren de laminación, de manera previa a la ejecución del proceso de laminación, que permite obtener unas determinadas características y propiedades del producto final, previamente seleccionadas, evitando la necesidad de tratamientos térmicos posteriores, con la consiguiente reducción en los costes de producción.

Description

MÉTODO Y SISTEMA DE OPTIMIZACION DE PROCESOS DE LAMINACIÓN DE ACERO
D E S C R I P C I Ó N
OBJETO DE LA INVENCIÓN
La presente invención se refiere a un método y sistema de optimización de procesos de laminación de acero que tiene aplicación en la industria siderúrgica, y más concretamente en el ámbito de la conformación de láminas de acero, permitiendo analizar de manera automática unas variables de proceso para seleccionar una configuración determinada de un tren de laminación, de manera previa a la ejecución del proceso de laminación, que permite obtener unas determinadas caracteristicas y propiedades del producto final, previamente seleccionadas, evitando la necesidad de tratamientos térmicos posteriores, con la consiguiente reducción en los costes de producción.
ANTECEDENTES DE LA INVENCIÓN
Los procesos de laminación de acero tienen como objeto conseguir una reducción del espesor o canto de una lámina de acero hasta conseguir unas dimensiones requeridas, lo cual se realiza mediante operaciones que comprenden someter a la lámina a sucesivas deformaciones mecánicas .
Durante las operaciones que comprende el proceso de laminación se producen en la lámina variaciones de temperatura y una serie de esfuerzos que producen una serie de transformaciones metalúrgicas del acero y que determinan la microestructura del acero finalmente obtenido.
En la actualidad, el objetivo principal en los procesos de laminación es conseguir la mayor precisión en la geometría, dimensiones y forma, del producto final, minimizándose inconvenientes como son la existencia defectos en las láminas o el desgaste sufrido por los equipos y el utillaje que interviene en el proceso.
Sin embargo, el objetivo referido en el párrafo anterior no contempla la influencia que tienen en el proceso de laminación otros aspectos, como por ejemplo las sucesivas transformaciones microestructurales que tienen lugar durante el proceso y que se producen como consecuencia de la deformación y las variaciones térmicas a las que se encuentran sometidas las láminas.
Por este motivo, en la actualidad, el control para obtener una determinada microestructura en el acero requiere la realización de tratamientos térmicos posteriores a los que es necesario someter al producto final con el objeto de que el acero obtenido tras un proceso de laminación tenga unas determinadas características y propiedades, de acuerdo con unos determinados requisitos en cuanto a su aplicación industrial, lo cual alarga el proceso de obtención del producto y encarece los costes de producción.
En la década de los años 70, en el siglo pasado, se comenzó a plantear un control térmico del proceso, es decir un control de las condiciones de temperatura durante el proceso de laminación, con el objeto de influir en la precipitación de determinados elementos contenidos en la aleación, como por ejemplo el Niobio o el Titanio, de cara a garantizar su efecto directo en el incremento de la resistencia del acero obtenido.
Más recientemente, la investigación en el ámbito de la industria siderúrgica, se ha orientado hacia un control termomecánico del proceso de laminación, es decir hacia la obtención de unas características y propiedades mecánicas determinadas, atendiéndose no solo a la componente térmica del proceso sino también a la influencia que la componente mecánica tiene en el mismo. De este modo, además del control de la temperatura en cada una de las etapas que comprende el proceso, se realiza un control de las reducciones de espesor que se imponen a la lámina durante cada pasada a través de los rodillos de laminación, es decir en cada caja, obteniéndose una microestructura más refinada, lo que repercute en una mejora de las propiedades mecánicas del producto final.
La influencia de la evolución microestructural del acero durante el proceso de laminación es un factor muy importante a considerar. Se ha comprobado el efecto positivo que tiene propiciar un proceso de recristalización controlado de la austenita, de manera que tenga el menor tamaño de grano posible, de un orden de magnitud de 10 mieras aproximadamente. Posteriormente, una vez que se alcanza la temperatura de no recristalización (Tnr) en el proceso, toda la deformación adicional que se efectúa hasta el instante en el que se produce el cambio de fase de austenita a ferrita, produce la aparición de unos puntos en los que posteriormente se producirá la nucleación de ferrita, con lo que se consigue una disminución del tamaño de grano de la ferrita durante dicha transformación de austenita a ferrita, obteniéndose una microestructura más homogénea y de menor tamaño respecto a un acero en el que el proceso de recristalización de la austenita no ha sido controlado de la manera descrita.
Por otro lado, con el objeto de evitar los inconvenientes anteriormente expuestos, fundamentalmente debidos a la necesidad de realizar tratamientos térmicos sobre el acero después del proceso de laminación, se han desarrollado métodos para la predicción de las propiedades y características que tendrá el acero tras el proceso de laminación, los cuales tienen en consideración determinados parámetros y variables del propio proceso de laminación, si bien presentan importantes limitaciones e inconvenientes, tal y como se expone a continuación.
Uno de los inconvenientes que este tipo de métodos presenta es que no proporcionan una predicción de los valores que los parámetros y variables del proceso de laminación han de tener con el objeto de obtener unas determinadas características del acero finalmente obtenido, según unos requisitos previos, sin la necesidad de tener que realizar tratamientos térmicos a posterior!.
Algunos de estos métodos permite obtener un valor óptimo para un único parámetro o una única variable sin considerar el resto, no existiendo ningún método que tenga en consideración la evolución de la microestructura del acero durante el proceso de laminación, lo cual resulta un aspecto fundamental que determina las propiedades del producto finalmente obtenido, tal y como se explicado anteriormente.
A continuación se mencionan algunas patentes que se refieren al control del proceso de laminación de acero con el objeto de obtener algunos parámetros óptimos para conseguir determinadas características en el producto final .
Por un lado, la patente estadounidense N° . US 2005267612 se refiere a un modelo matemático para una planta metalúrgica, y a un método para la optimización del funcionamiento de dicha planta, que optimiza la operación de una planta metalúrgica desde el punto de vista del consumo energético, tiempos y costes, pero no considera las propiedades mecánicas del producto final.
Por otro lado, la patente china N° . CN 1556487 se refiere a un método de coordinación jerárquica y planificada de producción de acero, presentando un método de control y planificación de la producción basado en señales de operación recogidas en la linea de producción, sin disponer de modelos predictivos ni teniendo en consideración las propiedades mecánicas del producto final .
La patente china N° . CN 1589986 se refiere a un método para la optimización y el control automático de parámetros técnicos de un laminador de chapa, definiendo un sistema de control automático que registra datos operativos en la linea de producción para la optimización de las fuerzas de los rodillos de laminación, no disponiendo de modelos predictivos termomecánicos ni micorestructurales, y no teniendo en consideración, al igual que las patentes anteriores, las propiedades mecánicas del producto finalmente obtenido.
Por último, la patente rusa N0. RU 2263552 se refiere a un método de calibración de una instalación de laminación continua, en el que se registran determinados parámetros operativos, como por ejemplo el tamaño del material laminado o los regímenes de revoluciones de los rodillos de laminación, de manera que en función de dichos parámetros registrados, estos se predicen para las siguientes laminaciones con el objeto de minimizar el consumo eléctrico de la instalación, sin disponer de modelos predictivos termomecánicos, microestructurales ni tensionales, ni teniendo como objeto la optimización de las propiedades mecánicas del acero laminado.
Tal y como se ha podido comprobar, estas patentes se refieren a métodos para la optimización de parámetros operativos del proceso que se obtienen durante la realización del mismo, no permitiendo una predicción de dichos parámetros. En algún caso se realiza una optimización de un único parámetro, sin permitir un planteamiento de cara a optimizar varios parámetros a la vez, para la obtención de un determinado acero. Además ninguno de estos métodos tiene en consideración la evolución de la microestructura del acero durante el proceso de laminación, ni su influencia en las propiedades del producto final obtenido.
De todo lo anteriormente expuesto, se plantea la necesidad, de cara a optimizar los procesos de laminación, de evaluar los efectos que produce una variación de los parámetros de proceso que influyen en el mismo, y por lo tanto disponer de un método y un sistema que permitan determinar el valor de dichos parámetros de proceso de cara a conseguir un determinado objetivo, o conjunto de objetivos, es decir un acero con unas características y propiedades determinadas, permitiendo además diseñar nuevos procesos de laminación, nuevas instalaciones en las que llevarlos a cabo, así como investigar en la obtención de nuevos tipos de aceros. Resulta especialmente interesante la -posibilidad de predecir el comportamiento y las propiedades del acero durante los procesos de laminación teniendo en consideración la evolución microestructural del acero, mediante su modelización, sobre todo a la vista de la gran variedad de aceros microaleados existentes en la actualidad, que son utilizados en muy diversas aplicaciones especializadas en diferentes ámbitos industriales.
DESCRIPCIÓN DE LA INVENCIÓN
La presente invención se refiere a un método y sistema de optimización de procesos de laminación de acero, que permite analizar automáticamente, de manera previa a la realización del proceso de laminación, unos rangos de unas variables de proceso para seleccionar una configuración óptima de un tren de laminación de cara a obtener un producto final con unas características y propiedades determinadas, que han sido seleccionadas previamente, de acuerdo con la aplicación industrial del producto final, sin la necesidad de realizar tratamientos térmicos posteriores para la obtención de dichas características.
El método y el sistema que la invención propone permiten obtener unos valores óptimos para unas variables de proceso que intervienen e influyen en las propiedades del acero obtenido durante el proceso de laminación, a la vez que contempla una serie de restricciones, de manera que consigue un acero con las características requeridas, optimizándose notablemente la producción, reduciéndose los costes, permitiendo prescindir de tratamientos térmicos posteriores al proceso de laminación, obteniéndose un producto final con unas caracteristicas y propiedades determinadas de manera previa al proceso de laminación o conformado final del acero, teniéndose en consideración desde el tratamiento térmico previo a la laminación, por ejemplo en un horno de recalentamiento, hasta el enfriamiento posterior a la laminación.
De manera detallada, a continuación se exponen las ventajas que el método y el sistema de la invención aportan, mediante la optimización de las variables de proceso.
El método y el sistema de la invención permiten, en primer lugar, un control preciso de las dimensiones de las láminas obtenidas, asi como de su geometría, consiguiéndose láminas perfectamente planas.
En segundo lugar permiten obtener unas propiedades mecánicas determinadas para el producto final, de acuerdo con su aplicación industrial, permitiendo incluso la obtención de diferentes propiedades mecánicas, según se requiera, a partir de aceros con las mismas caracteristicas, por ejemplo con la misma composición química.
En tercer lugar, el método y el sistema de la invención permiten reducir el número de elementos aleantes, asi como la proporción de los mismos en la aleación ferrosa, requeridos para la obtención de un acero con unas determinadas propiedades mecánicas, con lo que se reducen los costes de producción.
En cuarto lugar, permiten reducir las operaciones de mantenimiento necesarias en determinados elementos de los equipos de la instalación en la que se realiza la laminación, por ejemplo se consigue prologar la vida útil de los rodillos de laminación, reduciendo por lo tanto las operaciones de reposición de los mismos, lo que supone una reducción de los costes de mantenimiento de los equipos de laminación y por lo tanto de los costes de producción.
El método de la invención se puede aplicar a cualquier tipo de sección de acero a laminar, como por ejemplo planchón, redondo o palanquilla.
El sistema de la invención está configurado para analizar de forma automatizada unos parámetros de planta, unos parámetros del acero y unas variables de proceso que intervienen en el proceso de laminación, e influyen en las características y propiedades del producto final, analizando unos valores o rangos de valores que dichas y variables de proceso.
El método de optimización permite obtener unos valores óptimos para todas las variables de proceso a la vez, de cara a obtener un acero laminado con unas características y propiedades determinadas, teniendo en consideración, además de la evolución térmica experimentada por el acero durante el proceso de laminación, los cambios que se producen en la microestructura del acero.
El sistema de optimización de procesos de laminación de acero que la invención propone comprende:
un módulo de optimización, configurado para relacionar las distintas variables de proceso para la obtención de unos valores óptimos de dichas variables de proceso, de manera que teniendo las variables de proceso dichos valores óptimos se obtiene un acero con al menos una características determinada, pudiendo requerirse la obtención de un acero con más de una característica determinada, constituyendo dichas características a obtener unas funciones objetivo.
El módulo de optimización está configurado para utilizar cualquier función matemática o algoritmo de optimización, cuyo objetivo es evaluar unas variables que minimizan al menos una función objetivo, según se requiera, como por ejemplo algoritmos tipo SQP-Sequential Quadratic Programming, línea, genético o una función de coste .
El módulo de optimización está configurado para ser implementado como un programa, o herramienta de software, en un dispositivo de cálculo matemático o un ordenador, que gestiona la definición y solución de problemas de optimización de tipo general, es decir, aquellos en el que el objetivo es encontrar unos valores determinados de unas variables con el objeto de minimizar al menos una función que se requiere optimizar, es decir al menos una función objetivo.
Una posible definición en términos matemáticos de un problema general a optimizar, de acuerdo con un problema de optimización de tipo general anteriormente referido, sería la siguiente:
Se tiene una función objetivo (F(X)) a minimizar, considerando unas funciones restricciones (Gj (X) ) , que se encuentran limitadas superior e inferiormente por un límite superior (bji) y un limite inferior (bjS) entre las cuales se encuentra, es decir se tiene que:
bji ≤ Gj(X) ≤ bjs, donde j = l....m Teniendo unas variables de diseño (X) , representadas vectorialmente, que se encuentran entre un limite inferior (Xi) y un limite superior (X3) , es decir se tiene que:
Xi < X < X3
El módulo de optimización puede funcionar de dos maneras. En primer lugar el módulo de optimización está configurado para funcionar a partir de unos valores iniciales de las variables de proceso, definiéndose de manera previa un punto inicial a partir del cual el módulo de optimización obtendrá unos valores óptimos de dichas variables de proceso.
En segundo lugar, el módulo de optimización puede funcionar para diseñar experimentos. En este caso, una vez que se ha definido el proceso que se requiere optimizar, se define una serie de experimentos para la evaluación de las simulaciones teniendo en consideración diferentes valores de determinados datos, como por ejemplo las reducciones en cada caja de laminado. Una vez que los experimentos generados han sido evaluados, se pueden analizar los datos, por parte de un usuario, para estudiar el experimento que se aproxima mejor al valor objetivo. A partir de dicho experimento, se realiza una optimización como la descrita en el párrafo anterior, la cual ya se encontrarla muy cercana al valor óptimo buscado. Está forma de funcionamiento permite una aproximación a la solución óptima y un calculo más rápido que en el primer modo de los valores óptimos.
- módulo analizador, que está configurado para considerar unas restricciones del proceso de laminación, mediante el cual el módulo de optimización tiene en consideración las restricciones que existen o se imponen para las variables de proceso y las funciones objetivo.
Las restricciones son las limitaciones que se consideran en el sistema de la invención para la obtención de los valores óptimos de las variables de proceso que maximizan o minimizan una función objetivo.
El modulo analizador comprende dos tipos de restricciones, para su consideración:
restricciones de proceso, son las restricciones que tienen las variables de proceso determinadas por los limites que tiene la planta de laminado, de acuerdo con sus características, como por ejemplo fuerzas de laminación, temperaturas de bobinado, reducción máxima de espesor en las diferentes pasadas o velocidad de entrada limite máxima y mínima. Las variables de proceso se definen en un rango de variación mediante las restricciones de proceso, para garantizar que los limites operativos de trabajo de la instalación no son superados, lo cual resulta sumamente importante para asegurar la integridad de los equipos, como por ejemplo las cajas de laminación, y
- restricciones de objetivo, son las restricciones según unos valores mínimos que tienen que ser respetados, no pueden ser inferiores, para cada función objetivo y sirven para acotar los objetivos considerados, filtrando los casos evaluados que están demasiado alejados de los objetivos requeridos, o que cumplimenten uno, pero no los demás en un grado requerido .
Con estos dos tipos de restricciones el sistema reduce el tiempo de operación del método y se filtran las soluciones de manera que la obtención de un resultado óptimo se alcanza antes; por último el sistema comprende
- un módulo predictivo, que a su vez comprende diferentes módulos integrados que representan diferentes procesos que tienen lugar de manera conjunta en el proceso de laminación.
Tal y como se ha señalado con anterioridad, la deformación del material en caliente produce una serie de fenómenos de reducción de espesor, o sección, del producto, los cuales tienen asociada una generación de calor, que está producida por la fricción que se produce entre la superficie y la generación de calor volumétrica debida a la deformación, a la vez que en el contacto con los rodillos se produce una evacuación de calor por conducción. Además en las cajas de laminación que contienen los rodillos se generan unos esfuerzos y en el producto laminado unas tensiones de fluencia que influyen en la microestructura del acero de manera directa. Otros parámetros que también influyen de manera directa en las propiedades mecánicas del producto final son la existencia de grietas o poros.
El módulo predictivo está configurado para considerar tres modelos de comportamiento del acero durante el proceso de laminación, y está configurado para calcular las propiedades mecánicas del producto final a partir de los parámetros de planta y los parámetros del acero, para lo cual comprende:
un módulo termomecánico que recoge el comportamiento térmico y mecánico del acero, que comprende una evolución teórica de la temperatura y de la deformación a la que se encuentra sometido el acero durante el proceso de laminación.
El módulo termomecánico comprende dos submódulos, cada uno de los cuales está configurado para realizar un cálculo diferente que posteriormente se integran de manera automática, un submódulo térmico y un submódulo de deformación, los cuales funcionan de la siguiente manera. A partir de los parámetros de planta y los parámetros del acero, el submódulo térmico está configurado para calcular, matemáticamente, una conducción de calor en una malla analítica que caracteriza el material a laminar. Se analiza la transferencia de calor en el interior de la pieza y entre esta y el medio que la rodea, asi como la generación de calor debida a las deformaciones sufridas por la pieza, como por ejemplo debido al contacto con los rodillos o el rozamiento, para la cual se requiere tiene en consideración la variación en el espesor de la pieza durante el proceso de laminación, que está configurado para calcular el submódulo de deformación, de acuerdo con una tasa de deformación. Por otro lado el submódulo de deformación, a partir de la deformación que se ha impuesto a la lámina, una velocidad de deformación y una velocidad de los nodos de la malla definida anteriormente, está configurado
5 para calcular una generación de calor en la lámina, debido tanto a la generación de calor interna como al rozamiento entre la pieza y el rodillo. Con la integración del cálculo combinado de ambos submódulos
10 térmico y de deformación se obtiene una historia térmica de la lámina objeto de análisis,
un módulo tensional que está configurado
15 para calcular unas tensiones a las que se encuentra sometida la lámina de acero así como unas fuerzas de los rodillos del tren de laminación. A partir de los resultados obtenidos del módulo termomecánico, el
20 módulo tensional está configurado para calcular y obtener unos valores de fuerza de los rodillos, determinando las fuerzas de laminación, un número de pares de rodillos necesarios, valores de planitud a la salida
25 de cada etapa, o caja, de deformación o condiciones geométricas, y
un módulo microestructural que comprende una evolución teórica de la microestructura del
30 acero durante el proceso de laminación. A partir de los resultados obtenidos del módulo termomecánico y del módulo tensional, el módulo microestructural está configurado para calcular una historia microestructural
35 del acero laminado durante el proceso, desde los hornos previos, hasta los sistemas de enfriamiento rápido posteriores, en el caso de que los haya.
El módulo microestructural está configurado para registrar, en el caso de que se haya requerido, un crecimiento de una capa de óxido sobre el material a laminar, también denominado cascarilla, asi como su posterior eliminación en cada una de las etapas.
A partir de los resultados obtenidos del módulo microestructural, el módulo predictivo está configurado para calcular unos valores de las propiedades mecánicas del producto final, como por ejemplo el módulo elástico, la tensión de fluencia o la elongación, obteniendo asimismo otra serie de resultados, como por ejemplo datos térmicos y mecánicos, datos de fuerzas y pares de laminación, planitud y forma geométrica de la lámina, asi como datos de la microestructura de la pieza, como por ejemplo tamaños de grano, fases presentes o precipitados.
Es necesario señalar que el módulo predictivo está configurado para ser implementado como un programa, o herramienta de software, en un dispositivo de cálculo matemático o un ordenador.
Resumiendo, el módulo optimización está configurado para definir unos casos a analizar en el módulo predictivo, que está configurado para evaluarlos en función de las retricciones que comprende el módulo analizador, estando configurado dicho módulo predictivo para descartar unos casos en los que no se cumplen dichas restricciones. A la vista de los valores obtenidos el módulo de optimización está configurado para decidir la evaluación de nuevos casos hasta conseguir un óptimo.
El sistema de la invención está configurado para calcular y disponer, mediante su almacenamiento y muestra según se requiera, no solo resultados relativos a las propiedades mecánicas del material laminado, sino también resultados de los procesos intermedios, clasificándose los resultados obtenidos en cuatro grupos :
- Resultados de configuración, que son las variables de proceso y definen la configuración óptima, también son los valores de las funciones objetivo. Antes de realizar una optimización es posible generar una serie de experimentos de cara a analizar mejor la evolución de una función objetivo a analizar, como por ejemplo el tamaño de grano de la austenita. Para cada variable se define su rango de variación asi como el número de valores que se quiere dar a dicha variable. Seguidamente se define el valor de la posible restricción y por último se genera automáticamente el grupo de experimentos. En una tabla se visualizan los experimentos, permitiendo una diferenciación entre experimentos que cumplen la restricción, experimentos que no cumplen la restricción y experimentos no válidos, es decir, con cuyos valores de las variables no se puede simular el proceso elegido. Se pueden seleccionar, por parte de un usuario, los experimentos que se quieren evaluar, decidiéndose a partir de los resultados obtenidos si es necesario refinar los experimentos o lanzar una optimización del experimento que se aproxima más al objetivo.
Resultados termomecánicos de la historia termomecánica del material. El sistema está
5 configurado para registrar las temperaturas a lo largo del proceso en diferentes puntos de la sección, valores calculados de las fuerzas de laminación en cada caja de laminación, la historia de reducción de
10 espesor estimada, evolución de las características físicas del material y valores de deformación y velocidades de deformación, valores de las fuentes de calor que existen durante el proceso, como por
15 ejemplo de rozamiento y generación de calor por deformación, las fuentes de extracción de calor. Asimismo se pueden obtener representaciones gráficas de dichos valores.
20 - Resultados microestructrales de la historia microestructural en diferentes puntos de la lámina. Durante el proceso de laminado la microestructura del acero se modifica en función de los diferentes fenómenos,
25 produciendo un cambio continuo tanto en el tamaño como en el porcentaje de las fases presentes en el material, el sistema está configurado para registrar el cambio de tamaño y porcentaje de fases presentes en el
30 material según el diagrama de fases. Se registran los tamaños de las diferentes fases que se encuentran presentes en cada instante, así como la proporción entre las mismas. Se pueden seleccionar los datos de
35 unos nodos determinados del dominio, una malla, o bien seleccionar los datos de todos los puntos repartidos en el dominio, es decir toda la malla. Estos datos se pueden obtener de manera gráfica.
Resultados mecánicos, que comprenden las propiedades del producto final en diferentes puntos de la sección, tales como el limite elástico, el limite de rotura, alargamiento, tenacidad o resiliencia.
Una vez se ha descrito el sistema de optimización de la invención, a continuación se define el método que la invención propone, el cual comprende el sistema anteriormente definido.
Asi pues, el método de optimización de procesos de laminación de acero, objeto de la invención comprende las siguientes etapas:
Una etapa A que comprende disponer, obtener o recopilar, de unos parámetros de planta cuyos valores son fijos y se encuentran determinados por unas características técnicas de una planta de laminación en la que se realiza el proceso a optimizar. El sistema anteriormente definido puede estar configurado para adquirir o recopilar los parámetros de planta de manera automática .
Los parámetros de planta están clasificados en tres grupos:
parámetros de tren de laminación, para cada caja de laminación se dispone del diámetro de sus rodillos, de los materiales de dichos rodillos, de la reducción de espesor, de las posiciones y distancias entre cajas, de la disposición o no de refrigeración secundaria,
parámetros de procesos térmicos, es decir una mesa de enfriamiento, durante el proceso de laminado, disponiéndose de datos relativos a unos caudales de unas boquillas que comprende cada tramo de la mesa de enfriamiento, permitiendo la desactivación de tramos, caudales de fluidos refrigerantes, posiciones de los sistemas refrigerantes dentro o fuera del tren así como longitudes activas, características de los fluidos refrigerantes como temperatura y composición, posición del horno solera, túnel o equivalente, y temperaturas a la salida del sistema.
Parámetros operativos iniciales y finales del producto, disponiéndose de una temperatura del acero, espesor inicial y espesor objetivo, velocidad inicial a la entrada del sistema y temperatura a la entrada del sistema.
El método comprende una etapa B, que a su vez comprende disponer, obtener o recopilar manualmente o mediante soportes informáticos, de unos parámetros del acero a laminar, que lo definen, cuyos valores son fijos y se encuentran determinados por la composición química del acero y por lo tanto relacionados con las propiedades del mismo. Además de la composición química, los parámetros del acero comprenden otros parámetros que caracterizan el acero a diferentes temperaturas, tales como parámetros que definen el comportamiento mecánico del acero en función de la temperatura, como por ejemplo el calor específico, la densidad, el módulo de elasticidad o módulo de Young y la conductividad del acero.
Otros parámetros definen el comportamiento de la microestructura en función de la temperatura, como por ejemplo temperaturas de cambios de fase, energías de activación de reacción, tamaño de grano de austenita de equilibrio, crecimiento de precipitados, tamaño de grano inicial dO (mieras) , energía de activación, energía de recristalización, indicador k donde k = 2 para recristalización estática y k = 1 para recristalización metadinámica, DgbO, Qgb y GAMMAgb.
En el método de la invención los parámetros de planta y los parámetros del acero definen el proceso de laminación a optimizar.
El método comprende una etapa C, que a su vez comprende determinar, o seleccionar, unos valores determinados, teóricos o arbitrarios, para unas variables de proceso, que en el caso de adoptar unos valores diferentes se obtienen unas características de acero diferentes tras el proceso de laminación. El método de la invención permite obtener un valor óptimo para cada variable de proceso, de acuerdo con unas condiciones relativas a las propiedades del acero que se quieren obtener tras el proceso de laminación, que es el que se aplica en la ejecución del proceso de laminación.
Las variables de proceso, son variables que el método de la invención está configurado para optimizar, de acuerdo con una función objetivo, es decir para obtener un tipo de acero a obtener con unas propiedades determinadas. El método comprende las siguientes variables de proceso:
Curva de homogeneización aplicada en un horno de recalentamiento.
- Velocidad de entrada al tren de laminación.
Temperatura a la salida del horno de recalentamiento, también puede ser temperatura a la entrada del laminador.
Reducciones de espesor a aplicar en cada etapa, o caja, de laminación.
Refrigeraciones secundarias entre cada etapa, o caja, de laminación.
Refrigeración posterior al proceso de laminación, disponiéndose del tipo, como por ejemplo refrigeración al aire o refrigeración mediante túnel de enfriamiento .
A continuación el método comprende una etapa D, que comprende determinar, o seleccionar, al menos una función objetivo, o función ponderación, que se requiera optimizar, y para lo cual el método está configurado para encontrar los valores óptimos de las variables de proceso .
Las funciones objetivo representan unas características del proceso de laminación, asi como las características del acero, que permiten optimizar el sistema, a la vista de una instalación determinada, es decir, una vez se dispone de los parámetros de planta, en la etapa A, en función de las características técnicas de la instalación, y los parámetros del acero, en la etapa B, se seleccionan las funciones objetivo que se quieren conseguir en el producto final, en función de las necesidades de la producción, a la vista de los recursos disponibles para su producción.
El método y el sistema están configurados para permitir determinar una única función objetivo a optimizar, o bien varias a la vez, para obtener unos determinados valores óptimos para las variables de proceso. Dichos valores óptimos se utilizarán posteriormente para la ejecución del proceso de laminación.
Las funciones objetivo son unas características y propiedades del acero a obtener que se determinan o seleccionan como objetivo, y para las cuales el método optimiza los valores que han de tener las variables de proceso. Las funciones objetivo que comprende el método son:
Generación de capa de óxido, también denominada cascarilla, durante el proceso de tratamiento térmico previo a la laminación, que puede realizarse en un horno túnel, un horno solera o equivalente.
Desgaste sufrido por los útiles, como rodillos de las diferentes etapas, cajas, de laminación. - Tiempo de ciclo libre de mantenimiento de las cajas de laminación.
- Geometría de producto final, es decir, las características de forma como planitud o desviaciones respecto del eje.
Propiedades mecánicas de producto final, como por ejemplo la definición de un valor del limite elástico, elongación previa a rotura o tensión de rotura del acero obtenido.
- Energía consumida por la instalación.
- Materiales empleados, como por ejemplo lubricantes .
El método comprende una etapa E que a su vez comprende determinar, o disponer, unas restricciones que existen o se imponen de manera arbitraria, tanto para las variables de proceso como para las funciones objetivo.
Tal y como se ha descrito anteriormente el módulo de optimización está configurado para considerar las restricciones mediante el módulo analizador.
A continuación el método comprende una etapa F, que comprende entrar, suministrar o introducir, los parámetros de planta, los parámetros del acero, las variables de proceso y las funciones objetivo en un dispositivo de cálculo matemático, o un soporte como un ordenador, que comprenda el módulo de optimización. Posteriormente, el método comprende una etapa F' , en la que el módulo de optimización está configurado para calcular unos valores óptimos de las variables de proceso. Esta etapa comprende analizar, por parte del módulo de optimización, según las funciones objetivo determinadas en la etapa D, una configuración del proceso de laminación que mejor cumple los objetivos definidos, mediante un algoritmo de cálculo que logra obtener unos valores de las variables de proceso que permiten obtener un producto final que cumpla las condiciones fijadas, seleccionadas, mediante las funciones objetivo a optimizar .
Seguidamente, el método comprende una etapa G, que comprende entrar, suministrar o introducir, los parámetros de planta de la etapa A, los parámetros del acero de la etapa B y los valores óptimos obtenidos en la etapa F' en un dispositivo de cálculo matemático, o un soporte como un ordenador, que comprenda el módulo predictivo, definido anteriormente en el sistema de la invención.
A continuación, el método comprende una etapa G' , en la que el módulo predictivo está configurado para realizar un cálculo considerando los tres módulos de comportamiento del acero, que tal y como se explicó anteriormente son un módulo termomecánico, un módulo microestructural y un módulo tensional, y proporciona como resultado datos teóricos de las funciones objetivo, es decir unas funciones objetivo teóricas.
A partir de los valores óptimos que se obtienen en la etapa F' , y considerando los tres módulos de comportamiento del acero, el módulo predictivo está configurado para simular el proceso de laminación y obtener resultados teóricos de las funciones objetivos, es decir, esta configurado para obtener resultados de las combinaciones de parámetros del acero, parámetros de planta y los valores óptimos de las variables de proceso.
De está manera el método de la invención está configurado para simular el proceso de laminación y comprobar las características y propiedades del material laminado obtenido, a la vista de una combinación de parámetros y variables de proceso, todo ello sin la necesidad de ensayar y ejecutar en la realidad en proceso de laminación, con el consiguiente desgaste de la instalación y pérdida de material, que es necesario ensayar para obtener finalmente los resultados requeridos.
Posteriormente el método de la invención puede comprender una etapa G' ' , que comprende entrar, introducir o suministrar las funciones objetivo teóricas obtenidas en G' , de nuevo en el modulo de optimización, es decir repitiendo la etapa F y la etapa F' , estando configurado para obtener unos segundos valores óptimos de las variables de proceso. Esto sirve para comprobar si los segundos valores óptimos coinciden con los valores óptimos que se obtuvieron inicialmente después de la etapa F, verificándose si los valores óptimos eran válidos para las funciones de objetivo. En caso contrario, es decir si no coincide, el módulo de optimización está configurado para calcular unos terceros valores óptimos de las variables de proceso que posteriormente en de nuevo realizando la etapa G y la etapa G' , son analizados por el módulo predictivo, repitiéndose este proceso, etapas F-G' , iterativo hasta que el módulo de optimización consigue unos valores óptimos para las variables de proceso. El proceso descrito en el párrafo anterior, es un proceso iterativo, mediante el que se van obteniendo distintos valores para las funciones objetivo, de forma que tras varias iteraciones, se obtiene una curva que representarla los valores de las funciones objetivo y selecciona aquellos en los que son máximos o mínimos según se requiera.
Por último, el método comprende una etapa H, que comprende disponer de los valores óptimos de las variables de proceso, obtenidos en las etapas anteriormente descritas, para su aplicación en la ejecución del proceso de laminación del acero.
Dichos valores óptimos se corresponden, tras la realización de las etapas A-G' del método de la invención, con las funciones objetivo maximizadas o minimizadas, según se halla seleccionado.
Asi pues, de acuerdo con la invención descrita, el método y sistema de optimización de procesos de laminación de acero que la invención propone constituyen un avance en los métodos de optimización hasta ahora utilizados, y resuelven de manera plenamente satisfactoria y sencilla la problemática anteriormente expuesta, en la linea de permitir una simulación completa del proceso de laminación, asi como la predicción de unos valores óptimos de unas variables de proceso, de cara a optimizar unas funciones objetivo, es decir unas características y propiedades del acero obtenido, con el consiguiente ahorro en los coste de producción, asi como ventajas en la investigación de nuevos aceros. DESCRIPCIÓN DE LOS DIBUJOS
Para complementar la descripción que se está realizando y con objeto de ayudar a una mejor comprensión de las características del invento, de acuerdo con un ejemplo preferente de realización práctica del mismo, se acompaña como parte integrante de dicha descripción, un juego de dibujos en donde con carácter ilustrativo y no limitativo, se ha representado lo siguiente:
La figura 1.- Muestra un esquema del sistema de optimización de de procesos de laminación de aceros que la invención propone.
La figura 2.- Muestra una vista en perspectiva de una instalación de laminación de aceros, en la que pueden apreciarse una pluralidad de cajas de laminado.
La figura 3.- Muestra un diagrama de fases del acero, en el que puede apreciarse el cambio de fase de austenita (Y) a ferrita (α) , en función de la temperatura y del porcentaje de carbono presente en la aleación.
La figura 4.- Muestra un diagrama de flujo de las etapas que comprende el método de optimización de procesos de laminación de acero de la invención.
REALIZACIÓN PREFERENTE DE LA INVENCIÓN
A la vista de las figuras reseñadas puede observarse como en una de las posibles realizaciones de la invención, el sistema de optimización de procesos de laminación de acero, tal y como se recoge en la figura 1, comprende: - un módulo de optimización, configurado para calcular unos valores óptimos de unas variables de proceso a partir de unos parámetros de planta, unos parámetros del acero, las variables de proceso, unas restricciones y unas funciones objetivo, que comprenden unas características y propiedades del acero a obtener tras el proceso de laminación, en el que los parámetros de planta son valores son fijos y se encuentran determinados por unas características técnicas de una planta de laminación en la que se realiza el proceso a optimizar, comprendiendo:
parámetros de tren de laminación, parámetros de procesos térmicos, y - parámetros operativos iniciales y finales del producto.
El sistema puede estar configurado para adquirir o recopilar los parámetros de planta de manera automática.
Por otro lado los parámetros del acero a laminar, comprenden valores fijos y se encuentran determinados por la composición química del acero y parámetros que caracterizan el comportamiento del acero a diferentes temperaturas, así como el comportamiento de la microestructura en función de la temperatura.
Asimismo las variables de proceso comprenden:
Curva de homogeneización aplicada en un horno de recalentamiento.
Velocidad de entrada al tren de laminación.
Temperatura a la salida del horno de recalentamiento, también puede ser temperatura a la entrada del laminador. - Reducciones de espesor a aplicar en cada etapa de laminación.
Refrigeraciones secundarias entre cada etapa de laminación.
Refrigeración posterior al proceso de laminación.
Por último las funciones objetivo, que comprenden unas características y propiedades del acero a obtener tras el proceso de laminación, comprenden:
Generación de capa de óxido durante el proceso de tratamiento térmico previo a la laminación.
Desgaste sufrido por los útiles de las diferentes etapas de laminación. Tiempo de ciclo libre de mantenimiento de las cajas de laminación. - Geometría de producto final.
Propiedades mecánicas de producto final. Energía consumida por la instalación. Materiales empleados, como por ejemplo lubricantes .
El módulo de optimización está configurado para utilizar cualquier función matemática o algoritmo de optimización, cuyo objetivo es evaluar unas variables que minimizan al menos una función objetivo, según se requiera, como por ejemplo algoritmos tipo SQP-Sequential
Quadratic Programming, linea, genético o una función de coste. El módulo de optimización está configurado para ser implementado como un programa, o herramienta de software, en un dispositivo de cálculo matemático o un ordenador. El módulo de optimización puede funcionar de dos maneras. En primer lugar el módulo de optimización está configurado para funcionar a partir de unos valores iniciales de las variables de proceso a partir de los cuales el módulo de optimización obtendrá unos valores óptimos de dichas variables de proceso.
En segundo lugar, el módulo de optimización puede funcionar para diseñar experimentos. En este caso, una vez que se ha definido el proceso que se requiere optimizar, se define una serie de experimentos para la evaluación de las simulaciones teniendo en consideración diferentes valores de determinados datos, como por ejemplo las reducciones en cada caja de laminado. Una vez que los experimentos generados han sido evaluados, se pueden analizar los datos, por parte de un usuario, para estudiar el experimento que se aproxima mejor al valor objetivo. A partir de dicho experimento, se realiza una optimización como la descrita en el párrafo anterior, la cual ya se encontrarla muy cercana al valor óptimo buscado. Está forma de funcionamiento permite una aproximación a la solución óptima y un calculo más rápido que en el primer modo de los valores óptimos.
Asimismo el sistema de la invención comprende:
un módulo analizador configurado para considerar unas restricciones del proceso de laminación, que son limitaciones para la obtención de los valores óptimos de las variables de proceso que maximizan o minimizan una función objetivo.
El modulo analizador comprende dos tipos de restricciones: restricciones de proceso, son las restricciones que tienen las variables de proceso determinadas por los limites que tiene la planta de laminado, y restricciones de objetivo, son las restricciones para cada función objetivo.
Por último el sistema de la invención comprende:
un módulo predictivo, configurado para considerar tres modelos de comportamiento del acero durante el proceso de laminación, y configurado para calcular las propiedades mecánicas del producto final a partir de los parámetros de planta y los parámetros del acero, para lo cual comprende:
un módulo termomecánico que recoge el comportamiento térmico y mecánico del acero, que comprende un submódulo térmico y un submódulo de deformación, configurados para calcular una conducción de calor en una malla analítica que caracteriza el material a laminar y para calcular una velocidad de deformación y una velocidad de los nodos de la malla definida anteriormente, está configurado para calcular una generación de calor en la lámina, con el cálculo combinado de ambos submódulos térmico y de deformación se obtiene una historia térmica de la lámina objeto de análisis, un módulo tensional que está configurado para calcular unas tensiones a las que se encuentra sometida la lámina de acero asi como unas fuerzas de los rodillos del tren de laminación, y un módulo microestructural que comprende una evolución teórica de la microestructura del acero durante el proceso de laminación.
Es necesario señalar que el módulo predictivo está configurado para ser implementado como un programa, o herramienta de software, en un dispositivo de cálculo matemático o un ordenador.
El sistema de la invención está configurado para calcular y disponer, mediante su almacenamiento y muestra según se requiera, no solo resultados relativos a las propiedades mecánicas del material laminado, sino también resultados de los procesos intermedios, clasificándose los resultados obtenidos en cuatro grupos:
Resultados de configuración, que son las variables de proceso y definen la configuración óptima, también son los valores de las funciones objetivo.
Resultados termomecánicos de la historia termomecánica del material.
- Resultados microestructrales de la historia microestructural en diferentes puntos de la lámina.
Resultados mecánicos, que comprenden las propiedades del producto final en diferentes puntos de la sección, tales como el limite elástico, el limite de rotura, alargamiento, tenacidad o resiliencia.
Un segundo aspecto de la invención se refiere a un método de optimización de procesos de laminación acero, el cual comprende el sistema anteriormente definido, y que tal y como se puede apreciar en la figura 4 comprende las siguientes etapas:
- Una etapa A que comprende disponer, obtener o recopilar, de unos parámetros de planta.
- Una etapa B, que comprende disponer, obtener o recopilar manualmente o mediante soportes informáticos, de unos parámetros del acero a laminar.
Una etapa C, que comprende determinar, o seleccionar, unos valores determinados, teóricos o arbitrarios, para unas variables de proceso.
- Una etapa D, que comprende determinar, o seleccionar, al menos una función objetivo, o función ponderación, que se requiera optimizar, y para lo cual el método está configurado para encontrar los valores óptimos de las variables de proceso.
- Una etapa E que a su vez comprende determinar, o disponer, unas restricciones que existen o se imponen de manera arbitraria, tanto para las variables de proceso como para las funciones objetivo.
- Una etapa F, que comprende entrar, suministrar o introducir, los parámetros de planta, los parámetros del acero, las variables de proceso y las funciones objetivo en un dispositivo de cálculo matemático, o un soporte como un ordenador, que comprenda el módulo de optimización.
Una etapa F' , en la que el módulo de optimización está configurado para calcular unos valores óptimos de las variables de proceso. Esta etapa comprende analizar, por parte del módulo de opt±mización, según las funciones objetivo determinadas en la etapa D, una configuración del proceso de laminación que mejor cumple los objetivos definidos, mediante un algoritmo de cálculo que logra obtener unos valores de las variables de proceso que permiten obtener un producto final que cumpla las condiciones fijadas, seleccionadas , mediante las funciones objetivo a optimizar.
- Una etapa G, que comprende entrar, suministrar o introducir, los parámetros de planta de la etapa A, los parámetros del acero de la etapa B y los valores óptimos obtenidos en la etapa F' en un dispositivo de cálculo matemático, o un soporte como un ordenador, que comprenda el módulo predictivo, definido anteriormente en el sistema de la invención.
- Una etapa G' , en la que el módulo predictivo está configurado para realizar un cálculo considerando los tres módulos de comportamiento del acero, que tal y como se explicó anteriormente son un módulo termomecánico, un módulo microestructural y un módulo tensional, y proporciona como resultado datos teóricos de las funciones objetivo, es decir unas funciones objetivo teóricas.
El método de la invención puede comprender una una etapa G' ' , que comprende entrar, introducir o suministrar las funciones objetivo teóricas obtenidas en G' , de nuevo en el modulo de optimización, es decir repitiendo la etapa F y la etapa F' , estando configurado para obtener unos segundos valores óptimos de las variables de proceso.
Por último, el método comprende una etapa H, que comprende disponer de los valores óptimos de las variables de proceso, obtenidos en las etapas anteriormente descritas, para su aplicación en la ejecución del proceso de laminación del acero.
A la vista de esta descripción y juego de figuras, el experto en la materia podrá entender que las realizaciones de la invención que se han descrito pueden ser combinadas de múltiples maneras dentro del objeto de la invención. La invención ha sido descrita según algunas realizaciones preferentes de la misma, pero para el experto en la materia resultará evidente que múltiples variaciones pueden ser introducidas en dichas realizaciones preferentes sin exceder el objeto de la invención reivindicada.

Claims

R E I V I N D I C A C I O N E S
1.- Sistema de optimización de procesos de laminación acero caracterizado porque comprende : - un módulo de optimización, configurado para calcular unos valores óptimos de unas variables de proceso a partir de unos parámetros de planta, unos parámetros del acero, las variables de proceso, unas restricciones y unas funciones objetivo, que comprenden unas características y propiedades del acero a obtener tras el proceso de laminación, un módulo analizador configurado para considerar unas restricciones del proceso de laminación, que son limitaciones para la obtención de los valores óptimos de las variables de proceso que maximizan o minimizan una función objetivo. un módulo predictivo, configurado para considerar tres modelos de comportamiento del acero durante el proceso de laminación, y configurado para calcular las propiedades mecánicas del producto final a partir de los parámetros de planta y los parámetros del acero, que a su vez comprende:
- un módulo termomecánico,
- un módulo tensional, y - un módulo microestructural .
2.- Sistema según la reivindicación 1 caracterizado porque los parámetros de planta son valores son fijos que se encuentran determinados por unas características técnicas de una planta de laminación, comprendiendo : parámetros de tren de laminación, parámetros de procesos térmicos, y parámetros operativos iniciales y finales del producto.
3.- Sistema según cualquiera de las reivindicaciones anteriores caracterizado porque está configurado para adquirir o recopilar los parámetros de planta de manera automática.
4. - Sistema según cualquiera de las reivindicaciones anteriores caracterizado porque las variables de proceso comprenden:
Curva de homogeneización aplicada en un horno de recalentamiento.
- Velocidad de entrada al tren de laminación. Temperatura a la salida del horno de recalentamiento, también puede ser temperatura a la entrada del laminador. - Reducciones de espesor a aplicar en cada etapa de laminación.
Refrigeraciones secundarias entre cada etapa de laminación.
Refrigeración posterior al proceso de laminación.
5.- Sistema según cualquiera de las reivindicaciones anteriores caracterizado porque las funciones objetivo, que comprenden unas características y propiedades del acero a obtener tras el proceso de laminación, comprenden:
Generación de capa de óxido durante el proceso de tratamiento térmico previo a la laminación. - Desgaste sufrido por los útiles de las diferentes etapas de laminación. Tiempo de ciclo libre de mantenimiento de las cajas de laminación. Geometría de producto final. - Propiedades mecánicas de producto final. Energía consumida por la instalación. Materiales empleados, como por ejemplo lubricantes .
6.- Sistema según cualquiera de las reivindicaciones anteriores caracterizado porque el módulo de optimización está configurado para utilizar cualquier función matemática o algoritmo de optimización, cuyo objetivo es evaluar unas variables que minimizan al menos una función objetivo.
7.- Sistema según la reivindicación 6 caracterizado porque el módulo de optimización está configurado para ser implementado como un programa en un dispositivo de cálculo matemático.
8.- Sistema según la reivindicación 6 caracterizado porque el módulo de optimización está configurado para ser implementado como un programa en un ordenador.
9.- Sistema según cualquiera de las reivindicaciones anteriores caracterizado porque el modulo analizador comprende dos tipos de restricciones: restricciones de proceso, son las restricciones que tienen las variables de proceso determinadas por los límites que tiene la planta de laminado, y restricciones de objetivo, son las restricciones para cada función objetivo.
10.- Sistema según cualquiera de las reivindicaciones anteriores caracterizado porque el módulo predictivo está configurado para ser implementado como un programa en un dispositivo de cálculo matemático.
11.- Sistema según cualquiera de las reivindicaciones 1 a 9 caracterizado porque el módulo predictivo está configurado para ser implementado como un programa en un ordenador.
12.- Sistema según cualquiera de las reivindicaciones anteriores caracterizado porque el sistema de la invención está configurado para calcular y disponer, mediante su almacenamiento, resultados relativos a las propiedades mecánicas del material laminado, y resultados de los procesos intermedios, clasificándose los resultados obtenidos en cuatro grupos: resultados de configuración, que son las variables de proceso y definen la configuración óptima, también son los valores de las funciones objetivo,
- resultados termomecánicos,
- resultados microestructrales, y resultados mecánicos.
13.- Método de optimización de procesos de laminación de acero, de acuerdo con el sistema definido en cualquiera de las reivindicaciones anteriores, caracterizado porque comprende : - Una etapa A que comprende disponer de unos parámetros de planta.
- Una etapa B que comprende disponer de unos parámetros del acero a laminar.
Una etapa C que comprende determinar unos valores determinados para unas variables de proceso.
- Una etapa D que comprende determinar al menos una función objetivo que se requiera optimizar.
- Una etapa E que a su vez comprende determinar unas restricciones para las variables de proceso y para las funciones objetivo. - Una etapa F que comprende entrar los parámetros de planta, los parámetros del acero, las variables de proceso y las funciones objetivo en un dispositivo de cálculo matemático, o un soporte como un ordenador, que comprenda el módulo de optimización.
Una etapa F' en la que el módulo de optimización está configurado para calcular unos valores óptimos de las variables de proceso.
- Una etapa G que comprende entrar los parámetros de planta de la etapa A, los parámetros del acero de la etapa B y los valores óptimos obtenidos en la etapa F' en un dispositivo de cálculo matemático, o un soporte como un ordenador, que comprenda el módulo predictivo, definido anteriormente en el sistema de la invención. - Una etapa G' en la que el módulo predictivo está configurado para realizar un cálculo considerando tres módulos de comportamiento del acero, y proporcionar como resultado datos teóricos de las funciones objetivo.
Una etapa H que comprende disponer de los valores óptimos de las variables de proceso, obtenidos en las etapas anteriores para su aplicación en la ejecución del proceso de laminación del acero.
14.- Método según la reivindicación 13, caracterizado porque comprende una etapa C ' que comprende entrar las funciones objetivo teóricas obtenidas en C en el modulo de optimización, es decir repetir la etapa F y la etapa F' , estando configurado para obtener unos segundos valores óptimos de las variables de proceso.
PCT/ES2006/000359 2006-06-19 2006-06-19 Método y sistema de optimización de procesos de laminación de acero WO2008000845A1 (es)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/ES2006/000359 WO2008000845A1 (es) 2006-06-19 2006-06-19 Método y sistema de optimización de procesos de laminación de acero

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/ES2006/000359 WO2008000845A1 (es) 2006-06-19 2006-06-19 Método y sistema de optimización de procesos de laminación de acero

Publications (1)

Publication Number Publication Date
WO2008000845A1 true WO2008000845A1 (es) 2008-01-03

Family

ID=38845149

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2006/000359 WO2008000845A1 (es) 2006-06-19 2006-06-19 Método y sistema de optimización de procesos de laminación de acero

Country Status (1)

Country Link
WO (1) WO2008000845A1 (es)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102069094A (zh) * 2010-11-16 2011-05-25 北京首钢自动化信息技术有限公司 一种基于数据挖掘的板形控制关键工艺参数优化***

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5778151A (en) * 1993-05-17 1998-07-07 Siemens Aktiengesellschaft Method and control device for controlling a material-processing process
US6233500B1 (en) * 1997-06-19 2001-05-15 The United States Of America As Represented By The Secretary Of The Air Force Optimization and control of microstructure development during hot metal working
US6430461B1 (en) * 1996-10-30 2002-08-06 Voest-Alpine Industrieanlagenbau Gmbh Process for monitoring and controlling the quality of rolled products from hot-rolling processes
US6546310B1 (en) * 1997-11-10 2003-04-08 Siemens Aktiengesellschaft Process and device for controlling a metallurgical plant

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5778151A (en) * 1993-05-17 1998-07-07 Siemens Aktiengesellschaft Method and control device for controlling a material-processing process
US6430461B1 (en) * 1996-10-30 2002-08-06 Voest-Alpine Industrieanlagenbau Gmbh Process for monitoring and controlling the quality of rolled products from hot-rolling processes
US6233500B1 (en) * 1997-06-19 2001-05-15 The United States Of America As Represented By The Secretary Of The Air Force Optimization and control of microstructure development during hot metal working
US6546310B1 (en) * 1997-11-10 2003-04-08 Siemens Aktiengesellschaft Process and device for controlling a metallurgical plant

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102069094A (zh) * 2010-11-16 2011-05-25 北京首钢自动化信息技术有限公司 一种基于数据挖掘的板形控制关键工艺参数优化***

Similar Documents

Publication Publication Date Title
Zhao Understanding and design of metallic alloys guided by phase-field simulations
Edgar et al. Smart manufacturing and energy systems
Liu et al. Integration of phase-field model and crystal plasticity for the prediction of process-structure-property relation of additively manufactured metallic materials
Kar et al. Quantitative microstructural characterization of a near beta Ti alloy, Ti-5553 under different processing conditions
Li et al. A three-dimensional cellular automata-crystal plasticity finite element model for predicting the multiscale interaction among heterogeneous deformation, DRX microstructural evolution and mechanical responses in titanium alloys
Sellars et al. Microstructural modelling of aluminium alloys during thermomechanical processing
Chen et al. Modeling the dynamic recrystallization in austenitic stainless steel using cellular automaton method
Chen et al. Multiscale modeling of discontinuous dynamic recrystallization during hot working by coupling multilevel cellular automaton and finite element method
Yang et al. Mechanism of twist in incremental sheet forming of thermoplastic polymer
Łach et al. The evolution of the microstructure in AISI 304L stainless steel during the flat rolling–modeling by frontal cellular automata and verification
CN102323981A (zh) 一种预测热轧钢材奥氏体静态再结晶组织演变的方法
Cao et al. Predicting surface deformation during mechanical attrition of metallic alloys
Naumov et al. Novel physical simulation technique development for multistage metal plastic deformation processing
Jeon et al. Combined data-driven model for the prediction of thermal properties of Ni-based amorphous alloys
Cui et al. Machine learning model for thickness evolution of oxide scale during hot strip rolling of steels
WO2008000845A1 (es) Método y sistema de optimización de procesos de laminación de acero
Long et al. A Study of the Dynamic Recrystallization Behavior of Ni‐Based Superalloy during Hot Power Spinning Based on Cellular Automaton
Szeliga et al. Stochastic model describing evolution of microstructural parameters during hot rolling of steel plates and strips
Jo et al. Modeling and Simulation of Steel Rolling with Microstructure Evolution: An Overview
BR112021013351A2 (pt) Método de auxílio de desenho de material metálico e dispositivo de auxílio de desenho
Malekipour et al. Meso-scale damage mechanics modeling for high cycle fatigue behavior of additively manufactured components
Long et al. Study of microstructure evolution of magnesium alloy cylindrical part with longitudinal inner ribs during hot flow forming by coupling ANN-modified CA and FEA
Feng et al. Thermomechanical processing optimization for 304 austenitic stainless steel using artificial neural network and genetic algorithm
Gondo et al. Effect and control of path parameters on thickness distribution of cylindrical cups formed via multi-pass conventional spinning
Zhu et al. Discrete modelling of continuous dynamic recrystallisation by modified Metropolis algorithm

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06794034

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06794034

Country of ref document: EP

Kind code of ref document: A1