WO2007125707A1 - Liquid vaporization apparatus - Google Patents

Liquid vaporization apparatus Download PDF

Info

Publication number
WO2007125707A1
WO2007125707A1 PCT/JP2007/056325 JP2007056325W WO2007125707A1 WO 2007125707 A1 WO2007125707 A1 WO 2007125707A1 JP 2007056325 W JP2007056325 W JP 2007056325W WO 2007125707 A1 WO2007125707 A1 WO 2007125707A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
porous membrane
vaporization
mist
hollow fiber
Prior art date
Application number
PCT/JP2007/056325
Other languages
French (fr)
Japanese (ja)
Inventor
Yasushi Ohyashiki
Seiji Haraguchi
Original Assignee
Entegris, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Entegris, Inc. filed Critical Entegris, Inc.
Publication of WO2007125707A1 publication Critical patent/WO2007125707A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • C23C16/4481Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by evaporation using carrier gas in contact with the source material

Definitions

  • the present invention relates to an apparatus used for vaporizing liquid, and more specifically, hexamethylene disilazane (H MDS) and isopropyl alcohol (IPA) used in various processes such as a semiconductor process and a liquid crystal panel manufacturing process.
  • H MDS hexamethylene disilazane
  • IPA isopropyl alcohol
  • the present invention relates to a vaporizer that generates a processing gas by vaporizing a liquid such as liquid.
  • a photoresist is applied to a silicon substrate, which is a semiconductor substrate, or a glass substrate of a liquid crystal panel, the adhesion between the substrate and the photoresist.
  • a surface treatment is performed to make the substrate before applying the photoresist hydrophobic (for example, JP-A-9-134860). This treatment is usually performed by exposing the substrate surface to a vapor atmosphere of hexamethylenedisilazane (HMDS).
  • HMDS hexamethylenedisilazane
  • HMDS which is a liquid at room temperature and normal pressure
  • the carrier gas contains not only HMDS vapor but also HMDS liquid mist.
  • the liquid mist has a particle size of submicron force of several microns, but when they are attached directly to the substrate, the substrate surface becomes less uniform or the local reaction proceeds. Unnecessary parts are generated in the resist pattern formed in the lithographic process, which causes a decrease in productivity.
  • IPA isopropyl alcohol
  • a porous membrane hollow fiber having a large number of micropores or a liquid that diffuses micropores by filling a liquid on one side of the porous membrane (the outside in the case of a hollow fiber membrane) is transferred to the other side.
  • a carrier gas for example, nitrogen or air
  • vaporization apparatuses having the same purpose include various methods that generate less mist.
  • a method of sending a liquid with a supply nozzle force onto a hot plate and evaporating it by heating JP-A-7-47201
  • fiber A method for promoting vaporization by expanding the liquid by utilizing the capillary action of the cloth to increase the contact area with the carrier gas Japanese Patent Laid-Open No. 5-102024
  • a method for vaporizing the liquid by ultrasonic waves Japanese Patent Laid-Open No. 5-102022
  • Patent Document 1 Japanese Patent Laid-Open No. 9-134860
  • Patent Document 2 Japanese Patent Laid-Open No. 63-299231
  • Patent Document 3 Japanese Patent Application Laid-Open No. 2005-177387
  • Patent Document 4 JP-A-2005-249256
  • Patent Document 5 Japanese Patent Laid-Open No. 7-47201
  • Patent Document 6 Japanese Patent Laid-Open No. 5-102024
  • Patent Document 7 Japanese Patent Laid-Open No. 5-102022
  • the vaporization method is efficient, but the mist in the carrier gas increases when the surface energy of the liquid required for vaporization is small.
  • a method similar to these methods is adopted.
  • HMDS, IPA, etc. are used as liquids, even a hollow fiber made of a low surface energy material such as PFA such as PFA, the liquid penetrates into the micropores and enters the carrier gas stream as it is. The liquid reaches the wafer processing chamber.
  • PFA low surface energy material
  • Mist contamination in the gas stream can be caused, for example, by the use of IPA vapor to dry silicon wafers, or the use of HMDS vapor to modify silicon wafer surfaces. Adhesion and associated product defects may be induced.
  • the diaphragm method that does not have micropores and selectively converts the vapor into the air stream by selectively transmitting the vapor cannot expect high vaporization efficiency, so it is necessary to use a large vaporization unit.
  • the present invention is an improvement of a liquid vaporizer for vaporizing a liquid in contact with a carrier gas, a vaporization section in which a porous film is disposed in an airtight housing, and the vaporization section Provided with a mist separation part that is separated by a partition wall and in which a filter medium is disposed, a liquid inlet for supplying a liquid to a liquid flow channel on the upstream side of the porous membrane, and the carrier gas downstream of the porous membrane A gas inlet supplying a gas channel on the side, and vapor vaporized by contact of the liquid that has passed through the porous membrane with the carrier gas from the gas channel.
  • the outlet side of the gas flow path is connected to the upstream side of the filter medium through the partition wall and the steam from which the mist is removed from the downstream side of the filter medium.
  • the porous membrane is preferably a plurality of porous membrane hollow fiber bundles, the upstream passage is an outer flow path of the hollow fiber bundle, and a downstream flow path of the porous membrane is the hollow flow path. This is the inner channel of the yarn bundle.
  • hollow fiber bundle one having an overall cylindrical shape or an overall U-shape can be used.
  • a porous membrane cylinder As the filtration membrane, a porous membrane cylinder, one or more flat-plate filtration membranes, or a porous membrane hollow fiber bundle similar to a vaporization membrane can be used.
  • the vaporization section and the mist separation chamber are partitioned by an airtight partition, and the inner flow path of the hollow fiber can be connected to the upstream side of the filtration membrane by a flow path that penetrates the airtight partition.
  • a common hollow fiber bundle can be divided by the partition wall to form a hollow fiber bundle on the vaporizing section side and a hollow fiber on the mist separation chamber side.
  • any material that is inert to the liquid to be vaporized and the carrier gas such as metal, polyolefin, fluorine-containing resin, etc.
  • Resin can be used, but chemically inert fluorine-containing resin is particularly preferred.
  • PFA which is easy to mold, and other fluorine resin materials known in this field can be used.
  • a filter medium a porous PTFE membrane, a porous ceramic, etc. can be used.
  • liquid such as HMDS and IPA can be vaporized and mist removed by a single device and sent to the semiconductor manufacturing process, thereby improving the quality of the semiconductor and improving the production efficiency. can do.
  • the apparatus of the present invention uses a single apparatus without using a separate vaporization apparatus and mist removing apparatus as in the prior art, the installation, connection and replacement work of the apparatus is simplified, and the work performance is improved. The rate is improved.
  • the liquid to be vaporized by the liquid vaporizer of the present invention and to remove the mist is, for example, hexamethylene disicalane (HMDS) or isopropyl alcohol (IPA), and other water as a humidifier. Available.
  • HMDS hexamethylene disicalane
  • IPA isopropyl alcohol
  • FIG. 1 to 3 illustrate the liquid vaporization apparatus of Example 1
  • FIG. 4 illustrates the liquid vaporization apparatus of Example 2
  • FIG. 5 illustrates the liquid vaporization apparatus of Example 3, but the present invention is not limited thereto.
  • FIG. 1 is a longitudinal sectional view of a liquid vaporizer 1 according to a first embodiment of the present invention
  • FIG. 2 is a sectional view taken along line II II in FIG. 1
  • FIG. 3 is a sectional view taken along line III III in FIG. The figure is shown.
  • the vaporizer 1 includes an airtight cylindrical peripheral wall 5, an upstream end wall 7, a downstream end wall 9, and a nosing 3 formed from a flange, and the interior of the housing 3 is partitioned by a partition wall 11.
  • An airtight vaporization part 13 and a mist separation part 14 are formed.
  • a large number of bundles 19 of porous membrane hollow fibers 17 are arranged in the vaporizing section 13, and both ends thereof are supported by end support plates 21 and partition walls 11.
  • the hollow fiber bundle 19 can be manufactured by any known method. Both ends of the hollow fiber bundle 19 are supported by the end support plate 21 and the partition wall 11 by the potting technique, both ends of the inner passage of the hollow fiber 17 are kept open, and the end support plate 21 and the partition wall 11 are the peripheral wall 5. Are supported by an end support plate 21 and a partition wall 11 which are fused or sealed to the inner surface.
  • the upstream end of the inner flow path of the hollow fiber 17 is connected to the carrier gas inlet 23 via the distribution chamber 25, while the downstream end of the inner flow path opens to the upstream chamber 15 of the mist separation section 14. ing.
  • the vaporizing section 13 further has a liquid inlet 26 for supplying a supply liquid such as HMDS or IPA around the hollow fiber bundle 19 and a liquid outlet 28 for discharging.
  • the liquid outlet 28 is generally closed during use to pressurize around the hollow fiber.
  • a porous membrane cylinder 27 capable of capturing liquid mist (microdroplets) and allowing vapor and carrier gas to pass therethrough is disposed in the mist separation unit 14.
  • the base of cylinder 27 is the downstream end It is hermetically coupled to the wall 9, and the downstream side (inside) of the cylinder 27 communicates with the outlet 29 through a flow path penetrating the end wall 9 in order to extract the vapor from which the mist has been removed and the carrier gas.
  • a porous ceramic a synthetic resin having a large number of perforations and a flexible filtration membrane supported can be used.
  • a porous cylinder use one or more flat-plate filtration membranes or porous filtration discs.
  • the liquid to be vaporized is introduced into the vaporizing section 13 from the liquid inlet 26.
  • the liquid outlet 28 is closed.
  • the liquid is filled around the porous membrane hollow fiber 17.
  • pressure may be applied from inlet 26.
  • a carrier gas such as clean nitrogen or air is introduced from the carrier gas inlet 23 and flows into the porous membrane hollow fiber 17. Apply predetermined pressure if necessary.
  • the liquid penetrates the wall of the porous membrane hollow fiber 17 and oozes into the internal flow path, and is vaporized by the carrier gas to form vapor.
  • formation of fine droplets of liquid, ie mist is inevitable.
  • the generated steam and mist flow into the chamber 15 upstream of the mist separation section 14 at the downstream end of the hollow fiber 17 passing through the partition wall 11 together with the carrier gas, and then flow into the inside of the cylinder 27 through the filter medium cylinder 27.
  • the vapor and carrier gas mixed stream from which the mist has been completely removed is sent out from the outlet 29 and supplied to the semiconductor processing equipment or the like.
  • FIG. 4 illustrates a liquid vaporizer according to another embodiment 2 of the present invention.
  • the same reference numerals as those used in the first embodiment are used.
  • the structure of the housing and hollow fiber on the side of the vaporizing section 13 is the same as in Fig. 1-3, and includes housing 3, bundle 19 of hollow fibers 17, end walls 7, 9, support plate 21, partition wall 11, liquid inlet
  • the liquid outlet 28, the carrier gas inlet 23, and the distribution chamber 25 can have the same structure as in the first embodiment.
  • a bundle 33 of a large number of porous membrane hollow fibers 31 capable of trapping mist and allowing vapor and carrier gas to permeate is disposed in the mist separation section 14, and the upstream end of the hollow fiber 31 has a corresponding porous structure. It is supported by the partition wall 11 in a state of being directly communicated with the membrane hollow fiber 17, and the downstream end is closed by being integrated with the downstream end wall 9.
  • the cylindrical peripheral wall 5 of the housing 3 has a steam outlet entrained in a carrier gas for drawing the steam from which mist has been removed from the downstream chamber 16. 35 is formed.
  • the hollow fiber 17 on the vaporization part 13 side and the hollow fiber 31 on the mist separation part 14 side can be formed by airtightly partitioning with the partition wall 11 by a common hollow fiber.
  • Vapor and mist generated in the vaporization section flow into the internal flow path of the porous membrane hollow fiber 31 on the mist separation section 14 side at the downstream end of the hollow fiber 17 passing through the partition wall 11 together with the carrier gas, Steam and carrier gas flow through the wall and flow to the downstream chamber 16 while the mist is trapped inside the hollow fiber.
  • the vapor and carrier gas mixed stream from which mist has been completely removed is sent out from the outlet 35 and supplied to a semiconductor processing apparatus or the like.
  • Fig. 5 shows a case where a bundle of hollow fibers 43 is used in place of the filtration cylinder in the embodiment of Fig. 1, and only the portion different from Fig. 1 is explained.
  • a bundle of hollow fibers 43 is placed inside the mist separation section 14. As a whole, it is folded into a U-shape, the bases of both legs are connected to the end support plate 37 by potting, and the downstream thereof communicates with the gas collection chamber 39. Chamber 39 is connected to outlet 29 for steam and carrier gas.
  • a vessel was used. The structure is similar to that of the vaporization part in Fig. 1.
  • the experiment was conducted using a conventional vaporizer using PFA hollow fibers.
  • liquid was not injected into the liquid flow path, a sealing cap was applied to the liquid inlet / outlet, and clean dry air (CDA) was supplied at a flow rate of 30 slm for 10 minutes to the carrier gas inlet.
  • CDA clean dry air
  • a laser particle counter minimum reversible particle size 0.1 ⁇ m, sampling flow rate 28.3 LZ
  • a nuclear condensation-type particle counter minimum removable particle size 0. Ol ⁇ m, sampling flow rate 1 LZ
  • IPA isopropyl alcohol
  • the vaporization part of the vaporizer of Example 1 was manufactured in the same manner as described above, and the downstream mist separator was provided with a filtration cylinder having a diameter of about 1 cm and a length of about 2 cm.
  • the maximum pore size of the filtration cylinder was 0.2 ⁇ m.
  • IPA Isopropyl alcohol
  • Particles in Test 2 were measured after diluting the vapor at the carrier gas outlet 29 of the mist separation section with 30 slm CDA.
  • liquid vapor can be efficiently sent to a semiconductor process or the like, and it is necessary to use a separate mist removing device downstream of the vaporizer. Since there is no need to connect a filter through the connecting pipe, problems such as leakage due to the piping can be eliminated.
  • the liquid vaporizer and the mist removal filter can be reduced by reducing the overall size and exclusive area by integrating the device, and since there is no pipe, the weight can be reduced and the cost can be reduced. It is possible to prevent foreign matters from entering from the part.
  • FIG. 1 is a longitudinal sectional view of a liquid vaporizer according to a first embodiment of the present invention.
  • FIG. 2 shows a cross-sectional view taken along line II-II in FIG.
  • FIG. 3 shows a cross-sectional view along line III-III in FIG.
  • FIG. 4 is a longitudinal sectional view of a liquid vaporizer according to a second embodiment of the present invention.
  • FIG. 5 is a longitudinal sectional view of a liquid vaporizer according to a third embodiment of the present invention.
  • Porous membrane cylinder (filter material) Liquid outlet Steam outlet Porous membrane hollow; bundle of hollow fibers 31 Steam outlet End support plate Gas collection chamber Porous membrane hollow 7

Abstract

[PROBLEMS] To solve the problem of mixing of mist in a liquid vapor fed to a semiconductor process by the use of a single vaporization apparatus. [MEANS FOR SOLVING PROBLEMS] There is provided a liquid vaporization apparatus adapted to achieve contact of a liquid with a carrier gas to thereby attain vaporization, comprising airtight housing (3) and, disposed therein, vaporization section (13) fitted with porous membranes and mist separation section (14) partitioned by bulkhead (11) from the vaporization section (13) and fitted with filter material (27,31,43), and further comprising liquid inlet (26) for feeding of the liquid to a liquid flow channel upstream of the porous membranes; gas inlet (23) for feeding of the carrier gas to a gas flow channel downstream of the porous membranes; a connection passageway passing through the bulkhead (11) on the outlet side of the gas flow channel and making communication to the upstream side of the filter material (27,33,43), provided to draw out the vapor resulting from vaporization by contact of the liquid having permeated the porous membranes with the carrier gas from the gas flow channel to the upstream side (15) of the separation section (14); and vapor outlet (29,35) for drawing out the vapor having mist removed therefrom from the downstream side of the filter material (27,33,43).

Description

明 細 書  Specification
液体気化装置  Liquid vaporizer
技術分野  Technical field
[0001] 本発明は液体の気化に使用される装置に関し、より詳しくは半導体プロセスや液晶 パネル製造プロセス等の各種のプロセスに使用されるへキサメチレンジシラザン (H MDS)、イソプロピルアルコール (IPA)等の液を気化して処理ガスを生成する気化 装置に関する。  The present invention relates to an apparatus used for vaporizing liquid, and more specifically, hexamethylene disilazane (H MDS) and isopropyl alcohol (IPA) used in various processes such as a semiconductor process and a liquid crystal panel manufacturing process. The present invention relates to a vaporizer that generates a processing gas by vaporizing a liquid such as liquid.
背景技術  Background art
[0002] 半導体製造プロセスあるいは液晶パネル製造プロセスにおけるリソグラフイエ程で は、半導体基板であるシリコンゥエーノ、、あるいは液晶パネルのガラス基板に、フォト レジストを塗布する際、基板とフォトレジストの密着性を向上させるため、フォトレジスト 塗布前の基板を、疎水性にする表面処理が行われている(例えば特開平 9— 13486 0号)。この処理は通常、へキサメチレンジシラザン (以下「HMDS」)の蒸気雰囲気 中に基板表面を曝すことによって行われる。  In the lithographic process in a semiconductor manufacturing process or a liquid crystal panel manufacturing process, when a photoresist is applied to a silicon substrate, which is a semiconductor substrate, or a glass substrate of a liquid crystal panel, the adhesion between the substrate and the photoresist. In order to improve the surface, a surface treatment is performed to make the substrate before applying the photoresist hydrophobic (for example, JP-A-9-134860). This treatment is usually performed by exposing the substrate surface to a vapor atmosphere of hexamethylenedisilazane (HMDS).
[0003] 常温常圧では液体である HMDSの気化には、この液体中でキャリアガスとなる窒 素あるいは空気をパブリングさせることにより行われて 、る(特開平 9— 134860号、 特開昭 63— 299231号等)。パブリング法によって HMDSを気化させた場合、キヤリ ァガス中には HMDSの蒸気のみではなぐ HMDSの液体ミストも混在してしまう。液 体ミストは粒径がサブミクロン力も数ミクロン程度の大きさであるが、これらが直接基板 に付着した場合には、基板表面の均一性の低下、あるいは局所的な反応の進行によ つて、リソグラフイエ程で形成されるレジストパターンに不要部分を生じることになり、 生産性を低下させる原因となる。  [0003] The vaporization of HMDS, which is a liquid at room temperature and normal pressure, is carried out by publishing nitrogen or air as a carrier gas in this liquid (Japanese Patent Laid-Open Nos. 9-134860 and 63). — No. 299231). When HMDS is vaporized by the publishing method, the carrier gas contains not only HMDS vapor but also HMDS liquid mist. The liquid mist has a particle size of submicron force of several microns, but when they are attached directly to the substrate, the substrate surface becomes less uniform or the local reaction proceeds. Unnecessary parts are generated in the resist pattern formed in the lithographic process, which causes a decrease in productivity.
[0004] また、薬品による洗浄を終えたゥエーハの乾燥工程では、イソプロピルアルコール( 以下「IPA」)の蒸気雰囲気中にゥエーハを曝すことが行われる。常温常圧で液体と して存在する IPAを気化するためには、同じく液体 IPA中でキャリアガスをパブリング する方法が多く用いられている。この場合にも、キャリアガス中には液体ミストが発生 し、この微小な液滴がゥエーハに付着すると、半導体の生産性を低下させる原因とな る。 [0004] In addition, in the wafer drying process after cleaning with chemicals, the wafer is exposed to a vapor atmosphere of isopropyl alcohol (hereinafter "IPA"). In order to vaporize IPA that exists as a liquid at normal temperature and pressure, a method of publishing a carrier gas in the liquid IPA is often used. In this case as well, liquid mist is generated in the carrier gas, and if these minute droplets adhere to the wafer, it may cause a decrease in semiconductor productivity. The
[0005] これらのパブリング法で発生した蒸気中の液体ミストを除去するためには、バブリン グ気化工程で発生した蒸気をミストトラップに導!ヽてミストを分離する方法 (特開平 9 — 134860号)、パブリング気化工程で発生した蒸気をフィルタに導いてミストを分離 する方法 (特開昭 63— 299231号)等が知られて 、る。  [0005] In order to remove the liquid mist in the vapor generated by these publishing methods, a method of separating the mist by introducing the vapor generated in the bubbling vaporization process into a mist trap (Japanese Patent Laid-Open No. 9-134860). And a method for separating the mist by introducing the vapor generated in the publishing vaporization process to a filter (Japanese Patent Laid-Open No. 63-299231) is known.
[0006] また、多数の微細孔を有する多孔質膜中空糸又は多孔質膜の片側(中空糸膜の 場合にはこれらの外側)に液体を満たすことにより微細孔を拡散する液体を、他側( 中空糸膜の場合には中空糸の内部流路)を流通するキャリアガス (例えば窒素又は 空気)に接触させることにより蒸気化する方法があるが、ミストの混在は避けられない( 特開 2005— 177387号、特開 2005— 249256号)。  [0006] Further, a porous membrane hollow fiber having a large number of micropores or a liquid that diffuses micropores by filling a liquid on one side of the porous membrane (the outside in the case of a hollow fiber membrane) is transferred to the other side. (In the case of a hollow fiber membrane, there is a method of vaporizing by contacting with a carrier gas (for example, nitrogen or air) flowing through a hollow fiber internal channel, but mist is inevitably mixed (Japanese Patent Application Laid-Open No. 2005-125). — 177387, JP 2005-249256).
[0007] その他同様な目的を有する気化装置には、ミストの発生が少ない種々の方法もあり 、液体を供給ノズル力も熱板上に送り出して加熱蒸発させる方法 (特開平 7—47201 号)、繊維布の毛管現象を利用して液体を拡げてキャリアガスとの接触面積を増大し て気化を促進する方法 (特開平 5— 102024号)、超音波により液体を気化する方法 (特開平 5— 102022号)等が存在する。これらの方法は、気化効率が低力つたり、特 殊な又は複雑な装置を要したり、あるいは大型の装置を要する。  [0007] Other vaporization apparatuses having the same purpose include various methods that generate less mist. A method of sending a liquid with a supply nozzle force onto a hot plate and evaporating it by heating (JP-A-7-47201), fiber A method for promoting vaporization by expanding the liquid by utilizing the capillary action of the cloth to increase the contact area with the carrier gas (Japanese Patent Laid-Open No. 5-102024), and a method for vaporizing the liquid by ultrasonic waves (Japanese Patent Laid-Open No. 5-102022) Etc.). These methods have low vaporization efficiency, require special or complex equipment, or require large equipment.
[0008] その他に、微細孔を有さず、蒸気を選択的に透過させることによって気流中に蒸気 を転ィ匕する隔膜法も利用されている力 ミストは生成しないけれども、この方法では微 細孔を有する隔膜に比して、気化効率が低くなる。  [0008] In addition, there is no force generated by using a diaphragm method that does not have micropores and allows vapor to selectively permeate through the airflow, thereby generating mist. The vaporization efficiency is lower than that of a diaphragm having pores.
特許文献 1:特開平 9 - 134860号公報  Patent Document 1: Japanese Patent Laid-Open No. 9-134860
特許文献 2:特開昭 63 - 299231号公報  Patent Document 2: Japanese Patent Laid-Open No. 63-299231
特許文献 3 :特開 2005— 177387号公報  Patent Document 3: Japanese Patent Application Laid-Open No. 2005-177387
特許文献 4:特開 2005 - 249256号公報  Patent Document 4: JP-A-2005-249256
特許文献 5 :特開平 7— 47201号公報  Patent Document 5: Japanese Patent Laid-Open No. 7-47201
特許文献 6:特開平 5 - 102024号公報  Patent Document 6: Japanese Patent Laid-Open No. 5-102024
特許文献 7:特開平 5 - 102022号公報  Patent Document 7: Japanese Patent Laid-Open No. 5-102022
発明の開示  Disclosure of the invention
発明が解決しょうとする課題 [0009] パブリング法で発生した蒸気中の液体ミストを除去するために、パブリング気化工程 で発生した蒸気をミストトラップに導いてミストを分離する方法 (特開平 9— 134860号 )や、パブリング気化工程で発生した蒸気をフィルタに導 ヽてミストを分離する方法( 特開昭 63— 299231号)では、パブリング気化工程とミスト分離工程に別個の装置を 必要とし、また前記の多孔質膜中空糸又は多孔膜による浸透気化法でもミストの分 離に生成した上記を管路により別個のトラップ装置やフィルタ装置に導くことが必要 であった。 Problems to be solved by the invention [0009] In order to remove liquid mist in the vapor generated by the publishing method, a method of separating the mist by introducing the vapor generated in the publishing vaporization process into a mist trap (Japanese Patent Laid-Open No. 9-134860), or the publishing vaporization process In the method for separating the mist by introducing the vapor generated in the filter (Japanese Patent Laid-Open No. 63-299231), separate devices are required for the publishing vaporization step and the mist separation step, and the porous membrane hollow fiber or Even in the pervaporation method using a porous membrane, it was necessary to guide the above-mentioned generated in the mist separation to a separate trap device or filter device via a pipe line.
また、前記の多孔質膜中空糸又は多孔膜などの隔膜を利用する方法では、気化法 は能率がよいが、気化に要する液体の表面エネルギーが小さい場合にはキャリアガ ス中のミストが増加し、ミストの分離にはこれらの方法と同様の方法を採用するもので めつに。  Further, in the method using a membrane such as the porous membrane hollow fiber or the porous membrane, the vaporization method is efficient, but the mist in the carrier gas increases when the surface energy of the liquid required for vaporization is small. In order to separate the mist, a method similar to these methods is adopted.
例えば HMDS、 IPAなどを液体とした場合、表面エネルギーの小さい材質例えば PFAのようなフッ素系榭脂からなる中空糸でも、微細孔内に液体が浸透し、液体のま まキャリアガス流に混入し、液体がゥエーハ処理室に達してしまう。  For example, when HMDS, IPA, etc. are used as liquids, even a hollow fiber made of a low surface energy material such as PFA such as PFA, the liquid penetrates into the micropores and enters the carrier gas stream as it is. The liquid reaches the wafer processing chamber.
気体流中へのミストの混入は、例えば IPA蒸気を用いてシリコンゥエーハの乾燥を 行う用途、あるいは HMDS蒸気を用いてシリコンゥエーハの表面の改質を行う用途 において、ゥエーハ上へのミストの付着と、それに伴う製品の欠陥を誘発する可能性 がある。  Mist contamination in the gas stream can be caused, for example, by the use of IPA vapor to dry silicon wafers, or the use of HMDS vapor to modify silicon wafer surfaces. Adhesion and associated product defects may be induced.
微細孔を有さず、蒸気を選択的に透過させることによって気流中に蒸気を転化する 隔膜法では、高い気化効率を期待することができないので、大型の気化ユニットを使 用する必要がある。  The diaphragm method that does not have micropores and selectively converts the vapor into the air stream by selectively transmitting the vapor cannot expect high vaporization efficiency, so it is necessary to use a large vaporization unit.
課題を解決するための手段  Means for solving the problem
[0010] そこで本発明は、液体をキャリアガスに接触させて気化するための液体気化装置の 改良を図ったものであり、気密ハウジング内に、多孔質膜を配置した気化部と、前記 気化部から隔壁により分離され且つろ過材を配置しているミスト分離部を設け、前記 多孔質膜の上流側の液体流路に液体を供給する液体入口と、前記キャリアガスを前 記多孔質膜の下流側の気体流路に供給するガス入口と、前記多孔質膜を透過した 液体が前記キャリアガスと接触することにより気化した蒸気を前記気体流路から前記 分離部へ引き出すために、前記気体流路の出口側を、前記隔壁を貫通してろ過材 の上流側に連通する接続部と、前記ろ過材の下流側からミストが除去された蒸気を 引き出す蒸気出口とを設けたことを特徴とする液体気化装置により、本発明の課題を 解決する。 [0010] Therefore, the present invention is an improvement of a liquid vaporizer for vaporizing a liquid in contact with a carrier gas, a vaporization section in which a porous film is disposed in an airtight housing, and the vaporization section Provided with a mist separation part that is separated by a partition wall and in which a filter medium is disposed, a liquid inlet for supplying a liquid to a liquid flow channel on the upstream side of the porous membrane, and the carrier gas downstream of the porous membrane A gas inlet supplying a gas channel on the side, and vapor vaporized by contact of the liquid that has passed through the porous membrane with the carrier gas from the gas channel. In order to draw out to the separation unit, the outlet side of the gas flow path is connected to the upstream side of the filter medium through the partition wall and the steam from which the mist is removed from the downstream side of the filter medium The problem of the present invention is solved by a liquid vaporizer characterized in that an outlet is provided.
[0011] 前記多孔質膜は好ましくは複数の多孔質膜中空糸束であり、前記上流側通路は前 記中空糸束の外側流路であり、前記多孔質膜の下流側流路は前記中空糸束の内側 流路である。  [0011] The porous membrane is preferably a plurality of porous membrane hollow fiber bundles, the upstream passage is an outer flow path of the hollow fiber bundle, and a downstream flow path of the porous membrane is the hollow flow path. This is the inner channel of the yarn bundle.
前記中空糸束としては、全体的に円筒形を有するもの、あるいは全体的に U字形 のものを使用することができる。  As the hollow fiber bundle, one having an overall cylindrical shape or an overall U-shape can be used.
前記ろ過膜としては、多孔質膜円筒、一枚以上の平板状のろ過膜、あるいは気化 膜と同様の多孔質膜中空糸束を使用することができる。  As the filtration membrane, a porous membrane cylinder, one or more flat-plate filtration membranes, or a porous membrane hollow fiber bundle similar to a vaporization membrane can be used.
また、前記気化部と前記ミスト分離室は気密隔壁により区画され、前記中空糸の内 側流路は前記気密隔壁を貫通する流路により前記ろ過膜の上流側に接続することが できる。  The vaporization section and the mist separation chamber are partitioned by an airtight partition, and the inner flow path of the hollow fiber can be connected to the upstream side of the filtration membrane by a flow path that penetrates the airtight partition.
中空糸束によりろ過膜を形成する場合には、共通の中空糸束を前記隔壁により区 画して気化部側の中空糸束とミスト分離室側の中空糸を構成することもできる。  In the case of forming a filtration membrane by a hollow fiber bundle, a common hollow fiber bundle can be divided by the partition wall to form a hollow fiber bundle on the vaporizing section side and a hollow fiber on the mist separation chamber side.
本発明の液体気化装置を構成するハウジング、中空糸、ろ過材の素材としては気 化すべき液体とキャリアガスに対して不活性な任意の素材、例えば金属、ポリオレフィ ン、フッ素含有榭脂等の合成樹脂が使用できるが、特に化学的に不活性なフッ素含 有榭脂が好まし ヽ。ハウジングや中空糸の材料としては例えば成形の容易な PFA、 その他この分野で周知のフッ素榭脂素材を使用することができる。ろ過材としては多 孔質 PTFE膜、多孔質セラミック等が使用できる。  As a material for the housing, hollow fiber, and filter medium constituting the liquid vaporizer of the present invention, any material that is inert to the liquid to be vaporized and the carrier gas, such as metal, polyolefin, fluorine-containing resin, etc., is synthesized. Resin can be used, but chemically inert fluorine-containing resin is particularly preferred. As the material for the housing and hollow fiber, for example, PFA which is easy to mold, and other fluorine resin materials known in this field can be used. As a filter medium, a porous PTFE membrane, a porous ceramic, etc. can be used.
発明の効果  The invention's effect
[0012] 本発明によると、単一の装置により HMDS、 IPAなどの液体を気化し且つミストを除 去し、半導体製造工程に送ることができ、それにより半導体の品質を高め、生産能率 を向上することができる。  [0012] According to the present invention, liquid such as HMDS and IPA can be vaporized and mist removed by a single device and sent to the semiconductor manufacturing process, thereby improving the quality of the semiconductor and improving the production efficiency. can do.
本発明の装置は従来のような別個の気化装置とミスト除去装置を使用しないで単一 の装置を使用するので、装置の設置、接続、及び交換の作業が単純化され、作業能 率が向上する。 Since the apparatus of the present invention uses a single apparatus without using a separate vaporization apparatus and mist removing apparatus as in the prior art, the installation, connection and replacement work of the apparatus is simplified, and the work performance is improved. The rate is improved.
[0013] 本発明の液体気化装置により気化しそしてミストを除去すべき液体は、例えばへキ サメチレンジシザラン(HMDS)又はイソプロピルアルコール(IPA)等であり、その他 水を用いて加湿装置として利用できる。  [0013] The liquid to be vaporized by the liquid vaporizer of the present invention and to remove the mist is, for example, hexamethylene disicalane (HMDS) or isopropyl alcohol (IPA), and other water as a humidifier. Available.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0014] 次に本発明を図示の実施例により詳しく説明する。図 1〜3は実施例 1の液体気化 装置、図 4は実施例 2の液体気化装置、及び図 5は実施例 3の液体気化装置を例示 するが、本発明はこれらに限定されない。 Next, the present invention will be described in detail with reference to the illustrated embodiments. 1 to 3 illustrate the liquid vaporization apparatus of Example 1, FIG. 4 illustrates the liquid vaporization apparatus of Example 2, and FIG. 5 illustrates the liquid vaporization apparatus of Example 3, but the present invention is not limited thereto.
実施例  Example
[0015] 実施例 1 [0015] Example 1
図 1は本発明の第 1の実施例による液体気化装置 1の縦断面図、図 2は図 1の線 II IIに沿った断面図、及び図 3は図 1の線 III IIIに沿った断面図を示す。 気化装置 1は、気密に形成された円筒形周壁 5と上流側端壁 7と下流側端壁 9と〖こ より形成されたノヽウジング 3を含み、ハウジング 3の内部は隔壁 11により区画されて気 密の気化部 13とミスト分離部 14を形成して 、る。  1 is a longitudinal sectional view of a liquid vaporizer 1 according to a first embodiment of the present invention, FIG. 2 is a sectional view taken along line II II in FIG. 1, and FIG. 3 is a sectional view taken along line III III in FIG. The figure is shown. The vaporizer 1 includes an airtight cylindrical peripheral wall 5, an upstream end wall 7, a downstream end wall 9, and a nosing 3 formed from a flange, and the interior of the housing 3 is partitioned by a partition wall 11. An airtight vaporization part 13 and a mist separation part 14 are formed.
[0016] 気化部 13には多数の多孔質膜中空糸 17の束 19が配置されその両端は端部支持 板 21及び隔壁 11により支持されている。中空糸束 19は公知の任意の方法により製 造できる。中空糸束 19の両端はポッティング技術により端部支持板 21及び隔壁 11 により支持され、中空糸 17の内側通路の両端は開口状態に維持され、そして端部支 持板 21及び隔壁 11は周壁 5の内面に融着又は密閉された端部支持板 21及び隔壁 11によりそれぞれ支持されて 、る。中空糸 17の内側流路の上流端は分配室 25を介 してキャリアガスの入口 23に接続されており、一方内側流路の下流端はミスト分離部 14の上流側の室 15に開口している。  [0016] A large number of bundles 19 of porous membrane hollow fibers 17 are arranged in the vaporizing section 13, and both ends thereof are supported by end support plates 21 and partition walls 11. The hollow fiber bundle 19 can be manufactured by any known method. Both ends of the hollow fiber bundle 19 are supported by the end support plate 21 and the partition wall 11 by the potting technique, both ends of the inner passage of the hollow fiber 17 are kept open, and the end support plate 21 and the partition wall 11 are the peripheral wall 5. Are supported by an end support plate 21 and a partition wall 11 which are fused or sealed to the inner surface. The upstream end of the inner flow path of the hollow fiber 17 is connected to the carrier gas inlet 23 via the distribution chamber 25, while the downstream end of the inner flow path opens to the upstream chamber 15 of the mist separation section 14. ing.
[0017] 気化部 13はさらに中空糸束 19の周りに HMDS、 IPAなどの供給液体を供給する ための液体入口 26と、排出のための液体出口 28を有する。液体出口 28は中空糸周 りを加圧するために一般に使用時には閉鎖される。  The vaporizing section 13 further has a liquid inlet 26 for supplying a supply liquid such as HMDS or IPA around the hollow fiber bundle 19 and a liquid outlet 28 for discharging. The liquid outlet 28 is generally closed during use to pressurize around the hollow fiber.
[0018] ミスト分離部 14には液体のミスト (微少液滴)を捕捉し、蒸気とキャリアガスを透過さ せることができる多孔質膜円筒 27が配置されている。円筒 27の基部は下流側の端 部壁 9に気密結合され、円筒 27の下流側(内部)はミストが除去された蒸気とキャリア ガスを引き出すために端部壁 9を貫通する流路を介して出口 29に連通している。な お円筒 27は多孔質セラミック、多数の穿孔を有する合成樹脂に柔軟なろ過膜を支持 させたもの等が使用できる。多孔質円筒の代わりに 1枚以上の平板状のろ過膜又は 多孔質ろ過円板を用いてもょ 、。 [0018] A porous membrane cylinder 27 capable of capturing liquid mist (microdroplets) and allowing vapor and carrier gas to pass therethrough is disposed in the mist separation unit 14. The base of cylinder 27 is the downstream end It is hermetically coupled to the wall 9, and the downstream side (inside) of the cylinder 27 communicates with the outlet 29 through a flow path penetrating the end wall 9 in order to extract the vapor from which the mist has been removed and the carrier gas. As the cylinder 27, a porous ceramic, a synthetic resin having a large number of perforations and a flexible filtration membrane supported can be used. Instead of a porous cylinder, use one or more flat-plate filtration membranes or porous filtration discs.
[0019] 次に、実施例 1による液体気化装置の動作を説明する。気化すべき液体を液体入 口 26から気化部 13に導入する。液体出口 28は閉鎖しておく。これにより液体を多孔 質膜中空糸 17の周りを満たす。必要なら入口 26から加圧してもよい。一方キャリアガ ス例えば清浄な窒素や空気をキャリアガス入口 23から導入し、多孔質膜中空糸 17 の内部に流す。必要なら所定の圧力を加える。液体は多孔質膜中空糸 17の壁を浸 透して内部流路にしみ出しキャリアガスにより気化され蒸気を形成する。しかしこのと き液体の微細な液滴すなわちミストの形成は避けられな 、。生成した蒸気とミストはキ ャリアガスとともに隔壁 11を貫通する中空糸 17の下流端でミスト分離部 14の上流側 の室 15に流入し、次いでろ過材円筒 27を流通して円筒 27の内部に流れ、ミストが完 全に除去された蒸気及びキャリアガス混合流は出口 29から送出されて半導体処理 装置等へ供給される。 Next, the operation of the liquid vaporizer according to the first embodiment will be described. The liquid to be vaporized is introduced into the vaporizing section 13 from the liquid inlet 26. The liquid outlet 28 is closed. As a result, the liquid is filled around the porous membrane hollow fiber 17. If necessary, pressure may be applied from inlet 26. On the other hand, a carrier gas such as clean nitrogen or air is introduced from the carrier gas inlet 23 and flows into the porous membrane hollow fiber 17. Apply predetermined pressure if necessary. The liquid penetrates the wall of the porous membrane hollow fiber 17 and oozes into the internal flow path, and is vaporized by the carrier gas to form vapor. However, at this time, formation of fine droplets of liquid, ie mist, is inevitable. The generated steam and mist flow into the chamber 15 upstream of the mist separation section 14 at the downstream end of the hollow fiber 17 passing through the partition wall 11 together with the carrier gas, and then flow into the inside of the cylinder 27 through the filter medium cylinder 27. The vapor and carrier gas mixed stream from which the mist has been completely removed is sent out from the outlet 29 and supplied to the semiconductor processing equipment or the like.
[0020] 実施例 2  [0020] Example 2
図 4は本発明の他の実施例 2による液体気化装置を例示する。実施例 1に対応す る部分に関しては実施例 1で使用した参照符号と同一の符号を使用する。  FIG. 4 illustrates a liquid vaporizer according to another embodiment 2 of the present invention. For the parts corresponding to the first embodiment, the same reference numerals as those used in the first embodiment are used.
気化部 13の側のハウジング及び中空糸の構造は図 1 -3の場合と同様であり、ハウ ジング 3、中空糸 17の束 19、端壁 7、 9、支持板 21、隔壁 11、液体入口 26、液体出 口 28、キャリアガスの入口 23、分配室 25は実施例 1と同様の構造を有することができ る。  The structure of the housing and hollow fiber on the side of the vaporizing section 13 is the same as in Fig. 1-3, and includes housing 3, bundle 19 of hollow fibers 17, end walls 7, 9, support plate 21, partition wall 11, liquid inlet The liquid outlet 28, the carrier gas inlet 23, and the distribution chamber 25 can have the same structure as in the first embodiment.
[0021] ミスト分離部 14にはミストを捕捉し、蒸気とキャリアガスを透過させることができる多 数の多孔質膜中空糸 31の束 33が配置され、中空糸 31の上流端は対応する多孔質 膜中空糸 17に直接連通した状態で隔壁 11に支持され、下流端は下流側の端壁 9に 一体ィ匕することにより閉鎖されている。ハウジング 3の円筒形周壁 5にはミストが除去さ れた蒸気を下流側の室 16から引き出すためのキャリアガスに連行された蒸気の出口 35が形成されている。 [0021] A bundle 33 of a large number of porous membrane hollow fibers 31 capable of trapping mist and allowing vapor and carrier gas to permeate is disposed in the mist separation section 14, and the upstream end of the hollow fiber 31 has a corresponding porous structure. It is supported by the partition wall 11 in a state of being directly communicated with the membrane hollow fiber 17, and the downstream end is closed by being integrated with the downstream end wall 9. The cylindrical peripheral wall 5 of the housing 3 has a steam outlet entrained in a carrier gas for drawing the steam from which mist has been removed from the downstream chamber 16. 35 is formed.
なお、気化部 13側の中空糸 17とミスト分離部 14側の中空糸 31は共通の中空糸に て隔壁 11で気密に区画して形成することができる。  The hollow fiber 17 on the vaporization part 13 side and the hollow fiber 31 on the mist separation part 14 side can be formed by airtightly partitioning with the partition wall 11 by a common hollow fiber.
[0022] 動作 [0022] Operation
次に、実施例 2による液体気化装置の動作を説明する。この装置の気化部分の構 造は実施例 1と同様なので同様な動作が得られる。  Next, the operation of the liquid vaporizer according to the second embodiment will be described. Since the structure of the vaporization part of this device is the same as that of Example 1, the same operation can be obtained.
気化部で生成した蒸気とミストはキャリアガスとともに隔壁 11を貫通する中空糸 17 の下流端でミスト分離部 14側の多孔質膜中空糸 31の内部流路に流入し、次いで中 空糸 31の蒸気とキャリアガスは壁を流通して下流側の室 16に流し、一方ミストは中空 糸の内部にトラップされる。ミストが完全に除去された蒸気及びキャリアガス混合流は 出口 35から送出されて半導体処理装置等へ供給される。  Vapor and mist generated in the vaporization section flow into the internal flow path of the porous membrane hollow fiber 31 on the mist separation section 14 side at the downstream end of the hollow fiber 17 passing through the partition wall 11 together with the carrier gas, Steam and carrier gas flow through the wall and flow to the downstream chamber 16 while the mist is trapped inside the hollow fiber. The vapor and carrier gas mixed stream from which mist has been completely removed is sent out from the outlet 35 and supplied to a semiconductor processing apparatus or the like.
[0023] 実施例 3 [0023] Example 3
図 5は図 1の実施例においてろ過円筒の代わりに中空糸 43の束を使用した場合で あり、図 1とは異なる部分のみを説明すると、ミスト分離部 14の内部に中空糸 43の束 を全体として U字形に折り返し、両脚部の基部をポッティングにより端部支持板 37に 結合し、その下流をガス収集室 39に連通させたものである。室 39は蒸気及びキヤリ ァガスの出口 29に接続される。  Fig. 5 shows a case where a bundle of hollow fibers 43 is used in place of the filtration cylinder in the embodiment of Fig. 1, and only the portion different from Fig. 1 is explained. A bundle of hollow fibers 43 is placed inside the mist separation section 14. As a whole, it is folded into a U-shape, the bases of both legs are connected to the end support plate 37 by potting, and the downstream thereof communicates with the gas collection chamber 39. Chamber 39 is connected to outlet 29 for steam and carrier gas.
動作は図 1の実施例 1と同様である。  The operation is the same as that of Embodiment 1 in FIG.
[0024] 比較試験 [0024] Comparative test
従来の気化器として直径約 2cm、長さ約 6cmの円筒形の PFA製ノヽウジングに、直 径約 lmmの PFA製多孔質膜中空糸(最大孔径 0. 05 μ m)を一杯に充填した気化 器を使用した。構造は図 1の気化部の構造に類似している。  A conventional vaporizer with a cylindrical PFA nosing with a diameter of about 2 cm and a length of about 6 cm filled with PFA porous membrane hollow fiber (maximum pore size 0.05 μm) with a diameter of about 1 mm. A vessel was used. The structure is similar to that of the vaporization part in Fig. 1.
試験 1 (従来)  Test 1 (conventional)
従来の PFA製中空糸を利用する気化器を用いて実験を行った。まず液体流路に 液体を注入せず液体出入口に封止キャップをし、キャリアガス入口に清浄乾燥空気( CDA)を流量 30slmを 10分間流した。レーザ式粒子カウンタ(最小可側粒子径 0. 1 ^ m,サンプリング流量 28. 3LZ分)及び核凝縮型粒子カウンタ (最小可側粒子径 0 . Ol ^ m,サンプリング流量 1LZ分)で固形粒子の流出がいずれも実質的になくな ることを確認した。 The experiment was conducted using a conventional vaporizer using PFA hollow fibers. First, liquid was not injected into the liquid flow path, a sealing cap was applied to the liquid inlet / outlet, and clean dry air (CDA) was supplied at a flow rate of 30 slm for 10 minutes to the carrier gas inlet. Use a laser particle counter (minimum reversible particle size 0.1 ^ m, sampling flow rate 28.3 LZ) and a nuclear condensation-type particle counter (minimum removable particle size 0. Ol ^ m, sampling flow rate 1 LZ) There is virtually no outflow I was sure that.
次 、でイソプロピルアルコール (IPA)を液体流路に注入し出入口を封止キャップで 封鎖した。キャリアガスとして清浄空気を流量 30slmで中空糸の内部流路に 10分間 流して、流れがほぼ定常化するときのミスト粒子を計数した。結果は次の通りであった  Next, isopropyl alcohol (IPA) was injected into the liquid flow path, and the inlet / outlet was sealed with a sealing cap. Clean air was flowed as a carrier gas at a flow rate of 30 slm into the hollow fiber internal flow channel for 10 minutes, and mist particles were counted when the flow was almost steady. The results were as follows
0.: m以上: 20000個 0 .: More than m: 20000
0. 2 /z m以上: 1000個  0.2 / z m or more: 1000
0. 3 /z m以上: 200個  0.3 / z m or more: 200
0. 5 m以上: 20個  0.5 m or more: 20
以上: 2個  More than: 2
2 πι: 0個  2 πι: 0
[0025] 試験 2 (実施例) [0025] Test 2 (Example)
実施例 1の気化器の気化部を上記と同様に製作し、下流側のミスト分離器に直径 約 lcmで長さが約 2cmのろ過円筒を設けた構造とした。ろ過円筒の最大孔径は 0. 2 μ mであった。  The vaporization part of the vaporizer of Example 1 was manufactured in the same manner as described above, and the downstream mist separator was provided with a filtration cylinder having a diameter of about 1 cm and a length of about 2 cm. The maximum pore size of the filtration cylinder was 0.2 μm.
イソプロピルアルコール (IPA)を液体流路に注入し出入口を封止キャップで封鎖し た。キャリアガスとして清浄乾燥空気を流量 30slmで中空糸の内部流路に 10分間流 して、流れがほぼ定常化するときのミスト粒子を計数した。レーザ式粒子カウンタ及び 核凝縮型粒子カウンタのいずれにおいても粒径 0. 01 /z m以上のミスト粒子は全く検 出しなかった。  Isopropyl alcohol (IPA) was injected into the liquid channel and the inlet / outlet was sealed with a sealing cap. Clean dry air was flowed as a carrier gas at a flow rate of 30 slm into the hollow fiber internal flow channel for 10 minutes, and mist particles were counted when the flow was almost steady. In both the laser particle counter and the nuclear condensation particle counter, no mist particles with a particle size of 0.01 / zm or more were detected.
なお、粒子の計測は試験 1では気ィヒ器のキャリアガス出口の蒸気を 30slmの CDA で希釈した後に行った。  In Test 1, particles were measured after diluting the vapor at the carrier gas outlet of the air vessel with 30 slm CDA.
試験 2における粒子の計測はミスト分離部のキャリアガス出口 29の蒸気を 30slmの CDAで希釈した後に行った。  Particles in Test 2 were measured after diluting the vapor at the carrier gas outlet 29 of the mist separation section with 30 slm CDA.
[0026] 以上のように、本発明によればミストの除去により、液体の蒸気を効率的に半導体 プロセス等に送ることができ、気化装置の下流に別個のミスト除去装置を使用する必 要がなぐ配管を介してフィルタを接続する必要がないので配管に起因する漏洩等 の不具合をなくすることができる。 液体気化器とミスト除去フィルタを装置の一体ィ匕により、全体の大きさ及び専有面 積を減じることができ、配管がないので軽量ィ匕及びコストの低下ができ、配管部の接 続時に接続部からの異物の混入を防止できる。 As described above, according to the present invention, by removing mist, liquid vapor can be efficiently sent to a semiconductor process or the like, and it is necessary to use a separate mist removing device downstream of the vaporizer. Since there is no need to connect a filter through the connecting pipe, problems such as leakage due to the piping can be eliminated. The liquid vaporizer and the mist removal filter can be reduced by reducing the overall size and exclusive area by integrating the device, and since there is no pipe, the weight can be reduced and the cost can be reduced. It is possible to prevent foreign matters from entering from the part.
図面の簡単な説明  Brief Description of Drawings
[0027] [図 1]図 1は本発明の第 1の実施例による液体気化装置の縦断面図を示す。  FIG. 1 is a longitudinal sectional view of a liquid vaporizer according to a first embodiment of the present invention.
[図 2]図 2は図 1の線 II IIに沿った断面図を示す。  [FIG. 2] FIG. 2 shows a cross-sectional view taken along line II-II in FIG.
[図 3]図 3は図 1の線 III IIIに沿った断面図を示す。  [FIG. 3] FIG. 3 shows a cross-sectional view along line III-III in FIG.
[図 4]図 4は本発明の第 2の実施例による液体気化装置の縦断面図を示す。  FIG. 4 is a longitudinal sectional view of a liquid vaporizer according to a second embodiment of the present invention.
[図 5]図 5は本発明の第 3の実施例による液体気化装置の縦断面図を示す。  FIG. 5 is a longitudinal sectional view of a liquid vaporizer according to a third embodiment of the present invention.
符号の説明  Explanation of symbols
[0028] 1 気化装置 [0028] 1 Vaporizer
3 ハウジング  3 Housing
5 円筒形周壁  5 Cylindrical wall
7 上流側端壁  7 Upstream end wall
9 下流側端壁  9 Downstream end wall
11 隔壁  11 Bulkhead
13 気化部  13 Vaporizer
14 ミスト分離部  14 Mist separator
15 上流側の室  15 Upstream chamber
16 下流側の室  16 Downstream chamber
17 多孔質膜中空糸  17 Porous membrane hollow fiber
18 液体流路  18 Liquid flow path
19 中空糸 17の束  19 Bundle of hollow fibers 17
21 支持板  21 Support plate
23 キャリアガス入口  23 Carrier gas inlet
25 分配室  25 Distribution room
26 液体入口  26 Liquid inlet
27 多孔質膜円筒 (ろ過材) 液体出口 蒸気出口 多孔質膜中空; 中空糸 31の束 蒸気出口 端部支持板 ガス収集室 多孔質膜中空 7 27 Porous membrane cylinder (filter material) Liquid outlet Steam outlet Porous membrane hollow; bundle of hollow fibers 31 Steam outlet End support plate Gas collection chamber Porous membrane hollow 7

Claims

請求の範囲 The scope of the claims
[1] 液体をキャリアガスに接触させて気化するための液体気化装置において、気密ハウ ジング (3)内に、多孔質膜を配置した気化部(13)と、前記気化部(13)力 隔壁(11 )により分離され且つろ過材 (27、 31、 43)を配置しているミスト分離部(14)を設け、 前記気化部(13)は前記多孔質膜の上流側の液体流路に液体を供給する液体入口 (26)と、前記キャリアガスを前記多孔質膜の下流側の気体流路に供給するガス入口 (23)を備え、前記ミスト分離部(14)は前記多孔質膜を透過した液体が前記キャリア ガスと接触することにより気化した蒸気を前記気体流路力 前記分離部の上流側(1 5)へ引き出すために、前記気体流路の出口側を、前記隔壁(11)を貫通してろ過材 (27、 33、 43)の上流側(15)に連通する部分と、前記ろ過材(27、 33、 43)の下流 側(16)からミストが除去された蒸気を引き出す蒸気出口(29、 35)とを備えていること を特徴とする、液体気化装置。  [1] In a liquid vaporizer for vaporizing a liquid by contacting a carrier gas, a vaporization section (13) in which a porous film is disposed in an airtight housing (3), and the vaporization section (13) force partition (11) provided with a mist separation part (14) separated by the filter medium (27, 31, 43), and the vaporization part (13) is disposed in a liquid channel upstream of the porous membrane. And a gas inlet (23) for supplying the carrier gas to a gas flow path downstream of the porous membrane, and the mist separation part (14) permeates the porous membrane. In order to draw vapor vaporized by contact of the liquid with the carrier gas to the upstream side (15) of the gas channel force, the outlet side of the gas channel is connected to the partition wall (11). From the part that penetrates and communicates with the upstream side (15) of the filter medium (27, 33, 43) and the downstream side (16) of the filter medium (27, 33, 43) Characterized in that the strike and a steam outlet (29, 35) withdrawing the vapors removed, a liquid vaporizer.
[2] 前記気化部(13)の前記多孔質膜は複数の多孔質膜中空糸(17)の束であり、前 記上流側の液体流路は前記中空糸(17)の外側流路であり、前記多孔質膜の下流 側流路は前記中空糸(17)の内側流路である、請求項 1に記載の液体気化装置。  [2] The porous membrane of the vaporizing section (13) is a bundle of a plurality of porous membrane hollow fibers (17), and the upstream liquid channel is an outer channel of the hollow fiber (17). The liquid vaporizer according to claim 1, wherein the downstream channel of the porous membrane is an inner channel of the hollow fiber (17).
[3] 前記ミスト分離部(14)の前記ろ過材は、多孔質セラミック又は多孔質榭脂膜 (27) より構成される請求項 1又は 2に記載の液体気化装置。  [3] The liquid vaporizer according to claim 1 or 2, wherein the filter medium of the mist separation section (14) is composed of a porous ceramic or a porous resin membrane (27).
[4] 前記ろ過材は、複数の多孔質膜中空糸(33、 43)の束力 構成されている請求項 1 又は 2に記載の液体気化装置。  [4] The liquid vaporizer according to claim 1 or 2, wherein the filter medium has a bundle force of a plurality of porous membrane hollow fibers (33, 43).
[5] 前記気化部(13)の中空糸(17)と前記ミスト分離部(14)の中空糸(31)は共通の 連続した中空糸より構成されている請求項 4に記載の液体気化装置。  [5] The liquid vaporizer according to claim 4, wherein the hollow fiber (17) of the vaporization section (13) and the hollow fiber (31) of the mist separation section (14) are constituted by a common continuous hollow fiber. .
[6] 前記多孔質膜の上流側には液体を引き出す液体出口(28)が設けられている請求 項 1〜5のいずれか一項に記載の液体気化装置。  [6] The liquid vaporizer according to any one of [1] to [5], wherein a liquid outlet (28) for drawing out a liquid is provided upstream of the porous membrane.
[7] 前記複数の多孔質膜中空糸(43)の束力 字形に形成されている請求項 4に記載 の液体気化装置。  7. The liquid vaporizer according to claim 4, wherein the plurality of porous membrane hollow fibers (43) are formed in a bundle force shape.
PCT/JP2007/056325 2006-04-26 2007-03-27 Liquid vaporization apparatus WO2007125707A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006122148A JP2009038047A (en) 2006-04-26 2006-04-26 Liquid vaporization apparatus
JP2006-122148 2006-04-26

Publications (1)

Publication Number Publication Date
WO2007125707A1 true WO2007125707A1 (en) 2007-11-08

Family

ID=38655243

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/056325 WO2007125707A1 (en) 2006-04-26 2007-03-27 Liquid vaporization apparatus

Country Status (3)

Country Link
JP (1) JP2009038047A (en)
TW (1) TW200810833A (en)
WO (1) WO2007125707A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113448172A (en) * 2020-03-27 2021-09-28 长鑫存储技术有限公司 Photoresist coating device and method

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102470282B (en) * 2009-09-30 2013-02-13 Ckd株式会社 Liquid vaporization system
WO2012098730A1 (en) 2011-01-19 2012-07-26 シーケーディ株式会社 Liquid vaporizer
KR101892758B1 (en) 2011-09-30 2018-10-04 시케이디 가부시키가이샤 Liquid control apparatus
JP5989944B2 (en) 2011-09-30 2016-09-07 Ckd株式会社 Liquid control device
JP5810004B2 (en) * 2012-02-27 2015-11-11 Ckd株式会社 Liquid control device
JP5973178B2 (en) 2012-02-01 2016-08-23 Ckd株式会社 Liquid control device
JP5919115B2 (en) 2012-07-12 2016-05-18 Ckd株式会社 Liquid control device and mesh assembly applied to liquid control device
TWI596663B (en) * 2014-05-12 2017-08-21 東京威力科創股份有限公司 Method and system to improve drying of flexible nano-structures
KR102408282B1 (en) * 2020-08-25 2022-06-13 주식회사 토모 Indirect temperature control apparatus for liquid using multiple tube

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04122024A (en) * 1990-09-13 1992-04-22 Hitachi Ltd Vapor cleaning method and its device
JPH04250830A (en) * 1990-12-29 1992-09-07 Nitto Denko Corp Membrane module
JPH05137922A (en) * 1991-11-22 1993-06-01 Mitsubishi Rayon Co Ltd Filter unit
JP2005249256A (en) * 2004-03-03 2005-09-15 Matsushita Electric Ind Co Ltd Hollow fiber membrane type humidifier

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04122024A (en) * 1990-09-13 1992-04-22 Hitachi Ltd Vapor cleaning method and its device
JPH04250830A (en) * 1990-12-29 1992-09-07 Nitto Denko Corp Membrane module
JPH05137922A (en) * 1991-11-22 1993-06-01 Mitsubishi Rayon Co Ltd Filter unit
JP2005249256A (en) * 2004-03-03 2005-09-15 Matsushita Electric Ind Co Ltd Hollow fiber membrane type humidifier

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113448172A (en) * 2020-03-27 2021-09-28 长鑫存储技术有限公司 Photoresist coating device and method

Also Published As

Publication number Publication date
TW200810833A (en) 2008-03-01
JP2009038047A (en) 2009-02-19

Similar Documents

Publication Publication Date Title
WO2007125707A1 (en) Liquid vaporization apparatus
JP4704854B2 (en) Chemical process system with multi-functional barrier filter
JP4118894B2 (en) Method for producing non-porous membrane
WO1998048926A1 (en) Ink deaerating hollow yarn membrane, ink deaerating method, ink deaerating apparatus, ink cartridge manufacturing method, and ink
JP2006528431A5 (en)
JP2008501512A (en) Fluid filtration device with supply and outlet side vents
JP2008539075A (en) Method and apparatus for processing fluid to reduce microbubbles
TWI577565B (en) Vacuum membrane distillation device and method including hydrophobic porous silica aerogel composite membrane
JP2015502840A (en) Composite PTFE membrane made hydrophilic using non-crosslinked ethylene vinyl alcohol copolymer
JP2001121063A (en) Filter apparatus and liquid treatment apparatus
EP1025893B1 (en) Process for the manufacture of a membrane device with internal sweep
US6842998B2 (en) Membrane dryer
KR20060011961A (en) Pleated construction for effecting gas transfer membrane
KR20030074742A (en) Pressure vessel systems and methods for dispensing liquid chemical compositions
JP2008104953A (en) Gas separation method and gas separator
JPS62273028A (en) Gas dehumidifier
JP2010269258A (en) Separation method by flat membrane pore diffusion and apparatus therefor
JP2002282640A (en) Maintenance method for gas separation module
US20120111198A1 (en) Straight pore microfilter with efficient regeneration
JP3891808B2 (en) Energy-saving dehumidification system
JPH0945615A (en) Manufacturing device of semiconductor element and preparation using this
KR101964074B1 (en) a deaerator for liquid
US11406941B2 (en) Thin film composite hollow fiber membranes fabrication systems
JP3582986B2 (en) Ceramic composite member for degassing and degassing method using the same
JP2928541B2 (en) Flow control valve, pump and filter in liquid supply device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07739763

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 07739763

Country of ref document: EP

Kind code of ref document: A1