WO2007119460A1 - Solid electrolyte composition, solid electrolyte film and lithium secondary battery - Google Patents

Solid electrolyte composition, solid electrolyte film and lithium secondary battery Download PDF

Info

Publication number
WO2007119460A1
WO2007119460A1 PCT/JP2007/055746 JP2007055746W WO2007119460A1 WO 2007119460 A1 WO2007119460 A1 WO 2007119460A1 JP 2007055746 W JP2007055746 W JP 2007055746W WO 2007119460 A1 WO2007119460 A1 WO 2007119460A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid electrolyte
group
electrolyte composition
formula
compound represented
Prior art date
Application number
PCT/JP2007/055746
Other languages
French (fr)
Japanese (ja)
Inventor
Hidetake Ishii
Koichi Nishimura
Original Assignee
Zeon Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zeon Corporation filed Critical Zeon Corporation
Priority to JP2008510830A priority Critical patent/JPWO2007119460A1/en
Publication of WO2007119460A1 publication Critical patent/WO2007119460A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F299/00Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers
    • C08F299/02Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2218Synthetic macromolecular compounds
    • C08J5/2256Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions other than those involving carbon-to-carbon bonds, e.g. obtained by polycondensation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/122Ionic conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2361/00Characterised by the use of condensation polymers of aldehydes or ketones; Derivatives of such polymers
    • C08J2361/02Condensation polymers of aldehydes or ketones only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a solid electrolyte composition, a solid electrolyte film obtained by photopolymerizing the solid electrolyte composition, and a lithium secondary battery having a solid electrolyte made of the solid electrolyte film.
  • a lithium secondary battery is usually used as a power source for these portable terminals.
  • Mobile terminals are required to have more comfortable portability, and are rapidly becoming smaller, thinner, lighter, and higher in performance. For this reason, lithium secondary batteries used as these power sources are required to be smaller, thinner, lighter, and higher in performance as in the case of portable terminals.
  • a liquid electrolyte or a gel electrolyte containing a plasticizer is usually used as an electrolyte. Therefore, in order to prevent damage to the equipment due to liquid leakage, it is necessary to use a relatively thick exterior with high strength, and problems such as the limitations of the small size and light weight of the battery are pointed out. Has been.
  • Patent Document 1 a glycidino ether having an ethylene oxide unit having a polymerization degree of 1 to 12 in a side chain is disclosed in Patent Document 1.
  • 1 to 98 mole 0/0, Echirenokishido 1-95 mole 0/0, and Okishiran compounds have a crosslinkable group 0.005: a lithium secondary battery using an electrolyte containing a copolymer consisting of 15 mol% It is disclosed.
  • ethylene glycol monoethyl ether is used as a plasticizer
  • benzoic peroxide is used as a cross-linking agent for cross-linking an oxosilane compound having a crosslinkable group.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 11-139999
  • the present invention has been made in view of such a situation, and an object thereof is excellent in film processability, sufficient mechanical strength and high ionic conductivity, and is characterized by repeated charge and discharge. It is intended to provide a solid electrolyte composition in which deterioration (cycle deterioration) is effectively prevented and a solid electrolyte film obtained by photopolymerization of this solid electrolyte composition. Another object of the present invention is to provide a lithium secondary battery having such a solid electrolyte film as an electrolyte.
  • the present inventors have started polymerization for polymerizing a crosslinkable group in a solid electrolyte composition containing a polyether polymer having a crosslinkable group.
  • the inventors have found that the above object can be achieved by using a specific photopolymerization initiator as an agent, and have completed the present invention.
  • the solid electrolyte composition according to the present invention comprises:
  • It contains a polyether polymer having a crosslinkable group, an electrolyte salt compound, and a compound represented by the following formula (1) and / or (2) as a photopolymerization initiator.
  • R 1 is an organic group containing a sulfur atom
  • R ⁇ R 3 is a substituent having a substituent, a aryl group, an alkyl group or a benzyl group
  • R 4 is It is a heteroaryl group or a heteroalkyl group which may have a substituent.
  • R 5 is an alkyl group which may have a substituent
  • R 6 and RR 8 are a hydrogen atom, an alkyl group or an alkoxy group.
  • the photopolymerization initiator contains a compound represented by the following formula (3) together with the compound represented by the formula (2).
  • the above formula (3) is an alkoxy group having a hydrogen atom or a hydroxyl group, a saturated cyclic substituent having a R 1Q hydroxyl group, or an alkyl group having a hydroxyl group.
  • it is represented by the formula (1).
  • the compound produced is 2-methyl-1 [4 (methylthio) phenyl] 2-morpholinopropane 1-one.
  • the compound represented by the formula (2) is bis (2,6 dimethoxybenzoyl) 2,4,4 trimethyl-pentylphosphine oxide.
  • the compound represented by the formula (3) is 1-hydroxy-cyclohexylenophenolate ketone.
  • the ratio of the compound represented by the formula (2) and the compound represented by the formula (3) is a weight ratio of [compound represented by the formula (2)]:
  • the compound represented by the formula (3)] 1: 0.3 to 1: 5.
  • the polyether polymer having a crosslinkable group comprises an ethyleneoxide monomer unit (A) as a main structural unit, a crosslinkable oxysilane monomer unit (B), ethylene oxide and a crosslinkable group. And a monomer unit (C) based on another oxysilane monomer copolymerizable with the functional oxysilane monomer.
  • the ratio of each unit in the polyether polymer having a crosslinkable group is such that the ethylene oxide monomer unit (A) is 70 to 99 mono%, and the crosslinkable oxysilane monomer unit (B) is 0. 5-9 mol%, wherein the other copolymerizable Okishiran monomer in based monomer unit (C) is 0.5 to 21 mole 0/0.
  • the polyether polymer having a crosslinkable group is a polymer obtained by copolymerizing ethylene oxide, propylene oxide, and allyl glycidyl ether.
  • the polyether polymer having a crosslinkable group has a weight average molecular weight (Mw) of 50,000 to 1,500,000 and a molecular weight distribution (Mw / Mn) of 1.5.
  • the electrolyte salt compound is LiCIO, LiBF, LiPF, LiCFSO, L
  • the content of the photopolymerization initiator in the solid electrolyte composition is 0.5 to 30 parts by weight with respect to 100 parts by weight of the polyether polymer having the crosslinkable group. .
  • the ratio of the number of moles of alkali metal salt in the electrolyte salt compound to the total number of moles of ether oxygen in the polyether polymer is in the range of 0.00:!-5.
  • the lithium secondary battery according to the present invention has a solid electrolyte composed of the above solid electrolyte film.
  • the solid electrolyte composition of the present invention and the solid electrolyte film obtained by photopolymerization thereof can be suitably used as a solid electrolyte such as a lithium secondary battery.
  • FIG. 1A is a charge / discharge profile of a sample according to an example of the present invention.
  • FIG. 1B is a charge / discharge profile of a sample according to a comparative example.
  • the solid electrolyte composition of the present invention the solid electrolyte film obtained by photopolymerization of the solid electrolyte composition of the present invention, and the lithium secondary battery having the solid electrolyte film of the present invention will be described sequentially. .
  • the solid electrolyte composition of the present invention contains a polyether polymer having a crosslinkable group, a predetermined photopolymerization initiator described later, and an electrolyte salt compound.
  • the polyether polymer having a crosslinkable group used in the present invention is one having an oxyalkylene repeating unit obtained by ring-opening polymerization of an oxysilane monomer as a main structural unit and a crosslinkable group in the side chain.
  • the present invention preferably has the following configuration.
  • the polyether polymer having a crosslinkable group is ethylene.
  • Monomer based on oxoxide monomer unit (A) as main structural unit, crosslinkable oxysilane monomer unit (B), and other oxysilane monomers copolymerizable with ethylene oxide and crosslinkable oxysilane monomer It is preferable that it has a body unit (C).
  • the amount of the ethylene oxide monomer unit (A) in the polyether polymer having a crosslinkable group is preferably 7099 monore 0, more preferably 80 98 monore 0, and still more preferably 86 97 mol%. If the amount of the ethylene oxide monomer unit (A) is too small, the mechanical strength in the case of a solid electrolyte film may be insufficient. On the other hand, if the amount is too large, the ion conductivity may decrease, and the characteristics may deteriorate when a solid electrolyte secondary battery is formed.
  • Examples of the crosslinkable oxysilane monomer for constituting the monomer unit (B) include oxysilane monomers having a crosslinkable group such as a vinyl group, a hydroxyl group, and an acid anhydride group. It is done.
  • crosslinkable oxysilane monomer examples include, for example, ethylenically unsaturated glycidyl ethers such as burglycidyl ether, allylic glycidyl ether, butenyldaricidyl ether, oarylphenyl glycidyl ether; butadiene monoepoxide Geno or polyene monoepoxides such as chloropentane monoepoxide, 4,5 epoxy-2 pentene, 3,4 epoxy 1-vinylcyclohexene, 1,2 epoxy 5,9 cyclododecadiene, 3, 4 epoxy 1-butene 1, 2 Epoxy 5 Hexene, 1, 2 Epoxy 9-decene, etc./Requenyl/Reepoxide; Glycidinoreatalylate, Glycidylmetatalylate, Glycidylcrotonate, Glycidylru 4 Ptenoate, Glycidylsorbate,
  • ethyl glycidyl ether is preferred, with ethylenically unsaturated glycidyl ether being preferred.
  • the amount of the crosslinkable oxysilane monomer unit (B) in the polyether polymer having a crosslinkable group is preferably 0.59 monore 0, more preferably:! To 7 monore 0, more preferably 1.2. 5 Le%. If the amount of the crosslinkable oxysilane monomer unit (B) is too small, the mechanical strength in the case of a solid electrolyte film may be insufficient. On the other hand, if the amount of the crosslinkable oxirane monomer unit (B) is too large, the ionic conductivity may be lowered.
  • Examples of other oxysilane monomers that can be copolymerized with ethylene oxide and a crosslinkable oxysilane monomer to constitute the monomer unit (C) include alkylene oxides having 3 to 20 carbon atoms. , Glycidinole ether having 1 to 10 carbon atoms, and bull aromatic compounds.
  • alkylene oxide having 3 to 20 carbon atoms include propylene oxide, 1,2-epoxybutane, 1,2-epoxymonoisobutane, 2,3-epoxybutane, 1,2-epoxy. Hexane, 1,2_epoxyoctane, 1,2_epoxydecane, 1,2_epoxytetradecane, 1,2_epoxyhexadecane, 1,2_epoxyoctadecane, 1,2_epoxy siecosan, etc. Chain alkylene oxides; cycloalkylene oxides such as 1,2_epoxycyclopentane, 1,2_epoxycyclohexane, 1,2_epoxycyclododecane; and the like.
  • glycidyl ethers having 1 to 10 carbon atoms include alkyl glycidyl ethers such as methyl daricidyl ether, ethyl daricidyl ether, and butyl daricidyl ether; aryl glycidyl ethers such as phenyl daricidyl ether; Is mentioned.
  • oxide of the bier aromatic compound examples include styrene oxide. Of these, propylene oxide is particularly preferred, with alkylene oxides having 3 to 20 carbon atoms being preferred.
  • the amount of the monomer unit based on another copolymerizable Okishiran monomer (C) is preferably 0.5 to 21 Monore 0/0, more Preferably:! To 13 mol%, more preferably 1.5 to 9 mol%.
  • the ring-opening polymerization catalyst used in the present invention for obtaining a polyether polymer having a crosslinkable group is not particularly limited.
  • a catalyst obtained by reacting water and acetylacetone with organic aluminum Japanese Patent Publication No. 35-15797
  • a catalyst obtained by reacting triisobutylaluminum with phosphoric acid and triethylamine Japanese Patent Publication No.46-27534
  • triisobutylaluminum and diazaviacycloundecene organic acid Catalyst made by reacting salt with phosphoric acid Japanese Patent Publication No. 35-15797
  • a catalyst obtained by reacting triisobutylaluminum with phosphoric acid and triethylamine Japanese Patent Publication No.46-27534
  • triisobutylaluminum and diazaviacycloundecene organic acid Catalyst made by reacting salt with phosphoric acid.
  • Catalyst consisting of partially hydrated aluminum alkoxide and organozinc compound Japanese Examined Patent Publication 43-2945
  • Catalyst consisting of organic zinc compound and polyhydric alcohol Japanese Examined Publication 45) — 7751
  • a catalyst comprising a dialkylzinc and water Japanese Examined Patent Publication No. 36-3394
  • the polymerization solvent is not particularly limited as long as it does not deactivate the polymerization catalyst.
  • aromatic hydrocarbons such as benzene and toluene
  • chain saturated hydrocarbons such as n-pentane and n-hexane
  • alicyclic hydrocarbons such as cyclopentane and cyclohexane
  • a solvent slurry polymerization method using a solvent such as n-pentane, n-xane and cyclopentane, which can use a polymerization method such as a solution polymerization method or a solvent slurry polymerization method.
  • a catalyst is treated in advance with a monomer that gives a polymer insoluble in the solvent and a monomer that gives a polymer soluble in the solvent. It is preferable from the viewpoint of the stability of the polymerization reaction system.
  • the treatment of the catalyst may be performed by mixing the catalyst component and a small amount of each of the above monomers and aging for 3 to 30 minutes at a temperature of 0 to 100 ° C, preferably 3050 ° C. By using the catalyst thus aged, it is possible to prevent the polymer from adhering to the polymerization can.
  • the polymerization reaction can be performed at 0 to: 100 ° C., preferably 30 to 70 ° C., by any method such as a batch system, a semi-batch system, or a continuous system.
  • the polyether polymer having a crosslinkable group used in the present invention has a weight average molecular weight.
  • Mw is preferably 50,000 to 1.5 million, more preferably 60,000 to 1,000,000, particularly preferably 70,000 to 500,000. If the weight average molecular weight is too small, flexibility and mechanical strength may be insufficient when a solid electrolyte film is obtained. On the other hand, if the weight average molecular weight is too large, components such as an electrolyte salt compound and a photopolymerization initiator in the solid electrolyte composition are formed. May be insufficiently distributed, which may reduce ionic conductivity.
  • the molecular weight distribution (Mw / Mn, where Mn is the number average molecular weight) is preferably a polymer of preferably 1.5 to 13, more preferably 1.6 to 12, particularly preferably 1.7 to 11. It is.
  • the solid electrolyte composition of the present invention contains a photopolymerization initiator for crosslinking the crosslinkable group in the polyether polymer having a crosslinkable group.
  • the photopolymerization initiator used in the present invention includes a compound represented by the following formula) and a compound represented by Z or the following formula (2).
  • R 1 is an organic group containing a sulfur atom, preferably an alkylthio group having 1 to 8 carbon atoms, and more preferably a methylthio group (CH 2 S—).
  • R 2 and R 3 are an optionally substituted aryl group, alkyl group or benzyl group, preferably an alkyl group having 1 or 2 carbon atoms, more preferably a methyl group (CH—).
  • R 4 has a substituent and may be a heteroaryl group or a heteroalkyl group.
  • a heteroalkyl group having a cyclic structure is preferable, and a morpholino group represented by the following formula (4) is more preferable.
  • R 1 is a methylthio group
  • R 2 and R 3 are both methyl groups
  • R 4 is a morpholino group.
  • Most preferred is 1 [4- (methylthio) phenyl] _2_morpholinopropane 1-one.
  • R 5 is an alkyl group which may have a substituent, preferably an alkyl group having 6 to 8 carbon atoms, more preferably 2, 4, 4 — It is a trimethylpentyl group [CH C (CH) CH CH (CH) CH-].
  • R 6 , R 7 and R 8 are a hydrogen atom, an alkyl group or an alkoxy group, preferably a hydrogen atom or an alkoxy group having 1 or 2 carbon atoms, more preferably a hydrogen atom or a methoxy group (CH 2 O 3). ).
  • R 5 is a 2,4,4 trimethylpentyl group
  • R 6 and R 7 are both methoxy groups
  • Most preferred is the hydrogen atom bis (2,6 dimethoxybenzoyl) 2,4,4-trimethyl monopentylphosphine oxide.
  • a solid electrolyte obtained by photopolymerization by using a compound represented by the above formula (1) and / or a compound represented by the above formula (2) as a photopolymerization initiator when the film is used as a solid electrolyte of a lithium secondary battery while maintaining sufficient mechanical strength and high ionic conductivity, the film can have good cycle characteristics. In particular, it is possible to suppress a voltage increase during charging due to repeated charging and discharging. [0036] It should be noted that this reason can be considered as follows.
  • the curing reaction can be progressed uniformly from the surface of the film to the inside thereof, so that it is possible to obtain a solid electrolyte film having no curing unevenness. It is thought that. Furthermore, when the above-described compound is used as a photopolymerization initiator, an organic compound containing a sulfur atom or a phosphorus atom remains in the solid electrolyte film after the photopolymerization. It is thought that the organic compound containing atoms forms a stable film at the interface between the electrode and the solid electrolyte, and this film makes it possible to suppress side reactions.
  • the compound represented by the above formula (2) is used as the photopolymerization initiator, it is preferable to use a compound represented by the following formula (3) in combination.
  • a compound represented by the following formula (3) is preferably in the range of 1: 0.3 to 1: 5. .
  • R 9 is a hydrogen atom or an alkoxy group having a hydroxyl group, preferably a hydrogen atom.
  • R 1Q is a saturated cyclic substituent having a hydroxyl group or an alkyl group having a hydroxyl group, preferably a saturated cyclic substituent having a hydroxyl group, more preferably represented by the following formula (5). 1-hydroxy monocyclohexyl group.
  • R 9 is a hydrogen atom
  • R 10 force—hydroxy 1-cyclohexyl group 1-hydroxy 1-cyclohexyl 1-phenyl
  • the amount of the photopolymerization initiator in the solid electrolyte composition of the present invention is preferably 0.5 to 30 parts by weight, more preferably 100 parts by weight of the polyether polymer having a crosslinkable group. 0.8 to 20 parts by weight, more preferably 1 to 15 parts by weight. If the amount of the photopolymerization initiator is too small, the flexibility and mechanical strength of the obtained solid electrolyte film tend to be lowered. On the other hand, if the amount is too large, the electrical characteristics of the solid electrolyte film tend to deteriorate.
  • the solid electrolyte composition of the present invention contains an electrolyte salt compound in addition to a polyether polymer having a crosslinkable group and a photopolymerization initiator.
  • Examples of the electrolyte salt compound include salts consisting of the following anions and cations.
  • Anions include fluorine ion, chlorine ion, bromine ion, iodine ion, perchlorate ion, thiocyanate ion, trifluoromethanesulfonate ion [CFSO-], bis (
  • examples of the cation include Li + , Na + , K + and the like.
  • LiN (CF 2 SO 4), and LiN (C 3 F 2 SO 4) are preferably used. These powers
  • LiN (CF 2 SO 4) is particularly preferred because of its high ionic conductivity in the case of a solid electrolyte film having high solubility in a polyether polymer having a crosslinkable group.
  • the content of the electrolyte salt compound with respect to the polyether polymer having a crosslinkable group is expressed as (number of moles of alkali metal salt in the electrolyte salt compound) Z (total amount of ether oxygen in the polyether polymer, Number) Force S
  • the range is from 0.001 to 5, more preferably from 0.005 to 3, more preferably from 0.01 to:!. If the content of the electrolyte salt compound is too large, the workability, moldability, and mechanical strength of a solid electrolyte film may be lowered, and the ionic conductivity may be lowered. On the other hand, if the content of the electrolyte salt compound is too small, the ionic conductivity tends to be too low.
  • the solid electrolyte film of the present invention is obtained by forming the solid electrolyte composition of the present invention having the above-described structure into a film shape, and then containing the crosslinkable group contained in the polyether polymer having a crosslinkable group. Polymerized.
  • the solid electrolyte composition of the present invention is formed into a film, a polyether polymer having a crosslinkable group constituting the solid electrolyte composition, the predetermined photopolymerization initiator, and an electrolyte salt
  • the compound may be molded in advance by a known method using a roll, a Banbury mixer, or the like, or may be molded and molded, for example, in an extruder.
  • the mixing order of the above-mentioned components at the time of mixing is not particularly limited, but after sufficiently mixing components that are not easily decomposed by heat, the components that easily react with heat * decompose easily (for example, a photopolymerization initiator) are shortened. It is preferable to mix in time.
  • an extrusion molding method As the molding method, an extrusion molding method, a press molding method, an injection molding method, a solution casting method, or the like can be used. Among these, the extrusion molding method is preferable from the viewpoint of the surface accuracy and productivity of the obtained molded body. In addition, when film forming is performed by an extrusion molding method, it is particularly preferable to employ a die extrusion method using a twin screw extruder.
  • the thickness of the film-like molded product obtained by extrusion molding is preferably 10 to 200 ⁇ m, more preferably 15 to 120 / m. If the thickness is too thin, the production stability is lacking, and when used as a battery electrolyte, short-circuiting easily occurs due to external impacts.
  • the film-like molded body obtained by the above method is irradiated with active radiation such as ultraviolet rays, visible light, and electron beams to thereby form crosslinkable groups in the polyether polymer having a crosslinkable group.
  • active radiation such as ultraviolet rays, visible light, and electron beams
  • an organic solvent or a plasticizer may be added to the solid electrolyte film of the present invention, if necessary, for the purpose of improving ionic conductivity.
  • the organic solvent aprotic esters and ethers are preferable.
  • the plasticizer is preferably a polyalkylene glycol derivative with a molecular weight of 5,000 or less. Specific examples thereof include propylene power carbonate, ethylene carbonate, butylene carbonate, tetrahydrofuran, and ethylene glycol jetyl ether.
  • these organic solvents and plasticizers they may be formed into a film and photopolymerized and impregnated over a long period of time, or they may be added at the same time when the above components are mixed. May be.
  • the lithium secondary battery of the present invention comprises a positive electrode (force sword) film, a negative electrode (anode) film, and an electrolyte comprising the solid electrolyte film of the present invention having the above-described configuration between the positive electrode film and the negative electrode film. contains.
  • the lithium secondary battery of the present invention is preferably a lithium polymer battery in which the electrolyte is a solid electrolyte having substantially no electrolyte solution.
  • the solid electrolyte functions as an ion conductive electrolyte membrane for transferring lithium ions mainly between the positive electrode and the negative electrode, and electrically separates the positive electrode and the negative electrode. It also functions as a separator.
  • the force sword material (positive electrode active material) contained in the positive electrode film is not particularly limited.
  • LiCoO, LiMnO, LiNiO, LiMnO, V0, V0, etc. can be used.
  • the positive electrode film may contain conductive fine particles as necessary.
  • conductive fine particles include acetylene black, ketjen black, and graphite, and ketjen black is preferably used. These blending amounts are preferably 1 to 20 parts by weight, more preferably 2 to 15 parts by weight per 100 parts by weight of the positive electrode active material. If the amount of the conductive fine particles is too small, there is a possibility that the conductivity of the force sword becomes insufficient. On the other hand, if it is too much, dispersion may become difficult.
  • the positive electrode film may contain the solid electrolyte composition of the present invention having the above-described configuration.
  • the solid electrolyte composition of the present invention By including the solid electrolyte composition of the present invention in the positive electrode film, it can function as a binder for binding the positive electrode active material and conductive particles, and has an effect of improving the ionic conductivity inside the positive electrode.
  • the solid electrolyte composition When the solid electrolyte composition is contained in the positive electrode film, it is usually about 50 parts by weight or less with respect to 100 parts by weight of the positive electrode active material. In addition, you may add another binder compound etc. as needed.
  • kneading may be performed using a heating kneader such as a biaxial kneader, or by a casting method using an organic solvent such as NMP (N-methyl-2-pyrrolidone). You can mold it.
  • a heating kneader such as a biaxial kneader
  • NMP N-methyl-2-pyrrolidone
  • the anode material contained in the negative electrode film is not particularly limited, and metallic lithium, an alloy capable of inserting and extracting lithium, an oxide, a carbon material, and the like can be used.
  • the lithium secondary battery of the present invention contains, as an electrolyte, a solid electrolyte film formed by photopolymerization of the solid electrolyte composition of the present invention. Therefore, in addition to charge / discharge characteristics such as output characteristics, it has the property of being excellent in cycle characteristics, and can be suitably used as a battery for power supplies of various devices.
  • seed polymerization is carried out by a known method using ethylene oxide, propylene oxide and allyl glycidyl ether, ethylene oxide units (E0) 90 mol 0 / o, propylene Okishido unit (P_ ⁇ ) 7 mole 0/0 and ⁇ Li glycidyl ether unit (eight 0 £) is 3 mol%, weight average molecular weight of 210, 000, the molecular weight distribution of the cross-linking group is 3.8 A polyether polymer A was obtained.
  • the weight average was the same as in Synthesis Example 1, except that the ethylene oxide unit (EO) was 92 mol%, the propylene oxide unit (PO) was 6 mol%, and the allyl glycidyl ether unit (AGE) was 2 mol%.
  • a polyether polymer B having a crosslinkable group having a molecular weight of 230,000 and a molecular weight distribution of 4.1 was obtained.
  • Polyether polymer A obtained in Synthesis Example 1 100 parts, 2-methyl-1 [4 (methylthio) phenyl] 2-morpholinopropane 1one (photoinitiator): 1 ⁇ 2 parts, and And LiN (CF 2 SO 3): Add 20 parts and mix to obtain a solid electrolyte composition
  • the obtained solid electrolyte composition was supplied to a twin screw extruder and extruded at a screw temperature of 80 ° C, a rotation speed of 150 rpm, and a die temperature of 155 ° C. Then, the extruded film was continuously attached to a polypropylene (PP) film, photocrosslinked by ultraviolet irradiation, and then peeled off from the PP film to obtain a solid electrolyte film having a thickness of 50 zm. The obtained solid electrolyte film was evaluated for the following characteristics.
  • PP polypropylene
  • the obtained solid electrolyte film was processed into a size of 15 mm ⁇ , and two pieces of lithium gold A coin-shaped sample cell was assembled by sandwiching and attaching them together with a metal foil (one on the positive electrode and the other on the negative electrode). Then, with respect to the obtained sample cell, a constant current was passed from the positive electrode to the negative electrode at a current density of 0.17 mA / cm 2 and an electric charge of 0.044 mAh under the condition of a temperature of 60 ° C.
  • a current was passed from the negative electrode to the positive electrode at a current density of 0.17 mA / cm 2 and an electric charge of 0.088 mAh under a temperature of 60 ° C., and then a current was passed from the positive electrode to the negative electrode under the same conditions.
  • the operation of flowing current from the negative electrode to the positive electrode was “discharge”, and the operation of flowing current from the positive electrode to the negative electrode was “charge”.
  • charging and discharging are performed for several cycles with these charging and discharging as one cycle, the cycle with stable charge / discharge characteristics is set as the initial cycle, and the maximum voltage during charging in the initial cycle is defined as the initial voltage (V). did.
  • the charge / discharge characteristics are stable in the cycle in which the difference between the maximum voltage during charging and the maximum voltage during charging in the immediately preceding cycle is 0.001 V or less for the first time after the start of charge / discharge. This was determined as an initial cycle. However, for the Sampnore cell, which had stable charge / discharge characteristics from the beginning, the 5th cycle was the initial cycle. The results are shown in Table 1.
  • the above test was further performed for 100 cycles for the sample cell.
  • the cycle characteristics were evaluated by calculating the ratio of the highest voltage at the 100th charge to the highest voltage at the charge in the initial cycle (the highest voltage at the 100th cycle / the highest voltage at the initial cycle). .
  • Example 3 The polyether polymer B obtained in Synthesis Example 2 was used as the polyether polymer having a crosslinkable group, and 2-methyl-1 [4 (methylthio) phenol] 1 2-morpholine was used as a photopolymerization initiator.
  • a solid electrolyte film was obtained in the same manner as in Example 1 except that the amount of linopropane 1-one used was changed to 1.2 parts and 4 parts, and the same evaluation as in Example 1 was performed. The results are shown in Table 1.
  • Example 1 except that the polyether polymer B obtained in Synthesis Example 2 was used as the polyether polymer having a crosslinkable group, and each compound shown in Table 1 was used as a photopolymerization initiator.
  • a solid electrolyte film was obtained and evaluated in the same manner as in Example 1. That is, as the photopolymerization initiator, 2,2-dimethoxy-1,2-diphenylenol-1-one was used in Comparative Example 1, and bis (2,4,6 trimethylbenzoyl) monophenyl was used in Comparative Example 2.
  • 2_benzyl_2-dimethylamino_1_ (4-morpholinophenyl) monobutanone 1 was used as the phosphine oxide. The results are shown in Table 1.
  • Examples 1 and 3 using 2-methyl-1 [4 (methylthio) phenyl] -2 morpholinopropane 1-one as a photopolymerization initiator are suppressed to a low initial voltage.
  • the results were particularly good.
  • "the highest voltage in the 300th cycle Z the highest voltage in the initial cycle" is 1.09 (Example 1), 1. 1 1 (Example 3), and good results could be obtained even when the number of cycles was further repeated.
  • FIG. 1A is the charge / discharge profile of Example 1
  • FIG. 1B is the charge / discharge profile of Comparative Example 2, and each shows a charge / discharge profile for about 100 cycles. From FIG. 1A and FIG. IB, it can be confirmed that in Example 1, the increase in the maximum voltage of the sample cell is suppressed even when the initial voltage is low and the cycle is repeated. On the other hand, in Comparative Example 2, it can be confirmed that the initial voltage increases, and the maximum voltage of the sample cell increases as the cycle continues.
  • a film having an average film thickness of 85 ⁇ m was extruded at 50 rpm and a die temperature of 155 ° C. And got The film was irradiated with ultraviolet rays and photocrosslinked by ultraviolet irradiation to obtain a positive electrode film.
  • the coin battery (CR2032) was assembled by sandwiching and bonding the solid electrolyte film produced in Example 1 between the positive electrode film produced above and a lithium metal foil.
  • the battery capacity of the obtained coin battery was measured by performing constant current discharge (CC discharge) at a temperature of 60 ° C, a lower limit voltage of 2V, and a discharge current of about 0.02C did.
  • CC discharge constant current discharge
  • the charging conditions are temperature: 60 ° C, upper limit voltage: 3.5V, charging current: 0.2C constant current charging (CC charging), and discharging conditions are temperature: 60 ° C, lower limit voltage: 2V.
  • Discharge current A charge / discharge cycle test of 10 cycles was conducted as a constant current discharge (CC discharge) of 0.2C. As a result, the discharge voltage at the 5th cycle (average voltage at the time of discharge) where the battery characteristics are stable and the discharge voltage at the 10th cycle after repeated cycles become the same voltage, and stable battery characteristics are obtained. I was able to confirm.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Dispersion Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Secondary Cells (AREA)
  • Conductive Materials (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

Disclosed is a solid electrolyte composition containing a polyether polymer having a crosslinkable group, an electrolyte salt compound, and a compound represented by the formula (1) and/or (2) below as a photopolymerization initiator. This solid electrolyte composition has excellent film formability, sufficient mechanical strength and high ion conductivity, and is effectively prevented from deterioration in characteristics due to repeated charges and discharges (cycle deterioration). (1) (2)

Description

明 細 書  Specification
固体電解質組成物、固体電解質フィルムおよびリチウム二次電池 技術分野  Technical field of solid electrolyte composition, solid electrolyte film and lithium secondary battery
[0001] 本発明は、固体電解質組成物、この固体電解質組成物を光重合してなる固体電解 質フィルム、およびこの固体電解質フィルムからなる固体電解質を有するリチウム二 次電池に関する。  The present invention relates to a solid electrolyte composition, a solid electrolyte film obtained by photopolymerizing the solid electrolyte composition, and a lithium secondary battery having a solid electrolyte made of the solid electrolyte film.
背景技術  Background art
[0002] 近年、ノート型パソコン、携帯電話、 PDA (Personal Digital Assistant)などの 携帯端末の普及が著しい。これら携帯端末の電源には、通常、リチウム二次電池が 使用されている。携帯端末は、より快適な携帯性が求められており、小型化、薄型化 、軽量化、高性能化が急速に進んでいる。そのため、これらの電源として用いられるリ チウムニ次電池に対しても、携帯端末に対するのと同様に、小型化、薄型化、軽量 ィ匕、高性能化が要求されている。  In recent years, portable terminals such as notebook personal computers, mobile phones, and PDAs (Personal Digital Assistants) have been widely used. A lithium secondary battery is usually used as a power source for these portable terminals. Mobile terminals are required to have more comfortable portability, and are rapidly becoming smaller, thinner, lighter, and higher in performance. For this reason, lithium secondary batteries used as these power sources are required to be smaller, thinner, lighter, and higher in performance as in the case of portable terminals.
[0003] 一方で、このようなリチウム二次電池においては、電解質として、通常、液体状ある いは可塑剤を含有させたゲル状の電解質が用いられている。そのため、液漏れによ る機器の破損を防止するために、強度が高ぐ比較的に厚い外装を使用する必要が あり、電池の小型 ·軽量ィ匕に限界があることなどの問題点が指摘されている。  On the other hand, in such a lithium secondary battery, a liquid electrolyte or a gel electrolyte containing a plasticizer is usually used as an electrolyte. Therefore, in order to prevent damage to the equipment due to liquid leakage, it is necessary to use a relatively thick exterior with high strength, and problems such as the limitations of the small size and light weight of the battery are pointed out. Has been.
[0004] なお、可塑剤を含有させたゲル状の電解質を用いたリチウム二次電池として、たと えば、特許文献 1では、側鎖に重合度 1〜: 12のエチレンォキシド単位を有するグリシ ジノレエーテル 1〜98モル0 /0、エチレンォキシド 1〜95モル0 /0、および架橋性基を有 するォキシラン化合物 0.005〜: 15モル%からなる共重合体を含む電解質を使用した リチウム二次電池が開示されている。この文献では、その具体的な態様としての実施 例において、可塑剤として、エチレングリコールモノェチルエーテルを用いるとともに 、架橋性基を有するォキシラン化合物を架橋するための架橋剤として、過酸化べンゾ ィルを用いた例が開示されている。 [0004] Note that, as a lithium secondary battery using a gel electrolyte containing a plasticizer, for example, in Patent Document 1, a glycidino ether having an ethylene oxide unit having a polymerization degree of 1 to 12 in a side chain is disclosed in Patent Document 1. 1 to 98 mole 0/0, Echirenokishido 1-95 mole 0/0, and Okishiran compounds have a crosslinkable group 0.005: a lithium secondary battery using an electrolyte containing a copolymer consisting of 15 mol% It is disclosed. In this example, in an embodiment as a specific embodiment, ethylene glycol monoethyl ether is used as a plasticizer, and benzoic peroxide is used as a cross-linking agent for cross-linking an oxosilane compound having a crosslinkable group. An example using a file is disclosed.
[0005] これに対して、有機高分子や無機セラミックスを用いた固体電解質が検討され、中 でも有機高分子を用いた高分子固体電解質は、加工性や柔軟性に優れるという特 徴を有している。そのため、リチウム二次電池の電解質として、高分子固体電解質を 使用することにより、電池形状の自由度を高くすることができるという利点を有する。ま た、このような高分子固体電解質は、電解液を含まないことから安全性の面でもその 開発が期待されている。 [0005] On the other hand, solid electrolytes using organic polymers and inorganic ceramics have been studied. Among them, polymer solid electrolytes using organic polymers are particularly excellent in workability and flexibility. Have signs. Therefore, by using a polymer solid electrolyte as the electrolyte of the lithium secondary battery, there is an advantage that the degree of freedom of the battery shape can be increased. In addition, such polymer solid electrolytes are expected to be developed in terms of safety because they do not contain electrolytes.
[0006] し力、しながら、このような高分子固体電解質を使用したリチウム二次電池において は、充放電を繰り返した際における特性劣化が起こりやすぐすなわち、サイクル特 性が十分でない場合も多ぐそのため、さらなる改善が求められていた。  [0006] However, in a lithium secondary battery using such a polymer solid electrolyte, there is often a case where characteristic deterioration occurs immediately after repeated charge and discharge, that is, cycle characteristics are not sufficient. Therefore, further improvement has been demanded.
特許文献 1:特開平 11一 73992号公報  Patent Document 1: Japanese Patent Application Laid-Open No. 11-139999
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0007] 本発明は、このような実状に鑑みてなされ、その目的は、フィルム加工性に優れ、十 分な機械的強度および高いイオン伝導度を有し、しかも、充放電の繰り返しによる特 性劣化 (サイクル劣化)が有効に防止された固体電解質組成物およびこの固体電解 質組成物を光重合して得られる固体電解質フィルムを提供することである。また、本 発明は、このような固体電解質フィルムを電解質に有するリチウム二次電池を提供す ることち目的とする。 [0007] The present invention has been made in view of such a situation, and an object thereof is excellent in film processability, sufficient mechanical strength and high ionic conductivity, and is characterized by repeated charge and discharge. It is intended to provide a solid electrolyte composition in which deterioration (cycle deterioration) is effectively prevented and a solid electrolyte film obtained by photopolymerization of this solid electrolyte composition. Another object of the present invention is to provide a lithium secondary battery having such a solid electrolyte film as an electrolyte.
課題を解決するための手段  Means for solving the problem
[0008] 本発明者等は、上記目的を達成すべく鋭意検討を行った結果、架橋性基を有する ポリエーテル重合体を含有する固体電解質組成物において、架橋性基を重合させる ための重合開始剤として、特定の光重合開始剤を用いることにより、上記目的を達成 できることを見出し、本発明を完成させるに至った。 [0008] As a result of intensive studies to achieve the above object, the present inventors have started polymerization for polymerizing a crosslinkable group in a solid electrolyte composition containing a polyether polymer having a crosslinkable group. The inventors have found that the above object can be achieved by using a specific photopolymerization initiator as an agent, and have completed the present invention.
[0009] すなわち、本発明に係る固体電解質組成物は、 That is, the solid electrolyte composition according to the present invention comprises:
架橋性基を有するポリエーテル重合体と、電解質塩化合物と、光重合開始剤として 下記式(1)および/または(2)で表される化合物と、を含有する。  It contains a polyether polymer having a crosslinkable group, an electrolyte salt compound, and a compound represented by the following formula (1) and / or (2) as a photopolymerization initiator.
[化 1]
Figure imgf000005_0001
[Chemical 1]
Figure imgf000005_0001
(ただし、上記式(1)中、 R1は硫黄原子を含む有機基、 R\ R3は置換基を有してレ、 てもよぃァリル基、アルキル基またはべンジル基、 R4は置換基を有していてもよいへ テロアリール基またはへテロアルキル基である。 ) (However, in the above formula (1), R 1 is an organic group containing a sulfur atom, R \ R 3 is a substituent having a substituent, a aryl group, an alkyl group or a benzyl group, R 4 is It is a heteroaryl group or a heteroalkyl group which may have a substituent.
[化 2]  [Chemical 2]
Figure imgf000005_0002
Figure imgf000005_0002
(ただし、上記式(2)中、 R5は置換基を有していてもよいアルキル基、 R6、 R R8は 、水素原子、アルキル基またはアルコキシ基である。 ) (In the above formula (2), R 5 is an alkyl group which may have a substituent, and R 6 and RR 8 are a hydrogen atom, an alkyl group or an alkoxy group.)
好ましくは、前記光重合開始剤として、前記式(2)で表される化合物とともに、下記 式(3)で表される化合物を含有する。  Preferably, the photopolymerization initiator contains a compound represented by the following formula (3) together with the compound represented by the formula (2).
[化 3] [Chemical 3]
Figure imgf000005_0003
Figure imgf000005_0003
(ただし、上記式(3)中、 は水素原子または水酸基を有するアルコキシ基、 R1Q 水酸基を有する飽和環式置換基または水酸基を有するアルキル基である。 ) 好ましくは、前記式(1)で表される化合物が、 2—メチルー 1〔4 (メチルチオ)フエ ニル〕 2—モルフォリノプロパン一 1—オンである。 好ましくは、前記式(2)で表される化合物が、ビス(2, 6 ジメトキシベンゾィル) 2 , 4, 4 トリメチルーペンチルフォスフィンオキサイドである。 (In the above formula (3), is an alkoxy group having a hydrogen atom or a hydroxyl group, a saturated cyclic substituent having a R 1Q hydroxyl group, or an alkyl group having a hydroxyl group.) Preferably, it is represented by the formula (1). The compound produced is 2-methyl-1 [4 (methylthio) phenyl] 2-morpholinopropane 1-one. Preferably, the compound represented by the formula (2) is bis (2,6 dimethoxybenzoyl) 2,4,4 trimethyl-pentylphosphine oxide.
好ましくは、前記式(3)で表される化合物が、 1ーヒドロキシーシクロへキシノレ フエ ニノレーケトンである。  Preferably, the compound represented by the formula (3) is 1-hydroxy-cyclohexylenophenolate ketone.
好ましくは、前記式(2)で表される化合物と、前記式(3)で表される化合物と、の比 率が、重量比で、 〔前記式(2)で表される化合物〕:〔前記式 (3)で表される化合物〕 = 1 : 0. 3〜: 1 : 5である。  Preferably, the ratio of the compound represented by the formula (2) and the compound represented by the formula (3) is a weight ratio of [compound represented by the formula (2)]: The compound represented by the formula (3)] = 1: 0.3 to 1: 5.
[0012] 好ましくは、前記架橋性基を有するポリエーテル重合体が、エチレンォキシド単量 体単位 (A)を主構造単位とし、架橋性ォキシラン単量体単位(B)と、エチレンォキシ ドおよび架橋性ォキシラン単量体と共重合可能な他のォキシラン単量体に基づく単 量体単位(C)と、を有する重合体である。  [0012] Preferably, the polyether polymer having a crosslinkable group comprises an ethyleneoxide monomer unit (A) as a main structural unit, a crosslinkable oxysilane monomer unit (B), ethylene oxide and a crosslinkable group. And a monomer unit (C) based on another oxysilane monomer copolymerizable with the functional oxysilane monomer.
好ましくは、前記架橋性基を有するポリエーテル重合体における各単位の比率が、 前記エチレンォキシド単量体単位 (A) 70〜99モノレ%、前記架橋性ォキシラン単量 体単位(B) 0. 5〜9モル%、前記共重合可能な他のォキシラン単量体に基づく単量 体単位(C) 0. 5〜21モル0 /0である。 Preferably, the ratio of each unit in the polyether polymer having a crosslinkable group is such that the ethylene oxide monomer unit (A) is 70 to 99 mono%, and the crosslinkable oxysilane monomer unit (B) is 0. 5-9 mol%, wherein the other copolymerizable Okishiran monomer in based monomer unit (C) is 0.5 to 21 mole 0/0.
好ましくは、前記架橋性基を有するポリエーテル重合体が、エチレンォキシド、プロ ピレンォキシド、およびァリルグリシジルエーテルを共重合してなる重合体である。 好ましくは、前記架橋性基を有するポリエーテル重合体が、重量平均分子量 (Mw) 5万〜 150万、分子量分布(Mw/Mn) l . 5〜: 13である。  Preferably, the polyether polymer having a crosslinkable group is a polymer obtained by copolymerizing ethylene oxide, propylene oxide, and allyl glycidyl ether. Preferably, the polyether polymer having a crosslinkable group has a weight average molecular weight (Mw) of 50,000 to 1,500,000 and a molecular weight distribution (Mw / Mn) of 1.5.
[0013] 好ましくは、前記電解質塩化合物が、 LiCIO 、 LiBF 、 LiPF 、 LiCF SO 、L [0013] Preferably, the electrolyte salt compound is LiCIO, LiBF, LiPF, LiCFSO, L
4 4 6 3 3 iC F SO 、LiN (CF SO ) 、LiN (C F SO ) 力ら選択される少なくとも 4 4 6 3 3 At least selected from iC F SO, LiN (CF SO), LiN (C F SO) force
4 9 3 3 2 2 2 5 2 2 一 種である。 4 9 3 3 2 2 2 5 2 2 One type.
[0014] 好ましくは、前記固体電解質組成物中における、前記光重合開始剤の含有量が、 前記架橋性基を有するポリエーテル重合体 100重量部に対して、 0. 5〜30重量部 である。  [0014] Preferably, the content of the photopolymerization initiator in the solid electrolyte composition is 0.5 to 30 parts by weight with respect to 100 parts by weight of the polyether polymer having the crosslinkable group. .
好ましくは、前記ポリエーテル重合体中のエーテル酸素の総モル数に対する、前記 電解質塩化合物中のアルカリ金属塩のモル数の比が、 0. 00:!〜 5の範囲となるよう に、前記電解質塩化合物が含有されている。 [0015] 本発明に係る固体電解質フィルムは、上記いずれかの固体電解質組成物を、光重 合してなる。 Preferably, the ratio of the number of moles of alkali metal salt in the electrolyte salt compound to the total number of moles of ether oxygen in the polyether polymer is in the range of 0.00:!-5. Contains salt compounds. [0015] The solid electrolyte film according to the present invention is obtained by photopolymerizing any one of the above solid electrolyte compositions.
本発明に係るリチウム二次電池は、上記の固体電解質フィルムで構成してある固体 電解質を有する。 発明の効果  The lithium secondary battery according to the present invention has a solid electrolyte composed of the above solid electrolyte film. The invention's effect
[0016] 本発明によると、光重合開始剤として、上記式(1)で表される化合物および Zまた は上記式(2)で表される化合物を用いるため、固体電解質フィルムとした場合に、十 分な機械的強度および高いイオン伝導度を維持しつつ、しかも、良好なサイクル特 性を実現できる。そのため、本発明の固体電解質組成物、およびこれを光重合して 得られる固体電解質フィルムは、リチウム二次電池などの固体電解質として好適に用 レ、ることができる。  [0016] According to the present invention, since the compound represented by the above formula (1) and the compound represented by Z or the above formula (2) are used as the photopolymerization initiator, Good cycle characteristics can be realized while maintaining sufficient mechanical strength and high ionic conductivity. Therefore, the solid electrolyte composition of the present invention and the solid electrolyte film obtained by photopolymerization thereof can be suitably used as a solid electrolyte such as a lithium secondary battery.
図面の簡単な説明  Brief Description of Drawings
[0017] [図 1A]図 1Aは本発明の実施例に係る試料の充放電プロファイルである。  FIG. 1A is a charge / discharge profile of a sample according to an example of the present invention.
[図 1B]図 1Bは比較例に係る試料の充放電プロファイルである。  FIG. 1B is a charge / discharge profile of a sample according to a comparative example.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0018] 以下、本発明の固体電解質組成物、本発明の固体電解質組成物を光重合してな る固体電解質フィルム、および本発明の固体電解質フィルムを有するリチウム二次電 池について、順次説明する。 Hereinafter, the solid electrolyte composition of the present invention, the solid electrolyte film obtained by photopolymerization of the solid electrolyte composition of the present invention, and the lithium secondary battery having the solid electrolyte film of the present invention will be described sequentially. .
[0019] 固体電解 組成物 [0019] Solid electrolytic composition
本発明の固体電解質組成物は、架橋性基を有するポリエーテル重合体と、後述す る所定の光重合開始剤と、電解質塩化合物と、を含有する。  The solid electrolyte composition of the present invention contains a polyether polymer having a crosslinkable group, a predetermined photopolymerization initiator described later, and an electrolyte salt compound.
まず、架橋性基を有するポリエーテル重合体について、説明する。  First, the polyether polymer having a crosslinkable group will be described.
[0020] 架橋件某を有するポリエーテル重合体 [0020] Polyether polymer having cross-linked structure
本発明で用いられる架橋性基を有するポリエーテル重合体は、ォキシラン単量体を 開環重合して得られるォキシアルキレン繰り返し単位を主構造単位とし、側鎖に架橋 性基を有するものであれば特に限定されないが、本発明では次のような構成を有す るものが好ましい。  The polyether polymer having a crosslinkable group used in the present invention is one having an oxyalkylene repeating unit obtained by ring-opening polymerization of an oxysilane monomer as a main structural unit and a crosslinkable group in the side chain. Although not particularly limited, the present invention preferably has the following configuration.
すなわち、本発明においては、架橋性基を有するポリエーテル重合体は、エチレン ォキシド単量体単位 (A)を主構造単位とし、架橋性ォキシラン単量体単位 (B)と、ェ チレンォキシドおよび架橋性ォキシラン単量体と共重合可能な他のォキシラン単量 体に基づく単量体単位(C)と、を有するものであることが好ましい。 That is, in the present invention, the polyether polymer having a crosslinkable group is ethylene. Monomer based on oxoxide monomer unit (A) as main structural unit, crosslinkable oxysilane monomer unit (B), and other oxysilane monomers copolymerizable with ethylene oxide and crosslinkable oxysilane monomer It is preferable that it has a body unit (C).
[0021] 架橋性基を有するポリエーテル重合体中のエチレンォキシド単量体単位 (A)量は 、好ましくは 70 99モノレ0 より好ましくは 80 98モノレ0 さらに好ましくは 86 97 モル%である。エチレンォキシド単量体単位 (A)量が少なすぎると、固体電解質フィ ルムとした場合における機械的強度が不十分となる場合がある。一方、多すぎるとィ オン伝導度が低下するおそれがあり、固体電解質二次電池とした場合に、特性が低 下するおそれがある。 [0021] The amount of the ethylene oxide monomer unit (A) in the polyether polymer having a crosslinkable group is preferably 7099 monore 0, more preferably 80 98 monore 0, and still more preferably 86 97 mol%. If the amount of the ethylene oxide monomer unit (A) is too small, the mechanical strength in the case of a solid electrolyte film may be insufficient. On the other hand, if the amount is too large, the ion conductivity may decrease, and the characteristics may deteriorate when a solid electrolyte secondary battery is formed.
[0022] 単量体単位(B)を構成するための架橋性ォキシラン単量体としては、たとえば、ビ ニル基、水酸基および酸無水物基などの架橋性基を有するォキシラン単量体が挙 げられる。  [0022] Examples of the crosslinkable oxysilane monomer for constituting the monomer unit (B) include oxysilane monomers having a crosslinkable group such as a vinyl group, a hydroxyl group, and an acid anhydride group. It is done.
このような架橋性ォキシラン単量体の具体例としては、たとえば、ビュルグリシジル エーテル、ァリルグリシジルエーテル、ブテニルダリシジルエーテル、 o ァリルフエ二 ルグリシジルエーテルなどのエチレン性不飽和グリシジルエーテル;ブタジエンモノ エポキシド、クロ口プレンモノエポキシド、 4, 5 エポキシー2 ペンテン、 3, 4 ェポ キシ 1ービニルシクロへキセン、 1 , 2 エポキシ 5, 9 シクロドデカジエンなどの ジェンまたはポリェンのモノエポキシド; 3, 4 エポキシ 1ーブテン、 1, 2 ェポキ シー 5 へキセン、 1 , 2 エポキシ 9ーデセンなどのァ/レケ二/レエポキシド;グリシ ジノレアタリレート、グリシジルメタタリレート、グリシジルクロトネート、グリシジルー 4 プテノエート、グリシジルソルベート、グリシジルリノレート、グリシジルー 4ーメチルー 3 —ペンテノエート、 3—シクロへキセンカルボン酸のグリシジルエステル、 4—メチル一 3—シクロへキセンカルボン酸のグリシジルエステルなどエチレン性不飽和カルボン 酸のグリシジルエステル類;などが挙げられる。  Specific examples of such a crosslinkable oxysilane monomer include, for example, ethylenically unsaturated glycidyl ethers such as burglycidyl ether, allylic glycidyl ether, butenyldaricidyl ether, oarylphenyl glycidyl ether; butadiene monoepoxide Geno or polyene monoepoxides such as chloropentane monoepoxide, 4,5 epoxy-2 pentene, 3,4 epoxy 1-vinylcyclohexene, 1,2 epoxy 5,9 cyclododecadiene, 3, 4 epoxy 1-butene 1, 2 Epoxy 5 Hexene, 1, 2 Epoxy 9-decene, etc./Requenyl/Reepoxide; Glycidinoreatalylate, Glycidylmetatalylate, Glycidylcrotonate, Glycidylru 4 Ptenoate, Glycidylsorbate, Glycidyllino Rate, group Examples include glycidyl esters of ethylenically unsaturated carboxylic acids such as licidyl 4-methyl-3-pentenoate, glycidyl ester of 3-cyclohexenecarboxylic acid, and glycidyl ester of 4-methyl-1-cyclohexenecarboxylic acid.
これらの中でもエチレン性不飽和グリシジルエーテルが好ましぐァリルグリシジル エーテルが特に好ましい。  Of these, ethyl glycidyl ether is preferred, with ethylenically unsaturated glycidyl ether being preferred.
[0023] 架橋性基を有するポリエーテル重合体中の架橋性ォキシラン単量体単位 (B)量は 、好ましくは 0. 5 9モノレ0 より好ましくは:!〜 7モノレ0 さらに好ましくは 1. 2 5モ ル%である。架橋性ォキシラン単量体単位 (B)量が少なすぎると、固体電解質フィル ムとした場合における機械的強度が不十分となる場合がある。一方、架橋性ォキシラ ン単量体単位(B)量が多すぎると、イオン伝導度が低下してしまうおそれがある。 [0023] The amount of the crosslinkable oxysilane monomer unit (B) in the polyether polymer having a crosslinkable group is preferably 0.59 monore 0, more preferably:! To 7 monore 0, more preferably 1.2. 5 Le%. If the amount of the crosslinkable oxysilane monomer unit (B) is too small, the mechanical strength in the case of a solid electrolyte film may be insufficient. On the other hand, if the amount of the crosslinkable oxirane monomer unit (B) is too large, the ionic conductivity may be lowered.
[0024] 単量体単位(C)を構成するための、エチレンォキシドおよび架橋性ォキシラン単量 体と共重合可能な他のォキシラン単量体としては、炭素数 3〜 20のアルキレンォキシ ド、炭素数 1〜: 10のグリシジノレエーテル、ビュル芳香族化合物などが挙げられる。  [0024] Examples of other oxysilane monomers that can be copolymerized with ethylene oxide and a crosslinkable oxysilane monomer to constitute the monomer unit (C) include alkylene oxides having 3 to 20 carbon atoms. , Glycidinole ether having 1 to 10 carbon atoms, and bull aromatic compounds.
[0025] 炭素数 3〜 20のアルキレンォキシドの具体例としては、プロピレンォキシド、 1, 2- エポキシブタン、 1 , 2—エポキシ一イソブタン、 2, 3—エポキシブタン、 1 , 2—ェポキ シへキサン、 1, 2_エポキシオクタン、 1 , 2 _エポキシデカン、 1 , 2_エポキシテトラ デカン、 1 , 2_エポキシへキサデカン、 1 , 2_エポキシォクタデカン、 1, 2_ェポキ シエイコサンなどの鎖状アルキレンォキシド; 1, 2_エポキシシクロペンタン、 1, 2_ エポキシシクロへキサン、 1, 2_エポキシシクロドデカンなどのシクロアルキレンォキ シド;などが挙げられる。  [0025] Specific examples of the alkylene oxide having 3 to 20 carbon atoms include propylene oxide, 1,2-epoxybutane, 1,2-epoxymonoisobutane, 2,3-epoxybutane, 1,2-epoxy. Hexane, 1,2_epoxyoctane, 1,2_epoxydecane, 1,2_epoxytetradecane, 1,2_epoxyhexadecane, 1,2_epoxyoctadecane, 1,2_epoxy siecosan, etc. Chain alkylene oxides; cycloalkylene oxides such as 1,2_epoxycyclopentane, 1,2_epoxycyclohexane, 1,2_epoxycyclododecane; and the like.
炭素数 1〜10のグリシジルエーテルの具体例としては、メチルダリシジルエーテル、 ェチルダリシジルエーテル、ブチルダリシジルエーテルなどのアルキルグリシジルェ 一テル;フエニルダリシジルエーテルなどのァリールグリシジルエーテル;などが挙げ られる。  Specific examples of glycidyl ethers having 1 to 10 carbon atoms include alkyl glycidyl ethers such as methyl daricidyl ether, ethyl daricidyl ether, and butyl daricidyl ether; aryl glycidyl ethers such as phenyl daricidyl ether; Is mentioned.
ビエル芳香族化合物のォキシドとしては、スチレンォキシドなどが挙げられる。 これらの中でも炭素数 3〜20のアルキレンォキシドが好ましぐプロピレンォキシド が特に好ましい。  Examples of the oxide of the bier aromatic compound include styrene oxide. Of these, propylene oxide is particularly preferred, with alkylene oxides having 3 to 20 carbon atoms being preferred.
[0026] 架橋性基を有するポリエーテル重合体中の、共重合可能な他のォキシラン単量体 に基づく単量体単位(C)量は、好ましくは 0. 5〜21モノレ0 /0、より好ましくは:!〜 13モ ル%、さらに好ましくは 1. 5〜9モル%でぁる。 [0026] in the polyether polymer having a crosslinkable group, the amount of the monomer unit based on another copolymerizable Okishiran monomer (C) is preferably 0.5 to 21 Monore 0/0, more Preferably:! To 13 mol%, more preferably 1.5 to 9 mol%.
[0027] 本発明で使用する、架橋性基を有するポリエーテル重合体を得るための開環重合 触媒は、特に限定されず、例えば、有機アルミニウムに水とァセチルアセトンとを反応 させた触媒(特公昭 35— 15797号公報)、トリイソブチルアルミニウムにリン酸とトリエ チルァミンとを反応させた触媒(特公昭 46— 27534号公報)、トリイソブチルアルミ二 ゥムにジァザビアシクロウンデセンの有機酸塩とリン酸とを反応させた触媒(特公昭 5 6— 51171号公報) アルミニウムアルコキサイドの部分カ卩水分解物と有機亜鉛化合 物とからなる触媒 (特公昭 43— 2945号公報) 有機亜鉛化合物と多価アルコールと 力 なる触媒 (特公昭 45— 7751号公報)、ジアルキル亜鉛と水とからなる触媒 (特公 昭 36— 3394号公報)などの、ォキシラン単量体の開環重合触媒として従来公知の 重合触媒を用いることができる。 [0027] The ring-opening polymerization catalyst used in the present invention for obtaining a polyether polymer having a crosslinkable group is not particularly limited. For example, a catalyst obtained by reacting water and acetylacetone with organic aluminum ( Japanese Patent Publication No. 35-15797), a catalyst obtained by reacting triisobutylaluminum with phosphoric acid and triethylamine (Japanese Examined Publication No.46-27534), triisobutylaluminum and diazaviacycloundecene organic acid Catalyst made by reacting salt with phosphoric acid. 6-51171) Catalyst consisting of partially hydrated aluminum alkoxide and organozinc compound (Japanese Examined Patent Publication 43-2945) Catalyst consisting of organic zinc compound and polyhydric alcohol (Japanese Examined Publication 45) — 7751) and a catalyst comprising a dialkylzinc and water (Japanese Examined Patent Publication No. 36-3394) can be used as a conventional ring-opening polymerization catalyst for an oxosilane monomer.
これらのなかでも、トリイソブチルアルミニウムにジァザビアシクロウンデセンの有機 酸塩とリン酸とを反応させて得られる触媒を用いると、フィルム強度を低下させる要因 となるトノレエン不溶分の生成が少なくなり好ましい。  Among these, when a catalyst obtained by reacting triazabutylaluminum with an organic acid salt of diazabiacycloundecene and phosphoric acid is used, the generation of insolubles in tonorene, which causes a decrease in film strength, is reduced. preferable.
[0028] また、重合溶媒は、重合触媒を失活させなレ、ものであれば特に限定されなレ、。例え ば、ベンゼン、トルエンなどの芳香族炭化水素; n—ペンタン、 n—へキサンなどの鎖 状飽和炭化水素類;シクロペンタン、シクロへキサンなどの脂環式炭化水素;などが 用いられる。 [0028] The polymerization solvent is not particularly limited as long as it does not deactivate the polymerization catalyst. For example, aromatic hydrocarbons such as benzene and toluene; chain saturated hydrocarbons such as n-pentane and n-hexane; alicyclic hydrocarbons such as cyclopentane and cyclohexane;
重合方法としては、溶液重合法または溶媒スラリー重合法などの重合法を用いるこ とができる力 n—ペンタン、 n キサン、シクロペンタンなどの溶媒を用いた溶媒ス ラリー重合法を用いるのが好ましレ、。  As the polymerization method, it is preferable to use a solvent slurry polymerization method using a solvent such as n-pentane, n-xane and cyclopentane, which can use a polymerization method such as a solution polymerization method or a solvent slurry polymerization method. Les.
[0029] 溶媒スラリー重合においては、重合に使用する単量体のうち、溶媒に不溶な重合 体を与える単量体と溶媒に可溶な重合体を与える単量体とで予め触媒を処理してお くこと力 重合反応系の安定性の観点から好ましい。触媒の処理は、触媒成分と少量 の上記各単量体とを混合し、 0〜: 100°C、好ましくは 30 50°Cの温度で 3 30分熟 成させればよい。このようにして熟成した触媒の使用によって重合缶への重合体の付 着を防止することができる。  [0029] In solvent slurry polymerization, among the monomers used for polymerization, a catalyst is treated in advance with a monomer that gives a polymer insoluble in the solvent and a monomer that gives a polymer soluble in the solvent. It is preferable from the viewpoint of the stability of the polymerization reaction system. The treatment of the catalyst may be performed by mixing the catalyst component and a small amount of each of the above monomers and aging for 3 to 30 minutes at a temperature of 0 to 100 ° C, preferably 3050 ° C. By using the catalyst thus aged, it is possible to prevent the polymer from adhering to the polymerization can.
重合反応は、 0〜: 100°C、好ましくは 30 70°Cで、回分式、半回分式、連続式など の任意の方法で行うことができる。  The polymerization reaction can be performed at 0 to: 100 ° C., preferably 30 to 70 ° C., by any method such as a batch system, a semi-batch system, or a continuous system.
[0030] 本発明で使用する架橋性基を有するポリエーテル重合体は、その重量平均分子量  [0030] The polyether polymer having a crosslinkable group used in the present invention has a weight average molecular weight.
(Mw)が好ましくは 5万〜 150万、より好ましくは 6万〜 100万、特に好ましくは 7万〜 50万である。重量平均分子量が小さすぎると、固体電解質フィルムとした場合に、柔 軟性および機械的強度が不十分となる場合がある。一方、重量平均分子量が大きす ぎると、固体電解質組成物中における、電解質塩化合物や、光重合開始剤等の成 分の分散が不十分となるおそれがあり、そのことによりイオン伝導度が低下するおそ れがある。なお、分子量分布(Mw/Mn、ここで Mnは数平均分子量)は、好ましくは 1. 5〜: 13、より好ましくは 1. 6〜: 12、特に好ましくは 1. 7〜: 11の重合体である。 (Mw) is preferably 50,000 to 1.5 million, more preferably 60,000 to 1,000,000, particularly preferably 70,000 to 500,000. If the weight average molecular weight is too small, flexibility and mechanical strength may be insufficient when a solid electrolyte film is obtained. On the other hand, if the weight average molecular weight is too large, components such as an electrolyte salt compound and a photopolymerization initiator in the solid electrolyte composition are formed. May be insufficiently distributed, which may reduce ionic conductivity. The molecular weight distribution (Mw / Mn, where Mn is the number average molecular weight) is preferably a polymer of preferably 1.5 to 13, more preferably 1.6 to 12, particularly preferably 1.7 to 11. It is.
^ ^m w  ^ ^ m w
本発明の固体電解質組成物は、架橋性基を有するポリエーテル重合体中の該架 橋性基を架橋するための、光重合開始剤を含有する。  The solid electrolyte composition of the present invention contains a photopolymerization initiator for crosslinking the crosslinkable group in the polyether polymer having a crosslinkable group.
本発明で用いる光重合開始剤は、下記式 )で表される化合物および Zまたは下 記式(2)で表される化合物を含むものである。  The photopolymerization initiator used in the present invention includes a compound represented by the following formula) and a compound represented by Z or the following formula (2).
[化 4] [Chemical 4]
Figure imgf000011_0001
Figure imgf000011_0001
[化 5]
Figure imgf000011_0002
上記式(1)で表される化合物としては、次のような構成を有するものが好ましい。 上記式(1)中、 R1は硫黄原子を含む有機基であり、好ましくは、炭素数 1〜8のアル キルチオ基であり、より好ましくはメチルチオ基(CH S—)である。
[Chemical 5]
Figure imgf000011_0002
As the compound represented by the above formula (1), those having the following constitution are preferable. In the above formula (1), R 1 is an organic group containing a sulfur atom, preferably an alkylthio group having 1 to 8 carbon atoms, and more preferably a methylthio group (CH 2 S—).
3  Three
R2、 R3は置換基を有していてもよいァリル基、アルキル基またはべンジル基であり、 好ましくは炭素数 1または 2のアルキル基であり、より好ましくはメチル基(CH―)で R 2 and R 3 are an optionally substituted aryl group, alkyl group or benzyl group, preferably an alkyl group having 1 or 2 carbon atoms, more preferably a methyl group (CH—).
3 ある。  There are three.
R4は置換基を有してレ、てもよレ、ヘテロァリール基またはへテロアルキル基であり 好ましくは環状構造を有するヘテロアルキル基であり、より好ましくは下記式 (4)で表 されるモルフオリノ基である。 R 4 has a substituent and may be a heteroaryl group or a heteroalkyl group. A heteroalkyl group having a cyclic structure is preferable, and a morpholino group represented by the following formula (4) is more preferable.
[化 6]  [Chemical 6]
0 一 N— (4) 0 one N— (4)
本発明においては、上記式(1)で表される化合物のうち、 R1がメチルチオ基であり 、 R2、 R3がともにメチル基であり、さらに、 R4がモルフオリノ基である 2—メチル一1〔4 - (メチルチオ)フエニル〕 _ 2_モルフォリノプロパン一 1—オンが最も好ましい。 In the present invention, among the compounds represented by the formula (1), R 1 is a methylthio group, R 2 and R 3 are both methyl groups, and R 4 is a morpholino group. Most preferred is 1 [4- (methylthio) phenyl] _2_morpholinopropane 1-one.
[0033] また、上記式(2)で表される化合物としては、次のような構成を有するものが好まし レ、。 [0033] Further, as the compound represented by the above formula (2), those having the following constitution are preferable.
すなわち、上記式(2)中、 R5は置換基を有していてもよいアルキル基であり、好まし くは炭素数 6〜8のアルキル基であり、より好ましくは 2, 4, 4 _トリメチルペンチル基〔 CH C (CH ) CH CH (CH ) CH―〕である。 That is, in the above formula (2), R 5 is an alkyl group which may have a substituent, preferably an alkyl group having 6 to 8 carbon atoms, more preferably 2, 4, 4 — It is a trimethylpentyl group [CH C (CH) CH CH (CH) CH-].
3 3 2 2 3 2  3 3 2 2 3 2
R6、 R7、 R8は、水素原子、アルキル基またはアルコキシ基であり、好ましくは水素原 子または炭素数 1または 2のアルコキシ基であり、より好ましくは水素原子またはメトキ シ基(CH O )である。 R 6 , R 7 and R 8 are a hydrogen atom, an alkyl group or an alkoxy group, preferably a hydrogen atom or an alkoxy group having 1 or 2 carbon atoms, more preferably a hydrogen atom or a methoxy group (CH 2 O 3). ).
3  Three
[0034] 本発明においては、上記式(2)で表される化合物のうち、 R5が 2, 4, 4 トリメチル ペンチル基であり、 R6、 R7がともにメトキシ基であり、さらに、 が水素原子であるビス (2, 6 ジメトキシベンゾィル) 2, 4, 4—トリメチル一ペンチルフォスフィンォキサイ ドが最も好ましい。 In the present invention, among the compounds represented by the above formula (2), R 5 is a 2,4,4 trimethylpentyl group, R 6 and R 7 are both methoxy groups, and Most preferred is the hydrogen atom bis (2,6 dimethoxybenzoyl) 2,4,4-trimethyl monopentylphosphine oxide.
[0035] 本発明では、光重合開始剤として、上記式(1)で表される化合物および/または上 記式(2)で表される化合物を用いることにより、光重合して得られる固体電解質フィル ムを、十分な機械的強度および高いイオン伝導度を維持しつつ、しかも、たとえばリ チウムニ次電池の固体電解質として使用した場合に、良好なサイクル特性を有する ものとすることができる。特に、繰り返し充放電に伴う充電時の電圧上昇を抑制するこ とができる。 [0036] なお、この理由としては、次のような理由が考えられる。すなわち、光重合開始剤と して、上記した化合物を用いることにより、フィルム表面部から内部まで均一に硬化反 応を進行させることができ、そのため、硬化むらのない固体電解質フィルムを得ること 力できることによると考えられる。さらには、光重合開始剤として、上記した化合物を用 いた場合には、光重合後には、固体電解質フィルム中に、硫黄原子またはリン原子 を含む有機化合物が残存することとなり、これら硫黄原子またはリン原子を含む有機 化合物が、電極と固体電解質との間の界面に安定な被膜を形成し、この被膜により 副反応の抑制が可能となることによると考えられる。 In the present invention, a solid electrolyte obtained by photopolymerization by using a compound represented by the above formula (1) and / or a compound represented by the above formula (2) as a photopolymerization initiator. For example, when the film is used as a solid electrolyte of a lithium secondary battery while maintaining sufficient mechanical strength and high ionic conductivity, the film can have good cycle characteristics. In particular, it is possible to suppress a voltage increase during charging due to repeated charging and discharging. [0036] It should be noted that this reason can be considered as follows. That is, by using the above-mentioned compound as a photopolymerization initiator, the curing reaction can be progressed uniformly from the surface of the film to the inside thereof, so that it is possible to obtain a solid electrolyte film having no curing unevenness. It is thought that. Furthermore, when the above-described compound is used as a photopolymerization initiator, an organic compound containing a sulfur atom or a phosphorus atom remains in the solid electrolyte film after the photopolymerization. It is thought that the organic compound containing atoms forms a stable film at the interface between the electrode and the solid electrolyte, and this film makes it possible to suppress side reactions.
[0037] なお、特性改善効果という観点より、上記式(1)で表される化合物および上記式(2 )で表される化合物のうちでは、上記式(1)で表される化合物が好ましぐ 2 _メチル _ 1〔4_ (メチルチオ)フエニル〕 _ 2 _モルフォリノプロパン一 1—オンが最も好まし レ、。  [0037] Of the compounds represented by the above formula (1) and the compounds represented by the above formula (2), the compounds represented by the above formula (1) are preferred from the viewpoint of the property improvement effect. 2_methyl_1 [4_ (methylthio) phenyl] _2_morpholinopropane-1-one is most preferred.
[0038] また、光重合開始剤として、上記式(2)で表される化合物を用いる場合には、下記 式(3)で表される化合物を併用することが好ましレ、。下記式(3)で表される化合物を 併用することにより、上記式 (2)で表される化合物を使用した場合の特性改善効果を さらに高めること力 Sできる。上記式(2)で表される化合物と、下記式(3)で表される化 合物と、の比率は、重量比で 1 : 0. 3〜: 1 : 5の範囲であることが好ましい。  [0038] When the compound represented by the above formula (2) is used as the photopolymerization initiator, it is preferable to use a compound represented by the following formula (3) in combination. By using a compound represented by the following formula (3) in combination, it is possible to further enhance the property improvement effect when the compound represented by the above formula (2) is used. The weight ratio of the compound represented by the above formula (2) and the compound represented by the following formula (3) is preferably in the range of 1: 0.3 to 1: 5. .
[化 7]  [Chemical 7]
Figure imgf000013_0001
上記式(3)中、 R9は水素原子または水酸基を有するアルコキシ基であり、好ましく は水素原子である。また、 R1Qは水酸基を有する飽和環式置換基または水酸基を有 するアルキル基であり、好ましくは水酸基を有する飽和環式置換基であり、より好まし くは下記式(5)で表される 1—ヒドロキシ一シクロへキシル基である。
Figure imgf000013_0001
In the above formula (3), R 9 is a hydrogen atom or an alkoxy group having a hydroxyl group, preferably a hydrogen atom. R 1Q is a saturated cyclic substituent having a hydroxyl group or an alkyl group having a hydroxyl group, preferably a saturated cyclic substituent having a hydroxyl group, more preferably represented by the following formula (5). 1-hydroxy monocyclohexyl group.
[化 8]
Figure imgf000014_0001
本発明においては、上記式(3)で表される化合物のうち、 R9が水素原子であり、 R10 力 —ヒドロキシ一シクロへキシル基である 1—ヒドロキシ一シクロへキシル一フエニル
[Chemical 8]
Figure imgf000014_0001
In the present invention, among the compounds represented by the above formula (3), R 9 is a hydrogen atom, and R 10 force—hydroxy 1-cyclohexyl group 1-hydroxy 1-cyclohexyl 1-phenyl
—ケトンが最も好ましい。 —Ketone is most preferred.
[0040] 本発明の固体電解質組成物における光重合開始剤の量は、上記架橋性基を有す るポリエーテル重合体 100重量部に対し、好ましくは 0. 5〜30重量部、より好ましく は 0. 8〜20重量部、さらに好ましくは 1〜: 15重量部である。光重合開始剤の量が少 なすぎると、得られる固体電解質フィルムの柔軟性や機械的強度が低下する傾向に ある。一方、多すぎると、固体電解質フィルムの電気特性が悪化する傾向にある。  [0040] The amount of the photopolymerization initiator in the solid electrolyte composition of the present invention is preferably 0.5 to 30 parts by weight, more preferably 100 parts by weight of the polyether polymer having a crosslinkable group. 0.8 to 20 parts by weight, more preferably 1 to 15 parts by weight. If the amount of the photopolymerization initiator is too small, the flexibility and mechanical strength of the obtained solid electrolyte film tend to be lowered. On the other hand, if the amount is too large, the electrical characteristics of the solid electrolyte film tend to deteriorate.
[0041] 電解晳塩化合物  [0041] Electrolytic salt salt compound
本発明の固体電解質組成物は、架橋性基を有するポリエーテル重合体と、光重合 開始剤とに加えて、電解質塩化合物を含有する。  The solid electrolyte composition of the present invention contains an electrolyte salt compound in addition to a polyether polymer having a crosslinkable group and a photopolymerization initiator.
[0042] 電解質塩化合物としては、たとえば、以下に示す陰イオンと、陽イオンとからなる塩 が挙げられる。 [0042] Examples of the electrolyte salt compound include salts consisting of the following anions and cations.
陰イオンとしては、フッ素イオン、塩素イオン、臭素イオン、ヨウ素イオン、過塩素酸 イオン、チォシアン酸イオン、トリフルォロメタンスルホン酸イオン〔CF SO―〕、ビス(  Anions include fluorine ion, chlorine ion, bromine ion, iodine ion, perchlorate ion, thiocyanate ion, trifluoromethanesulfonate ion [CFSO-], bis (
3 3 トリフルォロメタンスルホニル)イミドイオン〔N (CF SO ) ―〕、ビス(ヘプタフルォロプ  3 3 Trifluoromethanesulfonyl) imide ion [N (CF 2 SO 4) −], bis (heptafluoropropyl)
3 2 2  3 2 2
口ピルスルホニル)イミドイオン〔N (C F SO ) ―〕、テトラフルォロホウ素酸イオン、  Oral pyrsulfonyl) imide ion [N (C F SO) −], tetrafluoroborate ion,
2 5 2 2  2 5 2 2
硝酸イオン、 AsF―、 PF―、ステアリルスルホン酸イオン、ォクチルスルホン酸イオン  Nitrate ion, AsF-, PF-, stearyl sulfonate ion, octyl sulfonate ion
6 6  6 6
、ドデシルベンゼンスルホン酸イオン、ナフタレンスルホン酸イオン、ドデシルナフタレ ンスノレホン酸イオン、 7, 7, 8, 8—テトラシァノ _p—キノジメタンイオンなどが例示さ れる。  And dodecylbenzene sulfonate ion, naphthalene sulfonate ion, dodecyl naphthalene sulfonate ion, 7,7,8,8-tetraciano_p-quinodimethane ion, and the like.
また、陽イオンとしては、 Li+、 Na+、 K+などが例示される。 Further, examples of the cation include Li + , Na + , K + and the like.
[0043] これら陰イオンと陽イオンとの組み合わせは任意であり、また、必要に応じて、 2種 以上の塩を併用しても良レ、。たとえば、固体電解質組成物をリチウム二次電池の固 体電解質に用いる場合には、 LiCIO 、 LiBF 、 LiPF 、 LiCF SO 、 LiC F S [0043] The combination of these anions and cations is arbitrary, and if necessary, two kinds Even if the above salt is used together, it is good. For example, when the solid electrolyte composition is used as the solid electrolyte of a lithium secondary battery, LiCIO, LiBF, LiPF, LiCF SO, LiC FS
4 4 6 3 3 4 9 4 4 6 3 3 4 9
O 、 LiN (CF SO ) 、 LiN (C F SO ) が好ましく用いられる。これらのな力O 2, LiN (CF 2 SO 4), and LiN (C 3 F 2 SO 4) are preferably used. These powers
3 3 2 2 2 5 2 2 3 3 2 2 2 5 2 2
でも、架橋性基を有するポリエーテル重合体への溶解性が高ぐ固体電解質フィルム とした場合におけるイオン伝導度が高いという点より、 LiN (CF SO ) が特に好ま  However, LiN (CF 2 SO 4) is particularly preferred because of its high ionic conductivity in the case of a solid electrolyte film having high solubility in a polyether polymer having a crosslinkable group.
3 2 2  3 2 2
しい。  That's right.
[0044] 架橋性基を有するポリエーテル重合体に対する電解質塩化合物の含有量は、(電 解質塩化合物中のアルカリ金属塩のモル数) Z (ポリエーテル重合体中のエーテル 酸素の総、モノレ数)力 S好ましくは 0. 001〜5、より好ましくは 0. 005〜3、さらに好ましく は 0. 01〜:!となる範囲とする。電解質塩ィ匕合物の含有量が多すぎると加工性、成形 性、および固体電解質フィルムとした場合の機械的強度が低下する場合があり、また 、イオン伝導度が低下する場合がある。一方、電解質塩化合物の含有量が少なすぎ るとイオン伝導度が低くなり過ぎる傾向にある。  [0044] The content of the electrolyte salt compound with respect to the polyether polymer having a crosslinkable group is expressed as (number of moles of alkali metal salt in the electrolyte salt compound) Z (total amount of ether oxygen in the polyether polymer, Number) Force S Preferably, the range is from 0.001 to 5, more preferably from 0.005 to 3, more preferably from 0.01 to:!. If the content of the electrolyte salt compound is too large, the workability, moldability, and mechanical strength of a solid electrolyte film may be lowered, and the ionic conductivity may be lowered. On the other hand, if the content of the electrolyte salt compound is too small, the ionic conductivity tends to be too low.
[0045] 固体電解晳フイルム  [0045] Solid electrolytic film
本発明の固体電解質フィルムは、上記構成を有する本発明の固体電解質組成物 をフィルム状に成形し、次いで、架橋性基を有するポリエーテル重合体に含有されて レ、る該架橋性基を光重合してなるものである。  The solid electrolyte film of the present invention is obtained by forming the solid electrolyte composition of the present invention having the above-described structure into a film shape, and then containing the crosslinkable group contained in the polyether polymer having a crosslinkable group. Polymerized.
[0046] 本発明の固体電解質組成物を成形し、フィルム化する際には、固体電解質組成物 を構成する架橋性基を有するポリエーテル重合体と、上記所定の光重合開始剤と、 電解質塩化合物とを、予め、ロールやバンバリ一ミキサー等により公知の方法で混合 した後に成形してもよいし、たとえば、押出機中で混合、成形してもよい。混合の際の 上記各成分の配合順序は、特に限定されないが、熱で分解しにくい成分を充分に混 合した後、熱により反応 *分解しやすい成分 (たとえば、光重合開始剤など)を短時間 に混合することが好ましい。  [0046] When the solid electrolyte composition of the present invention is formed into a film, a polyether polymer having a crosslinkable group constituting the solid electrolyte composition, the predetermined photopolymerization initiator, and an electrolyte salt The compound may be molded in advance by a known method using a roll, a Banbury mixer, or the like, or may be molded and molded, for example, in an extruder. The mixing order of the above-mentioned components at the time of mixing is not particularly limited, but after sufficiently mixing components that are not easily decomposed by heat, the components that easily react with heat * decompose easily (for example, a photopolymerization initiator) are shortened. It is preferable to mix in time.
[0047] また、成形法としては、押出成形法、プレス成形法、射出成形法、溶液キャスト法な どを用いることができる。これらのなかでも、得られる成形体の表面精度、生産性等の 観点より、押出成形法が好ましい。また、押出成形法によりフィルム成形を行う場合に は、二軸押出機を用いたダイ押出法を採用することが、特に好ましい。 [0048] 押出成形して得られるフィルム状の成形体の厚さは、好ましくは 10〜200 μ m、より 好ましくは 15〜: 120 / mである。厚さが薄すぎると、製造の安定性に欠けるとともに、 電池の電解質として使用した場合に、外部からの衝撃等により、ショートし易くなつて しまう。一方、厚すぎると、電池の電解質として使用した場合に、正極と負極との間の 距離が大きくなつてしまレ、、電池のインピーダンスが上昇してしまレ、、結果として、電 池の出力が低下してしまう傾向にある。 [0047] As the molding method, an extrusion molding method, a press molding method, an injection molding method, a solution casting method, or the like can be used. Among these, the extrusion molding method is preferable from the viewpoint of the surface accuracy and productivity of the obtained molded body. In addition, when film forming is performed by an extrusion molding method, it is particularly preferable to employ a die extrusion method using a twin screw extruder. [0048] The thickness of the film-like molded product obtained by extrusion molding is preferably 10 to 200 μm, more preferably 15 to 120 / m. If the thickness is too thin, the production stability is lacking, and when used as a battery electrolyte, short-circuiting easily occurs due to external impacts. On the other hand, if it is too thick, when used as a battery electrolyte, the distance between the positive electrode and the negative electrode will increase, and the battery impedance will increase. As a result, the output of the battery will increase. It tends to decrease.
[0049] そして、上記方法により得られたフィルム状の成形体について、紫外線、可視光線 、電子線等の活性放射線を照射することにより、架橋性基を有するポリエーテル重合 体中の架橋性基を架橋させる。  [0049] Then, the film-like molded body obtained by the above method is irradiated with active radiation such as ultraviolet rays, visible light, and electron beams to thereby form crosslinkable groups in the polyether polymer having a crosslinkable group. Crosslink.
[0050] なお、本発明の固体電解質フィルムには、イオン伝導度を向上させる目的で、必要 に応じて、有機溶媒や可塑剤を添加してもよい。有機溶媒としては、非プロトン性の エステル類やエーテル類が好ましい。また可塑剤としては、分子量 5, 000以下のポ リアルキレングリコールの誘導体が好ましレ、。これらの具体例としては、プロピレン力 ーボネート、エチレンカーボネート、ブチレンカーボネート、テトラヒドロフラン、ェチレ ングリコールジェチルエーテルなどが挙げられる。これら有機溶媒や可塑剤を添カロ する場合には、フィルム状に成形し、光重合させた後に長時間かけて含浸させてもよ いし、あるいは、上記した各成分を混合する際に同時に添加してもよい。  [0050] Note that an organic solvent or a plasticizer may be added to the solid electrolyte film of the present invention, if necessary, for the purpose of improving ionic conductivity. As the organic solvent, aprotic esters and ethers are preferable. The plasticizer is preferably a polyalkylene glycol derivative with a molecular weight of 5,000 or less. Specific examples thereof include propylene power carbonate, ethylene carbonate, butylene carbonate, tetrahydrofuran, and ethylene glycol jetyl ether. When adding these organic solvents and plasticizers, they may be formed into a film and photopolymerized and impregnated over a long period of time, or they may be added at the same time when the above components are mixed. May be.
[0051] リチウム二次電池  [0051] Lithium secondary battery
本発明のリチウム二次電池は、正極(力ソード)フィルムと、負極(アノード)フィルムと 、これら正極フィルム、負極フィルムの間に、上記構成を有する本発明の固体電解質 フィルムからなる電解質と、を含有する。  The lithium secondary battery of the present invention comprises a positive electrode (force sword) film, a negative electrode (anode) film, and an electrolyte comprising the solid electrolyte film of the present invention having the above-described configuration between the positive electrode film and the negative electrode film. contains.
[0052] 本発明のリチウム二次電池は、電解質が、実質的に電解液を含まない固体電解質 力、らなるリチウムポリマー電池であることが好ましレ、。このようなリチウムポリマー電池 において、固体電解質は、主として正極と負極との間において、リチウムイオンを移 動させるためのイオン伝導性の電解質膜として機能するとともに、正極と負極とを電 気的に隔離するセパレーターとしても機能するものである。  [0052] The lithium secondary battery of the present invention is preferably a lithium polymer battery in which the electrolyte is a solid electrolyte having substantially no electrolyte solution. In such a lithium polymer battery, the solid electrolyte functions as an ion conductive electrolyte membrane for transferring lithium ions mainly between the positive electrode and the negative electrode, and electrically separates the positive electrode and the negative electrode. It also functions as a separator.
[0053] 正極フィルムに含有される力ソード材料(正極活物質)としては、特に限定されない 力 たとえば、 LiCoO 、 LiMnO 、 LiNiO 、 LiMn O 、 V 〇 、 V 〇 等が 使用できる。 [0053] The force sword material (positive electrode active material) contained in the positive electrode film is not particularly limited. For example, LiCoO, LiMnO, LiNiO, LiMnO, V0, V0, etc. Can be used.
[0054] 正極フィルムには、必要に応じて、導電性微粒子を含有させても良い。このような導 電性微粒子としては、たとえば、アセチレンブラック、ケッチェンブラック、グラフアイト 等が挙げられ、好ましくはケッチェンブラックが用いられる。これらの配合量は好ましく は正極活物質 100重量部あたり、好ましくは 1〜20重量部、より好ましくは 2〜: 15重 量部である。導電性微粒子の量が少なすぎると、力ソードの導電性が不十分になつ てしまうおそれがある。また、逆に多すぎると分散が困難になってしまうおそれがある  [0054] The positive electrode film may contain conductive fine particles as necessary. Examples of such conductive fine particles include acetylene black, ketjen black, and graphite, and ketjen black is preferably used. These blending amounts are preferably 1 to 20 parts by weight, more preferably 2 to 15 parts by weight per 100 parts by weight of the positive electrode active material. If the amount of the conductive fine particles is too small, there is a possibility that the conductivity of the force sword becomes insufficient. On the other hand, if it is too much, dispersion may become difficult.
[0055] また、正極フィルムには、上記正極活物質および導電性粒子以外に、上記した構 成を有する本発明の固体電解質組成物を含有させても良い。正極フィルム中に、本 発明の固体電解質組成物を含有させることにより、正極活物質や導電性粒子を結着 させるバインダーとして機能させることができるとともに、正極内部におけるイオン伝導 度を向上させる効果を有する。正極フィルム中に、固体電解質組成物を含有させる 場合においては、正極活物質 100重量部に対して、通常、 50重量部程度以下であ る。なお、必要に応じて、その他のバインダー化合物などを添加しても良い。 [0055] In addition to the positive electrode active material and the conductive particles, the positive electrode film may contain the solid electrolyte composition of the present invention having the above-described configuration. By including the solid electrolyte composition of the present invention in the positive electrode film, it can function as a binder for binding the positive electrode active material and conductive particles, and has an effect of improving the ionic conductivity inside the positive electrode. . When the solid electrolyte composition is contained in the positive electrode film, it is usually about 50 parts by weight or less with respect to 100 parts by weight of the positive electrode active material. In addition, you may add another binder compound etc. as needed.
[0056] 正極フィルムの作成方法としては、二軸混練機などの加熱混練機を用いて練りこん でもよいし、 NMP (N—メチル—2—ピロリドン)などの有機溶媒を用いてキャスト法に よって成形してもよレ、。  [0056] As a method for producing the positive electrode film, kneading may be performed using a heating kneader such as a biaxial kneader, or by a casting method using an organic solvent such as NMP (N-methyl-2-pyrrolidone). You can mold it.
[0057] 負極フィルムに含有されるアノード材料としては、特に限定されず、金属リチウムや 、リチウムの吸蔵 ·放出が可能な合金、酸化物およびカーボン材料などを使用するこ とができる。  [0057] The anode material contained in the negative electrode film is not particularly limited, and metallic lithium, an alloy capable of inserting and extracting lithium, an oxide, a carbon material, and the like can be used.
[0058] 本発明のリチウム二次電池は、電解質として、本発明の固体電解質組成物を光重 合してなる固体電解質フィルムを含有している。そのため、出力特性などの充放電特 性に加えて、サイクル特性に優れるという性質を有しており、各種機器の電源用の電 池として好適に用いることができる。  [0058] The lithium secondary battery of the present invention contains, as an electrolyte, a solid electrolyte film formed by photopolymerization of the solid electrolyte composition of the present invention. Therefore, in addition to charge / discharge characteristics such as output characteristics, it has the property of being excellent in cycle characteristics, and can be suitably used as a battery for power supplies of various devices.
実施例  Example
[0059] 以下、本発明を、さらに詳細な実施例に基づき説明するが、本発明は、これら実施 例に限定されない。なお、本実施例における部おょび%は、特記しない限り重量基 準である。 Hereinafter, the present invention will be described based on further detailed examples, but the present invention is not limited to these examples. In the examples, parts and percentages are by weight unless otherwise specified. It is quasi.
[0060] 合成例 1  [0060] Synthesis Example 1
n—へキサン中で、エチレンォキシド、プロピレンォキシドおよびァリルグリシジルェ 一テルを用いて公知の方法によりシード重合を行レ、、エチレンォキシド単位(E〇) 90 モル0 /o、プロピレンォキシド単位(P〇) 7モル0 /0およびァリルグリシジルエーテル単位 (八0£) 3モル%であり、重量平均分子量が 210, 000、分子量分布が 3. 8である架 橋性基を有するポリエーテル重合体 Aを得た。 In n-hexane, seed polymerization is carried out by a known method using ethylene oxide, propylene oxide and allyl glycidyl ether, ethylene oxide units (E0) 90 mol 0 / o, propylene Okishido unit (P_〇) 7 mole 0/0 and § Li glycidyl ether unit (eight 0 £) is 3 mol%, weight average molecular weight of 210, 000, the molecular weight distribution of the cross-linking group is 3.8 A polyether polymer A was obtained.
[0061] 合成例 2 [0061] Synthesis Example 2
エチレンォキシド単位(EO) 92モノレ%、プロピレンォキシド単位(PO) 6モル%およ びァリルグリシジルエーテル単位 (AGE) 2モル%とした以外は、合成例 1と同様にし て、重量平均分子量が 230, 000、分子量分布が 4. 1である架橋性基を有するポリ エーテル重合体 Bを得た。  The weight average was the same as in Synthesis Example 1, except that the ethylene oxide unit (EO) was 92 mol%, the propylene oxide unit (PO) was 6 mol%, and the allyl glycidyl ether unit (AGE) was 2 mol%. A polyether polymer B having a crosslinkable group having a molecular weight of 230,000 and a molecular weight distribution of 4.1 was obtained.
[0062] 合成例 3 [0062] Synthesis Example 3
エチレンォキシド単位(EO) 93· 5モル%、プロピレンォキシド単位(PO) 2· 8モル %およびァリルグリシジルエーテル単位 (AGE) 3. 7モル%とした以外は、合成例 1と 同様にして、重量平均分子量が 210, 000、分子量分布が 4. 3である架橋性基を有 するポリエーテル重合体 Cを得た。  Except for the ethylene oxide unit (EO) 93.5 mol%, propylene oxide unit (PO) 2 · 8 mol% and allylglycidyl ether unit (AGE) 3.7 mol%, the same as in Synthesis Example 1 Thus, a polyether polymer C having a crosslinkable group having a weight average molecular weight of 210,000 and a molecular weight distribution of 4.3 was obtained.
[0063] 実施例 1 [0063] Example 1
合成例 1で得られたポリエーテル重合体 A: 100部に、 2—メチルー 1〔4 (メチル チォ)フエニル〕 2—モルフォリノプロパン 1 オン (光重合開始剤): 1 · 2部、およ び LiN (CF SO ) : 20部を、加えて混合することにより、固体電解質組成物を得  Polyether polymer A obtained in Synthesis Example 1: 100 parts, 2-methyl-1 [4 (methylthio) phenyl] 2-morpholinopropane 1one (photoinitiator): 1 · 2 parts, and And LiN (CF 2 SO 3): Add 20 parts and mix to obtain a solid electrolyte composition
3 2 2  3 2 2
た。得られた固体電解質組成物を、二軸押し出し機に供給し、スクリュー温度 80°C、 回転数 150rpm、ダイ温度 155°Cで押し出した。そして、押し出されたフィルムをポリ プロピレン (PP)フィルムに連続的に張り付け、紫外線照射によって光架橋させ、その 後、 PPフィルムから剥離することにより、厚さ 50 z mの固体電解質フィルムを得た。そ して、得られた固体電解質フィルムについて、次の各特性を評価した。  It was. The obtained solid electrolyte composition was supplied to a twin screw extruder and extruded at a screw temperature of 80 ° C, a rotation speed of 150 rpm, and a die temperature of 155 ° C. Then, the extruded film was continuously attached to a polypropylene (PP) film, photocrosslinked by ultraviolet irradiation, and then peeled off from the PP film to obtain a solid electrolyte film having a thickness of 50 zm. The obtained solid electrolyte film was evaluated for the following characteristics.
[0064] 初期電圧 [0064] Initial voltage
まず、得られた固体電解質フィルムを 15mm φの大きさに加工し、 2枚のリチウム金 属箔(一方を正極、他方を負極とした。)で挟み込み、張り合わせることでコイン型の サンプルセルを組み立てた。そして、得られたサンプルセルについて、温度 60°Cの 条件下で、電流密度 0. 17mA/ cm2,電気量 0. 044mAhにて正極から負極に定 電流を流した。その後、温度 60°Cの条件下で、電流密度 0. 17mA/cm2,電気量 0 . 088mAhにて負極から正極に電流を流し、次いで同様の条件で、正極から負極に 電流を流した。本実施例では、負極から正極に電流を流す操作を「放電」、正極から 負極に電流を流す操作を「充電」とした。そして、これらの充電および放電を 1サイク ノレとして、数サイクルの充放電を行い、充放電特性が安定したサイクルを初期サイク ルとし、初期サイクルにおける、充電時の最高電圧を初期電圧 (V )とした。なお、本 実施例では、充電時の最高電圧と、直前のサイクルにおける充電時の最高電圧と、 の差が、充放電開始後はじめて 0. 001V以下となったサイクルを、充放電特性が安 定したサイクルと判断して、これを初期サイクルとした。ただし、充放電特性が最初か ら安定していたサンプノレセルについては、 5サイクノレ目を初期サイクルとした。結果を 表 1に示す。 First, the obtained solid electrolyte film was processed into a size of 15 mm φ, and two pieces of lithium gold A coin-shaped sample cell was assembled by sandwiching and attaching them together with a metal foil (one on the positive electrode and the other on the negative electrode). Then, with respect to the obtained sample cell, a constant current was passed from the positive electrode to the negative electrode at a current density of 0.17 mA / cm 2 and an electric charge of 0.044 mAh under the condition of a temperature of 60 ° C. Thereafter, a current was passed from the negative electrode to the positive electrode at a current density of 0.17 mA / cm 2 and an electric charge of 0.088 mAh under a temperature of 60 ° C., and then a current was passed from the positive electrode to the negative electrode under the same conditions. In this example, the operation of flowing current from the negative electrode to the positive electrode was “discharge”, and the operation of flowing current from the positive electrode to the negative electrode was “charge”. Then, charging and discharging are performed for several cycles with these charging and discharging as one cycle, the cycle with stable charge / discharge characteristics is set as the initial cycle, and the maximum voltage during charging in the initial cycle is defined as the initial voltage (V). did. In this example, the charge / discharge characteristics are stable in the cycle in which the difference between the maximum voltage during charging and the maximum voltage during charging in the immediately preceding cycle is 0.001 V or less for the first time after the start of charge / discharge. This was determined as an initial cycle. However, for the Sampnore cell, which had stable charge / discharge characteristics from the beginning, the 5th cycle was the initial cycle. The results are shown in Table 1.
[0065] サイクル特性 [0065] Cycle characteristics
次いで、サンプルセルについて、上記試験をさらに 100サイクル行った。そそして、 初期サイクルにおける充電時の最高電圧に対する、 100サイクル目の充電時におけ る最高電圧の比(100サイクル目における最高電圧/初期サイクルにおける最高電 圧)を求めることにより、サイクル特性を評価した。 「100サイクル目における最高電圧 /初期サイクルにおける最高電圧 (V /V )」が、 1に近いほど繰り返し充放電に  Subsequently, the above test was further performed for 100 cycles for the sample cell. Then, the cycle characteristics were evaluated by calculating the ratio of the highest voltage at the 100th charge to the highest voltage at the charge in the initial cycle (the highest voltage at the 100th cycle / the highest voltage at the initial cycle). . The closer to “the highest voltage in the 100th cycle / the highest voltage in the initial cycle (V / V)”, the more repeatedly charging and discharging
100th ini  100th ini
よるインピーダンスの上昇が少なぐサイクル特性に優れるものと評価することができ る。結果を表 1に示す。  Therefore, it can be evaluated that it has excellent cycle characteristics with little increase in impedance. The results are shown in Table 1.
[0066] 実施例 2 [0066] Example 2
光重合開始剤として、ビス(2, 6—ジメトキシベンゾィル)一2, 4, 4一トリメチノレ ^ ンチルフォスフィンオキサイドと、 1—ヒドロキシ一シクロへキシル一フエ二ル一ケトンと 、の 1 : 3の混合物を使用した以外は、実施例 1と同様にして、固体電解質フィルムを 得て、実施例 1と同様の評価を行った。結果を表 1に示す。  As a photopolymerization initiator, bis (2,6-dimethoxybenzoyl) 1,2,4,4, trimethylolene nylphosphine oxide and 1-hydroxy monocyclohexyl monophenyl monoketone: A solid electrolyte film was obtained in the same manner as in Example 1 except that the mixture of 3 was used, and the same evaluation as in Example 1 was performed. The results are shown in Table 1.
[0067] 実施例 3 架橋性基を有するポリエーテル重合体として、合成例 2で得られたポリエーテル重 合体 Bを用い、さらには光重合開始剤として 2—メチルー 1〔4 (メチルチオ)フエ二 ノレ〕一 2—モルフォリノプロパン一 1—オンの使用量を 1. 2部力 4部に変更した以外 は、実施例 1と同様にして、固体電解質フィルムを得て、実施例 1と同様の評価を行 つた。結果を表 1に示す。 [0067] Example 3 The polyether polymer B obtained in Synthesis Example 2 was used as the polyether polymer having a crosslinkable group, and 2-methyl-1 [4 (methylthio) phenol] 1 2-morpholine was used as a photopolymerization initiator. A solid electrolyte film was obtained in the same manner as in Example 1 except that the amount of linopropane 1-one used was changed to 1.2 parts and 4 parts, and the same evaluation as in Example 1 was performed. The results are shown in Table 1.
[0068] 比較例:!〜 3  [0068] Comparative example:! -3
架橋性基を有するポリエーテル重合体として、合成例 2で得られたポリエーテル重 合体 Bを用い、さらには光重合開始剤として表 1に示す各化合物を使用した以外は、 実施例 1と同様にして、固体電解質フィルムを得て、実施例 1と同様の評価を行った。 すなわち、光重合開始剤として、比較例 1では 2, 2—ジメトキシ一 1, 2—ジフエ二ノレ ェタン一 1—オンを、比較例 2ではビス(2, 4, 6 トリメチルベンゾィル)一フエニルフ ォスフィンオキサイドを、比較例 3では 2_ベンジル _ 2—ジメチルァミノ _ 1 _ (4—モ ルフォリノフエニル)一ブタノン一 1を、それぞれ使用した。結果を表 1に示す。  Example 1 except that the polyether polymer B obtained in Synthesis Example 2 was used as the polyether polymer having a crosslinkable group, and each compound shown in Table 1 was used as a photopolymerization initiator. Thus, a solid electrolyte film was obtained and evaluated in the same manner as in Example 1. That is, as the photopolymerization initiator, 2,2-dimethoxy-1,2-diphenylenol-1-one was used in Comparative Example 1, and bis (2,4,6 trimethylbenzoyl) monophenyl was used in Comparative Example 2. In the comparative example 3, 2_benzyl_2-dimethylamino_1_ (4-morpholinophenyl) monobutanone 1 was used as the phosphine oxide. The results are shown in Table 1.
[0069] [表 1] [0069] [Table 1]
〔〕0070 [] 0070
Figure imgf000021_0002
Figure imgf000021_0002
Figure imgf000021_0001
Figure imgf000021_0001
これら実施例 1〜3の中でも、光重合開始剤として 2—メチルー 1〔4 (メチルチオ) フエニル〕ー2 モルフォリノプロパン 1 オンを使用した実施例 1, 3は、初期電圧 についても低く抑えられており、特に良好な結果となった。なお、これら実施例 1 , 3に ついて、サイクル試験をさらに 300サイクルまで行った結果、「300サイクル目におけ る最高電圧 Z初期サイクルにおける最高電圧」が、それぞれ 1. 09 (実施例 1)、 1. 1 1 (実施例 3)となり、サイクル数をさらに重ねていつた場合でも良好な結果を得ること ができた。 Among these Examples 1 to 3, Examples 1 and 3 using 2-methyl-1 [4 (methylthio) phenyl] -2 morpholinopropane 1-one as a photopolymerization initiator are suppressed to a low initial voltage. The results were particularly good. In addition, as a result of further carrying out the cycle test up to 300 cycles for these Examples 1 and 3, "the highest voltage in the 300th cycle Z the highest voltage in the initial cycle" is 1.09 (Example 1), 1. 1 1 (Example 3), and good results could be obtained even when the number of cycles was further repeated.
なお、光重合開始剤としてビス(2, 6—ジメトキシベンゾィル)_ 2, 4, 4_トリメチノレ —ペンチルフォスフィンオキサイドと、 1—ヒドロキシ一シクロへキシル一フエ二ル一ケ トンと、の混合物を使用した実施例 2においては、初期電圧は若干高くなつたが、そ の後のサイクル試験では、電圧が安定する結果となった。  As a photopolymerization initiator, bis (2,6-dimethoxybenzoyl) _ 2, 4, 4_trimethylolene-pentylphosphine oxide and 1-hydroxy monocyclohexyl monophenyl ketone In Example 2 in which the mixture was used, the initial voltage increased slightly, but the subsequent cycle test resulted in a stable voltage.
[0071] これに対して、表 1に示す各光重合開始剤を使用した比較例 1〜3においては、「1 00サイクル目における最高電圧/初期サイクルにおける最高電圧」が高くなつてしま レ、、サイクル特性に劣る結果となった。 [0071] On the other hand, in Comparative Examples 1 to 3 using each photopolymerization initiator shown in Table 1, "the highest voltage in the 100th cycle / the highest voltage in the initial cycle" is increased. As a result, the cycle characteristics were inferior.
なお、図 1A、図 IBにサイクル試験の結果、得られた充放電プロファイルを示す。こ こにおいて、図 1Aは、実施例 1の充放電プロファイルであり、図 1Bは比較例 2の充放 電プロファイルであり、それぞれ、約 100サイクル分の充放電プロファイルを示した。 図 1A、図 IBより、実施例 1においては、初期電圧が低ぐさらには、サイクルを重ね ていった場合においても、サンプルセルの最高電圧の上昇が抑えられていることが 確認できる。一方、比較例 2においては、初期電圧が高くなり、さらには、サイクルを 重ねていつた場合に、サンプルセルの最高電圧が上昇していく結果となることが確認 できる。  Figures 1A and IB show the charge / discharge profiles obtained as a result of the cycle test. Here, FIG. 1A is the charge / discharge profile of Example 1, and FIG. 1B is the charge / discharge profile of Comparative Example 2, and each shows a charge / discharge profile for about 100 cycles. From FIG. 1A and FIG. IB, it can be confirmed that in Example 1, the increase in the maximum voltage of the sample cell is suppressed even when the initial voltage is low and the cycle is repeated. On the other hand, in Comparative Example 2, it can be confirmed that the initial voltage increases, and the maximum voltage of the sample cell increases as the cycle continues.
[0072] 実施例 4 [0072] Example 4
リチウム二次雷池の作製  Fabrication of lithium secondary thunder pond
合成例 3で得られたポリエーテル重合体 C : 100部を、二軸押出機に供給し、バレ ルの途中から LiN (CF SO ) : 21. 6部、活物質としてマンガン酸リチウム(Li  100 parts of the polyether polymer C obtained in Synthesis Example 3 was fed to a twin-screw extruder, LiN (CF 2 SO 4): 21.6 parts from the middle of the barrel, lithium manganate (Li
3 2 2 0. 33 3 2 2 0. 33
Mn〇 ): 336部、ケッチェンブラック: 14部を供給してスクリュー温度 80°C、回転数 1Mn〇): 336 parts, Ketjen black: 14 parts are supplied, screw temperature is 80 ° C, rotation speed is 1
2 2
50rpm、ダイ温度 155°Cで、平均膜厚 85 μ mのフィルムを押し出した。そして、得ら れたフィルムに対して、紫外線を照射し、紫外線照射によって光架橋させることにより 正極フィルムを得た。 A film having an average film thickness of 85 μm was extruded at 50 rpm and a die temperature of 155 ° C. And got The film was irradiated with ultraviolet rays and photocrosslinked by ultraviolet irradiation to obtain a positive electrode film.
[0073] そして、実施例 1で作製した固体電解質フィルムを、上記にて作製した正極フィルム と、リチウム金属箔とで挟み込み、張り合わせることでコイン電池(CR2032)を組み立 てた。  [0073] Then, the coin battery (CR2032) was assembled by sandwiching and bonding the solid electrolyte film produced in Example 1 between the positive electrode film produced above and a lithium metal foil.
[0074] 験および  [0074] Trials and
得られたコイン電池について、まず、温度 60°C、下限電圧 2V、放電電流約 0. 02C の条件で、定電流放電(CC放電)を行うことにより、得られたコイン電池の電池容量を 測定した。  For the obtained coin battery, first, the battery capacity of the obtained coin battery was measured by performing constant current discharge (CC discharge) at a temperature of 60 ° C, a lower limit voltage of 2V, and a discharge current of about 0.02C did.
そして、充電条件を、温度: 60°C、上限電圧: 3. 5V、充電電流: 0. 2Cの定電流充 電(CC充電)とし、放電条件を、温度: 60°C、下限電圧: 2V、放電電流: 0. 2Cの定 電流放電 (CC放電)として、 10サイクルの充放電サイクル試験を行った。その結果、 電池特性が安定した 5サイクル目の放電電圧(放電時の平均電圧)と、その後、サイ クルを重ねた 10サイクル目の放電電圧とが同じ電圧となり、安定した電池特性が得ら れることが確認できた。  The charging conditions are temperature: 60 ° C, upper limit voltage: 3.5V, charging current: 0.2C constant current charging (CC charging), and discharging conditions are temperature: 60 ° C, lower limit voltage: 2V. , Discharge current: A charge / discharge cycle test of 10 cycles was conducted as a constant current discharge (CC discharge) of 0.2C. As a result, the discharge voltage at the 5th cycle (average voltage at the time of discharge) where the battery characteristics are stable and the discharge voltage at the 10th cycle after repeated cycles become the same voltage, and stable battery characteristics are obtained. I was able to confirm.

Claims

請求の範囲 架橋性基を有するポリエーテル重合体と、電解質塩化合物と、光重合開始剤として 下記式(1)および/または(2)で表される化合物と、を含有する固体電解質組成物。 [化 9] A solid electrolyte composition comprising a polyether polymer having a crosslinkable group, an electrolyte salt compound, and a compound represented by the following formula (1) and / or (2) as a photopolymerization initiator. [Chemical 9]
(ただし、上記式(1)中、 R1は硫黄原子を含む有機基、 R2、 R3は置換基を有してレ、 てもよぃァリル基、アルキル基またはべンジル基、 R4は置換基を有していてもよいへ テロアリール基またはへテロアルキル基である。 ) (However, in the above formula (1), R 1 is an organic group containing a sulfur atom, R 2 and R 3 have a substituent, a aryl group, an alkyl group or a benzyl group, R 4 Is a heteroaryl group or a heteroalkyl group which may have a substituent.
[化 10]  [Chemical 10]
Figure imgf000024_0002
Figure imgf000024_0002
(ただし、上記式(2)中、 ITは置換基を有していてもよいアルキル基、 R°、 R、 Rは 、水素原子、アルキル基またはアルコキシ基である。 ) (In the above formula (2), IT is an alkyl group which may have a substituent, and R °, R and R are a hydrogen atom, an alkyl group or an alkoxy group.)
[2] 前記光重合開始剤として、前記式(2)で表される化合物とともに、下記式(3)で表さ れる化合物を含有する請求項 1に記載の固体電解質組成物。 [2] The solid electrolyte composition according to [1], wherein the photopolymerization initiator contains a compound represented by the following formula (3) together with a compound represented by the formula (2).
[化 11]  [Chemical 11]
(3)(3)
Figure imgf000024_0003
(ただし、上記式(3)中、 は水素原子または水酸基を有するアルコキシ基、 R1Qは 水酸基を有する飽和環式置換基または水酸基を有するアルキル基である。 )
Figure imgf000024_0003
(In the above formula (3), is an alkoxy group having a hydrogen atom or a hydroxyl group, and R 1Q is a saturated cyclic substituent having a hydroxyl group or an alkyl group having a hydroxyl group.)
[3] 前記式(1)で表される化合物が、 2—メチルー 1〔4 (メチルチオ)フエニル〕 2— モルフォリノプロパン— 1—オンである請求項 1または 2に記載の固体電解質組成物 [3] The solid electrolyte composition according to claim 1 or 2, wherein the compound represented by the formula (1) is 2-methyl-1 [4 (methylthio) phenyl] 2-morpholinopropan-1-one
[4] 前記式(2)で表される化合物が、ビス(2, 6—ジメトキシベンゾィル) _ 2, 4, 4_トリ メチル一ペンチルフォスフィンオキサイドである請求項 1〜3のいずれかに記載の固 体電解質組成物。 [4] The compound represented by the formula (2) is bis (2,6-dimethoxybenzoyl) _2, 4, 4_trimethyl monopentylphosphine oxide. The solid electrolyte composition described in 1.
[5] 前記式(3)で表される化合物が、 1—ヒドロキシ一シクロへキシノレ一フエ二ノレ一ケト ンである請求項 2〜4のいずれかに記載の固体電解質組成物。  [5] The solid electrolyte composition according to any one of [2] to [4], wherein the compound represented by the formula (3) is 1-hydroxymonocyclohexylene-phenolinoketone.
[6] 前記式(2)で表される化合物と、前記式(3)で表される化合物と、の比率が、重量 比で、〔前記式(2)で表される化合物〕:〔前記式(3)で表される化合物〕 = 1 : 0. 3〜1 : 5である請求項 2〜5のいずれかに記載の固体電解質組成物。  [6] The ratio of the compound represented by the formula (2) and the compound represented by the formula (3) is a weight ratio [a compound represented by the formula (2)]: The compound represented by the formula (3)] = 1: 0.3-3: 1: 6. The solid electrolyte composition according to any one of claims 2-5.
[7] 前記架橋性基を有するポリエーテル重合体が、エチレンォキシド単量体単位 (A) を主構造単位とし、架橋性ォキシラン単量体単位 (B)と、エチレンォキシドおよび架 橋性ォキシラン単量体と共重合可能な他のォキシラン単量体に基づく単量体単位( C)と、を有する重合体である請求項:!〜 6のいずれかに記載の固体電解質組成物。  [7] The polyether polymer having a crosslinkable group has the ethyleneoxide monomer unit (A) as a main structural unit, the crosslinkable oxysilane monomer unit (B), ethyleneoxide, and bridging properties. 7. The solid electrolyte composition according to any one of claims 6 to 6, which is a polymer having a monomer unit (C) based on another oxysilane monomer copolymerizable with the oxysilane monomer.
[8] 前記架橋性基を有するポリエーテル重合体における各単位の比率が、前記ェチレ ンォキシド単量体単位 (A) 70〜99モノレ%、前記架橋性ォキシラン単量体単位(B) 0 . 5〜9モル%、前記共重合可能な他のォキシラン単量体に基づく単量体単位(C) 0 . 5-21モル%である請求項 7に記載の固体電解質組成物。  [8] The ratio of each unit in the polyether polymer having a crosslinkable group is 70 to 99% by mole of the ethylene oxide monomer unit, and 0.5% of the crosslinkable oxysilane monomer unit (B). The solid electrolyte composition according to claim 7, which is ˜9 mol% and 0.5 to 21 mol% of the monomer unit (C) based on the other copolymerizable oxysilane monomer.
[9] 前記架橋性基を有するポリエーテル重合体が、エチレンォキシド、プロピレンォキ シド、およびァリルグリシジルエーテルを共重合してなる重合体である請求項 7または 8に記載の固体電解質組成物。  [9] The solid electrolyte composition according to claim 7 or 8, wherein the polyether polymer having a crosslinkable group is a polymer obtained by copolymerizing ethylene oxide, propylene oxide, and allyl glycidyl ether.
[10] 前記架橋性基を有するポリエーテル重合体が、重量平均分子量 (Mw) 5万〜 150 万、分子量分布(Mw/Mn) l . 5〜: 13である請求項:!〜 9のいずれかに記載の固体 電解質組成物。  [10] The polyether polymer having a crosslinkable group has a weight average molecular weight (Mw) of 50,000 to 1,500,000 and a molecular weight distribution (Mw / Mn) of 1.5 to 13: A solid electrolyte composition according to claim 1.
[11] 前記電解質塩化合物が、 LiCIO , LiBF , LiPF 、 LiCF SO , LiC F SO 、LiN (CF SO ) 、LiN (C F SO ) 力ら選択される少なくとも一種である請[11] The electrolyte salt compound is LiCIO, LiBF, LiPF, LiCFSO, LiCFSO. , LiN (CF 2 SO 4), LiN (CF 2 SO 4)
3 3 2 2 2 5 2 2 3 3 2 2 2 5 2 2
求項:!〜 10のいずれかに記載の固体電解質組成物。  Claims: The solid electrolyte composition according to any one of! To 10.
[12] 前記固体電解質組成物中における、前記光重合開始剤の含有量が、前記架橋性 基を有するポリエーテル重合体 100重量部に対して、 0. 5〜30重量部である請求項[12] The content of the photopolymerization initiator in the solid electrolyte composition is 0.5 to 30 parts by weight with respect to 100 parts by weight of the polyether polymer having the crosslinkable group.
:!〜 11のレ、ずれかに記載の固体電解質組成物。 The solid electrolyte composition according to any one of the following:
[13] 前記ポリエーテル重合体中のエーテル酸素の総モル数に対する、前記電解質塩 化合物中のアルカリ金属塩のモル数の比が、 0. 001〜5の範囲となるように、前記電 解質塩化合物が含有されてレ、る請求項 11に記載の固体電解質組成物。 [13] The electrolyte is adjusted such that a ratio of the number of moles of alkali metal salt in the electrolyte salt compound to the total number of moles of ether oxygen in the polyether polymer is in the range of 0.001 to 5. 12. The solid electrolyte composition according to claim 11, which contains a salt compound.
[14] 請求項:!〜 13のいずれかに記載の固体電解質組成物を、光重合してなる固体電 解質フィルム。 [14] Claims: A solid electrolyte film obtained by photopolymerizing the solid electrolyte composition according to any one of! To 13.
[15] 請求項 14に記載の固体電解質フィルムで構成してある固体電解質を有するリチウ ムニ次電池。  [15] A lithium secondary battery having a solid electrolyte comprising the solid electrolyte film according to claim 14.
PCT/JP2007/055746 2006-03-24 2007-03-20 Solid electrolyte composition, solid electrolyte film and lithium secondary battery WO2007119460A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008510830A JPWO2007119460A1 (en) 2006-03-24 2007-03-20 Solid electrolyte composition, solid electrolyte film, and lithium secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006083462 2006-03-24
JP2006-083462 2006-03-24

Publications (1)

Publication Number Publication Date
WO2007119460A1 true WO2007119460A1 (en) 2007-10-25

Family

ID=38609247

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/055746 WO2007119460A1 (en) 2006-03-24 2007-03-20 Solid electrolyte composition, solid electrolyte film and lithium secondary battery

Country Status (2)

Country Link
JP (1) JPWO2007119460A1 (en)
WO (1) WO2007119460A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012209229A (en) * 2011-03-30 2012-10-25 Daiso Co Ltd Nonaqueous electrolyte secondary battery
JP2016089000A (en) * 2014-10-31 2016-05-23 株式会社アイセロ Water-free insolubilization curable material, and water-free insolubilization cured product using the same
WO2020026702A1 (en) 2018-07-31 2020-02-06 株式会社日本触媒 Electrolyte composition, electrolyte film, and method of manufacturing electrolyte film

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10158418A (en) * 1996-12-02 1998-06-16 Sanyo Electric Co Ltd Solid polyelectrolyte and secondary cell equipped therewith
WO2002029921A1 (en) * 2000-09-29 2002-04-11 Dai-Ichi Kogyo Seiyaku Co., Ltd. Lithium polymer secondary battery
JP2003092140A (en) * 2001-09-18 2003-03-28 Sharp Corp Lithium polymer secondary battery and its manufacturing method
JP2004152654A (en) * 2002-10-31 2004-05-27 Nippon Zeon Co Ltd Solid electrolyte composition, battery cathode film and its manufacturing method
JP2006045357A (en) * 2004-08-04 2006-02-16 Nippon Shokubai Co Ltd Method for treating water-containing gel of (meth)acrylic acid (salt)-based water soluble polymer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10158418A (en) * 1996-12-02 1998-06-16 Sanyo Electric Co Ltd Solid polyelectrolyte and secondary cell equipped therewith
WO2002029921A1 (en) * 2000-09-29 2002-04-11 Dai-Ichi Kogyo Seiyaku Co., Ltd. Lithium polymer secondary battery
JP2003092140A (en) * 2001-09-18 2003-03-28 Sharp Corp Lithium polymer secondary battery and its manufacturing method
JP2004152654A (en) * 2002-10-31 2004-05-27 Nippon Zeon Co Ltd Solid electrolyte composition, battery cathode film and its manufacturing method
JP2006045357A (en) * 2004-08-04 2006-02-16 Nippon Shokubai Co Ltd Method for treating water-containing gel of (meth)acrylic acid (salt)-based water soluble polymer

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012209229A (en) * 2011-03-30 2012-10-25 Daiso Co Ltd Nonaqueous electrolyte secondary battery
JP2016089000A (en) * 2014-10-31 2016-05-23 株式会社アイセロ Water-free insolubilization curable material, and water-free insolubilization cured product using the same
WO2020026702A1 (en) 2018-07-31 2020-02-06 株式会社日本触媒 Electrolyte composition, electrolyte film, and method of manufacturing electrolyte film

Also Published As

Publication number Publication date
JPWO2007119460A1 (en) 2009-08-27

Similar Documents

Publication Publication Date Title
JP5326566B2 (en) Lithium ion secondary battery
US7915378B2 (en) Material for solid polymer electrolyte, and polyether polymer and process for producing same
KR102657448B1 (en) Polymer electrolyte for secondary battery and lithium secondary battery comprising the same
CN1302069C (en) Polymer electrolyte, its prodcing process and lithim bottery using the same electrolyte
KR20160045142A (en) Binder composition for nonaqueous battery electrodes, slurry for nonaqueous battery electrodes, nonaqueous battery electrode, and nonaqueous battery
KR102320015B1 (en) Polymer electrolyte for secondary battery and lithium secondary battery comprising the same
EP3598538B1 (en) Method for producing lithium metal negative electrode structure and lithium metal negative electrode structure
EP3336940B1 (en) Slurry for positive electrode of lithium-ion secondary battery, positive electrode for lithium-ion secondary battery obtained using slurry for positive electrode of lithium-ion secondary battery and production method therefor, and lithium-ion secondary battery provided with positive electrode for lithium-ion secondary battery and production method therefor
WO2003002669A1 (en) Polyether polymer, process for producing the same, composition for solid polymer electrolyte, and use thereof
EP3910704A1 (en) Non-aqueous electrolyte cell electrode binder, non-aqueous electrolyte cell electrode binder solution, non-aqueous electrolyte cell electrode slurry, non-aqueous electrolyte cell electrode, and non-aqueous electrolyte cell
US20050287437A1 (en) Solid electrolyte composition, cathode film for battery, and method for manufacturing same
KR101988789B1 (en) A composition for a binder for a non-aqueous battery electrode, a binder for a non-aqueous battery electrode, a composition for a non-aqueous battery electrode, a non-aqueous battery electrode,
JP2002100404A (en) Resin composition for gel high polymer solid electrolyte, composition for the gel high polymer solid electrolyte, the gel high polymer solid electrolyte using them, composite electrode and electrochemical device
JP2006252878A (en) Manufacturing method of ion conductive composition
WO2007119460A1 (en) Solid electrolyte composition, solid electrolyte film and lithium secondary battery
JP5145941B2 (en) Electrolyte composition for secondary battery, electrolyte film, and secondary battery
JP4470360B2 (en) Molding material for polymer solid electrolyte, polymer solid electrolyte molded body, and method for producing the same
JP2006294605A (en) Laminate for polymer battery, its manufacturing method, and polymer battery
JP2023512820A (en) Method for producing gel polymer electrolyte secondary battery, and gel polymer electrolyte secondary battery produced thereby
US20060205922A1 (en) Molding material for high-molecular solid electrolytes, moldings of high-molecular solid electrolytes and process for production thereof, and polyether polymer and process for production thereof
JP2005347048A (en) Battery using crosslinking polymer electrolyte
JP4674475B2 (en) Method for producing lithium battery laminate
JP2004221014A (en) Binder resin composition for battery using block copolymer, electrode and battery
US20230246231A1 (en) Solid polymer electrolytes for solid-state lithium metal batteries
JP2003012916A (en) Composition for polymer-solid electrolyte and its use

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07739189

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2008510830

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07739189

Country of ref document: EP

Kind code of ref document: A1