WO2007149011A1 - Method for producing film coatings by means of laser ablation - Google Patents

Method for producing film coatings by means of laser ablation Download PDF

Info

Publication number
WO2007149011A1
WO2007149011A1 PCT/RU2007/000308 RU2007000308W WO2007149011A1 WO 2007149011 A1 WO2007149011 A1 WO 2007149011A1 RU 2007000308 W RU2007000308 W RU 2007000308W WO 2007149011 A1 WO2007149011 A1 WO 2007149011A1
Authority
WO
WIPO (PCT)
Prior art keywords
target
laser
radiation
substrate
focus
Prior art date
Application number
PCT/RU2007/000308
Other languages
French (fr)
Russian (ru)
Inventor
Vladimir Zalmanovich Mordkovich
Igor Alexandrovich Maslov
Anton Alexandrovich Kamenev
Original Assignee
Limited Liability Company 'united Research And Development Centre'
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Limited Liability Company 'united Research And Development Centre' filed Critical Limited Liability Company 'united Research And Development Centre'
Publication of WO2007149011A1 publication Critical patent/WO2007149011A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/28Vacuum evaporation by wave energy or particle radiation

Definitions

  • the invention relates to the field of films, coatings, deposition of catalysts, as well as the preparation of fine powders, relates to a new highly efficient method for producing materials using high-power laser radiation.
  • a known method of producing coatings and films on large surfaces (US patent N ° 6225007 from 05/01/2001), which consists in the fact that an aerosol containing precursors (for example, soluble salts) of the future film is sprayed into the focus of the laser.
  • the focus is the decomposition of the aerosol, ignition of the plasma and deposition of the film on a substrate located near the focus.
  • the main disadvantages of this method are the low deposition efficiency (large aerosol losses), limited application, since it is not always possible to choose a solvent that allows one to obtain precursor solutions with a sufficiently high concentration, as well as deposition rate limitations, also associated with the limited solubility of the precursors.
  • a known method of deposition of thin films by laser ablation (WO2002 / 024972 from 03/28/2002).
  • the method includes the following steps: laser ablation of the target surface to create a jet of particles of the vaporized substance passing in the direction of propagation from the target surface, placing the substrate in the direction of propagation of the jet so that particles of the vaporized substance contained in the jet are deposited on the substrate, focusing laser beam alignment in front of the target surface.
  • the laser beam is focused so that the minimum cross section of the focused beam is located in the region of critical concentration.
  • the particles of the evaporated substance are given additional kinetic energy or speed, due to which the more slowly moving particles of the evaporated substance in the jet deviate from the propagation direction, which prevents their deposition on the substrate.
  • the method is carried out mainly in vacuum chambers.
  • the problem solved by the claimed invention is to create a highly efficient method for producing film coatings, providing both an increase in the deposition rate of the material during laser ablation due to the formation of a narrowly targeted, highly efficient jet containing the main part (more than 95%) of the target material, and the possibility of applying films, coatings or obtaining powders on a surface with a large area, as well as eliminating the need to use vacuum chambers in the deposition process and reducing losses terial target.
  • the problem is solved by laser ablation of the target surface with the formation of a jet of particles directed at the substrate, while the target is positioned with a shift from the focus of the laser radiation by at least two coordinate axes, one of which coincides with the radiation direction.
  • the target displacement from the focus along the axis coinciding with the radiation direction is from 1 to 5 mm, and not more than 1 mm along the axis perpendicular to the first axis.
  • Deviation of the target from the focus of the laser radiation at larger distances than indicated leads to the disappearance of the jet of particles of the evaporated material.
  • To obtain a stable narrowly targeted, highly efficient jet of vaporized material it is necessary to position the target out of the focus of the laser radiation, displacing along the axis coinciding with the direction of radiation and along the axis perpendicular to the first axis. The displacement of only one axis, coinciding with the direction of radiation, leads to the fact that the jet propagates towards the emitter, which does not allow deposition.
  • a jet of high energy particles knocked out from the target surface is created, which allows film coatings to be applied to large surfaces both by moving the substrate and the focusing device of the laser with the target. This makes it possible to obtain film coatings not only with a high speed, but also significantly reduce the loss of target material, since the narrow directional jet of particles knocked out of the target formed during ablation almost completely transfers to the deposited material.
  • the claimed method allows to obtain continuous film coatings or various configurations: island, mesh, dot, linear, or combinations thereof on any surface.
  • the laser radiation power is from 25 kBt / cm 2 to 200 kBt / cm.
  • the use of less power in this case does not lead to the formation of a jet of sprayed substance, and a higher power leads to the rapid melting of the target material.
  • Changing the laser radiation power in the range from 25 kBt / cm 2 to 200 kBt / cm 2 allows you to adjust the jet intensity and thereby control the deposition rate and the thickness of the deposited material.
  • metal oxides or mixtures thereof can be used as targets.
  • metals or alloys as the target material.
  • film coatings must be obtained in an inert atmosphere.
  • an inert atmosphere it is possible to use a nitrogen atmosphere.
  • the substrate is heated to a temperature of from 200 ° C to 1200 ° C, which allows to increase the adhesion of the material to the surface of the substrate.
  • a substrate heating temperature of less than 200 ° C does not lead to improved adhesion, and more than 1200 ° C - can lead to melting of the substrate.
  • additional heating of the substrate can be carried out by laser radiation of an additional laser.
  • FIG. 1 shows a layout of a solid target for forming a jet of vaporized material and a target.
  • FIG. 2 shows a motion diagram of a jet of vaporized material.
  • FIG. 3 shows a diagram of the process of applying to flat substrates.
  • FIG. 4 shows a diagram of a deposition process on a cylindrical substrate.
  • the laser radiation 1 is focused in focus 2 near the surface of the target 3, that is, the target 3 is mounted with an offset along the axis coinciding with the direction of radiation and along the axis perpendicular to the first axis, and laser ablation of the surface of the target 3 to create a jet 4 particles of evaporated material
  • the necessary shift of the target from the focus along the (X) axis, which coincides with the radiation direction, is from 1 to 5 mm, and along the (Y) axis, perpendicular to the first axis, not more than 1 mm.
  • it is possible to change the direction of propagation of the jet by changing the position of the focus 2 of the laser radiation relative to the solid target 3, as shown in figure 2.
  • the pattern of the jet motion depends on the position of the solid target 3. Deviation of the target from the focus of the laser radiation at distances greater than the indicated ones leads to the disappearance of the jet particles of evaporated material.
  • a jet of high energy particles knocked out from the target surface is created, which allows deposition onto large surfaces by moving both the substrate and the focusing device of the laser with the target.
  • the laser radiation 1 is focused at the focus 2 near the solid target 3.
  • a particle stream 4 is formed, directed towards the rotating substrate 6.
  • the target 3 is fed into the deposition zone (according to the expenditure target material).
  • the laser radiation 1 is focused in focus 2 near the solid target 3. This creates a jet of particles 4 directed towards the rotating substrate 6.
  • the target 3 is fed into the deposition zone (as the target material is consumed )
  • the substrate 6 also moves along the axis perpendicular to the laser radiation, so that the coating is deposited on the entire surface of the substrate.
  • Example 1 A film of La 06 Ca 04 MnO 3 with a thickness of 150 ⁇ m was obtained on a flat substrate of CaTiO 3 with a diameter of 18 mm using the specified deposition mode.
  • a dc laser based on a Y 3 Al 5 Oj 2 garnet doped with Nd 2 O 3 with a radiation wavelength l, 064 ⁇ m was used.
  • the laser power during application was 200 watts.
  • the rotation speed of the substrate is 60 rpm.
  • the distance from the radiation focus to the substrate was 3 mm.
  • a mixture of lanthanum and manganese oxides and calcium carbonate annealed at a temperature of 1100 0 C for 6 hours was used as a solid target.
  • a 2 mm thick target was placed in the immediate vicinity of the laser focus with deviations along the X axis of 3 mm, Y 0.7 mm.
  • the feed rate of the solid target was 1 cm / min.
  • the resulting films were annealed in laser radiation at a temperature of HOO 0 C.
  • Example 2
  • a film of La 0 6 Ca 04 MnO 3 with a thickness of 130 ⁇ m was obtained on a tubular substrate Al 2 O 3 with a diameter of 10 mm, a length of 10 cm using the specified deposition mode.
  • a permanent laser based on a Y 3 Al 5 O 12 garnet doped with Nd 2 O 3 with a radiation wavelength of 1.064 ⁇ m was used for deposition.
  • the laser power during application was 210 watts.
  • the rotation speed of the substrate is 300 rpm, the linear velocity of movement is 2 cm / min.
  • the distance from the radiation focus to the substrate was 2.5 mm.
  • a 2 mm thick target was placed in the immediate vicinity of the laser focus with deviations with deviations along the X axis — 3 mm Y — 0.7 mm.
  • the feed rate of the solid target was 0.7 cm / min.
  • the resulting films were annealed in a muffle furnace at a temperature of HOO 0 C.
  • Example 4 Similar to example 1 and differs in the magnitude of the offset of the target from the focus, the type of annealing, the radiation power and is described in detail in table 1.2.
  • Example 4 Similar to example 1 and differs in the magnitude of the offset of the target from the focus, the type of annealing, the radiation power and is described in detail in table 1.2.
  • Example 4 Similar to example 1 and differs in the magnitude of the offset of the target from the focus, the type of annealing, the radiation power and is described in detail in table 1.2.
  • Example 4 Similar to example 1 and differs in the magnitude of the offset of the target from the focus, the type of annealing, the radiation power and is described in detail in table 1.2.
  • Example 5 Similar to example 1 and differs in the magnitude of the offset of the target from the focus and the radiation power and is described in detail in table 1.2.
  • Example 6 Similar to example 1 and differs in the magnitude of the offset of the target from the focus and the radiation power and is described in detail in table 1.2.
  • Example 6 Similar to example 1 and differs in the magnitude of the offset of the target from the focus and the radiation power and is described in detail in table 1.2.
  • Example 7 Similar to example 2 and differs in the magnitude of the offset of the target from the focus and the radiation power and is described in detail in table 1.2.
  • Example 7 Similar to example 2 and differs in the magnitude of the offset of the target from the focus and the radiation power and is described in detail in table 1.2.
  • Example 7 Similar to example 2 and differs in the magnitude of the offset of the target from the focus and the radiation power and is described in detail in table 1.2.
  • Example 8 Similar to example 1 and differs in the magnitude of the offset of the target from the focus, the type of annealing, the radiation power and is described in detail in table 1.2.
  • Example 8 Similar to example 1 and differs in the magnitude of the offset of the target from the focus, the type of annealing, the radiation power and is described in detail in table 1.2.
  • Example 8 Similar to example 1 and differs in the magnitude of the offset of the target from the focus, the type of annealing, the radiation power and is described in detail in table 1.2.
  • Example 8 Similar to example 1 and differs in the magnitude of the offset of the target from the focus, the type of annealing, the radiation power and is described in detail in table 1.2.
  • Example 9 It is similar to example 2 and differs in the magnitude of the target displacement from the focus, the type of annealing, the radiation power and is described in detail in table 1.2.
  • Example 9 It is similar to example 2 and differs in the magnitude of the target displacement from the focus, the type of annealing, the radiation power and is described in detail in table 1.2.
  • Example 10 Similar to example 1 and differs in the magnitude of the offset of the target from the focus and the radiation power and is described in detail in table 1.2.
  • Example 10 Similar to example 1 and differs in the magnitude of the offset of the target from the focus and the radiation power and is described in detail in table 1.2.
  • Example 10 Similar to example 1 and differs in the magnitude of the offset of the target from the focus and the radiation power and is described in detail in table 1.2.
  • Example 11 Similar to example 2 and differs in the magnitude of the offset of the target from the focus and the radiation power and is described in detail in table 1.2.
  • Example 11 Similar to example 2 and differs in the magnitude of the offset of the target from the focus and the radiation power and is described in detail in table 1.2.
  • Example 11 Similar to example 2 and differs in the magnitude of the offset of the target from the focus and the radiation power and is described in detail in table 1.2.
  • Example 12 Similar to example 1 and differs in the magnitude of the offset of the target from the focus and the radiation power and is described in detail in tables 1 and 2. Example 12.
  • Example 13 It is similar to Example 1 and differs in the magnitude of the target displacement from the focus, the radiation power, and the use of heating the substrate during deposition instead of subsequent annealing and is described in detail in Table 1.2.
  • Example 13 It is similar to Example 1 and differs in the magnitude of the target displacement from the focus, the radiation power, and the use of heating the substrate during deposition instead of subsequent annealing and is described in detail in Table 1.2.
  • Example 14 Similar to example 1 and differs in the magnitude of the offset of the target from the focus, the radiation power and the use of heating the substrate during deposition instead of subsequent annealing and is described in detail in table 1, 2.
  • Example 14 Similar to example 1 and differs in the magnitude of the offset of the target from the focus, the radiation power and the use of heating the substrate during deposition instead of subsequent annealing and is described in detail in table 1, 2.
  • Example 14 Similar to example 1 and differs in the magnitude of the offset of the target from the focus, the radiation power and the use of heating the substrate during deposition instead of subsequent annealing and is described in detail in table 1, 2.
  • Example 14 Similar to example 1 and differs in the magnitude of the offset of the target from the focus, the radiation power and the use of heating the substrate during deposition instead of subsequent annealing and is described in detail in table 1, 2.
  • the invention can be used to obtain films, coatings, deposition of catalysts, as well as to obtain fine powders.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

The invention relates to producing films, coatings, catalyst application and to producing fine powders. The inventive method for producing film coatings by means of laser ablation consists in exposing a target surface to laser ablation in such a way that a particle jet directed to a substrate is formed, wherein the target is offset with respect to the laser radiation focus along at least two co-ordination axes one of which coincides with the radiation direction. The target is offset at a distance ranging from 1 to 5 mm with respect to the focus along the axis coinciding with the radiation direction and at a distance equal to or less than 1mm along the axis perpendicular to the first axis. The inventive method makes it possible to increase the rate of material deposition during the laser ablation by forming a narrow-directed highly-efficient jet which enables the film or coating to be applied to a large surface areas, to produce powders and to exclude the use of vacuum chambers for producing coatings.

Description

Способ получения пленочных покрытий посредством лазерной абляцииMethod for producing film coatings by laser ablation
Область техники.The field of technology.
Изобретение относится к области получения пленок, покрытий, нанесения катализаторов, а также получения мелкодисперсных порошков, касается нового высокоэффективного способа получения материалов с использованием лазерного излучения высокой мощности.The invention relates to the field of films, coatings, deposition of catalysts, as well as the preparation of fine powders, relates to a new highly efficient method for producing materials using high-power laser radiation.
Предшествующий уровень техники.The prior art.
Существует большое количество методов осаждения пленок и покрытий, однако очень ограниченное число подходит для нанесения на большие поверхности. Это связано с тем, что нанесение покрытий в вакуумных камерах (химиче- ское осаждение из паровой фазы, импульсное лазерное осаждение ) ограничивает размер подложки. Физические методы, такие как трафаретная печать или покрытие с помощью центрифугирования зачастую не обеспечивают высокого качества получаемых покрытий.There are a large number of methods for the deposition of films and coatings, but a very limited number is suitable for application on large surfaces. This is due to the fact that coating in vacuum chambers (chemical vapor deposition, pulsed laser deposition) limits the size of the substrate. Physical methods, such as screen printing or centrifugal coating, often do not provide high quality coatings.
Известен способ получения покрытий и пленок на больших поверхностях (патент США N° 6225007 от 01.05.2001), заключающийся в том, что в фокус лазера распыляется аэрозоль, содержащий прекурсоры (например, растворимые соли) будущей пленки. В фокусе происходит разложение аэрозоля, поджиг плазмы и осаждение пленки на подложку, расположенную вблизи фокуса. Главными недостатками этого метода являются малая эффективность осаждения (большие потери аэрозоля), ограниченность применения, поскольку не всегда можно подобрать растворитель, позволяющий получать растворы прекурсоров с достаточно высокой концентрацией, а также ограничения скорости осаждения, также связанные с ограниченной растворимостью прекурсоров.A known method of producing coatings and films on large surfaces (US patent N ° 6225007 from 05/01/2001), which consists in the fact that an aerosol containing precursors (for example, soluble salts) of the future film is sprayed into the focus of the laser. The focus is the decomposition of the aerosol, ignition of the plasma and deposition of the film on a substrate located near the focus. The main disadvantages of this method are the low deposition efficiency (large aerosol losses), limited application, since it is not always possible to choose a solvent that allows one to obtain precursor solutions with a sufficiently high concentration, as well as deposition rate limitations, also associated with the limited solubility of the precursors.
Известен способ осаждения тонких пленок посредством лазерной абляции (WO2002/024972 от 28.03.2002). Способ содержит следующие этапы: проведение лазерной абляции поверхности мишени для создания струи частиц испаряемого вещества, проходящей в направлении распространения от поверхности мишени, размещение подложки в направлении распространения струи так, чтобы частицы испаряемого вещества, содержащиеся в струе, осаждались на подложку, фокуси- ровка лазерного пучка перед поверхностью мишени. Фокусировку лазерного пучка осуществляют так, чтобы минимальное поперечное сечение сфокусированного пучка размещалось в области критической концентрации. При этом частицам испаряемого вещества сообщают дополнительную кинетическую энергию или скорость, благодаря наличию которой более медленно движущиеся частицы испаряемого вещества в струе отклоняются от направления распространения, что препятствует их осаждению на подложке. Способ осуществляют, преимущественно, в вакуумных камерах.A known method of deposition of thin films by laser ablation (WO2002 / 024972 from 03/28/2002). The method includes the following steps: laser ablation of the target surface to create a jet of particles of the vaporized substance passing in the direction of propagation from the target surface, placing the substrate in the direction of propagation of the jet so that particles of the vaporized substance contained in the jet are deposited on the substrate, focusing laser beam alignment in front of the target surface. The laser beam is focused so that the minimum cross section of the focused beam is located in the region of critical concentration. In this case, the particles of the evaporated substance are given additional kinetic energy or speed, due to which the more slowly moving particles of the evaporated substance in the jet deviate from the propagation direction, which prevents their deposition on the substrate. The method is carried out mainly in vacuum chambers.
Недостатками такого способа являются малая скорость осаждения, а также то, что для целого ряда материалов необходимо использовать вакуумные камеры для создания пониженного давления, при которых невозможно нанесение материала на поверхности с большой площадью. Кроме того, из-за отклонения медленно движущихся в струе частиц происходит неполное использование испаряемого материала, что влечет высокие потери.The disadvantages of this method are the low deposition rate, as well as the fact that for a number of materials it is necessary to use vacuum chambers to create reduced pressure, at which it is impossible to apply material on a surface with a large area. In addition, due to the deflection of particles slowly moving in the jet, incomplete use of the vaporized material occurs, which entails high losses.
Раскрытие изобретения.Disclosure of the invention.
Задача, решаемая заявленным изобретением, заключается в создание высокоэффективного способа получения пленочных покрытий, обеспечивающего как повышение скорости осаждения материала в процессе лазерной абляции за счет образования узконаправленной, высокоэффективной струи, содержащей основную часть (более 95 %) материала мишени, так и возможность нанесения пленок, покрытий или получения порошков на поверхности с большой площадью, а также исключения необходимости использования вакуумных камер в процессе осаждения и уменьшение потерь материала мишени. Поставленная задача решена тем, что осуществляют лазерную абляцию поверхности мишени с образованием струи частиц, направленной на подложку, при этом мишень располагают со смещением от фокуса лазерного излучения не менее чем по двум осям координат, одна из которых совпадает с направлением излучения. Смещение мишени от фокуса по оси, совпадающей с направлением излучения, составляет от 1 до 5 мм, а по оси перпендикулярной первой оси - не более 1 мм.The problem solved by the claimed invention is to create a highly efficient method for producing film coatings, providing both an increase in the deposition rate of the material during laser ablation due to the formation of a narrowly targeted, highly efficient jet containing the main part (more than 95%) of the target material, and the possibility of applying films, coatings or obtaining powders on a surface with a large area, as well as eliminating the need to use vacuum chambers in the deposition process and reducing losses terial target. The problem is solved by laser ablation of the target surface with the formation of a jet of particles directed at the substrate, while the target is positioned with a shift from the focus of the laser radiation by at least two coordinate axes, one of which coincides with the radiation direction. The target displacement from the focus along the axis coinciding with the radiation direction is from 1 to 5 mm, and not more than 1 mm along the axis perpendicular to the first axis.
Отклонение мишени от фокуса лазерного излучения на большие, чем указанные, расстояния приводит к исчезновению струи частиц испаряемого материала. Для получения устойчивой узконаправленной, высокоэффективной струи испаряемого материала необходимо располагать мишень вне фокуса лазерного излучения, смещая по оси, совпадающей с направлением излучения, и по оси, перпендикулярной первой оси. Смещение лишь по одной оси, совпадающей с направлением излучения, приводит к тому, что струя распространяется в сторону излучателя, что не дает возможности производить осаждение.Deviation of the target from the focus of the laser radiation at larger distances than indicated leads to the disappearance of the jet of particles of the evaporated material. To obtain a stable narrowly targeted, highly efficient jet of vaporized material, it is necessary to position the target out of the focus of the laser radiation, displacing along the axis coinciding with the direction of radiation and along the axis perpendicular to the first axis. The displacement of only one axis, coinciding with the direction of radiation, leads to the fact that the jet propagates towards the emitter, which does not allow deposition.
При использовании смещения мишени от фокуса излучения происходит создание струи выбиваемых с поверхности мишени частиц с высокой энергией, которая позволяет осуществлять нанесение пленочных покрытий на большие по- верхности как путем перемещения подложки, так и фокусирующего устройства лазера с мишенью. Это позволяет получать пленочные покрытия не только с высокой скоростью, но и значительно снизить потери материала мишени, так как образующаяся при абляции узконаправленная струя выбитых из мишени частиц практически полностью переходит в осаждаемый материал. Заявленный способ позволяет получать сплошные пленочные покрытия или различной конфигурации: островковые, сетчатые, точечные, линейные или их сочетания на любой поверхности.When using the offset of the target from the radiation focus, a jet of high energy particles knocked out from the target surface is created, which allows film coatings to be applied to large surfaces both by moving the substrate and the focusing device of the laser with the target. This makes it possible to obtain film coatings not only with a high speed, but also significantly reduce the loss of target material, since the narrow directional jet of particles knocked out of the target formed during ablation almost completely transfers to the deposited material. The claimed method allows to obtain continuous film coatings or various configurations: island, mesh, dot, linear, or combinations thereof on any surface.
В частном случае осуществления изобретения для распыления керамик и сложных оксидов мощность лазерного излучения составляет от 25кBт/cм2 до 200кBт/cм . Использование меньшей мощности в данном случае не приводит к образованию струи распыляемого вещества, а большая мощность приводит к быстрому плавлению материала мишени. Изменение мощности лазерного излучения в интервале от 25кBт/cм2 до 200кBт/cм2 позволяет регулировать интенсивность струи и тем самым контролировать скорость осаждения и толщину осаж- даемого материала.In the particular case of the invention for the spraying of ceramics and complex oxides, the laser radiation power is from 25 kBt / cm 2 to 200 kBt / cm. The use of less power in this case does not lead to the formation of a jet of sprayed substance, and a higher power leads to the rapid melting of the target material. Changing the laser radiation power in the range from 25 kBt / cm 2 to 200 kBt / cm 2 allows you to adjust the jet intensity and thereby control the deposition rate and the thickness of the deposited material.
Для получения оксидных покрытий в качестве мишени могут использоваться оксиды металлов или их смеси.To obtain oxide coatings, metal oxides or mixtures thereof can be used as targets.
Для получения металлических покрытий в качестве материала мишени предпочтительно использовать металлы или сплавы. При этом для предотвраще- ния окисления покрытия получение пленочных покрытий необходимо производить в инертной атмосфере. В качестве инертной атмосферы возможно использование атмосферы азота. В частном случае осуществления изобретения осуществляют подогрев подложки до температуры от 200°C до 1200°C, что позволяет повысить адгезию материала к поверхности подложки.To obtain metal coatings, it is preferable to use metals or alloys as the target material. Moreover, in order to prevent oxidation of the coating, film coatings must be obtained in an inert atmosphere. As an inert atmosphere, it is possible to use a nitrogen atmosphere. In the particular case of the invention, the substrate is heated to a temperature of from 200 ° C to 1200 ° C, which allows to increase the adhesion of the material to the surface of the substrate.
Температура подогрева подложки менее 200°C не приводит к улучшению адгезии, а более, чем 12000C - может привести к плавлению подложки. При этом дополнительный подогрев подложки может быть осуществлен лазерным излучением дополнительного лазера.A substrate heating temperature of less than 200 ° C does not lead to improved adhesion, and more than 1200 ° C - can lead to melting of the substrate. In this case, additional heating of the substrate can be carried out by laser radiation of an additional laser.
В другом частном случае для снятия напряжений в осаждаемом материале и улучшении адгезии сформированное пленочное покрытие подвергают отжигу, например с помощью лазера.In another particular case, in order to relieve stresses in the deposited material and improve adhesion, the formed film coating is annealed, for example, using a laser.
Краткое описание чертежей.A brief description of the drawings.
На фиг. 1 изображена схема расположения твердой мишени для образо- вания струи испаряемого материала и мишени.In FIG. 1 shows a layout of a solid target for forming a jet of vaporized material and a target.
На фиг. 2 изображена схема движения струи испаряемого материала На фиг. 3 изображена схема процесса нанесения на плоские подложки. На фиг. 4 изображена схема процесса нанесения на цилиндрическую подложку.In FIG. 2 shows a motion diagram of a jet of vaporized material. FIG. 3 shows a diagram of the process of applying to flat substrates. In FIG. 4 shows a diagram of a deposition process on a cylindrical substrate.
Лучший вариант осуществление изобретенияBEST MODE FOR CARRYING OUT THE INVENTION
Для осуществления изобретения излучение 1 лазера фокусируется в фокусе 2 вблизи поверхности мишени 3, то есть мишень 3 устанавливают со смещением по оси, совпадающей с направлением излучения, и по оси, перпендикуляр- ной первой оси, и выполняют лазерную абляцию поверхности мишени 3 для создания струи 4 частиц испаряемого материалаTo implement the invention, the laser radiation 1 is focused in focus 2 near the surface of the target 3, that is, the target 3 is mounted with an offset along the axis coinciding with the direction of radiation and along the axis perpendicular to the first axis, and laser ablation of the surface of the target 3 to create a jet 4 particles of evaporated material
Для получения узконаправленной устойчивой струи испаряемого материала необходимое смещение мишени от фокуса по оси (X), совпадающей с направлением излучения составляет от 1 до 5 мм , а по оси (Y), перпендикулярной пер- вой оси не более 1 мм. При этом возможно изменение направления распространения струи за счет изменения положения фокуса 2 лазерного излучения относительно твердой мишени 3, как показано на фиг.2. Схема движения струи зависит от положения твердой мишени 3. Отклонение мишени от фокуса лазерного излучения на большие, чем указанные расстояния приводит к исчезновению струи частиц испаряемого материала. При использовании смещения мишени от фокуса излучения происходит создание струи выбиваемых с поверхности мишени частиц с высокой энергией, которая позволяет осуществлять нанесение на большие поверхности путем перемещения как подложки, так и фокусирующего устройства лазера с мишенью.To obtain a narrowly directed stable jet of evaporated material, the necessary shift of the target from the focus along the (X) axis, which coincides with the radiation direction, is from 1 to 5 mm, and along the (Y) axis, perpendicular to the first axis, not more than 1 mm. In this case, it is possible to change the direction of propagation of the jet by changing the position of the focus 2 of the laser radiation relative to the solid target 3, as shown in figure 2. The pattern of the jet motion depends on the position of the solid target 3. Deviation of the target from the focus of the laser radiation at distances greater than the indicated ones leads to the disappearance of the jet particles of evaporated material. When using the offset of the target from the radiation focus, a jet of high energy particles knocked out from the target surface is created, which allows deposition onto large surfaces by moving both the substrate and the focusing device of the laser with the target.
Для нанесения материала на плоскую подложку с помощью фокусирующего устройства 5 излучение 1 лазера фокусируется в фокусе 2 вблизи твердой мишени 3. При этом образуется струя частиц 4, направленная в сторону вращающейся подложки 6. Постепенно мишень 3 подается в зону осаждения (по ме- ре расходования материала мишени).To apply the material to a flat substrate using a focusing device 5, the laser radiation 1 is focused at the focus 2 near the solid target 3. In this case, a particle stream 4 is formed, directed towards the rotating substrate 6. Gradually, the target 3 is fed into the deposition zone (according to the expenditure target material).
Для нанесения материала на цилиндрическую подложку с помощью фокусирующего устройства 5 излучение 1 лазера фокусируется в фокусе 2 вблизи твердой мишени 3. При этом образуется струя частиц 4, направленная в сторону вращающейся подложки 6. Постепенно мишень 3 подается в зону осаждения (по мере расходования материала мишени). При этом подложка 6 движется также и по оси, перпендикулярной излучению лазера, для того чтобы покрытие осаждалось на всю поверхность подложки.To apply the material to a cylindrical substrate using a focusing device 5, the laser radiation 1 is focused in focus 2 near the solid target 3. This creates a jet of particles 4 directed towards the rotating substrate 6. Gradually, the target 3 is fed into the deposition zone (as the target material is consumed ) In this case, the substrate 6 also moves along the axis perpendicular to the laser radiation, so that the coating is deposited on the entire surface of the substrate.
Изобретение иллюстрируется следующими примерами: Пример 1. Пленка La06Ca04MnO3 толщиной 150 мкм была получена на плоской подложке из CaTiO3 диаметром 18мм при использовании указанного режима осаждения. Для осаждения был использован лазер постоянного излучения на основе граната Y3Al5Oj2, легированного Nd2O3, с длиной волны излучения l,064мкм. Мощность лазера при нанесении составляла 200 Вт. Время нанесения 1,5 минуты. Скорость вращения подложки 60 об/мин. Расстояние от фокуса излучения до подложки составляло 3 мм. В качестве твердой мишени использовалась смесь оксидов лантана и марганца, а также карбоната кальция, отожженных при температуре 11000C в течении 6 часов. Мишень толщиной 2 мм помещали в непосредственной близости от фокуса лазера с отклонениями по оси X - 3 мм Y - 0,7 мм. Скорость подачи твердой мишени составляла 1 см/мин. Полученные пленки отжигались в излучении лазера при температуре HOO0C. Пример 2.The invention is illustrated by the following examples: Example 1. A film of La 06 Ca 04 MnO 3 with a thickness of 150 μm was obtained on a flat substrate of CaTiO 3 with a diameter of 18 mm using the specified deposition mode. For deposition, a dc laser based on a Y 3 Al 5 Oj 2 garnet doped with Nd 2 O 3 with a radiation wavelength l, 064 μm was used. The laser power during application was 200 watts. Application time 1.5 minutes. The rotation speed of the substrate is 60 rpm. The distance from the radiation focus to the substrate was 3 mm. A mixture of lanthanum and manganese oxides and calcium carbonate annealed at a temperature of 1100 0 C for 6 hours was used as a solid target. A 2 mm thick target was placed in the immediate vicinity of the laser focus with deviations along the X axis of 3 mm, Y 0.7 mm. The feed rate of the solid target was 1 cm / min. The resulting films were annealed in laser radiation at a temperature of HOO 0 C. Example 2.
Пленка La0 6Ca04MnO3 толщиной 130 мкм была получена на трубчатой подложке Al2O3 диаметром 10 мм, длиной 10 см при использовании указанного режима осаждения. Для осаждения был использован лазер постоянного на основе граната Y3Al5O12, легированного Nd2O3, с длиной волны излучения 1,064 мкм. Мощность лазера при нанесении составляла 210 Вт. Время нанесения 5 минут. Скорость вращения подложки 300 об/мин, линейная скорость перемещения 2 см/мин. Расстояние от фокуса излучения до подложки составляло 2,5 мм. В качестве твердой мишени использовалась смесь оксидов лантана и марганца, а также карбоната кальция, отожженных при температуре 1100 С в течении 6 часов. Мишень толщиной 2 мм помещали в непосредственной близости от фокуса лазера с отклонениями с отклонениями по оси X - 3 мм Y - 0,7 мм. Скорость подачи твердой мишени составляла 0,7 см/мин. Полученные пленки отжигались в муфельной печи при температуре HOO0C.A film of La 0 6 Ca 04 MnO 3 with a thickness of 130 μm was obtained on a tubular substrate Al 2 O 3 with a diameter of 10 mm, a length of 10 cm using the specified deposition mode. A permanent laser based on a Y 3 Al 5 O 12 garnet doped with Nd 2 O 3 with a radiation wavelength of 1.064 μm was used for deposition. The laser power during application was 210 watts. Application time 5 minutes. The rotation speed of the substrate is 300 rpm, the linear velocity of movement is 2 cm / min. The distance from the radiation focus to the substrate was 2.5 mm. A mixture of lanthanum and manganese oxides, as well as calcium carbonate, annealed at a temperature of 1100 C for 6 hours, was used as a solid target. A 2 mm thick target was placed in the immediate vicinity of the laser focus with deviations with deviations along the X axis — 3 mm Y — 0.7 mm. The feed rate of the solid target was 0.7 cm / min. The resulting films were annealed in a muffle furnace at a temperature of HOO 0 C.
Пример 3.Example 3
Аналогичен примеру 1 и отличается величиной смещения мишени от фокуса, типом отжига, мощностью излучения и подробно описан в таблице 1,2. Пример 4.Similar to example 1 and differs in the magnitude of the offset of the target from the focus, the type of annealing, the radiation power and is described in detail in table 1.2. Example 4
Аналогичен примеру 2 и отличается величиной смещения мишени от фокуса, типом отжига и мощностью излучения и подробно описан в таблице 1,2.Similar to example 2 and differs in the magnitude of the offset of the target from the focus, the type of annealing and radiation power and is described in detail in table 1.2.
Пример 5. Аналогичен примеру 1 и отличается величиной смещения мишени от фокуса и мощностью излучения и подробно описан в таблице 1,2. Пример 6.Example 5. Similar to example 1 and differs in the magnitude of the offset of the target from the focus and the radiation power and is described in detail in table 1.2. Example 6
Аналогичен примеру 2 и отличается величиной смещения мишени от фокуса и мощностью излучения и подробно описан в таблице 1,2. Пример 7.Similar to example 2 and differs in the magnitude of the offset of the target from the focus and the radiation power and is described in detail in table 1.2. Example 7
Аналогичен примеру 1 и отличается величиной смещения мишени от фокуса, типом отжига, мощностью излучения и подробно описан в таблице 1,2. Пример 8.Similar to example 1 and differs in the magnitude of the offset of the target from the focus, the type of annealing, the radiation power and is described in detail in table 1.2. Example 8
Аналогичен примеру 2 и отличается величиной смещения мишени от фоку- са, типом отжига, мощностью излучения и подробно описан в таблице 1,2. Пример 9.It is similar to example 2 and differs in the magnitude of the target displacement from the focus, the type of annealing, the radiation power and is described in detail in table 1.2. Example 9
Аналогичен примеру 1 и отличается величиной смещения мишени от фокуса и мощностью излучения и подробно описан в таблице 1,2. Пример 10.Similar to example 1 and differs in the magnitude of the offset of the target from the focus and the radiation power and is described in detail in table 1.2. Example 10
Аналогичен примеру 2 и отличается величиной смещения мишени от фокуса и мощностью излучения и подробно описан в таблице 1,2. Пример 11.Similar to example 2 and differs in the magnitude of the offset of the target from the focus and the radiation power and is described in detail in table 1.2. Example 11
Аналогичен примеру 1 и отличается величиной смещения мишени от фокуса и мощностью излучения и подробно описан в таблицах 1 и 2. Пример 12.Similar to example 1 and differs in the magnitude of the offset of the target from the focus and the radiation power and is described in detail in tables 1 and 2. Example 12.
Аналогичен примеру 1 и отличается величиной смещения мишени от фоку- са, мощностью излучения и применением нагрева подложки в ходе осаждения вместо последующего отжига и подробно описан в таблице 1,2. Пример 13.It is similar to Example 1 and differs in the magnitude of the target displacement from the focus, the radiation power, and the use of heating the substrate during deposition instead of subsequent annealing and is described in detail in Table 1.2. Example 13
Аналогичен примеру 1 и отличается величиной смещения мишени от фокуса, мощностью излучения и применением нагрева подложки в ходе осаждения вместо последующего отжига и подробно описан в таблице 1 ,2. Пример 14.Similar to example 1 and differs in the magnitude of the offset of the target from the focus, the radiation power and the use of heating the substrate during deposition instead of subsequent annealing and is described in detail in table 1, 2. Example 14
Аналогичен примеру 1 и отличается величиной смещения мишени от фокуса, мощностью излучения и применением нагрева подложки в ходе осаждения вместо последующего отжига и подробно описан в таблице 1,2. Таблица 1Similar to example 1 and differs in the magnitude of the offset of the target from the focus, the radiation power and the use of heating the substrate during deposition instead of subsequent annealing and is described in detail in table 1.2. Table 1
Figure imgf000009_0001
Figure imgf000009_0001
Figure imgf000010_0001
Figure imgf000010_0001
Таблица 2table 2
Figure imgf000010_0002
Figure imgf000010_0002
Figure imgf000011_0001
Figure imgf000011_0001
* -покрытие не образовывалось ввиду малой мощности излучения, не позволяющей образовывать направленную струю частиц* -coating was not formed due to the low radiation power that does not allow the formation of a directed stream of particles
Промышленная применимостьIndustrial applicability
Изобретение может применяться для получения пленок, покрытий, нанесения катализаторов, а также получения мелкодисперсных порошков. The invention can be used to obtain films, coatings, deposition of catalysts, as well as to obtain fine powders.

Claims

Формула изобретения Claim
1. Способ получения пленочных покрытий, заключающийся в лазерной абляции поверхности мишени с образованием струи частиц, направленной на под- ложку, отличающийся тем, что мишень располагают со смещением от фокуса лазерного излучения не менее чем по двум осям координат, одна из которых совпадает с направлением излучения, при этом смещение мишени от фокуса по оси, совпадающей с направлением излучения, составляет от 1 до 5 мм, а по оси, перпендикулярной первой оси, составляет не более 1 мм. 1. The method of producing film coatings, which consists in laser ablation of the target surface with the formation of a jet of particles directed to the substrate, characterized in that the target is displaced from the focus of the laser radiation by at least two coordinate axes, one of which coincides with the direction radiation, while the offset of the target from the focus along the axis coinciding with the direction of radiation is from 1 to 5 mm, and along the axis perpendicular to the first axis, is not more than 1 mm.
2. Способ по п.l, отличающийся тем, что абляцию осуществляют при мощности лазерного излучения от 25 кВт/см2 до 200кBт/cм2.2. The method according to claim 1, characterized in that the ablation is carried out at a laser radiation power of 25 kW / cm 2 to 200 kW / cm 2 .
3. Способ по п.l, отличающийся тем, что, в качестве материала мишени используют оксиды металлов или смеси оксидов металлов.3. The method according to claim 1, characterized in that, as the target material, metal oxides or a mixture of metal oxides are used.
4. Способ по п.l, отличающийся тем, что, в качестве материала мишени ис- пользуют металлы или их сплавы, при этом покрытие получают в атмосфере инертного газа.4. The method according to claim 1, characterized in that metals or their alloys are used as the target material, the coating being obtained in an inert gas atmosphere.
5. Способ по п.l, отличающийся тем, что производят подогрев подложки до температуры от 2000C до 12000C.5. The method according to claim 1, characterized in that the substrate is heated to a temperature of from 200 0 C to 1200 0 C.
6. Способ по п.5 отличающийся тем, что подогрев подложки выполняют ла- зерным излучением дополнительного лазера. 6. The method according to claim 5, characterized in that the substrate is heated by laser radiation of an additional laser.
PCT/RU2007/000308 2006-06-15 2007-06-07 Method for producing film coatings by means of laser ablation WO2007149011A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
RU2006120857/02A RU2316612C1 (en) 2006-06-15 2006-06-15 Method for applying film coatings with use of laser ablation
RU2006120857 2006-06-15

Publications (1)

Publication Number Publication Date
WO2007149011A1 true WO2007149011A1 (en) 2007-12-27

Family

ID=38833658

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/RU2007/000308 WO2007149011A1 (en) 2006-06-15 2007-06-07 Method for producing film coatings by means of laser ablation

Country Status (2)

Country Link
RU (1) RU2316612C1 (en)
WO (1) WO2007149011A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115537737A (en) * 2022-10-13 2022-12-30 西南交通大学 Preparation method and system of thin coating

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2756111C1 (en) * 2020-07-06 2021-09-29 Федеральное государственное бюджетное образовательное учреждение высшего образования. "Юго-Западный государственный университет" (ЮЗГУ) Method for producing stabilised nanodispersed cerium dioxide particles

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06172978A (en) * 1992-12-08 1994-06-21 Matsushita Electric Ind Co Ltd Laser ablation device
RU2087254C1 (en) * 1995-11-08 1997-08-20 Республиканский инженерно-технический центр порошковой металлургии с НИИ проблем порошковой технологии и покрытий и опытным производством Method of production of ultrafine powder of zirconium dioxide with coating
US5747120A (en) * 1996-03-29 1998-05-05 Regents Of The University Of California Laser ablated hard coating for microtools
WO2002024972A1 (en) * 2000-09-20 2002-03-28 Agt One Pty Ltd Deposition of thin films by laser ablation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06172978A (en) * 1992-12-08 1994-06-21 Matsushita Electric Ind Co Ltd Laser ablation device
RU2087254C1 (en) * 1995-11-08 1997-08-20 Республиканский инженерно-технический центр порошковой металлургии с НИИ проблем порошковой технологии и покрытий и опытным производством Method of production of ultrafine powder of zirconium dioxide with coating
US5747120A (en) * 1996-03-29 1998-05-05 Regents Of The University Of California Laser ablated hard coating for microtools
WO2002024972A1 (en) * 2000-09-20 2002-03-28 Agt One Pty Ltd Deposition of thin films by laser ablation

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115537737A (en) * 2022-10-13 2022-12-30 西南交通大学 Preparation method and system of thin coating
CN115537737B (en) * 2022-10-13 2023-11-17 西南交通大学 Preparation method and system of thin coating

Also Published As

Publication number Publication date
RU2316612C1 (en) 2008-02-10

Similar Documents

Publication Publication Date Title
US20080085368A1 (en) Method and Apparatus for Coating a Substrate
EP2137336B1 (en) Method for photon ablation of a target and coating method
US20140017416A1 (en) P-type semiconductor zinc oxide films process for preparation thereof, and pulsed laser deposition method using transparent substrates
EP2511396B1 (en) Guided non-line of sight coating.
US7964247B2 (en) Process and apparatus for the manufacture of a sputtering target
WO2013065339A1 (en) Method of forming densified layer in thermal spray coating, and thermal spray coating covering member
US20080160295A1 (en) Method for adjusting ablation threshold
US20130011440A1 (en) Method and device for depositing thin layers, especially for the production of multiple layers, nanolayers, nanostructures and nanocomposites
EP1856302A1 (en) Pulsed laser deposition method
RU2316612C1 (en) Method for applying film coatings with use of laser ablation
JPS63227766A (en) Formation of superfine-grained film
JPH03122283A (en) Apparatus for coating surface of base sheet
EP3023513B1 (en) Method to produce nanoporous coatings in open air conditions
WO2019146060A1 (en) Method for manufacturing chromel-alumel thermocouple
RU2640114C2 (en) Laser plasmotron for deposition of composite diamond coatings
JP2505376B2 (en) Film forming method and apparatus
WO2013175052A1 (en) Coating and material method
JP2005256017A (en) Apparatus and method for arranging particles
CN105121699A (en) Film forming method
Gaković et al. Modification of multilayered TiAlN/TiN coating by nanosecond and picosecond laser pulses
CN114231884B (en) Film coating method for performing plasma deposition after laser evaporation
Azhdast et al. Laser Melting of Metal Powders Using a Nd: YAG and a Compact Diode Laser for Micro Particle Deposition
JPH0788359A (en) Method and device for forming compound film
JPH09256141A (en) Formation of thin film and device therefor
US11148945B2 (en) Method assisted by a laser and high-intensity electric fields for the synthesis and collection of nanoparticles and the generation of coatings

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07794042

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1)EPC (EPO FORM 1205A DATED 11-05-2009 )

122 Ep: pct application non-entry in european phase

Ref document number: 07794042

Country of ref document: EP

Kind code of ref document: A1