WO2007123047A1 - 適応アレイ制御装置、方法、プログラム、及びこれを利用した適応アレイ処理装置、方法、プログラム - Google Patents

適応アレイ制御装置、方法、プログラム、及びこれを利用した適応アレイ処理装置、方法、プログラム Download PDF

Info

Publication number
WO2007123047A1
WO2007123047A1 PCT/JP2007/058089 JP2007058089W WO2007123047A1 WO 2007123047 A1 WO2007123047 A1 WO 2007123047A1 JP 2007058089 W JP2007058089 W JP 2007058089W WO 2007123047 A1 WO2007123047 A1 WO 2007123047A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
array processing
array
processing signal
adaptive
Prior art date
Application number
PCT/JP2007/058089
Other languages
English (en)
French (fr)
Inventor
Akihiko Sugiyama
Original Assignee
Nec Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nec Corporation filed Critical Nec Corporation
Priority to US12/297,871 priority Critical patent/US8014230B2/en
Priority to JP2008512084A priority patent/JP4973655B2/ja
Publication of WO2007123047A1 publication Critical patent/WO2007123047A1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/32Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only
    • H04R1/40Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only by combining a number of identical transducers
    • H04R1/406Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only by combining a number of identical transducers microphones
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/80Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using ultrasonic, sonic or infrasonic waves
    • G01S3/802Systems for determining direction or deviation from predetermined direction
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L21/00Speech or voice signal processing techniques to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
    • G10L21/02Speech enhancement, e.g. noise reduction or echo cancellation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0837Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using pre-detection combining
    • H04B7/0842Weighted combining
    • H04B7/0848Joint weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones
    • H04R3/005Circuits for transducers, loudspeakers or microphones for combining the signals of two or more microphones
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L21/00Speech or voice signal processing techniques to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
    • G10L21/02Speech enhancement, e.g. noise reduction or echo cancellation
    • G10L21/0208Noise filtering
    • G10L21/0216Noise filtering characterised by the method used for estimating noise
    • G10L2021/02161Number of inputs available containing the signal or the noise to be suppressed
    • G10L2021/02166Microphone arrays; Beamforming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2430/00Signal processing covered by H04R, not provided for in its groups
    • H04R2430/20Processing of the output signals of the acoustic transducers of an array for obtaining a desired directivity characteristic

Definitions

  • the present invention relates to signal processing of an adaptive array that spatially receives signals such as incoming speech using array sensors such as a plurality of microphones, and more particularly to an adaptive array control device, method, and program And an adaptive array processing apparatus, method, and program using the same.
  • These devices can receive only a specific signal from a plurality of signal sources, and are an application of adaptive array technology.
  • a microphone an ultrasonic sensor, a sonar receiver, a radio antenna, or the like can be used.
  • a microphone is used as a sensor.
  • the microphone array forms a spatial filter by filtering the signals input to a plurality of microphones and then adding them. This spatial filter emphasizes only the signals coming from the direction specified in advance and the switch target signal and attenuates signals other than the target.
  • An adaptive microphone array is a microphone array having a function of adaptively changing spatial filter characteristics.
  • Non-Patent Document 1 As a configuration of the adaptive microphone array, a “generalized sidelobe canceller” disclosed in Non-Patent Document 1, a configuration disclosed in Non-Patent Document 2, and disclosed in Non-Patent Document 3.
  • Known configurations such as “Frost 'Beamformer” disclosed in Non-Patent Document 4, Non-Patent Document 5 and the like! /
  • a generalized sidelobe canceller which is a basic adaptive array processing apparatus disclosed in Non-Patent Document 1, includes a fixed beamformer, a blocking matrix, and a multi-input canceller.
  • An adaptive blocking matrix including an adaptive filter is also used as the blocking matrix.
  • a fixed beamformer processes multiple sensor signals to enhance the target signal.
  • the blocking matrix suppresses the target signal included in the plurality of sensor signals and relatively emphasizes the interference signal.
  • the adaptive blocking matrix uses the fixed beamformer output as a reference signal, subtracts the plurality of sensor signal forces from the pseudo target signal generated by the adaptive filter, and supplies it to the multi-input canceller.
  • the adaptive filter coefficient of the adaptive blocking matrix is updated so that the output of the adaptive blocking matrix is minimized by using the output of the fixed beamformer and the output of the adaptive blocking matrix.
  • the multi-input canceller subtracts the pseudo jamming signal generated by the adaptive filter from the fixed beamformer output, using the output of the blocking matrix as a reference signal.
  • the target signal is emphasized and the interference signal is suppressed, and this is used as the array device output. This subtraction process removes the correlation of the output signal with the disturbing signal.
  • the adaptive filter coefficient of the multi-input canceller is updated using the blocking matrix output and the multi-input canceller output so that the multi-input canceller output is minimized.
  • the fixed beamformer As the fixed beamformer, a delay and sum beamformer that delays and adds a plurality of sensor signals, and a filter and thumb beamformer that adds after filtering can be used. These fixed beamformers are described in detail in Non-Patent Document 6.
  • the delay and sum beamformer delays a plurality of sensor signals by the number of samples specific to each signal, further multiplies each signal by a specific coefficient, and then calculates and outputs the sum.
  • the delay time of each signal is set so that the phase of the target signal included in each sensor signal is the same after being delayed. As a result, the target signal included in the output of the delay and thumb beamformer is enhanced.
  • jamming signals coming from directions different from the target signal have mutually different phases in the respective delayed signals, and thus cancel each other out and attenuate by addition. Therefore, at the output of the delay and sum beamformer, the target signal is emphasized and the interference signal is attenuated.
  • the filter add-sum beamformer has a configuration in which the delay and constant multiple for a plurality of sensor signals in the delay and sum beamformer are replaced by a filter. These multiple filters can be made to have different delay and constant multiple effects in the delay and sum beamformer for each frequency. Therefore, the target signal enhancement effect is higher than the delay and sum beamformer for signals with non-flat spectrum.
  • the adaptive blocking matrix and the multi-input canceller include a plurality of adaptive filters.
  • these adaptive filters structures such as FIR filters, IIR filters, and lattice filters can be used.
  • the coefficient update algorithm for these adaptive filters includes NLMS algorithm (learning identification method or normalized LMS algorithm), RLS algorithm (sequential least square method), projection algorithm, gradient method, LS algorithm (least square method), block Adaptive algorithms, transform domain adaptive algorithms, etc. can be used.
  • the enhanced interference signal in the coefficient update of the adaptive blocking matrix becomes a signal unnecessary in the coefficient update, and the enhanced target signal in the coefficient update of the multi-input canceller disturbs the coefficient update. For this reason, in any case, the adaptive filter coefficient is disturbed, and unpleasant breathing noise is generated in the output signal of the array processing apparatus.
  • Non-Patent Document 8 an adaptive mode control device is disclosed in Non-Patent Document 8 and Non-Patent Document 9.
  • Non-Patent Document 8 the presence of the interference signal is detected using the correlation between signals obtained by adjacent sensor forces. By stopping coefficient updating when a jamming signal is detected, a good adaptive array device output can be obtained.
  • the microphone interval is wide, and the signal band is limited to about 600 [Hz] to 1200 [Hz] in order to avoid spatial aliasing.
  • the presence of interfering signals cannot be detected accurately because sometimes the audio power is also outside this frequency range.
  • it is configured to control the coefficient update of only the multi-input canceller assuming a fixed blocking matrix, and cannot be applied directly to the adaptive blocking matrix.
  • the presence of a disturbing signal is detected using the power ratio (SIR) of the target signal to the disturbing signal.
  • the target signal power is estimated using the fixed beamformer output.
  • Interference signal power estimation is performed using the output of the adaptive blocking matrix. The ratio of these estimates (ie, the SIR estimate) is compared to a threshold.
  • the coefficient update is stopped with the adaptive blocking matrix, and the coefficient update is executed with the multi-input canceller.
  • Non-Patent Document 10 discloses adaptive mode control means having a dedicated fixed blocking matrix.
  • Non-Patent Document 10 power estimation of interference signals is performed using a dedicated fixed blocking matrix. Therefore, the desired performance can be obtained regardless of the convergence of the adaptive filter coefficient included in the adaptive blocking matrix, and accurate interference signal power estimation can be performed.
  • FIG. 11 shows an adaptive mode processing device in another conventional example.
  • FIG. 11 Another conventional example (adaptive mode processing device) shown in FIG. 11 combines the adaptive array processing device disclosed in Non-Patent Document 9 described above with the adaptive mode control means disclosed in Non-Patent Document 10. It is configured.
  • the adaptive array processing device disclosed in Non-Patent Document 9 has a configuration including a fixed beamformer 200, an adaptive blocking matrix circuit 300, a delay element 400, and a multi-input canceller 500.
  • the adaptive mode control means has a configuration including a blocking matrix 310, a SIR estimation unit 700, a comparison unit 800, and the like.
  • the fixed beamformer 200 of the adaptive array processor is composed of M sensors 100-100.
  • the adaptive blocking matrix circuit 300 suppresses the target signal included in the plurality of sensor signals and relatively emphasizes the interference signal. This is achieved by using the output of the fixed beamformer 200 described above as a reference signal to generate a pseudo target signal by a plurality of adaptive filters and subtracting them from the signals obtained from the M sensors 100 to 100.
  • the coefficient of the adaptive filter described above is updated using the output of the fixed beamformer 200 and the output of the adaptive blocking matrix circuit 300 so that the output of the adaptive blocking matrix 300 is minimized.
  • the delay element 400 delays the output of the fixed beamformer 200 by L samples and supplies it to the multi-input canceller 500.
  • the value of L is set so that the target signal component at the output of the delay element 400 and the target signal component at the output of the adaptive blocking matrix circuit 300 are in phase.
  • the group delay time of the fixed beamformer 200 and the adaptive blocking matrix 30 It can be set to the sum of the time corresponding to about one quarter to one half of the number of taps of 0.
  • the multi-input canceller 500 receives and processes the delayed output signal of the fixed beamformer 200 and the output signal of the adaptive blocking matrix circuit 300, thereby suppressing the interfering signal and relatively processing the target signal. Emphasize further.
  • the multi-input canceller 500 receives the interference signal emphasized from the adaptive blocking matrix circuit 300 as a reference signal, and generates a pseudo interference signal by an adaptive filter as a signal correlated therewith.
  • the generated pseudo disturbance signal is subtracted from the emphasized target signal force that is the output of the delay element 400. This output is transmitted to the output terminal 600.
  • the adaptive filter coefficient of multi-input canceller 500 is updated using the output of adaptive blocking matrix 300 and the output signal transmitted to output terminal 600 so that the output signal is minimized.
  • the output of the adaptive blocking matrix circuit 300 used in the coefficient update of the adaptive blocking matrix circuit 300 includes the interference signal and the suppressed target signal.
  • the adaptive blocking matrix circuit 300 can only affect the target signal component, and the interference signal is output as it is. That is, the adaptive blocking matrix 300 can minimize only the target signal component, and the disturbing signal component included in the output interferes with the coefficient update.
  • the adaptive filter coefficient included in adaptive blocking matrix circuit 300 is disturbed, and the signal transmitted to multi-input canceller 500 becomes unstable.
  • the output of the multi-input canceller 500 that is, the output of the entire adaptive array device is disturbed, and unpleasant breathing noise is generated.
  • the SIR is estimated using the plurality of sensor signals, and the coefficient update of the adaptive blocking matrix circuit 300 is controlled using the estimated value.
  • the target signal emphasized in the coefficient update of the multi-input canceller 500 becomes a signal unnecessary for the coefficient update, and disturbs the coefficient update.
  • the interference disturbs the adaptive filter coefficient included in the multi-input canceller 500, causing unpleasant breathing noise at the output of the adaptive array device. Therefore, similarly to the adaptive blocking matrix circuit 300, the SIRs of the plurality of sensor signals are estimated, and the coefficient update of the multi-input canceller 500 is controlled using the estimated values.
  • SIR estimation section 700 performs SIR estimation using the output of blocking matrix circuit 310 and the output of fixed beamformer 200.
  • the power estimation of the target signal is performed using the output of the fixed beamformer 200.
  • the power estimation of the interference signal is performed using the output of the fixed blocking matrix circuit 310.
  • the SIR estimation value calculated by SIR estimation section 700 is transmitted from SIR estimation section 700 to comparison section 800.
  • Comparator 800 compares the SIR estimated value with a threshold value.
  • the target signal When the estimated SIR value is larger than the threshold value, the target signal is dominant in the input signal and the influence of the disturbing signal is small. Therefore, a control signal for updating the coefficient with the adaptive blocking matrix is generated, and the adaptive blocking matrix circuit 300 receives the signal. Supply.
  • the target signal when updating the coefficient of multi-input canceller 500, the target signal interferes, so a control signal for stopping the coefficient update of multi-input canceller 500 is generated and the When the estimated value is small, the coefficient updating is stopped by the adaptive blocking matrix, and a signal for executing the coefficient updating by the multi-input canceller is generated and supplied to the adaptive blocking matrix 300 and the multi-input canceller 500, respectively.
  • FIG. 12 shows a configuration example of the blocking matrix circuit 310. It comprises a subtractor 311 for obtaining the difference between the i-th sensor signal X (k) and the (i + 1) -th sensor signal X (k).
  • the output signal Z (k) of the blocking matrix 310 is X (k) -X (k).
  • the blocking matrix 310 has the effect of suppressing the target signal.
  • Non-Patent Document 1 January 1982, IEEE Transactions ON ANTENNAS AND PRO PAGATIONS, Vol. 30, NO. l, PP.27-34, Jan. 1982) 27-34.
  • Non-Patent Document 2 September 1992, IEEE Transactions ON ANTENNAS AND PRO PAGATIONS, Vol.40, NO.9, PP .1093- 1096, Sep. 1992) 1093-1096.
  • Non-patent document 3 September 1996, IEICE Transactions A, No. 79, No. 9, 1516-15 24 pages.
  • Non-Patent Document 4 August 1972, Proceedings' IEEE, 60th, No. 8 (PROCE EDINGS OF IEEE, VOL.60, NO.8, PP.926—935, Aug. 1972) 926 ⁇ 935 pages.
  • Non-Patent Document 5 April 1994, IEEE Proceedings of International Conference on ACOUSTICS, SP EECH 'AND SIGNNAL PROCESSING, VOL.IV, PP.269-272, Apr. 1994) 269-272 pages.
  • Non-Patent Document 6 1993, “Array Signal Processing”, Chapter 4, Prentice Hall, Inglewood 'Cliffs (CH.4, ARRAY SIGNAL PROCESSING, PRENTICE-H ALL, ENGLEWOOD CLIFS, 1993. )
  • Non-Patent Document 7 2001, “Microphone Array”, Springer (MICROPHONE ARRA YS, SPRINGER, 2001.)
  • Non-Patent Document 8 March 1992, Journal of Architectural Society of America, USA 91st, No. 3, (JOURNALOF ACOUSTICAL SOCIETYOF AMERICA, VOL.91, N0.3, PP. 1662-1676, Mar. 1992) 1662-1676
  • Non-Patent Document 9 April 1998, “I'1'1'1'Proceedings' Ob'I'S--A.S.S.P. (IEEE PROCEEDINGS OF ICASSP, PP.3605— 3608, APR. 1998) 3605-3608
  • Non-Patent Document 10 March 1999, “Professionals of I.S.P.949” (IEEE PROCEEDINGS OF ICASSP, PP.949— 952, MAR. 1 999) Pages 949-952
  • the selectivity based on the direction in which the frequency characteristics of the fixed blocking matrix for estimating the power of the interference signal are not flat is not sufficient.
  • the present invention makes it possible to perform accurate coefficient update control that is difficult to be affected by the frequency characteristics and direction of arrival of the target signal, and thereby the frequency characteristics of the input signal, the target signal, and the interference signal. It is an object of the present invention to provide an adaptive array control device, method, program, and adaptive array processing device, method, program that can obtain a high-quality array processing output that is not easily affected by the direction of the direction.
  • a plurality of sensor forces in the form of an array are formed by emphasizing a target signal included in a plurality of signals sent to other signals.
  • An analysis unit that analyzes the first array processing signal to obtain a signal characteristic, and a correction unit that corrects the first array processing signal according to the obtained signal characteristic and outputs the corrected first array processing signal.
  • a SIR estimation unit that estimates a ratio (SIR) of a disturbing signal to a target signal based on the first corrected array processing signal, and using this SIR estimated value, parameter adjustment in a predetermined adaptive array processing unit is performed. It is characterized by an arithmetic control unit that generates a control signal for controlling speed and accuracy.
  • the adaptive array processing device it is possible to appropriately perform the coefficient update control of the device, and to achieve high quality that is not easily affected by the frequency characteristics of the input signal and the direction of the target signal and the interference signal.
  • the array processing can be output-controlled.
  • a second array processing signal generation unit that generates the second array processing signal by attenuating the target signal described above with respect to other signals
  • the SIR estimation unit includes the first array processing signal.
  • the target signal to interference signal ratio (SIR) is estimated and specified.
  • the configuration is as follows.
  • the above-described arithmetic control unit force may be configured to have an adaptive array processing control function for controlling the speed and accuracy of parameter adjustment required for adaptive array processing in the adaptive array processing unit using the SIR estimated value. Good.
  • the estimated values of the respective powers of the target signal and the interference signal are adaptively corrected according to the characteristics of the target signal, so that high flatness, frequency and spatial selection characteristics can be realized. Therefore, it is possible to accurately estimate the powers of the target signal and the interference signal, and therefore, it is possible to appropriately perform the coefficient update control of the appropriate array processing device.
  • the first sensor signal formed by emphasizing the target signal included in the plurality of signals fed into the plurality of sensor forces in the form of an array.
  • An analysis unit that analyzes the array processing signal to obtain a signal characteristic; a correction unit that corrects the first array processing signal according to the obtained signal characteristic and outputs the signal as a first corrected array processing signal; and the target
  • a second array processing signal generator that attenuates a signal relative to other signals to generate a second array processing signal; and a relative relationship between the first correction array processing signal and the second array processing signal.
  • a calculation control unit that generates a control signal for controlling the speed and accuracy of parameter adjustment in a predetermined adaptive array processing unit using the magnitude relationship obtained by the calculation unit. It is characterized by.
  • the second array processing signal generation unit described above sets a plurality of sensor pairs having different sensor intervals and sets the sensors. It may be configured to have a sensor-to-difference information output function that calculates and outputs the output difference of the sensor pair. .
  • the second array processing signal generator includes a plurality of filters for filtering each output difference and an adder for adding the filter outputs, and the addition result in the adder is obtained.
  • a configuration with an addition result output function for external output may be used.
  • a plurality of sensor forces in the form of an array are used.
  • the first array is formed by emphasizing a target signal included in a plurality of signals to be fed with respect to other signals.
  • a signal characteristic analyzing step of analyzing the processed signal to obtain its signal characteristic; and a first corrected array processed signal that is corrected according to the obtained signal characteristic and output as a first corrected array processed signal The array processing signal correction step, the SIR estimation step for estimating the target signal to interference signal ratio (SIR) based on the first correction array processing signal, and the SIR estimation value estimated in this SIR estimation step
  • an adaptive array processing control step for setting and controlling the speed and accuracy of parameter adjustment in a predetermined adaptive array processing to an optimum state.
  • the estimated value of each part of the target signal is adaptively corrected according to the characteristic of the target signal, so that a high flatness frequency and spatial selection characteristic can be realized. And each power of the target signal can be accurately estimated. Therefore, by incorporating this into the adaptive array processing method, it is possible to appropriately perform coefficient update control, etc., and high quality that is not easily affected by the frequency characteristics of the input signal and the direction of the target signal and interference signal. It is possible to control the output of various array processes.
  • the second array for obtaining the second array processing signal by attenuating the target signal with respect to other signals.
  • a processing signal generation step is set, and the SIR estimation step estimates the target signal to interference signal ratio (SIR) based on the second array processing signal and the first correction array processing signal.
  • SIR target signal to interference signal ratio
  • a first signal formed by emphasizing a target signal included in a plurality of signals fed into a plurality of sensor forces in an array form.
  • Based on the magnitude relation specifying step for obtaining the relative magnitude relation of the generated second array processing signal, and based on the identified relative magnitude relation! /, Parameter adjustment in predetermined adaptive array processing It may also be configured with an adaptive array processing control process that sets and controls the speed and accuracy of the machine to the optimum state.
  • the contents of the second array processing signal generation step described above are set as a plurality of array sensor information powers, a plurality of sensor pairs having different sensor intervals are set, and an output difference between the sensor pairs is set. May be used to generate a second array processing signal.
  • the second array processing signal generation step described above is specified by filtering the output differences and specifying a plurality of filter processing results corresponding to the differences.
  • the second array processing signal may be generated using a sum of a plurality of filter processing results.
  • the first array formed by emphasizing target signals included in a plurality of signals sent from a plurality of sensors in an array form with respect to other signals.
  • a signal characteristic analysis function for analyzing the processed signal and obtaining the signal characteristic; and a first characteristic for correcting the first array processed signal according to the generated signal characteristic to obtain a first corrected array processed signal.
  • An array processing signal correction function, an output difference calculation function for obtaining an output difference between a plurality of sensor pairs having different sensor intervals, and the target signal is compared with other signals by using the calculated output difference.
  • a second array processing signal generation function for obtaining an attenuated second array processing signal, and a relative magnitude relationship between the corrected first correction array processing signal and the second array processing signal generated above Seeking big and small relationship Based on the specified function and the specified relative magnitude relationship, the speed and accuracy of parameter adjustment in the adaptive array processing of the first array processing signal are set and controlled to the optimum state. It is characterized in that the adaptive array processing control function is configured to be executed by a computer.
  • the target signal included in the plurality of signals sent from the array-like sensor group is processed so as to be emphasized with respect to other signals, thereby the first A first array processing signal generation unit that generates an array processing signal of the second array processing signal generation unit that generates a second array processing signal by attenuating the target signal with respect to other signals, A correlation removal unit that eliminates a signal component correlated with the second array processing signal from the first array processing signal, an analysis unit that analyzes the first array processing signal and obtains signal characteristics, and A correction unit that corrects the first array processing signal in accordance with the signal characteristics obtained by the analysis unit and outputs the first array processing signal as a first correction array processing signal, and attenuates the target signal with respect to the other signals.
  • a third array that generates three array processing signals
  • a ray processing signal generation unit a calculation unit for obtaining a relative magnitude relationship between the generated third array processing signal and the first correction array processing signal; and an adaptive array processing for the first array processing signal.
  • an adaptive array processing unit that eliminates the influence of the disturbing signal and emphasizes and outputs the first array processing signal.
  • a control signal for controlling the speed and accuracy of parameter adjustment in the adaptive array processing of the adaptive array processing unit is generated using the magnitude relationship output from the calculation unit.
  • An arithmetic control unit is provided, and at least one of the first array processing signal generation unit, the second array processing signal generation unit, and the correlation removal unit using the control signal output from the arithmetic control unit. It is characterized by controlling one movement.
  • the estimated value of each part of the target signal is adaptively corrected according to the characteristic of the target signal, a high flatness frequency and spatial selection characteristic can be realized. And each power of the target signal can be accurately estimated. For this reason, by incorporating it in the adaptive array processing method, it is possible to appropriately perform coefficient update control by the processing method, and it is affected by the frequency characteristics of the input signal and the direction of the target signal and the interference signal. Difficult high-quality array processing output can be obtained.
  • the second array processing signal generation unit includes a plurality of filters for filtering each output difference described above and an adder for adding the filter outputs, and the addition result in the adder is externally transmitted.
  • a configuration having an output result output function may be adopted.
  • the arrayed sensor group force is processed so as to emphasize the target signal included in the plurality of signals sent to the other signals, and thereby the first A first array processing signal generation step for generating a second array processing signal by attenuating the target signal with respect to other signals, and a second array processing signal generation step for obtaining a second array processing signal; Signal characteristic generation for determining signal characteristics by analyzing the first array processing signal when the generated signal component correlated with the second array processing signal is erased and output.
  • a first array processing signal correction step for correcting the first array processing signal in accordance with the generated signal characteristics to obtain a first corrected array processing signal, Attenuating the signal to the third
  • a third array processing signal generation step for generating a ray processing signal, and a magnitude relation specification for obtaining a relative magnitude relationship between the corrected first correction array processing signal and the generated second array processing signal
  • an adaptive array processing control step for controlling the speed and accuracy of parameter adjustment in the adaptive array processing for the first array processing signal based on the identified relative magnitude relationship.
  • the estimated value of each power of the target signal is adaptively corrected according to the characteristics of the target signal. Therefore, frequency and space selection characteristics can be realized, and each power of the target signal can be accurately estimated, which makes it possible to perform coefficient update control and the like quickly and appropriately, and therefore, input Influenced by the frequency characteristics of the signal and the direction of the target and jamming signals Difficult high-quality array processing output can be obtained.
  • the execution contents of the third array processing signal generation step described above are set as a plurality of sensor pairs having different sensor intervals with different array sensor information powers inputted, and the output of the sensor pair
  • the third array processing signal may be generated using the difference (claim 16).
  • the execution contents of the third array processing signal generation step described above are subjected to filter processing on each output difference to specify a plurality of filter processing results corresponding to the respective differences, and the plurality of specified filters.
  • the third array processing signal may be generated using the sum of the processing results.
  • the target signal included in the plurality of signals sent to the array sensor group force is processed so as to be emphasized with respect to other signals, thereby A first array processing signal generation function for generating a first array processing signal, and a second array processing signal generation function for generating a second array processing signal by attenuating the target signal with respect to other signals A correlation component erasing function for erasing and outputting a signal component correlated with the second array processing signal, and the first array processing signal from which the correlation component is erased.
  • the signal characteristic generation function for determining the signal characteristic by analyzing the signal characteristics and the first corrected array processing signal by correcting the original first array processing signal according to the generated signal characteristic 1 array processing signal
  • a second array processing signal generating function for generating a second array processing signal whose signal is attenuated with respect to other signals, the corrected first corrected array processing signal and the generated second array
  • the estimated value of the target signal power is adaptively corrected according to the characteristics of the target signal, and the interference signal power is estimated while maintaining excellent frequency and spatial selectivity.
  • FIG. 1 to 9 show a first embodiment of an adaptive array processing apparatus according to the present invention.
  • the adaptive array processing apparatus according to the first embodiment displays target signals included in a plurality of signals sent from M sensor groups 100 to 100 in an array form.
  • a fixed beamformer 200 as a first array processing signal generation unit for processing to emphasize other signals and thereby generating a first array processing signal, and the target signal as another signal
  • an adaptive blocking matrix circuit 300 as a second array processing signal generation unit for generating a second array processing signal with attenuation.
  • the adaptive array processing device includes a blocking matrix circuit 310, a multipolar input canceller 500 as an adaptive array processing unit that outputs an emphasized target signal, a comparison unit 800 as an arithmetic control unit, A delay element 400 that delays the first array processing signal and sends it to the multi-pole input canceller 500, a gain control unit 900, and a target signal based on the first correction array processing signal! And an SIR estimation unit 700 for estimating a ratio (SIR) of interference signals.
  • SIR ratio
  • the comparison unit 800 serving as the arithmetic control unit includes the multi-pole input canceller 500 and the above-described input control unit.
  • the operation of the adaptive blocking matrix circuit 300 described above is controlled, and in particular, the multi-pole input canceller (applied array processing unit) 500 controls adjustment of the adjustment parameter coefficient so that a high-quality array processing output can be achieved. It has a coefficient update control function!
  • the blocking matrix circuit 310, the SIR estimation unit 700, the gain control unit 900, and the arithmetic control unit (comparison unit) 800 constitute an adaptive mode control means (adaptive array control device) 120 0. Has been.
  • adaptive mode control means adaptive array control device 1200
  • the above-described blocking matrix circuit (second array processing signal generation unit) 310 is described above as shown in FIG. Arrayed M sensor groups 100-100 forces in
  • Multiple array sensor information ability Multiple blocking matrix circuits with sensor pair difference output function that sets multiple sensor pairs with different sensor intervals and calculates and outputs the output difference of the sensor pairs (Second array processing signal generation unit) 320 may be configured.
  • the blocking matrix circuit (second array processing signal generation unit) 320 shown in FIG. 4 adds a plurality of filters that respectively filter the output differences described above and the filter outputs.
  • the gain control unit 900 described above analyzes the first array processing signal described above to obtain signal characteristics, and the signal characteristics obtained by the analysis unit 903 are analyzed.
  • a spectrum correction unit 905 is provided as a correction unit that corrects the first array processing signal described above and outputs it as the first correction array processing signal.
  • the SIR estimation unit 700 described above based on the first corrected array processing signal output from the gain control unit 900 and the second array processing signal described above, the ratio of the interference signal to the target signal (SIR) Is configured to estimate.
  • the SIR estimation may be configured to use the first array processing signal instead of the first correction array processing signal.
  • this adaptive array processing apparatus adaptively performs array processing on the first array processing signal in accordance with the estimated value estimated by the SIR estimation section 700 described above, thereby eliminating the influence of the interference signal.
  • the above-described multi-input canceller 500 eliminates the signal component correlated with the second array processing signal described above and correlates the signal with the first array processing signal by erasing and outputting the first array processing signal. It also has a function as a removal unit.
  • the SIR estimation unit 700 is configured to execute the target based on the second array processing signal generated by the blocking matrix (second array processing signal generation unit) 320 and the first correction array processing signal.
  • a configuration that estimates and identifies the signal-to-interference ratio (SIR) may be used.
  • the SIR estimation unit 700 may be replaced with a calculation unit (not shown) for obtaining the relative magnitude relationship between the first corrected array processing signal and the second array processing signal.
  • the arithmetic control unit 800 described above performs parameter adjustment in adaptive array processing based on the information on the relative magnitude relationship between the first correction array processing signal and the second array processing signal described above. It has a control signal generation function for generating a control signal for controlling the speed and accuracy, and the fixed beam former (first array processing signal generation unit) 200 and the blocking matrix circuit (first array signal) using the control signal. (2 array processing signal generation unit) 310, adaptive blocking matrix circuit 300, and multi-input canceller (correlation removal unit) 500. Adaptive array processing control function)!
  • the above-described gain control unit 900 further has a function of adaptively correcting the estimated value of the target signal parameter according to the characteristics of the target signal. For this reason, specific frequency components can be adaptively enhanced to achieve high flatness frequency and spatial selection characteristics, which makes it possible to accurately estimate the target signal power. .
  • This accurately estimated target signal power is transmitted to the SIR estimation unit 700 and used for the SIR calculation.
  • the coefficient update By controlling the parameters that determine the adaptive filter followability and calculation accuracy, such as the step size and forgetting factor, it is possible to appropriately control the coefficient update of the adaptive array processor.
  • the gain control unit 900 includes a storage unit 901, a Fourier transform unit 902, an analysis unit 903, a gain calculation unit 904, a spectrum correction unit 905, an inverse Fourier transform unit 906, and a storage unit 907.
  • the output of the fixed beam former 200 described above is supplied to the storage unit 901 of the gain control unit 900 and framed.
  • the framed signal is transmitted to the Fourier transform unit 902 and subjected to Fourier transform.
  • the Fourier transform result is supplied to the analysis unit 903 and the spectrum correction unit 905.
  • the analysis unit 903 analyzes the input signal using the Fourier transform result, and detects an input signal having a specific property. Information on the nature of the input signal and the detection result are transmitted to the gain calculator 904. Typical information on the nature of the input signal is the use of features such as cepstrum and information obtained by thinning out these features instead of the force spectrum, which is a spectrum.
  • the gain calculation unit 904 obtains a correction gain corresponding to the input signal and supplies it to the spectrum correction unit 905.
  • An example of the specific property is friction noise.
  • the frequency spectrum of frictional sound is known to have power up to higher frequencies and to be flat compared to non-frictional sound.
  • the spectrum correcting unit 905 corrects the spectrum by correcting the Fourier transform result supplied from the Fourier transform unit 902 using one or more correction gains supplied from the gain calculating unit 904. To do.
  • the amplitude or power of the Fourier transform result is corrected with the correction gain, and the result is supplied to the inverse Fourier transform unit 906.
  • the phase information is supplied as it is to the inverse Fourier transform unit 906 without correction.
  • the inverse Fourier transform unit 906 performs inverse Fourier transform on the data supplied from the spectral correction unit 905 and transmits the result to the storage unit 907.
  • the storage unit 907 outputs the stored data one sample at a time, thereby de-framing the signal samples.
  • the Fourier transform unit 902 and the inverse Fourier transform unit 906 described above are separate transforms that form a pair.
  • transformations include cosine transformation, modified discrete cosine transformation, also known as MDC T, Hadamard transformation, Haar transformation, and wavelet transformation.
  • MDC T modified discrete cosine transformation
  • Haar transformation Haar transformation
  • wavelet transformation wavelet transformation
  • FIG. 3 shows another configuration example of the gain control unit 900 described above.
  • the gain control unit 900 shown in FIG. 3 includes a band division filter bank 911, an analysis unit 912, a gain calculation unit 913, a spectrum correction unit 914, and a band synthesis filter bank 915! RU
  • the output of the above-described fixed beamformer 200 is supplied to the band division filter bank 911 and divided into a plurality of frequency bands.
  • the signal of each frequency band is supplied to the analysis unit 912 and the spectrum correction unit 914.
  • the operations of the analysis unit 912 and the gain calculation unit 913 are the same as those of the analysis unit 903 and the gain calculation unit 904.
  • the spectrum correction unit 914 corrects the level of each frequency band signal using one or more correction gains supplied from the gain calculation unit 013 and transmits the result to the band synthesis filter bank 915.
  • the band synthesis filter bank 915 synthesizes the data supplied from the spectrum correction unit 914, converts it into an all-band signal, and outputs the result. Unlike the configuration example shown in FIG. 2 described above, the same processing is possible by sequential processing without accumulating signal samples in the memory circuit. For this reason, the delay associated with gain control can be reduced, and the fluctuating system The follow-up characteristic with respect to is improved.
  • the frequency bands of the band division filter bank 911 and the band synthesis filter bank 915 may be equally spaced or unequal.
  • unequal division include octave division in which the band is successively halved toward the low band and critical band division corresponding to human auditory characteristics. It is known that unequal division is particularly consistent with audio signals.
  • FIG. 4 shows a case where the multiple blocking matrix circuit 320 is provided.
  • An example of the configuration of the multiple blocking matrix circuit 320 is shown in FIG.
  • the multiple blocking matrix circuit 320 includes subtractors 321 to 321 and
  • the subtractor i uses the first sensor signal X (k) and the i
  • the symbol i is an integer in the range 0 to M ⁇ 2.
  • the Karo arithmetic unit 322 adds all these M ⁇ 1 input signals and outputs the addition result as Z (k).
  • each difference Z (k) 0 with respect to the target signal coming from the front.
  • Z (k) is not zero.
  • each difference functions as a blocking matrix independently.
  • each difference Z (k) has different frequency response and spatial selection characteristics. This is due to the following two reasons.
  • the relative delay between two sensor signals that are subtractor inputs is the distance between sensors. This is given as the product of the sine of the direction of signal arrival divided by the speed of sound.
  • the distance between sensors is different for all Z (k).
  • the frequency characteristics and spatial selection characteristics of the difference Z (k) are functions of the distance between sensors.
  • Z (k) with different distances between sensors has different frequency characteristics and spatial selection characteristics. This is the subtractor 321-3 i 0
  • the frequency characteristic and the reciprocal of the space selection characteristic in the above document may be normalized.
  • the spatial selectivity becomes steeper as the input signal frequency increases. At low frequencies, the spatial selectivity with wider beam angles also degrades.
  • the sensitivity is higher in the direction away from the front where the sensitivity is low for the target signal coming from the front.
  • the transition from a low sensitivity direction to a high sensitivity direction is gradual, and sufficient spatial selectivity cannot be obtained.
  • the sensor interval is widened, the relative delay becomes large and high spatial selectivity can be realized. That is, steep space selectivity can be obtained.
  • this multiple blocking matrix circuit 320 has excellent frequency characteristics and spatial selection. Therefore, the target signal can be suppressed.
  • the interference signal power is accurately estimated using the output of the multiple blocking matrix circuit 320 having such characteristics, and the SIR calculation unit 700 calculates SIR using the result. Is configured to do.
  • adaptive blocking in adaptive array processors is controlled by controlling parameters that determine the adaptive filter tracking and calculation accuracy, such as coefficient update step size and forgetting coefficient, based on accurate SIR estimates!
  • the coefficient update in the matrix circuit 300 and the multipolar input canceller 500 that outputs the target signal can be appropriately controlled. As a result, it is possible to obtain a high-quality array processing output that is hardly affected by the frequency characteristics of the input signal and the direction of the target signal and the interference signal.
  • FIG. 3 Another configuration example of the blocking matrix circuit 320 is shown in FIG.
  • the blocking matrix circuit 320 shown in FIG. 6 includes subtractors 321 to 321 and a filter 323.
  • the subtractor i is the first sensor signal
  • 0 i i is transmitted to 0 i i.
  • the sign i is an integer in the range 0 to M-2.
  • the filter 323 transmits the signal component of the pass band to the adder 322. Power! ] Calculator 322 adds all these M-1 input signals and outputs the addition result as Z (k).
  • the passband of filter 323 is determined by the 0th and i-th microphone intervals. Filter 323 is designed so that the passivity is a frequency where the spatial selectivity determined by the 0th and i-th microphone signals is flat, especially in the direction other than the front. ing.
  • the blocking matrix circuit 320 may have another configuration (see FIG. 7).
  • the distance between the two sensors is D, 2 D, 3D, ..., (M-1) D in order from the shortest.
  • the pair of sensors with sensor spacing D is M-1
  • the pair with 2D is M-2
  • the pair with (M-1) D is 1. Therefore, as long as the configuration is such that a set of sensors corresponding to each of these sensor intervals is selected, the difference between the signals obtained therefrom is obtained, and these are added by the adder 322, the blocking matrix circuit 320 Has the above effects.
  • An example of such a configuration is shown in FIG.
  • the target signal blocking effect is higher than that of the conventional blocking matrix circuit 310.
  • a configuration example (fourth example) of such a blocking matrix circuit 320 is shown in FIG. Comparing FIG. 8 to FIG. 6, there is no subtractor 321. For this reason, there is no differential signal corresponding to the sensor interval of 2D.
  • a blocking matrix circuit 320 having an overall excellent spatial selectivity can be obtained by signals corresponding to other sensor intervals, although it does not reach the example of FIG.
  • the output of 321 is supplied to Calo Arithmetic 322 via Finaleta 323-323
  • the multiple blocking matrix circuit 320 can be configured in a state in which the output contents are variously changed according to the purpose. Therefore, by appropriately selecting and installing this, the frequency characteristics of the input signal and the target signal can be obtained. High-quality array processing output that is not easily affected by the direction of interference signals can be obtained.
  • the receiving unit 100 receives them and temporarily holds them (step S101).
  • an array sensor It has a function that can always receive a plurality of signals.
  • the array sensor signal received by the receiving unit 100 includes a fixed beamformer (first array processing signal generation unit) 200, a blocking matrix circuit (second array processing signal generation unit) 310 (320), and an adaptive blocker.
  • Matrix circuit (interference signal extraction unit) 300 is simultaneously sent.
  • step S102 First array processing signal generation step.
  • the blocking matrix circuit (second array processing signal generation unit) 310 (320) attenuates the target signal included in the plurality of sent signals with respect to the other signals, thereby preventing the interference signal. Processing is performed so as to emphasize, and a second array processing signal is generated (step S 103: second array processing signal generation step). The generated second array processing signal is temporarily stored in the blocking matrix circuit 310 (320).
  • the adaptive blocking matrix circuit 300 generates a third array processing signal in which the target signal included in the plurality of sent signals is attenuated with respect to other signals to emphasize the interference signal. This is output to the multi-input canceller 500 described above (step S104).
  • each processing operation in the fixed beamformer 200, the blocking matrix circuit 310, and the adaptive blocking matrix 300 operates simultaneously and is performed simultaneously.
  • the first array processing signal generated in step S102 and having the target signal emphasized is sent to the delay element 400, and sent to the multi-input canceller 500 at a predetermined delayed timing (step S105).
  • the first array processing signal is sent to the gain controller 900.
  • the gain controller 900 immediately analyzes the first array processing signal to obtain the signal characteristic (step S 106: signal characteristic analysis step).
  • the first array processing signal is corrected to a signal for SIR estimation according to the generated signal characteristics, and thereby a first corrected array processing signal is generated.
  • Step S107 First array processing signal correction step).
  • the target signal to interference signal ratio (SIR) force SSIR It is calculated and estimated by the estimation unit 700 (step S108: SIR estimation process).
  • the SIR may be estimated using a predetermined interference signal (for example, assumed in advance) set in advance in place of the second array processing signal.
  • a magnitude relation specifying step for obtaining a relative magnitude relationship between the first corrected array processing signal and the second array processing signal may be set.
  • a third array processing signal that functions in the same manner as the second array processing signal described above is formed by the multiple blocking matrix circuit 320 described above, and this is replaced with the second array processing signal described above. It may be used in the relationship specifying step.
  • the SIR estimated value (or the magnitude relation specific value) estimated in the above-described SIR estimation step is immediately sent to the calculation control unit 800.
  • the arithmetic control unit 800 functions based on the SIR estimated value (or the magnitude relation specific value).
  • the tracking speed and the calculation accuracy are determined.
  • a control signal is generated for setting and controlling the parameters that determine the optimal state (step S109: control signal generation step).
  • setting control is performed so as to emphasize and output the target signal (adaptive array processing control step).
  • the coefficient update control of the processing device can be appropriately performed, and the frequency characteristics of the input signal, the target signal, and the interference signal can be controlled.
  • a high-quality array processing output is obtained that is not easily affected by the direction (step S110).
  • the arithmetic control unit 800 is configured to send the control signal described above to the fixed beamformer 200 and the blocking matrix circuit 320, and control such that these outputs or at least one of them is emphasized and output.
  • the arithmetic control unit 800 is configured to send the control signal described above to the fixed beamformer 200 and the blocking matrix circuit 320, and control such that these outputs or at least one of them is emphasized and output.
  • the estimated value of each power of the target signal is adaptively corrected according to the characteristics of the target signal.
  • the second embodiment shown in FIG. 10 includes a computer (central processing unit; processor; processing unit main body) 1000 that operates by program control, input terminals 101 to 101, and
  • the computer (central processing unit; processor; processing unit main body) 1000 includes the fixed beamformer 200, the adaptive blocking matrix 300, the delay element 400, the multi-input canceller 500, and the blocking disclosed in the first embodiment described above.
  • a matrix device 310 (320), a SIR estimation unit 700, and a storage device storing a processing program that functions in the same way as each function of the arithmetic control unit 800 having a comparison function, and a central processing unit that executes the processing program are provided. ing.
  • this processing program may include the contents of the configuration of the gain control unit 900 disclosed in the second embodiment described above.
  • the assumed array processing apparatus 1100 includes the same execution contents as the fixed beam former 200, the adaptive blocking matrix circuit 300, the delay element 400, and the multi-input canceller 500 described above as constituent elements.
  • the adaptive blocking matrix circuit 300 and the multi-input canceller 500 include an adaptive mode control means (adaptive array controller) for controlling each operation of the adaptive blocking matrix circuit 300 and the multi-input canceller 500 1 200. Is attached.
  • This adaptive mode control means 1200 is a process including the same execution contents as the blocking matrix circuit 320, the SIR estimation unit 700, and the arithmetic control unit 800 that also functions as a comparison unit in the second embodiment described above. It consists of programs.
  • the adaptive mode control means 1200 controls the coefficient update speed and accuracy of the adaptive filters included in the adaptive blocking matrix circuit 300 and the multi-input canceller 500 in the array processing apparatus described above.
  • the adaptive mode control means 1200 further includes the aforementioned A processing program that functions in the same manner as the gain control unit 900 may be included.
  • the adaptive mode control means 1200 sets a plurality of sensor pairs having different sensor intervals, and sets each of these sensor pairs. It has a function to estimate the interference signal power using the counter output. For this reason, by providing this adaptive mode control means 1200, it is possible to achieve high flatness characteristics combining different frequency characteristics and spatial selection characteristics, and accurately estimate the interference signal power. be able to.
  • the target signal power estimate is adaptively corrected according to the target signal characteristics, specific frequency components can be adaptively emphasized to achieve high flatness frequency and space selection characteristics.
  • the target signal power can be accurately estimated.
  • the adaptive array processing apparatus 1100 is equipped with the adaptive mode control unit 1200, so that the adaptive blocking matrix circuit 300 and the multi-input are input in the same manner as in the above-described embodiments.
  • the coefficient update control of the canceller 500 can be appropriately performed, and a high-quality array processing output can be obtained that is hardly affected by the frequency characteristics of the input signal and the direction of the target signal and the interference signal.
  • sensors such as an ultrasonic sensor, a sonar receiver, and an antenna can be used in addition to the force microphone described using the microphone as the sensor.
  • the interference signal power and the target signal power, and the ratio (SIR) between the target signal and the interference signal can be accurately estimated. For this reason, it is possible to appropriately perform coefficient update control that is less affected by the frequency characteristics of the input signal and the direction of the target signal and the interference signal. As a result, signal degradation and breathing noise at the output of the array processing apparatus can be effectively reduced.
  • FIG. 1 is a block diagram showing a first embodiment of the present invention.
  • FIG. 2 is a block diagram showing a first example of the gain control circuit disclosed in FIG.
  • FIG. 3 is a block diagram showing a second example of the gain control circuit disclosed in FIG. 1.
  • FIG. 4 is a block diagram showing another example of the blocking matrix circuit disclosed in FIG. 1 (multiple blocking matrix circuit).
  • FIG. 5 is a block diagram showing a first specific example of the multiple blocking matrix circuit disclosed in FIG. 4.
  • FIG. 6 is a block diagram showing a second specific example of the multiple blocking matrix circuit disclosed in FIG.
  • FIG. 7 is a block diagram showing a third specific example of the multiple blocking matrix circuit disclosed in FIG. 4.
  • FIG. 8 is a block diagram showing a fourth specific example of the multiple blocking matrix circuit disclosed in FIG. 4.
  • FIG. 9 is a flowchart showing the operation of the first embodiment disclosed in FIG. 1.
  • FIG. 10 is a block diagram showing a second embodiment of the present invention.
  • FIG. 11 is a block diagram showing a conventional example.
  • FIG. 12 is a block diagram showing the blocking matrix disclosed in FIG. 11.
  • Target signal-to-interference signal ratio calculator SIR calculator, SIR estimator
  • Adaptive mode control means (adaptive array controller)

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Acoustics & Sound (AREA)
  • Otolaryngology (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Computational Linguistics (AREA)
  • Multimedia (AREA)
  • Human Computer Interaction (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • General Health & Medical Sciences (AREA)
  • Circuit For Audible Band Transducer (AREA)
  • Radio Transmission System (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)

Abstract

【課題】アレイ状センサ群からの複数の信号を入力しその周波数特性や目標信号と妨害信号の方向の影響を受けにくく且つ正確な係数更新制御を行うことによって強調された目標信号を出力し得るようにした適応アレイ処理装置、方法、及びそのプログラムを提供すること。 【解決手段】目標信号の特性を分析する分析部903と、分析結果に応じて目標信号パワー推定値を補正する補正部905とを備えた利得制御部900を備え、複数の異なった間隔のセンサから信号を受けて処理するブロッキング行列310,320を備えていることを特徴とする。

Description

明 細 書
適応アレイ制御装置、方法、プログラム、及びこれを利用した適応アレイ 処理装置、方法、プログラム
技術分野
[0001] 本発明は、到来する音声等の信号を複数のマイクロホン等のアレイセンサを用いて 空間選択的に受信する適応アレイの信号処理に関するもので、特に、適応アレイ制 御装置、方法、プログラム、及びこれを利用した適応アレイ処理装置、方法、プロダラ ムに関する。
背景技術
[0002] 従来より、音声信号取得や、ソーナ一、無線通信などの分野においては、適応マイ クロフオンアレイによる音声強調装置や、適応アンテナアレイによる無線送受信装置 などが知られている。
これらの装置は、複数の信号源の中から特定の信号だけを強調して受信することが 可能であり、適応アレイ技術の応用である。センサとしては、マイクロフォン、超音波セ ンサ、ソーナー受音器、電波アンテナなどを用いることができる。ここでは、センサとし てマイクロフォンを用いた場合にっ 、て説明する。
[0003] 以下、説明を簡単にするため、マイクロフォンが直線上に等間隔に配置されている 場合を考える。また、目標音源がマイクロフォンの配置されている直線力も十分に離 れており、目標音源の方向は前記直線に対して直交していると仮定する。
マイクロフォンアレイは、複数のマイクロフォンに入力された信号をフィルタリングし た後、加算することによって空間フィルタを形成する。この空間フィルタにより、事前に 規定した方向から到来した信号、スィッチ目標信号だけを強調し、目標以外の信号 を減衰させる。
[0004] 適応マイクロフォンアレイは、空間フィルタ特性を適応的に変化させる機能を有した マイクロフォンアレイである。
適応マイクロフォンアレイの構成として、非特許文献 1に開示されて ヽる「一般化サ イドローブキャンセラ」、非特許文献 2に開示されている構成、非特許文献 3に開示さ れている構成、非特許文献 4に開示されている「フロスト 'ビームフォーマ」、非特許文 献 5に開示されて 、る構成などが知られて!/、る。
[0005] ここで、非特許文献 1に開示されて!ヽる基本的な適応アレイ処理装置である一般化 サイドローブキャンセラは、固定ビームフォーマ、ブロッキング行列、多入力キャンセ ラカゝら構成される。
ブロッキング行列には、適応フィルタを含む適応ブロッキング行列も使用される。固 定ビームフォーマは、複数のセンサ信号を処理して目標信号を強調する。このブロッ キング行列は、前記複数のセンサ信号に含まれる目標信号を抑圧し、妨害信号を相 対的に強調する。
[0006] 適応ブロッキング行列は、前記固定ビームフォーマ出力を参照信号として、適応フ ィルタによって生成した擬似目標信号を前記複数のセンサ信号力も差し引き、多入 力キャンセラに供給する。この適応ブロッキング行列の適応フィルタ係数は、固定ビ ームフォーマ出力と適応ブロッキング行列の出力を用 、て適応ブロッキング行列の出 力が最小化されるように更新される。
多入力キャンセラは、ブロッキング行列の出力を参照信号として、適応フィルタによ つて生成した擬似妨害信号を、前記固定ビームフォーマ出力から差し引く。この減算 処理によって得られた信号においては、 目標信号が強調され、妨害信号が抑圧され ており、これをアレイ装置出力とする。この減算処理により、出力信号の妨害信号に 対する相関が除去される。
多入力キャンセラの適応フィルタ係数は、ブロッキング行列出力と多入力キャンセラ 出力を用いて、多入力キャンセラ出力が最小化されるように更新される。
[0007] 固定ビームフォーマとしては、複数のセンサ信号をそれぞれ遅延して加算するディ レイアンドサムビームフォーマや、フィルタリングして加算するフィルタアンドサムビー ムフォーマを用いることが可能である。これらの固定ビームフォーマについては、非特 許文献 6に詳細に説明されて 、る。
[0008] 上記ディレイアンドサムビームフォーマは、複数のセンサ信号を各信号に固有のサ ンプル数だけ遅延させ、更に各信号に固有の係数を乗算した後に、総和を計算して 出力する。 各信号の遅延時間は、各センサ信号を遅延した後に、それに含まれる目標信号の 位相が同じになるように設定する。その結果、ディレイアンドサムビームフォーマの出 力に含まれる目標信号が強調される。
一方、目標信号とは異なる方向から到来する妨害信号は、前記の各遅延信号にお いて、位相が互いに異なるため、加算によって互いに打ち消し合って減衰する。従つ て、ディレイアンドサムビームフォーマの出力では、目標信号が強調され、妨害信号 が減衰する。
[0009] フィルタアドサムビームフォーマは、ディレイアンドサムビームフォーマにおける複数 のセンサ信号に対する遅延と定数倍が、フィルタで置換された構成を有する。これら 複数のフィルタは、ディレイアンドサムビームフォーマにおける遅延と定数倍の効果が 、各周波数に対して異なるようにすることができる。このため、スペクトルが平坦でない 信号に対して、目標信号強調効果がディレイアンドサムビームフォーマよりも高 、。
[0010] 適応ブロッキング行列および多入力キャンセラは、複数の適応フィルタを含む。これ らの適応フィルタとして、 FIRフィルタ、 IIRフィルタ、及びラテイスフィルタなどの構造 を用いることが可能である。又、これらの適応フィルタにおける係数更新アルゴリズム として、 NLMSアルゴリズム(学習同定法又は正規化 LMSアルゴリズム)、 RLSアル ゴリズム (逐次最小自乗法)、射影アルゴリズム、勾配法、 LSアルゴリズム (最小自乗 法)、ブロック適応アルゴリズム、変換領域の適応アルゴリズムなどを用いることができ る。
[0011] 更に、係数更新に際して、新たに計算される係数値に制約を課するタップ係数拘 束適応アルゴリズムや、リーク適応アルゴリズム、更には係数値ノルムに拘束を課する タップノルム拘束適応アルゴリズム、などを用いることが可能である。これらの制約付 係数更新アルゴリズムにつ 、ては、非特許文献 7に詳 、。
[0012] 適応ブロッキング行列の係数更新では強調された妨害信号が、多入力キャンセラ の係数更新では強調された目標信号が、係数更新には不要な信号となり、係数更新 を妨害する。このため、いずれの場合も、適応フィルタ係数が乱れ、アレイ処理装置 の出力信号に不快な息づき雑音が生じる。
[0013] これを防ぐためには、係数更新ステップサイズを小さく設定する必要がある。しかし 、小さなステップサイズは、適応ブロッキング行列の特性が目標信号の移動に追従す る速度を鈍らせ、最終出力である適応アレイ装置出力の品質が劣化する。
この問題を解決するために、適応モード制御装置が非特許文献 8および非特許文 献 9に開示されている。
[0014] ここで、非特許文献 8に開示された方法では、隣接するセンサ力 得られる信号間 の相関を利用して、前記妨害信号の存在を検出する。妨害信号が検出されたときに 係数更新を停止することによって、良好な適応アレイ装置の出力を得ることができる。 この方法では、ヒアリングエイドを応用として開発されているためにマイク間隔が広く 、空間折返しを避けるために信号帯域が 600 [Hz]から 1200 [Hz]程度に制限され ている。
通常の音声信号を利用する応用では、時として音声パワーがこの周波数範囲外に も存在するために、妨害信号の存在を正確に検出することができない。また、固定ブ ロッキング行列を想定して多入力キャンセラだけの係数更新を制御する構成となって おり、適応ブロッキング行列にそのまま適用することはできな 、。
[0015] 又、非特許文献 9に開示された方法では、目標信号対妨害信号のパワー比 (SIR) を用いて、妨害信号の存在を検出する。目標信号のパワー推定は、固定ビームフォ 一マ出力を用いて行う。妨害信号のパワー推定は、適応ブロッキング行列の出力を 用いて行う。これらの推定値の比(即ち、 SIRの推定値)を閾値と比較する。
[0016] 閾値より SIR (目標信号対妨害信号のパワー比)が大き!、ときは、入力信号にお 、 て目標信号が支配的であり、妨害信号の影響が少ないので適応ブロッキング行列で 係数更新を行う。反対に、多入力キャンセラの係数更新に目標信号が妨害を与える ので、多入力キャンセラの係数更新は停止する。
閾値より SIRが小さいときは、適応ブロッキング行列で係数更新を停止し、多入力キ ヤンセラで係数更新を実行する。
[0017] し力しながら、この方法では、適応ブロッキング行列に含まれる適応フィルタ係数が 収束するまでは、適応ブロッキング行列が十分な性能を発揮せず、妨害信号パワー 推定が不正確になる。このため、特に動作初期に、適応ブロッキング行列と多入力キ ヤンセラの係数更新制御を誤り易くなり、アレイ処理装置出力音声の劣化を引き起こ す。
[0018] この問題を解決するために、専用の固定ブロッキング行列を有する適応モード制御 手段が非特許文献 10に開示されている。
この非特許文献 10に開示された方法では、妨害信号のパワー推定を、専用の固 定ブロッキング行列を用いて行う。このため、適応ブロッキング行列に含まれる適応フ ィルタ係数の収束とは無関係に所望の性能が得られ、正確な妨害信号パワー推定が 可能となる。
[0019] 次に、図 11に、他の従来例における適応モード処理装置を示す。
この図 11に示す他の従来例 (適応モード処理装置)は、前述した非特許文献 9に 開示されている適応アレイ処理装置に、非特許文献 10に開示された適応モード制 御手段を組み合わせて構成されたものである。
この内、非特許文献 9に開示されている適応アレイ処理装置は、固定ビームフォー マ 200、適応ブロッキング行列回路 300、遅延素子 400、及び多入力キャンセラ 500 を備えた構成となっている。又、適応モード制御手段は、ブロッキング行列 310、 SIR 推定部 700、及び比較部 800等を備えた構成となって 、る。
[0020] 適応アレイ処理装置の固定ビームフォーマ 200は、 M個のセンサ 100〜100 から
0 M- 1 得られた信号を処理して目標信号を強調する。
適応ブロッキング行列回路 300は、前記複数のセンサ信号に含まれる目標信号を 抑圧し、妨害信号を相対的に強調する。これは、前述した固定ビームフォーマ 200の 出力を参照信号として、複数の適応フィルタによって擬似目標信号を生成し、これら を M個のセンサ 100〜100 から得られた信号から減算することによって達成される
0 M- 1
。この場合、前述した適応フィルタの係数は、固定ビームフォーマ 200の出力と適応 ブロッキング行列回路 300の出力を用いて、適応ブロッキング行列 300の出力が最 小化されるように更新される。
[0021] 遅延素子 400は、固定ビームフォーマ 200の出力を Lサンプル遅延させて、多入力 キャンセラ 500に供給する。 Lの値は、遅延素子 400の出力における目標信号成分と 適応ブロッキング行列回路 300の出力における目標信号成分の位相が揃うように設 定する。例えば、固定ビームフォーマ 200の群遅延時間と、適応ブロッキング行列 30 0のタップ数の 4分の 1から 2分の 1程度に相当する時間の和に設定すればよい。
[0022] 多入力キャンセラ 500は、固定ビームフォーマ 200の出力信号を遅延した信号と適 応ブロッキング行列回路 300の出力信号を受けて処理することによって、妨害信号を 抑圧し、目標信号を相対的にさらに強調する。この多入力キャンセラ 500は、適応ブ ロッキング行列回路 300から強調された妨害信号を参照信号として受け、これと相関 のある信号として、適応フィルタによって擬似妨害信号を生成する。生成した擬似妨 害信号を、遅延素子 400の出力である強調された目標信号力 差し引く。この出力 は、出力端子 600に伝達される。
多入力キャンセラ 500の適応フィルタ係数は、適応ブロッキング行列 300の出力と 出力端子 600に伝達される出力信号を用いて、該出力信号が最小化されるように更 新される。
[0023] 適応ブロッキング行列回路 300の係数更新で用いる適応ブロッキング行列回路 30 0の出力は、妨害信号と抑圧された目標信号を含む。しかし、適応ブロッキング行列 回路 300が影響を与えることができるのは目標信号成分だけであり、妨害信号はそ のまま出力される。即ち、適応ブロッキング行列 300が最小化することができるのは目 標信号成分だけであり、出力に含まれる妨害信号成分は、係数更新に対して妨害を 与える。
[0024] この妨害によって、適応ブロッキング行列回路 300に含まれる適応フィルタ係数が 乱れ、多入力キャンセラ 500に伝達される信号が不安定となる。その結果、多入力キ ヤンセラ 500の出力、即ち、適応アレイ装置全体の出力が乱れ、不快な息づき雑音 が生じる。
これを防ぐために、前記複数のセンサ信号を用いて SIRを推定し、この推定値を用 いて適応ブロッキング行列回路 300の係数更新を制御する。
[0025] 同様に、多入力キャンセラ 500の係数更新では強調された目標信号が、係数更新 には不要な信号となり、係数更新を妨害する。妨害によって多入力キャンセラ 500に 含まれる適応フィルタ係数が乱れ、適応アレイ装置出力にお!、て不快な息づき雑音 が生じる。このため、適応ブロッキング行列回路 300と同様に、前記複数のセンサ信 号の SIRを推定し、この推定値を用いて多入力キャンセラ 500の係数更新を制御す る。
[0026] SIR推定部 700は、ブロッキング行列回路 310の出力と固定ビームフォーマ 200の 出力を用いて、 SIR推定を行う。
目標信号のパワー推定は、固定ビームフォーマ 200の出力を用いて行われる。妨 害信号のパワー推定は、固定ブロッキング行列回路 310の出力を用いて行われる。 これら二つの推定パワー情報は前述した SIR推定部 700に供給され、その比が算定 されて SIR推定値となる。
[0027] この SIR推定部 700で算定された SIR推定値は、 SIR推定部 700から比較部 800 に伝達される。比較部 800では、 SIR推定値を閾値と比較する。
そして、閾値より SIR推定値が大きいときは、入力信号において目標信号が支配的 であり、妨害信号の影響が少ないので適応ブロッキング行列で係数更新を行う制御 信号を発生し、適応ブロッキング行列回路 300に供給する。反対に、多入力キャンセ ラ 500の係数更新に際しては、目標信号が妨害を与えるので、多入力キャンセラ 50 0の係数更新を停止する制御信号を発生し、当該多入力キャンセラ 500に供給する 閾値より SIR推定値が小さ ヽときは、適応ブロッキング行列で係数更新を停止し、 多入力キャンセラで係数更新を実行するような信号を発生し、それぞれ適応ブロッキ ング行列 300と多入力キャンセラ 500に供給する。
[0028] 図 12にブロッキング行列回路 310の構成例を示す。 i番目のセンサ信号 X(k)と (i+ 1)番目のセンサ信号 X (k)の差分を求めるための減算器 311から構成される。
i+l
ここで、 kは時刻を表す指標、 iは 0から M— 2の範囲の整数である。ブロッキング行 列 310の出力信号 Z(k)は、 X(k)-X (k)となる。正面から到来する目標信号に対し
i i+l
て、 X(k)と X (k)は等しいので、 Z(k) = 0となる。それ以外の方向から到来する妨害 i i+l
信号に対しては、 Z (k)はゼロとならない。このため、ブロッキング行列 310は、目標信 号を抑圧する効果を有する。
[0029] 非特許文献 1: 1982年 1月、 IEEEトランザクションズ'オン ·アンテナス'アンド'プロパ ゲイシヨンズ、第 30卷、第 1号、 (IEEE TRANSACTIONS ON ANTENNAS AND PRO PAGATIONS, VOL.30,NO.l, PP.27- 34, Jan. 1982) 27〜34ページ。 非特許文献 2 : 1992年 9月、 IEEEトランザクションズ'オン'アンテナス'アンド'プロパ ゲイシヨンズ、第 40卷、第 9号、 (IEEE TRANSACTIONS ON ANTENNAS AND PRO PAGATIONS, VOL.40,NO.9, PP.1093- 1096, Sep. 1992) 1093〜1096ページ。
非特許文献 3 : 1996年 9月、電子情報通信学会論文誌 A、第 79卷、第 9号、 1516〜15 24ページ。
非特許文献 4 : 1972年 8月、プロシーディングス 'ォブ IEEE、第 60卷、第 8号(PROCE EDINGS OF IEEE, VOL.60,NO.8, PP.926— 935, Aug. 1972) 926〜935ページ。 非特許文献 5 : 1994年 4月、 IEEEプロシーディングス'ォブ'インターナショナル'カン フアレンス'オン'ァクースティタス 'スピーチ 'アンド'シグナルプロセシング、第 IV卷、 ( IEEE PROCEEDINGS OF INTERNATIONAL CONFERENCE ON ACOUSTICS, SP EECH'AND SIGNNAL PROCESSING, VOL.IV, PP.269- 272, Apr. 1994) 269〜272 ぺ' ~~ジ。
非特許文献 6: 1993年、「アレイ ·シグナル ·プロセシング」、 第 4章、プレンティス ·ホ ール、イングルウッド 'クリフス(CH.4, ARRAY SIGNAL PROCESSING, PRENTICE- H ALL, ENGLEWOOD CLIFS, 1993.)
非特許文献 7 : 2001年、「マイクロフォンアレイ」、スプリンガー(MICROPHONE ARRA YS, SPRINGER, 2001.)
非特許文献 8: 1992年 3月、ジャーナル ·ォブ ·ァクースティカル ·ソサイエティ ·ォブ · アメリカ、第 91卷、第 3号、 (JOURNALOF ACOUSTICAL SOCIETYOF AMERICA, VOL.91,N0.3, PP.1662- 1676, Mar. 1992) 1662〜1676ページ
非特許文献 9 : 1998年 4月、アイ'ィ一'ィ一'ィ一'プロシーディングス 'ォブ 'アイ'シ ~ ·エイ.エス.エス.ピー、(IEEE PROCEEDINGS OF ICASSP, PP.3605— 3608, APR. 1998) 3605〜3608ページ
非特許文献 10 : 1999年 3月、アイ'ィ一'ィ一'ィ一'プロシーディングス 'ォブ 'アイ'シ ~ ·エイ ·エス ·エス ·ピー、(IEEE PROCEEDINGS OF ICASSP, PP.949— 952, MAR. 1 999) 949〜952ページ
発明の開示
発明が解決しょうとする課題 [0030] 上記従来例にあっては、空間折り返しにかかる歪を避けるために、前述したアレイ 状に配設されたセンサの間隔には波長と音速力も定まる上限が設定されている。また 、現実的には、センサの個数 Mの値にも上限がある。このため、目標信号のパワー推 定を行う固定ビームフォーマの周波数特性が平坦ではなぐ又、方向に基づく選択 度も十分でない。
同様に、妨害信号のパワー推定を行う固定ブロッキング行列の周波数特性が平坦 ではなぐ方向に基づく選択度も十分でない。
[0031] このため、図 11を含む従来の技術では、入力信号の周波数特性や目標信号と妨 害信号の方向によっては、これら各信号のパワー推定に誤りが生じ易ぐ同時にこれ によって推定されたパワーに基づいて不適切な係数更新制御等が成されると、装置 全体が性能劣化を引き起こす、という不都合が生じていた。
(発明の目的)
[0032] 本発明は、目標信号の周波数特性や到来方向の影響を受けにくぐ正確な係数更 新制御を行うことを可能とし、且つこれによつて入力信号の周波数特性や目標信号と 妨害信号の方向の影響を受けにくい高品質なアレイ処理出力を得ることができる適 応アレイ制御装置、方法、プログラム、及び適応アレイ処理装置、方法、プログラムを 提供することを、その目的とする。
課題を解決するための手段
[0033] 上記目的を達成するため、本発明に力かる適応アレイ制御装置では、アレイ状の 複数のセンサ力 送り込まれる複数の信号に含まれる目標信号が他の信号に対して 強調処理されて成る第 1のアレイ処理信号を分析して信号特性を求める分析部と、こ の得られた信号特性に応じて前記第 1のアレイ処理信号を補正し第 1の補正アレイ 処理信号として出力する補正部と、前記第 1の補正アレイ処理信号に基づいて目標 信号に対する妨害信号の比 (SIR)を推定する SIR推定部とを備え、この SIR推定値を 用いて所定の適応アレイ処理部におけるパラメータ調整の速度と精度を制御するた めの制御信号を発生する演算制御部を具備したことを特徴とする。
[0034] このようにすると、目標信号の特性に応じて適応的に目標信号の各パワーの推定 値を補正するので、平坦度の高!ヽ周波数及び空間選択特性を実現することができ、 目標信号の各パワーを正確に推定することができる。
このため、これを適応アレイ処理装置に組み込むことにより、当該装置の係数更新 制御を適切に行うことが可能となり、入力信号の周波数特性や目標信号と妨害信号 の方向の影響を受けにくい高品質なアレイ処理を出力制御することができる。
[0035] ここで、前述した目標信号を他の信号に対して減衰させて第 2のアレイ処理信号を 生成する第 2のアレイ処理信号生成部を装備すると共に、前記 SIR推定部を、前記 第 2のアレイ処理信号生成部で生成された第 2のアレイ処理信号と前記第 1の補正ァ レイ処理信号とに基づ!/、て前記目標信号対妨害信号の比 (SIR)を推定し特定する構 成とする。そして、前述した演算制御部力 適応アレイ処理部における適応アレイ処 理に際して必要とするパラメータ調整の速度と精度とを前記 SIR推定値を用いて制 御する適応アレイ処理制御機能を備えた構成としてもよい。
[0036] このようにすると、目標信号の特性に応じて適応的に目標信号および妨害信号の 各パワーの推定値を補正するので、平坦度の高 、周波数及び空間選択特性を実現 することができ、目標信号および妨害信号の各パワーを正確に推定することができ、 このため、適正アレイ処理装置の係数更新制御を適切に行うことが可能となる。
[0037] 又、本発明に力かる適応アレイ制御装置では、アレイ状の複数のセンサ力 送り込 まれる複数の信号に含まれる目標信号が他の信号に対して強調処理されて成る第 1 のアレイ処理信号を分析して信号特性を求める分析部と、この得られた信号特性に 応じて前記第 1のアレイ処理信号を補正し第 1の補正アレイ処理信号として出力する 補正部と、前記目標信号を他の信号に対して減衰させて第 2のアレイ処理信号を生 成する第 2のアレイ処理信号生成部と、前記第 1の補正アレイ処理信号と前記第 2の アレイ処理信号の相対的な大小関係を求める計算部と、この計算部で得られる大小 関係を用いて所定の適応アレイ処理部におけるパラメータ調整の速度と精度を制御 するための制御信号を発生する演算制御部を具備したことを特徴とする。
このようにしても前述した適応アレイ制御装置と同等に機能する適応アレイ制御装 置を得ることができる。
[0038] ここで、前述した第 2のアレイ処理信号生成部は、前記入力される複数のアレイセン サ情報力 異なったセンサ間隔を有する複数のセンサ対を設定すると共にそのセン サ対の出力差分を算定してこれを出力するセンサ対差分情報出力機能を備えた構 成としてもよい。。
又、この第 2のアレイ処理信号生成部については、前記各出力差分をそれぞれフィ ルタ処理する複数のフィルタとこのフィルタ出力を加算する加算器とを具備すると共 に、前記加算器における加算結果を外部出力する加算結果出力機能を備えた構成 としてちよい。
[0039] 更に、本発明に力かる適応アレイ制御方法では、アレイ状の複数のセンサ力 送り 込まれる複数の信号に含まれる目標信号が他の信号に対して強調処理されて成る 第 1のアレイ処理信号を分析してその信号特性を求める信号特性分析工程と、この 得られた信号特性に応じて前記第 1のアレイ処理信号を補正し第 1の補正アレイ処 理信号として出力する第 1のアレイ処理信号補正工程と、この前記第 1の補正アレイ 処理信号に基づいて目標信号対妨害信号の比 (SIR)を推定する SIR推定工程と、こ の SIR推定工程で推定された SIR推定値を用いて所定の適応アレイ処理におけるパ ラメータ調整の速度と精度とを最適な状態に設定制御する適応アレイ処理制御工程 と、を備えたことを特徴とする。
[0040] このため、本発明によると、目標信号の特性に応じて適応的に目標信号の各パヮ 一の推定値を補正するので、平坦度の高!ヽ周波数及び空間選択特性を実現するこ とができ、目標信号の各パワーを正確に推定することができる。このため、これを適応 アレイ処理方法に組み込むことにより、係数更新制御等を適切に行うことが可能とな り、入力信号の周波数特性や目標信号と妨害信号の方向の影響を受けにくい高品 質なアレイ処理を出力制御することができる。
[0041] ここで、前記第 1のアレイ処理信号補正工程と SIR推定工程との間に、前記目標信 号を他の信号に対して減衰させて第 2のアレイ処理信号を求める第 2のアレイ処理信 号生成工程を設定し、前記 SIR推定工程を、前記第 2のアレイ処理信号と前記第 1の 補正アレイ処理信号とに基づいて前記目標信号対妨害信号の比 (SIR)を推定する SI R推定工程、としてもよい。
[0042] 又、本発明に力かる適応アレイ制御方法では、アレイ状の複数のセンサ力 送り込 まれる複数の信号に含まれる目標信号が他の信号に対して強調処理されて成る第 1 のアレイ処理信号を分析しその信号特性を求める信号特性分析工程と、この得られ た信号特性に応じて前記第 1のアレイ処理信号を補正し第 1の補正アレイ処理信号 として出力する第 1のアレイ処理信号補正工程と、前記目標信号を他の信号に対し て減衰させて第 2のアレイ処理信号を求める第 2のアレイ処理信号生成工程と、前記 補正された第 1の補正アレイ処理信号と前記生成された第 2のアレイ処理信号の相 対的な大小関係を求める大小関係特定工程と、この特定された相対的な大小関係 に基づ!/、て、所定の適応アレイ処理におけるパラメータ調整の速度と精度とを最適な 状態に設定制御する適応アレイ処理制御工程と、を備えた構成としてもょ ヽ。
このようにしても、前述した適応アレイ制御方法と同等に機能する適応アレイ制御方 法を得ることができる。
[0043] ここで、前述した第 2のアレイ処理信号生成工程の内容を、入力される複数のァレ ィセンサ情報力 異なったセンサ間隔を有する複数のセンサ対を設定し、そのセンサ 対の出力差分を用いて第 2のアレイ処理信号を生成するように構成してもよ 、。
[0044] 又、前述した第 2のアレイ処理信号生成工程については、その内容を、前記各出力 差分をフィルタ処理してそれぞれの差分に対応した複数のフィルタ処理結果を特定 すると共に、この特定された複数のフィルタ処理結果の和を用いて前記第 2のアレイ 処理信号を生成するように構成してもよ ヽ。
[0045] 更に、本発明に力かる適応アレイ制御プログラムでは、アレイ状の複数のセンサか ら送り込まれる複数の信号に含まれる目標信号が他の信号に対して強調処理されて 成る第 1のアレイ処理信号を分析しその信号特性を求める信号特性分析機能と、こ の生成された信号特性に応じて前記第 1のアレイ処理信号を補正して第 1の補正ァ レイ処理信号を求める第 1のアレイ処理信号補正機能と、異なったセンサ間隔を有す る複数のセンサ対の出力差分を求める出力差分算定機能と、この算定された出力差 分を用いて前記目標信号が他の信号に対して減衰した第 2のアレイ処理信号を求め る第 2のアレイ処理信号生成機能と、前記補正された第 1の補正アレイ処理信号と前 記生成された第 2のアレイ処理信号の相対的な大小関係を求める大小関係特定機 能と、この特定された相対的な大小関係に基づいて前記第 1のアレイ処理信号の適 応アレイ処理におけるパラメータ調整の速度と精度とを最適な状態に設定制御する 適応アレイ処理制御機能と、をコンピュータに実行させるように構成したことを特徴と する。
このようにしても、前述した適応アレイ制御装置の実行内容と同等に機能する適応 アレイ制御プログラムを得ることができる。
[0046] 又、本発明に力かる適応アレイ処理装置では、アレイ状センサ群から送り込まれる 複数の信号に含まれる目標信号を他の信号に対して強調するように処理し、これに よって第 1のアレイ処理信号を生成する第 1のアレイ処理信号生成部と、前記目標信 号を他の信号に対して減衰させて第 2のアレイ処理信号を生成する第 2のアレイ処理 信号生成部と、この第 2のアレイ処理信号と相関のある信号成分を前記第 1のアレイ 処理信号から消去する相関除去部と、前記第 1のアレイ処理信号を分析して信号特 性を求める分析部と、この分析部で得られた信号特性に応じて前記第 1のアレイ処 理信号を補正し第 1の補正アレイ処理信号として出力する補正部と、前記目標信号 を他の信号に対して減衰させて第 3のアレイ処理信号を生成する第 3のアレイ処理信 号生成部と、この生成された第 3のアレイ処理信号と前記第 1の補正アレイ処理信号 の相対的な大小関係を求める計算部と、前記第 1のアレイ処理信号を適応アレイ処 理し前記妨害信号の影響を排除して当該第 1のアレイ処理信号を強調出力する適 応アレイ処理部とを備えて ヽる。
[0047] 更に、この適応アレイ処理装置では、前記計算部から出力される大小関係を用い て前記適応アレイ処理部の適応アレイ処理におけるパラメータ調整の速度と精度を 制御するための制御信号を発生する演算制御部を装備すると共に、この演算制御部 力 出力される制御信号を用いて少なくとも前記第 1のアレイ処理信号生成部と前記 第 2のアレイ処理信号生成部と前記相関除去部の少なくとも何れか一つの動作を制 御することを特徴とする。
[0048] このため、本発明によると、目標信号の特性に応じて適応的に目標信号の各パヮ 一の推定値を補正するので、平坦度の高!ヽ周波数及び空間選択特性を実現するこ とができ、目標信号の各パワーを正確に推定することができる。このため、適応アレイ 処理方法に組み込むことにより、当該処理方法での係数更新制御を適切に行うこと が可能となり、入力信号の周波数特性や目標信号と妨害信号の方向の影響を受け にくい高品質なアレイ処理出力を得ることができる。
[0049] ここで、上述した第 2のアレイ処理信号生成部については、前記入力される複数の アレイセンサ情報力 異なったセンサ間隔を有する複数のセンサ対を設定すると共 にそのセンサ対の出力差分を算定してこれを出力するセンサ対差分出力機能を備え た構成としてもよい。
又、この第 2のアレイ処理信号生成部については、前述した各出力差分をそれぞれ フィルタ処理する複数のフィルタと当該フィルタ出力を加算する加算器とを具備する と共に、前記加算器における加算結果を外部出力する加算結果出力機能を備えた 構成としてもよい。
[0050] 更に、本発明に力かる適応アレイ処理方法では、アレイ状センサ群力 送り込まれ る複数の信号に含まれる目標信号を他の信号に対して強調するように処理し、これ によって第 1のアレイ処理信号を生成する第 1のアレイ処理信号生成工程と、前記目 標信号を他の信号に対して減衰させて第 2のアレイ処理信号を求める第 2のアレイ処 理信号生成工程と、生成された前記第 2のアレイ処理信号と相関のある信号成分を 前記第 1のアレイ処理信号力 消去して出力する際に当該第 1のアレイ処理信号を 分析して信号特性を求める信号特性生成工程と、この生成された信号特性に応じて 前記第 1のアレイ処理信号を補正して第 1の補正アレイ処理信号を求める第 1のァレ ィ処理信号補正工程と、前記目標信号を他の信号に対して減衰させて第 3のアレイ 処理信号を生成する第 3のアレイ処理信号生成工程と、前記補正された第 1の補正 アレイ処理信号と前記生成された第 2のアレイ処理信号の相対的な大小関係を求め る大小関係特定工程と、この特定された相対的な大小関係に基づいて前記第 1のァ レイ処理信号に対する適応アレイ処理におけるパラメータ調整の速度と精度とを制御 する適応アレイ処理制御工程と、を備えたことを特徴とする。
[0051] このため、これによると、前述した適応アレイ制御方法の場合と同様に、目標信号の 特性に応じて適応的に目標信号の各パワーの推定値を補正するので、平坦度の高 V、周波数及び空間選択特性を実現することができ、目標信号の各パワーを正確に推 定することができ、これがため、係数更新制御等を迅速に且つ適切に行うことが可能 となり、従って、入力信号の周波数特性や目標信号と妨害信号の方向の影響を受け にくい高品質なアレイ処理出力を得ることができる。
[0052] ここで、上述した第 3のアレイ処理信号生成工程の実行内容を、入力される複数の アレイセンサ情報力も異なったセンサ間隔を有する複数のセンサ対を設定し、そのセ ンサ対の出力差分を用いて、第 3のアレイ処理信号を生成するように構成してもよ ヽ( 請求項 16)。
又、前述した第 3のアレイ処理信号生成工程の実行内容を、前記各出力差分をフィ ルタ処理してそれぞれの差分に対応した複数のフィルタ処理結果を特定すると共に 、この特定された複数のフィルタ処理結果の和を用いて前記第 3のアレイ処理信号を 生成するように構成してもよ ヽ。
[0053] 更に、本発明に力かる適応アレイ処理プログラムでは、アレイ状センサ群力 送り込 まれる複数の信号に含まれる目標信号を他の信号に対して強調するように処理し、こ れによって第 1のアレイ処理信号を生成する第 1のアレイ処理信号生成機能と、前記 目標信号を他の信号に対して減衰させて第 2のアレイ処理信号を生成する第 2のァ レイ処理信号生成機能と、この第 2のアレイ処理信号と相関のある信号成分を前記第 1のアレイ処理信号力 消去して出力する相関成分消去機能と、相関成分が消去さ れた前記前記第 1のアレイ処理信号を分析して信号特性を求める信号特性を求める 信号特性生成機能と、この生成された信号特性に応じて元の前記第 1のアレイ処理 信号を補正して第 1の補正アレイ処理信号を求める第 1のアレイ処理信号補正機能 と、前記入力される複数のアレイセンサ情報力 異なったセンサ間隔を有する複数の センサ対を設定し、そのセンサ対の出力差分を算定する出力差分算定機能と、この 出力差分を用いて目標信号が他の信号に対して減衰した第 2のアレイ処理信号を生 成する第 2のアレイ処理信号生成機能と、前記補正された第 1の補正アレイ処理信号 と前記生成された第 2のアレイ処理信号の相対的な大小関係を求める大小関係特定 機能と、この特定された相対的な大小関係を用いて、前記第 1のアレイ処理信号に 対する適応アレイ処理におけるパラメータ調整の速度と精度とを最適な状態に設定 制御する適応アレイ処理制御機能と、をコンピュータに実行させるように構成したこと を特徴とする。
このようにしても、前述した適応アレイ処理装置又は適応アレイ処理方法の各実行 内容とほぼ同等に機能する適応アレイ処理プログラムを得ることができる。
発明の効果
[0054] 本発明によると、目標信号の特性に応じて適応的に目標信号パワーの推定値を補 正し、優れた周波数及び空間選択性を保って妨害信号パワーを推定するので、平坦 度の高!、周波数及び空間選択特性を実現することができ、目標信号 (又は目標信号 および妨害信号)の各パワーを正確に推定することができ、このため、処理装置の係 数更新制御を適切に行うことが可能となり、入力信号の周波数特性や目標信号と妨 害信号の方向の影響を受けにくい高品質なアレイ処理出力を得ることができるという 従来にない優れた適応アレイ制御装置、方法、プログラム、及びこれを利用した適応 アレイ処理装置、方法、プログラムを提供することができる。
発明を実施するための最良の形態
[0055] 以下、本発明に力かる適応アレイ制御装置およびこれを利用した適応アレイ処理 装置の実施形態を、図面に基づいて説明する。
[0056] 〔第 1の実施形態〕
図 1乃至図 9に、本発明にかかる適応アレイ処理装置の第 1の実施形態を示す。 まず、図 1において、この第 1の実施形態における適応アレイ処理装置は、アレイ状 の M個のセンサ群 100〜100 から送り込まれる複数の信号に含まれる目標信号を
0 M- 1
他の信号に対して強調するように処理すると共にこれによつて第 1のアレイ処理信号 を生成する第 1のアレイ処理信号生成部としての固定ビームフォーマ 200と、前記目 標信号を他の信号に対して減衰させて第 2のアレイ処理信号を生成する第 2のアレイ 処理信号生成部としての適応ブロッキング行列回路 300とを備えている。
[0057] 更に、この適応アレイ処理装置は、ブロッキング行列回路 310と、強調された目標 信号を出力する適応アレイ処理部としての多極の入力キャンセラ 500と、演算制御部 としての比較部 800と、前記第 1のアレイ処理信号を遅延させて当該多極の入力キヤ ンセラ 500に送り込む遅延素子 400と、利得制御部 900と、前記第 1の補正アレイ処 理信号に基づ!、て目標信号に対する妨害信号の比 (SIR)を推定する SIR推定部 70 0とを備えている。
[0058] 上記演算制御部としての比較部 800は、前述した多極の入力キャンセラ 500およ び前述した適応ブロッキング行列回路 300の動作を制御すると共に特に当該多極の 入力キャンセラ (適用アレイ処理部) 500からは高品質のアレイ処理出力を成し得るよ うに調整パラメータの係数更新等を制御する係数更新制御機能を備えて!/、る。
[0059] ここで、上記ブロッキング行列回路 310と、 SIR推定部 700と、利得制御部 900と、 演算制御部 (比較部) 800とにより、適応モード制御手段 (適応アレイ制御装置) 120 0が構成されている。
[0060] この適応モード制御手段 (適応アレイ制御装置) 1200にあって、前述したブロッキ ング行列回路 (第 2のアレイ処理信号生成部) 310については、後述する図 4以下に 示すように、前述したアレイ状の M個のセンサ群 100〜100 力 から送り込まれる
0 M- 1
複数のアレイセンサ情報力 異なったセンサ間隔を有する複数のセンサ対を設定す ると共に、そのセンサ対の出力差分を算定してこれを出力するセンサ対差分出力機 能を備えた多重のブロッキング行列回路 (第 2のアレイ処理信号生成部) 320で構成 してちよい。
[0061] この場合、この図 4に示すブロッキング行列回路 (第 2のアレイ処理信号生成部) 32 0は、前述した各出力差分をそれぞれフィルタ処理する複数のフィルタと、このフィル タ出力を加算する加算器とを具備すると共に、前記加算器における加算結果を外部 出力する加算結果出力機能を備えている。具体的には後述する。
[0062] 前述した利得制御部 900は、図 2に示すように、前述した第 1のアレイ処理信号を 分析して信号特性を求める分析部 903と、この分析部 903で得られた信号特性に応 じて前述した第 1のアレイ処理信号を補正し第 1の補正アレイ処理信号として出力す る補正部としてのスペクトル修正部 905とを備えている。そして、前述した SIR推定部 700は、この利得制御部 900から出力される第 1の補正アレイ処理信号と前述した第 2のアレイ処理信号とに基づいて、目標信号に対する妨害信号の比 (SIR)を推定する ように構成されている。
なお、この SIRの推定については、第 1の補正アレイ処理信号に代えて第 1のァレ ィ処理信号を使用するように構成してもよ ヽ。
[0063] 更に、この適応アレイ処理装置は、前述した SIR推定部 700で推定される推定値に 対応して前記第 1のアレイ処理信号を適応アレイ処理し前記妨害信号の影響を排除 して当該第 1のアレイ処理信号を強調出力する多入力キャンセラ (適用アレイ処理部 ,相関除去部) 500と、この多入力キャンセラ 500の前記適応アレイ処理に力かる動 作を前記 SIR推定部 700からの制御情報に基づいて最適な状態に設定制御する演 算制御部としての比較部 800とを備えて 、る。
[0064] 上述した多入力キャンセラ 500は、前述した第 2のアレイ処理信号と相関のある信 号成分を前記第 1のアレイ処理信号力 消去して当該第 1のアレイ処理信号を強調 出力する相関除去部としての機能をも備えて構成されている。
又、上記 SIR推定部 700については、前記ブロッキング行列(第 2のアレイ処理信 号生成部) 320で生成された第 2のアレイ処理信号と前記第 1の補正アレイ処理信号 とに基づいて前記目標信号対妨害信号の比 (SIR)を推定し特定する構成としてもよ い。
ここで、上記 SIR推定部 700については、前述した第 1の補正アレイ処理信号と第 2 のアレイ処理信号との相対的な大小関係を求める計算部(図示せず)で置き換えても よい。
[0065] 更に、前述した演算制御部 800は、前述した第 1の補正アレイ処理信号と第 2のァ レイ処理信号との相対的な大小関係の情報に基づいて適応アレイ処理におけるパラ メータ調整の速度と精度とを制御するための制御信号を生成する制御信号生成機能 を有すると共に、当該制御信号を用いて前述した固定ビームフォーマ (第 1のアレイ 処理信号生成部) 200とブロッキング行列回路 (第 2のアレイ処理信号生成部) 310と 適応ブロッキング行列回路 300と多入力キャンセラ (相関除去部) 500の、少なくとも 何れか一つを動作制御し、目標信号又は妨害信号を鮮明に強調出力させる機能( 適応アレイ処理制御機能)を備えて!/、る。
[0066] 前述した利得制御部 900は、更に、目標信号の特性に応じて適応的に目標信号パ ヮ一の推定値を補正する機能を備えている。このため、特定の周波数成分を適応的 に強調して平坦度の高!ヽ周波数及び空間選択特性を実現することができ、これによ り、目標信号パワーを正確に推定することが可能となる。
この正確に推定された目標信号パワーは、 SIR推定部 700に伝達され、 SIR計算 に用いられる。このようにして得られた高精度の SIR推定値に基づいて、係数更新ス テツプサイズや忘却係数などの適応フィルタの追従性と演算精度を決定するパラメ一 タを制御することで、適応アレイ処理装置の係数更新を適切に制御することが可能と なる。
その結果、入力信号の周波数特性や目標信号と妨害信号の方向の影響を受けに くい、高品質なアレイ処理出力を得ることができる。
[0067] 〔利得制御部 900の一構成例〕
ここで、前述した利得制御部 900を、更に詳細に説明する。
図 2において、利得制御部 900は、記憶部 901、フーリエ変換部 902、分析部 903 、利得計算部 904、スペクトル修正部 905、逆フーリエ変換部 906、および記憶部 90 7により構成されている。そして、図 1において、前述した固定ビームフォーマ 200の 出力は、利得制御部 900の記憶部 901に供給されフレーム化される。フレーム化さ れた信号はフーリエ変換部 902に伝達されフーリエ変換される。フーリエ変換結果は 、分析部 903とスペクトル修正部 905に供給される。
[0068] 分析部 903は、フーリエ変換結果を用いて入力信号を分析し、特定の性質を有す る入力信号を検出する。入力信号の性質に関する情報と検出結果は利得計算部 90 4に伝達される。入力信号の性質に関する情報として代表的なものはスペクトルであ る力 スペクトルに代わる特徴量、例えばケプストラムやこれらを間引いた情報なども 禾 IJ用することがでさる。
[0069] 利得計算部 904は、入力信号に対応した補正利得を求め、スペクトル修正部 905 に供給する。特定の性質の一例としては摩擦音があげられる。摩擦音の周波数スぺ タトルは、より高域までパワーを有し、非摩擦音と比較して平坦であることが知られて いる。
これらの事実を用いれば、高域におけるパワーの値とスペクトルの平坦度に応じて 、適切な補正利得を求めることができる。具体的には、高域パワーとスペクトル平坦度 を基準値と比較して、その大小関係に応じた値を補正利得とすることができる。さらに 単純な例では、高域パワーとスペクトル平坦度が予め定めた閾値よりも大きい場合に 、補正利得を 1でない値に設定し、それ以外の場合は 1に設定することもできる。補正 利得の値は、各周波数成分に対して共通でもよいし、異なっていてもよい。 [0070] スペクトル修正部 905は、利得計算部 904から供給された一つ以上の補正利得を 用いて、フーリエ変換部 902から供給されたフーリエ変換結果を補正することによつ て、スペクトルを修正する。具体的には、フーリエ変換結果の振幅またはパワーを補 正利得で補正し、その結果を逆フーリエ変換部 906に供給する。位相情報は、修正 せずにそのまま逆フーリエ変換部 906に供給する。逆フーリエ変換部 906はスぺタト ル修正部 905から供給されたデータを逆フーリエ変換し、その結果を記憶部 907に 伝達する。記憶部 907は、記憶しているデータを 1サンプルずつ出力することで、信 号サンプルの逆フレーム化を行う。
[0071] 尚、前述したフーリエ変換部 902及び逆フーリエ変換部 906は、対をなす別の変換
(逆変換処理)に置き換えてもよい。このような変換の例として、コサイン変換、 MDC Tとしても知られる修正離散コサイン変換、アダマール変換、ハール変換、ウェーブレ ット変換などがある。更に、これらの変換処理に先立って、また逆変換処理に続いて 、窓関数を用いた窓がけ処理を行うことによって、特に高域成分の正確性を改善する ようにしてもよい。
[0072] 〔利得制御部 900の他の例〕
上述した利得制御部 900の他の構成例を図 3に示す。この図 3に示す利得制御部 900は、帯域分割フィルタバンク 911、分析部 912、利得計算部 913、スペクトル修 正部 914、および帯域合成フィルタバンク 915により構成されて!、る。
[0073] そして、前述した固定ビームフォーマ 200の出力は、帯域分割フィルタバンク 911 に供給され、複数の周波数帯域に分割される。各周波数帯域の信号は、分析部 912 とスペクトル修正部 914に供給される。分析部 912と利得計算部 913の動作は、分析 部 903と利得計算部 904と同等である。スペクトル修正部 914は、利得計算部 013か ら供給された一つ以上の補正利得を用いて、各周波数帯域信号のレベルを補正し、 その結果を帯域合成フィルタバンク 915に伝達する。
[0074] 帯域合成フィルタバンク 915は、スペクトル修正部 914から供給されたデータを合 成して全帯域信号に変換し、その結果を出力する。前述した図 2に示す構成例と異 なり、記憶回路に信号サンプルを蓄積することなく逐次処理によって同等の処理が可 能である。このため、利得制御に付随する遅延を少なくすることができ、変動する系 に対する追従特性が向上する。
[0075] ここで、帯域分割フィルタバンク 911及び帯域合成フィルタバンク 915の各周波数 帯域は、等間隔であってもよいし、不等間隔であってもよい。この場合、不等間隔に 帯域分割することによって、低域では狭帯域に分割して時間分解能を低ぐ高域で は広い帯域に分割して時間分解能を高くすることができる。不等分割の代表例には 、低域に向力つて帯域が逐次半分になるオクターブ分割や人間の聴覚特性に対応 した臨界帯域分割などがある。不等分割は、特に音声信号と整合性が高いことが知 られている。
尚、帯域分割フィルタバンク及び帯域合成フィルタバンクの詳細、更にはそれらの 設計法については、下記文献に開示されている。
「1993年、「マルチレートシステムズ'アンド'フィルタバンクス」、プレンティス 'ホール( MULTIRATE SYSTEMS AND FILTER BANKS, PRENTICE-HALL, 1993.)」
[0076] 次に、適応モード制御手段 (適応アレイ制御装置) 1200の一部を成す前述した多 重ブロッキング行列回路 320について詳述する。
[0077] 〔多重ブロッキング行列回路 320について:第 1の例〕
まず、図 4に、この多重ブロッキング行列回路 320を装備した場合を示す。又、この 多重ブロッキング行列回路 320の一構成例を図 5に示す。
この図 5に示すように、多重ブロッキング行列回路 320は、減算器 321〜321 と
0 M-1 加算器 322とから構成されている。減算器 iは、 1番目のセンサ信号 X (k)と i番目のセ
0
ンサ信号 X(k)の差分 Z (k)=X (k)— X(k)を求めて、加算器 322に伝達する。ここに、
i i 0 i
記号 iは 0から M— 2の範囲の整数である。カロ算器 322は、これら M— 1個の入力信号 をすベて加算して、加算結果を Z(k)として出力する。
[0078] 前述した従来例のブロッキング行列回路 310 (図 11参照)で説明したように、正面 から到来する目標信号に対して、各差分 Z (k) = 0となる。それ以外の方向から到来 する妨害信号に対しては、 Z (k)はゼロとならない。即ち、すべての差分は、それぞれ 単独でブロッキング行列として機能する。しかし、それぞれの差分 Z (k)は、異なった 周波数応答と空間選択特性を有する。これは、次の 2つの理由による。
[0079] まず、減算器入力である 2つのセンサ信号間の相対的な遅延は、センサ間距離と 信号到来方向の正弦 (sin)の積を音速で除した形で与えられることがあげられる。また 、センサ間距離は、すべての Z (k)において異なる。差分 Z (k)の周波数特性及び空間 選択特性は、センサ間距離の関数となるのである。逆にいえば、センサ間距離が異 なる Z (k)は、異なった周波数特性と空間選択特性を有する。これは、減算器 321〜3 i 0
21 を加算器に交換しても正 、。ただし、利得が減算器の場合の逆数となる点が
M- 1
異なる。尚、加算器を用いた場合は、目標信号が強調されるが、その場合の周波数 特性と空間選択特性が、下記文献に開示されている。
「2001年、(マイクロフォン 'ァレイズ)、第 1章、図 1.1、スプリンガ——バーラグ、ベル リン(CH.l, MICROPHONE ARRAYS,
SPRINGER- VERLAG, BERLIN, 2001.)」
[0080] 減算器の場合には、上記文献中の周波数特性と空間選択特性の逆数をとつて正 規化すればよい。この文献中にあっては、センサ間距離が一定の場合、入力信号周 波数が高くなるほど空間選択性が急峻になることがわかる。低い周波数においては、 ビーム角度が広ぐ空間選択性も劣化する。
これを上記の減算器 321〜321 の場合にあてはめてみると、低い周波数にお
0 M- 1
いて、正面方向から到来する目標信号に対して感度が低ぐ正面からはずれた方向 に対してより感度が高い。しかしながら、感度が低い方向から感度が高い方向への遷 移はゆるやかであり、十分な空間選択性を得ることができない。一方、センサ間隔が 広くなれば、相対遅延が大きくなり、高い空間選択性を実現できる。即ち、急峻な空 間選択性を得ることができる。
[0081] 本第 1実施形態では、この原理に基づき、間隔が異なるセンサの組から得られた信 号の差分を複数求め、これらを加算することによって、総合的に優れた空間選択性を 有するブロッキング行列を得る。複数の差分は減算器 321〜321 で求め、それら
0 M- 1
を加算器 322で加算する。
このように構成することにより、低域信号に対しては間隔が広いセンサ力も得られた 信号ペアの差分が、高域信号に対しては間隔が狭いセンサ力 得られた信号ペアの 差分が有効に作用し、広帯域信号に対して優れた空間選択性を実現することができ る。このため、この多重ブロッキング行列回路 320は、優れた周波数特性と空間選択 性で、目標信号を抑圧することができる。
[0082] 本第 1実施形態では、このような特性を有する多重ブロッキング行列回路 320の出 力を用いて妨害信号パワーを正確に推定し、その結果を用いて SIR計算部 700で SI Rを計算するように構成されている。このため、係数更新ステップサイズや忘却係数な どの適応フィルタの追従性と演算精度を決定するパラメータを、正確な SIR推定値に 基づ!/、て制御することで、適応アレイ処理装置における適応ブロッキング行列回路 3 00および目標信号を出力する多極の入力キャンセラ 500での係数更新を、適切に 制御することが可能となる。その結果、入力信号の周波数特性や目標信号と妨害信 号の方向の影響を受けにくい、高品質なアレイ処理出力を得ることができる。
[0083] 〔ブロッキング行列回路 320の他の構成例:第 2の例〕
ブロッキング行列回路 320の他の構成例を図 6に示す。
この図 6に示すブロッキング行列回路 320は、減算器 321〜321 、フィルタ 323
0 M- 1
〜323 、及び加算器 322とから構成されて 、る。減算器 iは、 1番目のセンサ信
0 M- 1
号 X (k)と i番目のセンサ信号 X(k)の差分 Z (k)=X (k)— X(k)を求めて、フイノレタ 323
0 i i 0 i i に伝達する。符号 iは 0から M - 2の範囲の整数である。
[0084] フィルタ 323は、通過帯域の信号成分を加算器 322に伝達する。力!]算器 322は、こ れら M—1個の入力信号をすベて加算して、加算結果を Z(k)として出力する。フィル タ 323の通過帯域は、 0番目と i番目のマイクロフォン間隔によって決定する。 0番目 と i番目のマイクロフォン信号によって定められる空間選択性の、とくに正面以外の方 向に対する減衰特性が、方向に対して平坦になるような周波数を通過帯域とするよう に、フィルタ 323が設計されている。
[0085] 〔ブロッキング行列回路 320の第 3の例〕
ブロッキング行列回路 320は、更に別の構成とすることができる(図 7参照)。 M個の センサ力もなる直列アレイにおいて、 2つのセンサの間隔は短いものから順に、 D、 2 D、 3D、 · · ·、(M— 1) Dとする。センサ間隔が Dとなるセンサの組は M—1あり、 2Dと なる組は M— 2、同様に考えて、(M— 1) Dとなる組は 1となる。従って、これらそれぞ れのセンサ間隔に対応した一組のセンサを選択し、それらから得られる信号の差分 を求め、これらを加算器 322で加算する構成である限り、ブロッキング行列回路 320 は上記の効果を有する。このような構成例を図 7に示す。
[0086] この図 7では、減算器 321と 321 の動作が図 3の場合と異なる。
0 M-2
前述した図 6では、これらの減算器はセンサ間隔 Dと (M— 1) Dに対応した差分信 号を出力するが、この図 7では、(M— 1) Dと Dのセンサ間隔に対応した差分信号を 出力する。この他にも、様々な類似構成が可能となる。
[0087] 〔ブロッキング行列回路 320の第 4の例〕
更に、これらの内、特定のセンサ間隔に対応した信号を用いない構成であっても、 従来のブロッキング行列回路 310よりは、目標信号のブロック効果が高い。このような ブロッキング行列回路 320の構成例 (第 4の例)を、図 8に示す。図 8を図 6と比較する と、減算器 321が存在しない。このため、センサ間隔が 2Dに対応した差分信号は存
2
在せず、センサ間隔 2Dによる効果は期待できない。しかし、それ以外のセンサ間隔 に対応した信号によって、図 6の例には及ばないものの、総合的に優れた空間選択 性を有するブロッキング行列回路 320を得ることができる。
[0088] ブロッキング行列回路 320の第 3乃至第 4の例(図 7及び図 8)では、減算器 321〜
0
321 の出力は、フイノレタ 323〜323 を経由してカロ算器 322に供給されている
M- 1 0 M- 1
力 図 5と同様に、フィルタ 323〜323 のない構成も可能である。これらの構成は
0 M- 1
、図 7及び図 8において、フイノレタ 323〜323 の入出力をすベて直結することで
0 M- 1
得られる。
その他の基本的な構成およびその作用効果は前述した図 11における従来等例の 場合とその基本構成は同一となっている。
[0089] このように多重ブロッキング行列回路 320を目的に応じてその出力内容を種々変化 させた状態のもので構成し得るので、これを適宜選択装備することにより、入力信号 の周波数特性や目標信号と妨害信号の方向の影響を受けにくい、高品質なアレイ処 理出力を得ることができる。
[0090] 〔全体的な動作説明〕
次に、上記第 1の実施形態における全体的な動作を、図 9に基づいて説明する。 まず、アレイ状センサ群で捕捉された複数の信号が送り込まれると受信部 100はこ れを受信し一時的に保持する (ステップ S101)。この受信部 100では、アレイ状セン サ群カもの複数の信号を常時受信し得る機能を備えている。この受信部 100で受信 されたアレイ状センサ信号は、固定ビームフォーマ (第 1のアレイ処理信号生成部) 2 00とブロッキング行列回路 (第 2のアレイ処理信号生成部) 310 (320)と適応ブロッキ ング行列回路 (妨害信号抽出部) 300へ同時に送り込まれる。
[0091] 固定ビームフォーマ 200では、送り込まれた複数の信号に含まれる目標信号が他 の信号に対して強調するように処理され、これによつて第 1のアレイ処理信号が生成 される (ステップ S 102 :第 1のアレイ処理信号生成工程)。
又、同時にブロッキング行列回路 (第 2のアレイ処理信号生成部) 310 (320)では、 送り込まれた複数の信号に含まれる前記目標信号を他の信号に対して減衰させ、こ れによって妨害信号が強調するように処理され、第 2のアレイ処理信号が生成される (ステップ S 103 :第 2のアレイ処理信号生成工程)。この生成された第 2のアレイ処理 信号は、ブロッキング行列回路 310 (320)で一時的に記憶される。
[0092] 更に、適応ブロッキング行列回路 300では、送り込まれた複数の信号に含まれる前 記目標信号を他の信号に対して減衰させて妨害信号が強調された第 3のアレイ処理 信号を生成し、これを前述した多入力キャンセラ 500へ出力する (ステップ S104)。 これら固定ビームフォーマ 200、ブロッキング行列回路 310、および適応ブロッキン グ行列 300における各処理動作は本実施形態では同時に作動し並行して同時に実 行される。
[0093] ステップ S102で生成され目標信号が強調された第 1のアレイ処理信号は遅延素子 400へ送られ、所定の遅延されたタイミングで多入力キャンセラ 500へ送り込まれる ( ステップ S105)。同時にこの第 1のアレイ処理信号は、利得制御部 900へ送られる。 この利得制御部 900では、第 1のアレイ処理信号を直ちに分析して信号特性を求め る (ステップ S 106 :信号特性分析工程)。続いて、この利得制御部 900では、生成さ れた信号特性に応じて前記第 1のアレイ処理信号が SIR推定用の信号に補正され、 これにより、第 1の補正アレイ処理信号が生成される (ステップ S107 :第 1のアレイ処 理信号補正工程)。
[0094] そして、この第 1の補正アレイ処理信号と前述したブロッキング行列回路 320で生 成された第 2のアレイ処理信号とに基づいて目標信号対妨害信号の比 (SIR)力 SSIR 推定部 700で演算され推定される (ステップ S 108 : SIR推定工程)。この場合、 SIR の推定は、第 2のアレイ処理信号に代わって予め設定した所定の妨害信号 (例えば 予め想定されたもの)を用いてもよい。又、この場合、 SIR推定工程に代えて、第 1の 補正アレイ処理信号と第 2のアレイ処理信号との相対的な大小関係を求める大小関 係特定工程を設定してもよい。この場合、前述した第 2のアレイ処理信号と同等に機 能する第 3のアレイ処理信号を前述した多重ブロッキング行列回路 320で形成し、こ れを前述した第 2のアレイ処理信号に代えて大小関係特定工程で使用してもよい。
[0095] そして、前述した SIR推定工程で推定された SIR推定値 (又は大小関係特定値)は 、直ちに演算制御部 800へ送られる。そして、この演算制御部 800では、この SIR推 定値 (又は大小関係特定値)に基づいて機能し、多入力キャンセラ 500における第 1 のアレイ処理信号の適応アレイ処理にあってその追従速度と演算精度とを定めるパ ラメータを最適な状態に設定制御するための制御信号を生成する (ステップ S109: 制御信号生成工程)。この制御信号を入力した多入力キャンセラ 500では、これによ り目標信号を強調出力するように設定制御される (適応アレイ処理制御工程)。
[0096] 即ち、演算制御部 800によって第 1のアレイ処理信号の適応アレイ処理に際し、処 理装置の係数更新制御を適切に行うことが可能となり、入力信号の周波数特性や目 標信号と妨害信号の方向の影響を受けにくい高品質なアレイ処理出力を得られる( ステップ S 110)。
ここで、演算制御部 800により、前述した制御信号を固定ビームフォーマ 200およ びブロッキング行列回路 320にも送り込み、これらの出力又はこれらの内の少なくとも 一つを強調出力するように制御する構成としてもょ 、。
[0097] 以上のように、この第 1の実施形態によると、目標信号の特性に応じて適応的に目 標信号 (又は目標信号および妨害信号)の各パワーの推定値を補正するので、平坦 度の高!、周波数及び空間選択特性を実現することができ、目標信号 (又は目標信号 および妨害信号)の各パワーを正確に推定することができ、このため、処理装置の係 数更新制御を適切に行うことが可能となり、入力信号の周波数特性や目標信号と妨 害信号の方向の影響を受けにくい高品質なアレイ処理出力を得ることができる。
[0098] 〔第 2の実施形態〕 本発明の第 2の実施形態を図 10に基づいて説明する。
ここで、前述した第 1の実施形態における構成部材と同等に機能する構成部材に つ!ヽては同一の符号を用いるものとする。
この図 10に示す第 2の実施形態は、プログラム制御により動作するコンピュータ(中 央処理装置;プロセッサ;処理装置本体) 1000と、入力端子 101 〜101 、及び
0 M- 1 出力端子 600とから構成されて 、る。
[0099] コンピュータ(中央処理装置;プロセッサ;処理装置本体) 1000は、前述した第 1の 実施例で開示した固定ビームフォーマ 200、適応ブロッキング行列 300、遅延素子 4 00、及び多入力キャンセラ 500、ブロッキング行列回路 310 (320)、 SIR推定部 700 、及び比較機能も備えた演算制御部 800の各機能と同等に機能する処理プログラム を格納した記憶装置、および当該処理プログラムを実行する中央処理装置を備えて いる。更に、この処理プログラムには、前述した第 2実施形態で開示した利得制御部 900の構成内容を含んだものであってもよい。
[0100] そして、入力端子 101 〜101 に供給される目標信号と妨害信号は、コンビユー
0 M- 1
タ 1000内の前記処理プログラムにて想定されるアレイ処理装置 1100に供給され、こ こで妨害信号が抑圧処理される。
この想定されるアレイ処理装置 1100は、前述した固定ビームフォーマ 200、適応ブ ロッキング行列回路 300、遅延素子 400、多入力キャンセラ 500と同等の実行内容を 、構成要素として備えている。又、本実施形態では、適応ブロッキング行列回路 300 および多入力キャンセラ 500には、当該適応ブロッキング行列回路 300および多入 力キャンセラ 500の各動作を制御する適応モード制御手段 (適応アレイ制御装置) 1 200が併設されている。
[0101] この適応モード制御手段 1200は、前述した第 2実施形態におけるブロッキング行 列回路 320、 SIR推定部 700、および比較部としても機能する演算制御部 800、と同 等の実行内容を含む処理プログラムにより構成されている。
そして、この適応モード制御手段 1200により、前述したアレイ処理装置における適 応ブロッキング行列回路 300と多入力キャンセラ 500に含まれる適応フィルタの係数 更新速度及び精度を制御される。ここで、適応モード制御手段 1200は、更に、前述 した利得制御部 900と同等に機能する処理プログラムを含んでもよい。
[0102] 適応モード制御手段 1200は、前述した各実施形態における適応モード制御手段 と同様に、入力される複数のアレイセンサ情報力 異なったセンサ間隔を有する複数 のセンサ対を設定し、これら各センサ対出力を用いて妨害信号パワーを推定する機 能を備えている。このため、この適応モード制御手段 1200を装備することにより、異 なった周波数特性や空間選択特性を組み合わせた、平坦度の高!ヽ特性を実現する ことができ、妨害信号パワーを正確に推定することができる。
又、目標信号の特性に応じて適応的に目標信号パワーの推定値を補正するので、 特定の周波数成分を適応的に強調して平坦度の高い周波数及び空間選択特性を 実現することができ、目標信号パワーを正確に推定することができる。
[0103] このように、本実施形態における適応アレイ処理装置 1100は、適応モード制御手 段 1200を装備することにより、前述した各実施形態の場合と同様に、適応ブロッキン グ行列回路 300および多入力キャンセラ 500の係数更新制御を適切に行うことが可 能となり、入力信号の周波数特性や目標信号と妨害信号の方向の影響を受けにくい 、高品質なアレイ処理出力を得ることができる。
以上、センサとしてマイクロフォンを用いて説明してきた力 マイクロフォン以外に、 超音波センサや、ソーナー受音器、アンテナなどのセンサを用いることができる。
[0104] 以上説明したように、本実施形態によれば、妨害信号パワー及び目標信号パワー 、並びに目標信号と妨害信号の比(SIR)を正確に推定することができる。このため、 入力信号の周波数特性や目標信号と妨害信号の方向の影響を受けにくぐ係数更 新制御を適切に行うことが可能となる。その結果、アレイ処理装置の出力における信 号の劣化や息づき雑音を有効に減少させることができる。
図面の簡単な説明
[0105] [図 1]本発明の第 1の実施形態を示すブロック図である。
[図 2]図 1中に開示した利得制御回路の第 1の例を示したブロック図である。
[図 3]図 1中に開示した利得制御回路の第 2の例を示したブロック図である。
[図 4]図 1中に開示したブロッキング行列回路の他の例(多重ブロッキング行列回路) を示すブロック図である。 [図 5]図 4中に開示した多重ブロッキング行列回路の第 1の具体例を示すブロック図 である。
[図 6]図 4中に開示した多重ブロッキング行列回路の第 2の具体例を示すブロック図 である。
[図 7]図 4中に開示した多重ブロッキング行列回路の第 3の具体例を示すブロック図 である。
[図 8]図 4中に開示した多重ブロッキング行列回路の第 4の具体例を示すブロック図 である。
[図 9]図 1に開示した第 1実施形態の動作を示すフローチャートである。
[図 10]本発明の第 2の実施形態を示すブロック図である。
[図 11]従来例を示すブロック図である。
[図 12]図 11中に開示したブロッキング行列を示す構成図である。
符号の説明
100 受信部
100〜100 アレイセンサとしての複数のマイクロフォン
0 M- 1
200 固定ビームフォーマ(第 1のアレイ処理信号生成部)
300 適応ブロッキング行列(第 2のアレイ処理信号生成部)
310, 320 ブロッキング行列(第 1のアレイ処理信号生成部)
311, 321〜321 減算器
0 M- 1
322 加算器
323〜323 フィルタ
0 M- 1
400 遅延素子
500 多入力キャンセラ (適用アレイ処理部)
600 出力端子
700 目標信号対妨害信号比の計算部 (SIR計算部, SIR推定部)
800 演算制御部
900 利得制御部
901, 907 記憶部 903, 912 分析部
904, 913 利得計算部
905, 914 スペクトル修正部(補正部)
1000 コンピュータ
1200 適応モード制御手段 (適応アレイ制御装置)

Claims

請求の範囲
[1] アレイ状の複数のセンサから送り込まれる複数の信号に含まれる目標信号が他の 信号に対して強調処理されて成る第 1のアレイ処理信号を分析して信号特性を求め る分析部と、
前記得られた信号特性に応じて前記第 1のアレイ処理信号を補正し第 1の補正ァレ ィ処理信号として出力する補正部と、
前記第 1の補正アレイ処理信号に基づいて目標信号に対する妨害信号の比 (SIR) を推定する SIR推定部と、
前記 SIR推定値を用いて所定の適応アレイ処理部におけるパラメータ調整の速度 と精度を制御するための制御信号を発生する演算制御部とを有することを特徴とす る適応アレイ制御装置。
[2] 前記請求項 1に記載の適応アレイ制御装置にお 、て、
前記目標信号を他の信号に対して減衰させて第 2のアレイ処理信号を生成する第 2のアレイ処理信号生成部を装備すると共に、
前記 SIR推定部を、前記第 2のアレイ処理信号生成部で生成された第 2のアレイ処 理信号と前記第 1の補正アレイ処理信号とに基づいて前記目標信号対妨害信号の 比 (SIR)を推定し特定する構成とし、
前記演算制御部が、前記所定の適応アレイ処理部における適応アレイ処理に際し て必要とするパラメータ調整の速度と精度とを前記 SIR推定値を用いて制御する適 応アレイ処理制御機能を備えていることを特徴とした適応アレイ制御装置。
[3] アレイ状の複数のセンサから送り込まれる複数の信号に含まれる目標信号が他の 信号に対して強調処理されて成る第 1のアレイ処理信号を分析して信号特性を求め る分析部と、この得られた信号特性に応じて前記第 1のアレイ処理信号を補正し第 1 の補正アレイ処理信号として出力する補正部と、
前記目標信号を他の信号に対して減衰させて第 2のアレイ処理信号を生成する第 2のアレイ処理信号生成部と、
前記第 1の補正アレイ処理信号と前記第 2のアレイ処理信号の相対的な大小関係 を求める計算部と、 この計算部で得られる大小関係を用いて所定の適応アレイ処理部におけるパラメ ータ調整の速度と精度を制御するための制御信号を発生する演算制御部を具備し たことを特徴とする適応アレイ制御装置。
[4] 前記請求項 3に記載の適応アレイ制御装置にお 、て、
前記第 2のアレイ処理信号生成部は、前記入力される複数のアレイセンサ情報から 異なったセンサ間隔を有する複数のセンサ対を設定すると共にそのセンサ対の出力 差分を算定してこれを出力するセンサ対差分情報出力機能を備えていることを特徴 とした適応アレイ制御装置。
[5] 前記請求項 4に記載の適応アレイ制御装置にお 、て、
前記第 2のアレイ処理信号生成部は、前記各出力差分をそれぞれフィルタ処理す る複数のフィルタとこのフィルタ出力を加算する加算器とを具備すると共に、前記カロ 算器における加算結果を外部出力する加算結果出力機能を備えていることを特徴と する適応アレイ制御装置。
[6] アレイ状の複数のセンサから送り込まれる複数の信号に含まれる目標信号が他の 信号に対して強調処理されて成る第 1のアレイ処理信号を分析してその信号特性を 求める信号特性分析工程と、
この得られた信号特性に応じて前記第 1のアレイ処理信号を補正し第 1の補正ァレ ィ処理信号として出力する第 1のアレイ処理信号補正工程と、
この前記第 1の補正アレイ処理信号に基づいて目標信号対妨害信号の比 (SIR)を 推定する SIR推定工程と、
この SIR推定工程で推定された SIR推定値を用いて所定の適応アレイ処理におけ るパラメータ調整の速度と精度とを最適な状態に設定制御する適応アレイ処理制御 工程と、
を備えたことを特徴とする適応アレイ制御方法。
[7] 前記請求項 6に記載の適応アレイ制御方法にぉ 、て、
前記第 1のアレイ処理信号補正工程と SIR推定工程との間に、前記目標信号を他 の信号に対して減衰させて第 2のアレイ処理信号を求める第 2のアレイ処理信号生 成工程を設定し、 前記 SIR推定工程を、前記第 2のアレイ処理信号と前記第 1の補正アレイ処理信号 とに基づいて前記目標信号対妨害信号の比 (SIR)を推定する SIR推定工程、とした ことを特徴とする適応アレイ制御方法。
[8] アレイ状の複数のセンサから送り込まれる複数の信号に含まれる目標信号が他の 信号に対して強調処理されて成る第 1のアレイ処理信号を分析しその信号特性を求 める信号特性分析工程と、
この得られた信号特性に応じて前記第 1のアレイ処理信号を補正し第 1の補正ァレ ィ処理信号として出力する第 1のアレイ処理信号補正工程と、
前記目標信号を他の信号に対して減衰させて第 2のアレイ処理信号を求める第 2 のアレイ処理信号生成工程と、
前記補正された第 1の補正アレイ処理信号と前記生成された第 2のアレイ処理信号 の相対的な大小関係を求める大小関係特定工程と、
この特定された相対的な大小関係に基づいて、適応アレイ処理におけるパラメータ 調整の速度と精度とを最適な状態に設定制御する適応アレイ処理制御工程と、 を備えたことを特徴とする適応アレイ制御方法。
[9] 前記請求項 7又は 8に記載の適応アレイ制御方法にぉ 、て、
前記第 2のアレイ処理信号生成工程の実行内容を、入力される複数のアレイセンサ 情報力 異なったセンサ間隔を有する複数のセンサ対を設定し、そのセンサ対の出 力差分を用いて第 2のアレイ処理信号を生成するように構成したことを特徴とする適 応アレイ制御方法。
[10] 前記請求項 11に記載の適応アレイ制御方法にお!、て、
前記第 2のアレイ処理信号生成工程の実行内容を、前記各出力差分をフィルタ処 理してそれぞれの差分に対応した複数のフィルタ処理結果を特定すると共に、この 特定された複数のフィルタ処理結果の和を用いて前記第 2のアレイ処理信号を生成 するように特定したことを特徴とする適応アレイ制御方法。
[11] アレイ状の複数のセンサ力 送り込まれる複数の信号に含まれる目標信号が他の 信号に対して強調処理されて成る第 1のアレイ処理信号を分析しその信号特性を求 める信号特性分析機能、 この生成された信号特性に応じて前記第 1のアレイ処理信号を補正して第 1の補正 アレイ処理信号を求める第 1のアレイ処理信号補正機能、
異なったセンサ間隔を有する複数のセンサ対の出力差分を求める出力差分算定 機能、
この算定された出力差分を用いて前記目標信号が他の信号に対して減衰した第 2 のアレイ処理信号を求める第 2のアレイ処理信号生成機能、
前記補正された第 1の補正アレイ処理信号と前記生成された第 2のアレイ処理信号 の相対的な大小関係を求める大小関係特定機能、
この特定された相対的な大小関係に基づいて、適応アレイ処理におけるパラメータ 調整の速度と精度とを最適な状態に設定制御する適応アレイ処理制御機能、 をコンピュータに実行させるように構成したことを特徴とする適応アレイ制御プロダラ ム。
[12] アレイ状センサ群から送り込まれる複数の信号に含まれる目標信号を他の信号に 対して強調するように処理し、これによつて第 1のアレイ処理信号を生成する第 1のァ レイ処理信号生成部と、前記目標信号を他の信号に対して減衰させて第 2のアレイ 処理信号を生成する第 2のアレイ処理信号生成部と、この第 2のアレイ処理信号と相 関のある信号成分を前記第 1のアレイ処理信号から適応的に消去する相関除去部と 、前記第 1のアレイ処理信号を分析して信号特性を求める分析部と、この分析部で得 られた信号特性に応じて前記第 1のアレイ処理信号を補正し第 1の補正アレイ処理 信号として出力する補正部と、この第 1の補正アレイ処理信号と前記第 2のアレイ処 理信号の相対的な大小関係を求める計算部とを備え、
この計算部から出力される大小関係を用いて前記適応処理におけるパラメータ調 整の速度と精度を制御するための制御信号を発生する演算制御部を装備し、 この演算制御部力 出力される制御信号を用いて少なくとも前記第 1のアレイ処理 信号生成部と前記第 2のアレイ処理信号生成部と前記相関除去部の少なくとも何れ か一つの動作を制御することを特徴とした適応アレイ処理装置。
[13] 前記請求項 12に記載の適応アレイ処理装置において、
前記第 2のアレイ処理信号生成部は、前記入力される複数のアレイセンサ情報から 異なったセンサ間隔を有する複数のセンサ対を設定すると共に、そのセンサ対の出 力差分を算定してこれを出力するセンサ対差分出力機能を備えていることを特徴とし た適応アレイ処理装置。
[14] 前記請求項 12に記載の適応アレイ処理装置において、
前記第 2のアレイ処理信号生成部は、前記各出力差分をそれぞれフィルタ処理す る複数のフィルタと当該フィルタ出力を加算する加算器とを具備すると共に、前記カロ 算器における加算結果を外部出力する加算結果出力機能を備えていることを特徴と する適応アレイ処理装置。
[15] アレイ状センサ群から送り込まれる複数の信号に含まれる目標信号を他の信号に 対して強調するように処理し、これによつて第 1のアレイ処理信号を生成する第 1のァ レイ処理信号生成工程と、
前記目標信号を他の信号に対して減衰させて第 2のアレイ処理信号を求める第 2 のアレイ処理信号生成工程と、
生成された前記第 2のアレイ処理信号と相関のある信号成分を前記第 1のアレイ処 理信号力 消去して出力する際に当該第 1のアレイ処理信号を分析して信号特性を 求める信号特性生成工程と、
この生成された信号特性に応じて前記第 1のアレイ処理信号を補正して第 1の補正 アレイ処理信号を求める第 1のアレイ処理信号補正工程と、
前記目標信号を他の信号に減衰させて第 3のアレイ処理信号を生成する第 3のァ レイ処理信号生成工程と、
前記補正された第 1の補正アレイ処理信号と前記生成された第 3のアレイ処理信号 の相対的な大小関係を求める大小関係特定工程と、
この特定された相対的な大小関係に基づ 、て、前記適応処理におけるパラメータ 調整の速度と精度とを制御する適応アレイ処理制御工程と、を備えたことを特徴とす る適応アレイ処理方法。
[16] 前記請求項 15に記載の適応アレイ処理方法において、
前記第 3のアレイ処理信号生成工程の実行内容を、入力される複数のアレイセンサ 情報力 異なったセンサ間隔を有する複数のセンサ対を設定し、そのセンサ対の出 力差分を用いて第 3のアレイ処理信号を生成するように構成したことを特徴とする適 応アレイ処理方法。
[17] 前記請求項 16に記載の適応アレイ処理方法において、
前記第 3のアレイ処理信号生成工程の実行内容を、前記各出力差分をフィルタ処 理してそれぞれの差分に対応した複数のフィルタ処理結果を特定すると共に、この 特定された複数のフィルタ処理結果の和を用いて前記第 3のアレイ処理信号を生成 するように構成したことを特徴とする適応アレイ処理方法。
[18] アレイ状センサ群から送り込まれる複数の信号に含まれる目標信号を他の信号に 対して強調するように処理し、これによつて第 1のアレイ処理信号を生成する第 1のァ レイ処理信号生成機能、
前記目標信号を他の信号に対して減衰させて第 2のアレイ処理信号を生成する第 2のアレイ処理信号生成機能、
この第 2のアレイ処理信号と相関のある信号成分を前記第 1のアレイ処理信号から 消去して出力する相関成分消去機能、
目標信号が他の信号に対して強調された前記前記第 1のアレイ処理信号を分析し て信号特性を求める信号特性を求める信号特性生成機能、
この生成された信号特性に応じて元の前記第 1のアレイ処理信号を補正して第 1の 補正アレイ処理信号を求める第 1のアレイ処理信号補正機能、
前記入力される複数のアレイセンサ情報力 異なったセンサ間隔を有する複数の センサ対を設定し、そのセンサ対の出力差分を算定する出力差分算定機能、 この出力差分を用いて目標信号が他の信号に対して減衰した第 2のアレイ処理信 号を生成する第 2のアレイ処理信号生成機能、
前記補正された第 1の補正アレイ処理信号と前記生成された第 2のアレイ処理信号 の相対的な大小関係を求める大小関係特定機能、
この特定された相対的な大小関係を用いて、前記適応処理におけるパラメータ調 整の速度と精度とを最適な状態に設定制御する適応アレイ処理制御機能、
をコンピュータに実行させるように構成したことを特徴とする適応アレイ処理プロダラ ム。
PCT/JP2007/058089 2006-04-20 2007-04-12 適応アレイ制御装置、方法、プログラム、及びこれを利用した適応アレイ処理装置、方法、プログラム WO2007123047A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/297,871 US8014230B2 (en) 2006-04-20 2007-04-12 Adaptive array control device, method and program, and adaptive array processing device, method and program using the same
JP2008512084A JP4973655B2 (ja) 2006-04-20 2007-04-12 適応アレイ制御装置、方法、プログラム、及びこれを利用した適応アレイ処理装置、方法、プログラム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006117286 2006-04-20
JP2006-117286 2006-04-20

Publications (1)

Publication Number Publication Date
WO2007123047A1 true WO2007123047A1 (ja) 2007-11-01

Family

ID=38624951

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/058089 WO2007123047A1 (ja) 2006-04-20 2007-04-12 適応アレイ制御装置、方法、プログラム、及びこれを利用した適応アレイ処理装置、方法、プログラム

Country Status (3)

Country Link
US (1) US8014230B2 (ja)
JP (1) JP4973655B2 (ja)
WO (1) WO2007123047A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110111807A (zh) * 2019-04-27 2019-08-09 南京理工大学 一种基于麦克风阵列的室内声源跟随与增强方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007123048A1 (ja) * 2006-04-20 2007-11-01 Nec Corporation 適応アレイ制御装置、方法、プログラム、及びこれを利用した適応アレイ処理装置、方法、プログラム
US7944775B2 (en) * 2006-04-20 2011-05-17 Nec Corporation Adaptive array control device, method and program, and adaptive array processing device, method and program
WO2007123047A1 (ja) * 2006-04-20 2007-11-01 Nec Corporation 適応アレイ制御装置、方法、プログラム、及びこれを利用した適応アレイ処理装置、方法、プログラム
KR20100003530A (ko) * 2008-07-01 2010-01-11 삼성전자주식회사 전자기기에서 음성 신호의 잡음 제거 장치 및 방법
US9502022B2 (en) * 2010-09-02 2016-11-22 Spatial Digital Systems, Inc. Apparatus and method of generating quiet zone by cancellation-through-injection techniques
US20130163781A1 (en) * 2011-12-22 2013-06-27 Broadcom Corporation Breathing noise suppression for audio signals
US9048942B2 (en) * 2012-11-30 2015-06-02 Mitsubishi Electric Research Laboratories, Inc. Method and system for reducing interference and noise in speech signals
US9689960B1 (en) * 2013-04-04 2017-06-27 Amazon Technologies, Inc. Beam rejection in multi-beam microphone systems
DE102017206788B3 (de) * 2017-04-21 2018-08-02 Sivantos Pte. Ltd. Verfahren zum Betrieb eines Hörgerätes
DE102018117557B4 (de) * 2017-07-27 2024-03-21 Harman Becker Automotive Systems Gmbh Adaptives nachfiltern
CN114550734A (zh) * 2022-03-02 2022-05-27 上海又为智能科技有限公司 音频增强方法和装置、计算机存储介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08122424A (ja) * 1994-09-01 1996-05-17 Nec Corp 適応アレイ装置
JPH10207490A (ja) * 1997-01-22 1998-08-07 Toshiba Corp 信号処理装置
JPH1152988A (ja) * 1997-08-01 1999-02-26 Nec Corp 適応アレイの制御方法および適応アレイ装置
JP2000181498A (ja) * 1998-12-15 2000-06-30 Toshiba Corp ビームフォーマを用いた信号入力装置及び信号入力用プログラムを記録した記録媒体
JP2003140700A (ja) * 2001-11-05 2003-05-16 Nec Corp ノイズ除去方法及び装置
JP2003271191A (ja) * 2002-03-15 2003-09-25 Toshiba Corp 音声認識用雑音抑圧装置及び方法、音声認識装置及び方法並びにプログラム
JP2005249816A (ja) * 2004-03-01 2005-09-15 Internatl Business Mach Corp <Ibm> 信号強調装置、方法及びプログラム、並びに音声認識装置、方法及びプログラム

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4247037B2 (ja) 2003-01-29 2009-04-02 株式会社東芝 音声信号処理方法と装置及びプログラム
JP4457221B2 (ja) 2003-08-29 2010-04-28 学校法人早稲田大学 音源分離方法およびそのシステム、並びに音声認識方法およびそのシステム
WO2007123048A1 (ja) * 2006-04-20 2007-11-01 Nec Corporation 適応アレイ制御装置、方法、プログラム、及びこれを利用した適応アレイ処理装置、方法、プログラム
WO2007123047A1 (ja) * 2006-04-20 2007-11-01 Nec Corporation 適応アレイ制御装置、方法、プログラム、及びこれを利用した適応アレイ処理装置、方法、プログラム
US8106827B2 (en) * 2006-04-20 2012-01-31 Nec Corporation Adaptive array control device, method and program, and adaptive array processing device, method and program
US7944775B2 (en) * 2006-04-20 2011-05-17 Nec Corporation Adaptive array control device, method and program, and adaptive array processing device, method and program

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08122424A (ja) * 1994-09-01 1996-05-17 Nec Corp 適応アレイ装置
JPH10207490A (ja) * 1997-01-22 1998-08-07 Toshiba Corp 信号処理装置
JPH1152988A (ja) * 1997-08-01 1999-02-26 Nec Corp 適応アレイの制御方法および適応アレイ装置
JP2000181498A (ja) * 1998-12-15 2000-06-30 Toshiba Corp ビームフォーマを用いた信号入力装置及び信号入力用プログラムを記録した記録媒体
JP2003140700A (ja) * 2001-11-05 2003-05-16 Nec Corp ノイズ除去方法及び装置
JP2003271191A (ja) * 2002-03-15 2003-09-25 Toshiba Corp 音声認識用雑音抑圧装置及び方法、音声認識装置及び方法並びにプログラム
JP2005249816A (ja) * 2004-03-01 2005-09-15 Internatl Business Mach Corp <Ibm> 信号強調装置、方法及びプログラム、並びに音声認識装置、方法及びプログラム

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HOSHUYAMA O. ET AL.: "A Realtime Robust Adaptive Microphone Array Controlled By An SNR Estimate", IEEE PROC. OF ICASSP'98, vol. 6, April 1998 (1998-04-01), pages 3605 - 3608, XP000951238 *
HOSHUYAMA O. ET AL.: "Blocking Gyoretsu ni Leak Tekio Filter o Mochiita Robust Ippanka Sidelobe Canceller", THE TRANSACTIONS OF THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS, vol. J79-A, no. 9, 25 September 1996 (1996-09-25), pages 1516 - 1524, XP003018597 *
HOSHYAMA O. ET AL.: "An Adaptive Microphone Array with Good Sound Quality Using Auxiliary Fixed Beamformers and Its DSP Implementation", IEEE PROC. OF ICASSP'99, vol. 2, March 1999 (1999-03-01), pages 949 - 952, XP000900279 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110111807A (zh) * 2019-04-27 2019-08-09 南京理工大学 一种基于麦克风阵列的室内声源跟随与增强方法
CN110111807B (zh) * 2019-04-27 2022-01-11 南京理工大学 一种基于麦克风阵列的室内声源跟随与增强方法

Also Published As

Publication number Publication date
US8014230B2 (en) 2011-09-06
JP4973655B2 (ja) 2012-07-11
US20100171662A1 (en) 2010-07-08
JPWO2007123047A1 (ja) 2009-09-03

Similar Documents

Publication Publication Date Title
JP4973655B2 (ja) 適応アレイ制御装置、方法、プログラム、及びこれを利用した適応アレイ処理装置、方法、プログラム
JP4973657B2 (ja) 適応アレイ制御装置、方法、プログラム、及び適応アレイ処理装置、方法、プログラム
US8374358B2 (en) Method for determining a noise reference signal for noise compensation and/or noise reduction
JP5805365B2 (ja) ノイズ推定装置及び方法とそれを利用したノイズ減少装置
EP2936830B1 (en) Filter and method for informed spatial filtering using multiple instantaneous direction-of-arrivial estimates
US7957542B2 (en) Adaptive beamformer, sidelobe canceller, handsfree speech communication device
KR100878992B1 (ko) 지오메트릭 소스 분리 신호 처리 기술
CN110140360B (zh) 使用波束形成的音频捕获的方法和装置
CN110140359B (zh) 使用波束形成的音频捕获
JP2002530922A (ja) 信号を処理する装置と方法
CN110249637B (zh) 使用波束形成的音频捕获装置和方法
JP4973656B2 (ja) 適応アレイ制御装置、方法、プログラム、及び適応アレイ処理装置、方法、プログラム
JP5315991B2 (ja) アレイ制御装置、アレイ制御方法及びアレイ制御プログラム、アレイ処理装置、アレイ処理方法及びアレイ処理プログラム
JPWO2014024248A1 (ja) ビームフォーミング装置
EP2938098B1 (en) Directional microphone device, audio signal processing method and program
US20190035382A1 (en) Adaptive post filtering
US20190348056A1 (en) Far field sound capturing
JP3001092B2 (ja) 適応アレイの制御方法および適応アレイ装置
Kim et al. Extension of two-channel transfer function based generalized sidelobe canceller for dealing with both background and point-source noise
CN117099361A (zh) 用于经滤波参考声学回声消除的装置和方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07741525

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2008512084

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12297871

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07741525

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)