WO2007138117A1 - Placa absorbedor para colector solar, su método de fabricación, y colector solar - Google Patents

Placa absorbedor para colector solar, su método de fabricación, y colector solar Download PDF

Info

Publication number
WO2007138117A1
WO2007138117A1 PCT/ES2006/000283 ES2006000283W WO2007138117A1 WO 2007138117 A1 WO2007138117 A1 WO 2007138117A1 ES 2006000283 W ES2006000283 W ES 2006000283W WO 2007138117 A1 WO2007138117 A1 WO 2007138117A1
Authority
WO
WIPO (PCT)
Prior art keywords
absorber plate
absorber
plate
fluid
channel
Prior art date
Application number
PCT/ES2006/000283
Other languages
English (en)
French (fr)
Inventor
Claudio Claudemir
Oscar Gonzalez Garcia
Original Assignee
Grupo Antolin-Ingenieria, S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Grupo Antolin-Ingenieria, S.A. filed Critical Grupo Antolin-Ingenieria, S.A.
Priority to PCT/ES2006/000283 priority Critical patent/WO2007138117A1/es
Publication of WO2007138117A1 publication Critical patent/WO2007138117A1/es

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S10/00Solar heat collectors using working fluids
    • F24S10/50Solar heat collectors using working fluids the working fluids being conveyed between plates
    • F24S10/501Solar heat collectors using working fluids the working fluids being conveyed between plates having conduits of plastic material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S10/00Solar heat collectors using working fluids
    • F24S10/70Solar heat collectors using working fluids the working fluids being conveyed through tubular absorbing conduits
    • F24S10/72Solar heat collectors using working fluids the working fluids being conveyed through tubular absorbing conduits the tubular conduits being integrated in a block; the tubular conduits touching each other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S80/00Details, accessories or component parts of solar heat collectors not provided for in groups F24S10/00-F24S70/00
    • F24S80/30Arrangements for connecting the fluid circuits of solar collectors with each other or with other components, e.g. pipe connections; Fluid distributing means, e.g. headers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/44Heat exchange systems

Definitions

  • the invention is encompassed in the field of solar collectors.
  • Solar collectors typically comprise a housing comprising a cover (usually substantially transparent to solar radiation and often substantially opaque for long-wave thermal radiation, to retain heat inside the housing) and a housing to which the cover is attached .
  • the cover serves to reduce losses by thermal radiation of the collector, and also to reduce heat leakage by conduction and convection. In some cases, a plurality of covers are used.
  • the collectors usually include insulation elements to reduce heat leakage, for example, joints between the cover and the housing.
  • a device known as an "absorber” is usually housed, since it absorbs the energy of the radiation that falls on it through the cover, transforming it into thermal energy that heats the surface on which the radiation strikes.
  • a heat-carrying fluid flows through the absorber, which heats up as it travels through the absorber. That is, in the absorber, solar radiation (or at least part of it) is transformed into energy thermal, heating the fluid during its passage through the absorber.
  • the absorber comprises a series of tubes or, alternatively, two joined plates of which at least one has a configuration that determines one or more channels, which are covered by the other plate, thus defining one or more conduits for the fluid.
  • the absorber is flat, and the other is corrugated to define the channels.
  • These plates are often made of metal, although they can also be made of plastic.
  • a first aspect of the invention relates to an absorber part, or absorber plate, for a solar collector, configured so as to establish at least one channel between at least one input and at least one output (which may correspond to through holes through the plate), so that, when the absorber plate is attached to a closing plate, said, at least one, channel, together with said closing plate, defines at least one fluid conduit between said, at least one, inlet and said, at least one, exit.
  • the channel (or the caneles) travels (n) a greater part of the surface of the absorber plate (for example, 80% or more of said surface), so that said greater part of the surface of the absorber plate is a heat transfer surface to a fluid when said fluid travels through said conduit or conduits.
  • the absorber plate is constituted by an injection molded part, something that can be advantageous compared to many traditional systems, which are based on a union of pipes or the corrugated of an existing plate.
  • the process of obtaining the plate is simplified, since the complete plate, with its channels and other elements, is obtained from a single material, which can be supplied in bulk, in a single molding phase.
  • the laborious and expensive union of several components to obtain the absorber plate is avoided.
  • the complete manufacture of the plate is carried out, which minimizes the space occupied in the factory, as well as the number of operations and the necessary machinery. That is, injection molding can be used to optimize the manufacturing process.
  • using injection molding to make the plates channels with a reduced cross-section and with a reduced radius of curvature can be obtained.
  • the absorber plate has at least two through holes that communicate the channel or the channels with the outside, to allow an entry and exit, respectively, of a fluid. These holes are obtained directly in the molding process.
  • the absorber plate additionally has at least one perimeter channel for at least one seal; This channel is also obtained directly in the molding phase, which implies an optimization of the manufacturing process.
  • the absorber plate additionally has connection means configured to cooperate in the union between said absorber plate and the closing plate; These joining means are also obtained in the molding phase. These means may be sufficient to establish the connection with the closure plate, or be configured to cooperate with other means for attaching the absorber plate to the closure plate.
  • the X ⁇ at least two "through holes mentioned above may comprise at least four holes, located in correspondence with the corners of the absorber plate.
  • the joining means may comprise through holes for screws, clips, turrets for clips, and / or projections and / or recesses configured to fit in the tongue and groove closure plate, or any other method of joining.
  • the ⁇ at least one channel "mentioned above may comprise a channel that has a coil-shaped path, and that can travel the unseen face of the absorber plate, from one end to another end of said unseen face.
  • said "at least one channel” may comprise a plurality of parallel or substantially parallel channels, in which case the plate may comprise, along two sides of the plate, two distribution channels, which communicate with said ones, to the minus two, holes and that are interconnected by the other channels (with parallel channels), which can be extended perpendicular to the distribution channels.
  • the distribution channels may be interrupted by partitions that establish a flow path through the parallel channels that join the distribution channels, so that in a plurality of said parallel channels, the fluid will flow in a first direction, and in another plurality of said parallel channels, the fluid will flow in a second direction opposite to said first direction.
  • the partitions can be implemented so that in a consecutive plurality of said parallel channels, the fluid will flow in said first direction, and in another plurality consecutive of said parallel channels, the fluid will flow in said second direction.
  • the absorber plate may be of a plastic material and / or of a polymeric material, or it may be of metal (for example, of an alloy comprising at least 50% magnesium and / or aluminum).
  • the channel (or channels) of the absorber plate may have a "semi-cylindrical" configuration, such that the channel establishes a semi-cylindrical conduit once the absorber plate has been coupled to a substantially flat closing plate.
  • the manifold may comprise, attached to a second face of said closure plate (or to the second face of several of said closure plates), at least one heat exchange element that establishes a path for a heat carrier fluid in contact with said second face of said closure plate.
  • This Heat exchange element may comprise an absorber plate as described above, which further reduces the number of different parts that have to be used for the complete installation, with the economic and logistical advantages that this implies.
  • the channels of the heat exchange element (or of the heat exchange elements, if there is more than one) can be communicated with an external fluid system without direct connection to the fluid flowing through the channels of the plate or plates absorption, something that allows two independent fluid circuits to be established, with the advantages that this may entail.
  • the collector may additionally comprise a housing in which said absorber plate (or absorber plates) and the closure plate (and any heat exchange elements) are housed;
  • This housing can be closed by a cover that can be substantially transparent to solar radiation and substantially opaque to thermal radiation, avoiding radiation losses, achieving the commonly called "greenhouse effect”.
  • Another aspect of the invention relates to a method for obtaining an absorber plate according to what has been described above, whose method comprises the step of obtaining said absorber plate from a raw material, by injection molding of said raw material. This allows to obtain the absorber plate, with all its elements and configurations, in a single injection step.
  • Figure 1 shows a perspective view of a solar collector according to a possible embodiment of the invention.
  • Figure 2.- Shows an elevation view of said collector, as well as cross sections thereof.
  • Figure 3. Shows a detail of the section A-A of figure 2.
  • Figure 5. Shows a perspective view of a detail of the unseen (inner) face of the absorber plate according to this preferred embodiment.
  • Figure 6. Shows a cross-sectional view of a manifold incorporating a second absorber plate, on the other side of the closure plate.
  • Figure 7.- Shows a detail of section C-C of figure 2.
  • Figure 8. Shows a perspective view of the face of an absorber plate.
  • Figure 9 shows a perspective view of the unseen face of an absorber plate, according to an alternative embodiment of the invention.
  • Figure 10. Shows a plan view of a detail of the absorber plate. PREFERRED EMBODIMENTS OF THE INVENTION
  • a collector according to a possible embodiment of the invention comprises a housing 5 (in figure 1 the cover is not perceived, since it is transparent), in which absorption devices comprising plates are housed absorbers 1 attached to respective closure plates (which are not seen in Figure 1, since they are attached on the lower surfaces of the absorber plates 1).
  • Each absorber plate 1 comprises four (4) through holes 14, which communicate with one or more channels which, together with the closing plates, define conduits traveled by the heat-carrying fluid. Two of said holes are conveniently closed, while the other two are connected to conduits 18.
  • One of said conduits is a fluid inlet to the manifold, and another is an outlet conduit; The function depends on the direction of the fluid.
  • Another conduit 18 joins two of the absorber plates, so that the fluid entering the solar collector can pass from one absorber plate to another. That is, it is a modular system in which a variable number of absorber plates can be incorporated into the manifold, according to the dimensions of the housing and according to the absorption surface that it is desired to have. This allows to establish collectors of different sizes from absorber plates with a single size.
  • the existence of four holes 14 increases the possibilities of combining and interconnecting the absorber plates in the collector and with the possible external pumping systems of the heat-carrying fluid.
  • the absorber plates comprise a plurality of joining means 16 configured to cooperate in the connection between the absorber plate 1 and the closing plate; these joining means can, for example, be holes pierced by screws, by means of which the absorber plate is fixed to the closing plate (alternatively, these joining means can comprise clips, turrets for clips, or protruding and / or incoming elements of union by tongue and groove, etc.).
  • the "inlets” 12 and "outlets” 13 of the fluid with respect to each absorber plate have also been schematically illustrated, although, as indicated, each orifice may be inlet or outlet depending on the direction of the fluid.
  • the cover 4 coupled to the housing 5 is also illustrated.
  • FIG 3 an enlarged detail of section AA of Figure 2 can be seen, in which the housing 5 and the cover 4 can be seen and, within the housing, the absorber plate 1 and the closing plate 2, constituted by a flat plate.
  • the joining means 16 are constituted by through holes for screws or the like, although it is also possible to use any other suitable joining means.
  • the joining means present in the absorber plate 1 can be complemented with other means, for example, with welding.
  • the absorber plate 1 has a plurality of substantially semi-cylindrical embossments, which extend along most of the surface of the plate 1. These embossments define channels 11 which, together with the plate of closure 2, establish the conduits through which the heat-carrying fluid circulates, which is heated by the absorber plate, which in turn is heated by solar radiation.
  • the throat or perimeter channel 15 can also be seen in which a sealing gasket is housed, for example, of an elastic material.
  • Fig. 4 an enlarged detail of the section BB of Fig. 2 is seen.
  • distribution channels 17 are also seen running along the longer sides of the absorber plates (whose configuration is substantially rectangular); • the two distribution channels 17 of each plate are intercommunicated by the channels 11 that extend parallel to each other and that are perpendicular to the distribution channels 17.
  • Distribution channels can also be seen in Figure 5, which illustrates a part of the unseen face of the plate (in which it can also be seen how, according to a variant of the invention, there are two perimeter channels 15, configured to receive seals together).
  • the through holes 14 flow into these distribution channels 17, which are interrupted by partitions 171 that regulate the flow of the fluid, so that in a first group of adjacent channels 11, the fluid flows in a first direction (illustrated with the arrow 172), to then flow in a second direction (arrow 173) in a next group of adjacent channels 11, etc.
  • one of the holes 14 illustrated in the figure is closed, and the other represents a fluid inlet 12.
  • two channels 11 are separated by a flat part that includes a hole 16 for joining the absorber plate to the closure plate.
  • the channels 11 have very small dimensions in terms of their cross-section, something that increases the efficiency of heat transfer to the fluid.
  • Figure 6 schematically illustrates a manifold comprising the housing 5 and cover 4 and, within the housing, the absorber plate 1 (with its channels 11, the perimeter channel 15, the joining means 16, etc.) attached to a first face of the closing plate 2. Furthermore, on the second face of the closing plate, there is a heat exchange element 3, which comprises a plate identical or similar to the heat absorbing plate, and which, more specifically , it also comprises channels 11 through which a fluid can flow. This fluid is heated through the closure plate 2.
  • a dual fluid system can be provided, that is, two independent circuits: a fluid flows through the absorber plate (s) ), and the other (the one that flows through the channels of the plates or heat exchange devices 3) can leave the outside of the collector and, therefore, be part of a system that takes the heat out of the solar collector.
  • a fluid flows through the absorber plate (s)
  • the other the one that flows through the channels of the plates or heat exchange devices 3
  • Figure 7 reflects an enlarged view detail
  • FIG. 8 illustrates the exposed face of the absorber plate, with its through holes 14 surrounded by the projections 141.
  • Figure 9 illustrates the unseen face, that is, the face that will be attached on the closure plate, of an absorber plate 1 according to an alternative embodiment of the invention, which does not have the distribution channels 17 but a single channel 11 in the form of a coil, which extends from one of the shortest ends to another of the shortest ends of the plate.
  • the holes 14 communicate with said channel 11 in correspondence with one end of the coil.
  • the absorber plate 1 is manufactured in a single step and as a "one piece", by injecting a first material into a mold, under pressure (the mold has not been illustrated, since any type of conventional mold can be used, adapted to board configuration).
  • a metal can be used, for example, an aluminum and / or magnesium alloy (for example, alloys with at least 50% of at least one of these metals), or a polymer or plastic.
  • the closing plate can be a simple aluminum sheet.
  • the absorber plate is covered by a black coating, for example, by a black paint which is conventionally used for this type of applications, but with a carbon nanofiber content (with an average length greater than or equal to 80 ⁇ m and with an average diameter greater than or equal to 50 nm and less than or equal to 500 nm), in a proportion of up to 10% by weight.
  • a black coating for example, by a black paint which is conventionally used for this type of applications, but with a carbon nanofiber content (with an average length greater than or equal to 80 ⁇ m and with an average diameter greater than or equal to 50 nm and less than or equal to 500 nm), in a proportion of up to 10% by weight.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

La placa absorbedora para un colector solar comprende al menos un canal (11) que, cuando la placa absorbedora (1) se une a una placa de cierre (2), define un conducto para un fluido transportador de calor. La placa absorbedora (1) está constituida por una pieza moldeada por inyección, y presenta al menos dos orificios pasantes (14) que comunican el canal (11) con el exterior, al menos un canal perimetral (15) para al menos una junta de estanqueidad, y medios de unión (16) configurados para cooperar en la unión entre la placa absorbedora (1) y la placa de cierre. La invención también se refiere a un colector solar y a un método de obtención de la placa absorbedora.

Description

PLACA ABSORBEDOR PARA COLECTOR SOIAR, SU MÉTODO DE FABRICACIÓN, Y COLECTOR SOLAR
CAMPO TÉCNICO DE LA INVENCIÓN La invención se engloba en el campo de los colectores solares.
ANTECEDENTES DE LA INVENCIÓN
Los colectores solares suelen comprender un alojamiento que comprende una cubierta (normalmente sustancialmente transparente a la radiación solar y frecuentemente sustancialmente opaca para la radiación térmica de onda larga, para retener el calor dentro de la carcasa) y una carcasa a la que está acoplada la cubierta. La cubierta sirve para reducir las pérdidas por radiación térmica del colector, y también para reducir las fugas de calor por conducción y convección. En algunos casos, se utilizan una pluralidad de cubiertas. Los colectores suelen incluir elementos de aislamiento para reducir las fugas de calor, por ejemplo, juntas entre la cubierta y la carcasa.
Dentro de la carcasa suele estar alojado un dispositivo conocido como "absorbedor", ya que absorbe la energía de la radiación que incide sobre él a través de la cubierta, transformándola en energía térmica que calienta la superficie sobre la que incide la radiación. A través del absorbedor fluye un fluido portador de calor, que se calienta durante su recorrido por el absorbedor. Es decir, en el absorbedor, la radiación solar (o al menos una parte de la misma) se transforma en energía térmica, calentando el fluido durante su paso por el absorbedor.
Generalmente, el absorbedor comprende una serie de tubos o, alternativamente, dos placas unidas de las cuales al menos una presenta una configuración que determina uno o varios canales, que quedan cubiertos por la otra placa, definiéndose de esta manera uno o más conductos para el fluido. Muchas veces, una de las placas es plana, y la otra es corrugada para definir los canales. Estas placas se fabrican frecuentemente en metal, aunque también pueden fabricarse en plástico.
DESCRIPCIÓN DE LA INVENCIÓN
Un primer aspecto de la invención se refiere a una parte de absorbedor, o placa absorbedora, para un colector solar, configurada de manera que establece al menos un canal entre al menos una entrada y al menos una salida (que pueden corresponder a orificios pasantes por la placa) , de manera que, cuando la placa absorbedora se une a una placa de cierre, dicho, al menos un, canal, junto con dicha placa de cierre, define al menos un conducto de fluido entre dicha, al menos una, entrada y dicha, al menos una, salida. El canal (o los caneles) recorre (n) una mayor parte de la superficie de la placa absorbedora (por ejemplo, un 80% o más de dicha superficie) , de manera que dicha mayor parte de la superficie de la placa absorbedora sea una superficie de transferencia de calor a un fluido cuando dicho fluido recorre dicho conducto o conductos. De acuerdo con la invención, la placa absorbedora está constituida por una pieza moldeada por inyección, algo que puede resultar ventajoso frente a muchos sistemas tradicionales, que se basan en una unión de tubos o en el corrugado de una placa ya existente.
Por ejemplo, se simplifica el proceso de obtención de la placa, ya que la placa completa, con sus canales y otros elementos, se obtiene a partir de un sol'o material, que puede suministrarse a granel, en una sola fase de moldeado. Mediante la invención, se evita la laboriosa y costosa unión de varios componentes para obtener la placa absorbedora. Además, con una sola máquina y con un sólo molde se realiza la completa fabricación de la placa, con lo que se minimiza el espacio ocupado en fábrica, asi como el número de operaciones y la maquinaria necesaria. Es decir, el moldeado por inyección puede servir para optimizar el proceso de fabricación. Además, utilizando moldeado por inyección para fabricar las placas, se pueden obtener canales con una sección transversal reducida y con un radio de curvatura reducido. Esto mejora el rendimiento térmico de la placa absorbedora, ya que los canales presentarán una superficie de intercambio de calor relativamente grande comparado con las dimensiones de la sección transversal del conducto. Canales con estas dimensiones reducidas son fácilmente obtenibles si la placa se fabrica mediante moldeado por inyección. En cambio, al menos algunos procedimientos convencionales para la obtención de este tipo de elementos no son compatibles con la obtención de estas dimensiones reducidas. Por ejemplo, cuando se usa un tubo de cobre doblado puede ser difícil llegar a tener más de aproximadamente 45 canales/metro lineal. En cambio, con la presente invención, si se opta por una configuración con varios canales en paralelo (como en la figura 5) se puede fácilmente disponer de 90 canales/metro lineal, y con la configuración con un canal en serpentín (como en la figura 9) se puede fácilmente disponer de 60 canales/metro lineal.
Además, es fácil preparar moldes a medida para cada aplicación o diseño de colector.
Por otra parte, la placa absorbedora presenta al menos dos orificios pasantes que comunican el canal o los canales con el exterior, para permitir una entrada y salida, respectivamente, de un fluido. Estos orificios se obtienen directamente en el proceso de moldeado.
Por otra parte, la placa absorbedora presenta adicionalmente al menos un canal perimetral para al menos una junta de estanqueidad; también este canal se obtiene directamente en la fase de moldeado, algo que implica una optimización del proceso de fabricación.
Por otra parte, la placa absorbedora presenta adicionalmente medios de unión configurados para cooperar en la unión entre dicha placa absorbedora y la placa de cierre; también estos medios de unión se obtienen en la fase de moldeado. Estos medios pueden ser suficientes para establecer la conexión con la placa de cierre, o estar configurados para cooperar con otros medios para unir la placa absorbedora a la placa de cierre.
Los al menos dos" orificios pasantes mencionados más arriba pueden comprender al menos cuatro orificios, situados en correspondencia con las esquinas de la placa absorbedora. De esta manera, se aumentan las posibilidades de interconectar dos placas absorbedoras y las posibilidades de conectarlos a un sistema externo de bombeo de fluido, algo importante para tener una máxima flexibilidad en el momento de diseñar colectores solares, por ejemplo, en los casos en los que los colectores comprenden varias placas absorbedoras interconectadas de manera que el fluido las recorre de acuerdo con una secuencia establecida.
Los medios de unión pueden comprender orificios pasantes para tornillos, clips, torretas para clips, y/o salientes y/o entrantes configurados para encajar en la placa de cierre por machihembrado, o cualquier otro método de unión.
El λλal menos un canal" mencionado más arriba puede comprende un canal que tiene un recorrido en forma de serpentín, y que puede recorrer la cara no vista de la placa absorbedora, desde un extremo hasta otro extremo de dicha cara no vista.
Como alternativa, dicho "al menos un canal" puede comprender una pluralidad de canales paralelos o sustancialmente paralelos, en cuyo caso la placa puede comprender, a lo largo de dos laterales de la placa, sendos canales de distribución, que comunican con dichos, al menos dos, orificios y que están interconectados por los otros canales (con los canales paralelos), que se pueden extender de forma perpendicular a los canales de distribución. Los canales de distribución pueden estar interrumpidos por tabiques que establecen un recorrido de flujo por los canales paralelos que unen los canales de distribución, de manera que en una pluralidad de dichos canales paralelos, el fluido fluirá en una primera dirección, y en otra pluralidad de dichos canales paralelos, el fluido fluirá en una segunda dirección opuesta a dicha primera dirección. Por ejemplo, se pueden implementar los tabiques de manera que en una pluralidad consecutiva de dichos canales paralelos, el fluido fluirá en dicha primera dirección, y en otra pluralidad consecutiva de dichos canales paralelos, el fluido fluirá en dicha segunda dirección.
La placa absorbedora puede ser de un material plástico y/o de una material polimérico, o puede ser de metal (por ejemplo, de una aleación que comprende al menos 50% de magnesio y/o de aluminio) .
El canal (o los canales) de la placa absorbedora puede tener una configuración "semicilindrica", de manera que el canal establezca un conducto semicilindrico una vez que la placa absorbedora se haya acoplada a una placa de cierre sustancialmente plana.
La placa absorbedora puede tener una cara exterior recubierta por un recubrimimiento oscuro que comprende fibras o nanofibras de carbono que pueden tener una longitud media superior o igual a 80 μm y un diámetro medio superior o igual a 50 nm e inferior o igual a 500 nm, algo que puede servir para aumentar el efecto absorbedor de radiación.
Otro aspecto de la invención se refiere a un colector solar, que comprende al menos una placa absorbedora de acuerdo con lo que se ha descrito más arriba, unida a una primera cara de una placa de cierre. El colector puede comprender una pluralidad de tales placas absorbedoras, interconectadas de manera que un fluido puede pasar sucesivamente por los canales de dicha pluralidad de placas absorbedoras.
Además, el colector puede comprender, unida a una segunda cara de dicha placa de cierre (o a la segunda cara de varias de dichas placas de cierre) , al menos un elemento de intercambio de calor que establece un recorrido para un fluido portador de calor en contacto con dicha segunda cara de dicha placa de cierre. Este elemento de intercambio de calor puede comprender una placa absorbedora según lo que se ha descrito más arriba, lo cual reduce aún más el número de piezas diferentes que tienen que utilizarse para la instalación completa, con las ventajas económicas y logísticas que ello implica. Los canales del elemento de intercambio de calor (o de los elementos de intercambio de calor, si hay más de uno) pueden estar comunicados con un sistema externo de fluido sin conexión directa al fluido que fluye por los canales de la placa o las placas de absorción, algo que permite establecer dos circuitos independientes de fluido, con las ventajas que ello puede implicar.
El colector puede adicionalmente comprender una carcasa en la que está alojada dicha placa absorbedora (o placas absorbedoras) y la o las placas de cierre (y los eventuales elementos de intercambio de calor) ; esta carcasa puede cerrarse mediante una cubierta que puede ser sustancialmente transparente a la radiación solar y sustancialmente opaca a radiación térmica, evitando las pérdidas por radiación, consiguiendo el comúnmente denominado "efecto invernadero".
Otro aspecto de la invención se refiere a un método para obtener una placa absorbedora según lo que se ha descrito más arriba, cuyo método comprende el paso de obtener dicha placa absorbedora a partir de una materia prima, mediante moldeado por inyección de dicha materia prima. Esto permite obtener la placa absorbedora, con todos sus elementos y configuraciones, en un solo paso de inyección.
DESCRIPCIÓN DE LAS FIGURAS Para complementar la descripción y con objeto de ayudar a una mejor comprensión de las características de la invención, de acuerdo con unos ejemplos preferentes de realización práctica de la misma, se acompaña como parte integrante de la descripción, un juego de figuras en el que con carácter ilustrativo y no limitativo, se ha representado lo siguiente:
La figura 1.- Muestra una vista en perspectiva de un colector solar según una posible realización de la invención.
La figura 2.- Muestra una vista en alzado de dicho colector, asi como unas secciones transversales del mismo .
La figura 3.- Muestra un detalle del corte A-A de la figura 2.
La figura 4. - Muestra un detalle del corte B-B de la figura 2.
La figura 5.- Muestra una vista en perspectiva de un detalle de la cara no vista (interior) de la placa absorbedora según esta realización preferida.
La figura 6.- Muestra una vista en sección transversal de un colector que incorpora una segunda placa absorbedora, en la otra cara de la placa de cierre.
La figura 7.- Muestra un detalle de la sección C-C de la figura 2.
La figura 8. - Muestra una vista en perspectiva de la cara vista de una placa absorbedora.
La figura 9.- Muestra una vista en perspectiva de la cara no vista de una placa absorbedora, según una realización alternativa de la invención.
La figura 10.- Muestra una vista en planta de un detalle de la placa absorbedora. REALIZACIONES PREFERENTES DE LA INVENCIÓN
En la figura 1 se puede observar como un colector según una posible realización de la invención comprende una carcasa 5 (en la figura 1 no se percibe la cubierta, ya que es transparente) , en la que están alojados unos dispositivos de absorción que comprenden placas absorbedoras 1 unidas a respectivas placas de cierre (que no se ven en la figura 1, ya que están adosadas sobre las superficies inferiores de las placas absorbedoras 1) . Cada placa absorbedora 1 comprende cuatro (4) orificios pasantes 14, que comunican con uno o varios canales que, junto con las placas de cierre, definen conductos recorridos por el fluido portador de calor. Dos de dichos orificios están cerrados de forma conveniente, mientras que los otros dos están conectados a conductos 18. Uno de dichos conductos es un conducto de entrada del fluido al colector, y otro es un conducto de salida; la función depende de la dirección del fluido. Otro conducto 18 une dos de las placas absorbedoras, de manera que el fluido que entra en el colector solar puede pasar de una placa absorbedora a otra. Es decir, se trata de un sistema modular en el que un número variable de placas absorbedoras pueden incorporarse en el colector, según las dimensiones de la carcasa y según la superficie de absorción de la que se desea disponer. Esto permite establecer colectores de diferentes tamaños a partir de placas absorbedoras con un solo tamaño. La existencia de cuatro orificios 14 aumenta las posibilidades de combinar e interconectar las placas absorbedoras en el colector y con los eventuales sistemas externos de bombeo del fluido portador de calor. En la figura 2 se puede observar como las placas absorbedoras comprenden una pluralidad de medios de unión 16 configurados para cooperar en la unión entre la placa absorbedora 1 y la placa de cierre; estos medios de unión pueden, por ejemplo, ser orificios atravesados por tornillos, mediante los cuales la placa absorbedora se fija a la placa de cierre (alternativamente, estos medios de unión pueden comprender clips, torretas para clips, o elementos salientes y/o entrantes de unión por machihembrado, etc.). También se ha ilustrado esquemáticamente las "entradas" 12 y "salidas" 13 del fluido con respecto a cada placa absorbedora, aunque, como se ha indicado, cada orificio puede ser de entrada o de salida en función de la dirección del fluido. También se ilustra la cubierta 4 acoplada a la carcasa 5.
En la figura 3 se puede ver un detalle ampliado de la sección A-A de la figura 2, en la que se pueden observar la carcasa 5 y la cubierta 4 y, dentro de la carcasa, la placa absorbedora 1 y la placa de cierre 2, constituida por una chapa plana. Los medios de unión 16 están constituidos por orificios pasantes para tornillos o similar, aunque también es posible utilizar cualquier otro medio de unión adecuado. Además, los medios de unión presentes en la placa absorbedora 1 pueden complementarse con otros medios, por ejemplo, con soldaduras.
En la figura 3 se puede observar como la placa absorbedora 1 presenta una pluralidad de embuticiones sustancialmente semicilindricas, que se extienden a lo largo de la mayor parte de la superficie de la placa 1. Estas embuticiones definen canales 11 que, junto con la placa de cierre 2, establecen los conductos a través de los cuales circula el fluido portador de calor, que es calentado por la placa absorbedora, la cual a su vez es calentada por la radiación solar. En la figura 3 también se puede observar la garganta o canal perimetral 15 en la que se aloja una junta de estanqueidad, por ejemplo, de un material elástico.
En la figura 4 se ve un detalle ampliado del corte B-B de la figura 2. En adición a los elementos antes mencionados (por ejemplo, los canales perimetrales 15 que recorren las caras no vistas de las placas absorbedoras 1 en correspondencia con su borde) , también se ven unos canales de distribución 17 que recorren los lados más largos de las placas absorbedoras (cuya configuración es sustancialmente rectangular) ; • los dos canales de distribución 17 de cada placa están intercomunicados por los canales 11 que se extienden en paralelo entre si y que son perpendiculares a los canales de distribución 17.
Estos canales de distribución también se pueden observar en la figura 5, que ilustra una parte de la cara no vista de la placa (en la que también se puede observar como, de acuerdo con una variante de la invención, hay dos canales perimetrales 15, configurados para recibir sendas juntas de estanqueidad) . Los orificios pasantes 14 desembocan en estos canales de distribución 17, los cuales están interrumpidos por tabiques 171 que regulan el flujo del fluido, de manera que en un primer grupo de canales 11 adyacentes, el fluido fluye en una primera dirección (ilustrada con la flecha 172), para luego fluir en una segunda dirección (flecha 173) en un siguiente grupo de canales 11 adyacentes, etc. En esta realización, uno de los orificios 14 ilustrados en la figura está cerrado, y el otro representa una entrada 12 de fluido. Por otra parte, se observa como dos canales 11 están separados por una parte plana que incluye un orificio 16 para la unión de la placa absorbedora a la placa de cierre .
Tal y como se puede observar, los canales 11 tienen unas dimensiones muy reducidas en cuanto a su sección transversal, algo que aumenta la eficiencia de la transferencia de calor al fluido.
En la figura 6 se ilustra esquemáticamente un colector que comprende la carcasa 5 y cubierta 4 y, dentro de la carcasa, la placa absorbedora 1 (con sus canales 11, el canal perimetral 15, los medios de unión 16, etc.) unida a una primera cara de la placa de cierre 2. Además, en la segunda cara de la placa de cierre, hay un elemento de intercambiado de calor 3, que comprende una placa idéntica o similar a la placa absorbedora de calor, y que, más concretamente, también comprende canales 11 a través de los cuales un fluido puede fluir. Este fluido es calentado a través de la placa de cierre 2. De esta manera, se puede disponer de un sistema dual de fluidos, es decir, de dos circuitos independientes: un fluido fluye por la(s) placa (s) absorbedora (s) , y el otro (el que fluye por los canales de las placas o dispositivos de intercambio de calor 3) puede salir al exterior del colector y, por lo tanto, formar parte de un sistema que lleva el calor fuera del colector solar. Esto puede ser ventajoso desde un punto de vista de mantenimiento, y también permite utilizar fluidos diferentes en los dos circuitos, algo que puede resultar ventaj oso . La figura 7 refleja un detalle ampliado de la vista
C-C de la figura 2. Se puede observar como en correspondencia con los orificios 14 hay unos resaltes anulares 141 que sirven para acoplar los tubos 18, que puedes ser de un material flexible y elástico. Además, se pueden observar los canales perimetrales 15 para la doble junta de estanquidad. La figura 8 ilustra la cara vista de la placa absorbedora, con sus orificios pasantes 14 rodeados por los resaltes 141.
La figura 9 ilustra la cara no vista, es decir, la cara que se adosará sobre la placa de cierre, de una placa absorbedora 1 de acuerdo con una realización alternativa de la invención, que no presenta los canales de distribución 17 sino un solo canal 11 en forma de serpentín, que se extiende desde uno de los extremos más cortos hasta otro de los extremos más cortos de la placa. En la figura 10 se puede observar como los orificios 14 comunican con dicho canal 11 en correspondencia con un extremo del serpentín.
La placa absorbedora 1 se fabrica en un solo paso y como una "monopíeza", mediante inyección de una materia primera en un molde, a presión (el molde no se ha ilustrado, ya que se puede utilizar cualquier tipo de molde convencional, adaptado a la configuración de la placa) . Como materia prima se puede utilizar un metal, por ejemplo, una aleación de aluminio y/o magnesio (por ejemplo, aleaciones con al menos un 50% de al menos uno de estos metales), o un polímero o plástico. La placa de cierre puede ser una simple chapa de aluminio.
La placa absorbedora, de acuerdo con una realización preferida, está recubierta por un recubrimiento negro, por ejemplo, por una pintura negra de las que convencionalmente se utilizan para este tipo de aplicaciones, pero con un contenido de nanofibras de carbono (con una longitud media superior o igual a 80 μm y con un diámetro medio superior o igual a 50 nm e inferior o igual a 500 nm) , en una proporción de hasta un 10% en peso.
En este texto, la palabra "comprende" y sus variantes (como "comprendiendo", etc.) no deben interpretarse de forma excluyente, es decir, no excluyen la posibilidad de que lo descrito incluya otros elementos, pasos etc.
Por otra parte, la invención no está limitada a las realizaciones concretas que se han descrito sino abarca también, por ejemplo, las variantes que pueden ser realizadas por el experto medio en la materia (por ejemplo, en cuanto a la elección de materiales, dimensiones, componentes, configuración, etc.), dentro de lo que se desprende de las reivindicaciones.

Claims

REIVINDICACIONES
1.- Placa absorbedora (1) para un colector solar, configurada de manera que establece al menos un canal (11) entre al menos una entrada (12) y al menos una salida (13) , de manera que, cuando la placa absorbedora
(1) se une a una placa de cierre, dicho, al menos un, canal (11), junto con dicha placa de cierre, define al menos un conducto para un fluido entre dicha, al menos una, entrada y dicha, al menos una, salida, recorriendo dicho canal (11) una mayor parte de la superficie de la placa absorbedora (1), de manera que dicha mayor parte de la superficie de la placa absorbedora (1) sea una superficie de transferencia de calor a un fluido cuando dicho fluido recorre dicho, al menos un, conducto, caracterizada porque dicha placa absorbedora (1) está constituida por una pieza moldeada por inyección; porque dicha placa absorbedora (1) presenta al menos dos orificios pasantes (14) que comunica dicho, al menos un, canal (11) con el exterior, para permitir una entrada y salida, respectivamente, de un fluido; porque dicha placa absorbedora (1) presenta adicionalmente al menos un canal perimetral (15) para al menos una junta de estanqueidad; y porque dicha placa absorbedora (1) presenta adicionalmente medios de unión (16) configurados para cooperar en la unión entre dicha placa absorbedora (1) y la placa de cierre .
2.- Placa absorbedora según la reivindicación anterior, caracterizada porque dichos al menos dos orificios (14) comprenden al menos cuatro orificios (14).
3.- Placa absorbedora según la reivindicación 2, caracterizada porque dichos cuatro orificios (14) están situadas en correspondencia con las esquinas de la placa absorbedora (1) .
4.- Placa absorbedora según cualquiera de las reivindicaciones anteriores, caracterizada porque dichos medios de unión (16) comprenden orificios pasantes para tornillos .
5.- Placa absorbedora según cualquiera de las reivindicaciones 1-3, caracterizada porque dichos medios de unión (16) comprenden clips.
6.- Placa absorbedora según cualquiera de las reivindicaciones 1-3, caracterizada porque dichos medios de unión (16) comprenden torretas para clips.
7. - Placa absorbedora según cualquiera de las reivindicaciones 1-3, caracterizada porque dichos medios de unión (16) comprenden salientes y/o entrantes configurados para encajar en la placa de cierre por machihembrado .
8.- Placa absorbedora según cualquiera de las reivindicaciones anteriores, caracterizada porque dicho, al menos un, canal (11) comprende un canal que tiene un recorrido en forma de serpentín.
9.- Placa absorbedora según cualquiera de las reivindicaciones 1-7, caracterizada porque dicho, al menos un, canal (11) comprende una pluralidad de canales paralelos, y porque la placa además comprende, a lo largo de dos laterales de la placa, sendos canales de distribución (17), que comunican con dichos, al menos dos, orificios (14) y que están interconectados por dichos canales (11) paralelos.
10.- Placa absorbedora según la reivindicación 9, caracterizada porque dichos canales de distribución (17) están interrumpidos por tabiques (171) que establecen un recorrido de flujo por los canales (11) paralelos, de manera que en una pluralidad de dichos canales paralelos, el fluido fluirá en una primera dirección (172), y en otra pluralidad de dichos canales paralelos, el fluido fluirá en una segunda dirección (173) opuesta a dicha primera dirección.
11.- Placa absorbedora según la reivindicación 10, caracterizada porque en una pluralidad consecutiva de dichos canales (11) paralelos, el fluido fluirá en dicha primera dirección (172), y en otra pluralidad consecutiva de dichos canales, el fluido fluirá en dicha segunda dirección (173) .
12.- Placa absorbedora según cualquiera de las reivindicaciones anteriores, caracterizada porque es de un material polimérico. W 2
18
13.- Placa absorbedora según cualquiera de las reivindicaciones 1-11, caracterizada porque es de metal.
14.- Placa absorbedora según la reivindicaciones 13, caracterizada porque es de una aleación que comprende al menos 50% de magnesio y/o de aluminio.
15.- Placa absorbedora según cualquiera de las reivindicaciones anteriores, caracterizada porque dicho al menos un canal (11) t-iene una configuración semicilindrica .
16.- Placa absorbedora según cualquiera de las reivindicaciones anteriores, caracterizada porque tiene una cara exterior recubierta por un recubrimimiento oscuro que comprende fibras de carbono.
17.- Placa absorbedora según la reivindicación 16, caracterizada porque dichas fibras de carbono tienen una longitud media superior o igual a 80 μm y un diámetro medio superior o igual a 50 nm e inferior o igual a 500 nm.
18.- Colector solar, caracterizado porque comprende al menos una placa absorbedora (1) según cualquiera de las reivindicaciones anteriores, unida a una primera cara de una placa de cierre (2) .
19.- Colector solar según la reivindicación 18, caracterizado porque comprende una pluralidad de placas absorbedoras según cualquiera de las reivindicaciones 1-
17, interconectadas de manera que un fluido puede pasar sucesivamente por los canales (11) de dicha pluralidad de placas absorbedoras .
20.- Colector solar según la reivindicación 18 ó 19, caracterizado porque además comprende, unida a la segunda cara de dicha placa de cierre (2), al menos un elemento de intercambio de calor (3) que establece un recorrido para un fluido portador de calor en contacto con dicha segunda cara de dicha placa de cierre (2) .
21.- Colector solar según la reivindicación 20, caracterizado porque dicho elemento de intercambio de calor (3) comprende una placa absorbedora según cualquiera de las reivindicaciones 1-17.
22.- Colector solar según cualquiera de las reivindicaciones 18-21, caracterizado porque además comprende una carcasa (5) en la que está alojada dicha placa absorbedora (1) y dicha placa de cierre (2), comprendiendo dicho colector solar además al menos una cubierta (4 ) .
23.- Método para obtener una placa absorbedora según cualquiera de las reivindicaciones 1-17, caracterizado porque comprende el paso de obtener dicha placa absorbedora a partir de una materia prima, mediante moldeado por inyección de dicha materia prima.
PCT/ES2006/000283 2006-05-24 2006-05-24 Placa absorbedor para colector solar, su método de fabricación, y colector solar WO2007138117A1 (es)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/ES2006/000283 WO2007138117A1 (es) 2006-05-24 2006-05-24 Placa absorbedor para colector solar, su método de fabricación, y colector solar

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/ES2006/000283 WO2007138117A1 (es) 2006-05-24 2006-05-24 Placa absorbedor para colector solar, su método de fabricación, y colector solar

Publications (1)

Publication Number Publication Date
WO2007138117A1 true WO2007138117A1 (es) 2007-12-06

Family

ID=38778143

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2006/000283 WO2007138117A1 (es) 2006-05-24 2006-05-24 Placa absorbedor para colector solar, su método de fabricación, y colector solar

Country Status (1)

Country Link
WO (1) WO2007138117A1 (es)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2803920A2 (en) 2013-05-17 2014-11-19 Larry Heij A solar collector

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES458701A1 (es) * 1976-05-25 1978-08-01 Martn Jean Perfeccionamientos en los tableros denominados solares apli-cables a la realizacion de radiadores monobloques contra losriesgos de la corrosion.
GB1551817A (en) * 1976-07-29 1979-09-05 Reavell T J Apparatus for utlilising solar energy
AU514238B2 (en) * 1976-03-30 1981-01-29 Thomas Charles Tyrer Heat exchange panel and method of solar heat exchange
US4296742A (en) * 1977-06-07 1981-10-27 Jenaer Glaswerk Schott & Gen. Flat solar energy collector with low heat contact between absorber and edge of collector
US4858594A (en) * 1988-03-28 1989-08-22 K-S-H Canada Inc. Solar heating panel with curvilinear passageway
US20040255932A1 (en) * 2003-03-06 2004-12-23 Pierre-Jean Nocera Solar panel for water-heater

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU514238B2 (en) * 1976-03-30 1981-01-29 Thomas Charles Tyrer Heat exchange panel and method of solar heat exchange
ES458701A1 (es) * 1976-05-25 1978-08-01 Martn Jean Perfeccionamientos en los tableros denominados solares apli-cables a la realizacion de radiadores monobloques contra losriesgos de la corrosion.
GB1551817A (en) * 1976-07-29 1979-09-05 Reavell T J Apparatus for utlilising solar energy
US4296742A (en) * 1977-06-07 1981-10-27 Jenaer Glaswerk Schott & Gen. Flat solar energy collector with low heat contact between absorber and edge of collector
US4858594A (en) * 1988-03-28 1989-08-22 K-S-H Canada Inc. Solar heating panel with curvilinear passageway
US20040255932A1 (en) * 2003-03-06 2004-12-23 Pierre-Jean Nocera Solar panel for water-heater

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2803920A2 (en) 2013-05-17 2014-11-19 Larry Heij A solar collector

Similar Documents

Publication Publication Date Title
US6817357B2 (en) Collector module
ES2770417T3 (es) Método de fabricación de un intercambiador de calor, y un intercambiador de calor
US20170067691A1 (en) Heat exchanger and method to manufacture heat exchanger
EP2616747B1 (en) A solar collector
WO2022037358A1 (zh) 热管与地热采集装置
WO2007138117A1 (es) Placa absorbedor para colector solar, su método de fabricación, y colector solar
GB2527338A (en) Heat transfer apparatus
ES2699881T3 (es) Dispositivo de intercambio de calor
ES1062877U (es) Colector solar.
ES2433257B1 (es) Colector solar
CN204495138U (zh) 一种微阵列热管气-液逆流换热装置
CN209763821U (zh) 一种板壳式换热器
JP2017089937A (ja) 熱交換器
ES2929041T3 (es) Dispositivo de calentamiento y sistema de calentamiento modular que puede ensamblarse de forma modular en la etapa de instalación
CN105318569A (zh) 改进的太阳能接收器结构
CN205679098U (zh) 换热器及具有其的热水器
RU42099U1 (ru) Теплообменник
CN204128400U (zh) 微通道换热器
CN202582277U (zh) 组合管壳式换热器
WO2012016345A1 (es) Unidad recolectora de energía solar
US20150020794A1 (en) Solar heat collector for heating a circulating fluid and process for manufacturing a solar heat collector
CN104279888A (zh) 换热器
ES2328883B1 (es) Cremallera termica solar (solar thermal rack).
WO2009071716A1 (es) Captador solar térmico extrudido
ITMO20070022A1 (it) Collettore solare per il riscaldamento di un fluido termovettore

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06755367

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06755367

Country of ref document: EP

Kind code of ref document: A1