WO2007126022A1 - Gas fuel internal combustion engine - Google Patents

Gas fuel internal combustion engine Download PDF

Info

Publication number
WO2007126022A1
WO2007126022A1 PCT/JP2007/059112 JP2007059112W WO2007126022A1 WO 2007126022 A1 WO2007126022 A1 WO 2007126022A1 JP 2007059112 W JP2007059112 W JP 2007059112W WO 2007126022 A1 WO2007126022 A1 WO 2007126022A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel
valve
passage
gas
scavenging port
Prior art date
Application number
PCT/JP2007/059112
Other languages
French (fr)
Japanese (ja)
Inventor
Ryuichi Yamashita
Hiromitsu Matsumoto
Original Assignee
Yamaha Hatsudoki Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Hatsudoki Kabushiki Kaisha filed Critical Yamaha Hatsudoki Kabushiki Kaisha
Priority to JP2008513273A priority Critical patent/JP4709277B2/en
Publication of WO2007126022A1 publication Critical patent/WO2007126022A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/08Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition
    • F02B23/10Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition with separate admission of air and fuel into cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B25/00Engines characterised by using fresh charge for scavenging cylinders
    • F02B25/14Engines characterised by using fresh charge for scavenging cylinders using reverse-flow scavenging, e.g. with both outlet and inlet ports arranged near bottom of piston stroke
    • F02B25/16Engines characterised by using fresh charge for scavenging cylinders using reverse-flow scavenging, e.g. with both outlet and inlet ports arranged near bottom of piston stroke the charge flowing upward essentially along cylinder wall opposite the inlet ports
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • F02M21/0218Details on the gaseous fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers
    • F02M21/0248Injectors
    • F02M21/0257Details of the valve closing elements, e.g. valve seats, stems or arrangement of flow passages
    • F02M21/026Lift valves, i.e. stem operated valves
    • F02M21/0269Outwardly opening valves, e.g. poppet valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • F02M21/0218Details on the gaseous fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers
    • F02M21/0248Injectors
    • F02M21/0275Injectors for in-cylinder direct injection, e.g. injector combined with spark plug
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • F02M21/0218Details on the gaseous fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers
    • F02M21/0293Safety devices; Fail-safe measures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/02Engines characterised by their cycles, e.g. six-stroke
    • F02B2075/022Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle
    • F02B2075/025Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle two
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Definitions

  • the present invention relates to a crankcase compression type two-stroke (two-cycle) gas fuel internal combustion engine.
  • a crankcase compression type two-cycle internal combustion engine may include a fuel injection valve that directly supplies fuel into a cylinder from the viewpoint of improving fuel efficiency by suppressing fuel blow-through.
  • This fuel injection valve generally injects high-pressure gasoline fuel from an injection nozzle (see, for example, Patent Document 1).
  • gas fuel may be used in order to reduce the fuel cost.
  • gas fuel is injected and supplied into the cylinder by the fuel injection valve.
  • Patent Document 1 Japanese Patent Laid-Open No. 10-252479
  • the applicant of the present application is considering opening and closing the downstream end opening of the fuel supply passage communicating with the combustion chamber with a poppet valve type fuel supply valve in order to increase the charging efficiency of the gas fuel.
  • the valve shaft of the fuel supply valve is slidably guided by the valve guide member. In order to allow the valve shaft to slide between the valve guide member and the valve shaft without any trouble. A slight gap is provided.
  • the gas pressure in the fuel supply passage is considerably high, the gas fuel force S leaks to the outside of the combustion chamber via this gap, resulting in a decrease in fuel consumption and unburned gas being discharged. There is a concern.
  • the present invention has been made in view of the above circumstances, and can improve the charging efficiency of gas fuel.
  • the purpose of the present invention is to provide a crank chamber compression type two-stroke gas fueled internal combustion engine that can reduce fuel consumption due to leaked fuel and prevent unburned gas emissions.
  • the invention of claim 1 is a gas fuel internal combustion engine of a clan chamber compression type two-stroke, wherein a fuel supply passage formed so that a downstream end opening thereof is located in the combustion chamber, and the downstream end opening are provided.
  • a poppet valve type fuel supply valve having a valve shaft formed on an opening and closing umbrella-shaped valve plate, a valve guide member for slidably guiding the valve shaft of the fuel supply valve, the valve guide member and the above
  • a leak fuel introduction passage is provided for introducing gas fuel that has entered the gap between the valve shaft and the scavenging port.
  • the invention of claim 2 is that, in claim 1, the leak fuel introduction passage is formed so as to introduce the leak fuel that has entered the gap into a scavenging port located on the side opposite to the exhaust port. It is characterized by.
  • the invention of claim 3 is the invention according to claim 1, wherein the leak fuel introduction passage is formed in the valve guide member in a radial direction so as to communicate with a gap between the valve shaft and the valve guide member.
  • An annular groove formed in the outer peripheral portion of the valve guide member so as to communicate with the passage, a lead-out passage that leads the annular groove to the outside, and a leak fuel passage that communicates the lead-out passage and the scavenging port. It is characterized by that.
  • the invention of claim 4 is the invention of claim 1, wherein a check valve for preventing a flow from the scavenging port side to the leaking fuel introduction passage side is arranged in the vicinity of the scavenging port of the leakage fuel introduction passage. It is characterized by that! /
  • the invention of claim 5 is the invention according to any one of claims 1 to 4, wherein the leak fuel inlet formed in the scavenging port is a portion near the cylinder side opening of the inner wall surface of the scavenging port or the combustion described above. It is characterized by being formed to be directed to the room.
  • a sixth aspect of the present invention provides the valve chamber according to any one of the first to fifth aspects, wherein the valve chamber is provided with a substantially sealed valve chamber that houses a camshaft for driving the fuel supply valve to open and close.
  • a valve chamber side leak fuel introduction passage is provided for introducing the leak fuel that has entered into the scavenging port via an oil separator.
  • the downstream end opening of the fuel supply passage communicating with the combustion chamber is opened and closed by a so-called poppet valve type fuel supply valve in which a valve shaft is formed on an umbrella-shaped valve plate.
  • the gas that has entered the gap between the valve shaft and the valve shaft that slidably guides the valve shaft of the fuel supply valve is inserted. Since the fuel is introduced into the scavenging port, the leaked gas fuel can be recovered and burned effectively, and a reduction in heat cost and emission of unburned gas can be prevented.
  • the leaked fuel can be reliably collected, it becomes possible to introduce the lubricating oil into the gap, which does not require a strict seal between the gap between the shaft valve and the valve guide member. As a result, the lubricity of the sliding surface between the valve shaft and the valve guide member can be improved.
  • the leak fuel introduction passage is connected to the valve guide portion so as to communicate with the gap between the valve shaft and the outer peripheral portion of the valve guide member so as to communicate with the communication passage. And the leak fuel passage that communicates the lead-out passage and the scavenging port. Therefore, the leak that has entered the gap is provided. The fuel can be reliably recovered and burned.
  • the check valve since the check valve is disposed in the vicinity of the scavenging port of the leak fuel introduction passage, the scavenging flow is prevented from being inhibited by the leak fuel flowing into the scavenging port at a high speed. it can. That is, before the scavenging port is opened, the fresh air in the scavenging port is pressurized, so the leaked fuel in the leak fuel introduction passage is also pressurized with the same pressure. If the scavenging port opens in this state, leak fuel with a high pressure and flow velocity is ejected into the scavenging port, and the scavenging flow is obstructed.
  • leakage fuel introduction Since a check valve is placed near the scavenging port of the road, the leakage fuel is introduced into the scavenging port only during the period when the crank chamber is negative during the compression stroke, and the introduction of the leakage fuel is prevented during the scavenging stroke. Will be performed normally.
  • the leak fuel introduction port is formed so as to be directed to the portion near the cylinder side opening of the inner wall surface of the scavenging port or to the combustion chamber. Outflow as combustion gas can be prevented. In other words, there is a high probability that leak fuel will be mixed into fresh air from the scavenging port on the side close to the exhaust port.
  • the scavenging gas is freed after the leaked fuel hits the inner wall surface of the scavenging port. It can be put on a clean flow or it can be kept on the fuel chamber side, and it is possible to avoid leakage fuel power S from flowing out from the exhaust port.
  • FIG. 1 is a cross-sectional view of a crankcase compression type two-cycle gas fuel internal combustion engine according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of the cylinder head of the gas fuel internal combustion engine (cross-sectional view taken along line ⁇ - ⁇ in FIG. 1).
  • FIG. 3 is a plan view of a cylinder bore portion of the cylinder head.
  • FIG. 5 is a configuration diagram of a leak fuel introduction passage of the gas fuel supply apparatus.
  • FIG. 6 is an enlarged cross-sectional view of the main part of the leak fuel introduction passage.
  • FIG. 7 is an enlarged cross-sectional plan view of a main part of the leak fuel introduction passage.
  • FIG. 8 is an enlarged sectional plan view showing a modification of the leak fuel introduction passage.
  • FIGS. 1 to 7 are views for explaining a gas fuel internal combustion engine having a two-stroke clan chamber compression type according to an embodiment of the present invention.
  • FIG. 1 is a sectional view of the gas fuel internal combustion engine.
  • 2 is a cross-sectional view of the cylinder head of a gas-fueled internal combustion engine (cross-sectional view taken along the line ⁇ - ⁇ in Fig. 1).
  • FIG. 4 is a configuration diagram of a gas fuel supply device
  • FIG. 5 is a configuration diagram of a leak fuel introduction passage
  • FIGS. 6 and 7 are enlarged sectional views of main portions of the leak fuel introduction passage.
  • reference numeral 1 denotes a crank chamber compression type two-stroke gas fuel internal combustion engine.
  • This gas fuel internal combustion engine 1 has the following schematic structure.
  • the cylinder block 3 is bolted to the upper joint surface 2b of the upper and lower split crankcase 2 and the cylinder head 4 is bolted to the upper joint surface 3a of the cylinder block 3.
  • a crankshaft 5 is disposed in the crank chamber 2a of the crankcase 2 and a piston 6 is disposed in a cylinder bore 3b of the cylinder block 3.
  • the piston 6 is connected to the crankpin 5a of the crankshaft 5 by a connecting rod 7. It is connected to.
  • crankcase 2 is formed with an intake passage 2c communicating with the crank chamber 2a.
  • a throttle body 12 incorporating a throttle valve 11 is connected to the intake passage 2c via a backflow prevention reed valve 10.
  • An air tailer 13 is connected to the upstream side of the throttle body 12.
  • a nozzle type fuel injection valve 14 is attached to the throttle body 12.
  • the injection port 14 a of the fuel injection valve 14 is disposed so as to inject fuel from the downstream side of the throttle valve 11 toward the valve back of the reed valve 10.
  • a fuel rail 15 for supplying gasoline fuel is connected to the fuel injection valve 14. This fuel injection valve 14 is used to inject and supply gasoline as an auxiliary to the main gas fuel described later.
  • the fuel injection valve 14 is not necessarily provided.
  • An exhaust port 3c is formed on the side of the cylinder block 3 opposite to the intake passage 2c.
  • the cylinder block 3 is formed with a plurality of scavenging ports 3d for introducing the air or air-fuel mixture compressed in the crank chamber 2a into the cylinder bore 3b.
  • the cylinder side opening of each scavenging port 3d is arranged in a loop shape on the opposite side to the exhaust port 3c of the cylinder bore 3b.
  • a combustion recess 4a is formed in a lower mating surface portion of the cylinder head 4 facing the cylinder bore 3b.
  • the cylinder head 4 is formed with a water jacket 4b so as to surround the outer periphery of the combustion recess 4a, and a cooling water discharge hose 19 is connected to the water jacket 4b.
  • the gas fuel internal combustion engine 1 includes a gas fuel supply device that supplies gas fuel to the combustion recess 4a. As shown in FIG. 4, this gas fuel supply apparatus has a fuel tank 41 and its upstream end connected to a discharge port 41a of the fuel tank 41, and its downstream end is a fuel supply passage 4c of a cylinder head 4 to be described later. And a gas fuel supply pipe 40 connected to the.
  • the upstream side force also includes a manual valve 42, a fuel filter 43, a pressure sensor 44, a shut-off valve 45, a pressure regulator 46, a flow rate control valve 47, and a check valve 4 8, respectively. It is installed.
  • a shutoff valve 49 and a fuel pressure sensor 50 are connected to the discharge port 41a of the fuel tank 41, and a fuel supply port 52 is connected via a check valve 51.
  • Detection signals from the pressure sensors 44 and 50 are input to the ECU 53, and the ECU 53 is configured to control the shut-off valves 45 and 49 and the flow control valve 47 based on these detection signals. ing.
  • the shut-off valves 45 and 49 are configured to close when the main switch is turned off or when the vehicle falls.
  • the flow rate control valve 47 a proportional control type valve for controlling the opening area or an injector type valve for controlling the valve opening time can be adopted.
  • the check valve 48 is not necessary because the valve itself has a check valve function.
  • the flow control valve 47 is not limited to the one interposed in the middle of the gas fuel supply pipe 40, and may be configured to be directly attached to the cylinder head 4 and supply gas fuel to the pressure accumulating chamber 4f, for example. .
  • the combustion recess 4a is formed in a dome shape (hemispherical shape), and a substantially hemispherical combustion chamber 18 is formed by the combustion recess 4a and the top surface 6a of the piston 6 in the vicinity of the top dead center.
  • a squish surface 4 i is formed on the outer peripheral portion of the combustion recess 4 a of the cylinder head 4.
  • the squish surface 4i has a cut angle (for example, about 10 to 20 degrees) so that a narrow gap is formed with the top surface 6a of the piston 6 when the piston 6 rises to near the top dead center. ing. As a result, the gas fuel near the inner peripheral wall of the cylinder bore 3b in the compression stroke is pushed out toward the center of the combustion chamber 10.
  • a downstream end opening 4d of the fuel supply passage 4c is located at the center upper portion of the combustion recess 4a of the cylinder head 4, and the fuel supply valve 2 for opening and closing the opening 4d is located in the downstream end opening 4d. 0 is arranged.
  • the fuel supply passage 4c extends from the upstream end opening 4e formed on the end surface on the side opposite to the exhaust port 3c of the cylinder head 4 in a direction intersecting the cylinder axis a, and then burns along the cylinder axis a. Bent to chamber 18 side.
  • the fuel supply pipe 40 is connected to the upstream end opening 4e with a check valve 48 interposed therebetween.
  • the check valve 48 prevents the gas fuel from flowing backward from the combustion supply passage 4c to the fuel tank 41, and is connected to the upstream end opening 4e of the fuel supply passage 4c.
  • a pressure accumulating chamber 4f is formed near the upstream side of the fuel supply valve 20 in the fuel supply passage 4c, specifically, following the downstream end opening 4d.
  • the pressure accumulating chamber 4f has substantially the same opening area as the downstream end opening 4d, and has a length that reaches slightly above the fuel supply passage 4c from the opening 4d, thereby securing the required fuel amount at the maximum load. It has a capacity that can.
  • the fuel supply valve 20 is formed by forming an umbrella-shaped valve plate 20b in contact with the peripheral edge of the downstream end opening 4d at the lower end of the valve shaft 20a disposed so as to substantially coincide with the cylinder axis a. It is a so-called poppet valve type.
  • valve shaft 20a protrudes upward from the upper surface of the cylinder head 4 through the pressure accumulating chamber 4f, and is slid by a cylindrical valve guide member 25 press-fitted into the cylinder head 4. It is guided to.
  • a retainer 21 is attached to the upper end of the valve shaft 20a. Between the retainer 21 and a spring seat 4g formed on the upper surface of the cylinder head 4, the fuel supply valve 20 is normally closed.
  • An energizing valve spring 22 is provided.
  • the upper end portion of the nove guide member 25 protrudes upward from the spring seat 4g, and the lower end portion protrudes into the pressure accumulating chamber 4f.
  • a seal member 23 for sealing the valve shaft 20a is attached to the upper end portion of the valve guide member 25.
  • a slight gap d is provided between the nozzle guide member 25 and the valve shaft 20a for sliding the valve shaft 20a without hindrance.
  • the upper surface of the cylinder head 4 is moved by a box-shaped partition wall 4h extending upward so as to surround the periphery of the upper end portion of the fuel supply valve 20, and a lid plate 26 disposed at the upper end opening of the partition wall 4h.
  • a valve chamber 27 is formed. Lubricating oil for lubricating a sliding portion, a bearing portion and the like of the cam shaft 31 described later is supplied into the valve chamber 27.
  • a valve operating device 28 for opening and closing the fuel supply valve 20 is disposed.
  • the valve operating device 28 has one end abutting against the upper end of the valve shaft 20a and the other end abutting against the upper surface of the rocking force arm 30 and a rocker arm 30 supported by the support shaft 29 in a vertically swinging manner. And a camshaft 31 that is in contact with each other and supported at both ends by a partition (not shown) by the partition wall 4h.
  • the cam shaft 31 is arranged in parallel with the crankshaft 5, and a timing belt 33 is connected to a protrusion 31a protruding outward from the partition wall 4h of the cam shaft 31 via a pulley 32. .
  • the camshaft 31 is rotationally driven by the crankshaft 5 via the timing belt 33, and the rocker arm 30 swings up and down as the camshaft 31 rotates to open and close the fuel supply valve 20.
  • the valve gear 28 has a variable valve mechanism that variably controls the opening / closing timing and the lift amount of the fuel supply valve 20.
  • the variable valve mechanism is disposed on the camshaft 31 so as to be movable in the axial direction, and has a low cam nose 3 lb and a high cam nose 31c having different cam profiles slidably contacting the rocker arm 30, and a throttle
  • the fuel supply valve 20 starts to open when the exhaust port 3c is within the open period in the compression stroke.
  • the fuel supply valve 20 is configured to open over the entire period from 1Z2 in the open period when the exhaust port 3c is within the closed period in the compression stroke.
  • a pair of spark plugs 35, 35 are attached to the cylinder head 4. These ignition plugs 35 and 35 are viewed on the right side of the crankshaft, on the valve shaft center line (cylinder axis) a of the fuel supply valve 20, on both sides of the crankshaft direction and with respect to the valve shaft centerline a. It is inclined at an angle of about 35 degrees. Thereby, the spark plug 35 is directed to the center of the above-mentioned hemispherical shape.
  • each of the spark plugs 35 is located on a straight line c extending in a direction perpendicular to the extension line b passing through the center of the cylinder axis a force exhaust port 3c when viewed in the cylinder axis a direction. It is arranged to be located at.
  • Each of the spark plugs 35 has electrodes 35a and 35a connected to the combustion chamber.
  • the fuel supply valve 20 in 18 is arranged so as to be positioned in the vicinity of the valve plate 20b.
  • the gas fuel supply device introduces a part of the high-pressure gas fuel in the pressure accumulating chamber 4f that has entered the gap d between the valve guide member 25 and the valve shaft 20a of the fuel supply valve 20 into the scavenging port 3d.
  • a fuel introduction passage 60 is provided, and the leak fuel introduction passage 60 has the following structure.
  • the leak fuel introduction passage 60 is formed in the periphery of the valve guide member 25 of the cylinder head 4 mainly as shown in Figs. 5 to 7, and leak fuel that has entered the gap d is transferred to the cylinder head 4.
  • a leak fuel lead-out passage 61 led out to the outside and a leak fuel passage 62 through which the lead-out leak fuel is introduced into the scavenging port 3d are provided.
  • the scavenging port 3d on the side opposite to the exhaust port 3c of the cylinder block 3, that is, the scavenging port 3cT located on the opposite side of the exhaust port 3c across the cylinder axis a, has a leak fuel introduction port 3f formed therein.
  • the leak fuel introduction port 3f is formed obliquely downward so as to be directed to a portion S1 in the vicinity of the cylinder side opening 3g of the inner wall surface S of the scavenging port 3cT.
  • the leak fuel outlet passage 61 is formed in the valve guide member 25 so as to extend in the radial direction, and communicates with a pair of communication passages 6la, 6la communicating with the gap d with the valve shaft 20a.
  • An annular groove 6 lb formed between the outer peripheral surface of the valve guide member 25 and the valve guide member press-fitting surface of the cylinder head 4 so as to communicate with the passage 61a, and the annular groove formed in the cylinder head 4
  • the lead-out passage 61c for leading out 6 lb to the outside is provided, and the lead-out port 61d of the lead-out passage 61c is located on the opposite side of the fuel supply passage 4c of the cylinder head 4.
  • the upstream end of the leak fuel passage 62 is connected to the outlet 61d.
  • a check valve 64 for blocking the flow of leaked fuel from the scavenging port 3d side to the leaked fuel passage 62 side is provided near the upstream side of the leaky fuel introduction port 3f of the leaky fuel passage 62. ing. The check valve 64 may be provided in the leak fuel introduction port 3f.
  • a oil separator 65 that separates oil mist in the valve operating chamber 27 is disposed on the lid plate 26 that forms the valve operating chamber 27.
  • the oil separator 65 is connected to a valve chamber side leak fuel introduction passage 66 for introducing the leak fuel that has entered the valve chamber 27 into the scavenging port 3cT.
  • the introduction passage 66 is connected in the middle of the leak fuel passage 62.
  • a part of the high-pressure gas fuel supplied to the pressure accumulating chamber 4f enters the gap d between the valve guide member 25 and the valve shaft 20a of the fuel supply valve 20, and becomes leaked fuel.
  • Most of the leaked fuel flows into the annular groove 61b through the communication passage 61a, passes through the outlet passage 61c from the annular groove 61b, and is further introduced into the scavenging port through the leak fuel passage 62 into 3cT.
  • the reed valve 10 is opened and air is sucked into the crank chamber 2a, and the check valve 64 is opened and leaked fuel is introduced into the scavenging port 3cT.
  • This leak fuel is introduced toward the cylinder side opening 3g in the vicinity of the cylinder side opening 3g of the scavenging port inner wall surface S, and remains in the vicinity of the cylinder side opening 3g of the port wall without flowing into the crank chamber 2a side.
  • the poppet valve is formed by forming the downstream end opening 4d of the fuel supply passage 4c positioned at the upper center of the dome-shaped combustion chamber 18 and the valve shaft 20a on the umbrella-shaped valve plate 20b. Since the fuel supply valve 20 is opened and closed, a required amount of gas fuel can be supplied into the combustion chamber 18 from the downstream end opening 4d having a relatively large diameter in a short time. As a result, the charging efficiency is improved, and the fuel efficiency and exhaust gas properties can be improved.
  • the valve shaft 20a of the fuel supply valve 20 and the valve guide member 25 that slidably guides and supports the valve shaft 20a the valve shaft 20a of the fuel supply valve 20 and the valve guide member 25 that slidably guides and supports the valve shaft 20a.
  • the gas fuel that has entered the gap d is recovered by the leak fuel introduction passage 60 and introduced into the scavenging port 3cT, so that the leak fuel can be burned effectively, reducing heat costs and discharging unburned gas. Can be prevented.
  • the leak fuel is positioned on the opposite side of the exhaust port 3c across the cylinder axis a.
  • the leakage fuel is introduced into the scavenging port 3cT that is farthest from the exhaust port 3c, and during the scavenging stroke before the exhaust port 3c is closed, the leaked fuel is fresh air. It is possible to prevent the exhaust gas from being discharged into the exhaust port 3c as unburned gas.
  • the leak fuel introduction passage 60 is formed in the valve guide portion 25 so as to extend in the radial direction, and communicates with the gap d between the valve shaft 20a and the communication passages 61a, 61a.
  • An annular groove 61b formed between the outer peripheral surface of the valve guide member 25 and the valve guide member press-fitting surface of the cylinder head 4 so as to communicate with the valve guide member 25, a lead-out passage 6 lc for leading the annular groove 61b to the outside, Since the leak fuel passage 62 that communicates the outlet passage 61c and the scavenging port 3cT is provided, most of the leaked fuel that has entered the gap d can be recovered.
  • the check valve 64 is disposed in the vicinity of the upstream side of the scavenging port 3cT of the leak fuel passage 62, the flow of the scavenging is inhibited by the leak fuel flowing into the scavenging port 3cT at a high speed. Can be prevented. That is, before the scavenging port 3d is opened, since the fresh air in the scavenging port 3d is pressurized, the leaked fuel in the leak fuel passage 62 is also pressurized with the same pressure. When the scavenging port 3d is opened in this state, high-pressure leaked fuel is ejected into the scavenging port 3d ', and the scavenging flow is inhibited.
  • the check valve 64 since the check valve 64 is disposed in the vicinity of the scavenging port 3cT of the leak fuel passage 62, the leak fuel passes from the leak fuel passage 62 to the scavenging port 3cT only during a period when the crank chamber 2a is negative during the compression stroke. It is ejected at a high speed, and the introduction of leaked fuel is prevented during the scavenging stroke.
  • the leak fuel inlet 3f is formed so as to be directed to the cylinder side opening 3g vicinity S1 of the inner wall surface S of the scavenging port 3cT. It can prevent flowing out as gas. In other words, if leaked fuel flows into the crank chamber 2a, the probability that it will be mixed with fresh air from the scavenging port 3d near the exhaust port 3c. Therefore, there is a risk of leakage from the leak fuel power exhaust port 3c. On the other hand, in the present embodiment, the leaked fuel is jetted toward the port inner wall surface portion S1 near the cylinder side opening 3g, so that it can be directly introduced into the cylinder bore 3b without passing through the crank chamber 2a. The above loss can be avoided.
  • the deflection of the scavenging airflow toward the exhaust port can be suppressed, and the leaked fuel can be put on the scavenging free flow.
  • the leak fuel introduction port 3f may be formed obliquely upward so as to be directed to the combustion chamber. In this case, the same effect as described above can be obtained.
  • valve chamber side leak fuel introduction passage 66 is connected via the oil separator 65 to the valve train chamber 27 in which the camshaft 31 that drives the fuel supply valve 20 to open and close is accommodated. Since the passage 66 communicated with the scavenging port 3cT via the leak fuel passage 62, the leaked fuel that entered the valve chamber 27 can be introduced into the scavenging port 3cT after separating the oil mist from the leaked fuel. It can be reliably recovered.
  • valve shaft 20a of each fuel supply valve 20, 20 and the valve guide member A configuration may be adopted in which the leaked fuel in the gap d with 25 is joined to the leaked fuel passage 62 via the leaked fuel outlet passages 61 and 61 and led to the scavenging port 3d ′.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

A two-stroke gas fuel internal combustion engine of crankcase compression-type comprises a fuel feed passage (4c) so formed that its downstream end opening (4d) is positioned on a combustion chamber (18), a poppet valve type fuel feed valve (20) in which a valve stem (20a) is formed on an umbrella-like valve plate (20b) for opening and closing the downstream end opening (4d), a valve guide member (25) for slidably guiding the valve stem (20a) of the fuel feed valve (20), and a leaked fuel introduction passage (60) for introducing the gas fuel entered into the clearance (d) between the valve guide member (25) and the valve stem (20a) into a discharge port (3d').

Description

明 細 書  Specification
ガス燃料内燃機関  Gas fuel internal combustion engine
技術分野  Technical field
[0001] 本発明は、クランク室圧縮式 2行程 (2サイクル)のガス燃料内燃機関に関する。  The present invention relates to a crankcase compression type two-stroke (two-cycle) gas fuel internal combustion engine.
背景技術  Background art
[0002] クランク室圧縮式の 2サイクル内燃機関では、燃料の吹き抜けを抑制して燃費の向 上を図る観点から、気筒内に燃料を直接供給する燃料噴射弁を備える場合がある。 この燃料噴射弁は、噴射ノズルから高圧のガソリン燃料を噴射するのが一般的である (例えば、特許文献 1参照)。  [0002] A crankcase compression type two-cycle internal combustion engine may include a fuel injection valve that directly supplies fuel into a cylinder from the viewpoint of improving fuel efficiency by suppressing fuel blow-through. This fuel injection valve generally injects high-pressure gasoline fuel from an injection nozzle (see, for example, Patent Document 1).
[0003] 一方、上記 2サイクル内燃機関においては、燃料コストの低減等を図るために、ガス 燃料を用いる場合がある。この場合、ガス燃料を上記燃料噴射弁により気筒内に噴 射供給することが考えられる。  [0003] On the other hand, in the above-described two-cycle internal combustion engine, gas fuel may be used in order to reduce the fuel cost. In this case, it can be considered that gas fuel is injected and supplied into the cylinder by the fuel injection valve.
特許文献 1:特開平 10— 252479号公報  Patent Document 1: Japanese Patent Laid-Open No. 10-252479
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0004] ところで、上記従来の燃料噴射弁の噴射ノズルカゝらガス燃料を噴射供給する構造 を採用した場合には、その構造上ガス燃料を短期間に必要量供給することができな いという懸念があり、その結果、充填効率が低下し、燃費及び排気ガス性状が悪ィ匕 するおそれがある。 [0004] By the way, when adopting a structure for injecting and supplying gas fuel from the injection nozzle of the conventional fuel injection valve, there is a concern that the required amount of gas fuel cannot be supplied in a short time due to its structure. As a result, the charging efficiency may be reduced, and the fuel efficiency and exhaust gas properties may be deteriorated.
[0005] そこで、本件出願人は、ガス燃料の充填効率を高めるために、燃焼室に連通する 燃料供給通路の下流端開口をポペット弁型の燃料供給弁により開閉することを検討 している。この場合、燃料供給弁の弁軸をバルブガイド部材により摺動自在に案内す ることとなるが、該ノ レブガイド部材と弁軸との間には、弁軸を支障なく摺動させるた めに僅かな隙間が設けられている。一方、燃料供給通路内のガス圧力は相当高いた め、ガス燃料力 Sこの隙間を経由して燃焼室の外部にリークし、その結果、燃費が低下 するとともに、未燃焼ガスが排出されてしまうという懸念がある。  [0005] Therefore, the applicant of the present application is considering opening and closing the downstream end opening of the fuel supply passage communicating with the combustion chamber with a poppet valve type fuel supply valve in order to increase the charging efficiency of the gas fuel. In this case, the valve shaft of the fuel supply valve is slidably guided by the valve guide member. In order to allow the valve shaft to slide between the valve guide member and the valve shaft without any trouble. A slight gap is provided. On the other hand, since the gas pressure in the fuel supply passage is considerably high, the gas fuel force S leaks to the outside of the combustion chamber via this gap, resulting in a decrease in fuel consumption and unburned gas being discharged. There is a concern.
[0006] 本発明は、上記実情に鑑みてなされたもので、ガス燃料の充填効率を高めることが できるとともに、リーク燃料による燃費の低下及び未燃焼ガスの排出を防止できるクラ ンク室圧縮式 2行程のガス燃料内燃機関を提供することを目的として ヽる。 [0006] The present invention has been made in view of the above circumstances, and can improve the charging efficiency of gas fuel. The purpose of the present invention is to provide a crank chamber compression type two-stroke gas fueled internal combustion engine that can reduce fuel consumption due to leaked fuel and prevent unburned gas emissions.
課題を解決するための手段  Means for solving the problem
[0007] 請求項 1の発明は、クラン室圧縮式 2行程のガス燃料内燃機関であって、その下流 端開口が燃焼室に位置するように形成された燃料供給通路と、上記下流端開口を開 閉する傘状の弁板に弁軸を形成してなるポペット弁型の燃料供給弁と、該燃料供給 弁の弁軸を摺動自在に案内するバルブガイド部材と、該バルブガイド部材と上記弁 軸との隙間に進入したガス燃料を掃気ポートに導入するリーク燃料導入通路とを備え たことを特徴としている。 [0007] The invention of claim 1 is a gas fuel internal combustion engine of a clan chamber compression type two-stroke, wherein a fuel supply passage formed so that a downstream end opening thereof is located in the combustion chamber, and the downstream end opening are provided. A poppet valve type fuel supply valve having a valve shaft formed on an opening and closing umbrella-shaped valve plate, a valve guide member for slidably guiding the valve shaft of the fuel supply valve, the valve guide member and the above A leak fuel introduction passage is provided for introducing gas fuel that has entered the gap between the valve shaft and the scavenging port.
[0008] 請求項 2の発明は、請求項 1において、上記リーク燃料導入通路は、上記隙間に進 入したリーク燃料を反排気ポート側に位置する掃気ポートに導入するように形成され ていることを特徴としている。 [0008] The invention of claim 2 is that, in claim 1, the leak fuel introduction passage is formed so as to introduce the leak fuel that has entered the gap into a scavenging port located on the side opposite to the exhaust port. It is characterized by.
[0009] 請求項 3の発明は、請求項 1において、上記リーク燃料導入通路は、上記バルブガ イド部材に、上記弁軸との隙間に連通するよう半径方向に形成された連通路と、該連 通路に連通するよう上記バルブガイド部材の外周部に形成された環状溝と、該環状 溝を外部に導出する導出通路と、該導出通路と上記掃気ポートとを連通するリーク燃 料通路とを有して 、ることを特徴として 、る。 [0009] The invention of claim 3 is the invention according to claim 1, wherein the leak fuel introduction passage is formed in the valve guide member in a radial direction so as to communicate with a gap between the valve shaft and the valve guide member. An annular groove formed in the outer peripheral portion of the valve guide member so as to communicate with the passage, a lead-out passage that leads the annular groove to the outside, and a leak fuel passage that communicates the lead-out passage and the scavenging port. It is characterized by that.
[0010] 請求項 4の発明は、請求項 1において、上記リーク燃料導入通路の掃気ポート近傍 部分に、該掃気ポート側からリーク燃料導入通路側への流れを阻止する逆止弁が配 置されて!、ることを特徴として!/、る。 [0010] The invention of claim 4 is the invention of claim 1, wherein a check valve for preventing a flow from the scavenging port side to the leaking fuel introduction passage side is arranged in the vicinity of the scavenging port of the leakage fuel introduction passage. It is characterized by that! /
[0011] 請求項 5の発明は、請求項 1ないし 4の何れかにおいて、上記掃気ポートに形成さ れたリーク燃料導入口は、該掃気ポートの内壁面のシリンダ側開口近傍部分又は上 記燃焼室に指向するよう形成されていることを特徴としている。 [0011] The invention of claim 5 is the invention according to any one of claims 1 to 4, wherein the leak fuel inlet formed in the scavenging port is a portion near the cylinder side opening of the inner wall surface of the scavenging port or the combustion described above. It is characterized by being formed to be directed to the room.
[0012] 請求項 6の発明は、請求項 1ないし 5の何れかにおいて、上記燃料供給弁を開閉駆 動するカム軸が収容された略密閉状の動弁室を備え、該動弁室内に進入したリーク 燃料をオイルセパレータを介して上記掃気ポートに導入する動弁室側リーク燃料導 入通路を備えたことを特徴として ヽる。 [0012] A sixth aspect of the present invention provides the valve chamber according to any one of the first to fifth aspects, wherein the valve chamber is provided with a substantially sealed valve chamber that houses a camshaft for driving the fuel supply valve to open and close. A valve chamber side leak fuel introduction passage is provided for introducing the leak fuel that has entered into the scavenging port via an oil separator.
発明の効果 [0013] 請求項 1の発明では、燃焼室に連通する燃料供給通路の下流端開口を、傘形状 の弁板に弁軸を形成してなる、いわゆるポペット弁型の燃料供給弁により開閉するよ うにしたので、燃料供給通路及びその下流端開口を大径にした場合でも支障なく開 閉でき、その結果、短期間で必要な量のガス燃料を燃焼室に供給することができる。 これにより充填効率を向上でき、燃費及び排気ガス性状を良好にできる。 The invention's effect [0013] In the invention of claim 1, the downstream end opening of the fuel supply passage communicating with the combustion chamber is opened and closed by a so-called poppet valve type fuel supply valve in which a valve shaft is formed on an umbrella-shaped valve plate. As a result, even when the fuel supply passage and its downstream end opening are made large in diameter, the fuel supply passage and the downstream end opening can be closed without any problem. Thereby, charging efficiency can be improved and fuel consumption and exhaust gas properties can be improved.
[0014] また、本発明では、上記ポペット弁型の燃料供給弁を採用するにあたって、該燃料 供給弁の弁軸を摺動自在に案内するバルブガイド部材と弁軸との隙間に進入したガ ス燃料を掃気ポートに導入するようにしたので、リークしたガス燃料を回収して有効に 燃焼させることができ、熱費の低下及び未燃焼ガスの排出を防止できる。  [0014] Further, in the present invention, when the poppet valve type fuel supply valve is employed, the gas that has entered the gap between the valve shaft and the valve shaft that slidably guides the valve shaft of the fuel supply valve is inserted. Since the fuel is introduced into the scavenging port, the leaked gas fuel can be recovered and burned effectively, and a reduction in heat cost and emission of unburned gas can be prevented.
[0015] このように本発明では、リーク燃料を確実に回収できるため、軸弁とバルブガイド部 材との隙間を厳密にシールする必要がなぐ上記隙間に潤滑油を導入することが可 能となり、その結果弁軸とバルブガイド部材との摺動面の潤滑性を高めることができる  As described above, according to the present invention, since the leaked fuel can be reliably collected, it becomes possible to introduce the lubricating oil into the gap, which does not require a strict seal between the gap between the shaft valve and the valve guide member. As a result, the lubricity of the sliding surface between the valve shaft and the valve guide member can be improved.
[0016] 請求項 2の発明では、リーク燃料を反排気ポート側に位置する掃気ポートに導入し たので、排気ポートから遠い位置にある掃気ポートにリーク燃料が導入されることとな る。そのため、排気ポートが閉じる前の掃気行程中に、リーク燃料が新気と共に排気 ポートから排出されるのを防止することができる。 [0016] In the invention of claim 2, since the leak fuel is introduced into the scavenging port located on the side opposite to the exhaust port, the leak fuel is introduced into the scavenging port located far from the exhaust port. Therefore, it is possible to prevent the leaked fuel from being discharged from the exhaust port together with fresh air during the scavenging stroke before the exhaust port is closed.
[0017] 請求項 3の発明では、リーク燃料導入通路を、バルブガイド部に弁軸との隙間に連 通するよう形成された連通路と、該連通路に連通するようバルブガイド部材の外周部 に形成された環状溝と、該環状溝を外部に導出する導出通路と、該導出通路と掃気 ポートとを連通するリーク燃料通路とを備えたものとしたので、上記隙間に進入したリ ーク燃料を確実に回収して燃焼させることができる。  [0017] According to the invention of claim 3, the leak fuel introduction passage is connected to the valve guide portion so as to communicate with the gap between the valve shaft and the outer peripheral portion of the valve guide member so as to communicate with the communication passage. And the leak fuel passage that communicates the lead-out passage and the scavenging port. Therefore, the leak that has entered the gap is provided. The fuel can be reliably recovered and burned.
[0018] 請求項 4の発明では、リーク燃料導入通路の掃気ポート近傍部分に逆止弁を配置 したので、掃気ポートにリーク燃料が高速で流入することにより掃気の流れが阻害さ れるのを防止できる。即ち、掃気ポートが開く前は、該掃気ポート内の新気は加圧さ れているため、リーク燃料導入通路内のリーク燃料も同等の圧力で加圧されることと なる。この状態で掃気ポートが開くと、圧力及び流速の高いリーク燃料が掃気ポート 内に噴出され、掃気の流れが阻害されることとなる。本発明では、リーク燃料導入通 路の掃気ポート近傍に逆止弁を配置したので、圧縮行程時にクランク室が負圧なる 期間のみリーク燃料が掃気ポートに導入され、掃気行程時にはリーク燃料の導入が 阻止されることから掃気の流れが正常に行なわれることとなる。 [0018] In the invention of claim 4, since the check valve is disposed in the vicinity of the scavenging port of the leak fuel introduction passage, the scavenging flow is prevented from being inhibited by the leak fuel flowing into the scavenging port at a high speed. it can. That is, before the scavenging port is opened, the fresh air in the scavenging port is pressurized, so the leaked fuel in the leak fuel introduction passage is also pressurized with the same pressure. If the scavenging port opens in this state, leak fuel with a high pressure and flow velocity is ejected into the scavenging port, and the scavenging flow is obstructed. In the present invention, leakage fuel introduction Since a check valve is placed near the scavenging port of the road, the leakage fuel is introduced into the scavenging port only during the period when the crank chamber is negative during the compression stroke, and the introduction of the leakage fuel is prevented during the scavenging stroke. Will be performed normally.
[0019] 請求項 5の発明では、リーク燃料導入口を、掃気ポートの内壁面のシリンダ側開口 近傍部分か、又は燃焼室に指向するように形成したので、リーク燃料力 S排気ポートか ら未燃焼ガスとして流出するのを防止できる。即ち、リーク燃料は、排気ポートに近い 側の掃気ポートからの新気に混入する確率が高ぐこのためリーク燃料力 S排気ポート 力も流出するおそれがある。これに対して本発明では、リーク燃料を掃気ポートの内 壁面のシリンダ側開口近傍部分又は燃焼室に指向するよう流入させたので、リーク燃 料を掃気ポート内壁面に当った後、掃気の自由な流れに乗せることができ、又は燃 料室側にとどめておくことができ、リーク燃料力 S排気ポートから流出するのを回避でき る。  [0019] In the invention of claim 5, the leak fuel introduction port is formed so as to be directed to the portion near the cylinder side opening of the inner wall surface of the scavenging port or to the combustion chamber. Outflow as combustion gas can be prevented. In other words, there is a high probability that leak fuel will be mixed into fresh air from the scavenging port on the side close to the exhaust port. On the other hand, in the present invention, since the leaked fuel is caused to flow toward the portion near the cylinder-side opening on the inner wall surface of the scavenging port or the combustion chamber, the scavenging gas is freed after the leaked fuel hits the inner wall surface of the scavenging port. It can be put on a clean flow or it can be kept on the fuel chamber side, and it is possible to avoid leakage fuel power S from flowing out from the exhaust port.
[0020] 請求項 6の発明では、動弁室内に進入したリーク燃料をオイルセパレータを介して 掃気ポートに導入するようにしたので、動弁室内に進入したリーク燃料についても回 収でき、より一層の燃費,排ガス性状の改善を図ることができる。  [0020] In the invention of claim 6, since the leaked fuel that has entered the valve chamber is introduced into the scavenging port via the oil separator, the leaked fuel that has entered the valve chamber can also be collected, and even more. Can improve fuel efficiency and exhaust gas properties.
図面の簡単な説明  Brief Description of Drawings
[0021] [図 1]本発明の一実施形態によるクランク室圧縮式 2サイクルのガス燃料内燃機関の 断面図である。  FIG. 1 is a cross-sectional view of a crankcase compression type two-cycle gas fuel internal combustion engine according to an embodiment of the present invention.
[図 2]上記ガス燃料内燃機関のシリンダヘッドの断面図(図 1の Π-Π線断面図)である  FIG. 2 is a cross-sectional view of the cylinder head of the gas fuel internal combustion engine (cross-sectional view taken along line Π-Π in FIG. 1).
[図 3]上記シリンダへッドのシリンダボア部分の平面図である。 FIG. 3 is a plan view of a cylinder bore portion of the cylinder head.
圆 4]上記ガス燃料内燃機関のガス燃料供給装置の構成図である。  4] A configuration diagram of a gas fuel supply device of the gas fuel internal combustion engine.
[図 5]上記ガス燃料供給装置のリーク燃料導入通路の構成図である。  FIG. 5 is a configuration diagram of a leak fuel introduction passage of the gas fuel supply apparatus.
[図 6]上記リーク燃料導入通路の要部拡大断面図である。  FIG. 6 is an enlarged cross-sectional view of the main part of the leak fuel introduction passage.
[図 7]上記リーク燃料導入通路の要部拡大断面平面図である。  FIG. 7 is an enlarged cross-sectional plan view of a main part of the leak fuel introduction passage.
[図 8]上記リーク燃料導入通路の変形例を示す拡大断面平面図である。  FIG. 8 is an enlarged sectional plan view showing a modification of the leak fuel introduction passage.
符号の説明  Explanation of symbols
[0022] 1 ガス燃料内燃機関 2 クランク室 [0022] 1 gas fuel internal combustion engine 2 Crank chamber
3c 排気ポート  3c Exhaust port
3d' 掃気ポート  3d 'scavenging port
3f リーク燃料導入口  3f Leak fuel inlet
3g シリンダ側開口  3g Cylinder side opening
4c 燃料供給通路  4c Fuel supply passage
4d 下流端開口  4d Downstream end opening
18 燃焼室  18 Combustion chamber
20 燃料供給弁  20 Fuel supply valve
20a 弁軸  20a Valve stem
20b 弁板  20b valve plate
25 バルブガイド部材  25 Valve guide member
27 動弁室  27 Valve room
31 カム軸  31 Cam shaft
60 リーク燃料導入通路  60 Leak fuel introduction passage
61a 連通路  61a Communication passage
61b 環状溝  61b Annular groove
61c 導出通路  61c Outlet passage
62 リーク燃料通路  62 Leak fuel passage
64 逆止弁  64 Check valve
65 オイルセパレータ  65 Oil separator
66 動弁室側リーク燃料導入通路  66 Valve chamber side leak fuel introduction passage
d 隙間  d Clearance
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0023] 以下、本発明の実施の形態を添付図面に基づいて説明する。 Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
[0024] 図 1ないし図 7は、本発明の一実施形態によるクラン室圧縮式 2行程のガス燃料内 燃機関を説明するための図であり、図 1はガス燃料内燃機関の断面図、図 2はガス燃 料内燃機関のシリンダヘッドの断面図(図 1の Π-Π線断面図)、図 3はシリンダヘッド のシリンダボア部分の平面図、図 4はガス燃料供給装置の構成図、図 5はリーク燃料 導入通路の構成図、図 6,図 7はリーク燃料導入通路の要部拡大断面図である。 FIGS. 1 to 7 are views for explaining a gas fuel internal combustion engine having a two-stroke clan chamber compression type according to an embodiment of the present invention. FIG. 1 is a sectional view of the gas fuel internal combustion engine. 2 is a cross-sectional view of the cylinder head of a gas-fueled internal combustion engine (cross-sectional view taken along the line Π-Π in Fig. 1). FIG. 4 is a configuration diagram of a gas fuel supply device, FIG. 5 is a configuration diagram of a leak fuel introduction passage, and FIGS. 6 and 7 are enlarged sectional views of main portions of the leak fuel introduction passage.
[0025] 図にお 、て、 1はクランク室圧縮式 2行程のガス燃料内燃機関を示して 、る。このガ ス燃料内燃機関 1は、以下の概略構造を有する。上下 2分割式クランクケース 2の上 合面 2bにシリンダブロック 3がボルト締め結合され、該シリンダブロック 3の上合面 3a にシリンダヘッド 4がボルト締め結合されて!、る。上記クランクケース 2のクランク室 2a 内にクランク軸 5が配置されるとともに、上記シリンダブロック 3のシリンダボア 3b内に ピストン 6が配置され、該ピストン 6はコンロッド 7により上記クランク軸 5のクランクピン 5 aに連結されている。 In the figure, reference numeral 1 denotes a crank chamber compression type two-stroke gas fuel internal combustion engine. This gas fuel internal combustion engine 1 has the following schematic structure. The cylinder block 3 is bolted to the upper joint surface 2b of the upper and lower split crankcase 2 and the cylinder head 4 is bolted to the upper joint surface 3a of the cylinder block 3. A crankshaft 5 is disposed in the crank chamber 2a of the crankcase 2 and a piston 6 is disposed in a cylinder bore 3b of the cylinder block 3. The piston 6 is connected to the crankpin 5a of the crankshaft 5 by a connecting rod 7. It is connected to.
[0026] 上記クランクケース 2には、クランク室 2aに連通する吸気通路 2cが形成されている。  [0026] The crankcase 2 is formed with an intake passage 2c communicating with the crank chamber 2a.
該吸気通路 2cには、逆流防止用リード弁 10を介して、スロットルバルブ 11を内蔵す るスロットルボディ 12が接続されている。該スロットルボディ 12の上流側にはエアタリ ーナ 13が接続されている。  A throttle body 12 incorporating a throttle valve 11 is connected to the intake passage 2c via a backflow prevention reed valve 10. An air tailer 13 is connected to the upstream side of the throttle body 12.
[0027] 上記スロットルボディ 12にはノズル型の燃料噴射弁 14が装着されている。該燃料 噴射弁 14の噴射口 14aは、上記スロットルバルブ 11の下流側から上記リード弁 10の 弁裏に向けて燃料を噴射するように配置されて ヽる。該燃料噴射弁 14にはガソリン 燃料を供給する燃料レール 15が接続されている。この燃料噴射弁 14は、後述するメ インのガス燃料の補助としてガソリンを噴射供給するために用いられるものである。な お、上記燃料噴射弁 14は必ずしも設ける必要はな 、。  A nozzle type fuel injection valve 14 is attached to the throttle body 12. The injection port 14 a of the fuel injection valve 14 is disposed so as to inject fuel from the downstream side of the throttle valve 11 toward the valve back of the reed valve 10. A fuel rail 15 for supplying gasoline fuel is connected to the fuel injection valve 14. This fuel injection valve 14 is used to inject and supply gasoline as an auxiliary to the main gas fuel described later. The fuel injection valve 14 is not necessarily provided.
[0028] 上記シリンダブロック 3の吸気通路 2cの反対側には排気ポート 3cが形成されている 。またシリンダブロック 3には、クランク室 2aで圧縮された空気又は混合気をシリンダ ボア 3b内に導入する複数の掃気ポート 3dが形成されている。各掃気ポート 3dのシリ ンダ側開口は、図 3に示すように、シリンダボア 3bの排気ポート 3cと反対側の部分に ループ状をなすように配置されて 、る。  [0028] An exhaust port 3c is formed on the side of the cylinder block 3 opposite to the intake passage 2c. The cylinder block 3 is formed with a plurality of scavenging ports 3d for introducing the air or air-fuel mixture compressed in the crank chamber 2a into the cylinder bore 3b. As shown in FIG. 3, the cylinder side opening of each scavenging port 3d is arranged in a loop shape on the opposite side to the exhaust port 3c of the cylinder bore 3b.
[0029] 上記シリンダヘッド 4のシリンダボア 3bに対向する下合面部分には、燃焼凹部 4aが 凹設されている。また上記シリンダヘッド 4には、上記燃焼凹部 4aの外周部を囲むよ うに水ジャケット 4bが形成されており、該水ジャケット 4bには冷却水排出ホース 19が 接続されている。 [0030] 上記ガス燃料内燃機関 1は、上記燃焼凹部 4aにガス燃料を供給するガス燃料供給 装置を備えている。このガス燃料供給装置は、図 4に示すように、燃料タンク 41と、該 燃料タンク 41の吐出口 41aにその上流端が接続され、下流端が後述するシリンダへ ッド 4の燃料供給通路 4cに接続されたガス燃料供給管 40とを有している。 [0029] A combustion recess 4a is formed in a lower mating surface portion of the cylinder head 4 facing the cylinder bore 3b. The cylinder head 4 is formed with a water jacket 4b so as to surround the outer periphery of the combustion recess 4a, and a cooling water discharge hose 19 is connected to the water jacket 4b. [0030] The gas fuel internal combustion engine 1 includes a gas fuel supply device that supplies gas fuel to the combustion recess 4a. As shown in FIG. 4, this gas fuel supply apparatus has a fuel tank 41 and its upstream end connected to a discharge port 41a of the fuel tank 41, and its downstream end is a fuel supply passage 4c of a cylinder head 4 to be described later. And a gas fuel supply pipe 40 connected to the.
[0031] 上記ガス燃料供給管 40には、上流側力も順に手動バルブ 42,燃料フィルタ 43,圧 力センサ 44,シャットオフバルブ 45,圧力レギユレータ 46,流量制御弁 47,逆止弁 4 8がそれぞれ介設されている。また上記燃料タンク 41の吐出口 41aには、シャットオフ バルブ 49,燃料圧力センサ 50が接続されており、かつ逆止弁 51を介して燃料補給 口 52が接続されている。  [0031] In the gas fuel supply pipe 40, the upstream side force also includes a manual valve 42, a fuel filter 43, a pressure sensor 44, a shut-off valve 45, a pressure regulator 46, a flow rate control valve 47, and a check valve 4 8, respectively. It is installed. A shutoff valve 49 and a fuel pressure sensor 50 are connected to the discharge port 41a of the fuel tank 41, and a fuel supply port 52 is connected via a check valve 51.
[0032] 上記各圧力センサ 44, 50からの検出信号は ECU53に入力され、該 ECU53は、 これらの検出信号に基づいて、シャットオフバルブ 45, 49及び流量制御弁 47を制御 するように構成されている。このシャットオフバルブ 45, 49は、メインスィッチをオフに したとき,車両が転倒したとき等に閉じるように構成されて 、る。  [0032] Detection signals from the pressure sensors 44 and 50 are input to the ECU 53, and the ECU 53 is configured to control the shut-off valves 45 and 49 and the flow control valve 47 based on these detection signals. ing. The shut-off valves 45 and 49 are configured to close when the main switch is turned off or when the vehicle falls.
[0033] ここで上記流量制御弁 47には、開口面積を制御する比例制御式弁,又は開弁時 間を制御するインジェクタ式弁が採用可能である。なお、インジェクタ式弁を採用した 場合、それ自体が逆止弁機能を有するので、上記逆止弁 48は不要となる。  Here, as the flow rate control valve 47, a proportional control type valve for controlling the opening area or an injector type valve for controlling the valve opening time can be adopted. When the injector type valve is employed, the check valve 48 is not necessary because the valve itself has a check valve function.
[0034] また上記流量制御弁 47は、ガス燃料供給管 40の途中に介在させるものに限らず、 例えばシリンダヘッド 4に直接装着し、蓄圧室 4fにガス燃料を供給するように構成し て良い。  [0034] The flow control valve 47 is not limited to the one interposed in the middle of the gas fuel supply pipe 40, and may be configured to be directly attached to the cylinder head 4 and supply gas fuel to the pressure accumulating chamber 4f, for example. .
[0035] 上記燃焼凹部 4aはドーム型(半球形状)に形成されており、該燃焼凹部 4aと上死 点近傍におけるピストン 6の頂面 6aとで略半球状の燃焼室 18が形成される。  The combustion recess 4a is formed in a dome shape (hemispherical shape), and a substantially hemispherical combustion chamber 18 is formed by the combustion recess 4a and the top surface 6a of the piston 6 in the vicinity of the top dead center.
[0036] 上記シリンダヘッド 4の燃焼凹部 4aの外周部にはスキッシュ面 4iが形成されて 、る 。このスキッシュ面 4iは、ピストン 6が上死点近傍に上昇したときに、該ピストン 6の頂 面 6aとで狭い隙間が形成されるようにその切り込み角度 (例えば 10〜20度程度)が 設定されている。これにより圧縮行程におけるシリンダボア 3bの内周壁近傍のガス燃 料を燃焼室 10の中心部に向けて押し出すようになって 、る。  A squish surface 4 i is formed on the outer peripheral portion of the combustion recess 4 a of the cylinder head 4. The squish surface 4i has a cut angle (for example, about 10 to 20 degrees) so that a narrow gap is formed with the top surface 6a of the piston 6 when the piston 6 rises to near the top dead center. ing. As a result, the gas fuel near the inner peripheral wall of the cylinder bore 3b in the compression stroke is pushed out toward the center of the combustion chamber 10.
[0037] 上記シリンダヘッド 4の燃焼凹部 4aの中央上部には、上記燃料供給通路 4cの下流 端開口 4dが位置しており、該下流端開口 4dには該開口 4dを開閉する燃料供給弁 2 0が配置されている。 [0037] A downstream end opening 4d of the fuel supply passage 4c is located at the center upper portion of the combustion recess 4a of the cylinder head 4, and the fuel supply valve 2 for opening and closing the opening 4d is located in the downstream end opening 4d. 0 is arranged.
[0038] 上記燃料供給通路 4cは、シリンダヘッド 4の反排気ポート 3c側端面に形成された 上流端開口 4eから気筒軸線 aと交差する方向に延びた後、該気筒軸線 aに沿うように 燃焼室 18側に屈曲している。  [0038] The fuel supply passage 4c extends from the upstream end opening 4e formed on the end surface on the side opposite to the exhaust port 3c of the cylinder head 4 in a direction intersecting the cylinder axis a, and then burns along the cylinder axis a. Bent to chamber 18 side.
[0039] 上記上流端開口 4eに、上記燃料供給管 40が逆止弁 48を介在させて接続されて いる。この逆止弁 48は、ガス燃料が燃焼供給通路 4cから燃料タンク 41側に逆流する のを阻止するものであり、上記燃料供給通路 4cの上流端開口 4eに接続されている。  [0039] The fuel supply pipe 40 is connected to the upstream end opening 4e with a check valve 48 interposed therebetween. The check valve 48 prevents the gas fuel from flowing backward from the combustion supply passage 4c to the fuel tank 41, and is connected to the upstream end opening 4e of the fuel supply passage 4c.
[0040] 上記燃料供給通路 4cの燃料供給弁 20の上流側近傍に、具体的には下流端開口 4dに続くように蓄圧室 4fが形成されている。該蓄圧室 4fは、下流端開口 4dと略同じ 開口面積を有し、かつ該開口 4dから燃料供給通路 4cより若干上方に達する長さを 有しており、最大負荷時における必要燃料量を確保できる容量を有する。  [0040] A pressure accumulating chamber 4f is formed near the upstream side of the fuel supply valve 20 in the fuel supply passage 4c, specifically, following the downstream end opening 4d. The pressure accumulating chamber 4f has substantially the same opening area as the downstream end opening 4d, and has a length that reaches slightly above the fuel supply passage 4c from the opening 4d, thereby securing the required fuel amount at the maximum load. It has a capacity that can.
[0041] 上記燃料供給弁 20は、略気筒軸線 aに一致するように配置された弁軸 20aの下端 に、上記下流端開口 4dの周縁に当接する傘形状の弁板 20bを形成してなる、いわ ゆるポペット弁型のものである。  [0041] The fuel supply valve 20 is formed by forming an umbrella-shaped valve plate 20b in contact with the peripheral edge of the downstream end opening 4d at the lower end of the valve shaft 20a disposed so as to substantially coincide with the cylinder axis a. It is a so-called poppet valve type.
[0042] 上記弁軸 20aは、上記蓄圧室 4f内を通ってシリンダヘッド 4の上面から上方に突出 しており、該シリンダヘッド 4に圧入された円筒状のバルブガイド部材 25により摺動自 在に案内されている。また上記弁軸 20aの上端部にはリテーナ 21が装着され、該リテ ーナ 21とシリンダヘッド 4の上面に形成されたばね受け座 4gとの間には、上記燃料 供給弁 20を常時閉方向に付勢するバルブスプリング 22が配設されて 、る。  [0042] The valve shaft 20a protrudes upward from the upper surface of the cylinder head 4 through the pressure accumulating chamber 4f, and is slid by a cylindrical valve guide member 25 press-fitted into the cylinder head 4. It is guided to. A retainer 21 is attached to the upper end of the valve shaft 20a. Between the retainer 21 and a spring seat 4g formed on the upper surface of the cylinder head 4, the fuel supply valve 20 is normally closed. An energizing valve spring 22 is provided.
[0043] 上記ノ レブガイド部材 25の上端部は、上記ばね受け座 4gから上方に突出しており 、下端部は蓄圧室 4f内に突出している。上記バルブガイド部材 25の上端部には、上 記弁軸 20aとの間をシールするシール部材 23が装着されて 、る。上記ノ レブガイド 部材 25と弁軸 20aとの間には、弁軸 20aを支障なく摺動させるための僅かな隙間 d ( 図 5〜図 7参照)が設けられている。  [0043] The upper end portion of the nove guide member 25 protrudes upward from the spring seat 4g, and the lower end portion protrudes into the pressure accumulating chamber 4f. A seal member 23 for sealing the valve shaft 20a is attached to the upper end portion of the valve guide member 25. A slight gap d (see FIGS. 5 to 7) is provided between the nozzle guide member 25 and the valve shaft 20a for sliding the valve shaft 20a without hindrance.
[0044] 上記シリンダヘッド 4の上面には、燃料供給弁 20の上端部周囲を囲むように上方に 延びる箱状の隔壁 4hと、該隔壁 4hの上端開口に配置された蓋板 26とにより動弁室 27が形成されている。該動弁室 27内には後述するカム軸 31の摺動部,軸受部等を 潤滑する潤滑油が供給されて 、る。 [0045] 上記動弁室 27内には、上記燃料供給弁 20を開閉駆動する動弁装置 28が配設さ れている。この動弁装置 28は、その一端部が上記弁軸 20aの上端に当接し、他端部 が支持軸 29により上下揺動に支持されたロッカアーム 30と、該ロッ力アーム 30の上 面に当接し、かつ両端部が上記隔壁 4hにより軸受 (不図示)を介して支持されたカム 軸 31とを備えている。 [0044] The upper surface of the cylinder head 4 is moved by a box-shaped partition wall 4h extending upward so as to surround the periphery of the upper end portion of the fuel supply valve 20, and a lid plate 26 disposed at the upper end opening of the partition wall 4h. A valve chamber 27 is formed. Lubricating oil for lubricating a sliding portion, a bearing portion and the like of the cam shaft 31 described later is supplied into the valve chamber 27. In the valve operating chamber 27, a valve operating device 28 for opening and closing the fuel supply valve 20 is disposed. The valve operating device 28 has one end abutting against the upper end of the valve shaft 20a and the other end abutting against the upper surface of the rocking force arm 30 and a rocker arm 30 supported by the support shaft 29 in a vertically swinging manner. And a camshaft 31 that is in contact with each other and supported at both ends by a partition (not shown) by the partition wall 4h.
[0046] 上記カム軸 31はクランク軸 5と平行に配置されており、該カム軸 31の隔壁 4hから外 方に突出する突出部 31aにはプーリ 32を介してタイミングベルト 33が連結されている 。該カム軸 31は、上記クランク軸 5によりタイミングベルト 33を介して回転駆動され、 該カム軸 31の回転に伴ってロッカアーム 30が上下揺動し、燃料供給弁 20を開閉す る。  [0046] The cam shaft 31 is arranged in parallel with the crankshaft 5, and a timing belt 33 is connected to a protrusion 31a protruding outward from the partition wall 4h of the cam shaft 31 via a pulley 32. . The camshaft 31 is rotationally driven by the crankshaft 5 via the timing belt 33, and the rocker arm 30 swings up and down as the camshaft 31 rotates to open and close the fuel supply valve 20.
[0047] 上記動弁装置 28は、上記燃料供給弁 20の開閉タイミング及びリフト量を可変制御 する可変動弁機構を有している。該可変動弁機構は、図 2に示すように、上記カム軸 31に軸方向に移動可能に配設され、上記ロッカアーム 30に摺接するカムプロフィル の異なるローカムノーズ 3 lb及びハイカムノーズ 31cと、スロットル開度,エンジン回 転数等に基づく ECU53からの切換え信号により、低'中負荷運転時にはローカムノ ーズ 31bに切り換え、高負荷運転時にはハイカムノーズ 31cに切り換える切換え機構 54とを備えている。具体的には、低 ·中負荷運転時には、排気ポート 3cが圧縮行程 における開期間内にあるときに上記燃料供給弁 20が開き始めるように構成されてい る。また高負荷運転時には、排気ポート 3cが圧縮行程における閉期間内にあるとき に燃料供給弁 20が開期間の 1Z2から全期間に渡って開くように構成されている。  The valve gear 28 has a variable valve mechanism that variably controls the opening / closing timing and the lift amount of the fuel supply valve 20. As shown in FIG. 2, the variable valve mechanism is disposed on the camshaft 31 so as to be movable in the axial direction, and has a low cam nose 3 lb and a high cam nose 31c having different cam profiles slidably contacting the rocker arm 30, and a throttle There is a switching mechanism 54 that switches to low cam nose 31b during low-medium load operation and switches to high cam nose 31c during high load operation based on a switching signal from ECU 53 based on the opening, engine speed, etc. Specifically, during low / medium load operation, the fuel supply valve 20 starts to open when the exhaust port 3c is within the open period in the compression stroke. During high-load operation, the fuel supply valve 20 is configured to open over the entire period from 1Z2 in the open period when the exhaust port 3c is within the closed period in the compression stroke.
[0048] 上記シリンダヘッド 4には、一対の点火プラグ 35, 35が装着されている。この各点 火プラグ 35, 35は、クランク軸直角方向に見ると、燃料供給弁 20の弁軸中心線 (気 筒軸線) aを挟んでクランク軸方向両側に、かつ弁軸中心線 aに対して約 35度程度の 角度をなすよう傾斜させて配置されている。これにより点火プラグ 35は上述の半球形 状の中心に指向している。  [0048] A pair of spark plugs 35, 35 are attached to the cylinder head 4. These ignition plugs 35 and 35 are viewed on the right side of the crankshaft, on the valve shaft center line (cylinder axis) a of the fuel supply valve 20, on both sides of the crankshaft direction and with respect to the valve shaft centerline a. It is inclined at an angle of about 35 degrees. Thereby, the spark plug 35 is directed to the center of the above-mentioned hemispherical shape.
[0049] 上記各点火プラグ 35は、図 3に示すように、気筒軸線 a方向に見て、該気筒軸線 a 力 排気ポート 3cの中心を通る延長線 bに対して直角方向に延びる直線 c上に位置 するように配置されている。上記各点火プラグ 35は、これの電極 35a, 35aが燃焼室 18内の燃料供給弁 20の弁板 20b近傍に位置するように配置されている。 [0049] As shown in Fig. 3, each of the spark plugs 35 is located on a straight line c extending in a direction perpendicular to the extension line b passing through the center of the cylinder axis a force exhaust port 3c when viewed in the cylinder axis a direction. It is arranged to be located at. Each of the spark plugs 35 has electrodes 35a and 35a connected to the combustion chamber. The fuel supply valve 20 in 18 is arranged so as to be positioned in the vicinity of the valve plate 20b.
[0050] 上記ガス燃料供給装置は、上記バルブガイド部材 25と燃料供給弁 20の弁軸 20a との隙間 dに進入した蓄圧室 4f内の高圧ガス燃料の一部を掃気ポート 3dに導入する リーク燃料導入通路 60を備えており、該リーク燃料導入通路 60は以下の構造を有し ている。 [0050] The gas fuel supply device introduces a part of the high-pressure gas fuel in the pressure accumulating chamber 4f that has entered the gap d between the valve guide member 25 and the valve shaft 20a of the fuel supply valve 20 into the scavenging port 3d. A fuel introduction passage 60 is provided, and the leak fuel introduction passage 60 has the following structure.
[0051] このリーク燃料導入通路 60は、主として図 5〜図 7に示すように、シリンダヘッド 4の バルブガイド部材 25の周辺部に形成され、上記隙間 dに進入したリーク燃料をシリン ダヘッド 4の外部に導出するリーク燃料導出通路 61と、該導出されたリーク燃料を上 記掃気ポート 3dに導入するリーク燃料通路 62を有する。  [0051] The leak fuel introduction passage 60 is formed in the periphery of the valve guide member 25 of the cylinder head 4 mainly as shown in Figs. 5 to 7, and leak fuel that has entered the gap d is transferred to the cylinder head 4. A leak fuel lead-out passage 61 led out to the outside and a leak fuel passage 62 through which the lead-out leak fuel is introduced into the scavenging port 3d are provided.
[0052] 上記シリンダブロック 3の反排気ポート 3c側の掃気ポート 3d、つまり気筒軸線 aを挟 んだ排気ポート 3cの反対側に位置する掃気ポート 3cT には、リーク燃料導入口 3fが 形成されて 、る。該リーク燃料導入口 3fは、掃気ポート 3cT 内壁面 Sのシリンダ側開 口 3g近傍部分 S 1に指向するよう斜め下向きに形成されている。  [0052] The scavenging port 3d on the side opposite to the exhaust port 3c of the cylinder block 3, that is, the scavenging port 3cT located on the opposite side of the exhaust port 3c across the cylinder axis a, has a leak fuel introduction port 3f formed therein. RU The leak fuel introduction port 3f is formed obliquely downward so as to be directed to a portion S1 in the vicinity of the cylinder side opening 3g of the inner wall surface S of the scavenging port 3cT.
[0053] 上記リーク燃料導出通路 61は、上記バルブガイド部材 25に半径方向に延びるよう に形成され、上記弁軸 20aとの隙間 dに連通する一対の連通路 6 la, 6 laと、各連通 路 61aに連通するよう上記バルブガイド部材 25の外周面と、シリンダヘッド 4のバル ブガイド部材圧入面との間に形成された環状溝 6 lbと、上記シリンダヘッド 4に形成さ れ、該環状溝 6 lbを外部に導出する導出通路 61cとを有しており、該導出通路 61c の導出口 61dはシリンダヘッド 4の燃料供給通路 4cの反対側に位置している。この導 出口 61dに上記リーク燃料通路 62の上流端が接続されている。  [0053] The leak fuel outlet passage 61 is formed in the valve guide member 25 so as to extend in the radial direction, and communicates with a pair of communication passages 6la, 6la communicating with the gap d with the valve shaft 20a. An annular groove 6 lb formed between the outer peripheral surface of the valve guide member 25 and the valve guide member press-fitting surface of the cylinder head 4 so as to communicate with the passage 61a, and the annular groove formed in the cylinder head 4 The lead-out passage 61c for leading out 6 lb to the outside is provided, and the lead-out port 61d of the lead-out passage 61c is located on the opposite side of the fuel supply passage 4c of the cylinder head 4. The upstream end of the leak fuel passage 62 is connected to the outlet 61d.
[0054] 上記リーク燃料通路 62の上記リーク燃料導入口 3fの上流側近傍には、掃気ポート 3d側からリーク燃料通路 62側へのリーク燃料の流れを阻止する逆止弁 64が介設さ れている。なお、逆止弁 64は、リーク燃料導入口 3f内に設けてもよい。  [0054] A check valve 64 for blocking the flow of leaked fuel from the scavenging port 3d side to the leaked fuel passage 62 side is provided near the upstream side of the leaky fuel introduction port 3f of the leaky fuel passage 62. ing. The check valve 64 may be provided in the leak fuel introduction port 3f.
[0055] 上記動弁室 27を形成する蓋板 26には、動弁室 27内のオイルミストを分離させるォ ィルセパレータ 65が配置されている。該オイルセパレータ 65には、上記動弁室 27内 に進入したリーク燃料を上記掃気ポート 3cT に導入するための動弁室側リーク燃料 導入通路 66が接続されており、該動弁室側リーク燃料導入通路 66は上記リーク燃 料通路 62の途中に連通接続されて ヽる。 [0056] 上記ノ レブガイド部材 25と弁軸 20aとの隙間 dに進入したリーク燃料の大部分はリ ーク燃料導出通路 61で回収されるものの、一部がシール部材 23の隙間を通って動 弁室 27内に進入する場合がある。この動弁室 27内に進入したリーク燃料は、混入し ているオイルミストが分離された後、上記リーク燃料通路 62を介して掃気ポート 3cT に回収される。 A oil separator 65 that separates oil mist in the valve operating chamber 27 is disposed on the lid plate 26 that forms the valve operating chamber 27. The oil separator 65 is connected to a valve chamber side leak fuel introduction passage 66 for introducing the leak fuel that has entered the valve chamber 27 into the scavenging port 3cT. The introduction passage 66 is connected in the middle of the leak fuel passage 62. [0056] Although most of the leaked fuel that has entered the gap d between the nozzle guide member 25 and the valve shaft 20a is collected in the leak fuel outlet passage 61, a part of it moves through the gap in the seal member 23. There is a case of entering the valve chamber 27. The leaked fuel that has entered the valve operating chamber 27 is collected in the scavenging port 3cT through the leak fuel passage 62 after the mixed oil mist is separated.
[0057] 上記蓄圧室 4fに供給された高圧ガス燃料の一部はバルブガイド部材 25と燃料供 給弁 20の弁軸 20aとの隙間 dに進入し、リーク燃料となる。このリーク燃料の大部分 は、連通路 61aを通って環状溝 61b内に流入し、該環状溝 61bから導出通路 61cを 通り、さらにリーク燃料通路 62を通って掃気ポートに 3cT 内に導入される。具体的に は、ピストン 6の上昇行程では、リード弁 10が開いて空気がクランク室 2a内に吸入さ れるともに、逆止弁 64が開いてリーク燃料が掃気ポート 3cT 内に導入される。このリ ーク燃料は、掃気ポート内壁面 Sのシリンダ側開口 3g近傍部分 S1に向けて導入され 、クランク室 2a側に流入することなぐ該ポート壁のシリンダ側開口 3g付近にとどまる  [0057] A part of the high-pressure gas fuel supplied to the pressure accumulating chamber 4f enters the gap d between the valve guide member 25 and the valve shaft 20a of the fuel supply valve 20, and becomes leaked fuel. Most of the leaked fuel flows into the annular groove 61b through the communication passage 61a, passes through the outlet passage 61c from the annular groove 61b, and is further introduced into the scavenging port through the leak fuel passage 62 into 3cT. . Specifically, in the ascending stroke of the piston 6, the reed valve 10 is opened and air is sucked into the crank chamber 2a, and the check valve 64 is opened and leaked fuel is introduced into the scavenging port 3cT. This leak fuel is introduced toward the cylinder side opening 3g in the vicinity of the cylinder side opening 3g of the scavenging port inner wall surface S, and remains in the vicinity of the cylinder side opening 3g of the port wall without flowing into the crank chamber 2a side.
[0058] ピストン 6の下降行程では、燃焼ガス力排気ポート 3cから排出されるとともに、クラン ク室 2a内の空気が各掃気ポート 3dからシリンダボア 3b内に流入し、これに伴って掃 気ポート 3cT 内のリーク燃料もシリンダボア 3b内に流入することとなる。 [0058] In the downward stroke of the piston 6, the exhaust gas is discharged from the combustion gas power exhaust port 3c, and the air in the crank chamber 2a flows into the cylinder bore 3b from each scavenging port 3d, and accordingly, the scavenging port 3cT The leaked fuel also flows into the cylinder bore 3b.
[0059] 本実施形態によれば、ドーム型の燃焼室 18の中央上部に位置する燃料供給通路 4cの下流端開口 4dを、傘形状の弁板 20bに弁軸 20aを形成してなるポペット弁型の 燃料供給弁 20により開閉するようにしたので、比較的大径の下流端開口 4dから短期 間で必要な量のガス燃料を燃焼室 18内に供給することができる。これにより、充填効 率が向上し、燃費及び排気ガス性状を良好にできる。  [0059] According to the present embodiment, the poppet valve is formed by forming the downstream end opening 4d of the fuel supply passage 4c positioned at the upper center of the dome-shaped combustion chamber 18 and the valve shaft 20a on the umbrella-shaped valve plate 20b. Since the fuel supply valve 20 is opened and closed, a required amount of gas fuel can be supplied into the combustion chamber 18 from the downstream end opening 4d having a relatively large diameter in a short time. As a result, the charging efficiency is improved, and the fuel efficiency and exhaust gas properties can be improved.
[0060] 本実施形態では、上記ポペット弁型の燃料供給弁 20を採用するにあたって、該燃 料供給弁 20の弁軸 20aと該弁軸 20aを摺動自在に案内支持するバルブガイド部材 25との隙間 dに進入したガス燃料を、リーク燃料導入通路 60により回収して掃気ポー ト 3cT に導入したので、リーク燃料を有効に燃焼させることができ、熱費の低下及び 未燃焼ガスの排出を防止できる。  In the present embodiment, when the fuel supply valve 20 of the poppet valve type is adopted, the valve shaft 20a of the fuel supply valve 20 and the valve guide member 25 that slidably guides and supports the valve shaft 20a, The gas fuel that has entered the gap d is recovered by the leak fuel introduction passage 60 and introduced into the scavenging port 3cT, so that the leak fuel can be burned effectively, reducing heat costs and discharging unburned gas. Can be prevented.
[0061] 本実施形態では、リーク燃料を気筒軸線 aを挟んだ排気ポート 3cの反対側に位置 する掃気ポート 3cT に導入したので、排気ポート 3cから最も遠い位置にある掃気ポ ート 3cT にリーク燃料が導入されることとなり、排気ポート 3cが閉じる前の掃気行程 中に、リーク燃料が新気に混入して未燃焼ガスとして排気ポート 3cから排出されるの を防止することができる。 In the present embodiment, the leak fuel is positioned on the opposite side of the exhaust port 3c across the cylinder axis a. As a result, the leakage fuel is introduced into the scavenging port 3cT that is farthest from the exhaust port 3c, and during the scavenging stroke before the exhaust port 3c is closed, the leaked fuel is fresh air. It is possible to prevent the exhaust gas from being discharged into the exhaust port 3c as unburned gas.
[0062] 本実施形態では、リーク燃料導入通路 60を、バルブガイド部 25に径方向に延びる ように形成され、弁軸 20aとの隙間 dに連通する連通路 61a, 61aと、各連通路 61aに 連通するようバルブガイド部材 25の外周面とシリンダヘッド 4のバルブガイド部材圧 入面との間に形成された環状溝 61bと、該環状溝 61bを外部に導出する導出通路 6 lcと、該導出通路 61cと掃気ポート 3cT とを連通するリーク燃料通路 62とを備えたも のとしたので、上記隙間 dに進入したリーク燃料の大部分を回収することができる。  [0062] In the present embodiment, the leak fuel introduction passage 60 is formed in the valve guide portion 25 so as to extend in the radial direction, and communicates with the gap d between the valve shaft 20a and the communication passages 61a, 61a. An annular groove 61b formed between the outer peripheral surface of the valve guide member 25 and the valve guide member press-fitting surface of the cylinder head 4 so as to communicate with the valve guide member 25, a lead-out passage 6 lc for leading the annular groove 61b to the outside, Since the leak fuel passage 62 that communicates the outlet passage 61c and the scavenging port 3cT is provided, most of the leaked fuel that has entered the gap d can be recovered.
[0063] また、リーク燃料を確実に回収できるため、軸弁 20aとバルブガイド部材 25との隙間 dを厳密にシールする必要がなぐ上記隙間 dに潤滑油を導入することが可能となる。 その結果、弁軸 20aとバルブガイド部材 25との摺動面の潤滑性を高めることができる  [0063] In addition, since the leaked fuel can be reliably collected, it is possible to introduce the lubricating oil into the gap d, which does not require strict sealing of the gap d between the shaft valve 20a and the valve guide member 25. As a result, the lubricity of the sliding surface between the valve shaft 20a and the valve guide member 25 can be improved.
[0064] 本実施形態では、上記リーク燃料通路 62の掃気ポート 3cT の上流側近傍に逆止 弁 64を配置したので、掃気ポート 3cT にリーク燃料が高速で流入することにより掃気 の流れが阻害されるのを防止できる。即ち、掃気ポート 3dが開く前は、該掃気ポート 3d内の新気は加圧されているため、リーク燃料通路 62内のリーク燃料も同等の圧力 で加圧されることとなる。この状態で掃気ポート 3dが開くと、圧力の高いリーク燃料が 掃気ポート 3d' 内に噴出され、掃気の流れが阻害されることとなる。本実施形態では 、リーク燃料通路 62の掃気ポート 3cT 近傍に逆止弁 64を配置したので、圧縮行程 時にクランク室 2aが負圧になる期間のみリーク燃料通路 62からリーク燃料が掃気ポ ート 3cT 内に高速で噴出され、掃気行程時にはリーク燃料の導入が阻止されること 力も掃気の流れが正常に行なわれることとなる。 In the present embodiment, since the check valve 64 is disposed in the vicinity of the upstream side of the scavenging port 3cT of the leak fuel passage 62, the flow of the scavenging is inhibited by the leak fuel flowing into the scavenging port 3cT at a high speed. Can be prevented. That is, before the scavenging port 3d is opened, since the fresh air in the scavenging port 3d is pressurized, the leaked fuel in the leak fuel passage 62 is also pressurized with the same pressure. When the scavenging port 3d is opened in this state, high-pressure leaked fuel is ejected into the scavenging port 3d ', and the scavenging flow is inhibited. In the present embodiment, since the check valve 64 is disposed in the vicinity of the scavenging port 3cT of the leak fuel passage 62, the leak fuel passes from the leak fuel passage 62 to the scavenging port 3cT only during a period when the crank chamber 2a is negative during the compression stroke. It is ejected at a high speed, and the introduction of leaked fuel is prevented during the scavenging stroke.
[0065] 本実施形態では、リーク燃料導入口 3fを、掃気ポート 3cT の内壁面 Sのシリンダ側 開口 3g近傍部分 S 1に指向するように形成したので、リーク燃料力 S排気ポート 3cから 未燃焼ガスとして流失するのを防止できる。即ち、リーク燃料がクランク室 2a側に流 入した場合には、排気ポート 3cに近い側の掃気ポート 3dからの新気に混入する確率 が高ぐこのためリーク燃料力排気ポート 3cから流失するおそれがある。これに対して 本実施形態では、リーク燃料をシリンダ側開口 3g近傍のポート内壁面部分 S1に向け て噴出させたので、クランク室 2aを経由せずにシリンダボア 3b内に直接導入すること ができ、上記流失を回避できる。また排気ポート側に掃気流が偏向するのを抑制でき 、リーク燃料を掃気の自由な流れに乗せることができる。なお、本発明では、リーク燃 料導入口 3fを、燃焼室に指向するように斜め上向きに形成してもよく、この場合にも 上記同様の効果が得られる。 [0065] In the present embodiment, the leak fuel inlet 3f is formed so as to be directed to the cylinder side opening 3g vicinity S1 of the inner wall surface S of the scavenging port 3cT. It can prevent flowing out as gas. In other words, if leaked fuel flows into the crank chamber 2a, the probability that it will be mixed with fresh air from the scavenging port 3d near the exhaust port 3c. Therefore, there is a risk of leakage from the leak fuel power exhaust port 3c. On the other hand, in the present embodiment, the leaked fuel is jetted toward the port inner wall surface portion S1 near the cylinder side opening 3g, so that it can be directly introduced into the cylinder bore 3b without passing through the crank chamber 2a. The above loss can be avoided. In addition, the deflection of the scavenging airflow toward the exhaust port can be suppressed, and the leaked fuel can be put on the scavenging free flow. In the present invention, the leak fuel introduction port 3f may be formed obliquely upward so as to be directed to the combustion chamber. In this case, the same effect as described above can be obtained.
[0066] 本実施形態では、燃料供給弁 20を開閉駆動するカム軸 31が収容された動弁室 27 にオイルセパレータ 65を介して動弁室側リーク燃料導入通路 66を接続し、該導入通 路 66をリーク燃料通路 62を介して掃気ポート 3cT に連通したので、動弁室 27内に 進入したリーク燃料を、これからオイルミストを分離させた後、掃気ポート 3cT に導入 でき、リーク燃料をより確実に回収できる。  In the present embodiment, the valve chamber side leak fuel introduction passage 66 is connected via the oil separator 65 to the valve train chamber 27 in which the camshaft 31 that drives the fuel supply valve 20 to open and close is accommodated. Since the passage 66 communicated with the scavenging port 3cT via the leak fuel passage 62, the leaked fuel that entered the valve chamber 27 can be introduced into the scavenging port 3cT after separating the oil mist from the leaked fuel. It can be reliably recovered.
[0067] なお、上記実施形態では、燃料供給弁 20が 1本の場合を説明したが、本発明は、 勿論複数の燃料供給弁 20を備えている場合にも適用できる。  In the above embodiment, the case where there is one fuel supply valve 20 has been described. However, the present invention can also be applied to a case where a plurality of fuel supply valves 20 are provided.
[0068] 例えば、図 8に変形例を示すように、並列配置された 2本の燃料供給弁 20, 20を有 する場合には、各燃料供給弁 20, 20の弁軸 20aとバルブガイド部材 25との隙間 dの リーク燃料をリーク燃料導出通路 61, 61を介してリーク燃料通路 62に合流させ、掃 気ポート 3d ' に導くように構成すれば良い。  [0068] For example, as shown in a modified example in FIG. 8, when two fuel supply valves 20, 20 are arranged in parallel, the valve shaft 20a of each fuel supply valve 20, 20 and the valve guide member A configuration may be adopted in which the leaked fuel in the gap d with 25 is joined to the leaked fuel passage 62 via the leaked fuel outlet passages 61 and 61 and led to the scavenging port 3d ′.

Claims

請求の範囲 The scope of the claims
[1] クラン室圧縮式 2行程のガス燃料内燃機関であって、その下流端開口が燃焼室に位 置するように形成された燃料供給通路と、上記下流端開口を開閉する傘状の弁板に 弁軸を形成してなるポペット弁型の燃料供給弁と、該燃料供給弁の弁軸を摺動自在 に案内するバルブガイド部材と、該バルブガイド部材と上記弁軸との隙間に進入した ガス燃料を掃気ポートに導入するリーク燃料導入通路とを備えたことを特徴とするガ ス燃料内燃機関。  [1] Clan chamber compression type two-stroke gas fuel internal combustion engine, a fuel supply passage formed so that a downstream end opening thereof is positioned in the combustion chamber, and an umbrella-shaped valve that opens and closes the downstream end opening Poppet valve type fuel supply valve having a valve shaft formed on a plate, a valve guide member that slidably guides the valve shaft of the fuel supply valve, and a gap between the valve guide member and the valve shaft A gas fuel internal combustion engine comprising a leak fuel introduction passage for introducing gas fuel into a scavenging port.
[2] 請求項 1において、上記リーク燃料導入通路は、上記隙間に進入したリーク燃料を反 排気ポート側に位置する掃気ポートに導入するように形成されていることを特徴とす るガス燃料内燃機関。  [2] The gas fuel internal combustion engine according to claim 1, wherein the leak fuel introduction passage is formed to introduce the leak fuel that has entered the gap into a scavenging port located on a side opposite to the exhaust port. organ.
[3] 請求項 1にお 、て、上記リーク燃料導入通路は、上記バルブガイド部材に、上記弁 軸との隙間に連通するよう半径方向に形成された連通路と、該連通路に連通するよう 上記バルブガイド部材の外周部に形成された環状溝と、該環状溝を外部に導出する 導出通路と、該導出通路と上記掃気ポートとを連通するリーク燃料通路とを有するこ とを特徴とするガス燃料内燃機関。  [3] In Claim 1, the leak fuel introduction passage communicates with the valve guide member in a radial direction so as to communicate with a gap with the valve shaft, and communicates with the communication passage. And an annular groove formed in the outer peripheral portion of the valve guide member, a lead-out passage that leads the annular groove to the outside, and a leak fuel passage that communicates the lead-out passage and the scavenging port. Gas fuel internal combustion engine.
[4] 請求項 1にお 、て、上記リーク燃料導入通路の掃気ポート近傍部分に、該掃気ポー ト側からリーク燃料導入通路側への流れを阻止する逆止弁が配置されていることを特 徴とするガス燃料内燃機関。  [4] In claim 1, the check valve for preventing the flow from the scavenging port side to the leaking fuel introduction passage side is disposed in the vicinity of the scavenging port of the leakage fuel introduction passage. Characteristic gas-fueled internal combustion engine.
[5] 請求項 1な!、し 4の何れか〖こお ヽて、上記掃気ポートに形成されたリーク燃料導入口 は、該掃気ポートの内壁面のシリンダ側開口近傍部分又は上記燃焼室に指向するよ う形成されて ヽることを特徴とするガス燃料内燃機関。  [5] In any one of claims 1 and 4, the leak fuel inlet formed in the scavenging port is located in the vicinity of the opening on the cylinder side of the inner wall surface of the scavenging port or in the combustion chamber. A gas-fueled internal combustion engine that is shaped to be oriented.
[6] 請求項 1ないし 5の何れかにおいて、上記燃料供給弁を開閉駆動するカム軸が収容 された略密閉状の動弁室を備え、該動弁室内に進入したリーク燃料をオイルセパレ ータを介して上記掃気ポートに導入する動弁室側リーク燃料導入通路を備えたことを 特徴とするガス燃料機関。  6. The method according to any one of claims 1 to 5, further comprising: a substantially hermetic valve chamber that houses a camshaft that drives the fuel supply valve to open and close, and leaks fuel that has entered the valve chamber into the oil separator. A gas fuel engine comprising a valve chamber side leak fuel introduction passage that is introduced into the scavenging port via a gas passage.
PCT/JP2007/059112 2006-04-28 2007-04-26 Gas fuel internal combustion engine WO2007126022A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008513273A JP4709277B2 (en) 2006-04-28 2007-04-26 Gas fuel internal combustion engine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006125102 2006-04-28
JP2006-125102 2006-04-28

Publications (1)

Publication Number Publication Date
WO2007126022A1 true WO2007126022A1 (en) 2007-11-08

Family

ID=38655546

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/059112 WO2007126022A1 (en) 2006-04-28 2007-04-26 Gas fuel internal combustion engine

Country Status (2)

Country Link
JP (1) JP4709277B2 (en)
WO (1) WO2007126022A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008280922A (en) * 2007-05-10 2008-11-20 Osaka Gas Co Ltd Sub-chamber engine
CN105134415A (en) * 2015-06-15 2015-12-09 广州柴油机厂股份有限公司 Mechanical fuel gas cylinder inlet control device of gas engine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0188054U (en) * 1987-12-01 1989-06-09
JP2003247444A (en) * 2002-02-21 2003-09-05 Osaka Gas Co Ltd Spark ignition type two-cycle engine
JP3513921B2 (en) * 1994-06-17 2004-03-31 いすゞ自動車株式会社 Subchamber gas engine with solenoid valve drive
JP5071790B2 (en) * 2007-09-18 2012-11-14 株式会社大一商会 Game machine

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5136986A (en) * 1991-04-26 1992-08-11 Energy Conversions, Inc. Dual fuel injection structure
JP4304887B2 (en) * 2001-06-19 2009-07-29 株式会社デンソー Fuel supply system for alternative fuels

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0188054U (en) * 1987-12-01 1989-06-09
JP3513921B2 (en) * 1994-06-17 2004-03-31 いすゞ自動車株式会社 Subchamber gas engine with solenoid valve drive
JP2003247444A (en) * 2002-02-21 2003-09-05 Osaka Gas Co Ltd Spark ignition type two-cycle engine
JP5071790B2 (en) * 2007-09-18 2012-11-14 株式会社大一商会 Game machine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008280922A (en) * 2007-05-10 2008-11-20 Osaka Gas Co Ltd Sub-chamber engine
CN105134415A (en) * 2015-06-15 2015-12-09 广州柴油机厂股份有限公司 Mechanical fuel gas cylinder inlet control device of gas engine

Also Published As

Publication number Publication date
JPWO2007126022A1 (en) 2009-09-10
JP4709277B2 (en) 2011-06-22

Similar Documents

Publication Publication Date Title
US7185614B2 (en) Double bowl piston
US8209980B2 (en) Cylinder head of internal-combustion engine
US6196180B1 (en) In-cylinder injection type spark ignition internal combustion engine
JPH04276182A (en) Fuel injector for 2-cycle engine
JP4709277B2 (en) Gas fuel internal combustion engine
WO2010081284A1 (en) Internal combustion engine without compression stroke for independently supplying gas
US11181037B2 (en) Two-stroke engine
JP3653031B2 (en) Gas fuel supply method and apparatus for gas engine
JP2008002431A (en) Internal combustion engine
KR102678958B1 (en) Internal combustion engine
US6588382B2 (en) Two-cycle internal combustion engine
JP7159430B2 (en) internal combustion engine
US20020011231A1 (en) Method for lubricating two-cycle internal combustion engine
WO2007129599A1 (en) Gas fuel internal combustion engine
JP2009097337A (en) Gas fuel internal combustion engine
JP2010031687A (en) Spark ignition internal combustion engine
JP2011202591A (en) Blowby gas recirculation device
US7334564B2 (en) Throttle and inlet valves for 8 stroke and 4 stroke engines
WO2007126021A1 (en) Gas fuel internal combustion engine
JP3956518B2 (en) Direct cylinder injection spark ignition engine
RU2229029C1 (en) Internal combustion engine
JPH01104930A (en) Engine using various fuel
JP2006037880A (en) Fuel injection device
CA2352074C (en) Method for lubricating two-cycle internal combustion engine
KR200161259Y1 (en) Intake valve guiding structure with recirculation device for blow-by gas

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07742547

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008513273

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07742547

Country of ref document: EP

Kind code of ref document: A1