WO2007148829A1 - Composite for light conversion, light emitting device using the same, and method for controlling color tone - Google Patents

Composite for light conversion, light emitting device using the same, and method for controlling color tone Download PDF

Info

Publication number
WO2007148829A1
WO2007148829A1 PCT/JP2007/062954 JP2007062954W WO2007148829A1 WO 2007148829 A1 WO2007148829 A1 WO 2007148829A1 JP 2007062954 W JP2007062954 W JP 2007062954W WO 2007148829 A1 WO2007148829 A1 WO 2007148829A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
composite
light conversion
conversion
light emitting
Prior art date
Application number
PCT/JP2007/062954
Other languages
French (fr)
Japanese (ja)
Inventor
Atsuyuki Mitani
Shin-Ichi Sakata
Original Assignee
Ube Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries, Ltd. filed Critical Ube Industries, Ltd.
Priority to JP2008522613A priority Critical patent/JP5083211B2/en
Publication of WO2007148829A1 publication Critical patent/WO2007148829A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7766Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
    • C09K11/7774Aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • C04B35/117Composites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/44Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/653Processes involving a melting step
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • C04B2235/3222Aluminates other than alumino-silicates, e.g. spinel (MgAl2O4)
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3229Cerium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/36Glass starting materials for making ceramics, e.g. silica glass
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/762Cubic symmetry, e.g. beta-SiC
    • C04B2235/764Garnet structure A3B2(CO4)3
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/786Micrometer sized grains, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/963Surface properties, e.g. surface roughness
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9646Optical properties
    • C04B2235/9661Colour
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials

Definitions

  • the present invention relates to a light-emitting device such as a light-emitting diode that can be used for a display, illumination, backlight light source, and the like. More specifically, the light-conversion composite that is a light-conversion member that obtains fluorescence using irradiated light, The present invention relates to a light emitting device using a conversion complex and a color tone control method. Background
  • white light-emitting diodes using blue light-emitting diodes are light weight, do not use mercury, and have a long service life. Therefore, demand is expected to increase rapidly in the future.
  • the most commonly used method for converting blue light of a blue light emitting element into white light is to obtain a pseudo white color by mixing yellow that is complementary to blue. For example, as described in Japanese Patent Application Laid-Open No. 2 0 0 0-2 0 8 8 1 5, fluorescence that emits yellow light by absorbing part of blue light is emitted on the front surface of a light emitting diode that emits blue light.
  • the coating layer containing the body is provided, and the blue light from the light source and the yellow light from the phosphor are mixed before that.
  • a white light emitting diode can be formed by providing a mold layer or the like.
  • As the phosphor YAG (Y 3 A 15 10 12 ) powder activated with cerium is used.
  • Japanese Patent Application Laid-Open No. 2000-059-1 9 1 1 9 7 In a light-emitting device in which a light-transmitting member is formed so as to cover a light-emitting element formed on a substrate, and further, a phosphor layer made of a phosphor powder-containing resin is formed so as to cover the light-transmitting member. It has been proposed that the upper surfaces of the conductive member and the phosphor layer have an arithmetic average roughness of 0.1 to 0.8 / xm.
  • the present inventors emit fluorescence (Y, C e) 3 A 1 5 0 12 phase and a plurality of oxide phases including A 1 2 0 3 phase are continuously and three-dimensionally entangled with each other.
  • a white light-emitting device composed of a light-conversion composite formed of a solidified body and a blue light-emitting element has been proposed (International Publication WO 2 0 0 4 Z 0 6 5 3 2 4).
  • This composite for light conversion can stably obtain homogeneous yellow fluorescence because the phosphor phase is uniformly distributed, and is excellent in heat resistance because it is a ceramic.
  • the ratio of blue light to yellow fluorescence can be controlled by changing the thickness of the light conversion composite. For this reason, by suppressing variations in thickness, it is possible to easily suppress variations in color tone of the white light emitting device, which is a great advantage in the manufacturing process compared to a configuration using a conventional phosphor powder.
  • the composite for light conversion uses a eutectic reaction between oxide phases that are constituent phases in the production process, the ratio of each phase is limited to some extent, and the amount of the phosphor phase cannot be changed greatly. Have difficulty. Therefore, when it is necessary to increase the amount of yellow component light when adjusting the color tone of the light emitting device, the required thickness of the light conversion complex increases, and the material cost of the spectral conversion complex increases. There is a problem that it ends up. In addition, although the loss of light inside the light conversion composite is small, it increases as the thickness increases, which is not preferable in terms of improving the light emission efficiency of the light emitting device.
  • An object of the present invention is to provide a complex for light conversion that can obtain necessary fluorescence with a thinner thickness, has a low cost, and suppresses light loss in the complex.
  • Another object of the present invention is to provide a light-emitting device that uses a light-emitting element and the composite for light conversion and that is highly efficient, easy to adjust color, has little variation, and is extremely suitable for high output. Disclosure of the invention
  • the present invention is a light conversion composite comprising a plurality of oxide phases including an oxide crystal phase that emits at least one fluorescence, and a light emitting surface opposite to the light incident surface of the light conversion composite
  • the surface roughness of at least one surface The present invention relates to a composite for light conversion characterized by having an arithmetic average roughness (R a) of not less than 0.05 m.
  • the composite for light conversion according to the present invention is an integral body (a lump) of an oxide composite, and is different from a conventional light converter in which particulates are dispersed in a resin.
  • the composite for light conversion has a structure in which at least two or more oxide phases are continuously and three-dimensionally entangled with each other, and the oxide phase At least one of them relates to a composite for light conversion comprising a solidified body that is a crystalline phase that emits fluorescence.
  • the light emitting surface of the composite for light conversion is an uneven surface having a different height for each oxide phase.
  • the composite for light conversion relates to a composite for light conversion containing at least Y element, A1 element and Ce element as composition components.
  • the present invention also relates to a light emitting device comprising the light conversion composite and a light emitting element.
  • the complex for light conversion emits fluorescence having a peak at a wavelength of 530 to 5800 nm, and the light emitting element has a light having a peak at a wavelength of 400 to 500 nm.
  • this invention relates to the color tone adjustment method which adjusts the color tone of the said light-emitting device by changing the surface roughness of the said composite for light conversion.
  • the composite for light conversion of the present invention fluorescence stronger than before can be obtained with the same incident light.
  • the necessary fluorescence intensity can be obtained with a thinner light-conversion complex, so that it is possible to provide a light-conversion complex with low cost and reduced light loss in the complex.
  • the fluorescence intensity can be controlled without changing the thickness of the composite for light conversion, the light emitting element and the composite for light conversion can be easily adjusted in color. It is possible to provide a white light-emitting device that is highly efficient and highly suitable for high output.
  • FIG. 1 is a schematic cross-sectional view showing an embodiment of a light-emitting device of the present invention.
  • FIG. 2 is a photomicrograph of Example 1 showing an example of a tissue structure of a composite for light conversion of the present invention.
  • FIG. 3 is a fluorescence spectrum diagram of Example 1 showing an example of the fluorescence characteristics of the complex for light conversion of the present invention.
  • FIG. 4 is a light emission spectrum diagram of Example 8 showing an example of the light emitting device of the present invention.
  • FIG. 5 is a chromaticity diagram of Examples 9, 10 and 11 showing an example of the color tone adjustment method of the light emitting device of the present invention.
  • FIG. 6 is a photomicrograph showing the cross section of the surface of the composite for light conversion produced in Example 13.
  • FIG. 7 is a photomicrograph showing a cross section of the surface of the composite for light conversion produced in Example 19.
  • FIG. 8 is a laser micrograph of the surface of the light conversion composite prepared in Example 20.
  • FIG. 9 is a light emission spectrum diagram of Example 21 showing an example of the light emitting device of the present invention.
  • the composite for light conversion of the present invention is a composite for light conversion comprising a plurality of oxide phases including an oxide crystal phase emitting at least one fluorescence, Light characterized in that the surface roughness of at least one surface of the light emitting surface opposite to the light incident surface of the composite for light conversion is not less than 0.05 xim in terms of arithmetic mean roughness (Ra) It is a complex for conversion.
  • the composite for light transmission conversion is plate-shaped, and has an incident surface on which light before conversion is incident and a radiation surface from which the converted light exits.
  • the surface roughness (R a) of the incident surface or radiation surface is 0.05 m or more.
  • the composite for light conversion of the present invention comprises a plurality of oxide phases including an oxide crystal phase that emits at least one fluorescence, and the constituent oxide phases other than the oxide crystal phase that emits fluorescence include glass or molten It may be a solidified body and is not particularly limited.
  • a preferred form of the composite for light conversion is a solidified body having a structure in which at least two or more oxide phases are continuously and three-dimensionally entangled with each other. At least one of them is a light conversion complex, which is a crystalline phase that emits fluorescence.
  • Fluorescence can be emitted by entering excitation light into the light conversion complex.
  • At least one surface of the composite for light conversion has a surface roughness of not less than 0.05 m in terms of arithmetic average roughness (hereinafter referred to as R a) as described in JISB 0 6 0.0 5 — 1 9 94 Has been processed.
  • the surface of the composite for light conversion has a surface roughness of R a ⁇ 0. 0 5; a rough surface of tim, R a ⁇ 0. 0 5; for light conversion of the same thickness compared to the surface close to the mirror surface of m. Since stronger fluorescence can be obtained from the complex, the surface roughness Ra is limited to the above range. The fluorescence intensity obtained increases as the surface roughness Ra increases, and the surface roughness Ra ⁇ 0.1 m is more preferred.
  • Light conversion composites with a surface roughness R a ⁇ 0.1 m are compared to light conversion composites of the same material and thickness that have a surface close to a mirror with a surface roughness R a ⁇ 0. 0 5.
  • the upper limit of the surface roughness Ra is not particularly limited, but if the surface roughness Ra is too large relative to the thickness of the composite for light conversion, it is difficult to maintain the shape and the handling property is also deteriorated.
  • the surface roughness Ra is preferably 1/2 or less of the thickness of the composite for light conversion. Further, it is more preferably 50 zm or less, and further preferably 30 m or less, from the viewpoint of easy formation of surface roughness.
  • the composite for light conversion of the present invention if the light transmission surface is a rough surface with a surface roughness R a ⁇ 0.05 zm, light is scattered on the light output surface, but finally light conversion is performed.
  • the relative amount of the total radiant flux passing through the composite for the total incident flux is not necessarily reduced, but can be increased.
  • the light extraction efficiency is remarkably improved, and the fluorescence intensity can be further improved.
  • the rough surface of the composite for light conversion with a surface roughness of R 8 ⁇ 0.05 5 111 is located across the path of the incident light, the incident light is scattered and efficiently absorbed by the crystalline phase that emits fluorescence. This is preferable because stronger fluorescence can be obtained.
  • the light conversion composite is plate-shaped and light travels in the thickness direction, either the light incident surface (incident surface) or the light exiting surface (radiation surface) is rough. If so, strong fluorescence can be obtained due to the above effects. Furthermore, it is more preferable that both the incident surface and the emitting surface are rough because the scattering effect increases and stronger fluorescence is obtained. That's right.
  • oxide phase is not particularly limited constant varies with the production conditions of the composition components and solidified body, in which Y element at least as a composition component, comprising the A 1 element and C e elements, A 1 2 0 3 (sapphire) phase, (Y, C e) 3 A 15 0 12 equality may be mentioned, include two or more phases at least the oxide phase was doing. At least two phases of each oxide phase have a structure that is continuously and three-dimensionally entangled with each other. Some oxide phases may be present in granular form in an intertwined structure formed by other oxide phases. In any case, there is no boundary layer such as amorphous at the boundary of each phase, and the oxide phases are in direct contact with each other. For this reason, there is little light loss in the light conversion complex, and the light transmittance is high.
  • the crystalline phase that emits fluorescence also varies depending on the compositional components and the manufacturing conditions of the solidified body, and is not particularly limited. However, if the compositional components include at least Y, A1 and Ce, (Y, Ce) 3 ⁇ 1 5 ⁇ ⁇ 2 phases are included, and at least one crystal phase that emits such fluorescence is included. These oxide phases, including crystalline phases that emit fluorescence, have a structure in which they are continuously and three-dimensionally entangled with each other, and as a whole, each oxide phase is evenly distributed in the light conversion complex. It is possible to obtain uniform fluorescence with no bias.
  • the combination of the Al 2 O 3 phase and the (Y, Ce) 3 A 1 5 0 12 phase makes it easy to obtain a structure in which both are continuously and three-dimensionally entangled with each other.
  • the (Y, C e) is 3 A 1 5 0 12 phase, 4 0 0 ⁇ 5 0 0 nm violet to blue excitation light, since it emits fluorescence having a peak wavelength of 5 3 0 ⁇ 5 6 0 nm, white It is suitable as a light conversion member for a light emitting device. Therefore, it is preferable that the composition component contains at least Y element, A 1 element and Ce element.
  • a (Y, Gd, Ce) 3 A 1 5 ⁇ 12 phase is generated as a crystalline phase that emits fluorescence. It can emit fluorescence having a wavelength of 5400 to 5800 nm.
  • the solidified body constituting the composite for light conversion of the present invention is produced by solidifying the raw material oxide after melting.
  • a solidified body by a simple method of cooling and condensing a melt charged in a loop kept at a predetermined temperature while controlling the cooling temperature, but most preferably, it is produced by a unidirectional solidification method. It is a thing. This is because the unidirectional solidification causes the contained crystal phase to continuously grow in a single crystal state, reducing the attenuation of light within the member.
  • the solidified body constituting the composite for light conversion of the present invention is the one in which the applicant of the present application has already been disclosed in Japanese Patent Application Laid-Open No. Hei 7-1 4 9 5 9 Japanese Patent Laid-Open No. 7-1 8 7 8 93, Japanese Patent Laid-Open No. 8-8 1 2 5 7, Japanese Patent Laid-Open No. 8-2 5 3 3 8 9, Japanese Patent Laid-Open No. 8-2 5 3 3 9 No. 0 and Japanese Patent Laid-Open No. 9 6 7 1 94 and U.S. applications corresponding thereto (US Pat. Nos. 5, 5 6 9 and 5 4 7, 5, 4 8 4 and 7 5 2, No. 5, 90, 96, etc.) and the like, and can be manufactured by the manufacturing method disclosed in these applications (patents). The disclosures of these applications or patents are hereby incorporated by reference.
  • the composite for light conversion of the present invention can be obtained by processing the solidified body obtained by the above method into a predetermined shape and adjusting the surface to a predetermined surface roughness.
  • the method used for adjusting the surface roughness is not particularly limited, but a physical method such as grinding / polishing with a grindstone / abrasive grain is easy and suitable.
  • the surface roughness of the composite for light conversion of the present invention is adjusted by performing a surface treatment so that the surface oxide phases each have a predetermined height, and forming uneven surfaces having different heights for each oxide. But it can be done.
  • the surface treatment method is not particularly limited, but chemical treatment in an acid solution (wet etching) ), Heat treatment under various gas atmospheres (dry etching), and the like are preferable.
  • This is a so-called selective etching method, that is, an etching method in which the etching selectivity varies depending on the type of oxide.
  • the etching agent may be appropriately selected according to the type of the complex oxide.
  • a sulfuric acid / phosphoric acid mixed solution a gas containing an element capable of reducing oxides such as C, and the like can be used.
  • the surface roughness of the composite for light conversion can be achieved without destroying the surface texture. Fluorescence intensity can be realized, and it is also preferable for forming a larger surface roughness Ra.
  • the adjustment of the surface roughness of the composite for light conversion of the present invention is carried out by a physical method such as grinding / polishing with the above-mentioned grindstone-abrasive grains, chemical treatment in an acid solution, under various gas atmospheres A combination of methods such as heat treatment may be used. In this case, an uneven surface having a different height is formed for each oxide, and the uneven surface having a step is further roughened.
  • the fluorescence intensity is improved by having a surface roughness of 0.05 m / m or more.
  • a surface roughness of 0.05 m / m or more.
  • the ratio of total reflection at the light exit surface is probably lower, so more light can be extracted from the light conversion complex. It can greatly contribute to the improvement of strength. It is more preferable that uneven surfaces having different heights are formed for each oxide and that the surface roughness is 0.1 m or more.
  • each oxide phase including a crystal phase that emits fluorescence exists continuously and three-dimensionally intertwined with each other, so that uniform fluorescence can be obtained.
  • the surface of the composite for light conversion has a surface roughness R a ⁇ 0.05 m. Since incident light can be absorbed more efficiently in the crystalline phase that emits fluorescence than in the case of coalescence, stronger fluorescence can be obtained. Moreover, the fluorescence intensity obtained can be controlled by changing the surface roughness Ra. As a result, the required fluorescence intensity can be obtained with a thinner thickness, and the volume of the required light conversion complex can be reduced. Therefore, the cost of light loss in the complex can be reduced.
  • a composite for light conversion can be provided.
  • the light-emitting device of the present invention is a device comprising the light-conversion composite of the present invention and a light-emitting element, and irradiates the light-conversion complex with light from the light-emitting element and transmits the light-converted composite Further, the present invention is characterized in that the light from the light emitting element uses fluorescence whose wavelength is converted by the complex for light conversion.
  • FIG. 1 is a schematic cross-sectional view showing an embodiment of a light emitting device of the present invention.
  • 1 is a composite for light conversion
  • 2 is a light emitting element (light emitting diode element)
  • 3 is a lead wire
  • 4 is a lead electrode
  • 5 is a member for holding the composite 1 for light conversion of a fixed member.
  • the side surface of the composite 1 for light conversion is held and covered by the member 5, the surface 2 a on which the light from the light emitting element 2 is incident, and the light that passes through the composite 1 for light conversion (some light is converted)
  • the surface 2 b which emits (which is mixed with transmitted light).
  • a white light-emitting device that is an embodiment of the light-emitting device of the present invention includes a violet to blue light-emitting element that emits light having a peak at a wavelength of 400 nm to 500 nm, and a peak generated by light emitted from the light-emitting element. It consists of the said composite for light conversion which emits yellow fluorescence with a wavelength of 530-058 nm. Violet-blue light emitted from the violet-blue light-emitting element is incident on the light conversion complex whose fluorescence peak wavelength is adjusted so that white is obtained in accordance with the wavelength.
  • the composite for light conversion used in the light emitting device of the present invention is produced in an appropriate shape such as a plate shape by the above method.
  • the color tone of the light emitting device can be easily controlled by changing the surface roughness of the surface of the light conversion composite as well as changing the thickness of the light conversion composite. By optimizing the thickness and surface roughness of the composite for light conversion, it is possible to obtain a highly efficient light-emitting device that suppresses light loss inside the composite for light conversion.
  • the variation in color tone of the light emitting device can be easily reduced by maintaining the accuracy of the thickness of the composite for light conversion, and can be further reduced by finely adjusting the surface roughness later. .
  • This composite for light conversion can be used as a component as it is, no encapsulating resin is required, and there is no deterioration due to heat and light, so it can be used in combination with high-power purple to blue light-emitting elements. High output of the light emitting device is possible.
  • Examples of the light-emitting element used in the light-emitting device of the present invention include a light-emitting diode element and an element that generates laser light, but the light-emitting diode element is preferable because it is small and inexpensive.
  • the color tone can be easily adjusted by the surface roughness of the light conversion composite, and the optical loss inside the light conversion composite is suppressed by optimizing the thickness and the surface roughness.
  • a highly efficient light-emitting device can be provided.
  • this light-emitting device is not deteriorated by heat or light, and is extremely suitable for high output.
  • Facial -1 2 ⁇ 3 powder (purity 9 9. 99%) 0 with A 1 0 3/2 terms. 8 2 mol, Y 2 0 3 powder (purity 9 9. 9%) 0.13 5 mol in terms of 3/2 , and € 0 2 powder (purity 9 9, 9) 0. 0 0 5 mol Weighed so that These powders were wet mixed in ethanol for 16 hours with a pole mill, and then ethanol was removed using an evaporator to obtain a raw material powder. The raw material powder was pre-melted in a vacuum furnace and used as a raw material for unidirectional solidification.
  • this raw material was charged into a molypden crucible as it was, set in a unidirectional solidification device, and the raw material was melted under a pressure of 1. 3 3 X 1 0— 3 Pa (1 0 " 5 Torr).
  • the rusppo is lowered at a speed of 5 mm Z time, A 1 2 0 3 (sapphire) phase, (Y, C e) 3 A 1 5 ⁇ 12 phase, C e A 1 0 18 phase
  • a solidified body consisting of three oxide phases was obtained.
  • Figure 2 shows the cross-sectional structure perpendicular to the solidification direction of the solidified body.
  • the black part of A is the A 1 2 0 3 (sapphire) phase
  • the white part of B is (Y, C e) 3 A 1 5 O!
  • Two phases, the slightly gray part of C present is CeA 1 j, ⁇ , 8 phases.
  • Each oxide phase has a structure that is continuously and highly entangled with each other, and the main phosphor phases (Y, Ce) 3 A 1 5 ⁇ 12 phases are uniformly distributed I understand that. For this reason, homogeneous fluorescence can be obtained.
  • a disc-shaped sample (i 16 mm x 0.2 mm) was cut out from the obtained solidified body, and the fluorescence characteristics were evaluated with a solid-state quantum efficiency measurement device manufactured by JASCO. Correction was performed using a sub-standard light source to determine the true spectrum
  • the fluorescence spectrum is shown in Fig. 3. Peak wavelength at 5 47 nm with excitation light at wavelength 4 6 O nm
  • a professional fluorescent spectrum with the following characteristics was obtained.
  • the resulting solidified body has a plate shape of 2 mmX 2 mmX 0.15 mm.
  • the upper surface is ground with # 3 00 0 (JISR 6 0 0 1) abrasive grains, and the lower surface is adjusted to the desired surface roughness by polishing with a polishing paste.
  • a composite sample for light conversion having a plate shape of 2 mmX 2 mmX 0.15 mm and a surface roughness of 2 mmX 2 mm as shown in Table 1 was prepared from the solidified body prepared in Example 1. Excitation light was incident from the lower surface side, and the fluorescence intensity emitted from the upper surface side was measured in the same manner as in Example 1. To adjust the surface roughness, use the count of the grindstone (JISR 6 0 0 1) of the grindstone used for grinding. This was done by setting 1 0 0 0 to # 2 0 0. Table 1 shows the relative fluorescence intensity of each example.
  • Examples 2, 3, and 4 the relative fluorescence intensity increased as the surface roughness Ra of the upper surface increased, and the relative fluorescence intensity of 10 5 or more was obtained in all cases, and the surface roughness Ra ⁇ 0. It can be seen that strong fluorescence can be obtained by setting 1 m to 5% or more, and Ra Ra 0.25 m to 10% or more. In Examples 4 and 5, a strong relative fluorescence intensity can be obtained in the same manner regardless of whether the surface having a surface roughness Ra of 0.05 Xm or more is the lower surface that is the incident surface or the upper surface that is the radiation surface. I understand that. In Examples 4, 6, and 7, it can be seen that the relative fluorescence intensity is further increased by increasing the surface roughness Ra on both the upper and lower surfaces.
  • the 2 mmX 2 mmX 0.0 7 mm plate shape from the solidified body prepared in Example 1, and the surface roughness of the 2 mmX 2 mm surface is R a 1.6 nm for both the upper and lower surfaces.
  • Figure 5 shows the CIE chromaticity in combination with Comparative Example 2 when a white light-emitting device is configured in combination with light-emitting diode elements.
  • the thickness of the composite for light conversion is 0.15 mm and is the same.
  • the color tone of the light emitting device can be controlled by the surface roughness Ra of the surface of the composite for light conversion.
  • the composite sample for light conversion with 1.6 m was able to obtain approximately 15% stronger fluorescence.
  • Sulfuric acid: Phosphoric acid 200 in a mixed acid of 1: 1 (volume ratio).
  • a CX 2 h heat treatment was performed to obtain a ceramic composite for light conversion in which the (Y, Ce) 3 A 1 5 0 12 phase was an uneven surface about 7 zm lower than the A 1 2 0 3 phase.
  • Figure 6 shows the cross section of the surface of the resulting ceramic composite for light conversion.
  • the black part of A is the Al 2 0 3 (sapphire) phase
  • the white part of B is the (Y, C e) 3 A 1 5 0 12 phase
  • the (Y, C e) 3 A 1 5 0 12 phase is An uneven surface that is approximately 7 m lower than the A 1 2 0 3 phase is formed.
  • the light emitted from the upper surface was collected using an integrating sphere, and the integrated value (total radiant flux) of the total emitted light was determined. Assuming that Comparative Example 1 is 1 0 0, the relative total radiant flux is 1 0 9, indicating that the total radiant flux is significantly increased.
  • the fluorescence intensity was measured in the same manner as in Example 13 and the obtained fluorescence intensity is shown in Table 2.
  • the fluorescence intensity increases as the height difference and the accompanying surface roughness Ra increase, and the surface roughness Ra ⁇ 0.1 m. It can be seen that strong fluorescence is obtained by 5% or more, and further by Ra ⁇ 0.25m, 10% or more. At the same time, the total radiant flux increases.
  • heat treatment is not performed at 1.400 ° CX for 1 h in a carbon container under the pressure of 1. 3 3 X 1 0— 3 Pa (1 0— 5 Torr)
  • a ceramic composite for light conversion having uneven surfaces with different heights was obtained.
  • Figure 7 shows a cross section of the surface of the resulting ceramic composite for light conversion.
  • the black part of A is the A 1 2 0 3 (safia) phase
  • the white part of B is the (Y, Ce) 3 A 1 5 0 12 phase.
  • An uneven surface having an A 1 5 0 1 2 phase approximately 5-IO m lower than the A 1 2 0 3 phase was obtained.
  • a 1 2 ⁇ The surface of the three phases remains rough
  • phase 12 is a surface whose roughness has been reduced by the treatment.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Composite Materials (AREA)
  • Luminescent Compositions (AREA)
  • Led Device Packages (AREA)

Abstract

This invention provides a composite for light conversion, which can obtain necessary fluorescence in a smaller thickness, is low in cost, and can suppress a light loss within the composite. The composite for light conversion comprises a plurality of oxide phases including at least one oxide crystalline phase which emits fluorescence. The composite for light conversion is characterized in that the surface roughness of at least one of a light incident surface of the composite for light conversion and a light emitting surface located on the opposite side of the light incident surface is not less than 0.05 μm in the arithmetic average roughness (Ra). Preferably, the composite for light conversion has a texture in which at least two or more oxide phases are continuously and three-dimensionally entangled with each other, and at least one of the oxide phase is formed of a solidification product which is a crystalline phase which emits fluorescence.

Description

明 細 書 光変換用複合体、 それを用いた発光装置および色調制御方法 関連出願の説明  Description: Composite for light conversion, light emitting device using the same, and color tone control method Description of related application
本願は、 2 0 0 6年 6月 2 2 日に日本特許庁に出願した特願 2 0 0 6— 1 7 2 1 6 3号、 及び 2 0 0 6年 8月 1 日に日本特許庁に出 願した特願 2 0 0 6 - 2 0 9 4 3 5号に基づいて優先権を主張する 出願であり、 この特許出願の内容はここに参照して含める。 技術分野  This application is filed with Japanese Patent Application No. 2 0 6-1 7 2 1 6 3 filed with the Japan Patent Office on June 22nd, 2000, and with the Japan Patent Office on August 1st, 2000 This is an application claiming priority based on Japanese Patent Application No. 2 0 0 6-2 0 9 4 3 5, the contents of which are incorporated herein by reference. Technical field
本発明は、 ディスプレイ、 照明、 バックライ ト光源等に利用でき る発光ダイオード等の発光装置に関し、 詳しくは、 照射光を利用し て蛍光を得る光変換部材である光変換用複合体と、 その光変換用複 合体を用いた発光装置および色調制御方法に関する。 背景技術  The present invention relates to a light-emitting device such as a light-emitting diode that can be used for a display, illumination, backlight light source, and the like. More specifically, the light-conversion composite that is a light-conversion member that obtains fluorescence using irradiated light, The present invention relates to a light emitting device using a conversion complex and a color tone control method. Background
近年、 青色発光素子を発光源とする白色発光装置の開発研究が盛 んに行われている。 特に青色発光ダイオードを用いた白色発光ダイ オードは軽量で、 水銀を使用せず、 長寿命であることから、 今後、 需要が急速に拡大することが予測されている。 青色発光素子の青色 光を白色光へ変換する方法として最も一般的に行なわれている方法 は、 青色と補色関係にある黄色を混色することにより擬似的に白色 を得るものである。 例えば特開 2 0 0 0 — 2 0 8 8 1 5号公報に記 載されているように、 青色光を発光する発光ダイオードの前面に、 青色光の一部を吸収して黄色光を発する蛍光体を含有するコーティ ング層を設け、 その先に光源の青色光と蛍光体からの黄色光を混色 するモールド層等を設けることで、 白色発光ダイオードを構成する ことができる。 蛍光体としてはセリウムで付活された YAG (Y3A 1512)粉末等が用いられる。 In recent years, research and development of white light emitting devices using blue light emitting elements as light sources have been actively conducted. In particular, white light-emitting diodes using blue light-emitting diodes are light weight, do not use mercury, and have a long service life. Therefore, demand is expected to increase rapidly in the future. The most commonly used method for converting blue light of a blue light emitting element into white light is to obtain a pseudo white color by mixing yellow that is complementary to blue. For example, as described in Japanese Patent Application Laid-Open No. 2 0 0 0-2 0 8 8 1 5, fluorescence that emits yellow light by absorbing part of blue light is emitted on the front surface of a light emitting diode that emits blue light. The coating layer containing the body is provided, and the blue light from the light source and the yellow light from the phosphor are mixed before that. A white light emitting diode can be formed by providing a mold layer or the like. As the phosphor, YAG (Y 3 A 15 10 12 ) powder activated with cerium is used.
しかし特開 2 0 0 0 - 2 0 8 8 1 5号公報に代表される、 現在一 般的に用いられている白色発光ダイオードの構造では、 蛍光体粉末 をエポキシ等の樹脂と混合し塗布するため、 蛍光体粉末と樹脂の混 合状態の均一性確保、 および塗布膜の厚みの安定化等の制御が難し く、 白色発光ダイオードの色むら · バラツキが生じやすいことが指 摘されている。 また蛍光体粉末を用いる際に必要となる樹脂は金属 やセラミックスに比べ耐熱性に劣るため、 発光素子からの熱による 変成で透過率低下を起こしやすく、 現在求められている白色発光ダ ィオードの高出力化へのネックとなっている。  However, in the structure of white light emitting diodes generally used at present, represented by Japanese Patent Laid-Open No. 2 00 0 2 0 8 8 15, phosphor powder is mixed with epoxy or other resin and applied. For this reason, it has been pointed out that it is difficult to ensure uniformity in the mixed state of the phosphor powder and the resin and to stabilize the thickness of the coating film, and the white light-emitting diodes are likely to have uneven color and variations. In addition, the resin required when using phosphor powder is inferior in heat resistance compared to metals and ceramics, so it tends to cause a decrease in transmittance due to transformation from heat from the light-emitting element, and the high white light-emitting diode demanded at present is high. It is a bottleneck to output.
この種の蛍光体粉末を光変換に用いる白色発光ダイオードの発光 効率、 波長変換効率を高め、 色むらを減らすことなどを目的として 、 特開 2 0 0 5 — 1 9 1 1 9 7号公報に、 基体上に形成した発光素 子を覆うように透光性部材を形成し、 さらに透光性部材を覆うよう に蛍光体粉末含有樹脂からなる蛍光体層を形成した発光装置におい て、 透光性部材及び蛍光体層の上面を算術平均粗さ 0. 1〜 0. 8 /xmの粗面にすることが提案されている。 しかしながら、 この発光 装置でも、 十分な蛍光強度、 出力を実現することはできていない。 本発明者らは蛍光を発する (Y、 C e ) 3 A 1512相と A 123 相を含む複数の酸化物相が連続的にかつ三次元的に相互に絡み合つ て形成されている凝固体からなる光変換用複合体および青色発光素 子を用いて構成される白色発光装置を提案してきた (国際公開 W O 2 0 0 4 Z 0 6 5 3 2 4号公報) 。 本光変換用複合体は、 蛍光体 相が均一に分布するため均質な黄色蛍光を安定して得ることができ 、 セラミックスであるため耐熱性に優れる。 また、 それ自身がバル ク体であるため、 白色発光装置の構成に樹脂を必要としない。 この ため本白色発光装置は色むら · バラツキが小さく、 また高出力化に 極めて好適である。 For the purpose of improving the light emission efficiency and wavelength conversion efficiency of white light emitting diodes using this type of phosphor powder for light conversion and reducing color unevenness, Japanese Patent Application Laid-Open No. 2000-059-1 9 1 1 9 7 In a light-emitting device in which a light-transmitting member is formed so as to cover a light-emitting element formed on a substrate, and further, a phosphor layer made of a phosphor powder-containing resin is formed so as to cover the light-transmitting member. It has been proposed that the upper surfaces of the conductive member and the phosphor layer have an arithmetic average roughness of 0.1 to 0.8 / xm. However, even with this light-emitting device, sufficient fluorescence intensity and output cannot be realized. The present inventors emit fluorescence (Y, C e) 3 A 1 5 0 12 phase and a plurality of oxide phases including A 1 2 0 3 phase are continuously and three-dimensionally entangled with each other. A white light-emitting device composed of a light-conversion composite formed of a solidified body and a blue light-emitting element has been proposed (International Publication WO 2 0 0 4 Z 0 6 5 3 2 4). This composite for light conversion can stably obtain homogeneous yellow fluorescence because the phosphor phase is uniformly distributed, and is excellent in heat resistance because it is a ceramic. Also, it is Since it is a solid body, no resin is required for the structure of the white light emitting device. For this reason, the white light emitting device has little color unevenness and variation, and is extremely suitable for high output.
また、 こうした青色発光素子と本光変換用複合体を用いて構成さ れる白色発光装置においては、 青色光と黄色蛍光の比率を光変換用 複合体の厚みを変えることにより制御することができる。 このため 厚みのバラツキを抑えることにより、 白色発光装置の色調のバラッ キを容易に小さく抑えることができ、 従来の蛍光体粉末を用いた構 成に比べ製造工程上の大きな利点となっている。  In a white light emitting device configured using such a blue light emitting element and the present light conversion composite, the ratio of blue light to yellow fluorescence can be controlled by changing the thickness of the light conversion composite. For this reason, by suppressing variations in thickness, it is possible to easily suppress variations in color tone of the white light emitting device, which is a great advantage in the manufacturing process compared to a configuration using a conventional phosphor powder.
しかしながら、 本光変換用複合体は、 その製造過程において構成 相である酸化物相間の共晶反応を利用するため、 各相の比率はある 程度限定され、 蛍光体相の量を大きく変えることは困難である。 そ のため、 発光装置の色調調整において黄色成分の光を多くする必要 がある場合、 光変換用複合体の必要な厚さが厚くなり、 その分光変 換用複合体の材料コス トが上昇してしまうという問題がある。 また 光変換用複合体内部での光の損失は小さいが、 厚みが増すとその分 は増加するため、 発光装置の発光効率向上の面でも好ましくない。 本発明の目的は、 より薄い厚みで必要な蛍光を得ることができ、 低コス トでかつ複合体内での光の損失を抑えた光変換用複合体を提 供することである。 また、 発光素子と本光変換用複合体を用いた、 高効率で、 色の調整が容易でかつバラツキが小さい、 高出力化に極 めて好適な発光装置を提供することである。 発明の開示  However, since the composite for light conversion uses a eutectic reaction between oxide phases that are constituent phases in the production process, the ratio of each phase is limited to some extent, and the amount of the phosphor phase cannot be changed greatly. Have difficulty. Therefore, when it is necessary to increase the amount of yellow component light when adjusting the color tone of the light emitting device, the required thickness of the light conversion complex increases, and the material cost of the spectral conversion complex increases. There is a problem that it ends up. In addition, although the loss of light inside the light conversion composite is small, it increases as the thickness increases, which is not preferable in terms of improving the light emission efficiency of the light emitting device. An object of the present invention is to provide a complex for light conversion that can obtain necessary fluorescence with a thinner thickness, has a low cost, and suppresses light loss in the complex. Another object of the present invention is to provide a light-emitting device that uses a light-emitting element and the composite for light conversion and that is highly efficient, easy to adjust color, has little variation, and is extremely suitable for high output. Disclosure of the invention
本発明は、 少なく とも 1つの蛍光を発する酸化物結晶相を含む複 数の酸化物相からなる光変換用複合体であり、 該光変換用複合体の 光入射面と反対側の光放射面の少なく とも 1つの表面の表面粗さが 、 算術平均粗さ (R a) で 0 . 0 5 m以上であることを特徴とする 光変換用複合体に関する。 本発明の光変換用複合体は、 酸化物複合 体の一体物 (塊状物) であり、 従来の粒子状物を樹脂に分散させた 光変換体とは異なる。 The present invention is a light conversion composite comprising a plurality of oxide phases including an oxide crystal phase that emits at least one fluorescence, and a light emitting surface opposite to the light incident surface of the light conversion composite The surface roughness of at least one surface The present invention relates to a composite for light conversion characterized by having an arithmetic average roughness (R a) of not less than 0.05 m. The composite for light conversion according to the present invention is an integral body (a lump) of an oxide composite, and is different from a conventional light converter in which particulates are dispersed in a resin.
また、 本発明の好ましい形態として、 該光変換用複合体が、 少な く とも 2つ以上の酸化物相が連続的にかつ三次元的に相互に絡み合 つた組織を有し、 該酸化物相のうち少なく とも 1つは蛍光を発する 結晶相である凝固体からなる光変換用複合体に関する。  Further, as a preferred embodiment of the present invention, the composite for light conversion has a structure in which at least two or more oxide phases are continuously and three-dimensionally entangled with each other, and the oxide phase At least one of them relates to a composite for light conversion comprising a solidified body that is a crystalline phase that emits fluorescence.
また、 本発明の一つの好ましい形態では、 光変換用複合体の光放 射面が酸化物相毎に高さが異なる凹凸面である。  Moreover, in one preferable form of the present invention, the light emitting surface of the composite for light conversion is an uneven surface having a different height for each oxide phase.
さらに、 本発明の好ましい形態として該光変換用複合体が、 組成 成分として少なく とも Y元素、 A 1元素と C e元素を含む光変換用 複合体に関する。  Furthermore, as a preferred embodiment of the present invention, the composite for light conversion relates to a composite for light conversion containing at least Y element, A1 element and Ce element as composition components.
また、 本発明は、 前記光変換用複合体と発光素子とからなる発光 装置に関する。  The present invention also relates to a light emitting device comprising the light conversion composite and a light emitting element.
本発明の好ましい形態として、 前記光変換用複合体が波長 5 3 0 〜 5 8 0 n mにピークを有する蛍光を発し、 該発光素子が波長 4 0 0 n m〜 5 0 0 n mにピークを有する光を発する発光装置に関する また、 本発明は、 前記光変換用複合体の表面粗さを変えることに より、 前記発光装置の色調を調整する色調調整方法に関する。  As a preferred embodiment of the present invention, the complex for light conversion emits fluorescence having a peak at a wavelength of 530 to 5800 nm, and the light emitting element has a light having a peak at a wavelength of 400 to 500 nm. Moreover, this invention relates to the color tone adjustment method which adjusts the color tone of the said light-emitting device by changing the surface roughness of the said composite for light conversion.
本発明の光変換用複合体を用いることで、 同じ入射光により、 従 来より強い蛍光を得ることができる。 これにより、 より薄い光変換 用複合体で必要な蛍光強度を得ることができるため、 低コス トでか つ複合体内での光の損失を抑えた光変換用複合体を提供することが できる。 また、 光変換用複合体の厚みを変えずに蛍光強度を制御す ることができるため色の調整が容易な、 発光素子と本光変換用複合 体からなる高効率で高出力化に極めて好適な白色発光装置を提供す ることができる。 図面の簡単な説明 By using the composite for light conversion of the present invention, fluorescence stronger than before can be obtained with the same incident light. As a result, the necessary fluorescence intensity can be obtained with a thinner light-conversion complex, so that it is possible to provide a light-conversion complex with low cost and reduced light loss in the complex. In addition, since the fluorescence intensity can be controlled without changing the thickness of the composite for light conversion, the light emitting element and the composite for light conversion can be easily adjusted in color. It is possible to provide a white light-emitting device that is highly efficient and highly suitable for high output. Brief Description of Drawings
図 1は本発明の発光装置の一実施形態を示す模式的断面図である 図 2は本発明の光変換用複合体の組織構造の一例を示す実施例 1 の顕微鏡写真である。  FIG. 1 is a schematic cross-sectional view showing an embodiment of a light-emitting device of the present invention. FIG. 2 is a photomicrograph of Example 1 showing an example of a tissue structure of a composite for light conversion of the present invention.
図 3は本発明の光変換用複合体の蛍光特性の一例を示す実施例 1 の蛍光スぺク トル図である。  FIG. 3 is a fluorescence spectrum diagram of Example 1 showing an example of the fluorescence characteristics of the complex for light conversion of the present invention.
図 4は本発明の発光装置の一例を示す実施例 8の発光スペク トル 図である。  FIG. 4 is a light emission spectrum diagram of Example 8 showing an example of the light emitting device of the present invention.
図 5は本発明の発光装置の色調調整法の一例を示す実施例 9 、 1 0 、 1 1 の色度図である。  FIG. 5 is a chromaticity diagram of Examples 9, 10 and 11 showing an example of the color tone adjustment method of the light emitting device of the present invention.
図 6は、 実施例 1 3で作製した光変換用複合体表面の断面を示す 顕微鏡写真である。  FIG. 6 is a photomicrograph showing the cross section of the surface of the composite for light conversion produced in Example 13.
図 7は、 実施例 1 9で作製した光変換用複合体表面の断面を示す 顕微鏡写真である。  FIG. 7 is a photomicrograph showing a cross section of the surface of the composite for light conversion produced in Example 19.
図 8は、 実施例 2 0で作製した光変換用複合体表面のレーザー顕 微鏡写真である。  FIG. 8 is a laser micrograph of the surface of the light conversion composite prepared in Example 20.
図 9は、 本発明の発光装置の一例を示す実施例 2 1 の発光スぺク トル図である。 発明を実施するための最良の形態  FIG. 9 is a light emission spectrum diagram of Example 21 showing an example of the light emitting device of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明を詳細に説明する。  Hereinafter, the present invention will be described in detail.
本発明の光変換用複合体は、 少なく とも 1つの蛍光を発する酸化 物結晶相を含む複数の酸化物相からなる光変換用複合体であり、 該 光変換用複合体の光入射面と反対側の光放射面の少なく とも 1つの 表面の表面粗さが、 算術平均粗さ (Ra) で 0. 0 5 xim以上である ことを特徴とする光変換用複合体である。 通 光変換用複合体は、 板状であり、 変換される前の光が入射する入射面と、 変換された光 が外部に出て行く放射面とを有する。 この入射面または放射面の表 面粗さ (R a) が 0. 0 5 m以上であることを特徴とする。 The composite for light conversion of the present invention is a composite for light conversion comprising a plurality of oxide phases including an oxide crystal phase emitting at least one fluorescence, Light characterized in that the surface roughness of at least one surface of the light emitting surface opposite to the light incident surface of the composite for light conversion is not less than 0.05 xim in terms of arithmetic mean roughness (Ra) It is a complex for conversion. The composite for light transmission conversion is plate-shaped, and has an incident surface on which light before conversion is incident and a radiation surface from which the converted light exits. The surface roughness (R a) of the incident surface or radiation surface is 0.05 m or more.
本発明の光変換用複合体は、 少なく とも 1つの蛍光を発する酸化 物結晶相を含む複数の酸化物相からなり、 蛍光を発する酸化物結晶 相以外の構成酸化物相としては、 ガラスまたは溶融凝固体でもよく 、 特に限定されるものではない。 光変換用複合体の好ましい形態と しては、 少なく とも 2つ以上の酸化物相が連続的にかつ三次元的に 相互に絡み合った組織を有する凝固体であり、 これら酸化物相のう ち少なく とも 1つは蛍光を発する結晶相である光変換用複合体が挙 げられる。  The composite for light conversion of the present invention comprises a plurality of oxide phases including an oxide crystal phase that emits at least one fluorescence, and the constituent oxide phases other than the oxide crystal phase that emits fluorescence include glass or molten It may be a solidified body and is not particularly limited. A preferred form of the composite for light conversion is a solidified body having a structure in which at least two or more oxide phases are continuously and three-dimensionally entangled with each other. At least one of them is a light conversion complex, which is a crystalline phase that emits fluorescence.
光変換用複合体に励起光を入射することにより蛍光を発すること ができる。 そして光変換用複合体の少なくとも一つの表面は、 表面 粗さが J I S B 0 6 0. 0 5— 1 9 9 4記載の算術平均粗さ ( 以下 R a ) で 0. 0 5 m以上になるよう加工されている。  Fluorescence can be emitted by entering excitation light into the light conversion complex. At least one surface of the composite for light conversion has a surface roughness of not less than 0.05 m in terms of arithmetic average roughness (hereinafter referred to as R a) as described in JISB 0 6 0.0 5 — 1 9 94 Has been processed.
本光変換用複合体表面が表面粗さ R a≥ 0. 0 5 ; timの粗い面の 場合、 R a< 0. 0 5 ; mの鏡面に近い面に比べて、 同じ厚みの光 変換用複合体から、 より強い蛍光を得ることができるため表面粗さ R aは上記範囲に限定される。 表面粗さ R aが大きくなるに従い得 られる蛍光強度は強くなり、 表面粗さ R a≥ 0. 1 mがさらに好 ましい。 表面粗さ R a≥ 0. 1 mの面を持つ光変換用複合体は、 表面粗さ R a < 0. 0 5 の鏡面に近い面を持つ同じ材料と厚み の光変換複合体に比べて、 5 %以上強い蛍光を得ることができるた めである。 表面粗さ R a≥ 0. 2 5 mがさらに好ましい。 1 0 % 以上強い蛍光を得ることができるためである。 よって光変換用複合 体表面の表面粗さ R aをより大きくすることで、 より薄い厚みで必 要な蛍光強度を得ることができる。 これにより発光素子を作製する 際の光変換用複合体の厚みを薄くすることができ、 光変換用複合体 の使用量を減らすことができるため、 材料のコス トが低減される。 また従来よりも薄くなることで、 光変換用複合体内部での光の損失 も抑えられる。 表面粗さ R aの上限は特に限定されないが、 光変換 用複合体の厚みに対して表面粗さ R aが大きくなりすぎると、 形状 の保持が困難になりハンドリング性も悪くなるため、 実用的には、 表面粗さ R aは、 光変換用複合体の厚みの 1 / 2以下であることが 好ましい。 さらに表面粗さの形成のしゃ易さなどから 5 0 z m以下 、 さらに 3 0 m以下がより好ましい。 If the surface of the composite for light conversion has a surface roughness of R a ≥ 0. 0 5; a rough surface of tim, R a <0. 0 5; for light conversion of the same thickness compared to the surface close to the mirror surface of m. Since stronger fluorescence can be obtained from the complex, the surface roughness Ra is limited to the above range. The fluorescence intensity obtained increases as the surface roughness Ra increases, and the surface roughness Ra≥0.1 m is more preferred. Light conversion composites with a surface roughness R a ≥ 0.1 m are compared to light conversion composites of the same material and thickness that have a surface close to a mirror with a surface roughness R a <0. 0 5. This is because it is possible to obtain fluorescence that is 5% or more intense. More preferably, the surface roughness R a ≥ 0.25 m. Ten % This is because strong fluorescence can be obtained. Therefore, by increasing the surface roughness Ra of the surface of the composite for light conversion, the necessary fluorescence intensity can be obtained with a thinner thickness. As a result, the thickness of the composite for light conversion at the time of manufacturing a light-emitting element can be reduced, and the amount of the composite for light conversion can be reduced, so that the cost of the material is reduced. In addition, by making it thinner than before, light loss inside the optical conversion composite can be suppressed. The upper limit of the surface roughness Ra is not particularly limited, but if the surface roughness Ra is too large relative to the thickness of the composite for light conversion, it is difficult to maintain the shape and the handling property is also deteriorated. For this, the surface roughness Ra is preferably 1/2 or less of the thickness of the composite for light conversion. Further, it is more preferably 50 zm or less, and further preferably 30 m or less, from the viewpoint of easy formation of surface roughness.
また、 本発明の光変換用複合体では、 光透過面が表面粗さ R a≥ 0 . 0 5 z mの粗面であると、 光出射面で光が散乱されるが、 最終 的に光変換用複合体を透過する全放射束の全入射束に対する相対量 は必ずしも減少するものではなく、 増加することができる。 特に後 述のように酸化物毎に凹凸面を形成しかつ R a≥ 0 . 0 5 x mの粗 面にすると、 光取出効率が顕著に向上し、 蛍光強度をより向上させ ることができる。  In the composite for light conversion of the present invention, if the light transmission surface is a rough surface with a surface roughness R a ≥ 0.05 zm, light is scattered on the light output surface, but finally light conversion is performed. The relative amount of the total radiant flux passing through the composite for the total incident flux is not necessarily reduced, but can be increased. In particular, when an uneven surface is formed for each oxide and a rough surface with Ra ≥ 0.05 xm as described later, the light extraction efficiency is remarkably improved, and the fluorescence intensity can be further improved.
また、 本光変換用複合体における表面粗さ R 8≥ 0 . 0 5 111の 粗い面が入射光の進路を横切る位置にあると、 そこで入射光が散乱 され蛍光を発する結晶相に効率良く吸収されることにより、 より強 い蛍光が得られるため好ましい。 光変換用複合体が板状で、 その厚 み方向に光が進む場合、 光の入射する面 (入射面) と反対側の光が 出て行く面 (放射面) のいずれかが粗い面であると上記の効果によ り強い蛍光が得られる。 さらに入射面と放射面の両方が粗い面であ ると、 散乱の効果が増し、 より強い蛍光が得られるためさらに好ま しい。 Also, if the rough surface of the composite for light conversion with a surface roughness of R 8 ≥ 0.05 5 111 is located across the path of the incident light, the incident light is scattered and efficiently absorbed by the crystalline phase that emits fluorescence. This is preferable because stronger fluorescence can be obtained. When the light conversion composite is plate-shaped and light travels in the thickness direction, either the light incident surface (incident surface) or the light exiting surface (radiation surface) is rough. If so, strong fluorescence can be obtained due to the above effects. Furthermore, it is more preferable that both the incident surface and the emitting surface are rough because the scattering effect increases and stronger fluorescence is obtained. That's right.
酸化物相は組成成分および凝固体の製造条件により変化し特に限 定されないが、 組成成分として少なく とも Y元素、 A 1元素と C e 元素を含む場合、 A 1203 (サファイア) 相、 (Y、 C e ) 3 A 15 012相等が挙げられ、 こう した酸化物相が少なく とも 2相以上含ま れる。 それぞれの酸化物相のうち少なく とも 2相は、 連続的にかつ 三次元的に相互に絡み合った構造をしている。 一部の酸化物相は他 の酸化物相が形成する相互に絡み合った構造中に粒状に存在する場 合もある。 いずれにおいても各相の境界は、 アモルファス等の境界 層が存在せず、 酸化物相同士が直接接している。 このため光変換用 複合体内での光の損失が少なく、 光透過率も高い。 If oxide phase is not particularly limited constant varies with the production conditions of the composition components and solidified body, in which Y element at least as a composition component, comprising the A 1 element and C e elements, A 1 2 0 3 (sapphire) phase, (Y, C e) 3 A 15 0 12 equality may be mentioned, include two or more phases at least the oxide phase was doing. At least two phases of each oxide phase have a structure that is continuously and three-dimensionally entangled with each other. Some oxide phases may be present in granular form in an intertwined structure formed by other oxide phases. In any case, there is no boundary layer such as amorphous at the boundary of each phase, and the oxide phases are in direct contact with each other. For this reason, there is little light loss in the light conversion complex, and the light transmittance is high.
蛍光を発する結晶相も組成成分および凝固体の製造条件により変 化し特に限定されないが、 組成成分として少なく とも Y元素、 A 1 元素と C e元素を含む場合、 (Y、 C e ) 3Α 15ί 2相等が挙げら れ、 こう した蛍光を発する結晶相が少なく とも 1相含まれる。 これ ら蛍光を発する結晶相を含む酸化物相が連続的にかつ三次元的に相 互に絡み合った構造をとり、 全体として各酸化物相が光変換用複合 体内に均一に分布するため、 部分的な偏りのない均質な蛍光を得る ことができる。 The crystalline phase that emits fluorescence also varies depending on the compositional components and the manufacturing conditions of the solidified body, and is not particularly limited. However, if the compositional components include at least Y, A1 and Ce, (Y, Ce) 3 Α 1 5ί 2 phases are included, and at least one crystal phase that emits such fluorescence is included. These oxide phases, including crystalline phases that emit fluorescence, have a structure in which they are continuously and three-dimensionally entangled with each other, and as a whole, each oxide phase is evenly distributed in the light conversion complex. It is possible to obtain uniform fluorescence with no bias.
前記 A l 23相と (Y、 C e ) 3A 15012相の組み合わせは、 容 易に両者が連続的にかつ三次元的に相互に絡み合った構造が得られ る。 また (Y、 C e ) 3A 15012相は、 4 0 0〜 5 0 0 n mの紫〜 青色励起光で、 ピーク波長 5 3 0〜 5 6 0 nmの蛍光を発すること から、 白色発光装置用光変換部材として好適である。 このことから 、 組成成分として少なく とも Y元素、 A 1元素と C e元素を含むこ とは好ましい。 加えて G d元素を含むと蛍光を発する結晶相として (Y、 G d、 C e ) 3 A 1512相が生成し、 より長波長側のピーク 波長 5 4 0〜 5 8 0 n mの蛍光を発することができる。 The combination of the Al 2 O 3 phase and the (Y, Ce) 3 A 1 5 0 12 phase makes it easy to obtain a structure in which both are continuously and three-dimensionally entangled with each other. The (Y, C e) is 3 A 1 5 0 12 phase, 4 0 0~ 5 0 0 nm violet to blue excitation light, since it emits fluorescence having a peak wavelength of 5 3 0~ 5 6 0 nm, white It is suitable as a light conversion member for a light emitting device. Therefore, it is preferable that the composition component contains at least Y element, A 1 element and Ce element. In addition, if a Gd element is included, a (Y, Gd, Ce) 3 A 1 512 phase is generated as a crystalline phase that emits fluorescence. It can emit fluorescence having a wavelength of 5400 to 5800 nm.
本発明の光変換用複合体を構成する凝固体は、 原料酸化物を融解 後、 凝固させることで作製される。 例えば、 所定温度に保持したル ッポに仕込んだ溶融物を、 冷却温度を制御しながら冷却凝結させる 簡単な方法で凝固体を得ることができるが、 最も好ましいのは一方 向凝固法により作製されたものである。 一方向凝固をおこなう こと により含まれる結晶相が単結晶状態で連続的に成長し、 部材内での 光の減衰が減少するためである。  The solidified body constituting the composite for light conversion of the present invention is produced by solidifying the raw material oxide after melting. For example, it is possible to obtain a solidified body by a simple method of cooling and condensing a melt charged in a loop kept at a predetermined temperature while controlling the cooling temperature, but most preferably, it is produced by a unidirectional solidification method. It is a thing. This is because the unidirectional solidification causes the contained crystal phase to continuously grow in a single crystal state, reducing the attenuation of light within the member.
本発明の光変換用複合体を構成する凝固体は、 少なく とも 1つの 酸化物相が蛍光を発する結晶相であることを除き、 本願出願人が先 に特開平 7 - 1 4 9 5 9 7号公報、 特開平 7 — 1 8 7 8 9 3号公報 、 特開平 8 — 8 1 2 5 7号公報、 特開平 8 — 2 5 3 3 8 9号公報、 特開平 8— 2 5 3 3 9 0号公報および特開平 9一 6 7 1 9 4号公報 並びにこれらに対応する米国出願 (米国特許第 5, 5 6 9 , 5 4 7 号、 同第 5, 4 8 4 , 7 5 2号、 同第 5 , 9 0 2 , 9 6 3号) 等に 開示したセラミックス複合材料と同様のものであることができ、 こ れらの出願 (特許) に開示した製造方法で製造できるものである。 これらの出願あるいは特許の開示内容はここに参照して含めるもの である。  The solidified body constituting the composite for light conversion of the present invention is the one in which the applicant of the present application has already been disclosed in Japanese Patent Application Laid-Open No. Hei 7-1 4 9 5 9 Japanese Patent Laid-Open No. 7-1 8 7 8 93, Japanese Patent Laid-Open No. 8-8 1 2 5 7, Japanese Patent Laid-Open No. 8-2 5 3 3 8 9, Japanese Patent Laid-Open No. 8-2 5 3 3 9 No. 0 and Japanese Patent Laid-Open No. 9 6 7 1 94 and U.S. applications corresponding thereto (US Pat. Nos. 5, 5 6 9 and 5 4 7, 5, 4 8 4 and 7 5 2, No. 5, 90, 96, etc.) and the like, and can be manufactured by the manufacturing method disclosed in these applications (patents). The disclosures of these applications or patents are hereby incorporated by reference.
本発明の光変換用複合体は、 上記方法により得られた凝固体を所 定の形状に加工し、 表面を所定の表面粗さに調整することで得られ る。 表面粗さの調整に用いる方法は特に限定されないが、 砥石 · 砥 粒による研削 · 研磨等の物理的な方法が容易で好適である。  The composite for light conversion of the present invention can be obtained by processing the solidified body obtained by the above method into a predetermined shape and adjusting the surface to a predetermined surface roughness. The method used for adjusting the surface roughness is not particularly limited, but a physical method such as grinding / polishing with a grindstone / abrasive grain is easy and suitable.
本発明の光変換用複合体の表面粗さの調整は、 表面の酸化物相が 各々所定の高さになるよう表面処理を行ない、 酸化物毎に高さが異 なる凹凸面を形成することでも行う ことができる。 表面処理の方法 は特に限定されないが、 酸溶液中での化学的処理 (湿式エッチング ) 、 各種ガス雰囲気下における熱処理 (乾式エッチング) 、 等の方 法が好適である。 いわゆる選択エッチング方法、 すなわち、 酸化物 の種類によりエッチングの選択率が異なるエッチング方法である。 エッチング剤は複合酸化物の種類に応じて適当に選択すればよい。 例えば硫酸 · リン酸混合溶液、 C等の酸化物を還元する作用を有す る元素を含むガスなどが使用できる。 この方法によれば、 光変換用 複合体の表面の粗さを調整するに際して、 光変換用複合体の表面組 織を破壌せずに所望の表面粗さを実現できるので、 より優れて高い 蛍光強度を実現することができ、 またより大きい表面粗さ R aを形 成する上でも好ましい。 The surface roughness of the composite for light conversion of the present invention is adjusted by performing a surface treatment so that the surface oxide phases each have a predetermined height, and forming uneven surfaces having different heights for each oxide. But it can be done. The surface treatment method is not particularly limited, but chemical treatment in an acid solution (wet etching) ), Heat treatment under various gas atmospheres (dry etching), and the like are preferable. This is a so-called selective etching method, that is, an etching method in which the etching selectivity varies depending on the type of oxide. The etching agent may be appropriately selected according to the type of the complex oxide. For example, a sulfuric acid / phosphoric acid mixed solution, a gas containing an element capable of reducing oxides such as C, and the like can be used. According to this method, when adjusting the surface roughness of the composite for light conversion, the surface roughness of the composite for light conversion can be achieved without destroying the surface texture. Fluorescence intensity can be realized, and it is also preferable for forming a larger surface roughness Ra.
また、 本発明の光変換用複合体の表面粗さの調整は、 上記の砥石 - 砥粒による研削 · 研磨等の物理的な方法と、 酸溶液中での化学的 処理、 各種ガス雰囲気下における熱処理、 等の方法の組み合わせで もよい。 この場合、 酸化物毎に高さが異なる凹凸面が形成されると ともに、 段差のある凹凸面がさらに粗-面化されている。  Further, the adjustment of the surface roughness of the composite for light conversion of the present invention is carried out by a physical method such as grinding / polishing with the above-mentioned grindstone-abrasive grains, chemical treatment in an acid solution, under various gas atmospheres A combination of methods such as heat treatment may be used. In this case, an uneven surface having a different height is formed for each oxide, and the uneven surface having a step is further roughened.
本発明の光変換用複合体は、 表面粗さが 0 . 0 5 // m以上である ことで蛍光強度が向上するが、 酸化物毎に高さが異なる凹凸面を形 成すると、 鏡面と比べて、 さらには研磨で形成した粗面と比べても 、 おそらく光出射面で全反射される割合が低下するために、 光変換 用複合体からより多くの光を取出すことができるので、 蛍光強度の 向上により大きく寄与することができる。 酸化物毎に高さが異なる 凹凸面を形成し、 かつ表面粗さが 0 . 1 m以上であることがより 好ましい。  In the composite for light conversion of the present invention, the fluorescence intensity is improved by having a surface roughness of 0.05 m / m or more. However, when an uneven surface having a different height is formed for each oxide, Compared to the rough surface formed by polishing, the ratio of total reflection at the light exit surface is probably lower, so more light can be extracted from the light conversion complex. It can greatly contribute to the improvement of strength. It is more preferable that uneven surfaces having different heights are formed for each oxide and that the surface roughness is 0.1 m or more.
このように、 本発明の光変換用複合体は、 蛍光を発する結晶相を 含む各酸化物相が連続的にかつ三次元的に相互に絡み合って存在し 、 均質な蛍光を得ることができると共に、 光変換用複合体の表面を 表面粗さ R a≥ 0 . 0 5 mとすることで、 同じ厚みの光変換用複 合体に比べ、 より効率良く入射光を蛍光を発する結晶相に吸収させ ることができるため、 より強い蛍光を得ることができる。 また表面 粗さ R aを変えることにより、 得られる蛍光強度を制御できる。 こ う したことにより、 より薄い厚みで必要な蛍光強度を得ることがで き、 必要な光変換用複合体の体積が少なくてすむため、 低コス トで かつ複合体内での光の損失を抑えた光変換用複合体を提供すること ができる。 Thus, in the composite for light conversion of the present invention, each oxide phase including a crystal phase that emits fluorescence exists continuously and three-dimensionally intertwined with each other, so that uniform fluorescence can be obtained. The surface of the composite for light conversion has a surface roughness R a ≥ 0.05 m. Since incident light can be absorbed more efficiently in the crystalline phase that emits fluorescence than in the case of coalescence, stronger fluorescence can be obtained. Moreover, the fluorescence intensity obtained can be controlled by changing the surface roughness Ra. As a result, the required fluorescence intensity can be obtained with a thinner thickness, and the volume of the required light conversion complex can be reduced. Therefore, the cost of light loss in the complex can be reduced. A composite for light conversion can be provided.
本発明の発光装置は、 前記本発明の光変換用複合体と発光素子と からなる装置であり、 発光素子からの光を光変換用複合体に照射し 、 光変換用複合体を透過した光および、 発光素子からの光が光変換 用複合体により波長変換された蛍光を利用することを特徴とする。 図 1は、 本発明の発光装置の一実施形態を示した模式的断面図であ る。 図中、 1 は光変換用複合体、 2は発光素子 (発光ダイオード素 子) 、 3はリードワイヤー、 4はリード電極、 5は固定部材光変換 用複合体 1 を保持する部材である。 光変換用複合体 1は側面が部材 5によって保持され覆われて、 発光素子 2からの光を入射する面 2 aと、 光変換用複合体 1 を透過する光 (一部の光は変換され、 透過 光と混合されている) を放射する面 2 bを有する。  The light-emitting device of the present invention is a device comprising the light-conversion composite of the present invention and a light-emitting element, and irradiates the light-conversion complex with light from the light-emitting element and transmits the light-converted composite Further, the present invention is characterized in that the light from the light emitting element uses fluorescence whose wavelength is converted by the complex for light conversion. FIG. 1 is a schematic cross-sectional view showing an embodiment of a light emitting device of the present invention. In the figure, 1 is a composite for light conversion, 2 is a light emitting element (light emitting diode element), 3 is a lead wire, 4 is a lead electrode, and 5 is a member for holding the composite 1 for light conversion of a fixed member. The side surface of the composite 1 for light conversion is held and covered by the member 5, the surface 2 a on which the light from the light emitting element 2 is incident, and the light that passes through the composite 1 for light conversion (some light is converted) The surface 2 b which emits (which is mixed with transmitted light).
本発明の発光装置の一実施形態である白色発光装置は、 波長 4 0 0 n m〜 5 0 0 n mにピークを有する光を発する紫〜青色発光素子 と、 該発光素子から発する光によりピ一ク波長 5 3 0〜 5 8 O n m の黄色蛍光を発する上記光変換用複合体とからなる。 紫〜青色発光 素子から発する紫〜青色光を、 その波長に合わせて白色が得られる ように蛍光ピーク波長の調整をおこなった光変換用複合体に入射す る。 それによつて励起された蛍光を発する結晶相からの黄色蛍光と 、 蛍光を発さない結晶相を透過した紫〜青色光が、 酸化物相が連続 的にかつ三次元的に相互に絡み合う構造により、 均質に混合される ことで、 色むらが小さい白色を得ることができる。 A white light-emitting device that is an embodiment of the light-emitting device of the present invention includes a violet to blue light-emitting element that emits light having a peak at a wavelength of 400 nm to 500 nm, and a peak generated by light emitted from the light-emitting element. It consists of the said composite for light conversion which emits yellow fluorescence with a wavelength of 530-058 nm. Violet-blue light emitted from the violet-blue light-emitting element is incident on the light conversion complex whose fluorescence peak wavelength is adjusted so that white is obtained in accordance with the wavelength. The yellow fluorescence from the crystal phase that emits fluorescence excited by it, and the purple to blue light transmitted through the crystal phase that does not emit fluorescence, due to the structure in which the oxide phase is continuously and three-dimensionally entangled with each other , Homogeneously mixed As a result, a white color with small color unevenness can be obtained.
本発明の発光装置に用いる光変換用複合体は、 前記方法により板 状等の適切な形状に作製される。 発光装置の色調は、 光変換用複合 体の厚みを変えることの他に、 光変換用複合体表面の表面粗さを変 えることによつても、 容易に制御することができる。 そして光変換 用複合体の厚みと表面粗さを最適にすることにより、 光変換用複合 体内部での光損失を抑えた高効率の発光装置を得ることができる。 また発光装置の色調のバラツキは、 光変換用複合体の厚みの精度を 保つことで容易に小さく抑えることができる上に、 後から表面粗さ の微調整をすることでさらに小さく抑えることができる。 本光変換 用複合体は、 そのまま単独で部材として使用することが可能で封入 樹脂が必要なく、 熱 · 光による劣化がないため、 高出力の紫〜青色 発光素子と組み合わせて使用することができ、 発光装置の高出力化 が可能である。  The composite for light conversion used in the light emitting device of the present invention is produced in an appropriate shape such as a plate shape by the above method. The color tone of the light emitting device can be easily controlled by changing the surface roughness of the surface of the light conversion composite as well as changing the thickness of the light conversion composite. By optimizing the thickness and surface roughness of the composite for light conversion, it is possible to obtain a highly efficient light-emitting device that suppresses light loss inside the composite for light conversion. In addition, the variation in color tone of the light emitting device can be easily reduced by maintaining the accuracy of the thickness of the composite for light conversion, and can be further reduced by finely adjusting the surface roughness later. . This composite for light conversion can be used as a component as it is, no encapsulating resin is required, and there is no deterioration due to heat and light, so it can be used in combination with high-power purple to blue light-emitting elements. High output of the light emitting device is possible.
本発明の発光装置に用いる発光素子は、 発光ダイオード素子、 レ 一ザ一光を発生する素子などが挙げられるが、 発光ダイォード素子 が小型で安価に得られるため好ましい。  Examples of the light-emitting element used in the light-emitting device of the present invention include a light-emitting diode element and an element that generates laser light, but the light-emitting diode element is preferable because it is small and inexpensive.
本発明により、 光変換用複合体の表面粗さにより色調の調整が容 易に可能で、 また厚みと表面粗さを最適化することにより、 光変換 用複合体内部での光損失を抑えた高効率の発光装置を提供すること ができる。 また本発光装置は、 熱や光による劣化がなく、 高出力化 に極めて好適である。 実施例  According to the present invention, the color tone can be easily adjusted by the surface roughness of the light conversion composite, and the optical loss inside the light conversion composite is suppressed by optimizing the thickness and the surface roughness. A highly efficient light-emitting device can be provided. In addition, this light-emitting device is not deteriorated by heat or light, and is extremely suitable for high output. Example
以下、 具体的例を挙げ、 本発明を更に詳しく説明する。  Hereinafter, the present invention will be described in more detail with specific examples.
(実施例 1 )  (Example 1)
ひ ー 1 23粉末 (純度 9 9 . 9 9 % ) を A 1 0 3 / 2換算で 0 . 8 2モル、 Y203粉末 (純度 9 9. 9 % ) を Υ〇3/2換算で 0. 1 7 5 モル、 じ €〇2粉末 (純度 9 9 , 9 ) を 0. 0 0 5モルとなるよ う秤量した。 これらの粉末をエタノール中、 ポールミルによって 1 6時間湿式混合した後、 エバポレーターを用いてエタノールを脱媒 して原料粉末を得た。 原料粉末は、 真空炉中で予備溶解し一方向凝 固の原料とした。 Facial -1 23 powder (purity 9 9. 99%) 0 with A 1 0 3/2 terms. 8 2 mol, Y 2 0 3 powder (purity 9 9. 9%) 0.13 5 mol in terms of 3/2 , and € 0 2 powder (purity 9 9, 9) 0. 0 0 5 mol Weighed so that These powders were wet mixed in ethanol for 16 hours with a pole mill, and then ethanol was removed using an evaporator to obtain a raw material powder. The raw material powder was pre-melted in a vacuum furnace and used as a raw material for unidirectional solidification.
次に、 この原料をそのままモリプデンルツボに仕込み、 一方向凝 固装置にセッ トし、 1. 3 3 X 1 0— 3 P a ( 1 0 "5 T o r r ) の圧 力下で原料を融解した。 次に同一の雰囲気においてルツポを 5 mm Z時間の速度で下降させ、 A 1203 (サファイア) 相、 (Y、 C e ) 3A 1512相、 C e A 1 ぃ 018相の 3つの酸化物相からなる凝固 体を得た。 Next, this raw material was charged into a molypden crucible as it was, set in a unidirectional solidification device, and the raw material was melted under a pressure of 1. 3 3 X 1 0— 3 Pa (1 0 " 5 Torr). Next, in the same atmosphere, the rusppo is lowered at a speed of 5 mm Z time, A 1 2 0 3 (sapphire) phase, (Y, C e) 3 A 1 512 phase, C e A 1 0 18 phase A solidified body consisting of three oxide phases was obtained.
凝固体の凝固方向に垂直な断面組織を図 2に示す。 Aの黒い部分 が A 1 203 (サファイア) 相、 Bの白い部分が ( Y、 C e ) 3 A 1 5 O! 2相、 わずかに存在する Cの灰色の部分が C e A 1 j ,〇 , 8相であ る。 各酸化物相一が連続的にかつ Ξ次元的に相互に絡み合った組織を 有し、 主たる蛍光体相である (Y、 C e ) 3 A 1512相が均一に分 布していることが分かる。 このため均質な蛍光を得ることができる 得られた凝固体から(i 16 mmX 0. 2 mmの円盤状試料を切り出 し、 日本分光製固体量子効率測定装置で蛍光特性の評価をおこなつ た。 真のスぺク トルを求めるために補正を副標準光源を用いておこ なった。 蛍光スペク トルを図 3に示す。 波長 4 6 O nmの励起光に より、 5 4 7 nmにピーク波長を持つプロ一ドな蛍光スぺク トルが 得られた。 Figure 2 shows the cross-sectional structure perpendicular to the solidification direction of the solidified body. The black part of A is the A 1 2 0 3 (sapphire) phase, and the white part of B is (Y, C e) 3 A 1 5 O! Two phases, the slightly gray part of C present is CeA 1 j, 〇, 8 phases. Each oxide phase has a structure that is continuously and highly entangled with each other, and the main phosphor phases (Y, Ce) 3 A 1 512 phases are uniformly distributed I understand that. For this reason, homogeneous fluorescence can be obtained. A disc-shaped sample (i 16 mm x 0.2 mm) was cut out from the obtained solidified body, and the fluorescence characteristics were evaluated with a solid-state quantum efficiency measurement device manufactured by JASCO. Correction was performed using a sub-standard light source to determine the true spectrum The fluorescence spectrum is shown in Fig. 3. Peak wavelength at 5 47 nm with excitation light at wavelength 4 6 O nm A professional fluorescent spectrum with the following characteristics was obtained.
得られた凝固体から 2 mmX 2 mmX 0. 1 5 mmの板状で、 2 mmX 2 mmの面の表面粗さが上面は R a = 0. 0 7 m、 下面は R a = 0. 0 4 ^mとなる光変換用複合体試料を作製した。 上面は # 3 0 0 0 ( J I S R 6 0 0 1 ) の砥粒を用いた砥石研削で、 下 面は研磨用ペース トを用いた研磨により所望の表面粗さに調整した 得られた光変換用複合体材料の側面を覆って保持し、 光変換用複 合体材料の下面側から波長 4 6 3 nmの励起光を入射し、 上面側で 出てくる蛍光を積分球を用いて集め、 分光器により波長 5 4 7 nm の蛍光の強度測定をおこなった。 後述する同一厚みで上下面共 R a = 0. 0 4 ^ 111である比較例 1 の最大蛍光強度を 1 0 0 とすると、 本実施例の相対蛍光強度は 1 0 4となり、 本光変換用複合体表面の 表面粗さを片面だけでも R a≥ 0. 0 5 mとすることで、 強い蛍 光が得られていることがわかる。 The resulting solidified body has a plate shape of 2 mmX 2 mmX 0.15 mm. The surface roughness of the 2 mmX 2 mm surface is Ra = 0.07 m on the upper surface, and the lower surface is A composite sample for light conversion having R a = 0.0 4 ^ m was prepared. The upper surface is ground with # 3 00 0 (JISR 6 0 0 1) abrasive grains, and the lower surface is adjusted to the desired surface roughness by polishing with a polishing paste. Cover and hold the side of the composite material, enter the excitation light with a wavelength of 4 63 nm from the bottom surface of the composite material for light conversion, collect the fluorescence emitted from the top surface using an integrating sphere, and Was used to measure the intensity of fluorescence at a wavelength of 5 47 nm. Assuming that the maximum fluorescence intensity of Comparative Example 1 having the same thickness and R a = 0.0 4 ^ 111, which will be described later, is 1 0 0, the relative fluorescence intensity of this example is 10.4. It can be seen that strong fluorescence is obtained when the surface roughness of the composite surface is Ra ≥ 0.05 m even on one side.
(比較例 1 )  (Comparative Example 1)
実施例 1で作製した凝固体から 2 m m X 2 m m X 0. 1 5 m mの 板状で、 2 mmX 2 mmの面の表面粗さが上下面共 R a = 0. 0 4 / mに実施例 1 と同様な方法で調整した光変換用複合体試料を作製 し、 下面側から励起光を入射し、 上面側で出てくる蛍光強度の測定 を実施例 1 と同様にしておこなった。 同時に、 上面側で放射される 光を積分球を用いて集め、 放射された全光の積分値 (全放射束) を 求めた。 得られた最大蛍光強度と全放射束を 1 0 0 とし、 以後の実 施例の蛍光強度と全放射束をこれとの相対値で示すこととする。  2 mm X 2 mm X 0.15 mm plate shape from the solidified body prepared in Example 1, and the surface roughness of the 2 mm X 2 mm surface is Ra + 0.0 4 / m A composite sample for light conversion prepared by the same method as in Example 1 was prepared, and excitation light was incident from the lower surface side, and the fluorescence intensity emitted from the upper surface side was measured in the same manner as in Example 1. At the same time, the light emitted from the upper surface was collected using an integrating sphere, and the integrated value (total radiant flux) of the total emitted light was obtained. The obtained maximum fluorescence intensity and the total radiant flux are set as 100, and the fluorescence intensity and the total radiant flux in the following examples are expressed as relative values.
(実施例 2〜 7 )  (Examples 2 to 7)
実施例 1で作製した凝固体から 2 mmX 2 mmX 0. 1 5 mmの 板状で、 2 mmX 2 mmの面の表面粗さが表 1で示すような光変換 用複合体試料を作製し、 下面側から励起光を入射し、 上面側で出て くる蛍光強度の測定を実施例 1 と同様にして行った。 表面粗さの調 整は、 研削に用いる砥石の砥粒の番手 ( J I S R 6 0 0 1 ) を # 1 0 0 0〜 # 2 0 0 とすることでおこなった。 各実施例の相対蛍光 強度を表 1 に示す。 実施例 2、 3、 4では上面の表面粗さ R aが大 きくなるに従い相対蛍光強度が増加し、 いずれも相対蛍光強度 1 0 5以上が得られており、 表面粗さ R a≥ 0. 1 mとすることによ り 5 %以上、 さらに R a≥ 0. 2 5 mとすることにより 1 0 %以 上、 強い蛍光を得ることができることがわかる。 実施例 4、 5では 表面粗さ R aが 0. 0 5 X m以上の面が、 入射面である下面、 放射 面である上面のいずれであっても同様に強い相対蛍光強度が得られ ることがわかる。 また実施例 4、 6、 7では上下両面の表面粗さ R aを共に大きくすることで、 さらに相対蛍光強度が増加することが わかる。 A composite sample for light conversion having a plate shape of 2 mmX 2 mmX 0.15 mm and a surface roughness of 2 mmX 2 mm as shown in Table 1 was prepared from the solidified body prepared in Example 1. Excitation light was incident from the lower surface side, and the fluorescence intensity emitted from the upper surface side was measured in the same manner as in Example 1. To adjust the surface roughness, use the count of the grindstone (JISR 6 0 0 1) of the grindstone used for grinding. This was done by setting 1 0 0 0 to # 2 0 0. Table 1 shows the relative fluorescence intensity of each example. In Examples 2, 3, and 4, the relative fluorescence intensity increased as the surface roughness Ra of the upper surface increased, and the relative fluorescence intensity of 10 5 or more was obtained in all cases, and the surface roughness Ra ≥ 0. It can be seen that strong fluorescence can be obtained by setting 1 m to 5% or more, and Ra Ra 0.25 m to 10% or more. In Examples 4 and 5, a strong relative fluorescence intensity can be obtained in the same manner regardless of whether the surface having a surface roughness Ra of 0.05 Xm or more is the lower surface that is the incident surface or the upper surface that is the radiation surface. I understand that. In Examples 4, 6, and 7, it can be seen that the relative fluorescence intensity is further increased by increasing the surface roughness Ra on both the upper and lower surfaces.
さらに実施例 2、 4、 6、 7では蛍光強度の測定と同時に、 上面 側で放射される光を積分球を用いて集め、 放射された全光の積分値 (全放射束) を求めた。 比較例 1 を 1 0 0 とすると、 いずれの実施 例でも相対全放射束が 1 0 0以上となり、 全放射束も増加している ことがわかる。  Further, in Examples 2, 4, 6, and 7, simultaneously with the measurement of the fluorescence intensity, the light emitted on the upper surface side was collected using an integrating sphere, and the integrated value (total radiant flux) of all the emitted light was obtained. Assuming that Comparative Example 1 is 1 0 0, it can be seen that the relative total radiant flux is 10 0 or more and the total radiant flux is increased in any of the examples.
表 1  table 1
Figure imgf000017_0001
Figure imgf000017_0001
(比較例 2 ) (Comparative Example 2)
実施例 1で作製した凝固体から 2 mmX 2 mmX 0. 1 5 mmの 板状で、 2 mmX 2 mmの面の表面粗さが上下面共 R a = 0. 0 4 mに実施例 1 と同様な方法で調整した光変換用複合体を作製し、 青色(4 6 3 n m)を発する発光ダイオード素子と組み合わせ、 図 1 に示すような白色発光装置を構成し発光スぺク トルの測定をおこな つた結果を図 4に示す。 青色(4 6 3 nm)、 光変換用複合体からの 黄色(5 4 0 nm付近)をそれぞれピークとする光成分が混合されて いることが認められる。 〇 1 £色度座標は = 0. 2 7、 y = 0. 2 9であった。 2 mmX 2 mmX 0.15 mm from the solidified body prepared in Example 1 A composite for light conversion was prepared in the same manner as in Example 1 so that the surface roughness of the plate was 2 mmX 2 mm, and the surface roughness was R a = 0.0 4 m for both the top and bottom surfaces. Figure 4 shows the results of measuring the emission spectrum of a white light emitting device as shown in Fig. 1 in combination with a light emitting diode element emitting 3 nm). It can be seen that light components with blue (4 63 nm) and yellow from the light conversion complex (near 540 nm) are mixed. 〇 1 chromaticity coordinates were = 0.27 and y = 0.29.
(実施例 8 )  (Example 8)
実施例 1で作製した凝固体から 2 mmX 2 mmX 0. 0 7 mmの 板状で、 2 mmX 2 mmの面の表面粗さが上下面共 R a = 1. 6 n mに # 2 0 0 ( J I S R 6 0 0 1 ) の砥粒を用いた砥石による研 削で調整した光変換用複合体を作製し、 青色(4 6 3 nm)を発する 発光ダイオード素子と組み合わせ、 比較例 2 と同様な白色発光装置 を構成し発光スぺク トルの測定をおこなった結果を図 4に比較例 2 と合わせて示す。 C I E色度座標は x = 0. 2 7、 y = 0. 2 9が得 られ、 比較例 2より厚みが約 5 0 %薄いにもかかわらず、 同一色度 であった。 これより光変換用複合体表面の表面粗さ R aが大きくな るに従い、 より薄い厚みで同一色度の発光装置を構成することがで きることがわかる。 またスペク トルにおける全光の積分値 (全放射 束) を比較すると、 比較例 2 を 1 とすると実施例 8では 1. 1 とな り、 実施例 8の方がより多くの光 (放射束) が得られている。 この ことから複合体表面の表面粗さ R aを大きくすることで、 光の損失 を抑えた効率の良い発光装置を構成することができることがわかる  The 2 mmX 2 mmX 0.0 7 mm plate shape from the solidified body prepared in Example 1, and the surface roughness of the 2 mmX 2 mm surface is R a = 1.6 nm for both the upper and lower surfaces. A composite for light conversion adjusted by grinding with a grindstone using JISR 6 0 0 1) abrasive grains was fabricated and combined with a light emitting diode element emitting blue (46 3 nm). Figure 4 shows the results of measuring the emission spectrum of the light-emitting device together with Comparative Example 2. CIE chromaticity coordinates of x = 0.27 and y = 0.29 were obtained, and the same chromaticity was obtained although the thickness was about 50% thinner than that of Comparative Example 2. From this, it can be seen that as the surface roughness Ra on the surface of the composite for light conversion increases, a light-emitting device having the same chromaticity can be configured with a thinner thickness. Comparing the integrated value of the total light (total radiant flux) in the spectrum, if Comparative Example 2 is set to 1, it becomes 1.1 in Example 8, and Example 8 has more light (radiant flux). Is obtained. This shows that by increasing the surface roughness Ra of the composite surface, it is possible to construct an efficient light-emitting device that suppresses light loss.
(実施例 9〜: 1 1 ) (Example 9-: 1 1)
実施例 1で作製した凝固体から 2 mm X 2 mm X 0. 1 5 mmの 板状で、 2 mmX 2 mmの面の表面粗さが上面は R a = 0. 1 4 m (実施例 9 ) 、 0. 4 3 m (実施例 1 0 ) 、 0. 6 7 m (実施 例 1 1 ) 、 下面は全て R a = 0. 0 4 mに実施例 2 〜 7 と同様の 方法で調整した変換用光変換用複合体試料を作製し、 青色(4 6 3 n m)を発する発光ダイオード素子と組み合わせ白色発光装置を構 成した場合の C I E色度を比較例 2と合わせて図 5に示す。 光変換 用複合体の厚みが 0. 1 5 mmで同じ塲合、 表面の表面粗さ R aが 大きくなるに従い、 C I E色度座標は x、 yが大きくなる方向 (黄 色が強くなる方向) に変化している。 これを用いることで、 光変換 用複合体表面の表面粗さ R aにより、 発光装置の色調を制御するこ とができる。 2 mm X 2 mm X 0.15 mm from the solidified body prepared in Example 1 The surface roughness of the plate is 2 mm x 2 mm and the top surface is Ra = 0.14 m (Example 9), 0.43 m (Example 10), 0.67 m (implemented) Example 1 1), all the bottom surfaces are made with a conversion light conversion composite sample prepared in the same manner as in Examples 2 to 7 at Ra = 0.04 m and emit blue (46 3 nm) Figure 5 shows the CIE chromaticity in combination with Comparative Example 2 when a white light-emitting device is configured in combination with light-emitting diode elements. The thickness of the composite for light conversion is 0.15 mm and is the same. As the surface roughness Ra increases, the CIE chromaticity coordinate increases in the direction of x and y (the direction in which yellow increases) Has changed. By using this, the color tone of the light emitting device can be controlled by the surface roughness Ra of the surface of the composite for light conversion.
(実施例 1 2 )  (Example 1 2)
成分として A 1 203、 S i 〇 2 、 B 23 、 N a 2 O , K 2 〇を 含む軟化点 7 5 0 °Cのガラス粉末と蛍光を発する (Y。 . 9 5 、 C e 0 . Q 5 ) 3八 1 512結晶粉末を体積比で 9 9 : 1 となるようよ う秤量した。 これらの粉末をエタノール中、 ポールミルによって 1 6時間湿式混合した後、 エバポレー夕一を用いてエタノールを脱媒 して原料粉末を得た。 原料粉末にバインダーとして P V Aを 1 w t %添加し、 金型に充填し面圧 1 0 0 k g f / c m2 で加圧をおこな い、 φ 1 0 mm X 5 mmの成形体を得た。 得られた成形体を脱バイ ンダ一した後、 8 0 0 °Cで焼成し、 蛍光を発する結晶相を含む焼結 体を得た。 Component as A 1 2 0 3, S i 〇 2, B 23, N a 2 O, emits glass powder and the fluorescence of the softening point 7 5 0 ° C containing K 2 〇 (Y.. 9 5, C e 0 .Q 5 ) 3 8 1 5 0 12 The crystal powder was weighed so that the volume ratio was 9 9: 1. These powders were wet-mixed in ethanol by a pole mill for 16 hours, and then ethanol was removed using an evaporator to obtain a raw material powder. 1 wt% PVA as a binder was added to the raw material powder, filled in a mold, and pressed at a surface pressure of 100 kgf / cm 2 to obtain a molded body of φ 10 mm × 5 mm. The obtained molded body was debindered and then fired at 800 ° C. to obtain a sintered body containing a crystal phase emitting fluorescence.
得られた焼結体から 2 mm X 2 mm X 0. 5 mmの板状で、 2 m m X 2 mmの面の表面粗さを研磨により上下面 R a = 0. 0 4 μ, m とした光変換用複合体試料と、 研削により上下面 R a == 1. 6 m である光変換用複合体試料を作製し、 実施例 1 と同様の方法で蛍光 強度を測定し比較をおこなった。 その結果、 表面粗さが上下面 R a 62954 The obtained sintered body is a plate of 2 mm X 2 mm X 0.5 mm, and the surface roughness of the surface of 2 mm X 2 mm is polished to make the upper and lower surfaces Ra = 0.04 μ, m A composite sample for light conversion and a composite sample for light conversion having an upper and lower surface R a == 1.6 m were prepared by grinding, and the fluorescence intensity was measured and compared in the same manner as in Example 1. As a result, the surface roughness is up and down R a 62954
= 1. 6 mである光変換用複合体試料の方が約 1 5 %強い蛍光を 得ることができた。 The composite sample for light conversion with = 1.6 m was able to obtain approximately 15% stronger fluorescence.
(実施例 1 3 )  (Example 1 3)
実施例 1で作製した凝固体から 2 mmX 2 mmX 0. 1 5 mmの 板状で、 2 mmX 2 mmの面の表面粗さが R a = 0. 0 4 の鏡 面である試料を作製し、 硫酸 : リン酸 = 1 : 1 (容積比) の混合酸 中で 2 0 0。C X 2 hの熱処理をおこない、 (Y、 C e ) 3A 1512 相が A 1203相より約 7 z m低い凹凸表面である光変換用セラミツ クス複合体を得た。 得られた光変換用セラミックス複合体表面の断 面を図 6に示す。 Aの黒い部分が A l 23 (サファイア) 相、 Bの 白い部分が (Y、 C e ) 3 A 15012相であり、 (Y、 C e ) 3 A 15 012相が A 1203相より約 7 m低い凹凸面が形成されている。 こ の凹凸面の表面粗さは R a = 3. 2 /xmであった。 A sample having a plate shape of 2 mmX 2 mmX 0.15 mm and a mirror surface with a surface roughness of 2 mmX 2 mm Ra = 0.04 was prepared from the solidified body prepared in Example 1. , Sulfuric acid: Phosphoric acid = 200 in a mixed acid of 1: 1 (volume ratio). A CX 2 h heat treatment was performed to obtain a ceramic composite for light conversion in which the (Y, Ce) 3 A 1 5 0 12 phase was an uneven surface about 7 zm lower than the A 1 2 0 3 phase. Figure 6 shows the cross section of the surface of the resulting ceramic composite for light conversion. The black part of A is the Al 2 0 3 (sapphire) phase, the white part of B is the (Y, C e) 3 A 1 5 0 12 phase, and the (Y, C e) 3 A 1 5 0 12 phase is An uneven surface that is approximately 7 m lower than the A 1 2 0 3 phase is formed. The surface roughness of this uneven surface was Ra = 3.2 / xm.
得られた光変換用複合体材料の側面を覆って保持し、 光変換用複 合体材料の下面側から波長 4 6 3 nmの励起光を入射し、 上面側で 出てくる蛍光を積分球を用いて集め、 分光器により波長 5 4 7 n m の蛍光の強度測定をおこなった。 前述の同一厚みで上下面共 R a = 0. 0 4 mである比較例 1の最大蛍光強度を 1 0 0 とすると、 本 実施例の相対蛍光強度は 1 3 1 となり、 酸化物相毎に高さが異なる 凹凸面を形成し表面粗さ R a≥ 0. 0 5 mとすることで、 より強 い蛍光が得られることがわかる。  Cover the side surface of the resulting composite material for light conversion, hold the excitation light with a wavelength of 4 63 nm from the bottom surface of the composite material for light conversion, and integrate the fluorescence emitted from the top surface with an integrating sphere. The fluorescence intensity at a wavelength of 5 47 nm was measured with a spectroscope. Assuming that the maximum fluorescence intensity of Comparative Example 1 with the same thickness and R a = 0.04 m as described above is 1 0 0, the relative fluorescence intensity of this example is 1 3 1, and for each oxide phase It can be seen that stronger fluorescence can be obtained by forming uneven surfaces with different heights and setting the surface roughness Ra≥0.05 m.
さらに蛍光強度の測定と同時に、 上面側で放射される光を積分球 を用いて集め、 放射された全光の積分値 (全放射束) を求めた。 比 較例 1 を 1 0 0 とすると、 相対全放射束は 1 0 9 となり、 全放射束 が顕著に増加していることがわかる。  Simultaneously with the measurement of fluorescence intensity, the light emitted from the upper surface was collected using an integrating sphere, and the integrated value (total radiant flux) of the total emitted light was determined. Assuming that Comparative Example 1 is 1 0 0, the relative total radiant flux is 1 0 9, indicating that the total radiant flux is significantly increased.
(実施例 1 4〜 1 8 )  (Examples 14 to 1 8)
実施例 1で作製した凝固体から、 実施例 1 3 と同様に、 2 mmX 2 mm X 0. 1 5 mmの板状で、 2 mmX 2 mmの面の表面粗さが R a = 0. 0 4 mの鏡面である試料を、 硫酸 : リ ン酸 = 1 : 1 ( 容積比) の混合酸中で 1 5 0〜 2 0 0でで 1〜 4 11の熱処理をぉこ ない、 ( Y、 C e ) 3 A 15 O , 2相が A 1 2 O 3相より低く、 その段差 高さと平均粗さ R aが表 2に示すような凹凸面が形成された光変換 用セラミックス複合体を得た。 各実施例の光変換用セラミックス複 合体について、 実施例 1 3 と同様に蛍光強度の測定をおこない、 得 られた蛍光強度を表 2に示す。 酸化物相毎に高さが異なる凹凸面を 形成した場合、 高さ段差とそれに伴って表面粗さ R aが大きくなる に従い、 蛍光強度が増加し、 表面粗さ R a ≥ 0. 1 mとすること により 5 %以上、 さらに R a≥ 0. 2 5 mとすることにより 1 0 %以上、 強い蛍光が得られていることがわかる。 また同時に全放射 束も増加していることがわかる。 From the solidified body prepared in Example 1, 2 mmX as in Example 1 3 A sample with a 2 mm x 0.15 mm plate shape and a mirror surface with a surface roughness of 2 mm x 2 mm and a surface roughness of Ra = 0.04 m, sulfuric acid: phosphoric acid = 1: 1 (volume Ratio) in a mixed acid of 1550-200 and heat treatment of 1-411, (Y, Ce) 3 A 15 O, 2 phase is lower than A 1 2 O 3 phase Thus, a ceramic composite for light conversion having an uneven surface whose step height and average roughness Ra are as shown in Table 2 was obtained. For the ceramic composites for light conversion of each example, the fluorescence intensity was measured in the same manner as in Example 13 and the obtained fluorescence intensity is shown in Table 2. When uneven surfaces with different heights are formed for each oxide phase, the fluorescence intensity increases as the height difference and the accompanying surface roughness Ra increase, and the surface roughness Ra ≥ 0.1 m. It can be seen that strong fluorescence is obtained by 5% or more, and further by Ra≥0.25m, 10% or more. At the same time, the total radiant flux increases.
(実施例 1 9 )  (Example 1 9)
実施例 1で作製した凝固体から 2 mmX 2 mmX 0. 1 5 mmの 板状で、 2 mmX 2 mmの面の表面粗さが R a = 0. 0 4 mの鏡 面である試料を作製し、 1. 3 3 X 1 0— 3 P a ( 1 0—5 T o r r ) の圧力下においてカーボン容器中で 1.4 0 0 °C X 1 hの熱処理をお こない、 表面の各酸化物相毎に高さが異なる凹凸面が形成された光 変換用セラミックス複合体を得た。 得られた光変換用セラミックス 複合体表面の断面を図 7 に示す。 Aの黒い部分が A 1203 (サファ ィァ) 相、 Bの白い部分が (Y、 C e ) 3A 1 5012相であり、 実施 例 1 3〜 1 8 とは逆に A 1 2 O 3相が ( Y、 C e ) 3 A 1 50 , 2相より 約 2 0 /xm低い凹凸面が形成されている。 実施例 1 3 と同様に蛍光 強度、 全放射束の測定をおこなったところ、 表 2 に.示すように、 同 じ段差高さである実施例 1 8 とほぼ同じ値が得られ、 この場合にお いても同様の効果があることがわかる。 表 2 A sample with a 2 mmX 2 mmX 0.15 mm plate shape and 2 mmX 2 mm surface roughness Ra = 0.04 m is prepared from the solidified body prepared in Example 1. For each oxide phase on the surface, heat treatment is not performed at 1.400 ° CX for 1 h in a carbon container under the pressure of 1. 3 3 X 1 0— 3 Pa (1 0— 5 Torr) A ceramic composite for light conversion having uneven surfaces with different heights was obtained. Figure 7 shows a cross section of the surface of the resulting ceramic composite for light conversion. The black part of A is the A 1 2 0 3 (safia) phase, and the white part of B is the (Y, Ce) 3 A 1 5 0 12 phase. 1 2 O 3 phase (Y, C e) 3 A 1 5 0, 2 phase than about 2 0 / xm low uneven surface is formed. The fluorescence intensity and the total radiant flux were measured in the same manner as in Example 1-3, and as shown in Table 2, almost the same values as in Example 18 with the same step height were obtained. It can be seen that there are similar effects. Table 2
Figure imgf000022_0001
Figure imgf000022_0001
(実施例 2 0 ) (Example 20)
実施例 1で作製した凝固体から 2 mmX 2 mmX 0. 1 5 mmの 板状の光変換用複合体試料を作製し、 2 mmX 2 mmの面の表面粗 さを R a = 1. 6 X mに調整した後に、 硫酸 : リン酸 = 1 : 1 (容 積比) の混合酸中で 2 0 0 °C X 2 hの熱処理をおこない、 図 8 に示 すように (Y、 C e ) 3A 1501 2相が A 1203相より約 5 - I O m低い凹凸表面を得た。 A 123相の表面は粗面のままであるが、A 2 mm X 2 mm X 0.15 mm plate-shaped composite sample for light conversion was prepared from the solidified body prepared in Example 1, and the surface roughness of the 2 mm X 2 mm surface was Ra = 1.6 X After adjusting to m, heat treatment was performed at 200 ° CX 2 h in a mixed acid of sulfuric acid: phosphoric acid = 1: 1 (volume ratio), and as shown in Fig. 8, (Y, C e) 3 An uneven surface having an A 1 5 0 1 2 phase approximately 5-IO m lower than the A 1 2 0 3 phase was obtained. A 1 2 〇 The surface of the three phases remains rough,
(Y、 C e ) 3 A 1 512相の表面は処理により粗さが減少した面と なっている。 この凹凸面全体の表面粗さは R a = 7. 2 imであつ た。 (Y, C e) 3 A 1 5 〇 The surface of phase 12 is a surface whose roughness has been reduced by the treatment. The surface roughness of the entire uneven surface was Ra = 7.2 im.
得られた光変換用複合体材料の側面を覆って保持し、 光変換用複 合体材料の下面側から波長 4 6 3 nmの励起光を入射し、 上面側で 出てくる蛍光を積分球を用いて集め、 分光器により波長 5 4 7 n m の蛍光の強度測定をおこなった。 前述の同一厚みで上下面共 R a = 0. 0 4 μπιである比較例 1の最大蛍光強度を 1 0 0 とすると、 本 実施例の相対蛍光強度は 1 3 5 となり、 酸化物相毎に高さが異なる 凹凸面で、 さらに凹凸面を粗面とすることにより、 表面粗さ R aが 大きくなり、 さらに蛍光強度が増加することがわかる。 表 3
Figure imgf000023_0001
さらに、 蛍光強度の測定と同時に、 上面側で放射される光を積分 球を用いて集め、 放射された全光の積分値 (全放射束) を求めた。 比較例 1を 1 0 0とすると、 相対全放射束が 1 1 2となり、 酸化物 相毎に高さが異なる凹凸面で、 さらに凹凸面を粗面とすることで、 全放射束が顕著に増加することがわかる。
Cover the side surface of the resulting composite material for light conversion, hold the excitation light with a wavelength of 4 63 nm from the bottom surface of the composite material for light conversion, and integrate the fluorescence emitted from the top surface with an integrating sphere. The fluorescence intensity at a wavelength of 5 47 nm was measured with a spectroscope. Assuming that the maximum fluorescence intensity of Comparative Example 1 having the same thickness and R a = 0.0 4 μπι as described above is 1 0 0, the relative fluorescence intensity of this example is 1 3 5, and for each oxide phase It can be seen that the surface roughness Ra is increased and the fluorescence intensity is further increased by making the uneven surface different in height and making the uneven surface rougher. Table 3
Figure imgf000023_0001
Furthermore, simultaneously with the measurement of the fluorescence intensity, the light emitted from the upper surface was collected using an integrating sphere, and the integrated value (total radiant flux) of the total emitted light was obtained. Assuming that Comparative Example 1 is 1 0 0, the relative total radiant flux is 1 1 2, and the total radiant flux is conspicuous by making the concavo-convex surface a rough surface with different heights for each oxide phase It can be seen that it increases.
(実施例 2 1 )  (Example 2 1)
実施例 1で作製した凝固体から 2mmX 2mmX 0. 0 7mmの 板状の光変換用複合体試料を作製し、 2 mmx 2 mmの面の表面粗 さを R a = 1. 6 mに調整した後に、 硫酸 : リン酸 = 1 : 1 (容 積比) の混合酸中で 2 0 0 °C X 1 2 0 m i nの熱処理をおこない、 実施例 2 0 と同様の (Y、 C e ) 3A 1 5012相が A 1203相より約 5 -1 0 m低い凹凸でかつ凹凸面が粗面である表面を得た。 本光 変換用複合体試料を青色(4 6 3 nm)を発する発光ダイオード素子 と組み合わせ、 比較例 2と同様な白色発光装置を構成し発光スぺク トルの測定をおこなった結果を図 9に比較例 2と合わせて示す。 C I E色度座標は x = 0. 2 7、 y = 0. 2 9が得られ、 比較例 2より 厚みが約 5 0 %薄いにもかかわらずほぼ同一色度であった。 またス ベク トルにおける全光の積分値 (全放射束) を比較すると、 比較例 2を 1 とすると実施例 2 1では 1. 1 3 となり、 実施例 2 2の方が より多くの光 (放射束) が得られている。 このことから酸化物相毎 に高さが異なる凹凸面で、 さらに凹凸面を粗面とすることにより、 複合体表面の表面粗さ R aを大きくすることで、 光の損失を抑えた 効率の良い発光装置を構成することができることがわかる。 A 2 mm X 2 mm X 0.0 7 mm plate-shaped composite sample for light conversion was prepared from the solidified body prepared in Example 1, and the surface roughness of the 2 mm x 2 mm surface was adjusted to Ra = 1.6 m. Later, heat treatment was carried out in a mixed acid of sulfuric acid: phosphoric acid = 1: 1 (volume ratio) at 200 ° C.X 120 min. (Y, C e) 3 A 1 as in Example 20 A surface was obtained in which the 5 0 12 phase was uneven by about 5 -10 m lower than the A 1 2 0 3 phase and the uneven surface was rough. Figure 9 shows the results of measuring the emission spectrum of the composite sample for light conversion combined with a light-emitting diode element emitting blue (46 3 nm) to form a white light-emitting device similar to Comparative Example 2. This is shown together with Comparative Example 2. CIE chromaticity coordinates of x = 0.27 and y = 0.29 were obtained, which were almost the same chromaticity although the thickness was about 50% thinner than Comparative Example 2. Comparing the integrated values of all light (total radiant flux) in the spectrum, if Comparative Example 2 is set to 1, Example 2 1 has 1.13, and Example 2 2 has more light (radiation). Bundle) is obtained. For this reason, the surface roughness Ra of the composite surface is increased by making the uneven surface different in height for each oxide phase, and further making the uneven surface rough, thereby reducing the loss of light. It can be seen that a good light emitting device can be constructed.

Claims

請 求 の 範 囲 The scope of the claims
1 . 少なく とも 1つの蛍光を発する酸化物結晶相を含む複数の酸 化物相からなる光変換用複合体であり、 該光変換用複合体の光入射 面と反対側の光放射面の少なく とも 1つの表面の表面粗さが、 算術 平均粗さ (R a) で 0 . 0 5 /X m以上であることを特徴とする光変換 用複合体。 1. A composite for light conversion comprising a plurality of oxide phases including an oxide crystal phase that emits at least one fluorescent light, and at least a light emitting surface opposite to the light incident surface of the light conversion composite. A composite for light conversion, characterized in that the surface roughness of one surface is not less than 0.05 / Xm in terms of arithmetic average roughness (Ra).
2 . 該光変換用複合体が、 少なく とも 2つ以上の酸化物相が連続 的にかつ三次元的に相互に絡み合った組織を有し、 該酸化物相のう ち少なく とも 1つは蛍光を発する結晶相である凝固体からなること を特徴とする請求項 1 に記載の光変換用複合体。  2. The composite for light conversion has a structure in which at least two oxide phases are continuously and three-dimensionally entangled with each other, and at least one of the oxide phases is fluorescent. The composite for light conversion according to claim 1, comprising a solidified body that is a crystal phase that emits light.
3 . 光入射面と反対側の光放射面の両方の表面粗さが、 算術平均 粗さ (R a) で 0 . 0 5 m以上であることを特徴とする請求項 1 ま たは 2に記載の光変換用複合体。  3. The surface roughness of both the light incident surface and the light emitting surface opposite to the light incident surface is an arithmetic average roughness (Ra) of not less than 0.05 m, wherein 1 or 2 is characterized in that The composite for light conversion as described.
4 . 光入射面と反対側の光放射面のいずれかの表面の表面粗さが 、 算術平均粗さ (R a) で 0 . 0 5 /x m以上であることを特徴とする 請求項 1 または 2に記載の光変換用複合体。  4. The surface roughness of any surface of the light emitting surface opposite to the light incident surface is an arithmetic average roughness (R a) of 0.05 / xm or more. The composite for light conversion according to 2.
5 . 光放射面の平均粗さ (R a) が 1 以上であることを特徴 とする請求項 1 または 2に記載の光変換用複合体。  5. The composite for light conversion according to claim 1 or 2, wherein the light emitting surface has an average roughness (R a) of 1 or more.
6 . 光変換用複合体の光放射面が酸化物相毎に高さが異なる凹凸 面であることを特徴とする請求項 2記載の光変換用複合体。  6. The composite for light conversion according to claim 2, wherein the light emitting surface of the composite for light conversion is an uneven surface having a different height for each oxide phase.
7 . 光変換用複合体の光入射面が酸化物相毎に高さが異なる凹凸 面であることを特徴とする請求項 2または 6記載の光変換用複合体  7. The light conversion composite according to claim 2 or 6, wherein the light incident surface of the light conversion composite is an uneven surface having a different height for each oxide phase.
8 . 光放射面の平均粗さ (R a) が 1 m以上であることを特徴 とする請求項 6または 7に記載の光変換用複合体。 8. The composite for light conversion according to claim 6 or 7, wherein the average roughness (Ra) of the light emitting surface is 1 m or more.
9 . 該光変換用複合体が、 組成成分として少なく とも Y元素、 A 1元素と C e元素を含むことを特徴とする請求項 1または 2に記載 の光変換用複合体。 9. The composite for light conversion contains at least Y element, A as a composition component The composite for light conversion according to claim 1 or 2, comprising 1 element and Ce element.
1 0. 請求項 1〜 9のいずれか 1項に記載の光変換用複合体と発 光素子とからなる発光装置。  1 0. A light emitting device comprising the composite for light conversion according to any one of claims 1 to 9 and a light emitting element.
1 1. 前記光変換用複合体が波長 5 3 0〜 5 8 0 nmにピークを 有する蛍光を発し、 該発光素子が波長 4 0 0 n m〜 5 0 0 n mにピ ークを有する光を発することを特徴とする請求項 1 0記載の発光装 置。  1 1. The complex for light conversion emits fluorescence having a peak at a wavelength of 53 to 58 nm, and the light emitting element emits light having a peak at a wavelength of 400 to 500 nm. The light-emitting device according to claim 10.
1 2. 前記光変換用セラミック複合体の表面粗さを変えることに より、 請求項 1 0または 1 1 に記載の発光装置の色調を調整する色 調調整方法。  1 2. A color tone adjusting method for adjusting the color tone of a light emitting device according to claim 10, wherein the color tone of the light emitting device is adjusted by changing a surface roughness of the ceramic composite for light conversion.
PCT/JP2007/062954 2006-06-22 2007-06-21 Composite for light conversion, light emitting device using the same, and method for controlling color tone WO2007148829A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008522613A JP5083211B2 (en) 2006-06-22 2007-06-21 Composite for light conversion, light emitting device using the same, and color tone control method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006-172163 2006-06-22
JP2006172163 2006-06-22
JP2006209435 2006-08-01
JP2006-209435 2006-08-01

Publications (1)

Publication Number Publication Date
WO2007148829A1 true WO2007148829A1 (en) 2007-12-27

Family

ID=38833558

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/062954 WO2007148829A1 (en) 2006-06-22 2007-06-21 Composite for light conversion, light emitting device using the same, and method for controlling color tone

Country Status (3)

Country Link
JP (1) JP5083211B2 (en)
TW (1) TWI433346B (en)
WO (1) WO2007148829A1 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010157637A (en) * 2008-12-27 2010-07-15 Nichia Corp Wavelength conversion sintered compact and light emitting apparatus using the same, and method of manufacturing the wavelength conversion sintered compact
WO2010119934A1 (en) * 2009-04-14 2010-10-21 パナソニック株式会社 Light-emitting device, method for adjusting optical properties, and method for manufacturing light-emitting devices
JP2011014587A (en) * 2009-06-30 2011-01-20 Nichia Corp Light emitting device
JP2011122067A (en) * 2009-12-11 2011-06-23 Nippon Electric Glass Co Ltd Wavelength conversion member and method for manufacturing the same
JP2011213780A (en) * 2010-03-31 2011-10-27 Ube Industries Ltd Method of producing ceramic composite for light conversion
WO2012077599A1 (en) * 2010-12-10 2012-06-14 宇部興産株式会社 Ceramic composite for photoconversion, and method for manufacture thereof
WO2013008751A1 (en) * 2011-07-08 2013-01-17 宇部興産株式会社 Method for producing ceramic composite for photoconversion
WO2013025264A1 (en) * 2011-04-13 2013-02-21 Osram Sylvania Inc. Led wavelength-converting structure including a textured thin film structure
JP2013110199A (en) * 2011-11-18 2013-06-06 Citizen Electronics Co Ltd Led light-emitting device
JP2013134424A (en) * 2011-12-27 2013-07-08 Nichia Chem Ind Ltd Wavelength converter and light-emitting device using the same
JP5304905B2 (en) * 2010-02-08 2013-10-02 コニカミノルタ株式会社 Light emitting device
JP2013219123A (en) * 2012-04-06 2013-10-24 Nippon Electric Glass Co Ltd Wavelength conversion member and method for producing the same
JP2013232678A (en) * 2008-04-24 2013-11-14 Citizen Holdings Co Ltd Led light source manufacturing method
JP2013239712A (en) * 2013-06-03 2013-11-28 Nichia Chem Ind Ltd Light emitting device
JPWO2012057330A1 (en) * 2010-10-29 2014-05-12 株式会社光波 Light emitting device
KR20160023052A (en) * 2014-08-21 2016-03-03 엘지이노텍 주식회사 Phosphor plate and manufacturing method thereof
JP2016031838A (en) * 2014-07-29 2016-03-07 ウシオ電機株式会社 Fluorescent light source device and manufacturing method of the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MY177277A (en) 2014-03-03 2020-09-10 Covalent Mat Corporation Wavelength converting member
JP7120745B2 (en) 2017-09-29 2022-08-17 日本特殊陶業株式会社 Optical wavelength conversion device and optical composite device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004065324A1 (en) * 2003-01-20 2004-08-05 Ube Industries, Ltd. Ceramic composite material for optical conversion and use thereof
JP2005191197A (en) * 2003-12-25 2005-07-14 Kyocera Corp Light emitting device
JP2005268323A (en) * 2004-03-16 2005-09-29 Sumitomo Electric Ind Ltd Semiconductor light emitting device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004065324A1 (en) * 2003-01-20 2004-08-05 Ube Industries, Ltd. Ceramic composite material for optical conversion and use thereof
JP2005191197A (en) * 2003-12-25 2005-07-14 Kyocera Corp Light emitting device
JP2005268323A (en) * 2004-03-16 2005-09-29 Sumitomo Electric Ind Ltd Semiconductor light emitting device

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013232678A (en) * 2008-04-24 2013-11-14 Citizen Holdings Co Ltd Led light source manufacturing method
JP2010157637A (en) * 2008-12-27 2010-07-15 Nichia Corp Wavelength conversion sintered compact and light emitting apparatus using the same, and method of manufacturing the wavelength conversion sintered compact
WO2010119934A1 (en) * 2009-04-14 2010-10-21 パナソニック株式会社 Light-emitting device, method for adjusting optical properties, and method for manufacturing light-emitting devices
US8648372B2 (en) 2009-04-14 2014-02-11 Panasonic Corporation Light-emitting device, method for adjusting optical properties, and method for manufacturing light-emitting devices
JPWO2010119934A1 (en) * 2009-04-14 2012-10-22 パナソニック株式会社 Light emitting device, light characteristic adjusting method, and light emitting device manufacturing method
JP2011014587A (en) * 2009-06-30 2011-01-20 Nichia Corp Light emitting device
JP2011122067A (en) * 2009-12-11 2011-06-23 Nippon Electric Glass Co Ltd Wavelength conversion member and method for manufacturing the same
JP5304905B2 (en) * 2010-02-08 2013-10-02 コニカミノルタ株式会社 Light emitting device
JP2011213780A (en) * 2010-03-31 2011-10-27 Ube Industries Ltd Method of producing ceramic composite for light conversion
JPWO2012057330A1 (en) * 2010-10-29 2014-05-12 株式会社光波 Light emitting device
EP2650082A4 (en) * 2010-12-10 2018-01-03 Ube Industries, Ltd. Ceramic composite for photoconversion, and method for manufacture thereof
US9543480B2 (en) 2010-12-10 2017-01-10 Ube Industries, Ltd. Ceramic composite for light conversion and method for manufacture thereof
CN103260825B (en) * 2010-12-10 2016-05-04 宇部兴产株式会社 Light is ceramic composite and manufacture method thereof for conversion
CN103260825A (en) * 2010-12-10 2013-08-21 宇部兴产株式会社 Ceramic composite for photoconversion, and method for manufacture thereof
JP5370595B2 (en) * 2010-12-10 2013-12-18 宇部興産株式会社 Ceramic composite for light conversion and method for producing the same
WO2012077599A1 (en) * 2010-12-10 2012-06-14 宇部興産株式会社 Ceramic composite for photoconversion, and method for manufacture thereof
WO2013025264A1 (en) * 2011-04-13 2013-02-21 Osram Sylvania Inc. Led wavelength-converting structure including a textured thin film structure
US8884330B2 (en) 2011-04-13 2014-11-11 Osram Sylvania Inc. LED wavelength-converting structure including a thin film structure
US9334197B2 (en) 2011-07-08 2016-05-10 Ube Industries, Ltd. Method for producing ceramic composite for light conversion
CN103732354A (en) * 2011-07-08 2014-04-16 宇部兴产株式会社 Method for producing ceramic composite for photoconversion
WO2013008751A1 (en) * 2011-07-08 2013-01-17 宇部興産株式会社 Method for producing ceramic composite for photoconversion
EP2730369A4 (en) * 2011-07-08 2014-05-14 Ube Industries Method for producing ceramic composite for photoconversion
EP2730369A1 (en) * 2011-07-08 2014-05-14 UBE Industries, Ltd. Method for producing ceramic composite for photoconversion
US20140138348A1 (en) * 2011-07-08 2014-05-22 Ube Industries, Ltd. Method for Producing Ceramic Composite for Light Conversion
JP5510614B2 (en) * 2011-07-08 2014-06-04 宇部興産株式会社 Method for producing ceramic composite for light conversion
JP2013110199A (en) * 2011-11-18 2013-06-06 Citizen Electronics Co Ltd Led light-emitting device
US9519207B2 (en) 2011-12-27 2016-12-13 Nichia Corporation Wavelength converting device and light emitting device using the same
JP2013134424A (en) * 2011-12-27 2013-07-08 Nichia Chem Ind Ltd Wavelength converter and light-emitting device using the same
JP2013219123A (en) * 2012-04-06 2013-10-24 Nippon Electric Glass Co Ltd Wavelength conversion member and method for producing the same
JP2013239712A (en) * 2013-06-03 2013-11-28 Nichia Chem Ind Ltd Light emitting device
JP2016031838A (en) * 2014-07-29 2016-03-07 ウシオ電機株式会社 Fluorescent light source device and manufacturing method of the same
US10139055B2 (en) 2014-07-29 2018-11-27 Ushio Denki Kabushiki Kaisha Fluorescence light source device with periodic structure having an aspect ratio of 0.5 to 0.9 and method for producing the same
KR20160023052A (en) * 2014-08-21 2016-03-03 엘지이노텍 주식회사 Phosphor plate and manufacturing method thereof
KR102203690B1 (en) 2014-08-21 2021-01-15 엘지이노텍 주식회사 Phosphor plate and manufacturing method thereof

Also Published As

Publication number Publication date
TWI433346B (en) 2014-04-01
JP5083211B2 (en) 2012-11-28
TW200810157A (en) 2008-02-16
JPWO2007148829A1 (en) 2009-11-19

Similar Documents

Publication Publication Date Title
WO2007148829A1 (en) Composite for light conversion, light emitting device using the same, and method for controlling color tone
JP5246376B2 (en) CERAMIC COMPOSITE FOR LIGHT CONVERSION, MANUFACTURING METHOD THEREOF, AND LIGHT EMITTING DEVICE HAVING THE SAME
JP5157909B2 (en) Ceramic composite for light conversion and light emitting device using the same
JP4957557B2 (en) Ceramic composite light converting member and light emitting device using the same
TWI535824B (en) A ceramic composite for optical conversion and a light-emitting device using the same
CN108603113B (en) Phosphor and method for producing same, phosphor-containing member, and light-emitting device or projector
WO2021079739A1 (en) Phosphor plate, light emitting device, and method for manufacturing phosphor plate
JP6852463B2 (en) Fluorescent lens and light emitting device
JP5034653B2 (en) Light emitting device using ceramic composite for light conversion
JP5509997B2 (en) Method for producing ceramic composite for light conversion
JP7325431B2 (en) Method for manufacturing phosphor plate and light emitting device using phosphor plate
WO2022202035A1 (en) Phosphor plate and light emitting device
CN115151845B (en) Phosphor plate and light-emitting device
US11807791B2 (en) Phosphor plate and light emitting device using the same
US20230053528A1 (en) Phosphor plate and light emitting device
JP5472339B2 (en) Light emitting device using ceramic composite for light conversion
CN114316980A (en) Ceramic composite material capable of converting light
KR20220030990A (en) Phosphor plate and light emitting device using same
CN114222801A (en) Wavelength conversion member

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07767750

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008522613

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07767750

Country of ref document: EP

Kind code of ref document: A1