WO2007135087A1 - Dispositif d'aeration pour systeme de filtration d'eau a membranes immergees, incluant un plancher pourvu de moyens d'injection d'un gaz et d'au moins un systeme d'equilibrage des pressions - Google Patents

Dispositif d'aeration pour systeme de filtration d'eau a membranes immergees, incluant un plancher pourvu de moyens d'injection d'un gaz et d'au moins un systeme d'equilibrage des pressions Download PDF

Info

Publication number
WO2007135087A1
WO2007135087A1 PCT/EP2007/054815 EP2007054815W WO2007135087A1 WO 2007135087 A1 WO2007135087 A1 WO 2007135087A1 EP 2007054815 W EP2007054815 W EP 2007054815W WO 2007135087 A1 WO2007135087 A1 WO 2007135087A1
Authority
WO
WIPO (PCT)
Prior art keywords
floor
membranes
gas
strainers
liquid
Prior art date
Application number
PCT/EP2007/054815
Other languages
English (en)
Inventor
Etienne Brois
Aurélien BUSNOT
Original Assignee
Otv Sa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Otv Sa filed Critical Otv Sa
Priority to CA 2650694 priority Critical patent/CA2650694A1/fr
Priority to EP07729262A priority patent/EP2026900A1/fr
Priority to US12/298,605 priority patent/US20090255872A1/en
Priority to JP2009511479A priority patent/JP2009537317A/ja
Publication of WO2007135087A1 publication Critical patent/WO2007135087A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/20Accessories; Auxiliary operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/18Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/02Membrane cleaning or sterilisation ; Membrane regeneration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/08Prevention of membrane fouling or of concentration polarisation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/1236Particular type of activated sludge installations
    • C02F3/1268Membrane bioreactor systems
    • C02F3/1273Submerged membrane bioreactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2201/00Details relating to filtering apparatus
    • B01D2201/08Regeneration of the filter
    • B01D2201/087Regeneration of the filter using gas bubbles, e.g. air
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2315/00Details relating to the membrane module operation
    • B01D2315/06Submerged-type; Immersion type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/18Use of gases
    • B01D2321/185Aeration
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Definitions

  • Aeration device for water filtration system with submerged membranes including a floor provided with means for injecting a gas and at least one pressure equalization system.
  • the invention relates to the field of water treatment. More specifically, the invention relates to a device for injecting a declogging gas filter membranes immersed in a medium to be filtered.
  • the filtration system comprises vertical submerged membranes grouped into a module of generally cylindrical or parallelepipedal shape, or even rectangular.
  • these modules include flat membranes or hollow fiber membranes made of organic materials, potted at least at one of their ends.
  • the treated liquid is filtered under the effect of suction from the outside of the membrane inwards.
  • These membranes are traditionally microfiltration or ultrafiltration membranes.
  • the invention is particularly applicable to devices in which the membranes are arranged in a vertical position, but also applies to filtration devices in which the membranes are immersed in a horizontal position.
  • These submerged membrane systems are used in particular for the treatment of water to be treated, in order to retain the suspended pollution in the water or to prohibit the passage of microscopic animalculi (protozoa), such as cryptosporidium or giardia, bacteria and / or viruses, or to retain powdery reagents or catalysts, such as powdered activated carbon or alumina, which have been injected into the treatment die upstream of the membranes.
  • microscopic animalculi such as cryptosporidium or giardia, bacteria and / or viruses
  • powdery reagents or catalysts such as powdered activated carbon or alumina
  • This type of membrane is also used in immersion in membrane biological reactors (often referred to as "MBR”), as a means of clarifying wastewater treated with a biomass suspended in the reactor, and as a means for maintaining the biomass inside the reactor.
  • MLR membrane biological reactors
  • Membrane modules are often aggregated into racks or cassettes, with support and common connections for all rack or cassette modules.
  • a problem lies in the progressive clogging of the membranes by the materials to be filtered, called sludge, and this especially with regard to the membranes immersed in a bioreactor containing activated sludge.
  • the membranes are gradually clogged with the sludge trapped on their surface, or even, in the case of severe clogging, by accumulations of sludge and / or fibrous materials trapped by the fiber bundle (in the hollow fiber membrane case) or between the membrane elements (in the case of flat membranes).
  • This clogging requires unclogging actions, often performed by periods of back-filtration (or “backwashing") with permeate, with or without a chemical reagent, or by chemical washing of the membranes.
  • an injection is made of a gas (generally air), continuously or cyclically, at the bottom of the membrane module.
  • a gas generally air
  • the injected gas bubbles rise along the fiber or the flat membrane with a speed which tends to limit the deposition of the materials on the membrane, thus reducing the clogging speed of the filtration membranes.
  • the gas is directly injected into a closed chamber located under a lower potting in which are bundled bundles of hollow fibers, the air being distributed between modules using a valve or a calibrated orifice , before passing through openings in the lower potting fiber bundles.
  • the medium to be filtered and the unclogging gas are both injected through openings in the lower potting of the hollow fiber bundles.
  • This system has the theoretical advantage of avoiding the drying of sludge deposited in the openings, under the effect of the gas passing therethrough.
  • the hollow fiber bundle is immersed vertically in the medium to be filtered (for example activated sludge from an MBR) and the declogging air is fed under each module via a piping with perforations allowing the passage of air.
  • the medium to be filtered for example activated sludge from an MBR
  • the unclogging gas injection means are associated with backflow prevention means for prohibiting the contact of the liquid to be treated with the injection means.
  • These backflow prevention means may consist of:
  • a sleeve attached sealingly to injection nozzles and having at least one elastically deformable passage whose contours depart when the pressure of the sealing gas exceeds a determined pressure in the nozzles and are contiguous when the pressure of the gas of unclogging is below this predetermined pressure;
  • valve for protecting the nozzles, this valve being movable between an open gas injection position and a closed position, the valve being coupled to return means.
  • the deformable material of the sleeve may be caused to degrade in contact with the more or less aggressive components of the liquid to be treated. It can then lose its elasticity and may, in the long term, no longer ensure its sealing function and therefore protection vis-à-vis the injection nozzles.
  • valves may be subject to fouling which can lead to a loss of tightness when they are in the closed position, which also ultimately leads to a loss of efficiency in the protection of the nozzles that the valves are supposed to insure.
  • function of these means is linked to a common aspect of the sleeves and the valves: the mobility of one of their parts so that they pass from a protective position to a position allowing the passage of declogging.
  • the implementation of moving parts involves risks of degradation of the function of the protection means including these moving parts.
  • FR-2 869 552 is particularly intended for filtration devices in which the membranes are potted at least in a lower potting, the injection means being provided through this potting.
  • potting of the membranes is a particular technique and it may be desired to resort to another type of membrane filtration device design.
  • the unclogging gas membranes essential for the proper functioning of a submerged membrane process, is a significant additional cost since it represents a large part of the energy consumption of a water treatment plant.
  • the sludge (mixed liquor) is poorly distributed in the reactors since they are generally brought by a single inlet into the reactor.
  • a solution then consists of using a large supply line. But this proves to be an expensive solution.
  • the invention aims to overcome the disadvantages of the prior art.
  • the invention aims to provide a membrane aeration technique of a submerged water treatment system that eliminates the phenomena of loss of efficiency of the declogging gas injection means encountered with the solutions. of the prior art.
  • the invention also aims to provide such a technique whose reliability is sustainable.
  • the invention also aims to provide such a filtration device that allows a good distribution of the declogging gas at the base of the membranes (hollow or flat fibers)
  • Another objective of the invention is to provide such a technique which makes it possible to envisage a reduction in the operating costs of submerged membrane biological reactors.
  • Another object of the invention is to provide such a filtration device which is simple in design and easy to implement.
  • a ventilation device for submersible membrane biological reactor intended to be installed essentially under said membranes characterized in that it comprises a floor separating an upper chamber in which said membranes are immersed and a lower chamber comprising means for supplying a liquid to be treated and means for supplying a ventilation gas, said floor being provided with a plurality strainers and at least one pressure balancing system between said upper and lower chambers, and in that each strainer comprises a substantially tubular member traversing said floor and having in its upper portion at least one orifice, and a member forming bell capping said upper part.
  • the liquid is not in contact with the holes of the strainers through caps that contain gas and insulate the holes of strainers, solids can not be deposited on it. The clogging phenomena due to these deposits are therefore removed.
  • the optimization of the distribution control of the unclogging gas contributes to the control of costs related to the energy expenditure for the gas distribution.
  • a device according to the invention also makes it possible to reduce the manufacturing costs of the aeration device and therefore of the reactor equipped with it, compared in particular with the perforated piping or potting aeration systems mentioned above with reference to FIG. prior art.
  • said means for supplying a ventilation gas open into said lower chamber, said means for supplying said liquid to be treated opening into a zone remote from said aeration gas supplying means and below these, said balancing system or systems comprising at least one tube projecting under the floor towards said remote zone.
  • the positioning of the balancing tube as described allows, during aeration, to preserve the possibility of obtaining the air mat, while supplying the liquid to be treated through the floor from an area deeper than the air mat.
  • each bell-forming element has at least one indentation on its lower edge, each bell-shaped element preferably having four inverted V-shaped indentations regularly distributed over its lower edge.
  • said strainers are fixed in said floor.
  • the strainers can be fixed removably on the floor.
  • the strainers can be modified or exchanged easily, for example if the flow of gas has to be changed. This is not allowed with perforated pipe ventilation devices.
  • said strainers are distributed uniformly on said floor.
  • said balancing system comprises a plurality of tubes distributed substantially uniformly on said floor.
  • the balancing tubes also serving to supply the upper chamber of the liquid to be treated, in this way a homogeneous distribution of the liquid to be treated in the reactor is obtained, which makes it possible to distribute the liquid homogeneously on the membranes ( thus avoiding that some are put to use more than others and thus to note a heterogeneous loss of efficiency).
  • said balancing tubes are distributed symmetrically on said floor.
  • the bell of each strainer closes the upper part of each corresponding tubular element, said orifice being provided in the side wall of the tube.
  • the bell of each strainer is provided at a distance from each corresponding tubular element, said orifice being provided in the axis thereof.
  • the device forms an independent module.
  • the invention also relates to a submerged membrane system for treating water with an upper chamber in which membranes are installed, means for supplying a ventilation gas and means for supplying liquid to be treated, characterized in that it is provided with at least one aeration device as described above, said aeration gas supplying means and said liquid supplying means to be treated being provided under said floor of said device .
  • said upper chamber has at least one wall traversed by a perforation defining a channel.
  • FIG. 1 is a schematic sectional view of a device according to the invention, in aeration phase
  • - Figure 2 is a schematic view in torque of a device according to the invention, in aeration stop phase;
  • Figure 3 is a schematic top view of a floor of a device according to the invention
  • Figure 4 is a sectional view of a strainer of a device according to the invention, according to a first embodiment
  • FIG. 5 is a sectional view of a strainer of a device according to the invention, according to a second embodiment.
  • the principle of the invention lies in the fact of designing a ventilation device for submerged membrane reactor in the form of a floor provided with at least one pressure equalization tube between a high chamber and a lower chamber which separates the floor, strainers whose orifices are protected from the liquid to be treated being mounted on the floor.
  • the present invention is usable whatever the membrane system used (flat membranes, hollow fiber membranes or tubular membranes), and allows aeration of all or part of the membranes of one or more modules through the use of a ventilation floor with strainers.
  • the aeration system according to the invention makes it possible to effectively limit the clogging of the membranes, its major advantage is that it can not be clogged despite the high concentrations of sludge used in the membrane chamber (upper chamber). .
  • the principle of operation of the ventilation floor is illustrated in Figures 1 and 2.
  • the floor 1 is composed of a concrete slab or a plate that may be composed of other materials (eg PVC) disposed in the biological reactor, and an alternation of strainers 2 and balancing tubes 5.
  • the reactor is thus divided into a high chamber 11 incorporating membranes 9 and a low chamber 10 separated by the floor 1.
  • the balancing tubes 5 allow the liquid to be treated to pass freely through the floor 1, from the lower chamber 10 to the upper chamber 11 of the floor.
  • strainers are used for the aeration of the membrane modules 9.
  • FIG. 3 it provides a regular arrangement of ventilation screens 2 on the floor, so as to ensure a uniform air ventilation of the membrane modules arranged above it.
  • balancing tubes are also regularly distributed, for example staggered.
  • the strainers and balancing tubes can be distributed as shown, their number and the proportion of each can vary significantly depending on the application used. As an indication, the strainers are spaced a distance of about
  • the balancing tubes 5 are also used to achieve a homogeneous distribution of the liquid to be treated (eg activated sludge for membrane bioreactors).
  • the liquid to The treatment is injected into the lower chamber by recirculation and then passes through the balancing holes to reach the membrane modules.
  • a quantity of air remains trapped under the bell and in the ventilation tube, over the entire height of the bell. This makes it possible to avoid any contact between the liquid to be treated and the orifice of the aeration tube, and thus to eliminate any risk of clogging.
  • FIGS. 4 and 5 illustrate in greater detail the strainers 2 consisting of a central tubular element 13 provided at its upper part with an orifice 4, the tube 13 being capped by a cap 3.
  • the orifice 4 is provided in the side wall of the tube 13, the cap 3 is then directly attached to the upper end of the tube 13 so as to close it.
  • the orifice 4 is provided in the end wall 131 of the tube 13, substantially in the axis thereof.
  • the cap 3 is then spaced from the end wall 31 of the tube 13.
  • balancing tubes 5 extend under the floor 1 so that their lower end opens into an area of the lower chamber
  • the air injection duct 6 being placed above and at a distance from the duct 12, it is possible to obtain a thickness of the air mat 8 sufficient to avoid any risk of risking of liquid in the strainers.
  • the air injection duct 6 opens directly to the floor 1.
  • the filtration device including the device according to the invention which has just been described can be constituted as an independent module.
  • a water treatment plant comprises several independent devices equipped with a ventilation device, the upper chambers of each device communicating with each other via a channel 14.

Landscapes

  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Microbiology (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Aeration Devices For Treatment Of Activated Polluted Sludge (AREA)

Abstract

L'invention a pour objet un dispositif d'aération pour système de filtration d'eau à membranes immergées (9) destiné à être installé essentiellement sous lesdites membranes (9) caractérisé en ce qu'il comprend un plancher (1) séparant une chambre haute dans laquelle lesdites membranes sont immergées et une chambre basse comprenant des moyens d'amenée d'un liquide à traiter et des moyens d'amenée d'un gaz d'aération, ledit plancher étant pourvu d'une pluralité de crépines (2) et d'au moins un système d'équilibrage des pressions (5) entre lesdites chambres haute et basse, et en ce que chaque crépine (2) comprend un élément essentiellement tubulaire (13) traversant ledit plancher et présentant dans sa partie supérieure au moins un orifice (4), et un élément formant cloche (3) coiffant ladite partie supérieure.

Description

Dispositif d'aération pour système de filtration d'eau à membranes immergées, incluant un plancher pourvu de moyens d'injection d'un gaz et d'au moins un système d'équilibrage des pressions.
L'invention concerne le domaine du traitement des eaux. Plus précisément, l'invention concerne un dispositif d'injection d'un gaz de décolmatage des membranes de filtration immergées dans un milieu à filtrer.
Selon une technique de filtration connue, le système de filtration comprend des membranes immergées verticales regroupées en module de forme généralement cylindrique ou parallélépipédique, voire rectangulaire. Classiquement, ces modules intègrent des membranes planes ou des membranes fibres creuses en matériaux organiques, empotées au moins à l'une de leurs extrémités.
Le liquide traité est filtré sous l'effet d'une aspiration de l'extérieur de la membrane vers l'intérieur. Ces membranes sont traditionnellement des membranes de micro- filtration ou d'ultra-filtration.
L'invention s'applique particulièrement aux dispositifs dans lesquels les membranes sont disposées en position verticale, mais s'applique également aux dispositifs de filtration dans lesquels les membranes sont immergées en position horizontale.
Ces systèmes à membranes immergées sont notamment utilisés pour le traitement d'eaux à potabiliser, en vue de retenir la pollution en suspension dans les eaux ou encore pour interdire le passage d'animalcules microscopiques (protozoaires), tels les cryptosporidium ou les giardia, les bactéries et/ou virus, ou encore pour retenir des réactifs ou catalyseurs pulvérulents, tels le charbon actif en poudre ou l'alumine, qui ont été injectés dans la filière de traitement en amont des membranes.
Ce type de membranes est également utilisé en immersion dans des réacteurs biologiques à membranes (souvent appelés « MBR »), comme moyen de clarification d'une eau usée traitée par une biomasse en suspension dans le réacteur, et comme moyen pour conserver la biomasse à l'intérieur du réacteur.
Les modules de membranes sont souvent agrégés en racks ou en cassettes, avec un support et des connexions communes pour l'ensemble des modules du rack ou cassette.
Dans les systèmes de filtration à membranes immergées connus, un problème réside dans le colmatage progressif des membranes par les matières à filtrer, appelées boues, et ceci particulièrement en ce qui concerne les membranes immergées dans un bioréacteur contenant des boues activées. En effet, les membranes sont peu à peu colmatées par les boues piégées à leur surface, ou même, dans le cas d'un colmatage sévère, par des accumulations de boues et/ou de matières fibreuses emprisonnés par le faisceau de fibres (dans le cas de membrane fibres creuses) ou entre les éléments membranaires (dans le cas des membranes planes). Ce colmatage nécessite des actions de décolmatage, souvent réalisées par des périodes de rétro-filtration (ou « rétrolavage ») par le perméat, avec ou sans réactif chimique, ou encore par lavage chimique des membranes.
Le plus souvent, pour décolmater les membranes et/ou retarder leur colmatage, on procède à une injection d'un gaz (généralement de l'air), en continu ou de façon cyclique, à la partie inférieure du module membranaire.
Les bulles de gaz injectées remontent le long de la fibre ou de la membrane plane avec une vitesse qui tend à limiter le dépôt des matières sur la membrane, réduisant ainsi la vitesse de colmatage des membranes de filtration.
Ceci est dû au fait que la remontée des bulles de gaz injectées crée des turbulences fortes, agitant plus ou moins les fibres voisines, nettoyant mécaniquement les fibres ou les membranes planes par l'action de l'air injecté, ce qui permet finalement de retarder le colmatage des membranes.
Divers procédés ont été proposés pour assurer l'injection d'un tel gaz de décolmatage. Selon une technique connue, on injecte directement le gaz dans une chambre fermée située sous un empotage inférieur dans lequel sont empotés des faisceaux de fibres creuses, l'air étant réparti entre modules à l'aide d'une vanne ou d'un orifice calibré, avant de passer dans des ouvertures ménagées dans l'empotage inférieur des faisceaux de fibres.
L'utilisation de ce système entraîne un colmatage rapide des ouvertures d'injection. En effet à chaque arrêt d'injection du gaz, une partie du milieu à traiter pénètre dans ces ouvertures, et les boues ainsi amenées sont séchées par le gaz lors de la reprise de l'injection, ce qui provoque rapidement l'encrassement voire l'obturation des ouvertures.
Selon une autre technique connue, le milieu à filtrer et le gaz de décolmatage sont tous deux injectés par des ouvertures ménagées dans l'empotage inférieur des faisceaux de fibres creuses.
Ce système présente l'avantage théorique d'éviter le séchage des boues déposées dans les ouvertures, sous l'effet du gaz qui y passe.
Selon encore une autre technique, le faisceau de fibres creuses est immergé verticalement dans le milieu à filtrer (par exemple de la boue activée d'un MBR) et de l'air de décolmatage est amené sous chaque module par l'intermédiaire d'une tuyauterie munie de perforations permettant le passage de l'air.
L'air injecté sous les modules rentre dans les modules, puis remonte à l'intérieur des modules le long des fibres creuses, avant de s'échapper par les côtés ou par des orifices similaires ménagés dans l'empotage supérieur des modules. Un inconvénient du mode d'injection du gaz mis en œuvre dans ces techniques est que les ouvertures d'injection d'air situées dans la base du faisceau membranaire se colmatent peu à peu du fait du dépôt de boues (ou de grosses particules, de fibres... amenées par le liquide à traiter), ainsi que dans la zone de mélange boue/air. Par conséquent, ce phénomène entraîne progressivement une mauvaise distribution du gaz, inégalement réparti à la base de chaque module ou entre les divers modules, et finalement une accélération du colmatage des parties du faisceau de fibres ou des plaques planes mal balayées par le gaz de décolmatage. Pour pallier les inconvénients précités, une autre solution décrite dans le document de brevet publié sous le numéro FR-2 869 552 a été proposée par l'art antérieur.
Selon cette solution, les moyens d'injection du gaz de décolmatage sont associés à des moyens anti-refoulement permettant d'interdire le contact du liquide à traiter avec les moyens d'injection.
Ces moyens anti-refoulement peuvent être constitués par :
- un manchon rapporté de façon étanche sur des tuyères d'injection et présentant au moins un passage élastiquement déformable dont les contours s'écartent lorsque la pression du gaz de colmatage dépasse une pression déterminée dans les tuyères et sont jointifs lorsque la pression du gaz de décolmatage est inférieure à cette pression prédéterminée ;
- un clapet de protection des tuyères, ce clapet étant mobile entre une position ouverte d'injection du gaz et une position d'obturation, le clapet étant couplé à des moyens de rappel.
Cette solution est en théorie efficace.
En pratique, le matériau déformable du manchon peut être amené à se dégrader au contact des composants plus ou moins agressifs du liquide à traiter. Il peut alors perdre de son élasticité et peut, à terme, ne plus assurer sa fonction d'étanchéité et donc de protection vis-à-vis des tuyères d'injection.
Les clapets quant à eux, peuvent être sujets à un encrassement qui peut entraîner une perte d'étanchéité lorsqu'ils sont en position d'obturation, ce qui entraîne également à terme une perte d'efficacité quant à la protection des tuyères que les clapets sont sensés assurer. On constate donc que la fonction de ces moyens est liée à un aspect commun aux manchons et aux clapets : la mobilité d'une de leurs parties de façon qu'ils passent d'une position de protection à une position autorisant le passage du gaz de décolmatage. Or, comme on vient de le montrer, la mise en œuvre des parties mobiles implique des risques de dégradation de la fonction des moyens de protection incluant ces parties mobiles.
Par ailleurs, la solution décrite selon FR-2 869 552 est particulièrement destinée aux dispositifs de filtration dans lesquels les membranes sont empotées au moins dans un empotage inférieur, les moyens d'injection étant prévus au travers de cet empotage.
Toutefois, l'empotage des membranes est une technique particulière et il peut être souhaité de recourir à un autre type de conception de dispositifs de filtration membranaire. De manière générale, le gaz de décolmatage des membranes, indispensable au bon fonctionnement d'un procédé de membrane immergée, constitue un surcoût important puisqu'il représente une grosse part de la consommation énergétique d'une station de traitement des eaux.
Comme indiqué précédemment, la majorité des systèmes utilisent actuellement des rampes d'aération perforées : les orifices d'aération sont le plus souvent amenés à se boucher au cours du temps, nécessitant l'aménagement d'un système de décolmatage des aérateurs souvent complexe.
Afin d'éviter cette accumulation de solides, il est donc préférable de garder une taille d'orifice suffisamment importante pour empêcher leur bouchage, ce qui peut alors induire soit une consommation d'air plus importante, soit une distribution de l'air moins homogène.
Selon un autre inconvénient connu des solutions existantes, les boues (liqueur mixte) sont mal distribuées dans les réacteurs car elles sont généralement amenées par une seule entrée dans le réacteur. Une solution consiste alors à utiliser une grosse canalisation d'amenée. Mais ceci s'avère être une solution onéreuse.
L'invention a pour objectif de pallier les inconvénients de l'art antérieur.
Plus précisément, l'invention a pour objectif de proposer une technique d'aération des membranes d'un système immergé de traitement d'eau qui supprime les phénomènes de perte d'efficacité des moyens d'injection de gaz de décolmatage rencontrés avec les solutions de l'art antérieur.
L'invention a également pour objectif de fournir une telle technique dont la fiabilité soit pérenne. L'invention a aussi pour objectif de fournir un tel dispositif de filtration qui permette une bonne distribution du gaz de décolmatage à la base des membranes (fibres creuses ou planes)
Un autre objectif de l'invention est de fournir une telle technique qui permette d'envisager une réduction des coûts d'exploitation des réacteurs biologiques à membranes immergées.
Un autre objectif de l'invention est de fournir un tel dispositif de filtration qui soit simple de conception et facile à mettre en oeuvre.
Ces objectifs, ainsi que d'autres qui apparaîtront par la suite sont atteints grâce à l'invention qui a pour objet un dispositif d'aération pour réacteur biologique à membranes immergées destiné à être installé essentiellement sous lesdites membranes caractérisé en ce qu'il comprend un plancher séparant une chambre haute dans laquelle lesdites membranes sont immergées et une chambre basse comprenant des moyens d'amenée d'un liquide à traiter et des moyens d'amenée d'un gaz d'aération, ledit plancher étant pourvu d'une pluralité de crépines et d'au moins un système d'équilibrage des pressions entre lesdites chambres haute et basse, et en ce que chaque crépine comprend un élément essentiellement tubulaire traversant ledit plancher et présentant dans sa partie supérieure au moins un orifice, et un élément formant cloche coiffant ladite partie supérieure. Ainsi, grâce à l'invention, on obtient un système d'aération dont les crépines conservent de façon pérenne leur efficacité du fait que leur orifice n'est jamais en contact avec le liquide à traiter.
En effet, le liquide n'étant pas en contact avec les orifices des crépines grâce aux coiffes qui contiennent du gaz et isolent les orifices des crépines, les matières solides ne peuvent se déposer sur celle-ci. Les phénomènes de bouchage dus à ces dépôts sont donc supprimés.
Le risque de bouchage des crépines étant supprimé, ou à tout le moins limité, il est possible de réduire le diamètre des orifices de crépines et, par conséquent, la quantité d'air distribué. Ainsi, tout en assurant une efficacité au moins égale à celle des solutions antérieures, on peut limiter la consommation d'énergie liée à la distribution d'air et donc réduire les coûts d'exploitation de l'installation équipée selon l'invention.
De plus, le recours à un plancher permet d'obtenir une meilleure répartition du gaz de décolmatage comparé aux solutions de l'art antérieur.
Aussi, l'optimisation du contrôle de répartition du gaz de décolmatage contribue à la maîtrise de coûts liés à la dépense d'énergie pour la distribution du gaz.
Par ailleurs, un dispositif selon l'invention permet aussi de réduire les coûts de fabrication du dispositif d'aération et donc du réacteur équipé de celui- ci comparé notamment aux systèmes d'aération à tuyauterie perforée ou à empotage mentionnés précédemment en référence à l'art antérieur.
Selon une solution avantageuse, lesdits moyens d'amenée d'un gaz d'aération débouchent dans ladite chambre basse, lesdits moyens d'amenée dudit liquide à traiter débouchant dans une zone distante desdits moyens d'amenée d'un gaz d'aération et en dessous de ceux-ci, ledit ou lesdits systèmes d'équilibrage comprenant au moins un tube faisant saillie sous le plancher en direction de ladite zone distante. De cette façon, on peut obtenir un tapis d'air sous le plancher, ce qui a notamment pour avantage, lors de l'aération, d'éviter toute remontée de liquide par les crépines.
Ce tapis d'air disparaît lorsque l'aération est interrompue. Toutefois, l'équilibrage de pression (grâce par exemple à des tubes d'équilibrage) permet de conserver une quantité de gaz, emprisonnée par les coiffes, autour de orifices des crépines, ce qui évite toute remontée de liquide par celles-ci.
D'autre part, le positionnement du tube d'équilibrage tel que décrit permet, lors de l'aération, de préserver la possibilité d'obtenir le tapis d'air, tout en alimentant le liquide à traiter au travers du plancher à partir d'une zone plus profonde que le tapis d'air.
Avantageusement, chaque élément formant cloche présente sur son bord inférieur au moins une indentation, chaque élément formant cloche présentant préférentiellement quatre indentations en forme de V renversé régulièrement réparties sur son bord inférieur.
On peut ainsi assurer la formation de moyennes et/ou de grosses bulles par une dimension appropriée des indentations, ce qui améliore l'agitation des membranes et donc leur décolmatage.
Selon une solution avantageuse, lesdites crépines sont fixées dans ledit plancher.
Le recours au plancher permet de faciliter les opérations de maintenance du dispositif d'aération, les crépines pouvant être fixés de façon amovible sur le plancher. Les crépines peuvent être modifiés ou échangées aisément, par exemple si le débit de gaz doit être changé. Ceci n'est pas permis avec les dispositifs d'aération à tuyauteries perforées.
Avantageusement, lesdites crépines sont réparties de façon uniforme sur ledit plancher.
On comprend clairement qu'on assure ainsi une distribution homogène du gaz de colmatage. Préférentiellement, ledit système d'équilibrage comprend une pluralité de tubes répartis essentiellement uniformément sur ledit plancher.
Les tubes d'équilibrage servant également à l'alimentation de la chambre haute du liquide à traiter, on obtient de cette façon une distribution homogène du liquide à traiter dans le réacteur, ce qui permet de répartir le liquide de façon homogène sur les membranes (évitant ainsi que certaines soient mises à contribution plus que d'autres et donc de constater une perte d'efficacité hétérogène).
Avantageusement, lesdits tubes d'équilibrage sont répartis de façon symétrique sur ledit plancher.
Selon un premier mode de réalisation, la cloche de chaque crépine ferme la partie supérieure de chaque élément tubulaire correspondant, ledit orifice étant prévu dans la paroi latérale du tube.
Selon un deuxième mode de réalisation, la cloche de chaque crépine est prévue à distance de chaque élément tubulaire correspondant, ledit orifice étant prévu dans l'axe de celui-ci.
Selon une autre caractéristique, le dispositif forme un module indépendant.
L'invention concerne également un système à membranes immergées pour le traitement des eaux présentant une chambre haute dans lequel sont installés des membranes, des moyens d'amenée d'un gaz d'aération et des moyens d'amenée de liquide à traiter, caractérisé en ce qu'il est pourvu d'au moins un dispositif d'aération tel que décrit précédemment, lesdits moyens d'amenée d'un gaz d'aération et lesdits moyens d'amenée de liquide à traiter étant prévus sous ledit plancher dudit dispositif.
Selon une mise en œuvre préférée, ladite chambre haute présente au moins une paroi traversée par une perforation définissant un chenal.
D'autres caractéristiques et avantages de l'invention apparaîtront plus clairement à la lecture de la description suivante des deux modes de réalisation préférentiels de l'invention, donnés à titre d'exemples illustratifs et non limitatifs, et des dessins annexés parmi lesquels :
- la figure 1 est une vue schématique en coupe d'un dispositif selon l'invention, en phase d'aération ; - la figure 2 est une vue schématique en couple d'un dispositif selon l'invention, en phase d'arrêt de l'aération ;
- la figure 3 est une vue schématique de dessus d'un plancher d'un dispositif selon l'invention ; la figure 4 est une vue en coupe d'une crépine d'un dispositif selon l'invention, selon un premier mode de réalisation ;
- la figure 5 est une vue en coupe d'une crépine d'un dispositif selon l'invention, selon un deuxième mode de réalisation.
Tel qu'indiqué précédemment, le principe de l'invention réside dans le fait de concevoir un dispositif d'aération pour réacteur à membranes immergées sous forme d'un plancher pourvu d'au moins un tube d'équilibrage de pression entre une chambre haute et une chambre basse qui sépare le plancher, des crépines dont les orifices sont protégés du liquide à traiter étant montées sur le plancher.
On note que la présente invention est utilisable quel que soit le système membranaire utilisé (membranes planes, membranes fibres creuses ou membranes tubulaires), et permet l'aération de tout ou partie des membranes d'un ou plusieurs modules grâce à l'utilisation d'un plancher d'aération muni de crépines.
En dehors du fait que le système d'aération selon l'invention permet de limiter efficacement le colmatage des membranes, son intérêt majeur est qu'il ne peut pas se boucher malgré de fortes concentrations en boues utilisées dans la cuve membranaire (chambre haute).
Le principe de fonctionnement du plancher d'aération est illustré sur les figures 1 et 2. Le plancher 1 est composé d'une dalle en béton ou d'une plaque pouvant être composé d'autres matériaux (ex : PVC) disposé dans le réacteur biologique, et d'une alternance de crépines 2 et de tubes d'équilibrage 5.
Le réacteur est ainsi divisé en une chambre haute 11 intégrant des membranes 9 et une chambre basse 10 séparées par le plancher 1.
L'injection du liquide à traiter, par un conduit 12, ainsi que l'injection d'air, par un conduit 6, s'effectuent sous le plancher d'aération, dans la chambre basse.
Les tubes d'équilibrage 5 permettent de laisser librement transiter le liquide à traiter, au travers du plancher 1, de la chambre basse 10 vers la chambre haute 11 du plancher.
Les crépines servent à l'aération des modules membranaires 9.
Tel qu'illustré par la figure 3, on prévoit une disposition régulière des crépines 2 d'aération sur le plancher, de façon à assurer une aération homogène en air des modules membranaires disposés au-dessus de celui-ci. Si plusieurs tubes d'équilibrage sont prévus, ils sont également répartis régulièrement, par exemple en quinconce. Les crépines et tubes d'équilibrage peuvent être répartis comme représentés, leur nombre et la proportion de chacun pouvant varier de façon significative selon l'application utilisée. A titre indicatif, les crépines sont espacés d'une distance d'environ
200 mm entre elles et le tube 5 d'environ 300 mm. Lors de l'injection d'air (figure 1), la perte de charge créée par l'orifice du tube d'aération de chaque crépine permet de maintenir un tapis d'air 8 sous le plancher (1 à 30 cm selon le débit d'air injecté), évitant ainsi toute remontée de liquide au sein du tube. La cloche et la présence de petites ouvertures à la base de celle-ci, permettent une distribution homogène de l'air, sous forme de grosses bulles 7.
Lorsque l'aération est en fonctionnement, les tubes d'équilibrage 5 sont également utilisés pour réaliser une distribution homogène du liquide à traiter (ex : boue activé pour les bioréacteurs à membranes). Dans ce cas, le liquide à traiter est injecté dans la chambre basse par recirculation et passe ensuite par les trous d'équilibrage pour atteindre les modules membranaires.
Lorsque l'aération est interrompue (figure 2), le tapis d'air disparaît 8, l'air s'échappe par les orifices et les deux chambres (haute 11 et basse 10) s'équilibrent en pression grâce au tube d'équilibrage (sans ce tube d'équilibrage, le liquide à traité pourrait être aspiré à l'intérieur des crépines par simple équilibrage des pressions et donc entrer en contact avec les orifices).
Une quantité d'air reste donc emprisonnée sous la cloche ainsi que dans le tube d'aération, sur toute la hauteur de la cloche. Ceci permet d'éviter tout contact entre le liquide à traiter et l'orifice du tube d'aération, et donc d'écarter tout risque de bouchage.
D'autre part, lorsque l'aération est arrêtée, l'alimentation en liquide à traiter peut être maintenue sans engendrer de remontée de liquide dans les crépines d'aération, celles-ci étant protégées par l'air emprisonné. Les figures 4 et 5 illustrent plus en détail les crépines 2 constitués d'un élément tubulaire central 13 pourvu en sa partie supérieure d'un orifice 4, le tube 13 étant coiffé par une coiffe 3.
Selon le mode de réalisation illustré par la figure 4, l'orifice 4 est prévu dans la paroi latérale du tube 13, la coiffe 3 étant alors directement rapportée sur l'extrémité supérieure du tube 13 de façon à fermer celui-ci.
Selon le mode de réalisation illustré par la figure 5, l'orifice 4 est prévu dans la paroi d'extrémité 131 du tube 13, sensiblement dans l'axe de celui-ci. La coiffe 3 est alors écartée de la paroi d'extrémité 31 du tube 13.
On note que les tubes d'équilibrage 5 s'étendent sous le plancher 1 de façon que leur extrémité inférieure débouche dans une zone de la chambre basse
10 dont la profondeur correspond sensiblement à la profondeur de la chambre à laquelle débouche le conduit 12 d'amenée de liquide à traiter.
Ainsi, le conduit 6 d'injection d'air étant placé au-dessus et à distance du conduit 12, on peut obtenir une épaisseur du tapis d'air 8 suffisante pour éviter tout risque de remontée de liquide dans les crépines. Préférentiellement, le conduit 6 d'injection d'air débouche directement au voisinage du plancher 1.
Le dispositif de filtration incluant le dispositif selon l'invention qui vient d'être décrit peut être constitué sous forme d'un module indépendant.
Selon une implantation préférée d'une installation de traitement d'eau, celle-ci comprend plusieurs dispositifs indépendants équipés d'un dispositif d'aération, les chambres hautes de chaque dispositif communiquant entre elles par l'intermédiaire d'un chenal 14.

Claims

REVENDICATIONS
1. Dispositif d'aération pour système de filtration d'eau à membranes immergées (9) destiné à être installé essentiellement sous lesdites membranes (9) caractérisé en ce qu'il comprend un plancher (1) séparant une chambre haute (11) dans laquelle lesdites membranes (9) sont immergées et une chambre basse (10) comprenant des moyens d'amenée (12) d'un liquide à traiter et des moyens d'amenée d'un gaz d'aération (6), ledit plancher (1) étant pourvu d'une pluralité de crépines (2) et d'au moins un tube d'équilibrage des pressions (5) entre lesdites chambres haute (11) et basse (10), et en ce que chaque crépine (2) comprend un élément essentiellement tubulaire (13) traversant ledit plancher (1) et présentant dans sa partie supérieure au moins un orifice (4), et un élément formant cloche (3) coiffant ladite partie supérieure.
2. Dispositif selon la revendication 1, caractérisé en ce que lesdits moyens d'amenée d'un gaz d'aération (6) débouchent dans ladite chambre basse (10), lesdits moyens d'amenée (12) dudit liquide à traiter débouchant dans une zone distante desdits moyens d'amenée d'un gaz d'aération (6) et en dessous de ceux- ci, ledit ou lesdits tubes d'équilibrage des pressions (5) faisant saillie sous le plancher (1) en direction de ladite zone distante.
3. Dispositif selon l'une des revendications 1 et 2 caractérisé en ce que chaque élément formant cloche (3) présente sur son bord inférieur au moins une indentation.
4. Dispositif selon la revendication 3 caractérisé en ce que chaque élément formant cloche (3) présente quatre indentations (31) en forme de V renversé régulièrement réparties sur son bord inférieur.
5. Dispositif d'aération selon l'une quelconque des revendications précédentes caractérisé en ce que lesdites crépines (2) sont fixées sur ledit plancher (1).
6. Dispositif selon l'une quelconque des revendications précédentes caractérisé en ce que lesdites crépines (2) sont réparties de façon uniforme sur ledit plancher (1).
7. Dispositif selon l'une quelconque des revendications précédentes caractérisé en ce qu'il comprend une pluralité de tubes d'équilibrage des pressions (5) répartis essentiellement uniformément sur ledit plancher (1).
8. Dispositif selon les revendications 6 ou 7 caractérisé en ce que lesdites crépines (2) et/ou lesdits tubes d'équilibrage des pressions (5) sont répartis de façon symétrique sur ledit plancher (1).
9. Dispositif selon l'une quelconque des revendications précédentes caractérisé en ce que la cloche (3) de chaque crépine (2) ferme la partie supérieure de chaque élément tubulaire (13) correspondant, ledit orifice (4) étant prévu dans la paroi latérale du tube (13).
10. Dispositif selon l'une quelconque des revendications précédentes caractérisé en ce que la cloche (3) de chaque crépine (2) est prévue à distance de chaque élément tubulaire (13) correspondant, ledit orifice (4) étant prévu dans l'axe de celui-ci.
11. Dispositif selon l'une quelconque des revendications 1 à 10 caractérisé en ce qu'il forme un module indépendant.
12. Système à membranes immergées pour le traitement des eaux présentant une chambre haute (11) dans lequel sont installés des membranes (9), des moyens (6) d'amenée d'un gaz d'aération et des moyens (12) d'amenée de liquide à traiter, caractérisé en ce qu'il est pourvu d'au moins un dispositif d'aération selon l'une quelconque des revendications 1 à 10, lesdits moyens d'amenée d'un gaz d'aération (6) et lesdits moyens d'amenée de liquide à traiter (12) étant prévus sous ledit plancher (1) dudit dispositif.
13. Système selon la revendication 12, caractérisé en ce que ladite chambre haute (11) présente au moins une paroi traversée par une perforation définissant un chenal (14).
PCT/EP2007/054815 2006-05-23 2007-05-18 Dispositif d'aeration pour systeme de filtration d'eau a membranes immergees, incluant un plancher pourvu de moyens d'injection d'un gaz et d'au moins un systeme d'equilibrage des pressions WO2007135087A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CA 2650694 CA2650694A1 (fr) 2006-05-23 2007-05-18 Dispositif d'aeration pour systeme de filtration d'eau a membranes immergees, incluant un plancher pourvu de moyens d'injection d'un gaz et d'au moins un systeme d'equilibrage despressions
EP07729262A EP2026900A1 (fr) 2006-05-23 2007-05-18 Dispositif d'aeration pour systeme de filtration d'eau a membranes immergees, incluant un plancher pourvu de moyens d'injection d'un gaz et d'au moins un systeme d'equilibrage des pressions
US12/298,605 US20090255872A1 (en) 2006-05-23 2007-05-18 Aerating device for a water filtering system with immersed membranes, including a floor provided with means for injecting a gas and at least one pressure balancing system
JP2009511479A JP2009537317A (ja) 2006-05-23 2007-05-18 ガスを注入するための手段と少なくとも1つの圧力バランスシステムとが設けられるフロアを備える、浸漬膜を有する水濾過システムのための通気装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0604616 2006-05-23
FR0604616A FR2901488B1 (fr) 2006-05-23 2006-05-23 Dispositif d'aeration pour systeme de filtration d'eau a membranes immergees, incluant un plancher pourvu de moyens d'injection d'un gaz et d'au moins un systeme d'equilibrage des pressions

Publications (1)

Publication Number Publication Date
WO2007135087A1 true WO2007135087A1 (fr) 2007-11-29

Family

ID=37553206

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2007/054815 WO2007135087A1 (fr) 2006-05-23 2007-05-18 Dispositif d'aeration pour systeme de filtration d'eau a membranes immergees, incluant un plancher pourvu de moyens d'injection d'un gaz et d'au moins un systeme d'equilibrage des pressions

Country Status (9)

Country Link
US (1) US20090255872A1 (fr)
EP (1) EP2026900A1 (fr)
JP (1) JP2009537317A (fr)
CN (1) CN101448562A (fr)
AR (1) AR061079A1 (fr)
CA (1) CA2650694A1 (fr)
FR (1) FR2901488B1 (fr)
TW (1) TW200815094A (fr)
WO (1) WO2007135087A1 (fr)

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008153818A1 (fr) * 2007-05-29 2008-12-18 Siemens Water Technologies Corp. Nettoyage d'une membrane avec une pompe pneumatique pulsée
US8182687B2 (en) 2002-06-18 2012-05-22 Siemens Industry, Inc. Methods of minimising the effect of integrity loss in hollow fibre membrane modules
US8268176B2 (en) 2003-08-29 2012-09-18 Siemens Industry, Inc. Backwash
US8293098B2 (en) 2006-10-24 2012-10-23 Siemens Industry, Inc. Infiltration/inflow control for membrane bioreactor
US8318028B2 (en) 2007-04-02 2012-11-27 Siemens Industry, Inc. Infiltration/inflow control for membrane bioreactor
US8377305B2 (en) 2004-09-15 2013-02-19 Siemens Industry, Inc. Continuously variable aeration
US8382981B2 (en) 2008-07-24 2013-02-26 Siemens Industry, Inc. Frame system for membrane filtration modules
US8496828B2 (en) 2004-12-24 2013-07-30 Siemens Industry, Inc. Cleaning in membrane filtration systems
US8506806B2 (en) 2004-09-14 2013-08-13 Siemens Industry, Inc. Methods and apparatus for removing solids from a membrane module
US8512568B2 (en) 2001-08-09 2013-08-20 Siemens Industry, Inc. Method of cleaning membrane modules
US8518256B2 (en) 2001-04-04 2013-08-27 Siemens Industry, Inc. Membrane module
DE102012108572A1 (de) * 2012-09-13 2014-03-13 Martin Stachowske Vorrichtung zum Einbringen eines Gases oder eines Gasgemisches in eine Flüssigkeit
US8758622B2 (en) 2004-12-24 2014-06-24 Evoqua Water Technologies Llc Simple gas scouring method and apparatus
US8758621B2 (en) 2004-03-26 2014-06-24 Evoqua Water Technologies Llc Process and apparatus for purifying impure water using microfiltration or ultrafiltration in combination with reverse osmosis
US8790515B2 (en) 2004-09-07 2014-07-29 Evoqua Water Technologies Llc Reduction of backwash liquid waste
US8808540B2 (en) 2003-11-14 2014-08-19 Evoqua Water Technologies Llc Module cleaning method
US8858796B2 (en) 2005-08-22 2014-10-14 Evoqua Water Technologies Llc Assembly for water filtration using a tube manifold to minimise backwash
US8956464B2 (en) 2009-06-11 2015-02-17 Evoqua Water Technologies Llc Method of cleaning membranes
US9022224B2 (en) 2010-09-24 2015-05-05 Evoqua Water Technologies Llc Fluid control manifold for membrane filtration system
US9533261B2 (en) 2012-06-28 2017-01-03 Evoqua Water Technologies Llc Potting method
WO2017028829A1 (fr) 2015-08-18 2017-02-23 Martin Stachowske Dispositif d'introduction d'un gaz ou d'un mélange de gaz ou d'un liquide dans un milieu entourant le dispositif
US9604166B2 (en) 2011-09-30 2017-03-28 Evoqua Water Technologies Llc Manifold arrangement
US9675938B2 (en) 2005-04-29 2017-06-13 Evoqua Water Technologies Llc Chemical clean for membrane filter
US9764288B2 (en) 2007-04-04 2017-09-19 Evoqua Water Technologies Llc Membrane module protection
US9815027B2 (en) 2012-09-27 2017-11-14 Evoqua Water Technologies Llc Gas scouring apparatus for immersed membranes
US9914097B2 (en) 2010-04-30 2018-03-13 Evoqua Water Technologies Llc Fluid flow distribution device
US9925499B2 (en) 2011-09-30 2018-03-27 Evoqua Water Technologies Llc Isolation valve with seal for end cap of a filtration system
US9962865B2 (en) 2012-09-26 2018-05-08 Evoqua Water Technologies Llc Membrane potting methods
US10322375B2 (en) 2015-07-14 2019-06-18 Evoqua Water Technologies Llc Aeration device for filtration system
US10427102B2 (en) 2013-10-02 2019-10-01 Evoqua Water Technologies Llc Method and device for repairing a membrane filtration module
CN112105445A (zh) * 2018-06-27 2020-12-18 株式会社可乐丽 中空纤维膜组件以及其清洗方法

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2087166B1 (fr) 2006-11-13 2012-07-25 Shaw Industries Group, Inc. Procédé et système de recyclage de tapis et tapis fabriqués à partir de matériau recyclé
US9358505B2 (en) 2009-09-03 2016-06-07 General Electric Company Gas sparger for an immersed membrane
DE102010019505B4 (de) * 2010-05-06 2016-09-29 Microdyn - Nadir Gmbh Filtrationsvorrichtung mit interner Rezirkulation
CN101862613B (zh) * 2010-05-25 2012-09-26 上海誉辉化工有限公司 促进气体在液体中溶解的方法和设备及使用该设备的污水处理***
US9364805B2 (en) * 2010-10-15 2016-06-14 General Electric Company Integrated gas sparger for an immersed membrane
US9682876B2 (en) 2011-05-13 2017-06-20 ProAct Services Corporation System and method for the treatment of wastewater
US8876089B2 (en) 2011-09-15 2014-11-04 Zenon Technology Partnership Method and apparatus to keep an aerator full of air
KR20130035415A (ko) * 2011-09-30 2013-04-09 코오롱인더스트리 주식회사 산기부 및 그것을 포함한 여과장치
US9255025B2 (en) 2012-07-20 2016-02-09 ProAct Services Corporation Method for the treatment of wastewater
KR101627894B1 (ko) * 2012-08-09 2016-06-07 롯데케미칼 주식회사 에어레이터 장치, 이를 포함하는 필터 시스템 및 이를 이용한 필터 폭기 방법
US10828607B2 (en) 2012-08-09 2020-11-10 Lotte Chemical Corporation Aerator device, filter system including an aerator device, and method of aerating a filter using an aerator device
CN102989317A (zh) * 2012-12-12 2013-03-27 北京坎普尔环保技术有限公司 均匀曝气的内压管式膜过滤装置
DE102013218188B3 (de) * 2013-09-11 2014-12-04 membion Gmbh Membranfilter und Verfahren zum Filtern
DE102013218208B4 (de) * 2013-09-11 2015-06-03 membion Gmbh Membranfilter und Verfahren zum Filtern
KR101704864B1 (ko) 2013-12-31 2017-02-08 롯데케미칼 주식회사 에어레이터 장치 및 이를 포함하는 필터 시스템
CA2964891C (fr) 2014-10-22 2021-11-09 Koch Membrane Systems, Inc. Module de filtrage de membrane et dispositif de gazeification a liberation dans un faisceau
USD779632S1 (en) 2015-08-10 2017-02-21 Koch Membrane Systems, Inc. Bundle body
EP3378553A4 (fr) * 2015-11-19 2019-07-03 Kuraray Co., Ltd. Module de membranes à fibres creuses et son procédé de nettoyage
US9920291B1 (en) * 2016-11-21 2018-03-20 Mih Water Treatment, Inc. Biochemical reactor with tank inlet disposed above lower divider
FR3061663B1 (fr) * 2017-01-06 2019-05-17 Suez Groupe Systeme ameliore d'aeration de membrane immergee
CN108178354A (zh) * 2017-12-29 2018-06-19 天津工业大学 利用重力差进行悬浮澄清的膜过滤方法
CN111484128B (zh) * 2020-04-05 2022-07-12 苏州市苏创环境科技发展有限公司 一种基于生物工程原理的污水处理设备
CN112774445B (zh) * 2020-12-18 2022-06-14 武汉艾科滤膜技术有限公司 一种杆浮球式气液分离超滤膜组件
KR102269589B1 (ko) 2021-05-04 2021-06-24 주식회사 조은환경 습식 오존 제거 장치
CN114478621B (zh) * 2022-01-25 2024-03-26 海南乐孕生物科技有限公司 一种提取酶解大豆磷脂的工艺
KR20240050058A (ko) 2022-10-11 2024-04-18 주식회사 조은환경 습식 가스 탈취 장치

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1542513A1 (de) * 1964-03-30 1970-03-26 Union Oil Co Verfahren zum gleichmaessigen Verteilen einer aus Dampf und Fluessigkeit bestehenden Mischphase
DE2453670A1 (de) * 1973-11-13 1975-05-15 Hamburger & Co Kg Georg Einrichtung zum verteilen von gasen in fluessigkeiten
JPS61293504A (ja) * 1985-06-24 1986-12-24 Kurita Water Ind Ltd 中空糸型膜分離装置
EP0249861A2 (fr) * 1986-06-20 1987-12-23 Bayer Ag Procédé pour la purification biologique d'air d'échappement et d'eau usée
DE4229174A1 (de) * 1992-09-03 1994-03-10 Hp Biotechnologie Gmbh Anlage zur biologischen Reinigung verunreinigter Flüssigkeiten, Suspensionen und Schlämme
JPH0938470A (ja) * 1995-07-25 1997-02-10 Hitachi Ltd 濾過装置
JPH09131518A (ja) * 1995-11-09 1997-05-20 Hitachi Ltd 濾過装置
US20050109405A1 (en) * 2000-12-21 2005-05-26 Jacobs Garry E. Methods and apparatus for mixing fluids
FR2869552A1 (fr) * 2004-04-29 2005-11-04 Otv Sa Dispositif de filtration pour le traitement d'eaux, du type a membranes immergees, incluant des moyens antirefoulement du milieu a filtrer vers des moyens d'injection d'un gaz de decolmatage.

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI59730C (fi) * 1977-10-14 1981-10-12 Alko Ab Oy Laettskoett klockbottenkolonn foer destillering av grumliga och tilltaeppande vaetskor
US7087173B2 (en) * 1995-08-11 2006-08-08 Zenon Environmental Inc. Inverted cavity aerator for membrane module
US6641733B2 (en) * 1998-09-25 2003-11-04 U. S. Filter Wastewater Group, Inc. Apparatus and method for cleaning membrane filtration modules

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1542513A1 (de) * 1964-03-30 1970-03-26 Union Oil Co Verfahren zum gleichmaessigen Verteilen einer aus Dampf und Fluessigkeit bestehenden Mischphase
DE2453670A1 (de) * 1973-11-13 1975-05-15 Hamburger & Co Kg Georg Einrichtung zum verteilen von gasen in fluessigkeiten
JPS61293504A (ja) * 1985-06-24 1986-12-24 Kurita Water Ind Ltd 中空糸型膜分離装置
EP0249861A2 (fr) * 1986-06-20 1987-12-23 Bayer Ag Procédé pour la purification biologique d'air d'échappement et d'eau usée
DE4229174A1 (de) * 1992-09-03 1994-03-10 Hp Biotechnologie Gmbh Anlage zur biologischen Reinigung verunreinigter Flüssigkeiten, Suspensionen und Schlämme
JPH0938470A (ja) * 1995-07-25 1997-02-10 Hitachi Ltd 濾過装置
JPH09131518A (ja) * 1995-11-09 1997-05-20 Hitachi Ltd 濾過装置
US20050109405A1 (en) * 2000-12-21 2005-05-26 Jacobs Garry E. Methods and apparatus for mixing fluids
FR2869552A1 (fr) * 2004-04-29 2005-11-04 Otv Sa Dispositif de filtration pour le traitement d'eaux, du type a membranes immergees, incluant des moyens antirefoulement du milieu a filtrer vers des moyens d'injection d'un gaz de decolmatage.

Cited By (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8518256B2 (en) 2001-04-04 2013-08-27 Siemens Industry, Inc. Membrane module
US8512568B2 (en) 2001-08-09 2013-08-20 Siemens Industry, Inc. Method of cleaning membrane modules
US8182687B2 (en) 2002-06-18 2012-05-22 Siemens Industry, Inc. Methods of minimising the effect of integrity loss in hollow fibre membrane modules
US8268176B2 (en) 2003-08-29 2012-09-18 Siemens Industry, Inc. Backwash
US8808540B2 (en) 2003-11-14 2014-08-19 Evoqua Water Technologies Llc Module cleaning method
US8758621B2 (en) 2004-03-26 2014-06-24 Evoqua Water Technologies Llc Process and apparatus for purifying impure water using microfiltration or ultrafiltration in combination with reverse osmosis
US8790515B2 (en) 2004-09-07 2014-07-29 Evoqua Water Technologies Llc Reduction of backwash liquid waste
US8506806B2 (en) 2004-09-14 2013-08-13 Siemens Industry, Inc. Methods and apparatus for removing solids from a membrane module
US8377305B2 (en) 2004-09-15 2013-02-19 Siemens Industry, Inc. Continuously variable aeration
US8758622B2 (en) 2004-12-24 2014-06-24 Evoqua Water Technologies Llc Simple gas scouring method and apparatus
US8496828B2 (en) 2004-12-24 2013-07-30 Siemens Industry, Inc. Cleaning in membrane filtration systems
US9675938B2 (en) 2005-04-29 2017-06-13 Evoqua Water Technologies Llc Chemical clean for membrane filter
US8894858B1 (en) 2005-08-22 2014-11-25 Evoqua Water Technologies Llc Method and assembly for water filtration using a tube manifold to minimize backwash
US8858796B2 (en) 2005-08-22 2014-10-14 Evoqua Water Technologies Llc Assembly for water filtration using a tube manifold to minimise backwash
US8293098B2 (en) 2006-10-24 2012-10-23 Siemens Industry, Inc. Infiltration/inflow control for membrane bioreactor
US8318028B2 (en) 2007-04-02 2012-11-27 Siemens Industry, Inc. Infiltration/inflow control for membrane bioreactor
US8623202B2 (en) 2007-04-02 2014-01-07 Siemens Water Technologies Llc Infiltration/inflow control for membrane bioreactor
US9764288B2 (en) 2007-04-04 2017-09-19 Evoqua Water Technologies Llc Membrane module protection
US10507431B2 (en) 2007-05-29 2019-12-17 Evoqua Water Technologies Llc Membrane cleaning with pulsed airlift pump
US8372276B2 (en) 2007-05-29 2013-02-12 Siemens Industry, Inc. Membrane cleaning with pulsed airlift pump
US8287743B2 (en) 2007-05-29 2012-10-16 Siemens Industry, Inc. Membrane cleaning with pulsed airlift pump
EP2463017A1 (fr) * 2007-05-29 2012-06-13 Siemens Industry, Inc. Nettoyage d'une membrane avec une pompe pneumatique pulsée
US8840783B2 (en) 2007-05-29 2014-09-23 Evoqua Water Technologies Llc Water treatment membrane cleaning with pulsed airlift pump
US8622222B2 (en) 2007-05-29 2014-01-07 Siemens Water Technologies Llc Membrane cleaning with pulsed airlift pump
WO2008153818A1 (fr) * 2007-05-29 2008-12-18 Siemens Water Technologies Corp. Nettoyage d'une membrane avec une pompe pneumatique pulsée
US9573824B2 (en) 2007-05-29 2017-02-21 Evoqua Water Technologies Llc Membrane cleaning with pulsed airlift pump
EP3078411A1 (fr) * 2007-05-29 2016-10-12 Evoqua Water Technologies LLC Nettoyage d'une membrane avec une pompe pneumatique pulsée
EP2389998A1 (fr) * 2007-05-29 2011-11-30 Siemens Industry, Inc. Nettoyage de membrane au moyen d'une pompe à émulsion d'air pulsé
EP2875857A1 (fr) * 2007-05-29 2015-05-27 Evoqua Water Technologies LLC Nettoyage de membrane au moyen d'une pompe à émulsion d'air pulsé
US9206057B2 (en) 2007-05-29 2015-12-08 Evoqua Water Technologies Llc Membrane cleaning with pulsed airlift pump
US9023206B2 (en) 2008-07-24 2015-05-05 Evoqua Water Technologies Llc Frame system for membrane filtration modules
US8382981B2 (en) 2008-07-24 2013-02-26 Siemens Industry, Inc. Frame system for membrane filtration modules
US8956464B2 (en) 2009-06-11 2015-02-17 Evoqua Water Technologies Llc Method of cleaning membranes
US10441920B2 (en) 2010-04-30 2019-10-15 Evoqua Water Technologies Llc Fluid flow distribution device
US9914097B2 (en) 2010-04-30 2018-03-13 Evoqua Water Technologies Llc Fluid flow distribution device
US9630147B2 (en) 2010-09-24 2017-04-25 Evoqua Water Technologies Llc Fluid control manifold for membrane filtration system
US9022224B2 (en) 2010-09-24 2015-05-05 Evoqua Water Technologies Llc Fluid control manifold for membrane filtration system
US9925499B2 (en) 2011-09-30 2018-03-27 Evoqua Water Technologies Llc Isolation valve with seal for end cap of a filtration system
US9604166B2 (en) 2011-09-30 2017-03-28 Evoqua Water Technologies Llc Manifold arrangement
US11065569B2 (en) 2011-09-30 2021-07-20 Rohm And Haas Electronic Materials Singapore Pte. Ltd. Manifold arrangement
US10391432B2 (en) 2011-09-30 2019-08-27 Evoqua Water Technologies Llc Manifold arrangement
US9533261B2 (en) 2012-06-28 2017-01-03 Evoqua Water Technologies Llc Potting method
DE102012108572A1 (de) * 2012-09-13 2014-03-13 Martin Stachowske Vorrichtung zum Einbringen eines Gases oder eines Gasgemisches in eine Flüssigkeit
US9962865B2 (en) 2012-09-26 2018-05-08 Evoqua Water Technologies Llc Membrane potting methods
US9815027B2 (en) 2012-09-27 2017-11-14 Evoqua Water Technologies Llc Gas scouring apparatus for immersed membranes
US10427102B2 (en) 2013-10-02 2019-10-01 Evoqua Water Technologies Llc Method and device for repairing a membrane filtration module
US11173453B2 (en) 2013-10-02 2021-11-16 Rohm And Haas Electronic Materials Singapores Method and device for repairing a membrane filtration module
US10322375B2 (en) 2015-07-14 2019-06-18 Evoqua Water Technologies Llc Aeration device for filtration system
WO2017028829A1 (fr) 2015-08-18 2017-02-23 Martin Stachowske Dispositif d'introduction d'un gaz ou d'un mélange de gaz ou d'un liquide dans un milieu entourant le dispositif
CN112105445A (zh) * 2018-06-27 2020-12-18 株式会社可乐丽 中空纤维膜组件以及其清洗方法
CN112105445B (zh) * 2018-06-27 2023-01-10 株式会社可乐丽 中空纤维膜组件以及其清洗方法

Also Published As

Publication number Publication date
FR2901488A1 (fr) 2007-11-30
CN101448562A (zh) 2009-06-03
JP2009537317A (ja) 2009-10-29
EP2026900A1 (fr) 2009-02-25
AR061079A1 (es) 2008-07-30
CA2650694A1 (fr) 2007-11-29
FR2901488B1 (fr) 2008-08-15
US20090255872A1 (en) 2009-10-15
TW200815094A (en) 2008-04-01

Similar Documents

Publication Publication Date Title
WO2007135087A1 (fr) Dispositif d'aeration pour systeme de filtration d'eau a membranes immergees, incluant un plancher pourvu de moyens d'injection d'un gaz et d'au moins un systeme d'equilibrage des pressions
WO2005115594A1 (fr) Dispositif de filtration pour le traitement d’eaux, du type a membranes immergees, incluant des moyens anti-refoulement du milieu a filtrer vers des moyens d’injection d’un gaz de decolmatage
EP1064070B1 (fr) Equipement de separation solide-liquide notamment pour l'epuration biologique d'eaux usees
KR100225776B1 (ko) 막장치 및 막처리장치
RU2359742C2 (ru) Мембранный картридж из полых волокон
FR2557558A1 (fr) Filtre immerge a remplissage de materiau granulaire
US9739047B2 (en) Non-point pollutant source treatment apparatus
CN101039739A (zh) 从薄膜组件上去除固体的方法和设备
KR20080022198A (ko) 여과 장치
CN101524625A (zh) 一种多孔分离膜的清洗方法
FR2928366A1 (fr) Installation pour le traitement d'une eau polluee et son procede de fonctionnement
KR101510923B1 (ko) 카트리지 필터를 내장한 공극제어 섬유 여과기 및 섬유 여과기 세척 방법
JP3554286B2 (ja) ろ過分離円筒膜カートリッジ
EP3383805B1 (fr) Élément de station d'épuration de flux aqueux pollue et procédé correspondant
JP2010149068A (ja) 浸漬型膜分離装置の洗浄方法および洗浄装置
FR2929608A1 (fr) Dispositif d'assainissement d'eaux usees.
KR102253874B1 (ko) 하폐수 처리용 침지형 분리막 모듈의 무폐쇄형 산기관 구조
WO2006056717A1 (fr) Unite de decantation et installation monobloc pour le traitement d'eau associant ladite unite de decantation a un systeme de filtration
EP1349643A1 (fr) Decolmatage d'un filtre a fibres creuses fonctionnant en mode frontal
FR2487399A1 (fr) Regard distributeur pour installation d'assainissement d'eaux usees et installation ainsi equipee
JP2002045657A (ja) 中空糸型選択透過性膜素子
JP3478322B2 (ja) 濾過装置
KR20070017398A (ko) 필터 세척 가스 주입 수단으로 여과성 매체 역류를방지하는 수단을 포함하는 침지막 수처리 여과 장치
FR3065454A1 (fr) Station d'epuration de flux pollue et procede correspondant
JP2016215165A (ja) 水処理方法及び水処理装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780018633.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07729262

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2007729262

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2650694

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009511479

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12298605

Country of ref document: US