WO2007148735A1 - Ultrasound imaging device, ultrasound imaging method, and ultrasound imaging program - Google Patents

Ultrasound imaging device, ultrasound imaging method, and ultrasound imaging program Download PDF

Info

Publication number
WO2007148735A1
WO2007148735A1 PCT/JP2007/062452 JP2007062452W WO2007148735A1 WO 2007148735 A1 WO2007148735 A1 WO 2007148735A1 JP 2007062452 W JP2007062452 W JP 2007062452W WO 2007148735 A1 WO2007148735 A1 WO 2007148735A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
data
ultrasonic
image
created
Prior art date
Application number
PCT/JP2007/062452
Other languages
French (fr)
Japanese (ja)
Inventor
Tadashi Yamaguchi
Hiroki Suyari
Hiroyuki Hachiya
Hiroshi Shimura
Original Assignee
National University Corporation Chiba University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National University Corporation Chiba University filed Critical National University Corporation Chiba University
Priority to JP2008522501A priority Critical patent/JPWO2007148735A1/en
Publication of WO2007148735A1 publication Critical patent/WO2007148735A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Detecting organic movements or changes, e.g. tumours, cysts, swellings

Definitions

  • Ultrasound image creation device ultrasound image creation method, ultrasound image creation program Technical Field
  • the present invention relates to an ultrasound image creation device, an ultrasound image creation method, and an ultrasound image creation program, and in particular, irradiates an organ in a living body with ultrasound and obtains an ultrasound image based on the reflected wave.
  • the present invention relates to an apparatus, a method, and a program used for realizing the apparatus. Background
  • Ultrasound image creation apparatuses that extract lesions in a body organ of a subject are used for diagnosing the lesions of a living body organ at various sites. Diagnosis using such an ultrasonic image creation apparatus (hereinafter referred to as “ultrasonic image diagnosis”) is useful for diagnosis of cirrhosis, for example.
  • “cirrhosis” is a type of liver disease in which liver function is attenuated due to progression of sexual liver disease and the death and replacement of hepatocytes to form fibrous tissue. In the early stage, the fibrosis of the liver progresses without subjective symptoms, and after the compensation period, various symptoms appear due to complications. Therefore, early diagnosis and early detection are important in diagnosing liver cirrhosis and in vivo organ lesions.
  • an ultrasonic diagnostic imaging apparatus equipped with an analysis algorithm capable of observing a minute abnormal lesion
  • an ultrasonic diagnostic imaging apparatus that obtains a tomographic image by irradiating a subject with an ultrasonic pulse.
  • Analytical calculation means for extracting a specific signal using the statistical properties of the intensity or amplitude information of the echo signal generated from the subject site P, and a display means for displaying the result extracted from the analysis calculation means
  • Patent Document 2 is a noninvasive ultrasonic diagnostic imaging method that outputs the pathological conditions of normal liver, chronic hepatitis, and cirrhosis numerically as diagnostic results.
  • the gradation value of each pixel is extracted from the image in the region, the gradation difference between two adjacent pixels is calculated from the liver surface edge side, the absolute value is added in order from the liver surface side, and the cumulative result is a straight line.
  • the slope is approximated and this value is used as the internal evaluation value, which is compared with the slope in the ultrasonic liver image showing the normal liver obtained in advance.
  • the region that has the required number of pixels in the direction along the liver margin of the image and within which the front and back surfaces of the liver are contained is set as the region of interest, and the entire region is subjected to a median filter to expand the histogram. Then, binarization processing and thinning are performed, the contour of the liver margin is extracted, quadratic curve approximation is performed, and the second-order coefficient of approximation is used as the margin evaluation value, and the normal obtained in advance.
  • an ultrasonic diagnostic imaging apparatus that quantitatively diagnoses liver tissue properties in comparison with the secondary coefficient of liver images related to the liver and the like.
  • Patent Document 1 Japanese Patent Laid-Open No. 2001-238884
  • Patent Document 2 Japanese Patent Laid-Open No. 2006-046527
  • Patent Document 3 Japanese Patent Laid-Open No. 2005-319081
  • the present invention provides an ultrasonic image creation device, an ultrasonic image creation method, and an ultrasound image creation program that solve the above-described problems and are capable of more accurate and objective evaluation. Objective.
  • an ultrasonic image creating apparatus as one means of the present invention is based on a probe that receives a reflected wave of an ultrasonic wave radiated to a living body organ, and a reflected wave that is received by the probe.
  • a receiving unit for generating one signal data
  • an image data generating unit for generating first image data based on the first signal data, a first image data, and a first image data different from the first image data.
  • a synthesis unit that synthesizes the second image data to generate composite data; and an analysis unit that performs independent component analysis on the synthesized data and generates a plurality of component data.
  • this means is not limited, but it is also preferable to have a display unit for displaying at least a plurality of component data created by the analysis unit and a displacement force.
  • the analysis unit in this means is not limited, but the first component data including only the positive component and the second component including at least one of the positive component and the negative component. It is also preferable to create data and, if the second component data contains negative components, create third component data consisting of only negative components based on the second component data.
  • the second image data is preferably created based on a reflected wave obtained by irradiating a normal internal organ with ultrasonic waves, although not limited thereto.
  • Masle As used herein, “normal in vivo organ” refers to an organ that does not have a change in tissue structure due to disease or accident.
  • the second image data is created based on a reflected wave obtained by calculation in a computer imitating a normal in vivo organ, although not limited thereto. Is also preferable. Note that even if the images are not collected with actual diagnostic equipment, The surface may be a speckle pattern.
  • the second image data is preferably composed of a component that can be approximated to a Rayleigh distribution, although not limited thereto.
  • the component that can be approximated to the Rayleigh distribution is a component that is obtained when the amplitude probability density distribution of an echo signal obtained by irradiating a sound wave on a medium having a structure in which scatterers are minutely and densely present is calculated. .
  • an ultrasonic image creation apparatus as another means of the present invention includes a probe that receives a reflected wave of an ultrasonic wave radiated to an organ in a living body, and a reflected wave that is received by the probe. And a combining unit that generates first signal data based on the first signal data, a first signal data, and a second signal data different from the first signal data to generate combined data; An analysis unit that performs independent component analysis on the data and creates a plurality of component data.
  • a display unit that displays at least a plurality of component data created by the analysis unit and a displacement force.
  • the analysis unit is not limited, but the analysis unit includes the first component data including only the positive component and the second component including at least one of the positive component and the negative component. It is also preferable to create component data and, if the second component data includes a negative component, create third component data consisting of only the negative component based on the second component data.
  • the second signal data is preferably created based on a reflected wave obtained by irradiating a normal in vivo organ with ultrasonic waves. .
  • the second signal data is created based on a reflected wave obtained by calculation in a computer simulating a normal in vivo organ, although not limited thereto. Is also preferable.
  • the second signal data is preferably composed of a component that can approximate a Rayleigh distribution, although not limited thereto.
  • an ultrasonic image creating method radiates an ultrasonic wave to a living organ, receives a reflected wave thereof, and obtains first signal data based on the received reflected wave. Create first image data based on the first signal data, and the first image data, The second image data different from the first image data is synthesized to create synthesized data, independent component analysis is performed on the synthesized data, a plurality of component data is created, and the created plurality of components Display at least some of the power of the data.
  • the independent component analysis includes, but is not limited to, the first component data including only the positive component and at least one of the positive component and the negative component.
  • the second component data includes a negative component
  • the second image data is preferably created based on a reflected wave obtained by irradiating normal living organs with ultrasonic waves. .
  • the second image data is preferably composed of a component that can be approximated to a Rayleigh distribution, although not limited thereto.
  • an ultrasonic image creation method radiates an ultrasonic wave to an organ in a living body, receives a reflected wave, and obtains first signal data based on the received reflected wave.
  • the first signal data and the second signal data different from the first signal data are synthesized to create synthesized data, and independent component analysis is performed on the synthesized data to obtain a plurality of component data.
  • Create image data from the created component data and display the image data.
  • the independent component analysis includes, but is not limited to, the first component data including only the positive component and at least one of the positive component and the negative component.
  • the second component data includes a negative component
  • the second signal data is preferably created based on a reflected wave obtained by irradiating normal living organs with ultrasonic waves, although not limited thereto. .
  • the second signal data is not limited to Rayleigh. It is also preferable to consist of components that can approximate the distribution.
  • an image processing creation program includes a first image data created based on a reflected wave of an ultrasonic wave radiated to a living organ, and a first image As a synthesis unit that combines the second image data different from the image data to create composite data, and an analysis unit that performs independent component analysis on the composite data and creates multiple component data Make it work.
  • this means function even with a display unit that displays at least one of the component data created by the analysis unit.
  • the analysis unit is not limited, but the analysis unit includes the first component data including only the positive component and the second component including at least one of the positive component and the negative component.
  • the analysis unit includes the first component data including only the positive component and the second component including at least one of the positive component and the negative component.
  • the second image data is preferably created based on a reflected wave obtained by irradiating normal living organs with ultrasonic waves. .
  • the second image data is created based on a reflected wave obtained by calculation in a computer simulating a normal in vivo organ, although not limited thereto. Is also preferable.
  • the second image data is preferably composed of a component that can be approximated to a Rayleigh distribution, although not limited thereto.
  • an ultrasound image creation program includes a first signal data created on the basis of a reflected wave of an ultrasound radiated to a living body organ, A synthesizing unit that synthesizes the second signal data different from the first signal data and generates synthetic data, and an analysis unit that performs independent component analysis on the synthesized data and generates a plurality of component data.
  • the display unit functions as a display unit that displays at least one of the plurality of component data created by the analysis unit.
  • the analysis unit includes a first component data including only a positive component and a second component including at least one of a positive component and a negative component. When component data is created and a negative component is included in the second component data, it is also preferable to have a function of creating third component data consisting of only a negative component based on the second component data.
  • the second signal data is preferably created based on a reflected wave obtained by irradiating a normal living organ with ultrasonic waves, although not limited thereto. .
  • the second signal data is created based on a reflected wave obtained by calculation in a computer simulating a normal in vivo organ, although not limited thereto. Is also preferable.
  • the second signal data is preferably composed of a component that can be approximated to a Rayleigh distribution, although not limited thereto.
  • an ultrasonic image creating apparatus with higher accuracy and capable of more objective evaluation.
  • FIG. 1 is a diagram showing functional blocks of the ultrasonic image creation apparatus according to the present embodiment.
  • the ultrasonic image creation apparatus includes a transmission unit 1, a probe 2, a reception unit 3, an image data creation unit 4, a synthesis unit 5, an analysis unit 6, and a display unit 7. It is configured to have at least.
  • the transmission unit 1, the probe 2, and the reception unit 3 can generate signal data by radiating at least an ultrasonic wave to a living body organ and receiving the reflected wave by combining them.
  • signal data means one-dimensional data in which waveform signal data received by the probe 2 is continuously arranged in time series.
  • the signal data is not limited as long as it is described above, and it is preferable to use force S, RF signal data and signal data obtained by covering the signal S, which can adopt various signal data. it can.
  • “in vivo organs” for which ultrasound images are to be created include, but are not limited to, various organs, and examples include liver, kidney, kidney, heart, breast and the like.
  • the transmitter 1 can output a signal for radiating ultrasonic waves to the organ in the living body to the probe 2.
  • the receiver 3 receives signal data based on the reflected wave received by the probe. Data (hereinafter referred to as “first signal data”) can be created and stored.
  • the probe 2 is a device that can radiate ultrasonic waves to a living organ and receive the reflected waves.
  • each structure of the transmission part 1, the probe 2, and the receiving part 3 can employ
  • the signal data (hereinafter referred to as “second signal data”) of the same kind of in-vivo organ is also created and stored, although to a different extent.
  • the second signal data is not limited, but from the viewpoint of diagnostic accuracy, signal data of a normal in-vivo organ that does not include a lesion part includes only the Rayleigh component. More preferred.
  • the image data creation unit 4 is a unit having a function of creating two-dimensional image data based on the signal data output from the reception unit 3. More specifically, the first signal data output from the receiving unit 3 is converted into image data by this unit (hereinafter referred to as “first image data”).
  • first image data Means one-dimensional signal data subjected to rearrangement processing as two-dimensional data, and further includes processing such as logarithmic compression and luminance modulation applied to the rearrangement processing.
  • image data various image data can be used as much as possible in the analysis unit described later. However, B-mode image data, which is common in ultrasonic image diagnosis, is used for data processing. Preferable from the viewpoint.
  • the image data creation unit 4 creates second image data based on the second signal data.
  • the configuration of the image data creation unit 4 is not limited as long as it performs this function.
  • the image data creation unit 4 executes a program (including a case where it is a part of a program) stored in a recording medium such as a hard disk in a computer. It is feasible.
  • the image data creation unit 4 can also create second image data based on the second signal data measured by the reception unit 3.
  • the synthesizing unit 5 is a unit having a function of synthesizing the first image data and the second image data to create synthesized data, and the configuration is not limited as long as this function is exhibited. However, for example, it can be realized by executing a program (including a case where it is a part of a program) stored in a recording medium such as a hard disk in a computer.
  • a program including a case where it is a part of a program
  • “compositing” means rearranging a data array in a plurality of two-dimensional image data to form one-dimensional data. This rearrangement process can be appropriately adjusted according to the type of independent component analysis by the analysis unit 5 described later, and is not limited.
  • the analysis unit 6 performs independent component analysis on the synthesized data and creates a plurality of component data.
  • Independent Component Analysis is a technique for separating and extracting observation signals, in which signals from multiple independent signal sources are linearly mixed, into original independent signals.
  • first component data component data including only positive components
  • second component data component data including positive components and negative components
  • component data means two-dimensional data obtained as a result of independent component analysis.
  • the analysis unit 6 further extracts only negative components from the obtained second component data and creates component data (hereinafter referred to as "third component data"). .
  • This extraction of the negative component can be easily performed by separating using 0 as a threshold value (data components having 0 components may be included in the second component data, It can be included in the third component data.)
  • the flow in the synthesis unit 5 and the analysis unit 6 is shown in FIG.
  • the analysis unit 6 is not limited in configuration as long as it exhibits the above functions, but for example, executes a program (including a case where it is a part of a program) stored in a recording medium such as a hard disk in a computer. It is feasible.
  • speckle pattern a pattern called speckle (hereinafter referred to as “speckle pattern”) exists in the two-dimensional image data, and the speckle pattern can be approximated to the Rayleigh distribution, and the force of the organ is in vivo.
  • speckle pattern a pattern called speckle
  • the ultrasonic image creation apparatus performs independent component analysis, a component that follows the Rayleigh distribution (hereinafter referred to as “Rayleigh component”), and a component that does not follow the Rayleigh distribution (hereinafter referred to as “non- This was equivalent to the point that the tissue of the affected internal organ could be extracted more quantitatively.
  • the first image data based on the tissue of the in vivo organ having the lesion site to be measured and the tissue of the normal in vivo organ. Since the second image data is synthesized, the Rayleigh component in the first image data and the Rayleigh component force in the second image data are newly reconstructed (hereinafter referred to as “first component data”).
  • second component data including new Rayleigh components and non-Rayleigh components determined to be independent of the first component data.
  • third component data the component data
  • the excluded data (positive component) is supplemented with a predetermined data component (for example, 0), and the negative component is added.
  • a predetermined data component for example, 0
  • the negative component is added.
  • FIG. 3 shows the concept of independent component analysis by the analysis unit 5.
  • Figure 4 shows the concept of imaging the results of this independent component analysis.
  • the upper left figure is an organization chart of an actual in-vivo organ and is not obtained by the ultrasonic image creation device. It can be seen that there is (see the figure below).
  • the display unit 6 accepts and displays input of data obtained as a result of processing by the analysis unit 5 or the like.
  • a display device such as a liquid crystal monitor can be suitably used.
  • an ultrasonic image creating apparatus As described above, according to the ultrasonic image creating apparatus according to the present embodiment, an ultrasonic image creating apparatus, an ultrasonic image creating method, and an ultrasonic image creating program that are more accurate and can be objectively evaluated are provided.
  • this ultrasonic image creation device focuses on the relationship between the anatomy and the algorithm that collects the received signal data, and separates the speckle pattern, which is noise generated so as to cover the entire image, over a wide range. It also has the advantage of not having local blurring of results.
  • the medium model is a simulated biological sample that is created by simulating on a computer or by combining acoustic characteristics with a biological tissue, and by collecting echo signals with parameters such as frequency used at the time of examination, Judgment conditions for organs can be determined.
  • FIG. 5 shows a functional block diagram of the ultrasonic image creating apparatus according to the present embodiment.
  • the synthesized data created by the synthesizing unit 5 is different in that the first signal data and the second signal data referred to in the first embodiment are synthesized. Since the relationship between the tissue of the changed organ in vivo and the Rayleigh distribution is the same, the analysis can be performed in the same manner.
  • the image data creation unit 4 described in the first embodiment may not be present, but it is easy for the person performing the diagnosis to display the third component data on the display unit 7. Therefore, it is possible to create the first image data and display it together with the third component data.
  • the present invention has industrial applicability as an ultrasound image creation device, ultrasound image creation method, and ultrasound image creation program that can be used in ultrasound image diagnosis.
  • FIG. 1 is a diagram showing functional blocks of an ultrasonic image creation apparatus according to Embodiment 1.
  • FIG. 2 is a diagram illustrating a flow of a synthesis unit, an analysis unit, and a display unit of the ultrasonic image creation apparatus according to the first embodiment.
  • FIG. 3 is a diagram illustrating a concept of independent component analysis by an analysis unit 5 of the ultrasonic image creation device according to the first embodiment.
  • FIG. 4 is a diagram showing a concept in the case where the result of independent component analysis by the analysis unit 5 of the ultrasonic image creating apparatus according to Embodiment 1 is imaged.
  • FIG. 5 is a diagram showing functional blocks of an ultrasonic image creation apparatus according to a second embodiment.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

It is possible to provide an ultrasound imaging device, an ultrasound imaging method, and an ultrasound imaging program capable of performing an accurate and objective evaluation. The ultrasound imaging device includes: a probe for receiving a reflected wave of an ultrasonic wave emitted to a living organ; a reception unit for creating first signal data according the reflected wave received by the probe; an image data creation unit for creating first image data according to the first signal data; a synthesis unit for creating synthesized data by combining the first image data and second image data different from the first image data; an analysis unit for creating a plurality of component data by performing an independent component analysis for the synthesized data; and a display unit for displaying one of the plurality of component data created by the analysis unit.

Description

明 細 書  Specification
超音波画像作成装置、超音波画像作成方法、超音波画像作成プロダラ ム 技術分野  Ultrasound image creation device, ultrasound image creation method, ultrasound image creation program Technical Field
[0001] 本発明は、超音波画像作成装置、超音波画像作成方法及び超音波画像作成プロ グラムに関し、特に、生体内臓器に超音波を照射し、この反射波に基づき超音波画 像を得る装置、方法及びそれを実現するために用いられるプログラムに関する。 背景技術  The present invention relates to an ultrasound image creation device, an ultrasound image creation method, and an ultrasound image creation program, and in particular, irradiates an organ in a living body with ultrasound and obtains an ultrasound image based on the reflected wave. The present invention relates to an apparatus, a method, and a program used for realizing the apparatus. Background
[0002] 被験者の生体内臓器の病変を抽出する超音波画像作成装置は様々な部位の生 体内臓器の病変の診断に用いられている。このような超音波画像作成装置を用いた 診断 (以下「超音波画像診断」という。)は、例えば、肝硬変の診断等に有用である。 なおここで「肝硬変」とは性肝疾患が進行して肝細胞が死滅、置換して線維状組織と なり、肝機能が減衰する肝臓病の一つである。その初期においてはあまり自覚症状 がなぐ肝臓の線維化が進行して代償期を過ぎると合併症により様々な症状を呈する ようになる。従って、肝硬変、更には生体内臓器の病変の診断に際しては早期診断、 早期発見が重要なものとなっている。  [0002] Ultrasound image creation apparatuses that extract lesions in a body organ of a subject are used for diagnosing the lesions of a living body organ at various sites. Diagnosis using such an ultrasonic image creation apparatus (hereinafter referred to as “ultrasonic image diagnosis”) is useful for diagnosis of cirrhosis, for example. Here, “cirrhosis” is a type of liver disease in which liver function is attenuated due to progression of sexual liver disease and the death and replacement of hepatocytes to form fibrous tissue. In the early stage, the fibrosis of the liver progresses without subjective symptoms, and after the compensation period, various symptoms appear due to complications. Therefore, early diagnosis and early detection are important in diagnosing liver cirrhosis and in vivo organ lesions.
[0003] し力 ながら、超音波画像診断にぉレ、ては、得られた画像に対し医師が専ら主観 的に病気進行度を判断しており、たとえ血液検査や生検診断を併用したとしても十 分ではない場合がある。従って、より定量的な判断が可能な超音波画像診断方法、 超音波画像診断装置が望まれてレ、る。  [0003] However, in contrast to ultrasound image diagnosis, doctors judge the degree of disease progression subjectively from the obtained images, even if blood tests and biopsy diagnosis are used in combination. May not be enough. Accordingly, an ultrasonic diagnostic imaging method and an ultrasonic diagnostic imaging apparatus capable of more quantitative determination are desired.
[0004] 公知の超音波画像作成装置の例として、例えば下記特許文献 1には、断層像内の 局所的な一部に解析領域を設定する手段と、解析領域に相当する被検体部位に超 音波パルスを定量解析用の送信条件に従って送信し且つその送信に伴って被検体 部位力 発生するエコー信号を受信する手段と、エコー信号に基づき組織性状を、 最小二乗法等を用いて定量解析する手段と、を備える超音波画像作成装置が提案 されている。また、スペックルパターンの統計的性質を利用して画像の平滑化を行い 、微小構造物を抽出することで、肝硬変の進行度をはじめ、均質な組織構造の中に ある微小な異常病変を観察することが可能な解析アルゴリズムを具備した超音波画 像診断装置、即ち、被検体に超音波パルスを照射することにより断層像を得る超音 波画像診断装置において、前記被検体部位 Pから発生するエコー信号の強度あるい は振幅情報の統計的性質を用いて特定の信号を抽出する解析演算手段と、該解析 演算手段より抽出した結果を表示する表示手段を備えたことを特徴とする超音波画 像診断装置が提案されてレ、る。 [0004] As an example of a known ultrasonic image creation apparatus, for example, in Patent Document 1 below, there is a means for setting an analysis region in a local part in a tomographic image, and a subject region corresponding to the analysis region. Transmitting sound pulses according to the transmission conditions for quantitative analysis and receiving the echo signal generated by the subject's body force accompanying the transmission, and quantitatively analyzing the tissue properties based on the echo signal using the least squares method, etc. And an ultrasonic image creating apparatus including the means has been proposed. In addition, by smoothing the image using the statistical properties of the speckle pattern and extracting fine structures, the degree of progression of liver cirrhosis and other homogeneous tissue structures can be obtained. In an ultrasonic diagnostic imaging apparatus equipped with an analysis algorithm capable of observing a minute abnormal lesion, that is, an ultrasonic diagnostic imaging apparatus that obtains a tomographic image by irradiating a subject with an ultrasonic pulse. Analytical calculation means for extracting a specific signal using the statistical properties of the intensity or amplitude information of the echo signal generated from the subject site P, and a display means for displaying the result extracted from the analysis calculation means An ultrasonic diagnostic imaging apparatus characterized by this has been proposed.
[0005] また、下記特許文献 2には、正常肝、慢性肝炎、肝硬変の病態を数値的に診断結 果として出力する非侵襲性の超音波画像診断方法であって、超音波肝画像の注目 領域内の画像について各ピクセルの階調値を抽出し、肝表面端側から隣り合う 2ピク セル間の階調差を算出し、その絶対値を肝表面側から順に加算し、累計結果を直線 近似して傾きを求め、この値を内部評価値とし、予め得てある正常肝等を示す超音 波肝画像における傾きと比較する。また同画像の肝辺縁に沿う方向で所要数のピク セルを有しかつ上記同肝画像における肝臓の表裏面が収まる範囲領域を注目領域 とし、この領域全体にメディアンフィルタを掛け、ヒストグラム伸張化を施した後、二値 化処理、細線化を行い、肝辺縁の輪郭を特徴抽出して二次曲線近似を行い、近似 の二次の係数を辺縁評価値とし、予め得てある正常肝等に係る肝画像の二次の係 数と比較し、定量的に肝組織性状を診断する超音波画像診断装置が提案されてい る。  [0005] In addition, Patent Document 2 below is a noninvasive ultrasonic diagnostic imaging method that outputs the pathological conditions of normal liver, chronic hepatitis, and cirrhosis numerically as diagnostic results. The gradation value of each pixel is extracted from the image in the region, the gradation difference between two adjacent pixels is calculated from the liver surface edge side, the absolute value is added in order from the liver surface side, and the cumulative result is a straight line. The slope is approximated and this value is used as the internal evaluation value, which is compared with the slope in the ultrasonic liver image showing the normal liver obtained in advance. In addition, the region that has the required number of pixels in the direction along the liver margin of the image and within which the front and back surfaces of the liver are contained is set as the region of interest, and the entire region is subjected to a median filter to expand the histogram. Then, binarization processing and thinning are performed, the contour of the liver margin is extracted, quadratic curve approximation is performed, and the second-order coefficient of approximation is used as the margin evaluation value, and the normal obtained in advance There has been proposed an ultrasonic diagnostic imaging apparatus that quantitatively diagnoses liver tissue properties in comparison with the secondary coefficient of liver images related to the liver and the like.
[0006] また、下記特許文献 3には、肝臓の辺縁の退縮の程度を定量化するため、超音波 探触子より肝臓に対し超音波を送受し、受信波に基づき超音波断層画像を得て、肝 辺縁付近に関心領域を設定し(関心領域設定部)、この領域内の最長のエッジを肝 臓の輪郭線とする(輪郭線検出部)。輪郭線から、肝辺縁を構成する 2辺と推定され る 2直線を求める。この 2直線と輪郭線に囲まれた部分を退縮により鈍化した部分とし 、この部分の面積を算出する超音波画像診断装置が提案されている。  [0006] In addition, in Patent Document 3 below, in order to quantify the degree of regression of the margin of the liver, ultrasound is transmitted to and received from the liver from an ultrasound probe, and an ultrasonic tomographic image is obtained based on the received wave. Then, the region of interest is set near the liver margin (region of interest setting unit), and the longest edge in this region is used as the liver contour (contour detection unit). From the contour line, find the two straight lines estimated to be the two sides that make up the liver margin. An ultrasonic diagnostic imaging apparatus has been proposed in which a portion surrounded by the two straight lines and the contour line is defined as a portion blunted by retraction, and the area of this portion is calculated.
特許文献 1:特開 2001— 238884号公報  Patent Document 1: Japanese Patent Laid-Open No. 2001-238884
特許文献 2:特開 2006— 046527号公報  Patent Document 2: Japanese Patent Laid-Open No. 2006-046527
特許文献 3 :特開 2005— 319081号公報  Patent Document 3: Japanese Patent Laid-Open No. 2005-319081
発明の開示 発明が解決しょうとする課題 Disclosure of the invention Problems to be solved by the invention
[0007] しかしながら、上記公知の超音波画像診断装置では、いずれも処理対象を局所領 域に限定していることから、精度において課題を有しており、より精度が高ぐより客観 的な評価を行うには未だ課題があるとレ、える  [0007] However, all of the above-described known ultrasonic image diagnostic apparatuses have a problem in accuracy because the processing target is limited to a local region, and the objective evaluation is more accurate. There are still challenges to do
[0008] そこで、本発明は上記課題を解決し、より精度が高ぐより客観的な評価が可能な 超音波画像作成装置、超音波画像作成方法、超音波画像作成プログラムを提供す ることを目的とする。 [0008] Therefore, the present invention provides an ultrasonic image creation device, an ultrasonic image creation method, and an ultrasound image creation program that solve the above-described problems and are capable of more accurate and objective evaluation. Objective.
課題を解決するための手段  Means for solving the problem
[0009] 即ち、本発明の一手段としての超音波画像作成装置は、生体内臓器に放射された 超音波の反射波を受信する探触子と、探触子が受信した反射波に基づき第一の信 号データを作成する受信部と、第一の信号データに基づき第一の画像データを作成 する画像データ作成部と、第一の画像データと、第一の画像データとは別の第二の 画像データとを合成して合成データを作成する合成部と、合成データに対して独立 成分分析を行い、複数の成分データを作成する解析部と、を有する。  That is, an ultrasonic image creating apparatus as one means of the present invention is based on a probe that receives a reflected wave of an ultrasonic wave radiated to a living body organ, and a reflected wave that is received by the probe. A receiving unit for generating one signal data, an image data generating unit for generating first image data based on the first signal data, a first image data, and a first image data different from the first image data. A synthesis unit that synthesizes the second image data to generate composite data; and an analysis unit that performs independent component analysis on the synthesized data and generates a plurality of component data.
[0010] またこの手段において、限定されるわけではないが、解析部が作成した複数の成分 データの少なくともレ、ずれ力を表示する表示部を有することも好ましレ、。  [0010] In addition, this means is not limited, but it is also preferable to have a display unit for displaying at least a plurality of component data created by the analysis unit and a displacement force.
[0011] またこの手段における解析部は、限定されるわけではないが、正の成分のみを含む 第一の成分データと、正の成分及び負の成分の少なくともいずれ力 ^含む第二の成 分データを作成し、更に、第二の成分データに負の成分が含まれる場合、第二の成 分データに基づき負の成分のみからなる第三の成分データを作成することも好まし レ、。  [0011] The analysis unit in this means is not limited, but the first component data including only the positive component and the second component including at least one of the positive component and the negative component. It is also preferable to create data and, if the second component data contains negative components, create third component data consisting of only negative components based on the second component data.
[0012] またこの手段において、限定されるわけではないが、第二の画像データは、正常な 生体内臓器に超音波を照射して得られる反射波に基づき作成されたものであることも 好ましレ、。ここで「正常な生体内臓器」とは、疾病または事故などによる組織構造変化 を有さない臓器をいう。  [0012] In this means, the second image data is preferably created based on a reflected wave obtained by irradiating a normal internal organ with ultrasonic waves, although not limited thereto. Masle. As used herein, “normal in vivo organ” refers to an organ that does not have a change in tissue structure due to disease or accident.
[0013] またこの手段において、限定されるわけではないが、第二の画像データは、正常な 生体内臓器を模してコンピュータ内で計算により得られる反射波に基づき作成された ものであることも好ましい。なお、実際の診断装置で収集した画像でなくても、画像全 面がスペックルパターンになっているものでかまわない。 [0013] In this means, the second image data is created based on a reflected wave obtained by calculation in a computer imitating a normal in vivo organ, although not limited thereto. Is also preferable. Note that even if the images are not collected with actual diagnostic equipment, The surface may be a speckle pattern.
[0014] またこの手段において、限定されるわけではないが、第二の画像データは、レイリー 分布に近似できる成分からなることも好ましい。ここでレイリー分布に近似できる成分 とは、微小かつ密に散乱体の存在する構造なる媒質に、音波を照射して得られるェ コー信号の振幅確率密度分布を算出した場合に得られる成分をいう。  In this means, the second image data is preferably composed of a component that can be approximated to a Rayleigh distribution, although not limited thereto. Here, the component that can be approximated to the Rayleigh distribution is a component that is obtained when the amplitude probability density distribution of an echo signal obtained by irradiating a sound wave on a medium having a structure in which scatterers are minutely and densely present is calculated. .
[0015] また、本発明の他の一手段としての超音波画像作成装置は、生体内臓器に放射さ れた超音波の反射波を受信する探触子と、探触子が受信した反射波に基づき第一 の信号データを作成する受信部と、第一の信号データと、第一の信号データとは別 の第二の信号データとを合成して合成データを作成する合成部と、合成データに対 して独立成分分析を行い、複数の成分データを作成する解析部と、を有する。  [0015] In addition, an ultrasonic image creation apparatus as another means of the present invention includes a probe that receives a reflected wave of an ultrasonic wave radiated to an organ in a living body, and a reflected wave that is received by the probe. And a combining unit that generates first signal data based on the first signal data, a first signal data, and a second signal data different from the first signal data to generate combined data; An analysis unit that performs independent component analysis on the data and creates a plurality of component data.
[0016] また、この手段において、限定されるわけではないが、解析部が作成した複数の成 分データの少なくともレ、ずれ力を表示する表示部を有することも好ましレ、。  [0016] In addition, although not limited to this means, it is also preferable to have a display unit that displays at least a plurality of component data created by the analysis unit and a displacement force.
[0017] また、この手段において、限定されるわけではないが、解析部は、正の成分のみを 含む第一の成分データと、正の成分及び負の成分の少なくともいずれ力を含む第二 の成分データを作成し、更に、第二の成分データに負の成分が含まれる場合、第二 の成分データに基づき負の成分のみからなる第三の成分データを作成することも好 ましい。  [0017] Further, in this means, the analysis unit is not limited, but the analysis unit includes the first component data including only the positive component and the second component including at least one of the positive component and the negative component. It is also preferable to create component data and, if the second component data includes a negative component, create third component data consisting of only the negative component based on the second component data.
[0018] また、この手段において、限定されるわけではないが、第二の信号データは、正常 な生体内臓器に超音波を照射して得られる反射波に基づき作成されたものであるこ とも好ましい。  [0018] Further, although not limited in this means, the second signal data is preferably created based on a reflected wave obtained by irradiating a normal in vivo organ with ultrasonic waves. .
[0019] またこの手段において、限定されるわけではないが、第二の信号データは、正常な 生体内臓器を模してコンピュータ内で計算により得られる反射波に基づき作成された ものであることも好ましい。  [0019] In this means, the second signal data is created based on a reflected wave obtained by calculation in a computer simulating a normal in vivo organ, although not limited thereto. Is also preferable.
[0020] また、この手段において、限定されるわけではないが、第二の信号データは、レイリ 一分布に近似できる成分からなることも好ましい。  [0020] Further, in this means, the second signal data is preferably composed of a component that can approximate a Rayleigh distribution, although not limited thereto.
[0021] また、本発明の他の一手段に係る超音波画像作成方法は、生体内臓器に超音波 を放射し、その反射波を受信し、受信した反射波に基づき第一の信号データを作成 し、第一の信号データに基づき第一の画像データを作成し、第一の画像データと、 第一の画像データとは別の第二の画像データを合成して合成データを作成し、合成 データに対して独立成分分析を行レ、複数の成分データを作成し、作成した前記複数 の成分データの少なくともいずれ力を表示する。 [0021] Further, an ultrasonic image creating method according to another means of the present invention radiates an ultrasonic wave to a living organ, receives a reflected wave thereof, and obtains first signal data based on the received reflected wave. Create first image data based on the first signal data, and the first image data, The second image data different from the first image data is synthesized to create synthesized data, independent component analysis is performed on the synthesized data, a plurality of component data is created, and the created plurality of components Display at least some of the power of the data.
[0022] またこの手段において、限定されるわけではないが、独立成分分析は、正の成分の みを含む第一の成分データと、正の成分及び負の成分の少なくともいずれかを含む 第二の成分データを作成し、更に、第二の成分データに負の成分が含まれる場合、 第二の成分データに基づき負の成分のみからなる第三の成分データを作成すること が好ましい。 [0022] In this means, the independent component analysis includes, but is not limited to, the first component data including only the positive component and at least one of the positive component and the negative component. When the second component data includes a negative component, it is preferable to generate the third component data including only the negative component based on the second component data.
[0023] またこの手段において、限定されるわけではないが、第二の画像データは、正常な 生体内臓器に超音波を照射して得られる反射波に基づいて作成されたものであるこ とも好ましい。  [0023] Further, although not limited in this means, the second image data is preferably created based on a reflected wave obtained by irradiating normal living organs with ultrasonic waves. .
[0024] またこの手段において、限定されるわけではないが、第二の画像データは、レイリー 分布に近似できる成分からなることも好ましい。  In this means, the second image data is preferably composed of a component that can be approximated to a Rayleigh distribution, although not limited thereto.
[0025] また、本発明の他の一手段に係る超音波画像作成方法は、生体内臓器に超音波 を放射し、その反射波を受信し、受信した反射波に基づき第一の信号データを作成 し、第一の信号データと、前記第一の信号データとは別の第二の信号データを合成 して合成データを作成し、合成データに対して独立成分分析を行い複数の成分デー タを作成し、作成した複数の成分データから画像データを作成し、その画像データを 表示する。  [0025] In addition, an ultrasonic image creation method according to another means of the present invention radiates an ultrasonic wave to an organ in a living body, receives a reflected wave, and obtains first signal data based on the received reflected wave. The first signal data and the second signal data different from the first signal data are synthesized to create synthesized data, and independent component analysis is performed on the synthesized data to obtain a plurality of component data. , Create image data from the created component data, and display the image data.
[0026] またこの手段において、限定されるわけではないが、独立成分分析は、正の成分の みを含む第一の成分データと、正の成分及び負の成分の少なくともいずれかを含む 第二の成分データを作成し、更に、第二の成分データに負の成分が含まれる場合、 第二の成分データに基づき負の成分のみからなる第三の成分データを作成すること も好ましい。  In this means, the independent component analysis includes, but is not limited to, the first component data including only the positive component and at least one of the positive component and the negative component. When the second component data includes a negative component, it is also preferable to generate the third component data including only the negative component based on the second component data.
[0027] またこの手段において、限定されるわけではないが、第二の信号データは、正常な 生体内臓器に超音波を照射して得られる反射波に基づいて作成されたものであるこ とも好ましい。  [0027] In this means, the second signal data is preferably created based on a reflected wave obtained by irradiating normal living organs with ultrasonic waves, although not limited thereto. .
[0028] またこの手段において、限定されるわけではないが、第二の信号データは、レイリー 分布に近似できる成分からなることも好ましい。 [0028] In this means, the second signal data is not limited to Rayleigh. It is also preferable to consist of components that can approximate the distribution.
[0029] また、本発明の他の一手段に係る画像処理作成プログラムは、コンピュータに、生 体内臓器に放射された超音波の反射波に基づき作成された第一の画像データと、 第一の画像データとは別の第二の画像データと、を合成して合成データを作成する 合成部と、合成データに対して独立成分分析を行い、複数の成分データを作成する 解析部と、して機能させる。  [0029] Further, an image processing creation program according to another means of the present invention includes a first image data created based on a reflected wave of an ultrasonic wave radiated to a living organ, and a first image As a synthesis unit that combines the second image data different from the image data to create composite data, and an analysis unit that performs independent component analysis on the composite data and creates multiple component data Make it work.
[0030] また、この手段において、限定されるわけではないが、解析部が作成した複数の成 分データの少なくともレ、ずれかを表示する表示部と、しても機能させることは好ましレヽ  [0030] In addition, although not limited to this means, it is preferable that this means function even with a display unit that displays at least one of the component data created by the analysis unit.
[0031] またこの手段において、限定されるわけではないが、解析部は、正の成分のみを含 む第一の成分データと、正の成分及び負の成分の少なくともいずれかを含む第二の 成分データを作成し、第二の成分データに負の成分が含まれる場合、第二の成分デ ータに基づき負の成分のみからなる第三の成分データを作成する機能も有すること が好ましい。 [0031] In this means, the analysis unit is not limited, but the analysis unit includes the first component data including only the positive component and the second component including at least one of the positive component and the negative component. When component data is created and a negative component is included in the second component data, it is preferable to have a function of creating third component data consisting of only a negative component based on the second component data.
[0032] またこの手段において、限定されるわけではないが、第二の画像データは、正常な 生体内臓器に超音波を照射して得られる反射波に基づいて作成されたものであるこ とも好ましい。  [0032] Further, although not limited in this means, the second image data is preferably created based on a reflected wave obtained by irradiating normal living organs with ultrasonic waves. .
[0033] またこの手段において、限定されるわけではないが、第二の画像データは、正常な 生体内臓器を模してコンピュータ内で計算により得られる反射波に基づき作成された ものであることも好ましい。  [0033] In this means, the second image data is created based on a reflected wave obtained by calculation in a computer simulating a normal in vivo organ, although not limited thereto. Is also preferable.
[0034] またこの手段において、限定されるわけではないが、第二の画像データは、レイリー 分布に近似できる成分からなることも好ましい。  In this means, the second image data is preferably composed of a component that can be approximated to a Rayleigh distribution, although not limited thereto.
[0035] また、本発明の他の一手段に係る超音波画像作成プログラムは、コンピュータに、 生体内臓器に放射された超音波の反射波に基づき作成された第一の信号データと 、第一の信号データとは別の第二の信号データと、を合成して合成データを作成す る合成部と、合成データに対して独立成分分析を行い、複数の成分データを作成す る解析部と、解析部が作成した前記複数の成分データの少なくともいずれかを表示 する表示部と、して機能させる。 [0036] またこの手段において、限定されるわけではないが、解析部は、正の成分のみを含 む第一の成分データと、正の成分及び負の成分の少なくともいずれかを含む第二の 成分データを作成し、第二の成分データに負の成分が含まれる場合、第二の成分デ ータに基づき負の成分のみからなる第三の成分データを作成する機能も有すること も好ましい。 [0035] Further, an ultrasound image creation program according to another means of the present invention includes a first signal data created on the basis of a reflected wave of an ultrasound radiated to a living body organ, A synthesizing unit that synthesizes the second signal data different from the first signal data and generates synthetic data, and an analysis unit that performs independent component analysis on the synthesized data and generates a plurality of component data. The display unit functions as a display unit that displays at least one of the plurality of component data created by the analysis unit. [0036] In this means, although not limited, the analysis unit includes a first component data including only a positive component and a second component including at least one of a positive component and a negative component. When component data is created and a negative component is included in the second component data, it is also preferable to have a function of creating third component data consisting of only a negative component based on the second component data.
[0037] またこの手段において、限定されるわけではないが、第二の信号データは、正常な 生体内臓器に超音波を照射して得られる反射波に基づいて作成されたものであるこ とも好ましい。  [0037] In this means, the second signal data is preferably created based on a reflected wave obtained by irradiating a normal living organ with ultrasonic waves, although not limited thereto. .
[0038] またこの手段において、限定されるわけではないが、第二の信号データは、正常な 生体内臓器を模してコンピュータ内で計算により得られる反射波に基づき作成された ものであることも好ましい。  [0038] In this means, the second signal data is created based on a reflected wave obtained by calculation in a computer simulating a normal in vivo organ, although not limited thereto. Is also preferable.
[0039] またこの手段において、限定されるわけではないが、第二の信号データは、レイリー 分布に近似できる成分からなることも好ましい。  [0039] In this means, the second signal data is preferably composed of a component that can be approximated to a Rayleigh distribution, although not limited thereto.
発明の効果  The invention's effect
[0040] 本発明によると、より精度が高ぐより客観的な評価が可能な超音波画像作成装置 [0040] According to the present invention, an ultrasonic image creating apparatus with higher accuracy and capable of more objective evaluation.
、超音波画像作成方法、超音波画像作成プログラムとなる。 And an ultrasonic image creation method and an ultrasound image creation program.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0041] 以下、本発明の実施形態について図面を参照しつつ説明する。ただし、本発明は 多くの異なる態様で実施することが可能であり、以下に示す実施形態に限定されるも のではない。なお、本明細書においては同一又は同様の機能を有する部分には同 一の符号を付し、その繰り返しの説明は省略する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. However, the present invention can be implemented in many different modes and is not limited to the embodiments shown below. Note that in this specification, portions having the same or similar functions are denoted by the same reference numerals, and repeated description thereof is omitted.
[0042] (実施形態 1) [Embodiment 1]
図 1は、本実施形態に係る超音波画像作成装置の機能ブロックを示す図である。図 FIG. 1 is a diagram showing functional blocks of the ultrasonic image creation apparatus according to the present embodiment. Figure
1で示すとおり、本実施形態に係る超音波画像作成装置は、送信部 1、探触子 2、受 信部 3、画像データ作成部 4、合成部 5、解析部 6、表示部 7、を少なくとも有して構成 されている。 As shown in FIG. 1, the ultrasonic image creation apparatus according to the present embodiment includes a transmission unit 1, a probe 2, a reception unit 3, an image data creation unit 4, a synthesis unit 5, an analysis unit 6, and a display unit 7. It is configured to have at least.
[0043] 送信部 1、探触子 2、受信部 3は、これらの組み合わせにより、少なくとも、超音波を 生体内臓器に放射し、その反射波を受信し、信号データを作成することができるもの である。ここで「信号データ」とは、探触子 2において受信した波形信号データを時系 列的に連続して配置した 1次元のデータを意味する。また本実施形態において、信 号データについては上記である限り限定されることなく種々の信号データを採用する ことができる力 S、RF信号データ及びこれをカ卩ェした信号データを好ましく用いること ができる。また超音波画像作成の対象となる「生体内臓器」としては、限定されること なく種々の臓器が該当するが、例えば肝臓、瞎臓、腎臓、心臓、***などが挙げられ る。送信部 1は、生体内臓器に超音波を放射させるための信号を探触子 2に出力す ることができるものであり、受信部 3は、探触子が受信した反射波に基づき信号デー タ(以下「第一の信号データ」という。)の作成及び記憶を行うことができるものである。 探触子 2は、生体内臓器に超音波を放射し、その反射波を受信することができる装置 である。なお、送信部 1、探触子 2、受信部 3の各構成は周知の装置を採用することが でき、特に限定はされない。なお、受信部 3により作成される信号データは、後述する 合成部 5により他のデータと合成されるため、測定対象となる生体内臓器の第一の信 号データの作成とは別に、病変の程度は別ではあるが同種の生体内臓器の信号デ ータ(以下「第二の信号データ」という。)も作成及び記憶しておく。なお、この第二の 信号データについては、限定されるわけではないが、病変部を含まない正常な状態 の生体内臓器の信号データであればレイリー成分のみを含むものであるため診断精 度の観点からより好ましい。 [0043] The transmission unit 1, the probe 2, and the reception unit 3 can generate signal data by radiating at least an ultrasonic wave to a living body organ and receiving the reflected wave by combining them. It is. Here, “signal data” means one-dimensional data in which waveform signal data received by the probe 2 is continuously arranged in time series. In the present embodiment, the signal data is not limited as long as it is described above, and it is preferable to use force S, RF signal data and signal data obtained by covering the signal S, which can adopt various signal data. it can. Further, “in vivo organs” for which ultrasound images are to be created include, but are not limited to, various organs, and examples include liver, kidney, kidney, heart, breast and the like. The transmitter 1 can output a signal for radiating ultrasonic waves to the organ in the living body to the probe 2.The receiver 3 receives signal data based on the reflected wave received by the probe. Data (hereinafter referred to as “first signal data”) can be created and stored. The probe 2 is a device that can radiate ultrasonic waves to a living organ and receive the reflected waves. In addition, each structure of the transmission part 1, the probe 2, and the receiving part 3 can employ | adopt a well-known apparatus, and is not specifically limited. Note that the signal data created by the receiver 3 is synthesized with other data by the synthesizer 5 described later, and therefore, separately from the creation of the first signal data of the in vivo organ to be measured. The signal data (hereinafter referred to as “second signal data”) of the same kind of in-vivo organ is also created and stored, although to a different extent. The second signal data is not limited, but from the viewpoint of diagnostic accuracy, signal data of a normal in-vivo organ that does not include a lesion part includes only the Rayleigh component. More preferred.
画像データ作成部 4は、受信部 3から出力される信号データに基づき 2次元の画像 データを作成する機能を有する部である。より具体的には、受信部 3から出力された 第一の信号データは、この部により画像データに変換される(以下これを「第一の画 像データ」という。)なおここで「画像データ」とは、 1次元の信号データを 2次元のデ ータとして再配置処理を施したものを意味し、更にこの再配置処理に対数圧縮や輝 度変調などの処理を施したものも含む。 「画像データ」としては、後述する解析部にお ける解析が可能な限り様々な画像データを用いることができるが、超音波画像診断 において一般的である Bモード画像データとしておくことがデータ処理の観点から好 ましレ、。なお、後述する合成部 4では、複数の画像データを合成するため、画像デー タ作成部 4は、上記第二の信号データに基づき第二の画像データを作成しておく。 なお画像データ作成部 4は、この機能を奏する限りにおいて構成は限定されないが、 例えば、コンピュータにおけるハードディスク等の記録媒体に格納されたプログラム( プログラムの一部である場合を含む。)を実行することで実現可能である。なお、画像 データ作成部 4は、上記受信部 3において測定された第二の信号データに基づき第 二の画像データも作成することができる。 The image data creation unit 4 is a unit having a function of creating two-dimensional image data based on the signal data output from the reception unit 3. More specifically, the first signal data output from the receiving unit 3 is converted into image data by this unit (hereinafter referred to as “first image data”). "" Means one-dimensional signal data subjected to rearrangement processing as two-dimensional data, and further includes processing such as logarithmic compression and luminance modulation applied to the rearrangement processing. As “image data”, various image data can be used as much as possible in the analysis unit described later. However, B-mode image data, which is common in ultrasonic image diagnosis, is used for data processing. Preferable from the viewpoint. Note that, in the synthesis unit 4 described later, in order to synthesize a plurality of image data, the image data creation unit 4 creates second image data based on the second signal data. The configuration of the image data creation unit 4 is not limited as long as it performs this function. For example, the image data creation unit 4 executes a program (including a case where it is a part of a program) stored in a recording medium such as a hard disk in a computer. It is feasible. The image data creation unit 4 can also create second image data based on the second signal data measured by the reception unit 3.
[0045] 合成部 5は、第一の画像データと、第二の画像データとを合成して合成データを作 成する機能を有する部であって、この機能を奏する限りにおいて構成は限定されな いが、例えば、コンピュータにおけるハードディスク等の記録媒体に格納されたプログ ラム(プログラムの一部である場合を含む。)を実行することで実現可能である。ここで 「合成」とは、複数の 2次元の画像データにおけるデータ配列を再配置処理し、 1次 元のデータとすることを意味する。この再配置の処理は、後述する解析部 5による独 立成分分析の種類により適宜調整が可能であり、限定されるものではない。 [0045] The synthesizing unit 5 is a unit having a function of synthesizing the first image data and the second image data to create synthesized data, and the configuration is not limited as long as this function is exhibited. However, for example, it can be realized by executing a program (including a case where it is a part of a program) stored in a recording medium such as a hard disk in a computer. Here, “compositing” means rearranging a data array in a plurality of two-dimensional image data to form one-dimensional data. This rearrangement process can be appropriately adjusted according to the type of independent component analysis by the analysis unit 5 described later, and is not limited.
[0046] 解析部 6は、合成データに対して独立成分分析を行い、複数の成分データを作成 する。ここで独立成分分析 (Independent Component Analysis: ICA)とは、複 数の互いに独立な信号源の信号が線形に混合された観測信号を元の独立した信号 に分離抽出する手法をいう。この結果、まず、正の成分のみを含む成分データ(以下 「第一の成分データ」という。)、正の成分及び負の成分を含む成分データ(以下「第 二の成分データ」とレ、う。)を作成する。ここで「成分データ」とは、独立成分分析の結 果えられた 2次元のデータを意味する。 [0046] The analysis unit 6 performs independent component analysis on the synthesized data and creates a plurality of component data. Here, Independent Component Analysis (ICA) is a technique for separating and extracting observation signals, in which signals from multiple independent signal sources are linearly mixed, into original independent signals. As a result, first, component data including only positive components (hereinafter referred to as “first component data”), component data including positive components and negative components (hereinafter referred to as “second component data”). .) Here, “component data” means two-dimensional data obtained as a result of independent component analysis.
[0047] また、本実施形態に係る解析部 6は、得られた第二の成分データから更に負の成 分のみを取り出して成分データ(以下「第三の成分データ」という。)を作成する。なお 、この負の成分の抽出は、 0をしきい値として用いて分離することで容易に実行できる (0の成分を有するデータ成分については第二の成分データに含ませても良いし、第 三の成分データに含ませても良レ、。)。なお、合成部 5及び解析部 6におけるフローを 図 2に示しておく。なお解析部 6は、上記機能を奏する限りにおいて構成は限定され ないが、例えば、コンピュータにおけるハードディスク等の記録媒体に格納されたプロ グラム(プログラムの一部である場合を含む。)を実行することで実現可能である。 [0047] In addition, the analysis unit 6 according to the present embodiment further extracts only negative components from the obtained second component data and creates component data (hereinafter referred to as "third component data"). . This extraction of the negative component can be easily performed by separating using 0 as a threshold value (data components having 0 components may be included in the second component data, It can be included in the third component data.) The flow in the synthesis unit 5 and the analysis unit 6 is shown in FIG. The analysis unit 6 is not limited in configuration as long as it exhibits the above functions, but for example, executes a program (including a case where it is a part of a program) stored in a recording medium such as a hard disk in a computer. It is feasible.
[0048] 本発明者らは、正常な生体内臓器から得られる信号データに基づき 2次元画像デ ータを得ると、その 2次元画像データ中にスペックルと呼ばれるパターン(以下「スぺ ックルパターン」という。)が存在し、そのスペックルパターンはレイリー分布に近似で き、し力も生体内臓器の組織とは無関係に独立した信号成分である点に着目した。 一方、病変した生体内臓器から得られる信号データに基づき得られる 2次元画像デ ータにおいてはスペックルパターンが減少しレイリー分布から遠ざカ^)傾向がある点 にも着目した。そこで、本実施形態に係る超音波画像作成装置は、独立成分分析を 行レ、レイリー分布に従う成分(以下「レイリー成分」とレ、う。)とレイリー分布に従わなレ、 成分 (以下「非レイリー成分」という。)に分離することで、病変した生体内臓器の組織 をより定量的に抽出することができる点に相当した。特に、本実施形態に係る超音波 画像作成装置にぉレ、ては、測定対象となる病変部位を有する生体内臓器の組織に 基づく第一の画像データと、正常な生体内臓器の組織に基づく第二の画像データを 合成しているため、第一の画像データにおけるレイリー成分と第二の画像データにお けるレイリー成分力 再構築された新規のレイリー成分データ(以下「第一の成分デ ータ」という。)と、第一の成分データと独立であると判定された新規のレイリー成分及 び非レイリー成分とが含まれた成分データ(以下「第二の成分データ」とレ、う。 )に分け ること力 Sでき、更に、第二の成分のデータから、負の成分のみ (若しくは 0以下の成分 のみ)のデータ成分を抽出し、成分データ(以下「第三の成分データ」という。)とする ことで病変部位を極めて精度よく抽出できるようになる。 [0048] The present inventors have developed two-dimensional image data based on signal data obtained from normal in vivo organs. When the data is obtained, a pattern called speckle (hereinafter referred to as “speckle pattern”) exists in the two-dimensional image data, and the speckle pattern can be approximated to the Rayleigh distribution, and the force of the organ is in vivo. We paid attention to the fact that it is an independent signal component regardless of the organization. On the other hand, we also focused on the fact that the speckle pattern decreases and tends to move away from the Rayleigh distribution in the 2D image data obtained from the signal data obtained from the diseased in vivo organ. Therefore, the ultrasonic image creation apparatus according to the present embodiment performs independent component analysis, a component that follows the Rayleigh distribution (hereinafter referred to as “Rayleigh component”), and a component that does not follow the Rayleigh distribution (hereinafter referred to as “non- This was equivalent to the point that the tissue of the affected internal organ could be extracted more quantitatively. In particular, based on the ultrasonic image creation apparatus according to the present embodiment, the first image data based on the tissue of the in vivo organ having the lesion site to be measured and the tissue of the normal in vivo organ. Since the second image data is synthesized, the Rayleigh component in the first image data and the Rayleigh component force in the second image data are newly reconstructed (hereinafter referred to as “first component data”). And component data (hereinafter referred to as “second component data”) including new Rayleigh components and non-Rayleigh components determined to be independent of the first component data. In addition, the data component of only the negative component (or only the component of 0 or less) is extracted from the second component data, and the component data (hereinafter referred to as “third component data”) is extracted. )) It becomes possible to very accurately extracted.
なお、第三の成分データは、そのままでは画像データとして使用することが難しレヽ ため、除外された部分 (正の成分の部分)については所定のデータ成分 (たとえば 0) を補充し、負の成分については正に変換させる等し、 2次元の画像データ(以下「第 三の画像データ」という。)に変換した後、表示部 6に出力させることが好ましい。なお この機能については画像データ作成部で行ってもよいし、解析部 6にて行うことも可 能である。なお、図 3に、解析部 5による独立成分分析の概念を示しておく。また、図 4に、この独立成分分析による結果を画像化した場合の概念を示しておく。なお図 4 中、左上図は実際の生体内臓器の組織図であり、超音波画像作成装置により得られ るものではなレ、が、右上の第三の画像データの結果と高レ、対応関係を有してレ、る(下 図参照)ことが見てとれる。 [0050] 表示部 6は、解析部 5等で処理された結果のデータの入力を受付け、表示するもの である。構成としては限定されることはなレ、が、例えば液晶モニタ等のディスプレイ装 置を好適に用いることができる。 Since the third component data is difficult to use as image data as it is, the excluded data (positive component) is supplemented with a predetermined data component (for example, 0), and the negative component is added. Is preferably converted to two-dimensional image data (hereinafter referred to as “third image data”) and then output to the display unit 6. Note that this function may be performed by the image data creation unit or by the analysis unit 6. FIG. 3 shows the concept of independent component analysis by the analysis unit 5. Figure 4 shows the concept of imaging the results of this independent component analysis. In Fig. 4, the upper left figure is an organization chart of an actual in-vivo organ and is not obtained by the ultrasonic image creation device. It can be seen that there is (see the figure below). [0050] The display unit 6 accepts and displays input of data obtained as a result of processing by the analysis unit 5 or the like. Although the configuration is not limited, for example, a display device such as a liquid crystal monitor can be suitably used.
[0051] 以上、本実施形態に係る超音波画像作成装置によると、より精度が高ぐより客観 的な評価が可能な超音波画像作成装置、超音波画像作成方法、超音波画像作成 プログラムを提供すること力 Sできる。特に本超音波画像作成装置では、受信した信号 データを収集するアルゴリズムと生体構造との関係に着目し、画像全体を覆いつくす ように発生しているノイズであるスペックルパターンを広範囲で分離するので、局所的 な結果のブレを有しなレヽとレ、う利点も有してレ、る。  [0051] As described above, according to the ultrasonic image creating apparatus according to the present embodiment, an ultrasonic image creating apparatus, an ultrasonic image creating method, and an ultrasonic image creating program that are more accurate and can be objectively evaluated are provided. The power to do S. In particular, this ultrasonic image creation device focuses on the relationship between the anatomy and the algorithm that collects the received signal data, and separates the speckle pattern, which is noise generated so as to cover the entire image, over a wide range. It also has the advantage of not having local blurring of results.
[0052] なお、本実施形態においては、本発明の効果をより明確に説明するため病変した 部位を有する内臓器に対しての処理を前提に説明しているが、測定対象となる内臓 器の病変の具合によって独立成分分析の結果に負のデータが生じない場合もある。 すなわち負のデータがない又は少ない場合には正常な内臓器であると判断する判 断部を設けておくことは好ましい態様である。なお、正常な内臓器であるとする判断と しては、限定されるわけではなレ、が、微小かつ蜜に散乱体の存在する構造なる 2つ の異なる媒質モデルにおいて、音波を照射して得られるエコー信号を第一および第 二の信号データとして入力した場合における負のデータの発生度を基準とすることが 好ましレ、。ここで媒質モデルとは、計算機上におけるシミュレーションまたは生体組織 に音響特性を合わせて作成する擬似生体試料であり、検査実施時に用いる周波数 等のパラメータを合わせてエコー信号を収集することで、正常な内臓器であるかの判 断条件を決定することができる。 [0052] In the present embodiment, in order to more clearly explain the effect of the present invention, the explanation is made on the premise of processing on an internal organ having a lesioned site. Depending on the condition of the lesion, negative data may not be generated in the results of independent component analysis. That is, it is a preferable aspect to provide a judgment part for judging that the internal organ is normal when there is no or little negative data. It should be noted that the judgment of a normal internal organ is not limited, but it is possible to irradiate a sound wave in two different medium models that are minute and have a structure in which scatterers are present in nectar. It is preferable to use the occurrence of negative data as a reference when the obtained echo signal is input as the first and second signal data. Here, the medium model is a simulated biological sample that is created by simulating on a computer or by combining acoustic characteristics with a biological tissue, and by collecting echo signals with parameters such as frequency used at the time of examination, Judgment conditions for organs can be determined.
[0053] (実施形態 2) [0053] (Embodiment 2)
本実施形態は、信号データから画像データを作成し、更にこれを複数合成して解 析処理を行っている力 S、独立成分分析においては 2次元の画像データに限られず、 信号データをそのまま合成し、独立成分分析を行うことが可能である。図 5に本実施 形態に係る超音波画像作成装置の機能ブロック図を示しておく。  In this embodiment, image data is created from signal data, and a plurality of these are combined and analyzed. S Independent component analysis is not limited to two-dimensional image data. Independent component analysis is possible. FIG. 5 shows a functional block diagram of the ultrasonic image creating apparatus according to the present embodiment.
[0054] 本実施形態においては、合成部 5により作成される合成データは実施形態 1でいう 第一の信号データと第二の信号データとが合成されたものである点が異なるが、病 変した生体内臓器の組織とレイリー分布との関係は同じであるため、同様に解析を行 うことができる。なお、この場合において、実施形態 1にいう画像データ作成部 4は存 在しなくても良いことになるが、第三の成分データを表示部 7に表示させる際に診断 を行う者に把握やすくするために、第一の画像データを作成し、第三の成分データと ともに表示させる方法も可能であるため、設けても差し支えない。 [0054] In the present embodiment, the synthesized data created by the synthesizing unit 5 is different in that the first signal data and the second signal data referred to in the first embodiment are synthesized. Since the relationship between the tissue of the changed organ in vivo and the Rayleigh distribution is the same, the analysis can be performed in the same manner. In this case, the image data creation unit 4 described in the first embodiment may not be present, but it is easy for the person performing the diagnosis to display the third component data on the display unit 7. Therefore, it is possible to create the first image data and display it together with the third component data.
産業上の利用可能性  Industrial applicability
[0055] 本発明は、超音波画像診断において用いることができる超音波画像作成装置、超 音波画像作成方法、超音波画像作成プログラムとして、産業上の利用可能性がある 図面の簡単な説明 The present invention has industrial applicability as an ultrasound image creation device, ultrasound image creation method, and ultrasound image creation program that can be used in ultrasound image diagnosis.
[0056] [図 1]実施形態 1に係る超音波画像作成装置の機能ブロックを示す図。  FIG. 1 is a diagram showing functional blocks of an ultrasonic image creation apparatus according to Embodiment 1.
[図 2]実施形態 1に係る超音波画像作成装置の合成部、解析部、表示部のフローを 示す図である。  FIG. 2 is a diagram illustrating a flow of a synthesis unit, an analysis unit, and a display unit of the ultrasonic image creation apparatus according to the first embodiment.
[図 3]実施形態 1に係る超音波画像作成装置の解析部 5による独立成分分析の概念 を示す図である。  FIG. 3 is a diagram illustrating a concept of independent component analysis by an analysis unit 5 of the ultrasonic image creation device according to the first embodiment.
[図 4]実施形態 1に係る超音波画像作成装置の解析部 5による独立成分分析による 結果を画像化した場合の概念を示す図である。  FIG. 4 is a diagram showing a concept in the case where the result of independent component analysis by the analysis unit 5 of the ultrasonic image creating apparatus according to Embodiment 1 is imaged.
[図 5]実施形態 2に係る超音波画像作成装置の機能ブロックを示す図。  FIG. 5 is a diagram showing functional blocks of an ultrasonic image creation apparatus according to a second embodiment.
符号の説明  Explanation of symbols
[0057] 1…送信部、 2…探触子、 3…受信部、 4…画像データ生成部、 5…合成部、 6…解析 部、 7…表示部  [0057] 1 ... Transmission unit, 2 ... Probe, 3 ... Reception unit, 4 ... Image data generation unit, 5 ... Synthesis unit, 6 ... Analysis unit, 7 ... Display unit

Claims

請求の範囲 The scope of the claims
[1] 生体内臓器に放射された超音波の反射波を受信する探触子と、  [1] a probe that receives a reflected wave of an ultrasonic wave radiated to an internal organ;
前記探触子が受信した反射波に基づき第一の信号データを作成する受信部と、 前記第一の信号データに基づき第一の画像データを作成する画像データ作成部と 前記第一の画像データと、前記第一の画像データとは別の第二の画像データとを合 成して合成データを作成する合成部と、  A receiving unit that creates first signal data based on the reflected wave received by the probe, an image data creating unit that creates first image data based on the first signal data, and the first image data And a combining unit that combines the second image data different from the first image data to create combined data;
前記合成データに対して独立成分分析を行い、複数の成分データを作成する解析 部と、を有する超音波画像作成装置。  An ultrasonic image creation apparatus comprising: an analysis unit that performs independent component analysis on the synthesized data and creates a plurality of component data.
[2] 前記複数の成分データより作成された画像を表示する表示部と、を有する請求項 1 記載の超音波画像作成装置。  2. The ultrasonic image creation device according to claim 1, further comprising a display unit that displays an image created from the plurality of component data.
[3] 前記解析部は、正の成分のみを含む第一の成分データと、正の成分及び負の成 分の少なくともいずれかを含む第二の成分データを作成し、更に、前記第二の成分 データに負の成分が含まれる場合、前記第二の成分データに基づき負の成分のみ からなる第三の成分データを作成する請求項 1または請求項 2記載の超音波画像作 成装置。  [3] The analysis unit creates first component data including only a positive component and second component data including at least one of a positive component and a negative component. The ultrasonic image creation device according to claim 1 or 2, wherein when the component data includes a negative component, the third component data including only the negative component is created based on the second component data.
[4] 前記第二の画像データは、正常な生体内臓器に超音波を照射して得られる反射波 に基づき作成されたものである請求項 1または請求項 2記載の超音波画像作成装置  [4] The ultrasonic image creation device according to claim 1 or 2, wherein the second image data is created based on a reflected wave obtained by irradiating a normal in vivo organ with ultrasonic waves.
[5] 前記第二の画像データは、レイリー分布に近似できる成分からなる請求項 1または 請求項 2記載の超音波画像作成装置。 5. The ultrasonic image creation device according to claim 1, wherein the second image data includes a component that can approximate a Rayleigh distribution.
[6] 生体内臓器に放射された超音波の反射波を受信する探触子と、 [6] A probe that receives a reflected wave of an ultrasonic wave radiated to a living body organ;
前記探触子が受信した反射波に基づき第一の信号データを作成する受信部と、 前記第一の信号データと、前記第一の信号データとは別の第二の信号データとを合 成して合成データを作成する合成部と、  A receiving unit that creates first signal data based on a reflected wave received by the probe, and the first signal data and second signal data different from the first signal data are synthesized. A composition unit for creating composite data,
前記合成データに対して独立成分分析を行い、複数の成分データを作成する解析 部と、を有する超音波画像作成装置。  An ultrasonic image creation apparatus comprising: an analysis unit that performs independent component analysis on the synthesized data and creates a plurality of component data.
[7] 更に前記解析部が作成した前記複数の成分データより作成された画像を表示する 表示部と、を有する超音波画像作成装置。 [7] Furthermore, an image created from the plurality of component data created by the analysis unit is displayed. And an ultrasonic image creating apparatus.
[8] 前記解析部は、正の成分のみを含む第一の成分データと、正の成分及び負の成 分の少なくともいずれかを含む第二の成分データを作成し、更に、前記第二の成分 データに負の成分が含まれる場合、前記第二の成分データに基づき負の成分のみ からなる第三の成分データを作成する請求項 6または請求項 7記載の超音波画像作 成方法。  [8] The analysis unit creates first component data including only a positive component and second component data including at least one of a positive component and a negative component. The ultrasonic image creation method according to claim 6 or 7, wherein, when the component data includes a negative component, the third component data including only the negative component is created based on the second component data.
[9] 前記第二の信号データは、正常な生体内臓器に超音波を照射して得られる反射波 に基づき作成されたものである請求項 6または請求項 7記載の超音波画像作成装置  [9] The ultrasonic image creation device according to claim 6 or 7, wherein the second signal data is created based on a reflected wave obtained by irradiating a normal in vivo organ with ultrasonic waves.
[10] 前記第二の信号データは、レイリー分布に近似できる成分からなる請求項 6または 請求項 7記載の超音波画像作成装置。 10. The ultrasonic image creating apparatus according to claim 6, wherein the second signal data includes a component that can approximate a Rayleigh distribution.
[11] 生体内臓器に超音波を放射し、その反射波を受信し、  [11] The ultrasound is radiated to the internal organs and the reflected waves are received.
受信した前記反射波に基づき第一の信号データを作成し、  Create first signal data based on the received reflected wave,
前記第一の信号データに基づき第一の画像データを作成し、  Creating first image data based on the first signal data;
前記第一の画像データと、前記第一の画像データとは別の第二の画像データを合 成して合成データを作成し、前記合成データに対して独立成分分析を行い複数の成 分データを作成し、作成した前記複数の成分データより作成された画像を表示する、 超音波画像作成方法。  The first image data and the second image data different from the first image data are synthesized to create synthesized data, and independent component analysis is performed on the synthesized data to obtain a plurality of component data. An ultrasonic image creation method for displaying an image created from the plurality of created component data.
[12] 更に前記独立成分分析は、正の成分のみを含む第一の成分データと、正の成分 及び負の成分の少なくともいずれ力を含む第二の成分データを作成し、更に、前記 第二の成分データに負の成分が含まれる場合、前記第二の成分データに基づき負 の成分のみからなる第三の成分データを作成する請求項 11記載の超音波画像作成 方法。  [12] Further, the independent component analysis generates first component data including only a positive component and second component data including at least one of a positive component and a negative component. 12. The method of creating an ultrasonic image according to claim 11, wherein, when the negative component is included in the component data, the third component data including only the negative component is generated based on the second component data.
[13] 前記第二の画像データは、正常な生体内臓器に超音波を照射して得られる反射波 に基づいて作成されたものである請求項 11記載の超音波画像作成方法。  13. The ultrasonic image creation method according to claim 11, wherein the second image data is created based on a reflected wave obtained by irradiating a normal in vivo organ with ultrasonic waves.
[14] 前記第二の画像データは、レイリー分布に近似できる成分からなる請求項 11また は請求項 12記載の超音波画像作成方法。  14. The ultrasonic image creation method according to claim 11, wherein the second image data includes a component that can approximate a Rayleigh distribution.
[15] 生体内臓器に超音波を放射し、その反射波を受信し、 受信した前記反射波に基づき第一の信号データを作成し、 [15] The ultrasound wave is radiated to the internal organs and the reflected waves are received. Create first signal data based on the received reflected wave,
前記第一の信号データと、前記第一の信号データとは別の第二の信号データを合 成して合成データを作成し、  Combining the first signal data and the second signal data different from the first signal data to create composite data,
前記合成データに対して独立成分分析を行い複数の成分データを作成し、 作成した前記複数の成分データより作成された画像を表示する、超音波画像作成方 法。  An ultrasonic image creation method in which independent component analysis is performed on the synthesized data to create a plurality of component data, and an image created from the created component data is displayed.
[16] 更に前記独立成分分析は、正の成分のみを含む第一の成分データと、正の成分 及び負の成分の少なくともいずれ力、を含む第二の成分データを作成し、更に、前記 第二の成分データに負の成分が含まれる場合、前記第二の成分データに基づき負 の成分のみからなる第三の成分データを作成する請求項 15記載の超音波画像作成 方法。  [16] Further, the independent component analysis generates first component data including only a positive component and second component data including at least one of a positive component and a negative component. 16. The ultrasonic image creation method according to claim 15, wherein when the second component data includes a negative component, the third component data including only the negative component is created based on the second component data.
[17] 前記第二の信号データは、正常な生体内臓器に超音波を照射して得られる反射波 に基づいて作成されたものである請求項 15または請求項 16記載の超音波画像作成 方法。  [17] The ultrasonic image creation method according to claim 15 or 16, wherein the second signal data is created based on a reflected wave obtained by irradiating a normal in vivo organ with ultrasonic waves. .
[18] 前記第二の信号データは、レイリー分布に近似できる成分力 なる請求項 15また は請求項 16記載の超音波画像作成方法。  18. The ultrasonic image creation method according to claim 15 or 16, wherein the second signal data has a component force that can approximate a Rayleigh distribution.
[19] コンピュータに、  [19] On the computer,
生体内臓器に放射された超音波の反射波に基づき作成された第一の画像データ と、前記第一の画像データとは別の第二の画像データと、を合成して合成データを 作成する合成部と、前記合成データに対して独立成分分析を行い、複数の成分デ ータを作成する解析部と、を有する超音波画像作成プログラム。  A composite data is created by combining the first image data created based on the reflected wave of the ultrasonic wave radiated to the internal organ and the second image data different from the first image data. An ultrasound image creation program comprising: a synthesis unit; and an analysis unit that performs independent component analysis on the synthesized data and creates a plurality of component data.
[20] 更に前記解析部が作成した前記複数の成分データより作成された画像を表示する 表示部と、して機能させる超音波画像作成プログラム。  [20] An ultrasonic image creation program that functions as a display unit that displays an image created from the plurality of component data created by the analysis unit.
[21] 前記解析部は、正の成分のみを含む第一の成分データと、正の成分及び負の成 分の少なくともいずれ力 ^含む第二の成分データを作成し、前記第二の成分データ に負の成分が含まれる場合、前記第二の成分データに基づき負の成分のみからなる 第三の成分データを作成する機能も有する請求項 19または請求項 20記載の超音 波画像作成プログラム。 [21] The analysis unit creates first component data including only a positive component and second component data including at least one of a positive component and a negative component, and the second component data 21. The ultrasonic image creation program according to claim 19 or 20, further comprising a function of creating third component data consisting of only a negative component based on the second component data when a negative component is included in.
[22] 前記第二の画像データは、正常な生体内臓器に超音波を照射して得られる反射波 に基づいて作成されたものである請求項 19または請求項 20記載の超音波画像作成 プログラム。 [22] The ultrasound image creation program according to claim 19 or 20, wherein the second image data is created based on a reflected wave obtained by irradiating a normal in vivo organ with ultrasound. .
[23] 前記第二の画像データは、レイリー分布に近似できる成分からなる請求項 19また は請求項 20記載の超音波画像作成プログラム。  23. The ultrasonic image creation program according to claim 19 or 20, wherein the second image data includes a component that can be approximated to a Rayleigh distribution.
[24] コンピュータに、 [24] On the computer,
生体内臓器に放射された超音波の反射波に基づき作成された第一の信号データ と、前記第一の信号データとは別の第二の信号データと、を合成して合成データを 作成する合成部と、  A composite data is created by combining the first signal data created based on the reflected wave of the ultrasonic wave radiated to the internal organ and the second signal data different from the first signal data. A synthesis unit;
前記合成データに対して独立成分分析を行い、複数の成分データを作成する解析 部と、  An analysis unit that performs independent component analysis on the synthesized data and creates a plurality of component data;
前記解析部が作成した前記複数の成分データの少なくともレ、ずれかを表示する表示 部と、して機能させる超音波画像作成プログラム。  An ultrasonic image creation program that functions as a display unit that displays at least a shift or deviation of the plurality of component data created by the analysis unit.
[25] 前記解析部は、正の成分のみを含む第一の成分データと、正の成分及び負の成 分の少なくともいずれ力を含む第二の成分データを作成し、前記第二の成分データ に負の成分が含まれる場合、前記第二の成分データに基づき負の成分のみからなる 第三の成分データを作成する機能も有する請求項 24記載の超音波画像作成プログ ラム。 [25] The analysis unit creates first component data including only a positive component and second component data including at least one of a positive component and a negative component, and the second component data 25. The ultrasound image creation program according to claim 24, which also has a function of creating third component data consisting of only a negative component based on the second component data when a negative component is included in.
[26] 前記第二の信号データは、正常な生体内臓器に超音波を照射して得られる反射波 に基づいて作成されたものである請求項 24記載の超音波画像作成プログラム。  26. The ultrasonic image creation program according to claim 24, wherein the second signal data is created based on a reflected wave obtained by irradiating a normal in vivo organ with ultrasonic waves.
[27] 前記第二の信号データは、レイリー分布に近似できる成分力 なる請求項 24記載 の超音波画像作成プログラム。  27. The ultrasonic image creation program according to claim 24, wherein the second signal data has a component force that can approximate a Rayleigh distribution.
PCT/JP2007/062452 2006-06-21 2007-06-20 Ultrasound imaging device, ultrasound imaging method, and ultrasound imaging program WO2007148735A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008522501A JPWO2007148735A1 (en) 2006-06-21 2007-06-20 Ultrasound image creation device, ultrasound image creation method, ultrasound image creation program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-171991 2006-06-21
JP2006171991 2006-06-21

Publications (1)

Publication Number Publication Date
WO2007148735A1 true WO2007148735A1 (en) 2007-12-27

Family

ID=38833474

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/062452 WO2007148735A1 (en) 2006-06-21 2007-06-20 Ultrasound imaging device, ultrasound imaging method, and ultrasound imaging program

Country Status (2)

Country Link
JP (1) JPWO2007148735A1 (en)
WO (1) WO2007148735A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020042033A1 (en) * 2018-08-29 2020-03-05 深圳迈瑞生物医疗电子股份有限公司 Ultrasound-based liver examination device, ultrasound apparatus, and ultrasound imaging method
WO2021035400A1 (en) * 2019-08-23 2021-03-04 深圳迈瑞生物医疗电子股份有限公司 Measurement method and device for hepato-renal echo contrast, medical system, and storage medium

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
OKAMOTO S. ET AL.: "Dokuritsu Seibun Bunseki ni yoru Kan Echo Joho no Kaiseki", IEICE TECHNICAL REPORT, vol. 102, no. 607, 21 January 2003 (2003-01-21), pages 59 - 64, XP003019682 *
SHIMURA H. ET AL.: "Dokuritsu Seibun Bunseki ni yoru kan Echo Shingo kara no Byohen Joho Bunri", IEICE TECHNICAL REPORT, vol. 106, no. 109, 15 June 2006 (2006-06-15), pages 1 - 6, XP003019681 *
WANG X. ET AL.: "Ultrasound Image Restoration Using Spatially Adaptive Filter for Independent Components Analysis, Machine Learning for Signal Processing", 2005 IEEE WORKSHOP, September 2005 (2005-09-01), pages 195 - 199, XP010853889 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020042033A1 (en) * 2018-08-29 2020-03-05 深圳迈瑞生物医疗电子股份有限公司 Ultrasound-based liver examination device, ultrasound apparatus, and ultrasound imaging method
US11890133B2 (en) 2018-08-29 2024-02-06 Shenzhen Mindray Bio-Medical Electronics Co., Ltd. Ultrasound-based liver examination device, ultrasound apparatus, and ultrasound imaging method
WO2021035400A1 (en) * 2019-08-23 2021-03-04 深圳迈瑞生物医疗电子股份有限公司 Measurement method and device for hepato-renal echo contrast, medical system, and storage medium
CN112788997A (en) * 2019-08-23 2021-05-11 深圳迈瑞生物医疗电子股份有限公司 Liver and kidney echo comparison measuring method, device, medical system and storage medium

Also Published As

Publication number Publication date
JPWO2007148735A1 (en) 2009-11-19

Similar Documents

Publication Publication Date Title
JP6734079B2 (en) Medical diagnostic device and medical analysis program
Tranquart et al. Clinical use of ultrasound tissue harmonic imaging
CN103889337B (en) Diagnostic ultrasound equipment and ultrasonic diagnosis apparatus control method
US9492139B2 (en) Non-imaging low frequency ultrasonic testing and diagnostic evaluation system
US10743845B2 (en) Ultrasound diagnostic apparatus and method for distinguishing a low signal/noise area in an ultrasound image
WO2006123742A1 (en) Image diagnosing device
JP5509038B2 (en) Ultrasonic diagnostic apparatus, ultrasonic image processing apparatus, and ultrasonic image processing program
EP3769690B1 (en) Method for tissue characterization by ultrasound wave attenuation measurements and ultrasound system for tissue characterization
US9855025B2 (en) Ultrasonic diagnostic apparatus and ultrasonic image processing apparatus
JP2004321582A (en) Ultrasonic diagnostic equipment and ultrasonic diagnosis support program
JP2009261493A (en) Ultrasonic diagnostic method and apparatus
CN111050660A (en) Ultrasonic diagnostic apparatus and method for evaluating physical properties of biological tissue
JP6538280B2 (en) Apparatus and method for characterizing a subject's tissue
CN112773403A (en) Ultrasonic imaging method and system
JP2012075464A (en) Photoacoustic diagnostic imaging equipment, image generating method, and program
WO2019088169A1 (en) Ultrasonic diagnosis system and ultrasonic diagnosis method
WO2007148735A1 (en) Ultrasound imaging device, ultrasound imaging method, and ultrasound imaging program
JP2012245092A (en) Ultrasonic diagnostic apparatus
JP2012170512A (en) Ultrasonic diagnostic apparatus, and program for ultrasonic diagnosis
Ghavami et al. Pulsed vibro-acoustic method for assessment of osteoporosis & osteopenia: A feasibility study on human subjects
Coila et al. Recent developments in spectral-based ultrasonic tissue characterization
US10327740B2 (en) Retrieving high spatial frequency information in sonography
Lanzolla et al. Improving b-mode ultrasound medical images
KR101956460B1 (en) Method for detecting microcalcification using ultrasound medical imaging device and ultrasound medical imaging device thereof
Arregui García Exploring the Physics and Emerging Clinical Applications of Quantitative Ultrasound in Oncology: A Comprehensive Review

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07767290

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008522501

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07767290

Country of ref document: EP

Kind code of ref document: A1