WO2007139008A1 - 電気二重層コンデンサおよびその製造方法 - Google Patents

電気二重層コンデンサおよびその製造方法 Download PDF

Info

Publication number
WO2007139008A1
WO2007139008A1 PCT/JP2007/060685 JP2007060685W WO2007139008A1 WO 2007139008 A1 WO2007139008 A1 WO 2007139008A1 JP 2007060685 W JP2007060685 W JP 2007060685W WO 2007139008 A1 WO2007139008 A1 WO 2007139008A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode layer
polarizable electrode
lead wire
electric double
current collector
Prior art date
Application number
PCT/JP2007/060685
Other languages
English (en)
French (fr)
Inventor
Eri Hirose
Yasuyuki Ito
Satomi Onishi
Mitsuru Iwai
Takumi Yamaguchi
Ichiro Aoki
Kouji Moriyama
Yoshiki Hashimoto
Original Assignee
Panasonic Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corporation filed Critical Panasonic Corporation
Priority to EP07744119.4A priority Critical patent/EP1990814A4/en
Priority to KR1020087027348A priority patent/KR101158963B1/ko
Priority to CN2007800199259A priority patent/CN101454853B/zh
Priority to US12/300,619 priority patent/US7706129B2/en
Priority to JP2008517901A priority patent/JPWO2007139008A1/ja
Publication of WO2007139008A1 publication Critical patent/WO2007139008A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • H01G11/28Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features arranged or disposed on a current collector; Layers or phases between electrodes and current collectors, e.g. adhesives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/66Current collectors
    • H01G11/70Current collectors characterised by their structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/74Terminals, e.g. extensions of current collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • the present invention relates to an electric double layer capacitor used in various electronic devices and a method for manufacturing the same, and more particularly to an electric double layer capacitor excellent in low resistance, low temperature characteristics and long-term reliability and a method for manufacturing the same.
  • FIG. 10 is a partially cutaway perspective view showing the configuration of this type of conventional electric double layer capacitor.
  • a capacitor element 121 is configured by winding an anode electrode 122 and a cathode electrode 123 with a separator 124 interposed therebetween.
  • the anode electrode 122 and the cathode electrode 123 are configured by forming polarizable electrode layers 126 (the back side is not shown) on both surfaces of a current collector 125 made of metal foil. . Further, an anode lead wire 127 and a cathode lead wire 128 are connected to the anode electrode 122 and the cathode electrode 123, respectively.
  • Capacitor element 121 configured in this manner is inserted into bottomed cylindrical case 129 after impregnating a driving electrolyte solution (not shown), and a hole through which anode lead wire 127 and cathode lead wire 128 are inserted.
  • a driving electrolyte solution not shown
  • a hole through which anode lead wire 127 and cathode lead wire 128 are inserted After the rubber sealing member 130 having the opening 130 is disposed in the opening portion of the case 129, the outer periphery of the opening portion of the case 129 is drawn inward, and the opening end of the case 129 is subjected to a ring-ringing. Sealing is performed.
  • polarizable electrodes 126 are formed in layers on both sides of the current collector 125.
  • the contact resistance is increased if the anode lead wire 127 is attached from above the polarizable electrode layer 126.
  • the current collector 125 was exposed by scraping off the polarizable electrode layer 126 at the mounting position of the cathode lead wire 128 and the like.
  • the connection with the metal foil as the current collector 125 is improved.
  • the polarizable electrode layer 126 at the connection portion is partially removed. This method of removing the polarizable electrode layer 126 is forcibly removed by using a rotating brush or the like, and is connected with processing accuracy and problems related to assembly. It is removed in an area considerably larger than the area. Therefore, in the state where the lead wire is connected to each electrode, the polarizable electrode layer 126 is not present at the periphery of the lead wire, and the portion where the current collector 125 is exposed exists.
  • Electrolyte for driving causes reaction and BF-, PF-, etc. of electrolyte-on are on the anode side
  • the separator becomes deteriorated due to the acidity in the periphery.
  • Patent Document 1 Japanese Patent Laid-Open No. 8-83738
  • Patent Document 2 JP-A-10-270293 Disclosure of the invention
  • the present invention solves such conventional problems and suppresses gas generation in the electric double layer capacitor in order to obtain an electric double layer capacitor having excellent long-term reliability.
  • the present invention provides an arrangement in which a polarizable electrode layer is formed on both surfaces of a current collector made of a metal foil, and the polarizable electrode layer on the electrode is removed after the electrode on which the lead wire is attached.
  • the projected area of the part connected to the current collector of the lead wire is 1, and the area of the polarizable electrode layer removal part is 1 or more and 2.0 or less.
  • a double layer capacitor is used.
  • the electric double layer capacitor of the present invention has a polarizable electrode layer formed on both sides of the current collector, and a polarizable electrode layer removing portion that acts as a collector exposed portion around the lead wire attachment position.
  • a part of the polarizable electrode layer is removed, and a lead wire is formed on the part from which a part of the polarizable electrode layer is removed.
  • the anode electrode and the cathode electrode are prepared by connecting the electrodes. Then, as a method of removing a part of the polarizable electrode layer, a heating type metal plate corresponding to the shape of the removed portion is pressed against the polarizable electrode layer and heated, thereby heating the noinder in the polarizable electrode layer.
  • the heated portion of the polarizable electrode layer was mechanically scraped using a rotating brush. Furthermore, as an area for removing a part of the polarizable electrode layer, the polarizable electrode layer having an area of 1 to 2 times the area of the connecting portion of the lead wire connected to the removed portion is removed. Is.
  • the noinder component in the polarizable electrode layer is scattered, and the polarizable electrode layer is scraped off with a brush.
  • the polarizable electrode layer can be removed very easily. Since only the necessary part of the polarizable electrode layer can be removed with high accuracy, only the polarizable electrode layer having the minimum necessary area is removed and the lead wire is connected to collect current. Can reduce unnecessary exposed parts of the body It ’s like this. Therefore, even when a high voltage is applied and used for a long time, the electrolyte anions BF-, PF-, etc. generated in the exposed portion of the current collector of the cathode electrode are concentrated and acidic.
  • FIG. 1 is a partially cutaway perspective view of an electric double layer capacitor according to Embodiment 1 of the present invention.
  • FIG. 2A is a plan view showing the surface of the electrode of the electric double layer capacitor according to Embodiment 1 of the present invention.
  • FIG. 2B is a plan view showing the back surface of the electrode of the electric double layer capacitor according to Embodiment 1 of the present invention.
  • FIG. 3A is an enlarged plan view of a polarizable electrode layer removal portion of the electric double layer capacitor according to Embodiment 1 of the present invention.
  • FIG. 3B is an enlarged plan view of the lead wire of the electric double layer capacitor according to the first embodiment of the present invention.
  • FIG. 4 is a cross-sectional view schematically showing positive and negative electrodes of an electric double layer capacitor according to Embodiment 1 of the present invention.
  • FIG. 5 is a graph comparing the amount of swelling in the case height direction of the electric double layer capacitor according to the first embodiment of the present invention.
  • FIG. 6 is a partial plan view showing contact between a lead wire and a current collector in Embodiment 2 of the present invention.
  • FIG. 7A is a plan view of a principal part showing a configuration of an anode electrode used in the capacitor element.
  • FIG. 7B is a cross-sectional view taken along the line AA of FIG.
  • FIG. 8 is a production process diagram showing a production method for producing the anode (cathode) electrode.
  • FIG. 9 is a partially cutaway perspective view showing the structure of a conventional electric double layer capacitor.
  • Embodiment 1 of the present invention will be described with reference to FIGS.
  • FIG. 1 is a partially cutaway perspective view showing the configuration of the electric double layer capacitor in the first embodiment.
  • a capacitor element 1 includes a polarizable electrode layer 4 formed on both surfaces of two current collectors 3 made of a metal foil such as aluminum to which a lead wire 2 is connected, and an anode electrode 9 and a cathode electrode 1 It is set to 0, and is wound by interposing a separator 5 for preventing a short circuit therebetween.
  • a pair of lead wires 2 and separators 5 are also prepared to correspond to the positive and negative electrodes, respectively.
  • the capacitor element 1 is impregnated with a driving electrolyte solution (not shown), and a rubber sealing rod provided with a hole through which the lead wire 2 is inserted at the upper end of the capacitor element 1 as shown in FIG. Fit member 7 It is configured so that it is housed in a bottomed cylindrical case 8 that is embedded and has aluminum force, and the case 8 is sealed by compressing the sealing member 7 by drawing the opening of the case 8. .
  • the polarizable electrode layer 4 is composed of a mixture of activated carbon powder, carbon black, and a binder.
  • the activated carbon powder include wood powder, coconut shell, phenol resin, and petroleum coatus. , Coal-cotas-based, and pitch-based raw materials are used.
  • the binder a mixture of polytetrafluoroethylene and carboxymethylcellulose (hereinafter referred to as CMC) water-soluble binder is used.
  • FIG. 2A and FIG. 2B are plan views showing the front and back surfaces of the electrodes used in the electric double layer capacitor.
  • Fig. 2B shows the image flipped vertically in Fig. 2A.
  • the electrode 14 has a polarizable electrode layer 4 formed on both surfaces of the current collector 3, but the current collector is obtained by scraping a part corresponding to the attachment position of the lead wire 2.
  • a polarizable electrode layer removing portion 6 with the body 3 exposed is provided, and attached to the polarizable electrode layer removing portion 6 by a lead wire 2 force S caulking joint or the like. This is because when a lead wire 2 is directly attached from above the electrode 14 on which the polarizable electrode layer 4 is formed, the current flows between the polarizable electrode layer 4 and the lead wire 2 when a current flows from the lead wire 2 to the electrode 14. Since the contact resistance increases and the loss increases during charging and discharging of the capacitor, the polarizable electrode layer 4 corresponding to the mounting position of the lead wire 2 is removed.
  • FIG. 3A is an enlarged plan view of the polarizable electrode layer removing unit 6, and FIG. 3B is an enlarged plan view of the lead wire 2.
  • a projection portion 2 a that is a portion overlapping the electrode 14 is indicated by hatching.
  • the area of the projection part 2a is 1, the area of the polarized electrode layer removal part 6 should be 1 or more and 2.0 or less.
  • the polarizable electrode layer removing portion 6 is provided on the electrode 14 and the area of the projected portion 2a of the lead wire 2 is 1, the area of the polarizable electrode layer removing portion 6 is 1 or more. 2. It is one of the technical features of the present invention that the value is 0 or less. By doing so, the resistance of the lead wire 2 and the current collector 3 is suppressed, and the periphery of the lead wire 2 attachment portion It can suppress the generation of powerful gas.
  • the separator around the attachment portion of the lead wire 2 which is a phenomenon that appears more prominently under the conditions of 2.7 V and 70 ° C. which are higher voltage and higher temperature. It is possible to suppress an increase in internal pressure due to gas generation due to decomposition and corrosion of the gas.
  • FIG. 4 is a schematic diagram showing a state in which the polarizable electrode layer 4 is opposed to the positive and negative electrodes of the electric double layer capacitor according to the first embodiment with the separator 5 interposed therebetween.
  • the anode electrode 9 in which the polarizable electrode layer 4 is formed on both surfaces of the current collector 3 is opposed to the cathode electrode 10 having the same configuration via the separator 5.
  • the negative electrode 10 is formed with a polarizable electrode layer removing portion 6 around the portion where the lead wire 2 is attached.
  • the ion 11 in the electrolyte that is impregnated in the case 8 or in the separator 5 concentrates on the positive electrode 9 side, and the cation 12 in the electrolyte 12 Concentrates on the negative electrode 10 side.
  • the ion 11 and the cation 12 facing each other through the separator 5 are electrically stable.
  • the anion 11 facing the polarizable electrode layer removing unit 6 reacts with moisture. The strong acid derived from the anion 11 was generated.
  • the polarizable electrode layer removal portion 6 is formed over the entire width of the current collector 3 in the vertical direction. This is because the polarizable electrode layer 4 is provided on the current collector 3. In the process of removing the polarizable electrode layer 4 in order to make the cathode electrode 10 and then attach the lead wire 2, the removal portion is set to be larger than the width of the polarizable electrode layer 4 for the purpose of improving productivity. It was because I was angry.
  • the polarizable electrode layer removing portion 6 is formed more than necessary, the area of the polarizable electrode layer removing portion 6 that does not face the polarizable electrode layer 4 via the separator 5 described above. would become large and cause gas generation.
  • the resistance of the lead wire 2 and the current collector 3 is reduced by setting the length of this portion to an appropriate size shorter than the width of the cathode electrode 10. It is possible to suppress gas generation from this part.
  • the polarizable electrode layer removing portion 6 is formed by partially heating the polarizable electrode layer 4 by applying a heated metal or the like and then rubbing with a roller brush or the like. Is possible. When formed in this way, the tip of the polarizable electrode layer removal portion 6 shows a slightly rounded shape as shown in FIG. 3A.
  • the polarizable electrode layer removing unit 6 When the polarizable electrode layer removing unit 6 is provided and the projection area of the projecting unit 2a, which is a portion connected to the cathode electrode 10 of the lead wire 2, is set to 1, the polarizable electrode layer removing unit 6 The area may be 1 or more and 2.0 or less at least only on the cathode electrode 10 side. While the same force is applied to the anode electrode 9 side, gas generation is suppressed, and the force and manufacturing cost can be reduced.
  • FIG. 5 shows the area ratio of the polarizable electrode layer removal unit 6 and the electric double layer capacitor when the projection area of the projection unit 2a, which is a portion connected to the cathode electrode 10 of the lead wire 2, is 1.
  • AL mm
  • the test method in FIG. 5 is that the area ratio of the polarizable electrode layer removing unit 6 is set assuming that the projected area of the projection unit 2a, which is a portion connected to the cathode electrode 10 of the lead wire 2, is 1.
  • the width of the projecting portion 2a of the lead wire 2 in Fig. 3B is 1
  • the width of the polarizable electrode layer removing portion 6 in Fig. 3A is 1.8 or less. It has the effect of suppressing gas generation.
  • Embodiment 2 of the present invention will be described with reference to FIG.
  • FIG. 6 is a partial plan view when the contact between the lead wire 22 and the current collector 20 is performed by a method different from that in the first embodiment in the second embodiment of the present invention.
  • a plane portion of the lead wire 22 is formed.
  • the polarizable electrode layer 21 at the mounting position 23 is scraped off, and a polarizable electrode layer removing portion 26 is provided.
  • four crimping junctions 24 are made on the polarizable electrode layer removing portion 26 and the flat portion 23 of the lead wire 22.
  • the current collector 27 and the lead wire 22 are joined by performing the cold pressure welding 25 on the straight line connecting the caulking joints 24 at both ends.
  • Embodiment 2 the number and location of caulking and cold welding in Embodiment 2 are not limited to the above, and the current is collected on the flat portion 23 of the lead wire by force crimping and cold welding. The same effect can be obtained if the body 27 is joined, but at least two spots It is desirable to be joined by multiple joints and multiple pressure welding!
  • Embodiment 3 the present invention is not limited to this embodiment.
  • the configuration of the electric double layer capacitor is the same as that described with reference to FIG.
  • FIG. 7A is a main part plan view showing the configuration of the anode electrode 32 used in the capacitor element 31, and FIG. 7B is a sectional view taken along the line AA.
  • a part of the polarizable electrode layer 36 formed on the cathode electrode 32 (the same applies to the polarizable electrode layer formed on the anode electrode) is removed to expose the current collector 35.
  • the anode lead wire 37 is connected to the exposed portion of the current collector 35 by means such as caulking and Z, cold welding, or ultrasonic welding.
  • the removal of the polarizable electrode layer 36 is intended to remove an area that is 1 to 2 times the area of the connection portion of the anode lead wire 37 connected to the removal portion (details will be described later). .
  • the lead wire 2 is not shown, and the sealing member 7 is attached through the hole provided in the rubber sealing member 7. Then, after impregnating the capacitor element 1 with a driving electrolyte solution (not shown), the capacitor element 1 is inserted into a bottomed cylindrical case 8 (not shown), and the sealing member 7 is disposed in the opening of the case 8. The case 8 is sealed through the sealing member 7 by subjecting the opening of the case 8 to horizontal drawing and curling.
  • the electric double layer capacitor according to the third embodiment configured as described above has an unnecessary component by removing the polarizable electrode layer 4 having the minimum necessary area and connecting the lead wire on the cathode side.
  • the exposed portion of the polar electrode layer removal portion can be extremely reduced. Therefore, even when a voltage is applied for a long period of time, BF- and PF-, which are electrolyte anions, are concentrated on the anode side due to the exposed portion of the polarizable electrode layer removal portion of the cathode electrode 10.
  • FIG. 9 is a production process diagram showing a production method for producing the anode electrode 9 and the cathode electrode 10, and specific examples will be described below with reference to FIG.
  • a high-purity metal foil (A1: 99. 99% or more) with a thickness of 30 m is used as a current collector that also serves as a metal foil capacitor, and the surface of the metal foil is roughened by electrolytic etching in a hydrochloric acid-based etchant. Turned into.
  • the polarizable electrode layer was similarly formed on the other surface by turning the metal foil upside down.
  • a positive electrode having the polarizable electrode layer formed on both sides was obtained.
  • This polarizable electrode layer is formed by using a phenol rosin-based activated carbon powder having an average particle diameter of 5 ⁇ m, carbon black having an average particle diameter of 0.05 m as a conductivity-imparting agent, and CMC (carboxymethylcellulose).
  • a phenol rosin-based activated carbon powder having an average particle diameter of 5 ⁇ m
  • carbon black having an average particle diameter of 0.05 m as a conductivity-imparting agent
  • CMC carboxymethylcellulose
  • the polarizable electrode layer formed on both sides is pressed for the purpose of increasing the density and increasing the capacity by flatness, and then slitting to a desired width dimension. I did.
  • an anode lead wire (or cathode lead wire) was connected to the anode electrode (or cathode electrode) thus produced.
  • Each lead wire is connected with a polarizable electrode layer formed on a surface of a current collector by first forming a metal plate formed in substantially the same shape as the lead wire connecting portion and heated to 280 ° C by a heater.
  • the binder component in the polarizable electrode layer was scattered. If only the binder component is to be scattered, the temperature is set to 280 ° C in order to disperse in 1 second in consideration of mass production.
  • the polarizable electrode layer of the heated portion is mechanically scraped using a rotary brush, and a lead wire is disposed on the portion from which the polarizable electrode layer has been removed, and crimped and / or bonded. Or the lead wire was connected by cold pressure welding.
  • the removal of the polarizable electrode layer may be performed only on one surface on the side where the lead wire is connected. By removing both surfaces, the reliability of connection and the reduction of the resistance component are further improved. Therefore, it can be said that the double-sided removal is more preferable.
  • the polarizable electrode layer is removed by removing an area of 1 to 2 times the area of the connecting portion of the lead wire connected to the removed portion. When the removal area exceeds twice, the current collector is exposed too much, and therefore, when a voltage is applied for a long time, the current collector is exposed to the cathode electrode current collector through the separator.
  • the driving electrolyte solution reacts with the polarizable electrode layer of the anode electrode facing each other, and BF-, PF_
  • a capacitor element was obtained by winding the anode electrode and the cathode electrode thus produced with a 35 ⁇ m thick separator interposed therebetween.
  • this capacitor element was impregnated with a driving electrolyte.
  • the driving electrolyte used was a solution of 4 ethyl ammonium tetrafluoride in propylene carbonate.
  • capacitor element is inserted into a bottomed cylindrical aluminum case, and the opening of the case is sealed with a rubber sealing member, whereby the electric power according to the present embodiment is obtained.
  • a double layer capacitor was fabricated (capacitor dimension: ⁇ 20 X 45 mm).
  • Example 1 when removing a part of the polarizable electrode layer, the heated metal plate was used to scatter the noinda component in the polarizable electrode layer. Otherwise, an electric double layer capacitor was fabricated in the same manner as in Example 1.
  • Example 1 the removal area for removing a part of the polarizable electrode layer is 2.5 times the area of the lead wire connecting portion, and the heated metal plate is used to remove the noble electrode layer from the polarizable electrode layer. There was no work to disperse the solder components. Otherwise, an electric double layer capacitor was fabricated in the same manner as in Example 1.
  • Table 1 shows the initial characteristics (capacitance, DC capacitor resistance (hereinafter abbreviated as DCR)) and the results of a characteristic deterioration test when 2.7 V was applied at 85 ° C. The number of tests was 20 and the average value was listed. The DCR is calculated by calculating the slope between 0.5 and 2. Osec at the start of charging after discharging.
  • the electric double layer capacitor according to the present invention can greatly improve AC, A DCR, and product swelling in a characteristic deterioration test in which the capacitance change is smaller than in Comparative Example 1.
  • Example 1 it can be seen that the effect is large.
  • the method for manufacturing an electric double layer capacitor according to the present invention has a polarizable electrode when a lead wire is connected by removing a part of the polarizable electrode layer formed on both sides of the current collector.
  • a heated metal plate is pressed against the portion where the layer is removed to disperse the binder component in the polarizable electrode layer and then mechanically scrape it off.
  • an area for removing a part of the polarizable electrode layer an area that is 1 to 2 times the area of the connection portion of the lead wire connected to the removal portion is removed. This method makes it possible to remove the polarizable electrode layer very easily and accurately.
  • the exposed portion of the unnecessary current collector can be extremely reduced to suppress the deterioration of the separator.
  • gas generation, resistance increase, and capacity decrease caused by electrochemical reaction can be suppressed, and a highly reliable electric double layer capacitor with less characteristic deterioration can be manufactured stably.
  • the generation of gas is suppressed.
  • the resistance of the capacitor can be reduced and the reliability can be improved.
  • it is useful for automobile systems that require high current and high reliability at low temperatures.
  • the method for producing an electric double layer capacitor according to the present invention is excellent in reliability with little deterioration in the characteristics of the polarizable electrode layer, and is particularly useful when producing an electric double layer capacitor for vehicle use.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

 電気二重層コンデンサにおいて、分極性電極層の抵抗低減とケース内のガス発生抑制による信頼性向上を図る。そのために、金属箔からなる集電体の両面に分極性電極層を形成してリード線を取り付けた電極を正負一対とし、その間にセパレータを介在させて分極性電極層が対向するように巻回したコンデンサ素子を、駆動用電解液とともにケースに収納してなる電気二重層コンデンサとする。そして、リード線は電極上の分極性電極層を除去した分極性電極層除去部に取り付けられ、リード線の集電体と接続される部分の投影面積を1とした際に、分極性電極層除去部の面積が1以上2.0以下である電気二重層コンデンサとする。

Description

明 細 書
電気二重層コンデンサおよびその製造方法
技術分野
[0001] 本発明は、各種電子機器に利用される電気二重層コンデンサおよびその製造方法 に関し、特に低抵抗、低温特性および長期信頼性に優れた電気二重層コンデンサ およびその製造方法に関する。
背景技術
[0002] 図 10は、この種の従来の電気二重層コンデンサの構成を示した一部切り欠き斜視 図である。図 10において、コンデンサ素子 121は、陽極電極 122と陰極電極 123を その間にセパレータ 124を介在させた状態で卷回することにより構成されている。
[0003] また、陽極電極 122と陰極電極 123は、金属箔からなる集電体 125の両面に分極 性電極層 126 (裏面側は図示せず)を夫々形成することにより構成されたものである。 さら〖こ、この陽極電極 122と陰極電極 123には夫々陽極リード線 127と陰極リード線 128が接続されている。
[0004] このように構成されたコンデンサ素子 121は、図示しない駆動用電解液を含浸させ た後に有底円筒状のケース 129内に挿入され、陽極リード線 127と陰極リード線 128 が挿通する孔を有したゴム製の封ロ部材 130をケース 129の開口部に配設した後、 ケース 129の開口部の外周を内側に絞り加工すると共に、ケース 129の開口端を力 一リングカ卩ェすることによって封止を行っている。
[0005] この集電体 125は電極としての効率向上のために、集電体 125の両面に分極性電 極 126を層状に形成している。この電極カゝら電気的に引き出すために陽極リード線 1 27と陰極リード線 128を取り付ける際に、分極性電極層 126の上から取り付けると接 触抵抗が高くなるため、従来は陽極リード線 127と陰極リード線 128の取り付け位置 の分極性電極層 126を削り取るなどして、集電体 125を露出させていた。すなわち、 陽極リード線 127と陰極リード線 128は、集電体 125である金属箔との接続を良好に して抵抗成分を低減させるために、接続部分の分極性電極層 126を部分的に除去し 、集電体 125を露出させて力も接続しているものである。 [0006] なお、この出願の発明に関連する先行技術文献情報としては、例えば、特許文献 1 、特許文献 2が知られている。
[0007] し力しながら、上記従来の電気二重層コンデンサの構成において、特に負極の分 極性電極層 126においては、陰極リード線 128を取り付ける際の集電体 125露出部 分がセパレータ 124を介して、正極の分極性電極層 126と対向すると、電解液中の ァ-オンが強酸性を発揮し、セパレータを分解、腐食してしまうということがあった。
[0008] また、上記従来の電気二重層コンデンサのでは、陽極電極 122 (陰極電極 123も 同様)に陽極リード線 127を接続する際に、集電体 125である金属箔との接続を良好 にして抵抗成分を低減させる目的で接続部分の分極性電極層 126を部分的に除去 している。この分極性電極層 126の除去方法は、回転型のブラシ等を用いて無理矢 理搔き取っているものであり、かつ、加工精度や組み立て上の問題等力も接続される リード線の接続部分の面積よりも相当大きな面積で除去されている。そのため、各電 極にリード線を接続した状態では、リード線の周縁には分極性電極層 126が存在せ ずに集電体 125が露出している部分が存在する状態であった。
[0009] しかしながら、従来の電気二重層コンデンサに要求される保証範囲(60°C、 2. 3V 以下)を超える範囲の保証(70°C、 2. 7V)の要求に対応しょうとすれば、このような 集電体 125の露出部分が発生していることにより、次のような問題があった。
[0010] すなわち、高い電圧を印加して長時間使用すると、陰極電極 123の集電体 125の 露出部分と、セパレータ 124を介して対向する陽極電極 122の分極性電極層 126と の間で、駆動用電解液が反応を起こして電解質ァ-オンの BF―、 PF—等が陽極側
4 6
に引き寄せられ、その周辺部が酸性となってセパレータ 124を劣化させてしまう。そ の結果、特性劣化のみならず、ガス発生や内圧の上昇が生じるという問題があった。
[0011] 従って、このような課題は、各電極に夫々のリード線を接続した後に、このリード線 ならびに集電体 125の露出部分に分極性電極層 126を形成するようにすれば一挙 に解決することが可能である力 このような工程をカ卩えることはコスト的にも大きな負担 を強いられることになるものであった。
特許文献 1:特開平 8— 83738号公報
特許文献 2:特開平 10— 270293号公報 発明の開示
[0012] 本発明はこのような従来の課題を解決し、長期信頼性に優れた電気二重層コンデ ンサとするため、電気二重層コンデンサ内でのガス発生を抑制するものである。
[0013] そのために、本発明は、金属箔からなる集電体の両面に分極性電極層を形成して リード線を取り付けた電極にぉ 、て、電極上の分極性電極層を除去した分極性電極 層除去部にリード線を取り付ける際に、リード線の集電体と接続される部分の投影面 積を 1とし、分極性電極層除去部の面積を 1以上 2. 0以下となる電気二重層コンデン サとする。
[0014] 本発明の電気二重層コンデンサは、集電体の両面に分極性電極層が形成されて おり、し力もリード線の取り付け位置周辺において集電体露出部分となる分極性電極 層除去部を必要最小限なものにすることによって、製造コストを抑えつつ、接触抵抗 の少ない、ガス発生の抑制された電極を備えた、長期信頼性に優れた電気二重層コ ンデンサおよびその製造方法を提供することができるものである。
[0015] また本発明は、集電体の両面に分極性電極層を形成した後、この分極性電極層の 一部を除去し、この分極性電極層の一部を除去した部分にリード線を接続することに より陽極電極ならびに陰極電極を作製する方法とする。そして、上記分極性電極層 の一部を除去する方法として、当該除去部分の形状に対応した加熱型の金属板を、 分極性電極層に押し当てて加熱することによって分極性電極層中のノインダ成分を 飛散させた後、この加熱された部分の分極性電極層を回転型のブラシを用いて機械 的に搔き取るようにしたものである。さらに、上記分極性電極層の一部を除去する面 積として、当該除去部分に接続されるリード線の接続部分の面積の、 1〜2倍の面積 の分極性電極層を除去するようにしたものである。
[0016] 本発明による電気二重層コンデンサの製造方法は、各電極にリード線を接続する 際に、分極性電極層中のノインダ成分を飛散させて力もブラシによって分極性電極 層を搔き取るようにした方法により、分極性電極層を極めて容易に除去することがで きるようになる。そればかりでなぐ分極性電極層の必要部分のみを精度良く除去す ることが可能になるため、必要最低限の面積の分極性電極層のみを除去してリード 線を接続することによって、集電体の不要な露出部分を極めて少なくすることができ るよう〖こなる。そのため、高い電圧を印加して長時間使用した場合でも、陰極電極の 集電体の露出部分に発生した電解質ァニオンである BF―、 PF—等が集中して酸性
4 6
になることが極めて少なくなる。そのためにセパレータの劣化が抑制され、これにより 、電気化学反応によって生じるガス発生、抵抗増加や容量減少も抑制され、特性劣 化の少ない高信頼性の電気二重層コンデンサを安定して製造することができるように なるものである。
図面の簡単な説明
[図 1]図 1は、本発明の実施の形態 1における電気二重層コンデンサの一部切り欠き 斜視図である。
[図 2A]図 2Aは、本発明の実施の形態 1による電気二重層コンデンサの電極の表面 を示す平面図である。
[図 2B]図 2Bは、本発明の実施の形態 1による電気二重層コンデンサの電極の裏面 を示す平面図である。
[図 3A]図 3Aは、本発明の実施の形態 1による電気二重層コンデンサの分極性電極 層除去部の拡大平面図である。
[図 3B]図 3Bは、本発明の実施の形態 1による電気二重層コンデンサのリード線の拡 大平面図である。
[図 4]図 4は、本発明の実施の形態 1による電気二重層コンデンサの正負極を模式的 に表した断面図である。
[図 5]図 5は、本発明の実施の形態 1による電気二重層コンデンサのケース高さ方向 の膨れ量を比較したグラフである。
[図 6]図 6は、本発明の実施の形態 2におけるリード線と集電体との接触を示す部分 平面部である。
[図 7A]図 7Aは、同コンデンサ素子に使用される陽極電極の構成を示した要部平面 図である。
[図 7B]図 7Bは、同 A— A断面図である。
[図 8]図 8は、同陽極 (陰極)電極を作製する製造方法を示した製造工程図である。
[図 9]図 9は、従来の電気二重層コンデンサの構成を示した一部切り欠き斜視図であ る。
符号の説明
1 コンデンサ素子
2 リード線
2a 投影部
3 集電体
4 分極性電極層
5 セパレータ
6 分極性電極層除去部
7 封ロ部材
8 ケース
9 陽極電極
10 陰極電極
11 ァニオン
12 カチオン
発明を実施するための最良の形態
[0019] (実施の形態 1)
以下、本発明の実施の形態 1について、図 1から図 5を用いて説明する。
[0020] 図 1は本実施の形態 1における電気二重層コンデンサの構成を示した一部切り欠き 斜視図である。
[0021] 図 1において、コンデンサ素子 1は、リード線 2を接続したアルミニウムなどの金属箔 からなる 2つの集電体 3の両面に分極性電極層 4を形成して陽極電極 9、陰極電極 1 0とし、これに短絡防止用のセパレータ 5を介在させて卷回することにより構成されて いる。
[0022] なお、リード線 2、セパレータ 5も、それぞれ正負極に対応するよう一対用意されて いる。
[0023] このコンデンサ素子 1を駆動用電解液(図示せず)に含浸させ、図 1に示すごとぐコ ンデンサ素子 1の上端部にリード線 2が挿通する孔を設けたゴム製の封ロ部材 7を嵌 め込み、アルミニウム力もなる有底円筒状のケース 8に収納して、ケース 8の開口部を 絞り加工することにより、封ロ部材 7を圧縮してケース 8を封止するように構成されて いる。
[0024] また、上記分極性電極層 4は、活性炭粉末とカーボンブラックとバインダとを混練し たものにより構成され、上記活性炭粉末としては、木粉系、ヤシガラ系、フエノール榭 脂系、石油コータス系、石炭コータス系、ピッチ系の原料を賦活したものが用いられる 。また、バインダとしては、ポリテトラフルォロエチレン、カルボキシメチルセルロース( 以下、 CMCと呼ぶ)の水溶性バインダを混合したものが用いられる。
[0025] また、上記駆動用電解液の溶媒としては、プロピレンカーボネート、 γ プチ口ラタ トン、エチレンカーボネート、スルホラン、ァセトニトリル、ジメチルカーボネート、ジェ チルカーボネートまたはメチルェチルカーボネートのいずれ力 1種もしくは 2種以上の 混合物が用いられる。また、電解質カチオンとしては、第四級アンモ-ゥム、第四級 ホスホ-ゥム、イミダゾリゥム塩が使用され、一方、電解質ァ-オンとしては、 BF一、 Ρ
4
F―、 CIO―、 CF SO—または N (CF SO ) —が用いられる。
6 4 3 3 3 2 2
[0026] 図 2Aおよび図 2Bは、同電気二重層コンデンサに使用される電極の表裏面を示し た平面図である。図 2Aにおいて上下方向に反転させたものが図 2Bとなる。
[0027] 図 2Aおよび図 2Bにおいて、電極 14は、集電体 3の両面に分極性電極層 4が形成 されているが、リード線 2の取り付け位置にあたる部分を一部削り取るなどして集電体 3が露出した分極性電極層除去部 6を設け、この分極性電極層除去部 6にリード線 2 力 Sかしめ接合などで取り付けられている。これは、分極性電極層 4が形成された電極 14の上からリード線 2を直接取り付けると、リード線 2から電極 14へ電流が流れる際 に分極性電極層 4とリード線 2との間で接触抵抗が高くなつてしまい、コンデンサの充 放電時などで損失が大きくなつてしまうため、リード線 2の取り付け位置にあたる部分 の分極性電極層 4を除去するものである。
[0028] 図 3Aはこの分極性電極層除去部 6を拡大した平面図であり、図 3Bはリード線 2の 拡大平面図である。このリード線 2が電極 14に取り付けられる際に、電極 14と重なる 部分となる投影部 2aをハッチングを付して示す。投影部 2aの面積を 1とした際に、分 極性電極層除去部 6の面積は 1以上 2. 0以下となるようにする。 [0029] 上記のように、電極 14に分極性電極層除去部 6を設け、リード線 2の投影部 2aの面 積を 1とした際に、分極性電極層除去部 6の面積を 1以上 2. 0以下とすることが本発 明における技術的特徴の一つであり、このようにすることで、リード線 2と集電体 3の抵 抗を抑えるとともに、リード線 2の取り付け部周辺力ものガス発生を抑制できるもので ある。
[0030] 従来であれば、例えば 2. 3V以下、 60°Cといった条件で使用していた。しかしなが ら、本発明の実施の形態によれば、さらに高電圧、高温である 2. 7V、 70°Cといった 条件においてより顕著に表れる現象である、リード線 2の取り付け部周辺におけるセ パレータの分解、腐食を原因とした、ガス発生での内圧上昇を抑制することが可能に なるものである。
[0031] このリード線 2の取り付け部周辺でのガス発生について、図 4を用いて説明する。図 4は、実施の形態 1による電気二重層コンデンサの正負極において、セパレータ 5を 介して分極性電極層 4が対向している状態を表した模式図である。
[0032] 図 4において、集電体 3の両面に分極性電極層 4が形成された陽極電極 9は、セパ レータ 5を介して同一構成の陰極電極 10と対向している。負極 10にはリード線 2の取 り付け部周辺の分極性電極層除去部 6が形成されている。
[0033] この電気二重層コンデンサが充電されると、ケース 8内もしくはセパレータ 5に含浸 されて ヽる電解液中のァ-オン 11が正極 9側に集中し、同じく電解液中のカチオン 1 2が負極 10側に集中する。このとき、セパレータ 5を介して対向しているァ-オン 11 およびカチオン 12は電気的に安定している力 分極性電極層除去部 6と対向してい るァニオン 11は水分と反応するなどして、ァニオン 11に由来する強酸を発生させて しまうものであった。
[0034] このァ-オン 11に由来する強酸は、やがてセパレータ 5を分解したり腐食したりし、 ガス発生を引き起こす原因の一つとなりうるものでもあった。
[0035] 特にセパレータ 5がセルロースなど力もなる場合には、ガス発生抑制の効果はより 顕著になる。
[0036] 従来であれば、図 2Aにおいて、分極性電極層除去部 6は集電体 3の上下方向で ある全幅に渡って形成されるものであった。これは、集電体 3に分極性電極層 4を設 けて陰極電極 10とし、次にリード線 2を取り付けるために、分極性電極層 4を除去す るという工程においては生産性向上を目的として分極性電極層 4の幅以上に除去部 を設定して ヽたためであった。
[0037] したがって、必要以上に分極性電極層除去部 6が形成されるため、先に述べたセ パレータ 5を介して分極性電極層 4と対向していない分極性電極層除去部 6の面積 が大きくなつてしまい、ガス発生を引き起こしてしまうものであった。し力しながら、本 発明の実施の形態によれば、この部分の長さを陰極電極 10の幅よりも短い適正な大 きさにすることによって、リード線 2と集電体 3の抵抗を抑えるとともに、この部分からの ガス発生を抑制することができるようになるものである。
[0038] なお、この分極性電極層除去部 6の形成においては、分極性電極層 4に加熱した 金属などを当てるなどして部分的に加熱した後に、ローラーブラシなどでこすり取るこ とによって形成することが可能である。このように形成すると、分極性電極層除去部 6 の先端は図 3Aにあるように、やや丸みを帯びた形状を示すものである。
[0039] なお、分極性電極層除去部 6を設け、リード線 2の陰極電極 10と接続される部分で ある投影部 2aの投影面積を 1とした際に、分極性電極層除去部 6の面積を 1以上 2. 0以下とするのは、少なくとも陰極電極 10側だけでよい。し力しながら、陽極電極 9側 も同様にすることで、ガス発生が抑制され、し力も製造コストの抑制もできるようになる ものである。
[0040] 図 5は、リード線 2の陰極電極 10と接続される部分である投影部 2aの投影面積を 1 とした際に、分極性電極層除去部 6の面積比と電気二重層コンデンサ内でのガス発 生の目安となるケース 8の高さ方向の膨れ量である A L (mm)との関係を示したダラ フである。
[0041] 図 5における試験方法としては、リード線 2の陰極電極 10と接続される部分である投 影部 2aの投影面積を 1とした際に、分極性電極層除去部 6の面積比をそれぞれ変化 させた電気二重層コンデンサに対し、 85°C雰囲気下で DC2. 7V印加した状態で 25 0時間保持したものを取り出して放電した後、高さを測定し、初期の状態の高さと比較 して A L (mm)を算出した。初期の高さは 30mmであり、 A Lがおおよそ 1. 5mmを超 えるとケース 8の安全弁が作動し開弁状態となり、使用できなくなるものである。これら の試験は n (サンプル数) = 30で実施し、その平均値をグラフ化した。
[0042] 図 5において、投影面積比が 2. 0を超えると A Lが大きく増加している。これは、投 影面積比が 2. 0を超えた電気二重層コンデンサ正極において、セパレータを介して 分極性電極層 4と対向して 、な 、正極の面積が大きくなつてしま 、、ガス発生を引き 起こしてしまうためである。したがって、この投影面積比を 2. 0以下とすることでガス発 生の抑制をすることができるものである。
[0043] なお、このとき、図 3Bにおけるリード線 2の投影部 2aの幅を 1とした際に、図 3Aにお ける分極性電極層除去部 6の幅は 1. 8以下とすると、同様にガス発生抑制の効果を 奏するものである。
[0044] (実施の形態 2)
以下、本発明の実施の形態 2について、図 6を用いて説明する。
[0045] 図 6は、本発明の実施の形態 2において、リード線 22と集電体 20との接触を、上記 実施の形態 1とは異なる方法で実施したときの部分平面図である。
[0046] 図 6において、電極を構成するアルミニウムなどの金属箔カもなる集電体 27の両面 に形成された分極性電極層 21にリード線 22を接続するために、リード線 22の平面 部 23の取り付け位置の分極性電極層 21を削り取り、分極性電極層除去部 26を設け る。その後、分極性電極層除去部 26とリード線 22の平面部 23に、カゝしめ接合 24を 4 箇所 (電極 20の端側に 2箇所、内側に 2箇所)行う。さらに、両端のかしめ接合 24間 を結ぶ直線上に冷間圧接接合 25を 3箇所行うことにより、集電体 27とリード線 22とを 接合したものである。
[0047] このような構成にすることにより、リード線 22の平面部 23の両端にそれぞれ 2箇所 ずつ設けた力しめ接合 24によって高い強度接合が得られ、かつ、この力しめ接合 24 の両端間を結ぶ直線上に 3箇所設けた冷間圧接接合 25によって、低抵抗値で安定 した接続が得られるようになる。そして、従来の力しめ接合では困難であった小型品 への対応も可能になるものである。
[0048] なお、実施の形態 2のかしめ接合及び冷間圧接接合を行う数および場所は、上記 に限定されるものではなぐ力しめ接合と冷間圧接接合でリード線の平面部 23に集 電体 27が接合されていれば同様の効果が得られるが、少なくとも 2箇所以上のかし め接合と複数の圧接接合で接合されて!、ることが望ま 、。
[0049] (実施の形態 3)
以下、実施の形態 3を用いて、本発明について説明するが、本発明はこの実施の 形態に限定されるものではない。また、電気二重層コンデンサの構成は、実施の形 態 1で図 1を用いて説明したものと同様であるために、ここでの説明は省略する。
[0050] 図 7Aは同コンデンサ素子 31に使用される陽極電極 32の構成を示した要部平面 図、図 7Bは同 A— A断面図である。
[0051] 図 7A、 7Bにおいて、陰極電極 32に形成された分極性電極層 36 (陽極電極に形 成された分極性電極層も同じ)の一部を除去して集電体 35を露出させ、この集電体 35が露出した部分に陽極リード線 37をかしめ接合および Zまたは冷間圧接、超音 波溶接等の手段によって接続するようにしたものである。この分極性電極層 36の除 去は、当該除去部分に接続される陽極リード線 37の接続部分の面積の 1〜2倍の面 積を除去するようにしたものである(詳細は後述する)。
[0052] そして、このように構成されたコンデンサ素子は、リード線 2を図示しな 、ゴム製の封 ロ部材 7に設けられた孔に揷通して封ロ部材 7を装着する。そして、このコンデンサ 素子 1に図示しない駆動用電解液を含浸させた後に図示しない有底円筒状のケース 8内に挿入すると共に、上記封ロ部材 7をケース 8の開口部に配設し、このケース 8の 開口部に横絞り加工とカーリング加工を施すことによって上記封ロ部材 7を介して封 止を行って 、るものである。
[0053] このように構成された本実施の形態 3による電気二重層コンデンサは、必要最低限 の面積の分極性電極層 4を除去して陰極側のリード線を接続することによって、不要 な分極性電極層除去部の露出部分を極めて少なくすることができるようになる。その ため、電圧を印加して長時間使用した場合でも、陰極電極 10における分極性電極 層除去部の露出部分により、電解質ァニオンである BF―、 PF—等が陽極側に集中
4 6
して酸性になることが極めて少なくなる。そのためにセパレータ 5の劣化が抑制され、 これにより、電気化学反応によって生じるガス発生、抵抗増加や容量減少も抑制され 、特性劣化の少な!、高信頼性の電気二重層コンデンサを安定して製造することがで きるようになるものである。 [0054] 図 9は、上記陽極電極 9ならびに陰極電極 10を作製する製造方法を示した製造ェ 程図であり、この図 9を参照しながら、以下に具体的な実施例について説明する。
[0055] (実施例 1)
金属箔カもなる集電体として、厚さ 30 mの高純度金属箔 (A1: 99. 99%以上)を 使用し、塩酸系のエッチング液中で電解エッチングして金属箔の表面を粗面化した。
[0056] 次に、この金属箔の一方の表面に分極性電極層を形成した後、金属箔を裏返すこ とによって他方の表面にも同様に分極性電極層を形成し、これにより、金属箔の両面 に分極性電極層を形成した陽極電極 (陰極電極も同じ)を得た。
[0057] この分極性電極層の形成は、平均粒径 5 μ mのフエノール榭脂系活性炭粉末と、 導電性付与剤として平均粒径 0. 05 mのカーボンブラック、 CMC (カルボキシメチ ルセルロース)を溶解した水溶性バインダ溶液を、 10 : 2 : 1の重量比に混合して混練 機で十分に混練した後、メタノールと水の分散溶媒を少しずつ加え、更に混練して所 定の粘度のペーストを作製した。続いて、このペーストを集電体の表面に塗布して、 1 00°Cの大気中で 1時間乾燥して分極性電極層を形成した。
[0058] 続いて、この両面に形成された分極性電極層の高密度化ならびに平坦ィ匕による容 量アップを図る目的で分極性電極層をプレスカ卩ェし、その後、所望の幅寸法にスリツ トした。
[0059] 次に、このようにして作製された陽極電極 (または陰極電極)に陽極リード線 (または 陰極リード線)を接続した。この各リード線の接続は、まず、リード線の接続部分と略 同形状に形成されてヒータにより 280°Cに加熱された金属板を、集電体の表面に形 成された分極性電極層に 1秒間押し当てることによって分極性電極層中のバインダ 成分を飛散させた。なお、バインダ成分を飛散させるだけであれば、 CMCの熱分解 温度である 260°Cで良 ヽが、量産を考慮して 1秒間で飛散させるために 280°Cの温 度設定とした。その後、この加熱した部分の分極性電極層を回転型のブラシを用い て機械的に搔き取り、そして、この分極性電極層を除去した部分にリード線を配設し 、力しめ接合および/または冷間圧接によりリード線を接続した。
[0060] また、上記分極性電極層の除去は、リード線を接続する側の一方の面のみで良い 力 両面共に除去することにより、接続の信頼性と抵抗成分の低減をより一層向上さ せることができるため、両面除去はより好ましいものであるということができる。
[0061] なお、上記分極性電極層の除去は、当該除去部分に接続されるリード線の接続部 分の面積の 1〜2倍の面積を除去するようにしたものである。この除去面積が 2倍を越 える場合には、集電体の露出部分が多すぎるために、電圧を印加して長時間使用す ると、陰極電極の集電体の露出部分とセパレータを介して対向する陽極電極の分極 性電極層との間で、駆動用電解液が反応を起こして電解質ァ-オンの BF―、 PF _
4 6 等が陽極側に引き寄せられ、その周辺部が酸性となってセパレータを劣化させてしま う。さらに、特性劣化のみならず、ガス発生や内圧の上昇が生じるために好ましくない 。また逆に、 1倍未満の場合には分極性電極層の一部がリード線と接触して接触不 良を起こしたり、抵抗が上昇するために好ましくないものである。
[0062] 次に、このようにして作製された陽極電極と陰極電極の間に、厚さ 35 μ mのセパレ ータを介在させた状態でこれらを卷回することによってコンデンサ素子を得た。
[0063] 続いて、このコンデンサ素子に駆動用電解液を含浸させた。この駆動用電解液は プロピレンカーボネートに 4ェチルアンモ -ゥム 4フッ化ホウ素を溶解したものを用い た。
[0064] 続いて、このコンデンサ素子を有底円筒状のアルミニウム製のケース内に挿入し、 このケースの開口部をゴム製の封口部材を用いて封止することにより、本実施の形態 による電気二重層コンデンサを作製した (コンデンサ寸法: φ 20 X 45mm)。
[0065] (実施例 2)
上記実施例 1において、分極性電極層の一部を除去する際に、加熱された金属板 により分極性電極層中のノインダ成分を飛散させる作業を行わな力つた。それ以外 は実施例 1と同様にして電気二重層コンデンサを作製した。
[0066] (比較例 1)
上記実施例 1において、分極性電極層の一部を除去する除去面積を、リード線の 接続部分の面積の 2. 5倍とし、さらに、加熱された金属板により分極性電極層中の ノ^ンダ成分を飛散させる作業を行わなかった。それ以外は実施例 1と同様にして電 気二重層コンデンサを作製した。
[0067] このようにして得られた本発明の実施例 1、 2及び比較例 1の電気二重層コンデンサ について、初期特性 (容量、直流コンデンサ抵抗 (以下、 DCRと略す))と、 85°Cで 2 . 7V印加したときの特性劣化試験を行った結果を表 1に示す。なお、試験数は 20個 で行い、その平均値を記載した。また、上記 DCRは充電した後に放電させ、その開 始の 0. 5〜2. Osec間の傾きを算出したものである。
[0068] [表 1]
Figure imgf000015_0001
[0069] 表 1から明らかなように、本発明による電気二重層コンデンサは、比較例 1に比べて 容量変化が少なぐ特性劣化試験による A C、 A DCR、製品膨れを大幅に改善する ことができるものであり、特に実施例 1においては、その効果が大きいことが分かる。
[0070] このように、本発明による電気二重層コンデンサの製造方法は、集電体の両面に形 成した分極性電極層の一部を除去してリード線を接続する際に、分極性電極層を除 去する部分に加熱した金属板を押し当てることによって分極性電極層中のバインダ 成分を飛散させた後に機械的に搔き取るようにする。さらに、分極性電極層の一部を 除去する面積として、当該除去部分に接続されるリード線の接続部分の面積の 1〜2 倍の面積を除去するようにした。この方法により、極めて容易に、かつ精度良く分極 性電極層を除去することができるようになる。そのため、必要最低限の面積の分極性 電極層のみを除去してリード線を接続することによって、不要な集電体の露出部分を 極めて少なくしてセパレータの劣化を抑制できる。これにより、電気化学反応によって 生じるガス発生、抵抗増加や容量減少も抑制し、特性劣化の少ない高信頼性の電気 二重層コンデンサを安定して製造することができる。
産業上の利用可能性
[0071] 以上のように、本発明に力かる電気二重層コンデンサによれば、ガスの発生を抑制 することができ、コンデンサの抵抗低減とともに信頼性向上を図ることができる。この 結果、大電流や低温下における高信頼性などが要求される自動車のシステムなどに 有用である。
また、本発明による電気二重層コンデンサの製造方法は、分極性電極層の特性劣 化が少なく信頼性に優れ、特に車載用の電気二重層コンデンサ等を製造する際に 有用である。

Claims

請求の範囲
[1] 金属箔からなる集電体の両面に分極性電極層を形成してリード線を取り付けた電極 を正負一対とし、その間にセパレータを介在させて前記分極性電極層が対向するよ うに卷回したコンデンサ素子を駆動用電解液とともにケースに収納してなる電気二重 層コンデンサにおいて、
前記リード線は前記電極上の前記分極性電極層を除去した分極性電極層除去部に 取り付けられ、前記リード線の前記集電体と接続される部分の投影面積を 1とした際 に、前記分極性電極層除去部の面積が 1以上 2. 0以下であることを特徴とする電気 二重層コンデンサ。
[2] 前記分極性電極層除去部の長さは前記集電体の幅よりも短いことを特徴とした請求 項 1に記載の電気二重層コンデンサ。
[3] 前記セパレータはセルロース力もなる請求項 1に記載の電気二重層コンデンサ。
[4] 前記リード線が前記集電体と接続される部分に少なくとも 2箇所以上の力しめ接合と 、複数の圧接接合を有するものである、請求項 1に記載の電気二重層コンデンサ。
[5] 金属箔からなる集電体の両面に分極性電極層を形成すると共にリード線を接続して 陽極電極を作製するステップと、同様に陰極電極を作製するステップと、前記陽極電 極と陰極電極をその間にセパレータを介在させた状態で卷回することによりコンデン サ素子を作製するステップと、前記コンデンサ素子を駆動用電解液と共にケース内 に収容するステップと、前記ケースの開口部を封口部材で封止するステップとを有し た電気二重層コンデンサの製造方法にぉ 、て、前記陽極電極ならびに陰極電極を 作製するステップとして、集電体の両面に分極性電極層を形成した後、この分極性 電極層の一部を除去し、この分極性電極層の一部を除去した部分にリード線を接続 するようにした、電気二重層コンデンサの製造方法。
[6] 前記陽極電極ならびに陰極電極を作製するステップにおける分極性電極層の一部 を除去する方法が、当該除去部分の形状に対応した加熱型の金属板を分極性電極 層に押し当てて加熱することによって分極性電極層中のノインダ成分を飛散させた 後、この加熱された部分の分極性電極層を回転型のブラシを用いて機械的に搔き取 るようにしたものである、請求項 5に記載の電気二重層コンデンサの製造方法。 陽極電極ならびに陰極電極を作製するステップにおける分極性電極層の一部を除 去する方法が、当該除去部分に接続されるリード線の接続部分の面積の 1〜2倍の 面積の分極性電極層を除去するようにしたものである、請求項 5に記載の電気二重 層コンデンサの製造方法。
PCT/JP2007/060685 2006-05-29 2007-05-25 電気二重層コンデンサおよびその製造方法 WO2007139008A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP07744119.4A EP1990814A4 (en) 2006-05-29 2007-05-25 DOUBLE-LAYER ELECTRICAL CAPACITOR AND METHOD OF MANUFACTURING THE SAME
KR1020087027348A KR101158963B1 (ko) 2006-05-29 2007-05-25 전기 이중층 콘덴서 및 그 제조 방법
CN2007800199259A CN101454853B (zh) 2006-05-29 2007-05-25 双电层电容器以及其制造方法
US12/300,619 US7706129B2 (en) 2006-05-29 2007-05-25 Electric double-layer capacitor and method for manufacturing the same
JP2008517901A JPWO2007139008A1 (ja) 2006-05-29 2007-05-25 電気二重層コンデンサおよびその製造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006148066 2006-05-29
JP2006148065 2006-05-29
JP2006-148065 2006-05-29
JP2006-148066 2006-05-29

Publications (1)

Publication Number Publication Date
WO2007139008A1 true WO2007139008A1 (ja) 2007-12-06

Family

ID=38778528

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/060685 WO2007139008A1 (ja) 2006-05-29 2007-05-25 電気二重層コンデンサおよびその製造方法

Country Status (6)

Country Link
US (1) US7706129B2 (ja)
EP (1) EP1990814A4 (ja)
JP (1) JPWO2007139008A1 (ja)
KR (1) KR101158963B1 (ja)
CN (1) CN101454853B (ja)
WO (1) WO2007139008A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009164164A (ja) * 2007-12-28 2009-07-23 Elna Co Ltd 電極素子の製造方法および同電極素子を備えた蓄電用電気化学デバイス
US20120154984A1 (en) * 2007-03-30 2012-06-21 Nippon Chemi-Con Corporation Electrolytic capacitor
KR101310441B1 (ko) 2010-10-25 2013-09-24 삼성전기주식회사 전기화학 커패시터
WO2017077697A1 (ja) * 2015-11-06 2017-05-11 三洋電機株式会社 蓄電装置用電極板及びそれを備える蓄電装置

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4877325B2 (ja) * 2006-07-14 2012-02-15 パナソニック株式会社 電気二重層キャパシタとその製造方法
US7903390B2 (en) * 2008-06-19 2011-03-08 Gas Technology Institute Bipolar membrane for electrochemical supercapacitors and other capacitors
KR102413496B1 (ko) * 2011-07-08 2022-06-24 패스트캡 시스템즈 코포레이션 고온 에너지 저장 장치
US9558894B2 (en) 2011-07-08 2017-01-31 Fastcap Systems Corporation Advanced electrolyte systems and their use in energy storage devices
WO2013073526A1 (ja) * 2011-11-14 2013-05-23 住友電気工業株式会社 蓄電デバイス用電極、蓄電デバイスおよび蓄電デバイス用電極の製造方法
JP2013135223A (ja) * 2011-12-23 2013-07-08 Samsung Electro-Mechanics Co Ltd 電極活物質/導電材の複合体及びその製造方法並びにこれを含む電気化学キャパシタ
CN103021673B (zh) * 2012-12-30 2015-07-15 无锡富洪科技有限公司 超级电容器电极片及其制备方法
DE102018107292A1 (de) 2018-03-27 2019-10-02 Tdk Electronics Ag Kondensator und Verfahren zur Herstellung eines Kondensators
DE102018107289A1 (de) * 2018-03-27 2019-10-02 Tdk Electronics Ag Kondensator und Verfahren zur Herstellung eines Kondensators
CN110989003B (zh) * 2019-12-16 2021-10-26 山东大学 一种用于跨孔ct试验的电极装置、***及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0883738A (ja) 1994-09-12 1996-03-26 Matsushita Electric Ind Co Ltd 電気二重層キャパシタ
JPH10270293A (ja) 1997-03-26 1998-10-09 Matsushita Electric Ind Co Ltd 電気二重層コンデンサ
JP2004221179A (ja) * 2003-01-10 2004-08-05 Matsushita Electric Ind Co Ltd アルミ電解コンデンサ
WO2005069321A1 (ja) * 2004-01-19 2005-07-28 Matsushita Electric Industrial Co., Ltd. 電気二重層キャパシタ及びその製造方法とこれを用いた電子機器
JP2005340610A (ja) * 2004-05-28 2005-12-08 Matsushita Electric Ind Co Ltd コンデンサ及びその製造方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2735863B2 (ja) * 1989-02-20 1998-04-02 富士電気化学株式会社 スパイラル形非水電解液電池の製造方法
WO1999031688A1 (fr) * 1997-12-18 1999-06-24 Nauchno-Proizvodstvennoe Predprityatie 'exin' Condensateur possedant une couche electrique double
JPH11317218A (ja) * 1998-04-30 1999-11-16 Toyota Central Res & Dev Lab Inc シート電極
JP2000049055A (ja) * 1998-07-27 2000-02-18 Asahi Glass Co Ltd 電気二重層キャパシタ用電極及び電気二重層キャパシタ
JP2000277082A (ja) * 1999-03-24 2000-10-06 Nitto Denko Corp 多孔質フィルム及びセパレータ
JP2001250742A (ja) * 2000-03-07 2001-09-14 Nec Corp 電気二重層コンデンサとその製造方法
JP2001267187A (ja) * 2000-03-22 2001-09-28 Ngk Insulators Ltd 電気二重層コンデンサ用分極性電極
JP2004513529A (ja) * 2000-11-09 2004-04-30 エフオーシー フランケンブルク オイル カンパニー エスト. スーパーキャパシタおよび当該スーパーキャパシタを製造する方法
JP2003124076A (ja) * 2001-10-09 2003-04-25 Nissan Diesel Motor Co Ltd 電気二重層キャパシタおよびその製造方法
JP5032737B2 (ja) * 2004-06-14 2012-09-26 パナソニック株式会社 電気化学素子
US7271994B2 (en) * 2005-06-08 2007-09-18 Greatbatch Ltd. Energy dense electrolytic capacitor
KR100774735B1 (ko) * 2006-02-14 2007-11-08 엘에스전선 주식회사 전극체-리드의 접속구조, 이를 구비한 전기이중층 캐패시터및 그 제조방법
US7511943B2 (en) * 2006-03-09 2009-03-31 Avx Corporation Wet electrolytic capacitor containing a cathode coating

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0883738A (ja) 1994-09-12 1996-03-26 Matsushita Electric Ind Co Ltd 電気二重層キャパシタ
JPH10270293A (ja) 1997-03-26 1998-10-09 Matsushita Electric Ind Co Ltd 電気二重層コンデンサ
JP2004221179A (ja) * 2003-01-10 2004-08-05 Matsushita Electric Ind Co Ltd アルミ電解コンデンサ
WO2005069321A1 (ja) * 2004-01-19 2005-07-28 Matsushita Electric Industrial Co., Ltd. 電気二重層キャパシタ及びその製造方法とこれを用いた電子機器
JP2005340610A (ja) * 2004-05-28 2005-12-08 Matsushita Electric Ind Co Ltd コンデンサ及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1990814A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120154984A1 (en) * 2007-03-30 2012-06-21 Nippon Chemi-Con Corporation Electrolytic capacitor
US8717740B2 (en) * 2007-03-30 2014-05-06 Nippon Chemi-Con Corporation Electrolytic capacitor
JP2009164164A (ja) * 2007-12-28 2009-07-23 Elna Co Ltd 電極素子の製造方法および同電極素子を備えた蓄電用電気化学デバイス
KR101310441B1 (ko) 2010-10-25 2013-09-24 삼성전기주식회사 전기화학 커패시터
WO2017077697A1 (ja) * 2015-11-06 2017-05-11 三洋電機株式会社 蓄電装置用電極板及びそれを備える蓄電装置

Also Published As

Publication number Publication date
KR20090018900A (ko) 2009-02-24
CN101454853A (zh) 2009-06-10
US7706129B2 (en) 2010-04-27
EP1990814A4 (en) 2015-03-04
EP1990814A1 (en) 2008-11-12
CN101454853B (zh) 2011-08-10
JPWO2007139008A1 (ja) 2009-10-08
KR101158963B1 (ko) 2012-06-21
US20090122467A1 (en) 2009-05-14

Similar Documents

Publication Publication Date Title
WO2007139008A1 (ja) 電気二重層コンデンサおよびその製造方法
US7881043B2 (en) Wound electric double-layer capacitor
JP5032737B2 (ja) 電気化学素子
US7623339B2 (en) Electrochemical device
JP7363794B2 (ja) 電極体、電極体を備える電解コンデンサ、及び電極体の製造方法
JP2007157811A (ja) 巻回形電気二重層コンデンサ
JP4798967B2 (ja) 電気化学素子
JP5114990B2 (ja) 電気化学キャパシタの製造方法及びこれにより得られた電気化学キャパシタ
JP2000348754A (ja) 電極捲回型電池
JP2000235853A (ja) 発電要素
CN113795899B (zh) 电极体、具备电极体的电解电容器以及电极体的制造方法
JP2011166044A (ja) 蓄電デバイス
JP2008282838A (ja) ハイブリット電気二重層キャパシタ
JP2007201118A5 (ja)
JP2007201118A (ja) 巻回形電気二重層コンデンサ
JP2009272585A (ja) 電気化学キャパシタ
JP4895028B2 (ja) 電気二重層キャパシタ
JP4736301B2 (ja) 電池
JP4839807B2 (ja) 巻回形電気二重層コンデンサ
JP2011166043A (ja) 蓄電デバイスおよび蓄電デバイスの製造方法
JP5549512B2 (ja) 電池の製造方法
KR20100128102A (ko) 슈퍼커패시터 및 그 제조방법
JP2009026853A (ja) 電気二重層キャパシタ
JPH10177935A (ja) 電気二重層コンデンサ及びその製造方法
JP2002353072A (ja) 巻回型電気二重層キャパシタ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780019925.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07744119

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2008517901

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2007744119

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020087027348

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 12300619

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE