WO2007125852A1 - Method for producing conductive polymer electrode and dye-sensitized solar cell comprising the conductive polymer electrode - Google Patents

Method for producing conductive polymer electrode and dye-sensitized solar cell comprising the conductive polymer electrode Download PDF

Info

Publication number
WO2007125852A1
WO2007125852A1 PCT/JP2007/058715 JP2007058715W WO2007125852A1 WO 2007125852 A1 WO2007125852 A1 WO 2007125852A1 JP 2007058715 W JP2007058715 W JP 2007058715W WO 2007125852 A1 WO2007125852 A1 WO 2007125852A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive polymer
electrode
dye
thin film
solar cell
Prior art date
Application number
PCT/JP2007/058715
Other languages
French (fr)
Japanese (ja)
Inventor
Masashi Nakayama
Yasuteru Saito
Original Assignee
Dai-Ichi Kogyo Seiyaku Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai-Ichi Kogyo Seiyaku Co., Ltd. filed Critical Dai-Ichi Kogyo Seiyaku Co., Ltd.
Publication of WO2007125852A1 publication Critical patent/WO2007125852A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M14/00Electrochemical current or voltage generators not provided for in groups H01M6/00 - H01M12/00; Manufacture thereof
    • H01M14/005Photoelectrochemical storage cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2022Light-sensitive devices characterized by he counter electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8825Methods for deposition of the catalytic active composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9008Organic or organo-metallic compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2059Light-sensitive devices comprising an organic dye as the active light absorbing material, e.g. adsorbed on an electrode or dissolved in solution
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/137Electrodes based on electro-active polymers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • H10K85/1135Polyethylene dioxythiophene [PEDOT]; Derivatives thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a method for producing a conductive polymer electrode and a dye-sensitized solar cell including the same.
  • a dye-sensitized solar cell generally includes a semiconductor electrode having a photoelectric conversion layer having a semiconductor force in which a dye is adsorbed on a conductive substrate, and a counter electrode provided to face the semiconductor electrode. And an electrolyte layer (charge transport layer) held between the semiconductor electrode and the counter electrode.
  • the counter electrode of the dye-sensitized solar cell has an acid-reduction pair (for example, I_Zi_
  • a catalyst electrode in which a catalyst layer having a catalytic function that allows 3 " ⁇ D to proceed rapidly is provided on a conductive substrate is usually used.
  • a platinum electrode As a general catalyst electrode of a dye-sensitized solar cell, a platinum electrode can be mentioned.
  • a vacuum deposition method, a sputtering method, a platinum precursor is immersed by a spray method or the like.
  • a method of producing by heating after coating is used.
  • platinum is an expensive noble metal. Further, when a platinum electrode is produced by using a vacuum deposition method or a sputtering method, there is a lot of waste in using the material, so that productivity is low and vacuum equipment is required. Therefore, since the equipment cost is also high, the manufacturing cost increases accordingly. In addition, it is known that deposited platinum dissolves in iodine electrolyte in the presence of water or oxygen, and its use has a problem in terms of stability. The immersion method is true in the spray method. There is a problem that it cannot be used for heat-sensitive substrates such as a resin substrate, since baking is required at a temperature of about 400 ° C in the process after coating the substrate.
  • poly (3,4 ethylenedioxythiophene) is a conductive polymer that has excellent stability and conductivity and has a catalytic function for iodine-acid reduction pairs. ), (Hereinafter abbreviated as PEDOT), a conductive polymer electrode provided with an electrode substrate has been reported.
  • Non-Patent Document 1 describes a dye-sensitized solar cell using an ionic liquid electrolyte and a PEDOT counter electrode.
  • a dispersion aqueous solution of PEDOT hereinafter abbreviated as PEDOT-PSS
  • PSS polystyrene sulfonic acid
  • the conductive polymer electrode formed from the aqueous dispersion of PEDOT-PSS particles has low conductivity, when an electrolyte solution using an organic solvent is used, it does not perform as well as a platinum electrode. I helped.
  • Patent Document 1 also includes a conductive polymer thin film (PEDO T-TsO) force formed on an electrode substrate at the same time as the polymerization of PEDOT monomer using p-toluenesulfonic acid (TsO) as a dopant.
  • PEDO T-TsO conductive polymer thin film
  • a dye-sensitized solar cell using a conductive polymer electrode is disclosed.
  • the performance is similar to that of a conventional dye-sensitized solar cell using a counter electrode using platinum.
  • Patent Document 1 as a specific example of the method for producing the conductive polymer electrode, after a solution containing a monomer is applied by a spin coating method, the polymerization is advanced by heat treatment. Only the method is disclosed. Since the spin coating method is used, the manufacturing process is complicated, and it is not necessarily sufficient as an industrial manufacturing method for manufacturing the counter electrode at a low cost by a simple process. In addition, the spin coating method has a problem that it is difficult to pattern an element at the time of practical use, and a solution in a coating process. There is also a problem that the liquid use efficiency is low. Furthermore, although the conductive polymer thin film prepared by the method of this document has high conductivity, there is a problem in the adhesion (physical strength) to the electrode substrate, and the adhesion to the substrate is strong! A functional polymer thin film is desired.
  • the conductive polymer electrode for dye-sensitized solar cells has high patternability, high use efficiency of the coating solution, and high conductivity, catalytic performance, and adhesion to the substrate. In the past, it was difficult to satisfy all of these requirements.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2003-317814
  • Non-Patent Document 1 Proceedings of the 72nd Annual Meeting of the Electrochemical Society of Japan, (2005) 471
  • an object of the present invention is to provide a production method capable of producing a conductive polymer electrode that is excellent in conductivity, catalytic performance, adhesion to an electrode substrate, and that is easy to pattern, with high productivity. And a dye-sensitized solar cell obtained by using the same.
  • the present inventor has applied a solution containing a monomer of a conductive polymer to an electrode substrate, and then forms a conductive polymer thin film by chemical polymerization.
  • the solution composition especially the amount of monomer in the solution, using a coating method with high solution use efficiency other than the spin coating method, the conductivity, catalytic performance, and adhesion can be improved without adding a noinder. It was found that an excellent conductive polymer electrode can be produced.
  • the method for producing a conductive polymer electrode of the present invention is a method for producing a conductive polymer electrode in which a conductive polymer thin film is formed on an electrode substrate. Therefore, a solution containing a conductive polymer monomer on the electrode substrate and having a monomer concentration of 10% by weight or less is applied by a coating method with a solution use efficiency of 20% or more, and then chemically. Polymerize the monomer to form a conductive polymer thin film
  • the screen printing method is preferable among the printing methods.
  • the dye-sensitized solar cell of the present invention is a dye-sensitized solar cell including a semiconductor electrode having a photoelectric conversion layer and a counter electrode facing the semiconductor electrode.
  • the obtained conductive polymer electrode is used.
  • a conductive polymer electrode that is excellent in electrode performance, adhesion to an electrode substrate, and easy to pattern can be produced simply and with high productivity. Furthermore, a dye-sensitized solar cell with high conversion efficiency can be obtained using this conductive polymer electrode.
  • FIG. 1 is a schematic cross-sectional view showing the basic structure of an embodiment of a dye-sensitized solar cell in the present invention.
  • FIG. 1 is a schematic sectional view showing an example of the dye-sensitized solar cell of the present invention.
  • reference numeral 1 is a transparent substrate
  • reference numeral 2 is a transparent conductive film
  • reference numeral 3 is a porous metal oxide semiconductor film
  • reference numeral 4 is a sensitizing dye layer
  • reference numeral 5 is an electrolyte layer
  • reference numeral 6 is a conductive polymer thin film.
  • 7 is an electrode substrate carrying the conductive polymer thin film 6
  • 8 is a working electrode electrode substrate comprising a transparent substrate 1 and a transparent conductive film 2
  • 9 is a conductive polymer electrode (counter electrode). Each is shown.
  • a porous metal oxide semiconductor layer 3 is formed on the surface of a working electrode base 8 comprising a transparent substrate 1 and a transparent conductive film 2 formed thereon.
  • a sensitizing dye layer 4 on which a sensitizing dye is adsorbed is formed on the surface of the porous metal oxide semiconductor layer 3.
  • the conductive polymer electrode 9 of the present invention having a structure in which the conductive polymer thin film 6 is formed on the surface of the electrode substrate 7 is disposed so as to face the electrolyte layer 5.
  • the transparent substrate 1 constituting the working electrode base 8 one that transmits visible light can be used, and transparent glass can be suitably used.
  • a glass surface processed to scatter incident light or a translucent ground glass can be used.
  • a plastic plate or a plastic film can be used as long as it transmits light.
  • the thickness of the transparent substrate 1 is not particularly limited because it varies depending on the shape and use conditions of the solar cell. For example, when glass or plastic is used, the durability during actual use is considered. ! Flexibility of about ⁇ lcm is required, and when plastic film is used, about 1 ⁇ m ⁇ lmm is preferable.
  • the transparent conductive film 2 one that transmits visible light and has conductivity can be used.
  • examples of such materials include metal oxides.
  • fluorine-doped tin oxide hereinafter abbreviated as “FTO”
  • indium oxide a mixture of tin oxide and indium oxide (hereinafter abbreviated as “ITO”)
  • ITO indium oxide
  • Zinc oxide Zinc oxide or the like
  • an opaque conductive material can be used as long as visible light is transmitted by a treatment such as dispersion.
  • Such materials include carbon materials and metals.
  • the carbon material is not particularly limited, and examples thereof include graphite (graphite), carbon black, glassy carbon, carbon nanotube, and fullerene.
  • the metal is not particularly limited, and examples thereof include platinum, gold, silver, ruthenium, copper, aluminum, nickel, cobalt, chromium, iron, molybdenum, titanium, tantalum, and alloys thereof. .
  • the transparent conductive film 2 can be formed by providing a film of a conductive material having at least one of the above-described conductive materials on the surface of the transparent substrate 1.
  • the conductive material can be incorporated into the material constituting the transparent substrate 1 and the transparent substrate and the transparent conductive film can be integrated to form the working electrode base 8.
  • a method for forming the transparent conductive film 2 on the transparent substrate 1 when using a metal oxide, a liquid layer method such as a sol-gel method, a gas phase method such as sputtering, CVD, a dispersion paste, etc. There are coatings.
  • a method of fixing a powder together with a transparent noinder or the like when using a metal oxide, a liquid layer method such as a sol-gel method, a gas phase method such as sputtering, CVD, a dispersion paste, etc.
  • an opaque conductive material there is a method of fixing a powder together with a transparent noinder or the like.
  • the thickness of the transparent conductive film 2 is not particularly limited because the conductivity varies depending on the material used. For commonly used FTO-coated glass, it is preferably 0.01 ⁇ m to 5 ⁇ m, preferably Is between 0.1 ⁇ m and l ⁇ m.
  • the required conductivity varies depending on the area of the electrode used.
  • the force required to have lower resistance for wider electrodes is generally 100 ⁇ or less, preferably 10 ⁇ or less, more preferably 5 ⁇ Less than Z port.
  • the thickness of the working electrode base 8 composed of a transparent substrate and a transparent conductive film, or the working electrode base 8 integrated with the transparent substrate and the transparent conductive film is determined by the shape of the solar cell as described above. Although there is no particular limitation as it varies depending on the use conditions, it is generally about 1 ⁇ m to 1 cm.
  • the porous metal oxide semiconductor 3 is not particularly limited, and examples thereof include titanium oxide, acid oxide zinc, tin oxide, and titanium dioxide, and more particularly anatase type titanium dioxide is suitable. .
  • the metal oxide has few grain boundaries.
  • the semiconductor layer preferably has a large specific surface area, specifically 10 to 200 m 2 Zg.
  • the particle size of the acid oxide used is wide to scatter light.
  • Such a porous metal oxide semiconductor can be provided on the transparent conductive film 2 by a known method.
  • the method is not particularly limited, and examples thereof include a sol-gel method, dispersion paste application, and electrodeposition method.
  • the thickness of such a semiconductor layer has an optimum value that varies depending on the oxide used, and is not particularly limited.
  • the force is 0.1 m to 50 ⁇ 111, more preferably 5 to 30. ⁇ m.
  • the sensitizing dye constituting the sensitizing dye layer 4 is generally used in dye-sensitized solar cells as long as it can be excited by sunlight and can inject electrons into the metal oxide semiconductor layer 3. In order to improve the power conversion efficiency, it is desirable that the absorption spectrum overlaps with the sunlight spectrum in a wide wavelength region, so that the light resistance is high.
  • a ruthenium complex particularly a ruthenium complex represented by Ru (L) 2 (X) 2, which is particularly desirable for a ruthenium polypyridine complex, is particularly desirable.
  • L is 4,4, -dicarboxy 2,2, monobipyridine, or a quaternary ammonium salt thereof, and a polypyridine-based ligand into which a force lpoxyl group is introduced
  • X is SCN, Cl, CN.
  • examples thereof include bis (4,4, -dicarboxy-2,2, -biviridine) diisothiocyanate-tenium complex.
  • examples of other dyes include metal complex dyes other than ruthenium, such as iron complexes and copper complexes.
  • organic dyes such as cyan dyes, porphyrin dyes, polyene dyes, coumarin dyes, cyanine dyes, squaric acid dyes, styryl dyes, and eosin dyes.
  • These dyes include the metal
  • the linking group is not particularly limited, but is preferably a carboxyl group, a sulfonic acid group, a hydroxyl group or the like.
  • Examples of the solvent used for dissolving the pigment include alcohols such as ethanol, nitrogen compounds such as acetonitrile, ketones such as acetone, ethers such as jetyl ether, and halogenated fat such as black mouth form. Aliphatic hydrocarbons such as aromatic hydrocarbons, hexane, aromatic hydrocarbons such as benzene, and esters such as ethyl acetate.
  • concentration of the dye in the solution can be adjusted as appropriate depending on the type of dye and solvent used, and it is desirable that the concentration be high to some extent in order to sufficiently adsorb on the semiconductor surface. For example, 4 X 10 _5 molZL more concentrations is desirable.
  • the method for adsorbing the sensitizing dye to the porous metal oxide semiconductor 3 is not particularly limited.
  • Examples of the method include adsorbing the dye in a solution in which the dye is dissolved at room temperature and atmospheric pressure.
  • Examples include a method of immersing the electrode substrate on which the porous metal oxide semiconductor 3 is formed. The immersion time is preferably adjusted as appropriate so that a monomolecular film of the dye is uniformly formed on the semiconductor layer depending on the type of semiconductor, dye, solvent, and dye concentration used. For effective adsorption, immersing under heating is recommended.
  • the electrolyte layer 5 includes a supporting electrolyte, an oxidation-reduction pair capable of reducing the oxidized sensitizing dye, and a solvent for dissolving them.
  • the oxidation-reduction pair constituting the electrolyte layer 5 is not particularly limited as long as it can be generally used in a battery, a solar battery, etc.
  • a halogen diatomic molecule and a halide salt are used.
  • Organic redox such as thionocyanate-one and thiocyanate bimolecules, polypyridyl cobalt complex and hydroquinone. Of these, a combination of iodine molecules and iodide is particularly preferred.
  • the concentration of the redox compound is usually from 0.1 to 1 OmolZL, preferably from 0.1 to 5 molZL.
  • the solvent used in the electrolyte can be arbitrarily selected from non-aqueous organic solvents, room temperature molten salts, water, protic organic solvents, and the like, as long as they are compounds capable of dissolving redox compounds.
  • organic solvents such as acetonitrile, methoxyacetonitrile, valero-tri , -Tolyl compounds such as methoxypropio-tolyl, ⁇ -latathone compounds such as butyllatatone and valerolacton, carbonate compounds such as ethylene carbonate and propylene carbonate, ethers such as dioxane jetyl ether and ethylene glycol dialkyl ether , Alcohols such as methanol and ethanol, dimethylformamide and imidazoles, and the like.
  • acetonitrile, valero-tolyl, methoxypropio-tolyl, propylene carbonate and the like can be preferably used. These can be used alone or in admixture of two or more.
  • an ionic liquid that is, a molten salt may be used.
  • Ionic liquids are disclosed in "Inorg. Chem” 1996, 35, pl l68-1178, “Electrochemistry” 2002, 2, pl30-136, JP-T 9-507334, JP-A 8-259543, etc.
  • Any known battery or solar cell that can be used generally can be used without particular limitation, but it may be used as a salt having a melting point lower than room temperature (25 ° C) or from room temperature. Even if it has a high melting point, a salt that is liquid at room temperature by dissolving other molten salt or additives other than the molten salt is preferably used.
  • Examples of melted salt ions include metal chlorides such as A1C1 ", Al C1—, PF"
  • Halogenation of non-fluorine compounds such as O ", (CH 2 O) PO", SCN—, iodine and bromine
  • the electrolyte layer further includes a lithium salt, an imidazolium salt, a quaternary ammonium salt, etc. as a supporting electrolyte, a base such as t-butyl pyridine, n-methyl imidazole, and a guamium thiosi salt as additives.
  • a lithium salt such as cyanate, water and the like can be added. This The concentration of these additives is not particularly limited because the optimum concentration differs depending on the solvent, semiconductor electrode, dye, etc. used, but usually about 1 mmolZL to 5 molZL is suitable.
  • the conductive polymer electrode 9 has a structure in which a conductive polymer thin film 6 is formed on the surface of an electrode substrate 7.
  • the electrode substrate 7 is used as a support and current collector for a conductive polymer electrode, at least the surface portion of the electrode substrate on which the conductive polymer thin film is formed must have conductivity.
  • a conductive metal or metal oxide, a carbon material, a conductive polymer, or the like is preferably used.
  • the metal include platinum, gold, silver, ruthenium, copper, aluminum, nickel, cobalt, chromium, iron, molybdenum, titanium, tantalum, and alloys thereof.
  • the carbon material is not particularly limited, and examples thereof include graphite (graphite), carbon black, glassy carbon, carbon nanotube, and fullerene.
  • a metal oxide such as FTO, ITO, indium oxide, or zinc oxide is used, it is preferable because it is transparent or translucent so that the amount of incident light on the sensitizing dye layer can be increased.
  • an insulator such as glass or plastic may be used as long as at least the surface of the electrode substrate is treated.
  • a treatment method for maintaining the conductivity in such an insulator a method of covering a part or the whole surface of the insulating material with the above-described conductive material, for example, when using a metal, METSUKI electrodeposition Examples thereof include solution methods such as sputtering, and vapor phase methods such as sputtering and vacuum deposition. When metal oxide is used, a sol-gel method or the like can be used. Another example is a method in which one or more of the above conductive material powders are mixed with an insulating material.
  • a conductive polymer is used as the conductive material
  • a conductive polymer film described later is formed on the substrate by a coating method described later, and a conductive polymer thin film is formed by chemical polymerization or the like. You can also. In that case, the conductive polymer thin film alone functions as both a current collector and a catalyst.
  • the shape of the electrode substrate 7 is not particularly limited because it can be changed according to the shape of the dye-sensitized solar cell used as the conductive polymer electrode, and it can be curved in the form of a plate or a film. But you can.
  • the electrode substrate may be transparent or opaque, but it is transparent or translucent because it can increase the amount of light incident on the sensitizing dye layer and, in some cases, can improve the design. It is desirable to be.
  • glass with an FTO film or PEN film with an ITO film is used as the electrode substrate.
  • the conductivity differs depending on the material used, the thickness of the conductive film on the electrode substrate is particularly limited. Not. For example, in FTO-coated glass, it is usually about 0.01 ⁇ m to 5 ⁇ m, and preferably 0.1 ⁇ m to l ⁇ m.
  • the required conductivity varies depending on the area of the electrode to be used, and the force required to have a lower resistance for a wider electrode is generally 100 ⁇ inlet or lower, preferably 10 ⁇ inlet or lower, more preferably 5 ⁇ or less.
  • the thickness of the electrode substrate 7 is not particularly limited because it varies depending on the shape and use conditions of the solar cell as described above, but is generally about 1 ⁇ m to 1 cm.
  • the conductive polymer thin film 6 in the conductive polymer electrode (catalyst electrode) 9 of the present invention functions as a catalyst for reducing the oxidized form of the redox couple contained in the electrolyte layer.
  • the monomer for forming such a conductive polymer thin film is not particularly limited, and a known substance can be used, but the thin film is formed in a porous state so that an electron transfer reaction can be performed efficiently. I want something I can do. Monomers may be used alone or in combination of two or more.
  • Specific examples of the monomer used include a thiophene compound represented by the following general formula (1).
  • R and R are each independently a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, or
  • Alkoxy group aryl group having 6 to 12 carbon atoms, cyano group, thiosiano group, halogen group , Nitro group, amino group, carboxyl group, sulfo group, or phosphonium group, R and R
  • 1 2 may be linked to form a ring.
  • thiophene tetradecylthiophene, isothianaphthene, 3-phenolthiophene, 3,4-ethylenedioxythiophene, aminomethyl-3,4-ethylenedioxythiophene, hydroxymethyl-3 4,4-ethylenedioxythiophene can be preferably used, and 3,4-ethylenedioxythiophene can be particularly preferably used.
  • a conductive polymer thin film may be formed by using one or more thiophene compounds.
  • conductivity force S 10 is desired which shows the above _9 S / cm as a polymerized film.
  • a dopant can be added to the conductive polymer thin film in order to improve electrical conductivity.
  • the dopant is not particularly limited, and a known material can be used. Specific examples of dopants include halogen ions such as iodine, bromine, and chlorine, hexafluorolin, hexafluoroarsenic, hexafluoroantimony, tetrafluoroboron, perchloric acid and other halides, methane.
  • Alkyl group-substituted organic sulfonic acid ions such as sulfonic acid and dodecylsulfonic acid, cyclic sulfonic acid ions such as camphorsulfonic acid, benzenesulfonic acid, paratoluenesulfonic acid, dodecylbenzenesulfonic acid, benzenedisulfonic acid, etc.
  • Group-substituted or unsubstituted cation anthracene sulfonic acid, anthraquinone sulfonic acid Alkyl group-substituted or unsubstituted biphenyl sulfonates, substituted or unsubstituted aromatic sulfonates, bissartylate boron, biscatecholate boron And boron compounds such as molybdophosphoric acid.
  • p-toluenesulfonic acid, dodecylbenzenesulfonic acid, and the like can be preferably used.
  • dopants may be used alone or in combination of two or more. In order to suppress the desorption of the dopant, it is desirable that thermal decomposition or the like, which is preferably an organic acid ion rather than an inorganic ion, occurs.
  • thermal decomposition or the like which is preferably an organic acid ion rather than an inorganic ion, occurs.
  • the amount of dopant used in the conductive polymer thin film is not particularly limited because the optimum value varies depending on the type of dopant used, but is preferably 5 to 60% by mass, more preferably 10 to 45% by mass. .
  • Such a dopant can coexist with a monomer of a conductive polymer when the conductive polymer thin film is formed.
  • a conductive polymer thin film 6 is formed by applying a solution containing a monomer of a conductive polymer on the electrode substrate 7 and then chemically polymerizing (in situ polymerization method).
  • the chemical polymerization method is a method in which a monomer is acid-polymerized using an oxidizing agent.
  • Examples of the oxidizing agent used in the chemical polymerization method include halides such as iodine, bromine, bromine iodide, chlorine dioxide, iodic acid, periodic acid, chlorous acid, antimony pentafluoride, phosphorus pentachloride, penta Metal halides such as phosphorus fluoride, aluminum chloride and molybdenum chloride, permanganates, dichromates, chromic anhydride, ferric salts, cupric salts and other high-valent metal salts, sulfates, Protic acids such as nitric acid and trifluoromethane sulfuric acid, oxygen compounds such as sulfur trioxide and nitrogen dioxide, hydrogen peroxide, ammonium persulfate, peroxo acids such as sodium perborate or salts thereof, molybdophosphoric acid, tandulinic acid And heteropolyacids such as tandamolybdophosphoric acid or salts thereof, and at least one of them
  • the above-mentioned chemical polymerization method is suitable for mass production, when it is reacted with an oxidizing agent in a solution containing an aromatic compound monomer, the resulting polymer is in the form of particles or lumps, It is difficult to develop a desired porosity and form an electrode shape. Therefore, the electrode substrate is immersed in a solution containing either an aromatic compound monomer or an oxidizing agent, or the solution is applied to them, followed by immersion or application in a solution in which the other component is dissolved. It is desirable to form a conductive polymer thin film by allowing polymerization to proceed on the surface of the electrode substrate.
  • an additive that reduces the polymerization rate is added to the solution in which the monomer and the polymerization initiator are mixed, and the film is formed under conditions where polymerization does not occur at room temperature. A molecular thin film can be produced.
  • the polymerization initiator is In the case of a valence metal salt, such as Fe (III) salt, the polymerization rate can be slowed by covering the base, since it changes depending on the acid potential potential H of the Fe (III) salt.
  • the base include imidazole and dimethyl sulfoxide.
  • a coating method having a solution use efficiency of 20% or more is used as a method for applying the monomer solution.
  • a coating method with a solution use efficiency of 50% or more is used, and a coating method with a solution use efficiency of 80% or more is more preferably used.
  • solution use efficiency refers to the total amount of solution used for coating (A) and the amount obtained by subtracting the amount of solution (B) that is lost in the coating process and cannot be used for film formation. It is a percentage. That is, when the solution use efficiency is E (%), it is expressed by the following formula.
  • E ⁇ (A-B) / A ⁇ X 100
  • the spin coating method frequently used as a method for producing a conductive polymer thin film has a solution use efficiency of 10% or less, and the loss of the solution in the coating process is very large.
  • Solution use efficiency High solution use efficiency of 20% or more
  • printing method printing method, slit coater method, barcode method, blade coating method, air knife coating method, gravure coating method, mouth coating coating method , Spray coating method, dip coating method and the like.
  • the printing method is preferable in that the apparatus is inexpensive and easy to pattern.
  • the printing method include screen printing, letterpress printing, intaglio printing, offset printing, flat plate printing, letterpress reverse printing, gravure printing, ink jet printing, tampon printing, flexographic printing, and screen printing is particularly preferable.
  • the roll coating method and the slit coater method are preferred.
  • the solution used for the coating in the present invention has a monomer concentration of the conductive polymer in the solution of preferably 10% by weight or less, more preferably 5% by weight or less. If it exceeds 10% by weight, the coatability tends to be poor and the reproducibility tends to be poor. On the other hand, if it exceeds 5% by weight, the conversion efficiency of the dye-sensitized solar cell obtained using the conductive polymer thin film may be slightly lowered.
  • a solvent for dissolving the monomer, the polymerization initiator, and the additive is not particularly limited as long as it dissolves the compound to be used and does not dissolve the electrode substrate and the polymer.
  • methanol, ethanol Alcohols such as propanol, normal butanol, etc. a high boiling point and high viscosity solvent such as normal butanol can be preferably used.
  • the mixing ratio of the monomer, the polymerization initiator, and the additive is determined according to the compound used, the target polymerization degree, and the force that varies depending on the polymerization rate.
  • polymerization initiator additive, preferably 1: 0.05 to 1: 4.
  • heating conditions in the case of heat polymerization after coating the mixed solution vary depending on the monomers used, the polymerization catalyst, the types of additives and their mixing ratio, concentration, coating thickness, etc.
  • heating in air preferably has a heating temperature of 25 ° C to 120 ° C and a heating time of 1 minute to 12 hours.
  • the thickness of the conductive polymer thin film in the conductive polymer electrode of the present invention is not limited because the optimum value varies depending on the application and the monomer used, but considering performance, cost, transparency, and the like. , ⁇ ! About 2 ⁇ m is desirable.
  • the conductive polymer electrode 9 is obtained by forming the conductive polymer thin film 6 on the electrode substrate 7 serving as a current collector / support.
  • the metal oxide semiconductor electrode and the conductive polymer electrode are assembled so as to face each other through an electrolyte by a conventionally known method. Complete a solar cell.
  • a transparent conductive film 2 made of SnO is formed on a transparent substrate 1 made of glass by vacuum deposition.
  • the porous metal oxide semiconductor layer 3 was formed on the transparent conductive film 2 by the following method.
  • FTO glass Japanese sheet glass
  • a bis (4 ruboxy 4'-tetrabutylammonium-umcarboxy 2,2'-biviridine) disothiocyanate ruthenium complex (made by Solaronix) generally called N719dye is used. used.
  • the porous titanium oxide semiconductor electrode was immersed in an absolute ethanol solution having a pigment concentration of 0.4 mmol ZL and allowed to stand for 1 hour under light shielding. Thereafter, the excess pigment was washed with absolute ethanol and air-dried to produce a semiconductor electrode for a solar cell.
  • FTO-coated glass As the electrode substrate 7, FTO-coated glass (Asahi Glass Co., Ltd., ⁇ 10 ⁇ Z port) was used. To the electrode substrate washed in an organic solvent, monomers 3,4-ethylenedioxythiophene, tris-p-toluenesulfonate iron (III), and dimethylsulfoxide are mixed in a weight ratio of 8: 1: 1 n-butanol. The solution dissolved in was applied by screen printing. At this time, the use efficiency of the coating solution was 91%. Also, 3 of the solution, 4-ethylenedioxy-O alkoxy monomer concentration Ji Ofen 4 weight 0 /. Met.
  • the electrode substrate coated with this solution was placed in a thermostatic bath maintained at 110 ° C., polymerized by heating for 5 minutes, washed with methanol, and dried to prepare a conductive polymer electrode layer 6. .
  • the film thickness of the formed conductive polymer thin film 6 was about 0.3 ⁇ m.
  • the solvent is a mixed solvent of acetonitrile and valero-tolyl (mixing ratio 3Z1 vZv), 0.5 molZL lithium iodide and 0.05 molZL iodine, 0.6 molZL 1,2 dimethyl-3 propylimidazolium iodide A solution containing 0.5 mol ZL of 4 t butylpyridine was used.
  • Example 2 A solar battery cell was prepared in the same manner as in Example 1 except that in the production of the conductive polymer electrode 6, the monomer was hydroxymethyl-3,4-ethylenedioxythiophene. The screen printing solution use efficiency at this time was 91%. The formed conductive polymer thin film had a thickness of about 0.3 m.
  • a solar battery cell was produced in the same manner as in Example 1 except that the concentration of 3,4-ethylenedioxythiophene (monomer) in the monomer solution was changed to 6% by weight in the production of the conductive polymer electrode 6.
  • the screen printing solution use efficiency at this time was 92%.
  • the film thickness of the formed conductive polymer thin film was about 1.
  • Conductive polymer thin film 6 was prepared by filtering poly (3,4-ethylenedioxythiophene) Z polystyrene sulfonic acid aqueous dispersion (Aldrich), and then at 2000 rpm for 30 seconds.
  • a solar cell was fabricated in the same manner as in Example 1 except that a conductive polymer thin film was formed by spin coating on FTO glass, air drying, and heating and drying at 110 ° C for 5 minutes three times. did. At this time, the solution use efficiency in spin coating was 7%.
  • the thickness of the conductive polymer thin film is about 0.3 m.
  • a solar cell was fabricated in the same manner as in Example 1 except that FTO glass was used for the electrode substrate 7 as the counter electrode 9 and a platinum counter electrode having a platinum layer formed on the FTO glass by a sputtering method was used.
  • the thickness of the platinum layer was about 0.15 m.
  • Example 4 A solar battery cell was produced in the same manner as in Example 1 except that in the production of the conductive polymer electrode 6, the concentration of 3,4-ethylenedioxythiophene (monomer) in the monomer solution was 12% by weight. The screen printing solution use efficiency at this time was 92%. However, it was impossible to obtain a uniform conductive polymer thin film with poor solution applicability.
  • Photoelectric conversion performance evaluation of solar cells prepared in Examples and Comparative Examples was performed by the following method.
  • the adhesion strength evaluation of the conductive polymer thin film 6 (catalyst layer) and the platinum counter electrode prepared in Examples and Comparative Examples to the electrode substrate 7 was performed according to JIS K5600-5-6. In this evaluation, the adhesion strength is classified into 6 levels from 0 to 6, and the smaller the value, the stronger the adhesion strength. Table 1 summarizes the results of both evaluations.
  • Example 3 the force S that enables the PEDOT counter electrode to be produced by screen printing using the same solution as in Comparative Example 1 (using spin coating method), the solar cell conversion efficiency is higher than in Example 1. Low. Therefore, when the screen printing method is used, if the monomer concentration in the solution becomes higher than a certain level, the conductive polymer thin film becomes thicker and the film becomes denser and the porosity is lowered. It is considered that the movement of the acid-rich reducing pair is hindered, and the tendency of the device performance to decline appears. If the monomer concentration is further increased, as shown in Comparative Example 4, it becomes difficult to obtain a uniform thin film with good reproducibility.
  • Comparative Example 2 had a lower conversion efficiency than Example 1, and in particular, the value S of the form factor was reduced. This is probably because PEDOTZPSS in Comparative Example 2 uses polystyrene sulfonate, which is a polymer, as the dopant, and the conductivity of the prepared conductive polymer thin film is lower than that of the PEDOT counter electrode in Example 1. It is done. [0099] The adhesion strength of the conductive polymer thin film applied to the FTO glass by screen printing in Examples 1 to 3 was higher than that of Comparative Example 1 in which the application was performed by spin coating. Thus, by adjusting the amount of monomer in the solution in a suitable solution composition, the film thickness can be adjusted while maintaining good adhesion strength to the substrate. We succeeded in producing a conductive polymer counter electrode with excellent fabric solution use efficiency, conductivity, catalytic performance, and adhesion.
  • the conductive polymer electrode of the present invention has excellent adhesion to the electrode substrate.
  • the dye-sensitized solar cell provided with the conductive polymer electrode has excellent photoelectric conversion efficiency.
  • the method for producing a conductive polymer electrode of the present invention provides a low-cost and high-performance dye-sensitized solar cell.
  • these conductive polymer electrodes are also used for photoelectric conversion elements such as organic solar cells and optical sensors, light-emitting elements such as organic EL and inorganic EL, fuel cells, and electric double layer capacitors. It can also be used for energy devices.

Abstract

Disclosed is a method for producing a conductive polymer electrode wherein a conductive polymer thin film is formed on an electrode base. In this method, a solution containing a monomer for the conductive polymer in a concentration not more than 10% by weight is applied over the electrode base by a coating method having a solution transfer efficiency of not less than 20%, and then the monomer is polymerized through chemical polymerization, thereby forming a conductive polymer thin film. Consequently, an easily patternable conductive polymer electrode, which is excellent in electrode performance and adhesion to an electrode substrate, can be easily produced with high productivity. A dye-sensitized solar cell having excellent conversion efficiency and the like can be obtained by using such a conductive polymer electrode.

Description

明 細 書  Specification
導電性高分子電極の製造方法、及びそれを備えた色素増感太陽電池 技術分野  Manufacturing method of conductive polymer electrode, and dye-sensitized solar cell including the same
[0001] 本発明は、導電性高分子電極の製造方法、及びそれを備えた色素増感太陽電池 に関するものである。  [0001] The present invention relates to a method for producing a conductive polymer electrode and a dye-sensitized solar cell including the same.
背景技術  Background art
[0002] 近年、光エネルギーを電気エネルギーに変換する光電変換素子として、種々の太 陽電池が提案されている。その中で、 1991年にスイスのローザンヌ大学のグレツツエ ルらによって Nature (第 353卷,第 737〜740頁, 1991年)等で発表された色素増 感太陽電池は、使用する材料が安価であること、比較的シンプルなプロセスで製造 できること等の利点力 その実用化が期待されている。  In recent years, various solar cells have been proposed as photoelectric conversion elements that convert light energy into electrical energy. Among them, dye-sensitized solar cells announced in Nature (No. 353, 737-740, 1991) by Gretzzel et al. Of the University of Lausanne in Switzerland in 1991 are inexpensive to use. In addition, it has the advantage of being able to be manufactured by a relatively simple process, and its practical use is expected.
[0003] 色素増感太陽電池は、一般に導電性基材上に色素を吸着した半導体力 なる光 電変換層を持つ半導体電極と、該半導体電極に対向して設けられた対向電極と、こ れら半導体電極と対向電極との間に保持された電解質層(電荷輸送層)から構成さ れている。  [0003] A dye-sensitized solar cell generally includes a semiconductor electrode having a photoelectric conversion layer having a semiconductor force in which a dye is adsorbed on a conductive substrate, and a counter electrode provided to face the semiconductor electrode. And an electrolyte layer (charge transport layer) held between the semiconductor electrode and the counter electrode.
[0004] 色素増感太陽電池の対向電極には、電解質層中の酸ィ匕還元対 (例えば、 I _Zi_  [0004] The counter electrode of the dye-sensitized solar cell has an acid-reduction pair (for example, I_Zi_
3 等)の酸化体を還元体に変化させる還元反応 (I  3) etc.)
3 "→Dを速やかに進行させることを 可能とする触媒機能を有する触媒層を導電性基材上に設けた触媒電極が通常使用 される。  A catalyst electrode in which a catalyst layer having a catalytic function that allows 3 "→ D to proceed rapidly is provided on a conductive substrate is usually used.
[0005] 色素増感太陽電池の一般的な触媒電極としては白金電極が挙げられ、その作製 法としては、真空蒸着法、スパッタ法や、白金の前駆体を浸漬法ゃスプレー法などに より電極に塗布後、加熱することにより作製する手法が用いられる。  [0005] As a general catalyst electrode of a dye-sensitized solar cell, a platinum electrode can be mentioned. As a method for producing the electrode, a vacuum deposition method, a sputtering method, a platinum precursor is immersed by a spray method or the like. A method of producing by heating after coating is used.
[0006] しかしながら、白金は高価な貴金属であり、さらに真空蒸着法やスパッタ法を用いて 白金電極を作製した場合、材料の使用において無駄が多いため生産性が低ぐまた 真空設備を必要とするので設備費も高いため、その分製造コストが高くなる。また、蒸 着した白金は、水あるいは酸素存在下にヨウ素電解液中に溶解することが知られて おり、その使用は安定性の面力もも問題がある。浸漬法ゃスプレー法においては、真 空設備を使用しないため簡便ではある力 基板に塗布後の工程において 400°C程 度の焼成が必要であり、榭脂基板など熱に弱い基板には使用できないという問題が あった。 [0006] However, platinum is an expensive noble metal. Further, when a platinum electrode is produced by using a vacuum deposition method or a sputtering method, there is a lot of waste in using the material, so that productivity is low and vacuum equipment is required. Therefore, since the equipment cost is also high, the manufacturing cost increases accordingly. In addition, it is known that deposited platinum dissolves in iodine electrolyte in the presence of water or oxygen, and its use has a problem in terms of stability. The immersion method is true in the spray method. There is a problem that it cannot be used for heat-sensitive substrates such as a resin substrate, since baking is required at a temperature of about 400 ° C in the process after coating the substrate.
[0007] 白金電極に代わるものとして、安定性および導電性に優れ、ヨウ素系酸ィ匕還元対に 対する触媒機能を有する導電性高分子であるポリ (3, 4 エチレンジォキシチオフヱ ン)、(以下、 PEDOTと略記する。)の薄膜を電極基体上に設けた導電性高分子電 極が報告されている。  [0007] As an alternative to the platinum electrode, poly (3,4 ethylenedioxythiophene) is a conductive polymer that has excellent stability and conductivity and has a catalytic function for iodine-acid reduction pairs. ), (Hereinafter abbreviated as PEDOT), a conductive polymer electrode provided with an electrode substrate has been reported.
[0008] 非特許文献 1には、イオン液体電解質と PEDOT対極を用いた色素増感太陽電池 が記載されている。該文献においては、 PEDOT対極の作製方法として、ポリスチレ ンスルホン酸(PSS)をドーパントとした PEDOT (以下、 PEDOT— PSSと略記する。 )粒子の分散水溶液を、導電性ガラス上にスピンコートして、成膜、乾燥後さらに熱処 理する工程を繰り返して 、ると記載されて 、る。  [0008] Non-Patent Document 1 describes a dye-sensitized solar cell using an ionic liquid electrolyte and a PEDOT counter electrode. In this document, as a method for preparing a PEDOT counter electrode, a dispersion aqueous solution of PEDOT (hereinafter abbreviated as PEDOT-PSS) using polystyrene sulfonic acid (PSS) as a dopant is spin-coated on a conductive glass, It is described that the process of heat treatment after film formation and drying is repeated.
[0009] しかし、上記 PEDOT— PSS粒子の分散水溶液から形成された導電性高分子電極 は、導電性が低いため、有機溶媒を使用した電解質溶液を使用した場合、白金電極 ほどの性能を示さな力つた。  However, since the conductive polymer electrode formed from the aqueous dispersion of PEDOT-PSS particles has low conductivity, when an electrolyte solution using an organic solvent is used, it does not perform as well as a platinum electrode. I helped.
[0010] また、特許文献 1には、パラトルエンスルホン酸 (TsO)をドーパントとし、 PEDOTの モノマーを重合させると同時に電極基板上に形成される導電性高分子薄膜 (PEDO T— TsO)力もなる導電性高分子電極を使用した色素増感太陽電池が開示されてい る。この文献によると、従来の対向電極形成方法に比べ、簡潔な工程で安価に対向 電極を作製でき、製造プロセス及び製造コストの面で有利な色素増感太陽電池を提 供し得るとあり、電池特性の面では従来の白金を用いた対向電極を使用した色素増 感太陽電池と同程度の性能である。  [0010] In addition, Patent Document 1 also includes a conductive polymer thin film (PEDO T-TsO) force formed on an electrode substrate at the same time as the polymerization of PEDOT monomer using p-toluenesulfonic acid (TsO) as a dopant. A dye-sensitized solar cell using a conductive polymer electrode is disclosed. According to this document, compared to conventional counter electrode formation methods, it is possible to produce a counter electrode with a simple process at low cost, and to provide a dye-sensitized solar cell advantageous in terms of manufacturing process and manufacturing cost. In this aspect, the performance is similar to that of a conventional dye-sensitized solar cell using a counter electrode using platinum.
[0011] し力しながら、特許文献 1には、その導電性高分子電極の製造方法の具体例として 、モノマーを含む溶液をスピンコート法により塗布した後、加熱処理することで重合を 進行させる方法が開示されているのみである。これは、スピンコート法を用いている点 から、その製造工程が煩雑であり、簡潔な工程で安価に対向電極を製造する工業的 製法としては必ずしも十分とはいえない。また、スピンコート法では、実用化時におけ る素子のパター-ングを行なうことが困難であるという問題や、塗布工程における溶 液使用効率が低いという問題もある。さらに、該文献の手法で作製された導電性高分 子薄膜は導電性が高いものの、電極基体との密着性 (物理的強度)に問題があり、基 板との密着性の強!、導電性高分子薄膜が望まれる。 However, in Patent Document 1, as a specific example of the method for producing the conductive polymer electrode, after a solution containing a monomer is applied by a spin coating method, the polymerization is advanced by heat treatment. Only the method is disclosed. Since the spin coating method is used, the manufacturing process is complicated, and it is not necessarily sufficient as an industrial manufacturing method for manufacturing the counter electrode at a low cost by a simple process. In addition, the spin coating method has a problem that it is difficult to pattern an element at the time of practical use, and a solution in a coating process. There is also a problem that the liquid use efficiency is low. Furthermore, although the conductive polymer thin film prepared by the method of this document has high conductivity, there is a problem in the adhesion (physical strength) to the electrode substrate, and the adhesion to the substrate is strong! A functional polymer thin film is desired.
[0012] 一般的に、スピンコート法以外の実用的な薄膜塗布法としては、スクリーン印刷、ス リットコートなどが挙げられる。これらの塗布法を適用する時は、塗布性向上や基板と の密着性向上のため、ェチルセルロースなどのバインダーが添加される事が多い。し かし、色素増感太陽電池用の対向電極として導電性高分子電極を使用するために は、導電性高分子電極全体の導電性が高いことが必要であり、一般的なノ インダー 等を添加すると電極全体の導電性が低下するため、バインダー等を添加した系で十 分な性能を示す導電性高分子電極を作製することは難しい。  [0012] Generally, practical thin film coating methods other than spin coating include screen printing and slit coating. When applying these coating methods, a binder such as ethyl cellulose is often added to improve coating properties and adhesion to the substrate. However, in order to use a conductive polymer electrode as a counter electrode for a dye-sensitized solar cell, it is necessary that the entire conductive polymer electrode has high conductivity. When added, the conductivity of the entire electrode is lowered, so it is difficult to produce a conductive polymer electrode exhibiting sufficient performance in a system to which a binder or the like is added.
[0013] 以上のように、色素増感太陽電池用の導電性高分子電極は、パターニング性、塗 布溶液の使用効率が高ぐかつ、導電性、触媒性能、基板に対する密着性が高いこ とが求められている力 従来はこれらの全てを満足させることは困難であった。  [0013] As described above, the conductive polymer electrode for dye-sensitized solar cells has high patternability, high use efficiency of the coating solution, and high conductivity, catalytic performance, and adhesion to the substrate. In the past, it was difficult to satisfy all of these requirements.
特許文献 1 :特開 2003— 317814号公報  Patent Document 1: Japanese Patent Application Laid-Open No. 2003-317814
非特許文献 1 :電気化学会第 72回大会 講演要旨集, (2005) 471  Non-Patent Document 1: Proceedings of the 72nd Annual Meeting of the Electrochemical Society of Japan, (2005) 471
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0014] 本発明は、上述の課題に鑑みてなされたものである。すなわち、本発明の目的は、 導電性、触媒性能、電極基板に対する密着性に優れ、かつパターユングが容易であ る導電性高分子電極を、簡便に、生産性よく製造することができる製造方法、及びこ れを用いて得られる色素増感太陽電池を提供することである。 [0014] The present invention has been made in view of the above problems. That is, an object of the present invention is to provide a production method capable of producing a conductive polymer electrode that is excellent in conductivity, catalytic performance, adhesion to an electrode substrate, and that is easy to pattern, with high productivity. And a dye-sensitized solar cell obtained by using the same.
課題を解決するための手段  Means for solving the problem
[0015] 本発明者は上記の課題を解決すべく鋭意検討した結果、導電性高分子のモノマー を含む溶液を電極基体に塗布したのち、化学的重合により導電性高分子薄膜を形 成する手法において、スピンコート法以外の溶液使用効率の高い塗布法を用いて、 溶液組成、特に溶液中のモノマー量を調節することで、ノインダーを添加しなくても、 導電性、触媒性能、密着性に優れた導電性高分子電極を作製できることを見出した [0016] すなわち、本発明の導電性高分子電極の製造方法は、電極基体上に導電性高分 子薄膜が形成されてなる導電性高分子電極の製造方法であって、上記の課題を解 決するために、電極基体上に、導電性高分子のモノマーを含み、該モノマーの濃度 が 10重量%以下である溶液を、溶液使用効率 20%以上となる塗布法により塗布し たのち、化学的重合により前記モノマーを重合させて導電性高分子薄膜を形成する [0015] As a result of intensive studies to solve the above-mentioned problems, the present inventor has applied a solution containing a monomer of a conductive polymer to an electrode substrate, and then forms a conductive polymer thin film by chemical polymerization. In addition, by adjusting the solution composition, especially the amount of monomer in the solution, using a coating method with high solution use efficiency other than the spin coating method, the conductivity, catalytic performance, and adhesion can be improved without adding a noinder. It was found that an excellent conductive polymer electrode can be produced. [0016] That is, the method for producing a conductive polymer electrode of the present invention is a method for producing a conductive polymer electrode in which a conductive polymer thin film is formed on an electrode substrate. Therefore, a solution containing a conductive polymer monomer on the electrode substrate and having a monomer concentration of 10% by weight or less is applied by a coating method with a solution use efficiency of 20% or more, and then chemically. Polymerize the monomer to form a conductive polymer thin film
[0017] 上記における塗布法は印刷法であることが好ましぐ中でもスクリーン印刷法が好ま しい。 [0017] Among the coating methods described above, the screen printing method is preferable among the printing methods.
[0018] 本発明の色素増感太陽電池は、光電変換層を有する半導体電極とこれに対向す る対向電極とを含む色素増感太陽電池において、対向電極として、上記本発明の製 造方法により得られる導電性高分子電極を用いたものとする。  [0018] The dye-sensitized solar cell of the present invention is a dye-sensitized solar cell including a semiconductor electrode having a photoelectric conversion layer and a counter electrode facing the semiconductor electrode. The obtained conductive polymer electrode is used.
発明の効果  The invention's effect
[0019] 本発明によれば、電極性能、電極基板に対する密着性に優れ、かつパターンニン グが容易である導電性高分子電極を、簡便に、生産性よく製造することができる。さら に、この導電性高分子電極を用いて、変換効率の高い色素増感太陽電池を得ること ができる。  According to the present invention, a conductive polymer electrode that is excellent in electrode performance, adhesion to an electrode substrate, and easy to pattern can be produced simply and with high productivity. Furthermore, a dye-sensitized solar cell with high conversion efficiency can be obtained using this conductive polymer electrode.
図面の簡単な説明  Brief Description of Drawings
[0020] [図 1]本発明における色素増感太陽電池の実施形態の基本構造を示す模式断面図 である。  FIG. 1 is a schematic cross-sectional view showing the basic structure of an embodiment of a dye-sensitized solar cell in the present invention.
符号の説明  Explanation of symbols
[0021] 1……透明基体 [0021] 1 …… Transparent substrate
2……透明導電膜  2 …… Transparent conductive film
3……多孔質金属酸化半導体膜  3 …… Porous metal oxide semiconductor film
4……増感色素層  4 …… Sensitizing dye layer
5……電解質層  5 …… Electrolyte layer
6……導電性高分子薄膜  6 …… Conductive polymer thin film
7……電極基体  7 …… Electrode substrate
8……作用極電極基体 9……導電性高分子電極 (対向電極) 8 …… Working electrode electrode base 9 …… Conductive polymer electrode (counter electrode)
10……色素増感太陽電池  10 …… Dye-sensitized solar cell
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0022] 以下、本発明を実施するための最良の形態について図面に基づいて詳細に説明 する。 Hereinafter, the best mode for carrying out the present invention will be described in detail with reference to the drawings.
[0023] 図 1は、本発明の色素増感太陽電池の一例を表す断面模式図である。図 1におい て、符号 1は透明基板、符号 2は透明導電膜、符号 3は多孔質金属酸化半導体膜、 符号 4は増感色素層、符号 5は電解質層、符号 6は導電性高分子薄膜、符号 7は導 電性高分子薄膜 6を担持する電極基体、符号 8は透明基体 1と透明導電膜 2とからな る作用極電極基体、符号 9は導電性高分子電極 (対向電極)をそれぞれ示す。  FIG. 1 is a schematic sectional view showing an example of the dye-sensitized solar cell of the present invention. In FIG. 1, reference numeral 1 is a transparent substrate, reference numeral 2 is a transparent conductive film, reference numeral 3 is a porous metal oxide semiconductor film, reference numeral 4 is a sensitizing dye layer, reference numeral 5 is an electrolyte layer, and reference numeral 6 is a conductive polymer thin film. , 7 is an electrode substrate carrying the conductive polymer thin film 6, 8 is a working electrode electrode substrate comprising a transparent substrate 1 and a transparent conductive film 2, and 9 is a conductive polymer electrode (counter electrode). Each is shown.
[0024] 図に示されたように、透明基板 1とその上に形成された透明導電膜 2からなる作用 極電極基体 8の表面に、多孔質金属酸化物半導体層 3が形成され、さらに該多孔質 金属酸化物半導体層 3の表面には、増感色素が吸着された増感色素層 4が形成さ れている。そして、電解質層 5を介して、電極基体 7の表面に導電性高分子薄膜 6が 形成された構造をした本発明の導電性高分子電極 9が対向して設置されている。  [0024] As shown in the figure, a porous metal oxide semiconductor layer 3 is formed on the surface of a working electrode base 8 comprising a transparent substrate 1 and a transparent conductive film 2 formed thereon. On the surface of the porous metal oxide semiconductor layer 3, a sensitizing dye layer 4 on which a sensitizing dye is adsorbed is formed. The conductive polymer electrode 9 of the present invention having a structure in which the conductive polymer thin film 6 is formed on the surface of the electrode substrate 7 is disposed so as to face the electrolyte layer 5.
[0025] 以下、本発明の色素増感太陽電池の各構成材料について、好適な形態を説明す る。  [0025] Hereinafter, preferred embodiments of the constituent materials of the dye-sensitized solar cell of the present invention will be described.
[0026] [透明基板]  [0026] [Transparent substrate]
作用極電極基体 8を構成する透明基板 1は、可視光を透過するものが使用でき、透 明なガラスが好適に利用できる。また、ガラス表面を加工して入射光を散乱させるよう にしたもの、半透明なすりガラス状のものも使用できる。また、ガラスに限らず、光を透 過するものであればプラスチック板やプラスチックフィルム等も使用できる。  As the transparent substrate 1 constituting the working electrode base 8, one that transmits visible light can be used, and transparent glass can be suitably used. In addition, a glass surface processed to scatter incident light or a translucent ground glass can be used. In addition to glass, a plastic plate or a plastic film can be used as long as it transmits light.
[0027] 透明基板 1の厚さは、太陽電池の形状や使用条件により異なるため特に限定はさ れないが、例えばガラスやプラスチックなどを用いた場合では、実使用時の耐久性を 考慮すると lmn!〜 lcm程度が好ましぐフレキシブル性が必要とされ、プラスチック フィルムなどを使用した場合は、 1 μ m〜lmm程度が好ましい。 [0027] The thickness of the transparent substrate 1 is not particularly limited because it varies depending on the shape and use conditions of the solar cell. For example, when glass or plastic is used, the durability during actual use is considered. ! Flexibility of about ~ lcm is required, and when plastic film is used, about 1 μm ~ lmm is preferable.
[0028] [透明導電膜]  [0028] [Transparent conductive film]
透明導電膜 2としては、可視光を透過して、かつ導電性を有するものが使用でき、こ のような材料としては、例えば金属酸ィ匕物が挙げられる。特に限定はされないが、例 えばフッ素をドープした酸化スズ (以下、「FTO」と略記する。)や、酸化インジウム、 酸化スズと酸化インジウムの混合体 (以下、「ITO」と略記する。)、酸化亜鉛などを好 適に用いることができる。また、分散させるなどの処理により可視光が透過すれば、不 透明な導電性材料を用いることもできる。このような材料としては炭素材料や金属が 挙げられる。炭素材料としては、特に限定はされないが、例えば黒鉛 (グラフアイト)、 カーボンブラック、グラッシ一カーボン、カーボンナノチューブやフラーレンなどが挙 げられる。また、金属としては、特に限定はされないが、例えば白金、金、銀、ルテ- ゥム、銅、アルミニウム、ニッケル、コバルト、クロム、鉄、モリブデン、チタン、タンタル 、およびそれらの合金などが挙げられる。 As the transparent conductive film 2, one that transmits visible light and has conductivity can be used. Examples of such materials include metal oxides. Although not particularly limited, for example, fluorine-doped tin oxide (hereinafter abbreviated as “FTO”), indium oxide, a mixture of tin oxide and indium oxide (hereinafter abbreviated as “ITO”), Zinc oxide or the like can be suitably used. In addition, an opaque conductive material can be used as long as visible light is transmitted by a treatment such as dispersion. Such materials include carbon materials and metals. The carbon material is not particularly limited, and examples thereof include graphite (graphite), carbon black, glassy carbon, carbon nanotube, and fullerene. The metal is not particularly limited, and examples thereof include platinum, gold, silver, ruthenium, copper, aluminum, nickel, cobalt, chromium, iron, molybdenum, titanium, tantalum, and alloys thereof. .
[0029] 従って、透明導電膜 2は、上述の導電性材料のうち少なくとも 1種類以上力もなる導 電材料の膜を、透明基板 1の表面に設けて形成することができる。あるいは透明基板 1を構成する材料の中へ上記導電性材料を組み込んで、透明基板と透明導電膜とを 一体化して作用極電極基体 8とすることも可能である。  Therefore, the transparent conductive film 2 can be formed by providing a film of a conductive material having at least one of the above-described conductive materials on the surface of the transparent substrate 1. Alternatively, the conductive material can be incorporated into the material constituting the transparent substrate 1 and the transparent substrate and the transparent conductive film can be integrated to form the working electrode base 8.
[0030] 透明基板 1上に透明導電膜 2を形成する方法としては、金属酸化物を使用する場 合は、ゾルゲル法などの液層法や、スパッタゃ CVDなどの気相法、分散ペーストのコ 一ティングなどがある。また、不透明な導電性材料を使用する場合は、紛体などを、 透明なノインダーなどとともに固着させる方法が挙げられる。  [0030] As a method for forming the transparent conductive film 2 on the transparent substrate 1, when using a metal oxide, a liquid layer method such as a sol-gel method, a gas phase method such as sputtering, CVD, a dispersion paste, etc. There are coatings. In addition, when using an opaque conductive material, there is a method of fixing a powder together with a transparent noinder or the like.
[0031] 透明基板と透明導電膜を一体化させる方法としては、透明基板の成型時に導電性 のフイラ一として上記導電膜材料を混合させる方法などがある。  [0031] As a method of integrating the transparent substrate and the transparent conductive film, there is a method of mixing the conductive film material as a conductive filler when the transparent substrate is molded.
[0032] 透明導電膜 2の厚さは、用いる材料により導電性が異なるため特には限定されない 力 一般的に使用される FTO被膜付ガラスでは、 0. 01 μ m〜5 μ mであり、好ましく は 0. 1 μ m〜l μ mである。また、必要とされる導電性は、使用する電極の面積により 異なり、広い電極ほど低抵抗であることが求められる力 一般的に 100 ΩΖ口以下、 好ましくは 10 Ω Z口以下、より好ましくは 5 Ω Z口以下である。  [0032] The thickness of the transparent conductive film 2 is not particularly limited because the conductivity varies depending on the material used. For commonly used FTO-coated glass, it is preferably 0.01 μm to 5 μm, preferably Is between 0.1 μm and l μm. The required conductivity varies depending on the area of the electrode used. The force required to have lower resistance for wider electrodes is generally 100 Ω or less, preferably 10 Ω or less, more preferably 5 Ω Less than Z port.
[0033] 透明基板及び透明導電膜から構成される作用極電極基体 8、又は透明基板と透明 導電膜とを一体化した作用極電極基体 8の厚さは、上述のように太陽電池の形状や 使用条件により異なるため特に限定はされないが、一般的に 1 μ m〜lcm程度であ る。 [0033] The thickness of the working electrode base 8 composed of a transparent substrate and a transparent conductive film, or the working electrode base 8 integrated with the transparent substrate and the transparent conductive film is determined by the shape of the solar cell as described above. Although there is no particular limitation as it varies depending on the use conditions, it is generally about 1 μm to 1 cm. The
[0034] [多孔質金属酸化物半導体]  [0034] [Porous metal oxide semiconductor]
多孔質金属酸ィ匕物半導体 3としては、特に限定はされないが、酸化チタン、酸ィ匕亜 鉛、酸化スズなどが挙げられ、特に二酸化チタン、さらにはアナターゼ型ニ酸化チタ ンが好適である。電気抵抗値を下げるため、金属酸ィ匕物の粒界は少ないことが望ま しい。また、増感色素をより多く吸着させるために、当該半導体層は比表面積の大き なものが望ましぐ具体的には 10〜200m2Zgが望ましい。また、増感色素の光吸収 量を増加させるため、使用する酸ィ匕物の粒径に幅を持たせて光を散乱させることが 望ましい。 The porous metal oxide semiconductor 3 is not particularly limited, and examples thereof include titanium oxide, acid oxide zinc, tin oxide, and titanium dioxide, and more particularly anatase type titanium dioxide is suitable. . In order to lower the electric resistance value, it is desirable that the metal oxide has few grain boundaries. Further, in order to adsorb more sensitizing dye, the semiconductor layer preferably has a large specific surface area, specifically 10 to 200 m 2 Zg. In addition, in order to increase the light absorption amount of the sensitizing dye, it is desirable that the particle size of the acid oxide used is wide to scatter light.
[0035] このような多孔質金属酸ィ匕物半導体は、既知の方法で透明導電膜 2上に設けること ができる。方法は特に限定されず、例えば、ゾルゲル法や、分散体ペーストの塗布、 また、電析ゃ電着させる方法がある。  [0035] Such a porous metal oxide semiconductor can be provided on the transparent conductive film 2 by a known method. The method is not particularly limited, and examples thereof include a sol-gel method, dispersion paste application, and electrodeposition method.
[0036] このような半導体層の厚さは、用いる酸ィ匕物により最適値が異なるため、特には限 定されない力 0. 1 m〜50 μ 111カ 子ましく、より好ましくは 5〜30 μ mである。  [0036] The thickness of such a semiconductor layer has an optimum value that varies depending on the oxide used, and is not particularly limited. The force is 0.1 m to 50 μ 111, more preferably 5 to 30. μm.
[0037] [増感色素]  [0037] [Sensitizing dye]
増感色素層 4を構成する増感色素としては、太陽光により励起されて前記金属酸ィ匕 物半導体層 3に電子注入できるものであればよぐ一般的に色素増感型太陽電池に 用いられている色素を用いることができる力 変換効率を向上させるためには、その 吸収スペクトルが太陽光スペクトルと広波長域で重なって 、て、耐光性が高 ヽことが 望ましい。特に限定はされないが、ルテニウム錯体、特にルテニウムポリピリジン系錯 体が望ましぐ Ru(L) 2 (X) 2で表されるルテニウム錯体が特に望ましい。ここで Lは 4 , 4,ージカルボキシ 2, 2,一ビビリジン、もしくはその 4級アンモ-ゥム塩、および力 ルポキシル基が導入されたポリピリジン系配位子であり、また、 Xは SCN、 Cl、 CNで ある。例えばビス(4, 4,—ジカルボキシ— 2, 2,—ビビリジン)ジイソチォシァネートル テニゥム錯体などが挙げられる。他の色素としては、ルテニウム以外の金属錯体色素 、例えば鉄錯体、銅錯体などが挙げられる。さらに、シアン系色素、ポルフィリン系色 素、ポリェン系色素、クマリン系色素、シァニン系色素、スクアリン酸系色素、スチリル 系色素、ェォシン系色素などの有機色素が挙げられる。これらの色素には、該金属 酸ィ匕物半導体層への電子注入効率を向上させるため、該金属酸化物半導体層との 結合基を有していることが望ましい。該結合基としては、特に限定はされないが、カル ボキシル基、スルホン酸基、ヒドロキシル基などが望ましい。 The sensitizing dye constituting the sensitizing dye layer 4 is generally used in dye-sensitized solar cells as long as it can be excited by sunlight and can inject electrons into the metal oxide semiconductor layer 3. In order to improve the power conversion efficiency, it is desirable that the absorption spectrum overlaps with the sunlight spectrum in a wide wavelength region, so that the light resistance is high. Although not particularly limited, a ruthenium complex, particularly a ruthenium complex represented by Ru (L) 2 (X) 2, which is particularly desirable for a ruthenium polypyridine complex, is particularly desirable. Here, L is 4,4, -dicarboxy 2,2, monobipyridine, or a quaternary ammonium salt thereof, and a polypyridine-based ligand into which a force lpoxyl group is introduced, and X is SCN, Cl, CN. Examples thereof include bis (4,4, -dicarboxy-2,2, -biviridine) diisothiocyanate-tenium complex. Examples of other dyes include metal complex dyes other than ruthenium, such as iron complexes and copper complexes. Further examples include organic dyes such as cyan dyes, porphyrin dyes, polyene dyes, coumarin dyes, cyanine dyes, squaric acid dyes, styryl dyes, and eosin dyes. These dyes include the metal In order to improve the efficiency of electron injection into the oxide semiconductor layer, it is desirable to have a bonding group with the metal oxide semiconductor layer. The linking group is not particularly limited, but is preferably a carboxyl group, a sulfonic acid group, a hydroxyl group or the like.
[0038] 色素を溶解するために用いる溶媒の例としては、エタノールなどのアルコール類、 ァセトニトリルなどの窒素化合物、アセトンなどのケトン類、ジェチルエーテルなどの エーテル類、クロ口ホルムなどのハロゲンィ匕脂肪族炭化水素、へキサンなどの脂肪族 炭化水素、ベンゼンなどの芳香族炭化水素、酢酸ェチルなどのエステル類などが挙 げられる。溶液中の色素濃度は,使用する色素及び溶媒の種類により適宜調整する ことができ、半導体表面に十分吸着させるためには、ある程度高濃度である方が望ま しい。例えば、 4 X 10_5molZL以上の濃度が望ましい。 [0038] Examples of the solvent used for dissolving the pigment include alcohols such as ethanol, nitrogen compounds such as acetonitrile, ketones such as acetone, ethers such as jetyl ether, and halogenated fat such as black mouth form. Aliphatic hydrocarbons such as aromatic hydrocarbons, hexane, aromatic hydrocarbons such as benzene, and esters such as ethyl acetate. The concentration of the dye in the solution can be adjusted as appropriate depending on the type of dye and solvent used, and it is desirable that the concentration be high to some extent in order to sufficiently adsorb on the semiconductor surface. For example, 4 X 10 _5 molZL more concentrations is desirable.
[0039] 多孔質金属酸ィ匕物半導体 3へ増感色素を吸着させる方法は、特に限定されるもの ではなぐ一例としては、室温条件、大気圧下において、色素を溶解させた溶液中に 前記多孔質金属酸化物半導体 3を形成させた電極基体を浸漬する方法が挙げられ る。浸漬時間は使用する半導体、色素、溶媒の種類、色素の濃度により、半導体層 に均一に色素の単分子膜が形成されるよう、適宜調節することが好ましい。なお、吸 着を効果的に行うには加熱下での浸漬を行えばょ 、。  [0039] The method for adsorbing the sensitizing dye to the porous metal oxide semiconductor 3 is not particularly limited. Examples of the method include adsorbing the dye in a solution in which the dye is dissolved at room temperature and atmospheric pressure. Examples include a method of immersing the electrode substrate on which the porous metal oxide semiconductor 3 is formed. The immersion time is preferably adjusted as appropriate so that a monomolecular film of the dye is uniformly formed on the semiconductor layer depending on the type of semiconductor, dye, solvent, and dye concentration used. For effective adsorption, immersing under heating is recommended.
[0040] [電解質層]  [0040] [Electrolyte layer]
電解質層 5は、支持電解質と、酸化された増感色素を還元することのできる酸化還 元対、およびそれらを溶解させる溶媒からなる。電解質層 5を構成する酸化還元対と しては、一般に電池や太陽電池などにおいて使用することの出来るものであれば特 に限定されるものではなぐ例えば、ハロゲン二原子分子とハロゲンィ匕物塩との組み 合わせ、チォシアン酸ァ-オンとチォシアン酸二分子の組み合わせ、ポリピリジルコ バルト錯体ゃハイドロキノンなどの有機レドックスが挙げられる。この中では特にヨウ 素分子とヨウ化物との組み合わせが好適である。酸化還元体の濃度は通常 0. 1〜1 OmolZLであり、好ましくは 0. l〜5molZLである。  The electrolyte layer 5 includes a supporting electrolyte, an oxidation-reduction pair capable of reducing the oxidized sensitizing dye, and a solvent for dissolving them. The oxidation-reduction pair constituting the electrolyte layer 5 is not particularly limited as long as it can be generally used in a battery, a solar battery, etc. For example, a halogen diatomic molecule and a halide salt are used. Organic redox such as thionocyanate-one and thiocyanate bimolecules, polypyridyl cobalt complex and hydroquinone. Of these, a combination of iodine molecules and iodide is particularly preferred. The concentration of the redox compound is usually from 0.1 to 1 OmolZL, preferably from 0.1 to 5 molZL.
[0041] 電解質に用いる溶媒としては、酸化還元体を溶解できる化合物であれば特に制限 はなぐ非水性有機溶媒、常温溶融塩、水やプロトン性有機溶媒などから任意に選 択できる。例えば有機溶媒として、ァセトニトリル、メトキシァセトニトリル、バレロ-トリ ル、メトキシプロピオ-トリルなどの-トリル化合物、 γ —ブチルラタトンやバレロラクト ンなどのラタトン化合物、エチレンカーボネートやプロピレンカーボネートなどのカー ボネート化合物、ジォキサンゃジェチルエーテル、エチレングリコールジアルキルェ 一テルなどのエーテル類、メタノール、エタノール等のアルコール類、さらにはジメチ ルホルムアミドゃイミダゾール類などが挙げられ、中でもァセトニトリル、バレロ-トリル 、メトキシプロピオ-トリル、プロピレンカーボネートなどを好適に用いることができる。 なお、これらはそれぞれ単独で、又は 2種以上混合して用いることが出来る。 [0041] The solvent used in the electrolyte can be arbitrarily selected from non-aqueous organic solvents, room temperature molten salts, water, protic organic solvents, and the like, as long as they are compounds capable of dissolving redox compounds. For example, organic solvents such as acetonitrile, methoxyacetonitrile, valero-tri , -Tolyl compounds such as methoxypropio-tolyl, γ-latathone compounds such as butyllatatone and valerolacton, carbonate compounds such as ethylene carbonate and propylene carbonate, ethers such as dioxane jetyl ether and ethylene glycol dialkyl ether , Alcohols such as methanol and ethanol, dimethylformamide and imidazoles, and the like. Among them, acetonitrile, valero-tolyl, methoxypropio-tolyl, propylene carbonate and the like can be preferably used. These can be used alone or in admixture of two or more.
[0042] また、上記溶媒としては、イオン性液体、すなわち溶融塩を使用することも出来る。  [0042] As the solvent, an ionic liquid, that is, a molten salt may be used.
イオン性液体は、「Inorg. Chem」1996, 35, pl l68— 1178, 「Electrochemistr y」2002, 2, pl30— 136、特表平 9— 507334号公報、特開平 8— 259543号公報 などに開示されている公知の電池や太陽電池などにおいて、一般的に使用すること が出来るものであれば特に限定なく使用できるが、室温 (25°C)より低い融点を有す る塩か、または室温よりも高い融点を有しても、他の溶融塩や溶融塩以外の添加物を 溶解させることにより室温で液状ィ匕する塩が好ましく用いられる。  Ionic liquids are disclosed in "Inorg. Chem" 1996, 35, pl l68-1178, "Electrochemistry" 2002, 2, pl30-136, JP-T 9-507334, JP-A 8-259543, etc. Any known battery or solar cell that can be used generally can be used without particular limitation, but it may be used as a salt having a melting point lower than room temperature (25 ° C) or from room temperature. Even if it has a high melting point, a salt that is liquid at room temperature by dissolving other molten salt or additives other than the molten salt is preferably used.
[0043] 具体的には、溶融塩のカチオンとしては、アンモ-ゥム、イミダゾリゥム、ォキサゾリウ ム、チアゾリゥム、才キサジァゾリゥム、トリアゾリゥム、ピロリジニゥム、ピリジニゥム、ピ ペリジニゥム、ビラゾリゥム、ピリミジニゥム、ピラジ二ゥム、トリアジ二ゥム、ホスホニゥム 、スルホユウム、力ルバゾリゥム、インドリウム及びこれらの誘導体が好ましぐ特にアン モ-ゥム、イミダゾリゥム、ピリジ-ゥム、ピベリジ-ゥム、ビラゾリゥム、スルホ -ゥムが 好適である。  [0043] Specifically, as the cation of the molten salt, ammonia, imidazolium, oxazolium, thiazolium, tale aziazirum, triazolium, pyrrolidinium, pyridinium, piperidinum, virazolium, pyrimidinium, pyrazinium, diazira Ammonium, imidazolium, pyridinium, piberidium, virazolium, sulfo-um are preferred, particularly preferred are rum, phosphonium, sulphoyuum, rubazolium, indolium and their derivatives.
[0044] また、溶融塩のァ-オンの例としては、 A1C1 ", Al C1—などの金属塩化物、 PF "  [0044] Examples of melted salt ions include metal chlorides such as A1C1 ", Al C1—, PF"
4 2 7 6 4 2 7 6
, BF ", CF SO ", N (CF SO ) ", F (HF) n", CF COO—などのフッ素含有物、, BF ", CF SO", N (CF SO) ", F (HF) n", CF COO—
4 3 3 3 2 2 3 4 3 3 3 2 2 3
NO ", CH COO", C H COO", CH OSO ", CH OS ", CH SO ", CH S NO ", CH COO", C H COO ", CH OSO", CH OS ", CH SO", CH S
3 3 6 11 3 3 3 2 3 3 33 3 6 11 3 3 3 2 3 3 3
O ", (CH O) PO ", SCN—などの非フッ素化合物、ヨウ素、臭素などのハロゲン化Halogenation of non-fluorine compounds such as O ", (CH 2 O) PO", SCN—, iodine and bromine
2 3 2 2 2 3 2 2
物などが挙げられる。  Such as things.
[0045] 電解質層にはさらに支持電解質として、リチウム塩やイミダゾリウム塩、 4級アンモ- ゥム塩など、添加剤として、 t—ブチルピリジン、 n—メチルイミダゾールなどの塩基や グァ-ジゥムチオシァネート等のチオシァネート類、水等を添加することが出来る。こ れらの添加剤濃度は、それぞれ用いる溶媒、半導体電極および色素などにより最適 な濃度が異なるため、特には限定されないが、通常は lmmolZL〜5molZL程度 が好適である。 [0045] The electrolyte layer further includes a lithium salt, an imidazolium salt, a quaternary ammonium salt, etc. as a supporting electrolyte, a base such as t-butyl pyridine, n-methyl imidazole, and a guamium thiosi salt as additives. Thiocyanates such as cyanate, water and the like can be added. This The concentration of these additives is not particularly limited because the optimum concentration differs depending on the solvent, semiconductor electrode, dye, etc. used, but usually about 1 mmolZL to 5 molZL is suitable.
[0046] [導電性高分子電極 電極基体] [0046] [Conductive Polymer Electrode Electrode Base]
導電性高分子電極 9は、電極基体 7の表面に導電性高分子薄膜 6が形成された構 造を有する。  The conductive polymer electrode 9 has a structure in which a conductive polymer thin film 6 is formed on the surface of an electrode substrate 7.
[0047] 電極基体 7は、導電性高分子電極の支持体兼集電体として用いられるため、少なく とも導電性高分子薄膜を形成させる電極基体表面部分は導電性を有していなけれ ばならない。  [0047] Since the electrode substrate 7 is used as a support and current collector for a conductive polymer electrode, at least the surface portion of the electrode substrate on which the conductive polymer thin film is formed must have conductivity.
[0048] このような材質としては、例えば導電性を有する金属や金属酸化物、炭素材料や導 電性高分子などが好適に用いられる。金属としては、例えば、白金、金、銀、ルテ- ゥム、銅、アルミニウム、ニッケル、コバルト、クロム、鉄、モリブデン、チタン、タンタル 、およびそれらの合金などが挙げられる。炭素材料としては、特に限定はされないが 、例えば黒鉛 (グラフアイト)、カーボンブラック、グラッシ一カーボン、カーボンナノチ ユーブ、フラーレンなどが挙げられる。また、 FTO、 ITO、酸化インジウム、酸化亜鉛 などの金属酸ィ匕物を用いた場合、透明または半透明であるため増感色素層への入 射光量を増加させることができることから好まし 、。  [0048] As such a material, for example, a conductive metal or metal oxide, a carbon material, a conductive polymer, or the like is preferably used. Examples of the metal include platinum, gold, silver, ruthenium, copper, aluminum, nickel, cobalt, chromium, iron, molybdenum, titanium, tantalum, and alloys thereof. The carbon material is not particularly limited, and examples thereof include graphite (graphite), carbon black, glassy carbon, carbon nanotube, and fullerene. In addition, when a metal oxide such as FTO, ITO, indium oxide, or zinc oxide is used, it is preferable because it is transparent or translucent so that the amount of incident light on the sensitizing dye layer can be increased.
[0049] また、少なくとも該電極基体の表面が導電性を有するように処理すれば、例えばガ ラスやプラスチックなどの絶縁体を用いてもよ!ヽ。このような絶縁体に導電性を保持さ せる処理方法としては、上記の導電性材料にて、該絶縁性材料表面の一部もしくは 全面を被覆する方法、例えば金属を用いる場合、メツキゃ電析などの溶液法、また、 スパッタ法ゃ真空蒸着等の気相法が挙げられ、金属酸化物を用いる場合はゾルゲル 法などを用いることができる。また、上記導電性材料の粉末などを一種もしくは複数 用いて絶縁性材料と混和させるなどの方法が挙げられる。  [0049] In addition, an insulator such as glass or plastic may be used as long as at least the surface of the electrode substrate is treated. As a treatment method for maintaining the conductivity in such an insulator, a method of covering a part or the whole surface of the insulating material with the above-described conductive material, for example, when using a metal, METSUKI electrodeposition Examples thereof include solution methods such as sputtering, and vapor phase methods such as sputtering and vacuum deposition. When metal oxide is used, a sol-gel method or the like can be used. Another example is a method in which one or more of the above conductive material powders are mixed with an insulating material.
[0050] 上記導電性材料として導電性高分子を用いる場合、該基体上に後述の導電性高 分子を後述する塗布法により形成して、化学重合などにより導電性高分子薄膜を形 成することもできる。その場合、該導電性高分子薄膜が単独で集電体と触媒との双 方の機能を果たすことになる。 [0051] 電極基体 7の形状は、導電性高分子電極として用いる色素増感太陽電池の形状に 応じて変更することができるため特には限定されず、板状でも、フィルム状で湾曲で きるものでもよい。さらに、該電極基体は透明でも不透明でもよいが、増感色素層へ の入射光量を増カロさせることができる点から、また、場合によっては意匠性が向上で きる点から、透明または半透明であることが望ましい。電極基体として、一般的には、 FTO被膜付ガラスや ITO膜付 PENフィルムが用いられて 、るが、用いる材料により 導電性が異なるため、電極基体上の導電性皮膜の厚さについては特に限定されな い。例としては、 FTO被膜付ガラスでは、通常 0. 01 μ m〜5 μ m程度であり、好まし くは 0. 1 μ m〜l μ mである。また、必要とされる導電性は、使用する電極の面積によ り異なり、広い電極ほど低抵抗であることが求められる力 一般的に 100 ΩΖ口以下 、好ましくは 10 ΩΖ口以下、より好ましくは 5 ΩΖ口以下である。 [0050] When a conductive polymer is used as the conductive material, a conductive polymer film described later is formed on the substrate by a coating method described later, and a conductive polymer thin film is formed by chemical polymerization or the like. You can also. In that case, the conductive polymer thin film alone functions as both a current collector and a catalyst. [0051] The shape of the electrode substrate 7 is not particularly limited because it can be changed according to the shape of the dye-sensitized solar cell used as the conductive polymer electrode, and it can be curved in the form of a plate or a film. But you can. Further, the electrode substrate may be transparent or opaque, but it is transparent or translucent because it can increase the amount of light incident on the sensitizing dye layer and, in some cases, can improve the design. It is desirable to be. Generally, glass with an FTO film or PEN film with an ITO film is used as the electrode substrate. However, since the conductivity differs depending on the material used, the thickness of the conductive film on the electrode substrate is particularly limited. Not. For example, in FTO-coated glass, it is usually about 0.01 μm to 5 μm, and preferably 0.1 μm to l μm. In addition, the required conductivity varies depending on the area of the electrode to be used, and the force required to have a lower resistance for a wider electrode is generally 100 Ω inlet or lower, preferably 10 Ω inlet or lower, more preferably 5 Ω or less.
[0052] 電極基体 7の厚さは、上述のように太陽電池の形状や使用条件により異なるため特 に限定はされないが、一般的に 1 β m〜lcm程度である。  [0052] The thickness of the electrode substrate 7 is not particularly limited because it varies depending on the shape and use conditions of the solar cell as described above, but is generally about 1 β m to 1 cm.
[0053] [導電性高分子電極 導電性高分子薄膜]  [0053] [Conductive polymer electrode, conductive polymer thin film]
本発明の導電性高分子電極 (触媒電極) 9における導電性高分子薄膜 6は、電解 質層中に含まれる酸化還元対の酸化体を還元する触媒として機能する。  The conductive polymer thin film 6 in the conductive polymer electrode (catalyst electrode) 9 of the present invention functions as a catalyst for reducing the oxidized form of the redox couple contained in the electrolyte layer.
[0054] そのような導電性高分子薄膜を形成するモノマーとしては、特に限定されず既知の 物質を使用することができるが、電子移動反応を効率良く行なえるように多孔質状態 で薄膜を形成できるものが望まし ヽ。モノマーは 1種単独で使用しても 2種以上を組 み合わせて使用してもよい。  [0054] The monomer for forming such a conductive polymer thin film is not particularly limited, and a known substance can be used, but the thin film is formed in a porous state so that an electron transfer reaction can be performed efficiently. I want something I can do. Monomers may be used alone or in combination of two or more.
[0055] 使用するモノマーの具体例として、下記一般式(1)で示されるチオフ ンィ匕合物が 挙げられる。  [0055] Specific examples of the monomer used include a thiophene compound represented by the following general formula (1).
[化 1]  [Chemical 1]
Figure imgf000013_0001
Figure imgf000013_0001
(式(1)中、 R、 Rはそれぞれ独立に水素原子、炭素原子数 1〜8のアルキル基又は (In the formula (1), R and R are each independently a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, or
1 2  1 2
アルコキシ基、炭素原子数 6〜12のァリール基、シァノ基、チオシァノ基、ハロゲン基 、ニトロ基、アミノ基、カルボキシル基、スルホ基、又はホスホ-ゥム基を示し、 Rと R Alkoxy group, aryl group having 6 to 12 carbon atoms, cyano group, thiosiano group, halogen group , Nitro group, amino group, carboxyl group, sulfo group, or phosphonium group, R and R
1 2 は連結して環を形成していてもよい。 )  1 2 may be linked to form a ring. )
[0057] 中でも、チォフェン、テトラデシルチオフェン、イソチアナフテン、 3—フエ-ルチオフ ェン、 3, 4—エチレンジォキシチォフェン、アミノメチルー 3, 4—エチレンジォキシチ オフヱン、ヒドロキシメチルー 3, 4—エチレンジォキシチォフェンなどが好ましく使用 でき、特に 3, 4—エチレンジォキシチォフェンを好ましく使用することができる。  [0057] Among them, thiophene, tetradecylthiophene, isothianaphthene, 3-phenolthiophene, 3,4-ethylenedioxythiophene, aminomethyl-3,4-ethylenedioxythiophene, hydroxymethyl-3 4,4-ethylenedioxythiophene can be preferably used, and 3,4-ethylenedioxythiophene can be particularly preferably used.
[0058] チォフェン化合物を 1種又は 2種以上用いて導電性高分子薄膜を形成してもよい。  [0058] A conductive polymer thin film may be formed by using one or more thiophene compounds.
[0059] 導電性高分子薄膜を形成するのに用いるモノマーは、重合した膜としての電導度 力 S 10_9S/cm以上を示すものが望ま 、。 [0059] monomers used to form the conducting polymer thin film, conductivity force S 10 is desired which shows the above _9 S / cm as a polymerized film.
[0060] また、導電性高分子薄膜には、電導度を向上させるためにドーパントを添加するこ とができる。このドーパントとしては、特に限定はされず、公知の材料が使用できる。ド 一パントの具体例としては、ヨウ素、臭素、塩素等のハロゲンァ-オン、へキサフロロリ ン、へキサフロロヒ素、へキサフロロアンチモン、テトラフロロホウ素、過塩素酸等のハ ロゲン化物ァ-オン、メタンスルホン酸、ドデシルスルホン酸等のアルキル基置換有 機スルホン酸ァ-オン、カンファースルホン酸等の環状スルホン酸ァ-オン、ベンゼ ンスルホン酸、パラトルエンスルホン酸、ドデシルベンゼンスルホン酸、ベンゼンジス ルホン酸等のアルキル基置換または無置換のベンゼンモノまたはジスルホン酸ァ- 才ン、 2—ナフタレンスノレホン酸、 1, 7—ナフタレンジスノレホン酸等のスノレホン酸基 1 〜3を置換させたナフタレンスルホン酸のアルキル基置換または無置換ァ-オン、ァ ントラセンスルホン酸、アントラキノンスルホン酸、アルキルビフエ-ルスルホン酸、ビ フエ-ルジスルホン酸等のアルキル基置換または無置換のビフヱ-ルスルホン酸ィ オン、置換または無置換の芳香族スルホン酸ァ-オン、ビスサルチレートホウ素、ビス カテコレートホウ素等のホウ素化合物ァ-オン、あるいはモリブドリン酸等が挙げられ る。中でも、パラトルエンスルホン酸、ドデシルベンゼンスルホン酸などを好ましく使用 することができる。  [0060] Further, a dopant can be added to the conductive polymer thin film in order to improve electrical conductivity. The dopant is not particularly limited, and a known material can be used. Specific examples of dopants include halogen ions such as iodine, bromine, and chlorine, hexafluorolin, hexafluoroarsenic, hexafluoroantimony, tetrafluoroboron, perchloric acid and other halides, methane. Alkyl group-substituted organic sulfonic acid ions such as sulfonic acid and dodecylsulfonic acid, cyclic sulfonic acid ions such as camphorsulfonic acid, benzenesulfonic acid, paratoluenesulfonic acid, dodecylbenzenesulfonic acid, benzenedisulfonic acid, etc. Alkyl substituted or unsubstituted benzene mono- or di-sulfonic acid alkyl, 2-naphthalene sulphonic acid, 1,7-naphthalene sulphonic acid, etc. Group-substituted or unsubstituted cation, anthracene sulfonic acid, anthraquinone sulfonic acid Alkyl group-substituted or unsubstituted biphenyl sulfonates, substituted or unsubstituted aromatic sulfonates, bissartylate boron, biscatecholate boron And boron compounds such as molybdophosphoric acid. Of these, p-toluenesulfonic acid, dodecylbenzenesulfonic acid, and the like can be preferably used.
[0061] これらドーパントは 1種を用いても、 2種以上を組み合わせて使用してもよい。なお、 ドーパントの脱離を抑制するため、無機ァ-オンよりも有機酸ァ-オンであることが望 ましぐ熱分解などが起きにくいことが望ましい。 [0062] 導電性高分子薄膜におけるドーパントの使用量は、使用するドーパント種により最 適値が異なるため特に限定されないが、好ましくは 5〜60質量%、さらに好ましくは 1 0〜45質量%である。 [0061] These dopants may be used alone or in combination of two or more. In order to suppress the desorption of the dopant, it is desirable that thermal decomposition or the like, which is preferably an organic acid ion rather than an inorganic ion, occurs. [0062] The amount of dopant used in the conductive polymer thin film is not particularly limited because the optimum value varies depending on the type of dopant used, but is preferably 5 to 60% by mass, more preferably 10 to 45% by mass. .
[0063] このようなドーパントは導電性高分子薄膜を形成させる際に、導電性高分子のモノ マーと共存させておくことができる。  [0063] Such a dopant can coexist with a monomer of a conductive polymer when the conductive polymer thin film is formed.
[0064] [導電性高分子電極 導電性高分子薄膜の形成]  [0064] [Conductive polymer electrode Formation of conductive polymer thin film]
本発明では、電極基体 7上に、導電性高分子のモノマーを含む溶液を塗布したの ち、化学的重合すること (その場重合法)により導電性高分子薄膜 6を形成する。化 学重合法は、酸化剤を用いてモノマーを酸ィ匕重合させる方法である。  In the present invention, a conductive polymer thin film 6 is formed by applying a solution containing a monomer of a conductive polymer on the electrode substrate 7 and then chemically polymerizing (in situ polymerization method). The chemical polymerization method is a method in which a monomer is acid-polymerized using an oxidizing agent.
[0065] 化学重合法に用いられる酸化剤としては、ヨウ素、臭素、ヨウ化臭素、二酸化塩素、 ヨウ素酸、過ヨウ素酸、亜塩素酸等のハロゲン化物、五フッ化アンチモン、五塩化リン 、五フッ化リン、塩化アルミニウム、塩化モリブデン等の金属ハロゲン化物、過マンガ ン酸塩、重クロム酸塩、無水クロム酸、第二鉄塩、第二銅塩等の高原子価金属塩、硫 酸、硝酸、トリフルォロメタン硫酸等のプロトン酸、三酸化硫黄、二酸化窒素等の酸素 化合物、過酸化水素、過硫酸アンモニゥム、過ホウ酸ナトリウム等のペルォキソ酸ま たはその塩、あるいはモリブドリン酸、タンダストリン酸、タンダストモリブドリン酸等の ヘテロポリ酸またはその塩などがあり、これらの少なくとも 1種を用いることができる。  [0065] Examples of the oxidizing agent used in the chemical polymerization method include halides such as iodine, bromine, bromine iodide, chlorine dioxide, iodic acid, periodic acid, chlorous acid, antimony pentafluoride, phosphorus pentachloride, penta Metal halides such as phosphorus fluoride, aluminum chloride and molybdenum chloride, permanganates, dichromates, chromic anhydride, ferric salts, cupric salts and other high-valent metal salts, sulfates, Protic acids such as nitric acid and trifluoromethane sulfuric acid, oxygen compounds such as sulfur trioxide and nitrogen dioxide, hydrogen peroxide, ammonium persulfate, peroxo acids such as sodium perborate or salts thereof, molybdophosphoric acid, tandulinic acid And heteropolyacids such as tandamolybdophosphoric acid or salts thereof, and at least one of them can be used.
[0066] 上記の化学重合法は大量生産向きであるものの、芳香族化合物モノマーを含有す る溶液中で酸化剤と作用させると、得られる高分子は粒子状もしくは塊状の形態にな つてしまい、所望の多孔性を発現させ、電極形状に成型することは困難である。した がって、電極基体を芳香族化合物モノマーもしくは酸化剤のどちらかを含む溶液に 浸漬するか、それらに該溶液を塗布した後、続いてもう一方の成分を溶解させた溶液 に浸漬もしくは塗布するなどして、上記電極基体表面で重合が進行するようにし、導 電性高分子薄膜を形成させることが望まし 、。  [0066] Although the above-mentioned chemical polymerization method is suitable for mass production, when it is reacted with an oxidizing agent in a solution containing an aromatic compound monomer, the resulting polymer is in the form of particles or lumps, It is difficult to develop a desired porosity and form an electrode shape. Therefore, the electrode substrate is immersed in a solution containing either an aromatic compound monomer or an oxidizing agent, or the solution is applied to them, followed by immersion or application in a solution in which the other component is dissolved. It is desirable to form a conductive polymer thin film by allowing polymerization to proceed on the surface of the electrode substrate.
[0067] もしくは、モノマーと重合開始剤を混合した溶液に重合速度を軽減させる添加剤を 加え、室温で重合が起こらない条件下で膜ィ匕した後、加熱反応させることで多孔質 導電性高分子薄膜を作製することが出来る。重合速度を軽減させる添加剤について は、公知文献「Synthetic Metalsj 66, (1994) 263によると、重合開始剤が高原 子価金属塩、例えば Fe (III)塩の場合、 Fe (III)塩の酸ィ匕電位力 ¾Hによって変化す るため、塩基をカ卩えることで重合速度を遅くさせることができる。塩基の例としては、ィ ミダゾール、ジメチルスルホキシドなどが挙げられる。 [0067] Alternatively, an additive that reduces the polymerization rate is added to the solution in which the monomer and the polymerization initiator are mixed, and the film is formed under conditions where polymerization does not occur at room temperature. A molecular thin film can be produced. Regarding additives that reduce the polymerization rate, according to the known document “Synthetic Metalsj 66, (1994) 263, the polymerization initiator is In the case of a valence metal salt, such as Fe (III) salt, the polymerization rate can be slowed by covering the base, since it changes depending on the acid potential potential H of the Fe (III) salt. Examples of the base include imidazole and dimethyl sulfoxide.
[0068] 本発明にお 、ては、モノマー溶液の塗布方法として、溶液使用効率 20%以上の塗 布法を用いる。好ましくは、溶液使用効率 50%以上の塗布法を用い、より好ましくは 溶液使用効率 80%以上の塗布法を用いる。 [0068] In the present invention, as a method for applying the monomer solution, a coating method having a solution use efficiency of 20% or more is used. Preferably, a coating method with a solution use efficiency of 50% or more is used, and a coating method with a solution use efficiency of 80% or more is more preferably used.
[0069] 上記の「溶液使用効率」とは、塗布において、塗布に用いる全体の溶液量 (A)と、 そこから塗布工程において失われ製膜に利用できない溶液量 (B)を引いた量との割 合である。すなわち、溶液使用効率を E (%)とすると、次式で表されるものである。 [0069] The above "solution use efficiency" refers to the total amount of solution used for coating (A) and the amount obtained by subtracting the amount of solution (B) that is lost in the coating process and cannot be used for film formation. It is a percentage. That is, when the solution use efficiency is E (%), it is expressed by the following formula.
[0070] E= { (A-B) /A} X 100 [0070] E = {(A-B) / A} X 100
[0071] 導電性高分子薄膜の作製法として頻繁に用いられるスピンコート法は、この溶液使 用効率が 10%以下であり、塗布工程における溶液の損失が非常に多い。  [0071] The spin coating method frequently used as a method for producing a conductive polymer thin film has a solution use efficiency of 10% or less, and the loss of the solution in the coating process is very large.
[0072] 溶液使用効率 20%以上の溶液使用効率の高 ヽ塗布法としては、印刷法、スリット コーター法、バーコード法、ブレード塗布法、エアナイフ塗布法、グラビア塗布法、口 ールコーティング塗布法、スプレー塗布法、ディップ塗布法などが挙げられる。なか でも、装置が安価、パター-ングが容易という点において、印刷法が好ましい。印刷 法には、スクリーン印刷、凸版印刷、凹版印刷、オフセット印刷、平板印刷、凸版反 転オフセット印刷、グラビア印刷等、インクジェット印刷、タンポン印刷、フレキソ印刷 が挙げられ、スクリーン印刷が特に好ましい。また、量産化という点では、ロールコー ティング塗布法、スリットコーター法が好ましい。  [0072] Solution use efficiency High solution use efficiency of 20% or more As a coating method, printing method, slit coater method, barcode method, blade coating method, air knife coating method, gravure coating method, mouth coating coating method , Spray coating method, dip coating method and the like. Of these, the printing method is preferable in that the apparatus is inexpensive and easy to pattern. Examples of the printing method include screen printing, letterpress printing, intaglio printing, offset printing, flat plate printing, letterpress reverse printing, gravure printing, ink jet printing, tampon printing, flexographic printing, and screen printing is particularly preferable. In terms of mass production, the roll coating method and the slit coater method are preferred.
[0073] 本発明で上記塗布に用いる溶液は、溶液中の導電性高分子のモノマー濃度を、好 ましくは 10重量%以下とし、より好ましくは 5重量%以下とする。 10重量%を越えると 、塗布性が悪ィ匕し再現性が劣る傾向がある。また 5重量%を越えると、その導電性高 分子薄膜を用いて得られる色素増感太陽電池の変換効率がやや低下する場合があ る。  [0073] The solution used for the coating in the present invention has a monomer concentration of the conductive polymer in the solution of preferably 10% by weight or less, more preferably 5% by weight or less. If it exceeds 10% by weight, the coatability tends to be poor and the reproducibility tends to be poor. On the other hand, if it exceeds 5% by weight, the conversion efficiency of the dye-sensitized solar cell obtained using the conductive polymer thin film may be slightly lowered.
[0074] 前記モノマーと重合開始剤、添加剤を溶解 *混合させる溶媒は用いる化合物を溶 解し、電極基体および重合物を溶力さないものであれば特に制限はないが、例えば メタノール、エタノール、プロパノール、ノルマルブタノールなどのアルコール類が挙 げられ、その中でもノルマルブタノールなどの高沸点、高粘度溶媒を好ましく使用す ることがでさる。 [0074] A solvent for dissolving the monomer, the polymerization initiator, and the additive is not particularly limited as long as it dissolves the compound to be used and does not dissolve the electrode substrate and the polymer. For example, methanol, ethanol Alcohols such as propanol, normal butanol, etc. Among them, a high boiling point and high viscosity solvent such as normal butanol can be preferably used.
[0075] 前記モノマーと重合開始剤、添加剤の混合比は、用いる化合物、目的とする重合 度、重合速度により変化する力 混合比としては、モル比でモノマー:重合開始剤で 1 [0075] The mixing ratio of the monomer, the polymerization initiator, and the additive is determined according to the compound used, the target polymerization degree, and the force that varies depending on the polymerization rate.
: 0. 3から 1 : 3、重合開始剤:添加剤で 1 : 0. 05から 1 :4の間が好ましい。 : 0.3 to 1: 3, polymerization initiator: additive, preferably 1: 0.05 to 1: 4.
[0076] また、前記混合溶液を塗布した後加熱重合する場合の加熱条件は、用いるモノマ 一、重合触媒、添加剤の種類およびそれらの混合比、濃度、塗布膜厚などにより異 なるが、条件としては空気中加熱で加熱温度が 25°Cから 120°C、加熱時間が 1分か ら 12時間の間が好ましい。 [0076] The heating conditions in the case of heat polymerization after coating the mixed solution vary depending on the monomers used, the polymerization catalyst, the types of additives and their mixing ratio, concentration, coating thickness, etc. For example, heating in air preferably has a heating temperature of 25 ° C to 120 ° C and a heating time of 1 minute to 12 hours.
[0077] 本発明の導電性高分子電極における導電性高分子薄膜の厚さは、用途や用いる モノマーにより最適値が異なるため限定はされないが、性能'コスト面および透明性 の付与などを考慮すると、 ΙΟηπ!〜 2 μ m程度が望ましい。 [0077] The thickness of the conductive polymer thin film in the conductive polymer electrode of the present invention is not limited because the optimum value varies depending on the application and the monomer used, but considering performance, cost, transparency, and the like. , ΙΟηπ! About 2 μm is desirable.
[0078] こうして、集電体兼支持体としての電極基体 7の上に導電性高分子薄膜 6を形成さ せて、導電性高分子電極 9が得られる。 In this way, the conductive polymer electrode 9 is obtained by forming the conductive polymer thin film 6 on the electrode substrate 7 serving as a current collector / support.
[0079] 以上説明したような各構成要素材料を準備した後、従来公知の方法で金属酸ィ匕物 半導体電極と導電性高分子電極とを電解質を介して対向させるように組み上げ、色 素増感太陽電池を完成させる。 [0079] After preparing each constituent material as described above, the metal oxide semiconductor electrode and the conductive polymer electrode are assembled so as to face each other through an electrolyte by a conventionally known method. Complete a solar cell.
実施例  Example
[0080] 以下、本発明を実施例に基づいて、より詳細に説明する力 本発明はこれらにより なんら限定されるものではな 、。  [0080] Hereinafter, the present invention will be described in more detail based on examples. The present invention is not limited to these examples.
[0081] [実施例 1] [0081] [Example 1]
[多孔質金属酸化物半導体の作製]  [Preparation of porous metal oxide semiconductor]
ガラスカゝらなる透明基板 1上に SnOからなる透明導電膜 2を真空蒸着により形成し  A transparent conductive film 2 made of SnO is formed on a transparent substrate 1 made of glass by vacuum deposition.
2  2
た透明導電膜 2上に、以下の方法で多孔質金属酸化物半導体層 3を形成した。  The porous metal oxide semiconductor layer 3 was formed on the transparent conductive film 2 by the following method.
[0082] SnOカゝらなる透明導電膜 2が形成された透明基板 1として FTOガラス (日本板ガラ [0082] As a transparent substrate 1 on which a transparent conductive film 2 made of SnO is formed, FTO glass (Japanese sheet glass)
2  2
ス株式会社製)を用い、その表面に市販の酸ィ匕チタンペースト (触媒ィ匕成株式会社 製、商品名 TSP— 18NR、粒子サイズ 20nm)をスクリーン印刷法で 10 μ m程度の 膜厚、 5mm X 10mm程度の面積で、透明導電膜 2側に印刷し、さらにその上に同面 積で、市販の酸化チタンペースト (触媒化成株式会社製、商品名 TSP— 400C、粒 子サイズ 400nm)をスクリーン印刷法で、 5 /z m程度の膜厚に塗布し、 500°Cで 30分 間、大気中で焼成した。その結果、膜厚が 15 /z m程度の酸ィ匕チタン膜 (多孔質金属 化半導体膜 3)が得られた。 On the surface, and a commercially available acid titanium paste (catalyzed by Teisei Co., Ltd., trade name: TSP-18NR, particle size: 20 nm) with a film thickness of about 10 μm by screen printing, Printed on the transparent conductive film 2 side with an area of about 5mm x 10mm, and on the same surface As a result, a commercially available titanium oxide paste (Catalyst Kasei Co., Ltd., trade name: TSP-400C, particle size: 400nm) was applied by screen printing to a film thickness of about 5 / zm, and at 500 ° C for 30 minutes. Baked in the atmosphere. As a result, a titanium oxide film (porous metallized semiconductor film 3) having a film thickness of about 15 / zm was obtained.
[0083] [増感色素の吸着]  [0083] [Adsorption of sensitizing dye]
増感色素層 4を構成する増感色素として、一般に N719dyeと呼ばれるビス (4一力 ルボキシ 4'ーテトラブチルアンモ -ゥムカルボキシ 2, 2'—ビビリジン)ジィソチ オシァネートルテニウム錯体 (Solaronix社製)を使用した。前記多孔質酸化チタン 半導体電極を色素濃度 0. 4mmolZLの無水エタノール溶液中に浸漬し、遮光下 1 晚静置した。その後無水エタノールにて余分な色素を洗浄して力 風乾することで太 陽電池の半導体電極を作製した。  As a sensitizing dye constituting the sensitizing dye layer 4, a bis (4 ruboxy 4'-tetrabutylammonium-umcarboxy 2,2'-biviridine) disothiocyanate ruthenium complex (made by Solaronix) generally called N719dye is used. used. The porous titanium oxide semiconductor electrode was immersed in an absolute ethanol solution having a pigment concentration of 0.4 mmol ZL and allowed to stand for 1 hour under light shielding. Thereafter, the excess pigment was washed with absolute ethanol and air-dried to produce a semiconductor electrode for a solar cell.
[0084] [対向電極の作製]  [0084] [Preparation of counter electrode]
電極基体 7として FTO被膜付きガラス (旭硝子株式会社製、〜10 Ω Z口)を用いた 。有機溶媒中で洗浄した電極基体に、モノマーである 3, 4—エチレンジォキシチォ フェン、トリス— p トルエンスルホン酸鉄(III)、ジメチルスルホキシドを 8: 1: 1の重量 比で n—ブタノールに溶解させた溶液をスクリーン印刷法にて塗布した。この時の塗 付の溶液使用効率は 91%であった。また、溶液における 3, 4 エチレンジォキシチ ォフェンのモノマー濃度は 4重量0 /。であった。続いて、この溶液を塗布した電極基体 を 110°Cに保持した恒温槽に入れ、 5分間加熱させることで重合を行い、メタノール で洗浄、乾燥することにより導電性高分子電層 6を作成した。形成した導電性高分子 薄膜 6の膜厚は約 0. 3 μ mであった。 As the electrode substrate 7, FTO-coated glass (Asahi Glass Co., Ltd., ˜10Ω Z port) was used. To the electrode substrate washed in an organic solvent, monomers 3,4-ethylenedioxythiophene, tris-p-toluenesulfonate iron (III), and dimethylsulfoxide are mixed in a weight ratio of 8: 1: 1 n-butanol. The solution dissolved in was applied by screen printing. At this time, the use efficiency of the coating solution was 91%. Also, 3 of the solution, 4-ethylenedioxy-O alkoxy monomer concentration Ji Ofen 4 weight 0 /. Met. Subsequently, the electrode substrate coated with this solution was placed in a thermostatic bath maintained at 110 ° C., polymerized by heating for 5 minutes, washed with methanol, and dried to prepare a conductive polymer electrode layer 6. . The film thickness of the formed conductive polymer thin film 6 was about 0.3 μm.
[0085] [太陽電池セルの組み立て]  [0085] [Assembly of solar cells]
前記のように作製した半導体電極と導電性高分子電極を対向するよう設置し、電解 質を毛管現象にて両電極間に含浸させた。電解質としては、溶媒はァセトニトリルと バレロ-トリルの混合溶媒(混合比 3Z1 vZv)、0. 5molZLのヨウ化リチウムと 0. 0 5molZLのヨウ素、 0. 6molZLの 1、 2 ジメチルー 3 プロピルイミダゾリゥムアイ オダイド、 0. 5molZLの 4 t ブチルピリジンを含む溶液を用いた。  The semiconductor electrode prepared as described above and the conductive polymer electrode were placed so as to face each other, and an electrolyte was impregnated between both electrodes by capillary action. As the electrolyte, the solvent is a mixed solvent of acetonitrile and valero-tolyl (mixing ratio 3Z1 vZv), 0.5 molZL lithium iodide and 0.05 molZL iodine, 0.6 molZL 1,2 dimethyl-3 propylimidazolium iodide A solution containing 0.5 mol ZL of 4 t butylpyridine was used.
[0086] [実施例 2] 導電性高分子電極 6の作製において、モノマーをヒドロキシメチルー 3, 4—ェチレ ンジォキシチォフェンとした以外は実施例 1と同様に太陽電池セルを作製した。この 時のスクリーン印刷の溶液使用効率は 91%であった。また、形成した導電性高分子 薄膜の膜厚は約 0. 3 mであった。 [0086] [Example 2] A solar battery cell was prepared in the same manner as in Example 1 except that in the production of the conductive polymer electrode 6, the monomer was hydroxymethyl-3,4-ethylenedioxythiophene. The screen printing solution use efficiency at this time was 91%. The formed conductive polymer thin film had a thickness of about 0.3 m.
[0087] [実施例 3] [0087] [Example 3]
導電性高分子電極 6の作製において、モノマー溶液の 3, 4—エチレンジォキシチ オフ ン (モノマー)濃度を 6重量%とした以外は実施例 1と同様に太陽電池セルを作 製した。この時のスクリーン印刷の溶液使用効率は 92%であった。また、形成した導 電性高分子薄膜の膜厚は約 1. であった。  A solar battery cell was produced in the same manner as in Example 1 except that the concentration of 3,4-ethylenedioxythiophene (monomer) in the monomer solution was changed to 6% by weight in the production of the conductive polymer electrode 6. The screen printing solution use efficiency at this time was 92%. The film thickness of the formed conductive polymer thin film was about 1.
[0088] [比較例 1] [0088] [Comparative Example 1]
導電性高分子薄膜 6の作製において、モノマー溶液の 3, 4—エチレンジォキシチ ォフェン(モノマー)濃度を 6重量0 /0とし、この溶液を 2000rpm X 30秒の条件でスピ ンコート法により塗布した以外は実施例 1と同様に太陽電池セルを作製した。このとき のスピンコートにおける溶液使用効率は 6%であった。形成した導電性高分子薄膜 5 の膜厚は約 0. 3 mであり、実施例 1と同程度の膜厚であった。 In the preparation of the conducting polymer thin film 6 coating, 3 of the monomer solution, 4-ethylenedioxythiophene O carboxymethyl Chi Ofen (monomer) concentration was 6 wt 0/0, the spin Nkoto method under the conditions of the solution 2000 rpm X 30 seconds A solar battery cell was produced in the same manner as in Example 1 except that. At this time, the solution use efficiency in spin coating was 6%. The thickness of the formed conductive polymer thin film 5 was about 0.3 m, which was the same as that of Example 1.
[0089] [比較例 2] [0089] [Comparative Example 2]
導電性高分子薄膜 6の作製方法として、ポリ(3, 4—エチレンジォキシチォフェン) Zポリスチレンスルホン酸水分散液 (Aldrich社製)をろ過した後、 2000rpm X 30秒 間の条件にて FTOガラス上にスピンコートし、風乾したのちに 110°Cにて 5分間加熱 乾燥することを 3回行なって導電性高分子薄膜を形成させた以外は実施例 1と同様 に太陽電池セルを作製した。このときのスピンコートにおける溶液使用効率は 7%で あった。導電性高分子薄膜の厚みは約 0. 3 mであり、実施例 1と同程度の膜厚で めつに。  Conductive polymer thin film 6 was prepared by filtering poly (3,4-ethylenedioxythiophene) Z polystyrene sulfonic acid aqueous dispersion (Aldrich), and then at 2000 rpm for 30 seconds. A solar cell was fabricated in the same manner as in Example 1 except that a conductive polymer thin film was formed by spin coating on FTO glass, air drying, and heating and drying at 110 ° C for 5 minutes three times. did. At this time, the solution use efficiency in spin coating was 7%. The thickness of the conductive polymer thin film is about 0.3 m.
[0090] [比較例 3] [0090] [Comparative Example 3]
対向電極 9として、電極基体 7に FTOガラスを用い、スパッタリング法により FTOガ ラス上に白金層を形成した白金対極を使用した以外は実施例 1と同様に太陽電池セ ルを作製した。白金層の厚みは約 0. 15 mであった。  A solar cell was fabricated in the same manner as in Example 1 except that FTO glass was used for the electrode substrate 7 as the counter electrode 9 and a platinum counter electrode having a platinum layer formed on the FTO glass by a sputtering method was used. The thickness of the platinum layer was about 0.15 m.
[0091] [比較例 4] 導電性高分子電極 6の作製において、モノマー溶液の 3, 4—エチレンジォキシチ オフヱン (モノマー)濃度を 12重量%とした以外は実施例 1と同様に太陽電池セルを 作製した。この時のスクリーン印刷の溶液使用効率は 92%であった。しかし、溶液の 塗布性が悪ぐ均一な導電性高分子薄膜を得ることはできな力つた。 [0091] [Comparative Example 4] A solar battery cell was produced in the same manner as in Example 1 except that in the production of the conductive polymer electrode 6, the concentration of 3,4-ethylenedioxythiophene (monomer) in the monomer solution was 12% by weight. The screen printing solution use efficiency at this time was 92%. However, it was impossible to obtain a uniform conductive polymer thin film with poor solution applicability.
[0092] [太陽電池の光電変換性能評価] [0092] [Evaluation of photoelectric conversion performance of solar cell]
実施例、比較例 (比較例 4を除く)で作成した太陽電池の光電変換性能評価を以下 の手法で実施した。  Photoelectric conversion performance evaluation of solar cells prepared in Examples and Comparative Examples (excluding Comparative Example 4) was performed by the following method.
[0093] 性能評価には、 AMフィルターを具備したキセノンランプのソーラーシユミレーター X ES— 502S (関西科学機械株式会社より購入)にて、 AMI. 5Gのスペクトル調整後 、 lOOmWZcm2の照射条件下で、ポテンシォスタツトによる負荷特性 (I—V特性)を 評価した。太陽電池の評価値として、開放電圧 Voc (V)、短絡電流 ¾sc (mAZc m2)、形状因子 FF (-)、変換効率 r? (%)を示す。各測定値については、より大きい 値が太陽電池セルの性能として好まし 、ことを表す。 [0093] For performance evaluation, a xenon lamp solar simulator equipped with AM filter X ES-502S (purchased from Kansai Scientific Machinery Co., Ltd.), after adjusting the spectrum of AMI. 5G, under irradiation conditions of lOOmWZcm 2 The load characteristics (I–V characteristics) by the potentiostat were evaluated. As evaluation values of the solar cell, open circuit voltage Voc (V), short circuit current ¾sc (mAZc m 2 ), form factor FF (−), and conversion efficiency r? (%) Are shown. For each measured value, a larger value is preferred as the performance of the solar cell.
[0094] [導電性高分子薄膜 6の密着性評価]  [0094] [Adhesion evaluation of conductive polymer thin film 6]
実施例、比較例で作製した導電性高分子薄膜 6 (触媒層)および白金対極の電極 基体 7への密着強度評価を JIS K5600— 5— 6に従い実施した。この評価では、密 着強度を 0〜6の 6段階に分類しており、数値が小さいほど、密着強度が強いことを示 す。両者の評価結果をまとめたものを表 1に示す。  The adhesion strength evaluation of the conductive polymer thin film 6 (catalyst layer) and the platinum counter electrode prepared in Examples and Comparative Examples to the electrode substrate 7 was performed according to JIS K5600-5-6. In this evaluation, the adhesion strength is classified into 6 levels from 0 to 6, and the smaller the value, the stronger the adhesion strength. Table 1 summarizes the results of both evaluations.
[0095] [表 1] [0095] [Table 1]
短絡電流密度 対極表面の Short-circuit current density
開放電圧 Voc 形状因子 変換効率 7?  Open-circuit voltage Voc Form factor Conversion efficiency 7?
Jsc 触媒層の  Jsc of catalyst layer
[mV] FF [%]  [mV] FF [%]
[rnA/cm2] 密着強度 実施例 1 750 1 5. 8 0. 675 8. 0 1 実施例 2 748 1 5. 4 0. 682 7. 9 1 実施例 3 741 1 4. 6 0. 666 7. 2 1 比較例 1 749 1 5. 5 0. 673 7. 8 2 比較例 2 736 1 5. 3 0. 28 3. 2 1 比較例 3 731 1 6. 0 0. 679 7. 9 0 比較例 4 ― ― ― 一 ―  [rnA / cm2] Adhesion strength Example 1 750 1 5. 8 0. 675 8. 0 1 Example 2 748 1 5. 4 0. 682 7. 9 1 Example 3 741 1 4. 6 0. 666 7. 2 1 Comparative Example 1 749 1 5. 5 0. 673 7. 8 2 Comparative Example 2 736 1 5. 3 0. 28 3. 2 1 Comparative Example 3 731 1 6. 0 0. 679 7. 9 0 Comparative Example 4 ― ― ― One ―
[0096] 表 1の結果から明ら力なように、スクリーン印刷法で作製した PEDOT対極を使用し た実施例 1及び 2の太陽電池素子は、スピンコート法により作製した PEDOT対極を 使用した比較例 1及び白金対向電極を用いた比較例 3の素子と同等の変換効率を 示した。溶液使用効率は、上記の通り、スクリーン印刷法を使用した実施例 1〜3の 方力 スピンコート法を使用した比較例 1, 2よりもはるかに高い。 [0096] As is clear from the results in Table 1, the solar cell elements of Examples 1 and 2 using the PEDOT counter electrode manufactured by the screen printing method were compared using the PEDOT counter electrode manufactured by the spin coating method. Conversion efficiency equivalent to that of Example 1 and Comparative Example 3 using a platinum counter electrode was shown. As described above, the solution use efficiency is much higher than those of Comparative Examples 1 and 2 using the direction force spin coating method of Examples 1 to 3 using the screen printing method.
[0097] 実施例 3では、比較例 1 (スピンコート法使用)と同じ溶液を用いてスクリーン印刷法 で PEDOT対極を作製することができた力 S、実施例 1よりは太陽電池の変換効率が低 くなつた。このことより、スクリーン印刷法を用いた場合は、溶液中のモノマー濃度があ る程度以上高くなると、導電性高分子薄膜の膜厚が厚くなり、また膜が密となり多孔 性が低下するため、酸ィヒ還元対の移動が妨げられ、素子性能低下の傾向が現れると 考えられる。そして、モノマー濃度がさらに高くなると、比較例 4に示したように、均一 な薄膜を再現性よく得ることが困難となる。  [0097] In Example 3, the force S that enables the PEDOT counter electrode to be produced by screen printing using the same solution as in Comparative Example 1 (using spin coating method), the solar cell conversion efficiency is higher than in Example 1. Low. Therefore, when the screen printing method is used, if the monomer concentration in the solution becomes higher than a certain level, the conductive polymer thin film becomes thicker and the film becomes denser and the porosity is lowered. It is considered that the movement of the acid-rich reducing pair is hindered, and the tendency of the device performance to decline appears. If the monomer concentration is further increased, as shown in Comparative Example 4, it becomes difficult to obtain a uniform thin film with good reproducibility.
[0098] また、比較例 2は実施例 1よりも変換効率が低ぐ特に形状因子の値力 S小さくなつた 。これは比較例 2の PEDOTZPSSはドーパントとしてポリマーであるポリスチレンス ルホネートを使用しており、作製された導電性高分子薄膜の導電性が、実施例 1の P EDOT対極よりも低 V、ためと考えられる。 [0099] そして、実施例 1〜3のスクリーン印刷で塗布した導電性高分子薄膜の FTOガラス への密着強度は、スピンコート法で塗布を行なった比較例 1よりも高くなつた。このよう に、適した溶液組成において、溶液中のモノマー量を調節することで、基板への良好 な密着強度を保ったまま、膜厚を調節することができ、その結果、パターユング性、塗 布溶液使用効率、導電性、触媒性能、密着性等に優れた導電性高分子対極の作製 に成功した。 In addition, Comparative Example 2 had a lower conversion efficiency than Example 1, and in particular, the value S of the form factor was reduced. This is probably because PEDOTZPSS in Comparative Example 2 uses polystyrene sulfonate, which is a polymer, as the dopant, and the conductivity of the prepared conductive polymer thin film is lower than that of the PEDOT counter electrode in Example 1. It is done. [0099] The adhesion strength of the conductive polymer thin film applied to the FTO glass by screen printing in Examples 1 to 3 was higher than that of Comparative Example 1 in which the application was performed by spin coating. Thus, by adjusting the amount of monomer in the solution in a suitable solution composition, the film thickness can be adjusted while maintaining good adhesion strength to the substrate. We succeeded in producing a conductive polymer counter electrode with excellent fabric solution use efficiency, conductivity, catalytic performance, and adhesion.
[0100] 以上の結果から、本発明の導電性高分子電極は電極基板に対する密着性に優れ [0100] From the above results, the conductive polymer electrode of the present invention has excellent adhesion to the electrode substrate.
、またこの導電性高分子電極を備えた色素増感太陽電池は、優れた光電変換効率 を有していることが判る。 It can also be seen that the dye-sensitized solar cell provided with the conductive polymer electrode has excellent photoelectric conversion efficiency.
産業上の利用可能性  Industrial applicability
[0101] 本発明の導電性高分子電極の製造方法により、低コストで高性能な色素増感太陽 電池が提供される。またこの導電性高分子電極は、さらに色素増感太陽電池以外に も、有機太陽電池、光センサーなどの光電変換素子や、有機 EL、無機 ELなどの発 光素子、燃料電池、電気二重層キャパシタなどのエネルギーデバイスにも利用するこ とが出来る。  [0101] The method for producing a conductive polymer electrode of the present invention provides a low-cost and high-performance dye-sensitized solar cell. In addition to dye-sensitized solar cells, these conductive polymer electrodes are also used for photoelectric conversion elements such as organic solar cells and optical sensors, light-emitting elements such as organic EL and inorganic EL, fuel cells, and electric double layer capacitors. It can also be used for energy devices.

Claims

請求の範囲 The scope of the claims
[1] 電極基体上に導電性高分子薄膜が形成されてなる導電性高分子電極の製造方法 であって、  [1] A method for producing a conductive polymer electrode in which a conductive polymer thin film is formed on an electrode substrate,
電極基体上に、導電性高分子のモノマーを含み、該モノマーの濃度が 10重量% 以下である溶液を、溶液使用効率 20%以上となる塗布法により塗布したのち、化学 的重合により前記モノマーを重合させて導電性高分子薄膜を形成することを特徴と する導電性高分子電極の製造方法。  A solution containing a conductive polymer monomer and having a monomer concentration of 10% by weight or less is applied to the electrode substrate by a coating method that results in a solution use efficiency of 20% or more, and then the monomer is chemically polymerized. A method for producing a conductive polymer electrode, comprising polymerizing to form a conductive polymer thin film.
[2] 前記塗布法が印刷法であることを特徴とする、請求項 1に記載の導電性高分子電 極の製造方法。 [2] The method for producing a conductive polymer electrode according to [1], wherein the coating method is a printing method.
[3] 前記印刷法力 Sスクリーン印刷法であることを特徴とする、請求項 2に記載の導電性 高分子電極の製造方法。  [3] The method for producing a conductive polymer electrode according to [2], wherein the printing force is an S screen printing method.
[4] 光電変換層を有する半導体電極とこれに対向する対向電極とを含む色素増感太 陽電池において、 [4] In a dye-sensitized solar cell including a semiconductor electrode having a photoelectric conversion layer and a counter electrode facing the semiconductor electrode,
前記対向電極として、請求項 1〜3のいずれか 1項に記載の製造方法により得られ る導電性高分子電極を用いたことを特徴とする色素増感太陽電池。  4. A dye-sensitized solar cell, wherein a conductive polymer electrode obtained by the production method according to claim 1 is used as the counter electrode.
PCT/JP2007/058715 2006-04-25 2007-04-23 Method for producing conductive polymer electrode and dye-sensitized solar cell comprising the conductive polymer electrode WO2007125852A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-121363 2006-04-25
JP2006121363 2006-04-25

Publications (1)

Publication Number Publication Date
WO2007125852A1 true WO2007125852A1 (en) 2007-11-08

Family

ID=38655377

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/058715 WO2007125852A1 (en) 2006-04-25 2007-04-23 Method for producing conductive polymer electrode and dye-sensitized solar cell comprising the conductive polymer electrode

Country Status (1)

Country Link
WO (1) WO2007125852A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015030193A1 (en) * 2013-08-30 2015-03-05 積水化学工業株式会社 Method for reactivating counter electrode active material for dye-sensitive solar cell, method for regenerating dye-sensitive solar cell in which said method is used, catalyst layer for dye-sensitive solar cell, counter electrode, electrolyte, and dye-sensitive solar cell

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004186089A (en) * 2002-12-05 2004-07-02 Tdk Corp Coating liquid for electrode formation, electrode and electrochemical element, and manufacturing method of coating liquid for electrode formation, manufacturing method of electrode and manufacturing method of electrochemical element
JP2005276609A (en) * 2004-03-24 2005-10-06 Tdk Corp Composite particle for electrode, electrode, electrochemical element, and manufacturing methods for them
JP2005317528A (en) * 2004-03-31 2005-11-10 Yokohama Rubber Co Ltd:The Conductive substrate formed from conductive polyaniline dispersion, photoelectric transfer element using it, and dye-sensitized solar cell

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004186089A (en) * 2002-12-05 2004-07-02 Tdk Corp Coating liquid for electrode formation, electrode and electrochemical element, and manufacturing method of coating liquid for electrode formation, manufacturing method of electrode and manufacturing method of electrochemical element
JP2005276609A (en) * 2004-03-24 2005-10-06 Tdk Corp Composite particle for electrode, electrode, electrochemical element, and manufacturing methods for them
JP2005317528A (en) * 2004-03-31 2005-11-10 Yokohama Rubber Co Ltd:The Conductive substrate formed from conductive polyaniline dispersion, photoelectric transfer element using it, and dye-sensitized solar cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015030193A1 (en) * 2013-08-30 2015-03-05 積水化学工業株式会社 Method for reactivating counter electrode active material for dye-sensitive solar cell, method for regenerating dye-sensitive solar cell in which said method is used, catalyst layer for dye-sensitive solar cell, counter electrode, electrolyte, and dye-sensitive solar cell

Similar Documents

Publication Publication Date Title
KR101177188B1 (en) Process for producing electroconductive polymer electrode and dye-sensitized solar cell comprising the electroconductive polymer electrode
JP5143476B2 (en) Photoelectric conversion element
Chen et al. PEDOT-decorated nitrogen-doped graphene as the transparent composite film for the counter electrode of a dye-sensitized solar cell
Zhang et al. Electrochemically polymerized poly (3, 4-phenylenedioxythiophene) as efficient and transparent counter electrode for dye sensitized solar cells
Hou et al. Flexible, metal-free composite counter electrodes for efficient fiber-shaped dye-sensitized solar cells
JP4915785B2 (en) Counter electrode for dye-sensitized solar cell and dye-sensitized solar cell including the same
JP5475145B2 (en) Photoelectric conversion element
JP5308661B2 (en) Catalyst electrode for dye-sensitized solar cell and dye-sensitized solar cell including the same
Shih et al. Electropolymerized polyaniline/graphene nanoplatelet/multi-walled carbon nanotube composites as counter electrodes for high performance dye-sensitized solar cells
JP2007317446A (en) Dye-sensitized solar cell
Bora et al. A low cost carbon black/polyaniline nanotube composite as efficient electro-catalyst for triiodide reduction in dye sensitized solar cells
JP2006318770A (en) Catalyst electrode of dye-sensitized solar battery, and dye-sensitized solar battery with same
Han et al. Influence of monomer concentration during polymerization on performance and catalytic mechanism of resultant poly (3, 4-ethylenedioxythiophene) counter electrodes for dye-sensitized solar cells
KR101726127B1 (en) Counter electrode with block copolymer for dye sensitized solar cell and dye sensitized solar cell comprising the same
JP4895361B2 (en) Electrolyte-catalyst composite electrode for dye-sensitized solar cell, method for producing the same, and dye-sensitized solar cell provided with the same
JP2008218180A (en) Counter electrode for dye-sensitized solar cell and dye-sensitized solar cell equipped with the electrode
JP5339799B2 (en) Conductive polymer electrode and method for producing the same, coating solution for forming conductive polymer layer, and dye-sensitized solar cell including the same
KR20070118000A (en) Photoelectric conversion element
WO2012014414A1 (en) Method for preventing catalyst release from dye-sensitized solar cell and from catalytic electrodes
JP5960033B2 (en) Redox couple and photoelectric conversion device using the same
WO2007125852A1 (en) Method for producing conductive polymer electrode and dye-sensitized solar cell comprising the conductive polymer electrode
JP2007005083A (en) Dye-sensitized solar cell and manufacturing method of dye-sensitized solar cell
JP2006318771A (en) Catalyst electrode of dye-sensitized solar battery, and dye-sensitized solar battery with same
KR100970321B1 (en) Photoelectric conversion element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07742150

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 07742150

Country of ref document: EP

Kind code of ref document: A1