WO2007116957A1 - 超音波探触子及び超音波診断装置 - Google Patents

超音波探触子及び超音波診断装置 Download PDF

Info

Publication number
WO2007116957A1
WO2007116957A1 PCT/JP2007/057730 JP2007057730W WO2007116957A1 WO 2007116957 A1 WO2007116957 A1 WO 2007116957A1 JP 2007057730 W JP2007057730 W JP 2007057730W WO 2007116957 A1 WO2007116957 A1 WO 2007116957A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
compression bag
liquid
ultrasonic
subject
Prior art date
Application number
PCT/JP2007/057730
Other languages
English (en)
French (fr)
Inventor
Takeshi Matsumura
Original Assignee
Hitachi Medical Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Medical Corporation filed Critical Hitachi Medical Corporation
Priority to US12/296,120 priority Critical patent/US20100036243A1/en
Priority to CN2007800125749A priority patent/CN101415367B/zh
Priority to JP2008509879A priority patent/JP5188959B2/ja
Priority to EP07741166.8A priority patent/EP2008591B1/en
Publication of WO2007116957A1 publication Critical patent/WO2007116957A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Detecting organic movements or changes, e.g. tumours, cysts, swellings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/12Diagnosis using ultrasonic, sonic or infrasonic waves in body cavities or body tracts, e.g. by using catheters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/42Details of probe positioning or probe attachment to the patient
    • A61B8/4272Details of probe positioning or probe attachment to the patient involving the acoustic interface between the transducer and the tissue
    • A61B8/4281Details of probe positioning or probe attachment to the patient involving the acoustic interface between the transducer and the tissue characterised by sound-transmitting media or devices for coupling the transducer to the tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/48Diagnostic techniques
    • A61B8/485Diagnostic techniques involving measuring strain or elastic properties
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/16Details of sensor housings or probes; Details of structural supports for sensors
    • A61B2562/168Fluid filled sensor housings

Definitions

  • the present invention relates to an ultrasonic probe and an ultrasonic wave for displaying a tomographic image, an elastic image showing the hardness or softness of a biological tissue for an imaging target site in a subject using ultrasonic waves.
  • the present invention relates to a wave diagnostic apparatus.
  • An ultrasonic diagnostic apparatus transmits an ultrasonic wave inside a subject by an ultrasonic probe, receives an ultrasonic reflection echo signal corresponding to the structure of a living tissue from the inside of the subject, for example, in B mode
  • a tomographic image such as an image is constructed and displayed for diagnosis.
  • an ultrasonic reception signal is measured by pressing an object with an ultrasonic probe by a manual or mechanical method, and based on frame data of two ultrasonic reception signals having different measurement times,
  • the displacement of each part of the living body caused by the compression is obtained and an elastic image representing the elasticity of the living tissue is generated based on the displacement data.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2004-267464 Patent Document 1 is disclosed!
  • the pressure sensor measures the pressure between the subject and the peripheral portion of the ultrasonic transmission / reception surface.
  • the pressure in the ultrasonic scanning area directly under the ultrasonic wave transmitting / receiving surface where the sound wave is scanned cannot be measured.
  • Patent Document 1 merely estimates the pressure information force in the peripheral part of the ultrasonic transmission / reception surface of the pressure in the ultrasonic scanning region, and does not provide the true pressure in the ultrasonic transmission / reception region. Yes. Therefore, the accuracy of the elastic modulus obtained using the estimated pressure may be reduced.
  • an object of the present invention is to obtain a highly accurate elastic modulus by actually measuring the pressure applied to the ultrasonic scanning region.
  • An ultrasonic probe provided with a pressure measuring means for measuring a pressure applied to a subject is provided with a pressure bag filled with a liquid and placed on an ultrasonic transmission / reception surface and compresses the subject, and the pressure measurement The means measures the pressure of the liquid filled in the compression bag.
  • an ultrasonic probe for constructing a tomographic image based on RF signal frame data of a tomographic region of the subject via the ultrasonic probe, and the RF Based on the signal frame data, the elasticity information calculation means for obtaining the strain or elastic modulus of the tissue at the tomographic site, and the elasticity image at the tomographic site is generated based on the strain or elastic modulus obtained by the elasticity information calculation means.
  • An ultrasonic diagnostic apparatus comprising an elastic image construction means and a display means for displaying the tomographic image and / or the elastic image is installed on the ultrasonic transmission / reception surface of the ultrasonic probe, and is a liquid.
  • a pressure bag filled with liquid a liquid injecting means for inflating or shrinking the pressure bag by injecting liquid into the pressure bag, and a pressure measuring means for measuring the pressure of the liquid filled in the pressure bag
  • the pressure measuring means Pressure calculation means for calculating the pressure of the ultrasonic scanning region of the subject in contact with the compression bag based on the measured pressure information, and the elasticity information calculation means is elastic using the pressure information. Calculate the rate.
  • FIG. 1 is a diagram for explaining the overall configuration of the present invention.
  • FIG. 2 is a view for explaining a compression mechanism of the ultrasonic probe of the present invention.
  • FIG. 5 is a diagram for explaining the first embodiment of the present invention.
  • FIG. 6 is a diagram for explaining a second embodiment of the present invention.
  • FIG. 7 is a diagram for explaining a second embodiment of the present invention.
  • FIG. 8 is a diagram for explaining a second embodiment of the present invention.
  • FIG. 9 is a view for explaining a catheter type pressure sensor of the present invention.
  • FIG. 10 is a view for explaining a form for measuring the external force pressure of the compression bag according to the present invention.
  • FIG. 11 is a view for explaining a form for measuring the external force pressure of the compression bag of the present invention.
  • FIG. 12 is a view for explaining the form of the flow sensor of the present invention.
  • FIG. 13 is a view for explaining the form of the flow sensor of the present invention.
  • FIG. 14 is a view for explaining the form of the flow sensor of the present invention.
  • FIG. 15 is a view for explaining the form of the flow sensor of the present invention.
  • FIG. 16 is a view for explaining the form of the flow sensor of the present invention.
  • FIG. 17 is a view for explaining an automatic compression mechanism of the present invention.
  • FIG. 18 is a view for explaining a form in which the external force of the subject is pressed according to the present invention.
  • FIG. 1 is a block diagram showing the configuration of an ultrasonic diagnostic apparatus to which the present invention is applied.
  • the ultrasonic diagnostic apparatus 1 includes an ultrasonic probe 12 that is used while being in contact with the subject 10, and a time interval between the ultrasonic probe 12 and the subject 10.
  • a transmitter 14 that repeatedly transmits ultrasonic waves and a time-series reflected echo signal generated from the subject 10
  • a receiving unit 16 a transmission / reception control unit 17 that controls the transmitting unit 14 and the receiving unit 16, and a phasing addition unit 18 that performs phasing addition of the reflected echo received by the receiving unit 16 are provided.
  • the tomographic image forming unit 20 that forms a tomographic image of the subject, for example, a black and white tomographic image, and the output signals of the tomographic image forming unit 20 are imaged.
  • a black-and-white scan converter 22 that converts the display 26 to fit the display is provided.
  • an RF signal frame data storage unit 28 for storing the RF signal frame data output from the phasing addition unit 18 and at least two pieces of frame data from the RF signal frame data storage unit 28 are selected, and the subject is selected.
  • a displacement measuring unit 30 that measures the displacement of 10 biological tissues, a displacement information force measured by the displacement measuring unit 30, an elastic information calculating unit 32 that obtains strain or elastic modulus, and a strain calculated by the elastic information calculating unit 32
  • An elastic image forming unit 34 that forms a color elastic image from the elastic modulus, and a color scan converter 36 that converts the output signal of the elastic image forming unit 34 to match the display of the image display 26 are provided.
  • a black-and-white tomographic image and a color elastic image are superposed or displayed in parallel, and a switching addition unit 24 that performs switching and an image display unit 26 that displays the synthesized composite image are provided. .
  • a compression bag 38 for measuring pressure is provided between the subject 10 and the ultrasound probe 12.
  • the compression bag 38 is made of a material that allows ultrasonic waves to pass through, and is disposed on the ultrasonic scanning surface of the ultrasonic probe 12.
  • the compression bag 38 is formed of a film made of a material that is safe for a living body, such as polyurethane, polyvinyl chloride, latex (natural rubber), or silicon.
  • the compression bag 38 is filled with a liquid such as water or oil. By injecting this liquid into the compression bag 38, a liquid injection operation unit 44 for expanding and contracting the compression bag 38 is provided.
  • the liquid injection operation unit 44 injects the liquid and inflates the compression bag 38, the pressure on the subject 10 increases, and when the liquid is discharged from the compression bag 38 and contracts, the pressure on the subject 10 is increased. Relaxes.
  • the operation of the liquid injection / ejection operation unit 44 is performed by the device control interface unit 50, but can also be performed manually.
  • the flow rate sensor unit 4 measures the flow rate of the liquid injected by the liquid injection / discharge operation unit 44. 2 and a pressure sensor unit 40 for measuring the pressure (water pressure) inside the compression bag 38 and a compression bag for measuring the flow rate of the liquid injected from the RF signal frame data in the RF signal frame data storage unit 28.
  • Flow rate information measured by the membrane surface distance calculation unit 48 and the flow rate sensor unit 42 or the compression bag membrane surface distance calculation unit 48, or pressure information force of the pressure sensor 40 Ultrasonic scanning region of the subject 10 in contact with the compression bag 38
  • a pressure calculation unit 46 for calculating the pressure of the pressure.
  • the pressure information calculated by the pressure calculation unit 46 is input to the elasticity information calculation unit 32, and the elastic modulus is obtained from the displacement information of the displacement measurement unit 30. Details will be described later.
  • the ultrasonic probe 12 is formed by arranging a plurality of transducers, and has a function of transmitting and receiving ultrasonic waves to and from the subject 10 via the transducers.
  • the transmission unit 14 has a function of generating a transmission pulse for generating an ultrasonic wave by driving the ultrasonic probe 12 and setting a convergence point of the transmitted ultrasonic wave to a certain depth. ing.
  • the receiving unit 16 amplifies the reflected echo signal received by the ultrasonic probe 12 with a predetermined gain to generate an RF signal, that is, a received signal.
  • the phasing adder 18 receives the RF signal amplified by the receiver 16 and performs phase control, and forms an ultrasonic beam at one point or a plurality of convergence points to generate RF signal frame data. It is.
  • the tomographic image construction unit 20 receives the RF signal frame data from the phasing addition unit 18 and performs signal processing such as gain correction, log compression, detection, contour enhancement, filter processing, etc. It is what you get.
  • the black and white scan converter 22 is an A / D converter that converts the tomographic image data from the tomographic image construction unit 20 into a digital signal, and a frame memory that stores a plurality of converted tomographic image data in time series. And a control controller.
  • the RF signal frame data generated from the phasing adder 16 based on the time series is sequentially stored in the RF frame data storage unit 28, and the stored RF signal frame data (N) Is selected as the first data, and at the same time, the central force of the RF signal frame data group (N-1, N-2, N-3,. No. frame data (X) is selected.
  • ⁇ ⁇ , ⁇ , and ⁇ are index numbers assigned to the RF signal frame data, and are natural numbers.
  • a block matching method is used to detect the movement vector.
  • the block matching method divides the image into blocks consisting of, for example, NX ⁇ pixels, focuses on the block in the region of interest, searches for the previous frame force that is closest to the block of interest, and refers to this Then, predictive encoding, that is, processing for determining the sample value by the difference is performed.
  • the elasticity information calculation unit 32 is a biological tissue corresponding to each point on the tomographic image from the measurement value output from the displacement measurement unit 30, for example, the movement vector and the pressure value output from the pressure calculation unit 46.
  • the elastic image signal that is, the elastic frame data is generated based on the distortion and elastic modulus.
  • the elastic image construction unit 34 includes a frame memory and an image processing unit, and secures and secures elastic frame data output in time series from the elasticity information calculation unit 32 in the frame memory. Image processing is performed on the processed frame data.
  • the color scan converter 36 has a function of adding hue information to the elastic frame data from the elastic image construction unit 34. In other words, it is converted to the three primary colors of light, namely red (R), green (G), and blue (B) based on the elastic frame data. For example, elastic data with a large strain is converted into a red code, and elastic data with a small strain is converted into a blue code.
  • FIG. 2 (a) shows a side view of the ultrasonic probe 12.
  • the ultrasound probe 12 is an in-body type probe, and has a cylindrical shape so that it can be inserted into a subject.
  • the distal end portion of the ultrasonic probe 12 in the longitudinal direction has a spherical shape, and the other end portion is connected to a cable connected to the transmission unit 14 or the reception unit 16 of the ultrasonic diagnostic apparatus 1.
  • a plurality of ultrasonic transducers formed as a convex probe 60 and a linear probe 62 are arranged in front of the body insertion portion 64 and in the rear, and each ultrasonic transducer is arranged. Is connected to the transmitter 14 or the receiver 16 via a cable.
  • the operator places the ultrasonic probe 1.
  • the operator holds the probe holder 65
  • the ultrasonic probe 12 can be moved arbitrarily.
  • FIGS. 2 (b) and 2 (c) show a configuration in which the compression bag 38 is disposed on the convex probe 60 of the ultrasonic probe 12 shown in FIG. 2 (a).
  • FIG. 2 (b) shows a side view of the ultrasonic probe 12 in the long axis direction
  • FIG. 2 (c) shows a side view of the ultrasonic probe 12 in the short axis direction.
  • the compression bag 38 is arranged so as to cover the outer periphery of the convex probe 60, and both ends of the compression bag 38 are fixed by two fixing belts 70.
  • the hollow tube 37 is arranged along the long axis direction of the ultrasonic probe 12 and connects the compression bag 38 and the liquid injection operation unit 44.
  • the liquid injecting and operating unit 44 By injecting the liquid into the tube 37 by the liquid injecting and operating unit 44, the liquid is injected from the tube 37 into the compression bag 38, and the compression bag 38 is expanded. Further, by pulling out the liquid from the tube 37 by the liquid injecting and discharging operation unit 44, the liquid is poured into the compression bag 38 force tube 37, and the compression bag 38 is contracted.
  • the compression bag 38 may have a ring shape that covers the entire circumference of the ultrasonic probe 12 that extends only on the outer periphery of the surface of the convex probe 60. Even in this case, the compression bag 38 expands radially around the center of the short-axis cross section of the ultrasonic probe 12.
  • the liquid inlet / outlet unit 44 mainly includes a main body 80, a cylinder 92 that is fixed to the main body 80 and filled with liquid, and a piston that is disposed in the cylinder 92 and that extrudes and pulls out liquid.
  • the operation unit 82 is pivoted by the support unit 84 and connected to the main body unit 80.
  • the operation part 82 can be rotated around the support part 84.
  • One end of the operation part 82 is connected to a pusher fixing part 86, and the other end of the operation part 82 is a grip part 83 that is gripped by an operator and gives an action.
  • One end of the pusher 88 is connected to the pusher fixing portion 86.
  • the other end of the pusher 88 is a piston 90 in the cylinder 88.
  • an external force is applied to the liquid inside the cylinder 88.
  • the liquid to which the external force is applied by pushing the pusher 88 reaches the compression bag 38 via the tube 37, and the compression bag 38 is inflated by the amount of the liquid pushed out.
  • the pusher 88 is pulled, the liquid in the compression bag 38 is drawn out to the cylinder 88 and the compression bag 38 is contracted.
  • the operator can push out the pusher 88 by supporting the palm with the main body 80, grasping the gripping part 83 with a plurality of fingers, and pulling it in the lower right direction.
  • the compression bag 38 can be inflated by the amount of liquid pushed out.
  • the pusher 88 can be pulled out, and the compression bag 38 can be inflated by the amount of the liquid pulled out by the movement of the pusher 88.
  • the stroke adjusting unit 99 is installed on a fixture 98 installed on the stroke surface of the pusher 88 of the main body unit 80.
  • the stroke adjusting unit 99 is a male screw, and the fixture 98 has a female screw that can penetrate the male screw. By rotating the stroke adjustment unit 99, the stroke adjustment unit 99 can be moved to the left and right via the fixture 98.
  • the stroke adjustment unit 99 When the piston 90 is moved in the left direction in the figure, the pusher 88 contacts the stroke adjusting unit 99 at a predetermined position. Even if the position force piston 90 is moved to the left, the pusher 88 is fixed by the stroke adjusting unit 99, so that the contact position force piston 90 cannot be moved to the left. In other words, the stroke adjusting unit 99 can limit the moving stroke of the piston 90.
  • the stroke adjusting unit 99 can arbitrarily set the flow rate of the liquid injected into the compression bag 38 by restricting the movement of the piston 90. Specifically, if the surface area of the compression bag 38 is 1 000 mm 2 , the amount of liquid injected per stroke is in the range of about 0.2 cc to 1.0 cc. It is preferable.
  • the stroke adjusting unit 99 adjusts the moving amount of the piston 90 so that the product of the cross-sectional area of the cylinder 92 and the moving amount of the piston 90 is about 0.2 cc to 1.0 cc. Specifically, assuming that the cross-sectional area S of the cylinder 92 and the movement amount A of the pusher 88 are S, the S X A force is about S0.2cc to 1.0cc.
  • the syringe part composed of the cylinder 92, the piston 90, and the pusher 88 has a structure that can be attached to and detached from the main body part 80 with a latch via the fixing part 97.
  • the fixing portion 97 receives and fits the cylinder 92, and the syringe portion is fixed to the main body 80 by receiving the cylinder 92 by the fixing portion 97.
  • the main body 80 is made of a material that does not easily crack, such as aluminum, stainless steel, and plastic.
  • a motor is provided in the liquid injecting / dispensing operation unit 44, and the pusher 88 is reciprocated by the power of the motor to inflate the compression bag 38. It may be shrunk.
  • a compression bag 38 is installed so as to cover the convex probe 60 which is the ultrasonic probe 12.
  • the compression bag 38 is connected to the liquid injection operation unit 44 and the pressure sensor unit 40 via the tube 37.
  • Pressure information P detected by the pressure sensor unit 40 for measuring the pressure inside the compression bag 38 is output to the pressure calculation unit 46.
  • the pressure calculation unit 46 calculates the pressure information force of the pressure sensor 40 and the pressure in the ultrasonic scanning region of the subject 10 in contact with the compression bag 38. As shown in FIG. 1, the pressure information calculated by the pressure calculation unit 46 is input to the elasticity information calculation unit 32.
  • a cock 100 for controlling the liquid injection / injection is disposed between the compression bag 38 and the liquid inlet / outlet operation unit 44.
  • the cock 100 is opened, the liquid is freely infused between the compression bag 38 and the liquid injecting operation unit 44.
  • the cock 100 is closed, no liquid is injected between the compression bag 38 and the liquid injection operation unit 44, so the volume of the liquid in the compression bag 38 is constant.
  • the pressure sensor unit 40 is used as the compression bag.
  • the pressure inside 38 is measured, and this pressure value is temporarily stored in the memory in the pressure calculation unit 46.
  • the pressure sensor unit 40 measures the pressure inside the compression bag 38 in a state where the compression bag 38 is brought into contact with the subject 10 and the subject 10 is compressed.
  • the volume of the liquid in the compression bag 38 is constant before and after the compression.
  • the pressure calculation unit 46 calculates the difference between the pressure before compression stored in the memory and the pressure after compression, and calculates the difference between the pressures in the ultrasonic scanning region of the subject 10 in contact with the compression bag 38.
  • the pressure is output to the elasticity information calculation unit 32 as pressure.
  • FIG. 5 (a) shows a free state in which the target tissue of the subject 10 is not in contact with the compression bag 38.
  • the pressure calculation unit 46 obtains the relationship between the internal pressure and the volume of the compression bag 38 in this state. Then, a liquid of volume V0 is injected into the compression bag 38 from the liquid injection operation unit 44, and then the cock 100 is closed. By closing the cock 100, the volume of the liquid inside the compression bag 38 is always a constant value V0. Then, obtain the pressure P0 in this state. This state is called the reference state P0, and this operation is called calibration.
  • FIG. 5 (b) shows a state in which the target tissue of the subject 10 is in contact with the compression bag 38, and is a state applied to a diagnosis of tissue elasticity.
  • the ultrasonic probe 12 in this state is brought into contact with a living tissue of the subject 10, for example, the prostate, and the operator presses the ultrasonic probe 12 against the prostate to press the pressure calculation unit 46.
  • the difference of the reference state force of P (t) is applied to the living tissue of the subject 10 at the current time t, and is the pressure Ptarget (t).
  • (t) P (t) — P0
  • t obtained by the displacement measuring unit 30 the measured value based on the displacement of the RF signal frame data obtained and the information of ⁇ P (t) obtained by the pressure calculating unit 46 are obtained.
  • the elastic modulus is calculated by the elastic information calculation unit 32 based on the original.
  • a second embodiment for obtaining the pressure in the ultrasonic scanning region of the subject 10 in contact with the compression bag 38 will be described with reference to FIGS.
  • the difference from the first embodiment is that it includes a flow rate sensor unit 42 that detects the amount of liquid injected and discharged. Pressure information detected by the pressure sensor unit 40 and flow rate information force detected by the flow rate sensor unit Compression bag 38 The pressure in the ultrasonic scanning region of the subject 10 in contact with the object 10 is obtained.
  • the pressure sensor unit 40 for measuring the pressure inside the compression bag 38 is connected to the compression bag 38, and the pressure information P detected by the pressure sensor unit 40 is output to the pressure calculation unit 46. ing. Between the compression bag 38 and the liquid injecting / dispensing operation unit 44, a flow rate sensor unit 42 for measuring the amount of liquid injected / injected is disposed, and the flow rate (volume) information V of the liquid injected into the compression bag 38 is used for pressure calculation. This is output to part 46.
  • the flow rate sensor 42 has, for example, a moving member such as a valve or a fan that moves in accordance with the movement of the liquid, and measures the flow rate of the liquid by the displacement of the moving member.
  • the liquid is injected into and out of the compression bag 38 using the liquid injection / extraction operation unit 44 in a state where the subject 10 is compressed, and the pressure sensor unit 40
  • the pressure inside the compression bag 38 is measured, and the flow sensor 42 measures the flow rate of the injected liquid.
  • the pressure calculation unit 46 calculates a pressure difference at a predetermined flow rate value from each pressure and flow rate measured at this time and the relationship between the pressure and flow rate temporarily stored in the memory, and compresses the pressure difference.
  • the pressure is output to the elasticity information calculation unit 32 as the pressure in the ultrasonic scanning region of the subject 10 in contact with the bag 38.
  • the pressure calculation unit 46 obtains the relationship between the internal pressure and the volume of the compression bag 38 in a free state when the target tissue of the subject 10 is in contact with the compression bag 38. This relationship is determined in the range of the volume range [0, Vmax] (Vmax is several cc) set in advance to be suitable for tissue compression.
  • the solid line 461 in the graph of FIG. Indicates a person in charge. It can be seen that the pressure increases as the flow rate increases.
  • the process proceeds to diagnosis of tissue elasticity, and the target tissue of the subject 10 is compressed.
  • pressure information P (t) and flow rate (volume) information V (t) are acquired.
  • the graph of FIG. 8 shows the relationship between the flow rate and the pressure obtained when the target region is compressed on the solid line 461 of the graph showing the relationship between the flow rate and the pressure when the target tissue is not in contact with the compression bag 38. The relationship is shown correspondingly.
  • the differential force of P (t) from this reference state is the pressure Ptarget (t) of the compression applied to the living tissue at the current time t.
  • the pressure information and the flow rate (volume) information are already A / D converted by the pressure sensor unit 40 and the flow rate sensor unit 42 and input to the pressure calculation unit 46 as digital signals.
  • the pressure information of the analog signal and the flow rate (volume) information are already A / D converted by the pressure sensor unit 40 and the flow rate sensor unit 42 and input to the pressure calculation unit 46 as digital signals.
  • the pressure information of the analog signal and the flow rate (volume) information are already A / D converted by the pressure sensor unit 40 and the flow rate sensor unit 42 and input to the pressure calculation unit 46 as digital signals.
  • the pressure information of the analog signal and the flow rate (volume) information are
  • the flow rate sensor unit 42 force shows the example of outputting flow rate information.
  • the flow rate sensor unit 42 measures the slight flow rate of the liquid that is pushed back to the liquid injecting operation unit 44 side.
  • the pressure may be determined based on the flow rate returned. Specifically, it is calculated from the amount of liquid injected into the pressure calculation unit 46 and the flow rate of liquid pushed back by pressing the compression bag 38. A plurality of pressure information to be issued is recorded in advance.
  • the pressure calculation unit 46 obtains the pressure from the predetermined liquid injection amount and the flow rate at which the liquid is pushed back.
  • FIG. 9 (a) shows a configuration in which a pressure sensor catheter for measuring the pressure in the compression bag 38 is applied.
  • the pressure sensor 401 for measuring the pressure in the compression bag 38 is a catheter type, and is connected to the pressure sensor unit 40 via the cable 402 in the tube 37. Pressure information measured at the tip of the pressure sensor 401 is transmitted to the pressure sensor 40.
  • the cable 402 itself may be applied to the pressure sensor.
  • a material that is recessed according to the pressure in the compression bag 38 or the tube for example, a rubber material, may be applied from the distal end portion to the center portion of the cable 402, and the pressure may be measured based on the recessed state.
  • the pressure sensor 401 is filled with a liquid such as oil or physiological saline.
  • the pressure sensor unit 40 recognizes the amount of liquid pushed out according to the degree of depression of the pressure sensor 401 due to the pressure in the compression bag 38 and the tube 37.
  • the pressure sensor unit 40 calculates pressure information based on the depression information of the pressure sensor 401 and outputs the pressure information to the pressure calculation unit 46.
  • the surface of the force cylinder 92 provided with the pressure sensor 401 in the compression bag 38 is selected.
  • a pressure sensor may be arranged in the tube 37.
  • the pressure sensor unit 40 the form in which the pressure inside the compression bag 38 is measured is shown.
  • the form in which the pressure is measured outside the compression bag 38 is shown in FIGS.
  • a pressure sensor 402 for measuring the pressure in the compression bag 38 is installed between the compression bag 38 and the ultrasonic probe 12.
  • the pressure sensor 402 is a pressure-sensitive resistance material, a piezoelectric material such as lead zirconate titanate, a semiconductor pressure sensor, or the like. Due to the expansion and contraction of the compression bag 38, the pressure state of the pressure sensor 402 installed between the compression bag 38 and the ultrasonic probe 12 changes.
  • the pressure sensor 402 detects the pressure, and the pressure information is transmitted to the pressure sensor unit 40.
  • the pressure sensor unit 40 calculates pressure information of the pressure sensor 402 and outputs the pressure information to the pressure calculation unit 46.
  • FIG. 10 is a diagram in which the pressure sensor 402 is arranged around the convex probe 60.
  • the compression bag 38 When the compression bag 38 is inflated, the compression bag 38 and the pressure sensor 402 are brought into close contact with each other, and the tightening pressure of the pressure sensor 402 is increased. On the contrary, when the compression bag 38 contracts, the pressure bag 38 is opened with respect to the pressure sensor 402, and the tightening pressure of the pressure sensor 402 becomes small. Thus, the pressure P (t) inside the compression bag 38 can be indirectly evaluated by measuring the tightening pressure of the compression bag 38. Since it is not necessary to immerse the pressure sensor 402 in the liquid, it can be realized without using a waterproof pressure sensor.
  • the pressure sensor 403 may be installed on the back surface of the pusher 88 of the liquid injection / ejection operation unit 44. That is, the pressure sensor 403 is disposed between the pusher 88 and the pusher fixing portion 86.
  • the piston 90 is reciprocated inside the cylinder 92 to apply an external force to the liquid inside the cylinder 88.
  • the liquid to which an external force is applied reaches the compression bag 38 through the tube 37, and the compression bag 38 is inflated by the amount of liquid pushed out by the movement of the pusher 88 and the piston 90.
  • the pusher 88 is pulled, the liquid in the compression bag 38 is drawn out to the cylinder 88 and the compression bag 38 is contracted. In this movement, the more the compression bag 38 is expanded, the greater the pressure in the compression bag 38 and the greater the force transmitted to the pusher 88.
  • the position sensor 421 in the flow rate sensor unit 42 is connected to the pusher fixing unit 86 and installed.
  • the position sensor 421 includes a general encoder, an optical sensor such as infrared rays, and the like.
  • the product of the cross-sectional area of the cylinder 92 and the movement amount of the pusher 88 detected by the position sensor 421 corresponds to the flow rate pushed out to the compression bag 38. That is, by detecting the position of the pusher 88, the flow rate of the liquid flowing into the compression bag 38 can be measured.
  • the flow rate sensor unit 42 can also be provided in the liquid injection operation unit 44.
  • a pressure sensor and a flow sensor are installed in the liquid injecting and operating unit 44.
  • all of the additionally required devices can be accommodated in the liquid injection / ejection operation unit 44.
  • the pressure is measured based on the information on the volume of the liquid that has flowed into the compression bag 38.
  • the flow rate is read based on the information obtained from the ultrasonic reception signal.
  • FIGS The form in which the expansion of the compression bag 38 is evaluated by an ultrasonic wave reception signal and the flow rate of the liquid flowing in and out by the liquid injecting and operating unit 44 is shown in FIGS.
  • a compression bag membrane surface distance calculation unit 48 that recognizes the membrane surface of the compression bag 38 from the RF signal frame data and calculates the degree of swelling of the compression bag 38 is provided.
  • the RF signal frame data storage unit 28 that stores a plurality of RF signal frame data obtained by phasing and adding the acquired ultrasonic reception signal outputs the RF signal frame data to the compression bag membrane surface distance calculation unit 48.
  • the compression bag membrane surface distance calculation unit 48 uses the RF signal frame data to analyze the ultrasonic transmission / reception surface force of the ultrasonic probe 12 and the distance to the membrane surface of the compression bag 38 (compression bag membrane surface distance) d. The result is output to the pressure calculation unit 46.
  • the pressure sensor unit 40 for measuring the water pressure inside the compression bag 38 is connected to the compression bag 38, and the pressure information P detected by the pressure sensor unit 40 is output to the pressure calculation unit 46. Yes.
  • the pressure calculation unit 46 is based on the compression bag 38 membrane surface distance, and the subject in contact with the compression bag 38 Determine the pressure in the 10 ultrasonic scanning area.
  • FIG. 14 is a diagram illustrating a method for calculating the compression bag membrane surface distance in the compression bag membrane surface distance calculation unit 48.
  • the waveform 110 of the graph shows the reception of the ultrasonic wave received by a certain ultrasonic transducer when the ultrasonic probe 12 is brought into contact with the living tissue via the compression bag 38 to transmit / receive the ultrasonic wave.
  • This is a signal waveform.
  • the vertical axis shows the intensity of the RF signal (ultrasonic reception signal), and the horizontal axis shows the distance from the ultrasonic transmission / reception surface of the ultrasonic probe.
  • the compression bag membrane surface distance calculation unit 48 uses the compression bag as shown in the figure for the RF signal (ultrasonic reception signal). By setting an appropriate threshold value for judging the membrane surface, the boundary position 111 between water and the compression bag can be easily detected if the distance when this threshold value is exceeded for the first time after searching the ultrasonic transmission / reception surface force is obtained. . The distance to this boundary is obtained as the compression bag membrane surface distance d.
  • the compression bag 38 is brought into contact with the subject 10 and the liquid is infused into the compression bag 38 using the liquid injecting / manipulating operation unit 44 in a cunning state, and the pressure sensor unit 40 is disposed inside the compression bag 38.
  • the pressure bag membrane surface distance calculator 48 measures the pressure bag membrane surface distance. The relationship between each pressure measured at this time and the compression bag membrane surface distance is temporarily stored in the memory in the pressure calculation unit 46.
  • the liquid injecting / operating unit 44 injects the liquid into the subject bag 38, and the pressure sensor unit 40 is located inside the subject bag 38.
  • the pressure bag membrane surface distance calculation unit 48 measures the pressure bag membrane surface distance.
  • the pressure calculation unit 46 calculates the predetermined compression bag membrane surface distance from the relationship between the measured pressure and the compression bag membrane surface distance and the relationship between the pressure temporarily stored in the memory and the compression bag membrane surface distance. The pressure difference is calculated, and the pressure difference is output to the elasticity information calculation unit 32 as the pressure in the ultrasonic scanning region of the subject 10 in contact with the compression bag 38.
  • the relationship between the internal pressure of the compression bag 38 and the compression bag membrane surface distance is obtained in a free state where the target yarn and fabric are not in contact with the compression bag 38. At this time, the compression bag 38 is exposed to the air that is not in contact with the living tissue.
  • the boundary position 111 located closest to the center axis of the ultrasound probe 12 can be obtained as the compression bag membrane surface distance d.
  • the relation between the internal pressure of the compression bag 38 and the compression bag membrane surface distance is within the range [0, dmax] (dmax is about lcm) of the compression bag membrane surface distance set in advance suitable for tissue compression. Just ask for it.
  • the solid line of the graph shows the relationship between pressure and compression bag membrane surface distance.
  • this relationship is referred to as a reference state P0 (d), and this operation is referred to as calibration.
  • the graph in Fig. 16 shows the relationship between the compression bag membrane surface distance and pressure in a free state where the target tissue is not in contact with the compression bag 38.
  • the solid line 465 in Fig. 15 shows a state in which the target site is compressed. This shows the relationship between the flow rate and pressure obtained in the above.
  • Figs. 13 to 16 show the method for obtaining the compression bag membrane surface distance d in the received signal of one ultrasonic transducer
  • the present invention is not limited to this, and all of the ultrasonic transmission / reception surfaces are provided.
  • the ultrasonic bag signal distance received by each ultrasonic transducer is used to determine the compression bag membrane surface distance d for each, and the final compression bag membrane surface distance d is determined as an average value thereof. .
  • the present invention is not limited to this, and the RF signal (ultrasonic reception signal) is used.
  • the same processing is performed using the diagnostic image such as B-mode that is constructed.
  • the flow rate sensor unit 42 injects, for example, 5 cc of liquid into the compression bag 38 in advance using the liquid injection operation unit 44, measures the compression bag membrane surface distance dl, and determines the injected flow rate. It may be obtained by calculating the relationship with the compression bag membrane surface distance. Specifically, by dividing the flow rate of the liquid by the distance of the compression membrane surface, the flow rate of the liquid flowing in as the compression membrane surface distance moves around 1 mm is calculated. And the flow volume of the liquid according to the measured compression film surface distance is calculated.
  • Fig. 17 shows a form in which the compression bag 38 is automatically compressed by using the liquid injection operation unit 44 applied to the first embodiment or the second embodiment.
  • 17 (a) includes a motor unit 132, a motor control unit 130 that controls the motor unit 132, a plate member 134 that is moved by driving the motor unit 132, and a spring 135 that supports the plate member 134.
  • the piston 136 coupled to the plate member 134, the cylinder 137 containing the piston 136, the cylinder fixture 141 for fixing the cylinder 136, and the cock 139 for controlling the flow of the liquid are also provided.
  • the spring 135 is connected to a plate material 134 and a fixture 141, and the plate material 135 reciprocates left and right by a motor unit 132 and a spring 135.
  • the motor unit 132 includes an elliptical rotating body 1321 and a motor 1322 that rotates the rotating body 1321.
  • the motor 1322 is rotated by a command from the motor control unit 130, the elliptical rotating body 1321 rotates around the rotation shaft 1323 while circumscribing the plate material 134.
  • the plate member 134 is pushed leftward by the rotation of the rotating body 1321 and is pushed in the opposite direction (rightward) of the rotating body 132 by the spring 135 to reciprocate left and right.
  • the piston 136 formed integrally with the reciprocating plate 134 also reciprocates together. Then, the liquid in the cylinder 137 is pushed out by the piston 136, and the pushed-out liquid reaches the compression bag 38. Then, the compression bag 38 from which the liquid is pushed out expands.
  • the return stroke is determined.
  • the plate 134 reciprocates by the difference between the short axis and the long axis of the ellipse.
  • the stroke range is changed by the amount of the rotation of the rotation shaft 1323.
  • the liquid injection amount by the piston 136 can be set.
  • the cross-sectional area of the cylinder 92 can be used so that the amount of liquid injected per stroke can be in the range of about 0.2 cc to 1.0 cc.
  • the liquid injection operation unit 44 shown in Fig. 17 (b) is configured to push the plate member 134 using the wire unit 138.
  • the plate 134 that moves, the spring 135 that supports the plate 134, the piston 136 that is connected to the plate 134, the cylinder 137 that contains the piston 136, the cylinder fixture 141 that fixes the cylinder 137, and the flow of liquid are controlled. It becomes power with cock 139.
  • the spring 135 is connected to the plate member 134 and the fixture 141, and the plate member 135 reciprocates left and right by the wire unit 138 and the spring 135.
  • the wire unit 138 includes a motor that moves the wire 1381 in the left-right direction, and can reciprocate the wire 1381 in the left-right direction.
  • the rotating member 140 rotates about the center axis 1401. When the wire 1381 is moved to the right, the plate 134 is pushed to the left, and when the wire 1381 is moved to the left, the plate 134 is moved to the right. It is designed to pull on.
  • the wire unit 138 can adjust the stroke width of 1381 of the wire. example, by using the cross-sectional area of the cylinder 92, the liquid injection amount per stroke can be set so as to be in the range of about 0.2 cc to 1.0 cc.
  • the form in which the compression bag 38 is automatically compressed has the crank mechanism that converts the rotational movement by the motor 1322 or the wire 1381 into the linear movement of the piston 136, but is not limited to this form. It is also possible to have a mechanism that moves the piston 136 linearly.
  • the convex probe for internal use has been described as an example.
  • the present invention is not limited to this, and a linear probe that can be compressed from outside the subject 10 as shown in FIG. It can be applied to any ultrasonic probe that can be a child.
  • the compression bag 38 is used to press the subject 10 from outside the body.
  • the compression bag 38 is installed in front of the plurality of transducer elements 150 of the linear ultrasonic probe.
  • the ultrasonic probe 12 includes a pressure sensor unit 40, a flow rate sensor unit 42, and a liquid injection / operation unit 44.
  • the pressure information detected by the pressure sensor unit 40 and the flow rate information detected by the flow rate sensor unit 42 are output to the pressure calculation unit 46.
  • the pressure sensor unit 40 measures the pressure inside the compression bag 38, and this pressure value is stored in the memory in the pressure calculation unit 46. Temporarily save to. Then, the operator brings the ultrasonic probe 12 into contact with the subject 10 and presses it. The pressure sensor unit 40 measures the pressure inside the compression bag 38 while the subject 10 is compressed. At this time, the volume of the liquid in the compression bag 38 is constant before and after the compression. The pressure calculation unit 46 calculates the difference between the pressure before compression stored in the memory and the pressure after compression, and calculates the difference between the pressures in the ultrasonic scanning region of the subject 10 in contact with the compression bag 38. The pressure is output to the elasticity information calculation unit 32 as pressure.
  • the pressure sensor unit 40, the flow rate sensor unit 42, and the liquid injection operation unit 44 need not be built in the ultrasonic probe.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Medical Informatics (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Biophysics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Acoustics & Sound (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

 超音波走査領域の圧力を実測することにより、精度が高い弾性率を求める超音波診断装置を提供する。  前記超音波探触子の超音波送受信面に設置され、液体が充填される圧迫袋と、前記圧迫袋内に液体を注入出させて前記圧迫袋を膨張又は収縮させる液体注入出手段と、前記圧迫袋内に充填された液体の圧力を計測する圧力計測手段と、前記圧力計測手段で計測された圧力情報に基づいて、前記圧迫袋に接する前記被検体の超音波走査領域の圧力を演算する圧力演算手段とを備え、前記弾性情報演算手段は前記圧力情報を用いて弾性率を演算する。

Description

明 細 書
超音波探触子及び超音波診断装置
技術分野
[0001] 本発明は、超音波を利用して被検体内の撮像対象部位について断層像、生体組 織の硬さまたは軟らかさを示す弾性画像を表示するための超音波探触子及び超音 波診断装置に関する。
背景技術
[0002] 超音波診断装置は、超音波探触子により被検体内部に超音波を送信し、被検体内 部から生体組織の構造に応じた超音波の反射エコー信号を受信し、例えば Bモード 像等の断層像を構成して診断用に表示する。
[0003] 近年、手動又は機械的な方法により超音波探触子で被検体を圧迫して超音波受 信信号を計測し、計測時間が異なる二つの超音波受信信号のフレームデータに基 づ 、て圧迫により生じた生体各部の変位を求め、その変位データに基づ!/、て生体組 織の弾性を表す弾性画像を生成することが行なわれている。
[0004] 生体組織の弾性に関する物理量には、種々のものが知られている力 例えば、生 体組織の歪み又は弾性率が用いられている。ここで、歪みは生体組織の移動量であ る変位を空間微分して得られる相対的な値であり、弾性率は生体組織の各部位に作 用する応力変化を歪みで除した定量的な値である。そのため、弾性率を求めるため には、生体組織に作用する圧力を計測する必要がある。生体組織に作用する圧力を 計測するために、超音波探触子の振動子の周囲に圧力センサを配置させ、被検体 を圧迫する圧力を間接的に計測する超音波診断装置が開示されている (例えば、特 許文献 1)。
[0005] 特許文献 1:特開 2004-267464号公報 特許文献 1開示されて!、る圧力センサは、被 検体と超音波送受信面の周辺部との間の圧力は計測しているが、超音波が走査され る超音波送受信面直下の超音波走査領域における圧力は計測できてきない。
[0006] つまり、特許文献 1では、超音波走査領域の圧力を超音波送受信面の周辺部の圧 力情報力 推定しているに過ぎず、超音波送受信領域における真の圧力は得られな い。そのため、推定した圧力を用いて求められる弾性率の精度が落ちてしまう可能性 がある。
[0007] そこで本発明は、超音波走査領域に加わる圧力を実測することにより、精度の高い 弾性率を求めることを目的とする。
発明の開示
[0008] 前記課題を解決するために、本発明は以下の様に構成される。被検体に加える圧 力を計測する圧力計測手段を備えた超音波探触子において、液体が充填され、超 音波送受信面に設置されるとともに前記被検体を圧迫する圧迫袋を備え、前記圧力 計測手段は前記圧迫袋内に充填された液体の圧力を計測する。
[0009] また、超音波探触子と、前記超音波探触子を介して被検体の断層部位の RF信号フ レームデータに基づ ヽて断層像を構成する断層画像構成手段と、前記 RF信号フレ ームデータに基づいて前記断層部位における組織の歪み又は弾性率を求める弾性 情報演算手段と、前記弾性情報演算手段で求めた歪み又は弾性率に基づ 、て前記 断層部位における弾性画像を生成する弾性画像構成手段と、前記断層像及び,又 は前記弾性画像を表示する表示手段とを備える超音波診断装置にお!ヽて、前記超 音波探触子の超音波送受信面に設置され、液体が充填される圧迫袋と、前記圧迫 袋内に液体を注入出させて前記圧迫袋を膨張又は収縮させる液体注入出手段と、 前記圧迫袋内に充填された液体の圧力を計測する圧力計測手段と、前記圧力計測 手段で計測された圧力情報に基づ!、て、前記圧迫袋に接する前記被検体の超音波 走査領域の圧力を演算する圧力演算手段とを備え、前記弾性情報演算手段は前記 圧力情報を用いて弾性率を演算する。
[0010] 前記圧力演算手段は、前記圧力計測手段により、前記被検体に前記圧迫袋を接 触させて!/、な!/、状態で計測した第 1の圧力値と、前記被検体に前記圧迫袋を接触さ せた状態で計測した第 2の圧力値との差に基づ 、て、前記圧迫袋に接する前記被検 体の超音波走査領域の圧力を演算する。また、前記圧迫袋への前記液体の流入出 量を計測する流量計測手段を備え、前記圧力演算手段は、前記流量計測手段で計 測された流入出量に基づいて、前記圧迫袋に接する前記被検体の超音波走査領域 の圧力を演算する。 [0011] 以上より、本発明によれば、超音波走査領域に加わる圧力を実測することにより、 精度の高 ヽ弾性率を求めることできる。
図面の簡単な説明
[0012] [図 1]本発明の全体構成を説明するための図。
[図 2]本発明の超音波探触子の圧迫機構を説明するための図。
[図 3]本発明の液体注入出操作部を説明するための図。
[図 4]本発明の第 1の実施形態を説明するための図。
[図 5]本発明の第 1の実施形態を説明するための図。
[図 6]本発明の第 2の実施形態を説明するための図。
[図 7]本発明の第 2の実施形態を説明するための図。
[図 8]本発明の第 2の実施形態を説明するための図。
[図 9]本発明のカテーテル型圧力センサを説明するための図。
[図 10]本発明の圧迫袋外部力 圧力を計測する形態を説明するための図。
[図 11]本発明の圧迫袋外部力 圧力を計測する形態を説明するための図。
[図 12]本発明の流量センサの形態を説明するための図。
[図 13]本発明の流量センサの形態を説明するための図。
[図 14]本発明の流量センサの形態を説明するための図。
[図 15]本発明の流量センサの形態を説明するための図。
[図 16]本発明の流量センサの形態を説明するための図。
[図 17]本発明の自動圧迫機構を説明するための図。
[図 18]本発明の被検体外部力 圧迫する形態を説明するための図。
発明を実施するための最良の形態
[0013] 本発明を適用してなる超音波探触子及び超音波診断装置の実施形態について、 図を用いて説明する。図 1は本発明を適用した超音波診断装置の構成を示すブロッ ク図である。
[0014] 図 1に示すように、超音波診断装置 1には、被検体 10に当接させて用いる超音波探 触子 12と、超音波探触子 12を介して被検体 10に時間間隔をおいて超音波を繰り返し 送信する送信部 14と、被検体 10から発生する時系列の反射エコー信号を受信する 受信部 16と、送信部 14と受信部 16を制御する送受信制御部 17と、受信部 16で受信さ れた反射エコーを整相加算する整相加算部 18とが備えられている。
[0015] また、整相加算部 18からの RF信号フレームデータに基づいて被検体の濃淡断層 画像例えば白黒断層画像を構成する断層画像構成部 20と、断層画像構成部 20の出 力信号を画像表示器 26の表示に合うように変換する白黒スキャンコンバータ 22とが備 えられている。
[0016] また、整相加算部 18から出力される RF信号フレームデータを記憶する RF信号フレ ームデータ記憶部 28と、 RF信号フレームデータ記憶部 28から少なくとも 2枚のフレー ムデータを選択し、被検体 10の生体組織の変位を計測する変位計測部 30と、変位計 測部 30で計測された変位情報力 歪み又は弾性率を求める弾性情報演算部 32と、 弾性情報演算部 32で演算した歪み又は弾性率からカラー弾性画像を構成する弾性 画像構成部 34と、弾性画像構成部 34の出力信号を画像表示器 26の表示に合うよう に変換するカラースキャンコンバータ 36とが備えられている。
[0017] そして、白黒断層画像とカラー弾性画像を重ね合わせたり、並列に表示させたり、 切替を行う切替加算部 24と、合成された合成画像を表示する画像表示器 26とが備え られている。
[0018] 被検体 10と超音波探触子 12との間には圧力を計測するための圧迫袋 38が備えら れている。この圧迫袋 38は、超音波を通過させることができる材質であり、超音波探 触子 12の超音波走査面上に配置されている。圧迫袋 38は、例えば、ポリウレタン、塩 ビ、ラテックス (天然ゴム)、シリコンなど、生体にも安全な素材の膜で形成されている。
[0019] 圧迫袋 38の内部には水や油等の液体が充填されている。この液体を圧迫袋 38に 注入出することにより、圧迫袋 38を膨張させたり収縮させたりする液体注入出操作部 44が備えられている。
[0020] 液体注入出操作部 44によって、液体を注入して圧迫袋 38を膨張させると被検体 10 への圧迫が強まり、圧迫袋 38から液体を排出して収縮させると被検体 10への圧迫が 緩まる。液体注入出操作部 44の操作は、自動制御の場合、装置制御インターフェイ ス部 50で行うが、手動でも行うことができるようになつている。
[0021] また、液体注入出操作部 44により注入出した液体の流量を計測する流量センサ部 4 2と、圧迫袋 38の内部の圧力 (水圧)を計測する圧力センサ部 40と、 RF信号フレームデ ータ記憶部 28の RF信号フレームデータから注入出した液体の流量を計測するため の圧迫袋膜面距離演算部 48と、流量センサ部 42又は圧迫袋膜面距離演算部 48で 計測された流量情報、又は圧力センサ 40の圧力情報力 圧迫袋 38と接する被検体 1 0の超音波走査領域の圧力を演算する圧力演算部 46とを備えている。
[0022] 圧力演算部 46で演算された圧力情報は、弾性情報演算部 32に入力され、変位計 測部 30の変位情報とから弾性率が求められる。なお、詳細は後述する。
[0023] ここで、超音波診断装置 1の全体構成について詳細に説明する。
[0024] 超音波探触子 12は、複数の振動子を配設して形成されており、被検体 10に振動子 を介して超音波を送受信する機能を有している。送信部 14は、超音波探触子 12を駆 動して超音波を発生させるための送波パルスを生成するとともに、送信される超音波 の収束点をある深さに設定する機能を有している。また、受信部 16は、超音波探触子 12で受信した反射エコー信号について所定のゲインで増幅して RF信号すなわち受 波信号を生成するものである。
[0025] 整相加算部 18は、受信部 16で増幅された RF信号を入力して位相制御し、一点又 は複数の収束点に対し超音波ビームを形成して RF信号フレームデータを生成するも のである。
[0026] 断層画像構成部 20は、整相加算部 18からの RF信号フレームデータを入力してゲイ ン補正、ログ圧縮、検波、輪郭強調、フィルタ処理等の信号処理を行い、断層画像デ ータを得るものである。
[0027] また、白黒スキャンコンバータ 22は、断層画像構成部 20からの断層画像データをデ ジタル信号に変換する A/D変 と、変換された複数の断層画像データを時系列に 記憶するフレームメモリと、制御コントローラを含んで構成されている。
[0028] この白黒スキャンコンバータ 22は、フレームメモリに格納された被検体内の断層フレ ームデータを一画像として取得し、取得された断像フレームデータをテレビ同期で読 み出すものである。
[0029] RFフレームデータ記憶部 28は、整相加算部 18からの複数の RF信号フレームデータ を格納するものである。変位計測部 30は、 RFフレームデータ記憶部 28に格納された RF信号フレームデータ群から一組すなわち二つの RF信号フレームデータを選択す る。
[0030] 例えば、整相加算部 16から時系列すなわち画像のフレームレートに基づいて生成 される RF信号フレームデータを RFフレームデータ記憶部 28に順次記憶し、記憶され た RF信号フレームデータ (N)を第一のデータとして選択すると同時に、時間的に過去 に記憶された RF信号フレームデータ群 (N-1,N-2,N-3,..,N- M)の中力も一つの RF信 号フレームデータ (X)を選択する。
[0031] なお、ここで Ν,Μ,Χは RF信号フレームデータに付されたインデックス番号であり、自 然数とする。
[0032] そして、変位計測部 30は、選択された一組のデータすなわち RF信号フレームデー タ (Ν)及び RF信号フレームデータ (X)力 一次元或いは二次元相関処理を行って、断 層画像の各点に対応する生体組織における変位や移動ベクトルすなわち変位の方 向と大きさに関する一次元又は二次元変位分布を求める。
[0033] ここで、移動ベクトルの検出にはブロックマッチング法を用いる。ブロックマッチング 法とは、画像を例えば N X Ν画素からなるブロックに分け、関心領域内のブロックに着 目し、着目しているブロックに最も近似しているブロックを前のフレーム力も探し、これ を参照して予測符号化すなわち差分により標本値を決定する処理を行う。
[0034] 弾性情報演算部 32は、変位計測部 30から出力される計測値、例えば移動ベクトル と、圧力演算部 46力 出力される圧力値とから断層画像上の各点に対応する生体組 織の歪みや弾性率を演算し、その歪みや弾性率に基づ ヽて弾性画像信号すなわち 弾性フレームデータを生成するものである。
[0035] このとき、歪みのデータは、生体組織の移動量例えば変位を空間微分することによ つて算出される。また、弾性率のデータは、圧力の変化を歪みの変化で除することに よって計算される。例えば、変位計測部 30により計測された変位を L(X),圧力演算部 4 6により計測された圧力を P(X)とすると、歪み A S(X)は、 L(X)を空間微分することによ つて算出することができるから、 Δ S(X)= Δ L(X)/ Δ Xt 、う式を用いて求められる。
[0036] また、弾性率データのヤング率 Ym(X)は、 Ym=( Δ Ρ(Χ))/ Δ S(X)と 、う式によって算 出される。このヤング率 Ymから断層画像の各点に相当する生体組織の弾性率が求 められるので、二次元の弾性画像データを連続的に得ることができる。なお、ヤング 率とは、物体に加えられた単純引張り応力と、引張りに平行に生じるひずみに対する 比である。
[0037] 弾性画像構成部 34は、フレームメモリと画像処理部とを含んで構成されており、弹 性情報演算部 32から時系列に出力される弾性フレームデータをフレームメモリに確 保し、確保されたフレームデータに対し画像処理を行うものである。
[0038] カラースキャンコンバータ 36は、弾性画像構成部 34からの弾性フレームデータに色 相情報を付与する機能を有したものである。つまり、弾性フレームデータに基づいて 光の三原色すなわち赤 (R)、緑 (G)、青 (B)に変換するものである。例えば、歪みが大き い弾性データを赤色コードに変換すると同時に、歪みが小さい弾性データを青色コ ードに変換する。
[0039] そして、本発明に係る切替加算部 24は、フレームメモリと、画像処理部と、画像選択 部とを備えて構成されている。ここで、フレームメモリは、白黒スキャンコンバータ 32か らの断層画像データとカラースキャンコンバータ 36からの弾性画像データとを格納す るものである。
[0040] また、画像処理部は、フレームメモリに確保された断層画像データと弾性画像デー タとを合成割合を変更して合成するものである。合成画像の各画素の輝度情報及び 色相情報は、白黒断層画像とカラー弾性画像の各情報を合成割合で加算したものと なる。さらに、画像選択部は、フレームメモリ内の断層画像データと弾性画像データ 及び画像処理部の合成画像データのうちから画像表示器 26に表示する画像を選択 するものである。
[0041] ここで、本発明の超音波探触子 12について説明する。図 2(a)は、超音波探触子 12 の側面図を示すものである。超音波探触子 12は体内挿入型の探触子であり、被検体 内に挿入できるよう円柱状になっている。超音波探触子 12の長手方向の先端部は球 状になっており、他端部は超音波診断装置 1の送波部 14又は受信部 16に繋がるケー ブルに接続されている。
[0042] 超音波探触子 12の長手方向の先端部付近は、被検体 10内に挿入される体内挿入 部 64であり、複数の超音波振動子が配列されている。例えば、前立腺を観察できる 部位に体内挿入部 64を挿入し、配列された超音波振動子で超音波を送受信すること により、前立腺の RF信号を得ることができる。
[0043] 体内挿入部 64の前方にはコンベックス型探触子 60、後方にはリニア型探触子 62とし て形成される複数の超音波振動子が配置されており、それぞれの超音波振動子は 送波部 14又は受信部 16にケーブルを介して接続されて ヽる。
[0044] 一方、超音波探触子 12のケーブルに接続される側には、操作者が超音波探触子 1
2を把持するための探触子把持部 65を有して 、る。操作者は探触子保持部 65を握り
、超音波探触子 12を任意に移動させることができる。
[0045] 図 2(a)に示す超音波探触子 12のコンベックス型探触子 60に圧迫袋 38を配置させた 形態を図 2(b)、図 2(c)に示す。図 2(b)は超音波探触子 12の長軸方向の側面図を示す ものであり、図 2(c)は超音波探触子 12の短軸方向の側面図を示すものである。
[0046] 圧迫袋 38はコンベックス型探触子 60の外周を覆うように配置されており、圧迫袋 38 の両端は二つの固定ベルト 70で固定されている。中空のチューブ 37は、超音波探触 子 12の長軸方向に沿って配置されており、圧迫袋 38と液体注入出操作部 44とを連結 するものである。
[0047] 液体注入出操作部 44で液体をチューブ 37へ注入することにより、チューブ 37から圧 迫袋 38に液体を注入し、圧迫袋 38を膨張させる。また、液体注入出操作部 44で液体 をチューブ 37から引き出すことにより、圧迫袋 38力 チューブ 37に液体を注出させ、 圧迫袋 38を収縮させる。
[0048] 具体的に圧迫袋 38に液体を注入させると、圧迫袋 38は、超音波探触子 12の短軸断 面の中心部を中心にして放射状に膨張する。
なお、圧迫袋 38は、コンベックス型探触子 60表面の外周だけでなぐ超音波探触子 1 2の一周を覆うようなリング形状になっていてもよい。その場合も、圧迫袋 38は、超音 波探触子 12の短軸断面の中心部を中心にして放射状に膨張することになる。
[0049] 次に、図 3を用いて液体注入出操作部 44を説明する。液体注入出操作部 44は、主 に、本体部 80と、本体部 80に固定され内部に液体が充填されているシリンダ 92と、シ リンダ 92内に配置され、液体を押し出したり引き出したりするピストン 90及び押し子 88 と、押し子 88を固定するための押し子固定部 86と、押し子 88を駆動する操作部 82と、 ピストン 90の移動ストロークを制限するストローク調整部 99とからなる。
[0050] 操作部 82は支持部 84によって軸通され本体部 80に接続されている。操作部 82は支 持部 84を中心にして回転させることができる。操作部 82の一端は、押し子固定部 86に 連結されており、操作部 82の他端は、操作者が握り、動作を与える把持部 83となって いる。
[0051] また、押し子 88の一端は、押し子固定部 86と連結されて 、る。押し子 88の他端はシ リンダ 88内のピストン 90となっている。シリンダ 88の内部でピストン 90を往復運動させる ことにより、シリンダ 88内部の液体に外力を与える。押し子 88を押して外力を与えられ た液体はチューブ 37を介して圧迫袋 38に到達され、液体が押し出された分だけ圧迫 袋 38を膨張させる。逆に押し子 88を引くと、圧迫袋 38の液体がシリンダ 88に引き出さ れ、圧迫袋 38を収縮させる。
[0052] つまり、操作者は、掌を本体部 80で支え、把持部 83を複数の指で掴んで右下方向 に引くことにより、押し子 88を押し出すことができ、押し子 88の運動により押し出された 液体分だけ圧迫袋 38を膨張させることができる。把持部 83を掴んで左上方向に押す ことにより、押し子 88を引き出すことができ、押し子 88の運動により引き出された液体 分だけ圧迫袋 38を膨張させることができる。
[0053] ストローク調整部 99は、本体部 80の押し子 88のストローク面に設置された固定具 98 に設置されている。ストローク調整部 99は雄ネジであり、固定具 98は雄ネジを貫通さ せることができる雌ネジを有している。ストローク調整部 99を回転することにより、固定 具 98を介してストローク調整部 99を左右に移動することができる。
[0054] 次にストローク調整部 99の機能について説明する。ピストン 90を図の左方向に運動 させると、所定の位置でストローク調整部 99に押し子 88が接触する。この位置力 ビス トン 90を左方向に移動させようとしても、押し子 88がストローク調整部 99によって固定 されるため、接触した位置力 ピストン 90を左方向に運動させることができない。つま り、ストローク調整部 99はピストン 90の移動ストロークを制限することができる。
[0055] このように、ストローク調整部 99は、ピストン 90の運動を制限することにより、圧迫袋 3 8に注入される液体の流量を任意に設定できる。具体的には、圧迫袋 38の表面積が 1 000mm2とすると、 1ストローク当たりの液体の注入量が 0.2cc〜1.0cc程度の範囲であ ることが好ましい。
[0056] なぜなら、被検体 10を圧迫しすぎても、圧迫に不具合が生じてしまい、適した歪み 及び弾性率は取得できないからである。そこで、シリンダ 92の断面積とピストン 90の移 動量の積が 0.2cc〜1.0cc程度になるように、ストローク調整部 99はピストン 90の移動 量を調整する。具体的には、シリンダ 92の断面積 S、押し子 88の移動量 Aとすると、 S X A力 S0.2cc〜1.0cc程度になるようにする。
[0057] また、シリンダ 92、ピストン 90、押し子 88からなるシリンジ部は、固定部 97を介して、ヮ ンタツチで本体部 80に脱着できる構造を有している。固定部 97は、シリンダ 92を受け て嵌装するものであり、シリンダ 92を固定部 97で受けることによりシリンジ部は、本体 8 0に固定される。また、本体 80は、アルミやステンレス、プラスチックなどの、鲭びにくい 素材で構成されている。
[0058] なお、ここでは、操作者の手動による圧迫を説明したが、液体注入出操作部 44にモ ータを備え、モータの動力により押し子 88を往復運動させ、圧迫袋 38を膨張'収縮さ せてもよい。
[0059] ここで、圧迫袋 38と接する被検体 10の超音波走査領域の圧力を求める第一の実施 形態を図 1〜図 5を用いて説明する。
[0060] 超音波探触子 12であるコンベックス型探触子 60を覆うように圧迫袋 38が設置されて いる。圧迫袋 38は、チューブ 37を介して液体注入出操作部 44と、圧力センサ部 40に 連結されている。圧迫袋 38内部の圧力を計測するための圧力センサ部 40で検出され た圧力情報 Pが圧力演算部 46に出力されるようになっている。圧力演算部 46は、圧力 センサ 40の圧力情報力 圧迫袋 38と接する被検体 10の超音波走査領域の圧力を演 算する。なお、図 1に示すように、圧力演算部 46で演算された圧力情報は、弾性情報 演算部 32に入力される。
[0061] 圧迫袋 38と液体注入出操作部 44の間には液体の注入出を制御するコック 100が配 置されている。コック 100を開くと、圧迫袋 38と液体注入出操作部 44の間で自由に液 体が注入出される。コック 100を閉じると、圧迫袋 38と液体注入出操作部 44の間で液 体が注入出されないため、圧迫袋 38内の液体の体積は一定となる。
[0062] まず、被検体 10に圧迫袋 38を接触させていない状態で、圧力センサ部 40は圧迫袋 38内部の圧力を測定し、この圧力値を圧力演算部 46内のメモリに一時保存させる。 そして、被検体 10に圧迫袋 38を接触させ、被検体 10を圧迫させた状態で、圧力セン サ部 40は圧迫袋 38内部の圧力を測定する。この時、圧迫前後において圧迫袋 38内 の液体の体積は一定である。圧力演算部 46は、メモリ内に保存された圧迫する前の 圧力と、圧迫した後の圧力の差を演算し、この圧力の差を圧迫袋 38と接する被検体 1 0の超音波走査領域の圧力として弾性情報演算部 32に出力する。
[0063] 次に図 5を用いて、第 1の実施形態を具体的に説明する。図 5(a)は、圧迫袋 38に被 検体 10の対象組織が接触していないフリーな状態である。まず、圧力演算部 46は、こ の状態で圧迫袋 38の内部圧力と体積の関係を求める。そして、液体注入出操作部 4 4から体積 V0の液体を圧迫袋 38に注入し、その後、コック 100を閉じる。コック 100を閉 じることにより、圧迫袋 38の内部の液体の体積は常に一定値 V0となる。そして、この 状態での圧力 P0を求める。この状態を基準状態 P0、この作業をキャリブレーションと 呼称する。
[0064] 図 5(b)は、圧迫袋 38に被検体 10の対象組織が接触した状態であり、組織弾性の診 断に適用する状態である。この状態の超音波探触子 12を、被検体 10の生体組織、例 えば前立腺に接触させ、操作者は超音波探触子 12を前立腺に対して押し付けるよう にして圧迫し、圧力演算部 46は対象組織の圧迫過程における任意の時刻 tにおける 圧力情報 P(t)を取得する。このとき、 P(t)の基準状態力もの差分が、現時刻 tにおいて 被検体 10の生体組織に加えられて 、る圧力 Ptarget(t)であり、数 1に示すように {数 l }Ptarget(t) = P(t)— P0
として圧力演算部 46で求めることができる。
[0065] 圧迫前の RF信号フレームデータを取得した時刻を t-l、圧迫後の RF信号フレーム データを取得した時刻を現時刻 tとすると、現時刻 tにおいて、生体組織の圧迫圧力 の変化 A P(t)は、数 2に示すように
{数 2} A P(t) = Ptarget(t)— Ptarget(t— 1)
として圧力演算部 46で求めることができる。変位計測部 30で求められた時刻 t-l、 tに お!、て得られた RF信号フレームデータの変位に基づく計測値と、圧力演算部 46で求 められた Δ P(t)の情報とをもとにして弾性情報演算部 32で弾性率が演算される。 [0066] 次に、圧迫袋 38と接する被検体 10の超音波走査領域の圧力を求める第 2の実施形 態を図 6〜図 8を用いて説明する。第 1の実施形態と異なる点は、液体の注入出量を 検出する流量センサ部 42を備え、圧力センサ部 40で検出される圧力情報と流量セン サ部で検出される流量情報力 圧迫袋 38と接する被検体 10の超音波走査領域の圧 力を求める点である。
[0067] 圧迫袋 38内部の圧力を計測するための圧力センサ部 40が圧迫袋 38と連結され、圧 力センサ部 40で検出された圧力情報 Pが圧力演算部 46に出力されるようになってい る。圧迫袋 38と液体注入出操作部 44の間には液体の注入出量を計測する流量セン サ部 42が配置され、圧迫袋 38に注入出された液体の流量 (体積)情報 Vが圧力演算 部 46に出力されるようになっている。流量センサ 42は、例えば、その内部に液体の動 きに伴い移動する弁やファン等の移動部材を有しており、移動部材の変位により液 体の流量を計測するものである。
[0068] まず、被検体 10に圧迫袋 38を接触させて ヽな ヽ状態で、液体注入出操作部 44を用 いて液体を圧迫袋 38に注入出させ、圧力センサ部 40は圧迫袋 38内部の圧力を測定 し、流量センサ部 42は注入出された液体の流量を測定する。この時計測されたそれ ぞれの圧力と流量の関係を圧力演算部 46内のメモリに一時保存する。
[0069] そして、被検体 10に圧迫袋 38を接触させ、被検体 10を圧迫させた状態で、液体注 入出操作部 44を用いて液体を圧迫袋 38に注入出させ、圧力センサ部 40は圧迫袋 38 内部の圧力を測定し、流量センサ部 42は注入出された液体の流量を測定する。圧力 演算部 46は、この時計測されたそれぞれの圧力と流量と、メモリ内に一時保存された 圧力と流量の関係とから所定の流量値における圧力の差を演算し、この圧力の差を 圧迫袋 38と接する被検体 10の超音波走査領域の圧力として弾性情報演算部 32に出 力する。
[0070] 次に図 7、図 8を用いて、第 2の実施形態を具体的に説明する。図 7は、圧迫袋 38に 被検体 10の対象組織が接触して 、な 、フリーな状態で、圧力演算部 46は圧迫袋 38 の内部圧力と体積の関係を求める。この関係は、組織圧迫に適するように予め設定 された流量の体積範囲 [0,Vmax](Vmaxは数 cc程度)の範囲で求める。図 7のグラフの 実線 461は、圧力演算部 46で求められる流量力^〜 Vmaxの範囲における圧力の関 係を示すものである。流量が増加するにつれて、圧力が増加することが分かる。
[0071] そして、組織弾性の診断に移行し、被検体 10の対象組織を圧迫する。この圧迫過 程における任意の時刻 tにおいて、圧力情報 P(t)、流量 (体積)情報 V(t)を取得する。 流量 (体積)情報 V(t)は、時刻 t〖こおいて流量計を通過した流量 v(t)ではなぐ圧迫袋 3 8に流れ込んだ全ての液体の流量 V(t)=∑ v(t)を示す。
[0072] 図 8のグラフは、圧迫袋 38に対象組織が接触していないフリーな状態の流量と圧力 の関係を示すグラフの実線 461に、対象部位を圧迫した状態で得られる流量と圧力 の関係を対応させて示したものである。
[0073] 体積 V(t)にお 、て、圧迫袋 38に対象組織が接触して 、な 、ときの基準状態では、 どれだけの内部圧力が加わっているかを P0(V(t》として求めることができる。グラフで は (V(t), P0(V(t)))は点 Y462として表示される。そして、対象部位を圧迫した状態の体 積 V(t)にお ヽて得られる圧力は P(t)である。グラフでは (V(t), P(t))は点 X463として表 示される。
[0074] P(t)のこの基準状態からの差分力 現時刻 tにお 、て生体組織に加えられて 、る圧 迫の圧力 Ptarget(t)であり、数 3に示すように、
{数 3}Ptarget(t) = P(t) P0(V(t》
として求めることができる。
[0075] ここで、圧力情報、及び、流量 (体積)情報は、圧力センサ部 40、流量センサ部 42で すでに A/D変換されてデジタル信号として圧力演算部 46に入力されるようになってい てもよく、圧力演算部 46においてアナログ信号の圧力情報、及び、流量 (体積)情報が
A/D変換されるように処理されてもょ 、。
[0076] また、上記説明では流量センサ部 42力 流量情報を出力する例を示した力 現時 刻にお 、て流量計を通過した流量 v(t)を出力し、圧力演算部 46で流量 V(t)=∑ v(t)を 評価するようになって!/、てもよ!/、。
[0077] また、被検体 10の対象組織を圧迫することによって、液体注入出操作部 44側に押 し戻されるわずかな液体の流量を流量センサ部 42で測定して、圧力演算部 46は押し 戻される流量に基づいて圧力を求めてもよい。具体的には、圧力演算部 46に所定の 液体の注入量と、圧迫袋 38を圧迫することによって押し戻される液体の流量とから算 出される圧力情報を予め複数記録しておく。圧迫袋 38を膨張させて、被検体 10の対 象組織を圧迫した場合、圧力演算部 46は、所定の液体の注入量と液体が押し戻され る流量とから圧力を求める。
[0078] 上記第 1の実施形態又は第 2の実施形態に適用させる圧力センサ部 40の様々な形 態について図 9〜図 11を用いて説明する。
[0079] 圧迫袋 38内の圧力を計測するための圧力センサカテーテルを適用した形態を図 9( a)に示す。圧迫袋 38内の圧力を計測する圧力センサ 401は、カテーテル型であり、チ ユーブ 37内のケーブル 402を介して圧力センサ部 40に接続されて!、る。圧力センサ 4 01の先端部で計測された圧力情報は圧力センサ部 40に伝達される。
[0080] 図 9(b)に圧力センサ 401の詳細を示す。カテーテル型の圧力センサ 401は、例えば 、中空体 4011とマイクロマシユング技術を用いて適用されたダイヤフラムの膜 4012と 歪みゲージ 4013とを有している。中空体 4011の内周面にはダイヤフラムの膜 4012と 歪みゲージ 4013が設置されており、圧迫袋 38内の液体はダイヤフラムの膜 4012に接 している。
[0081] 圧迫袋 38内の圧力に基づいてダイヤフラムの膜 4012が凹む。ダイヤフラムの膜 401 2の凹み情報を歪みゲージ 4013が検出する。そして、歪みゲージ 4013で検出された 凹み情報はケーブル 402を介して圧力センサ部 40に出力される。圧力センサ部 40で は、ダイヤフラムの凹み情報と圧力との関係は予め計測されており、圧力センサ部 40 は、圧力センサ 401のダイヤフラムの実測した凹み情報に基づいて圧力情報を算出 して、圧力演算部 46に出力する。
[0082] また、ケーブル 402自体を圧力センサに適用してもよ 、。ケーブル 402の先端部から 中央部は、圧迫袋 38又はチューブ内の圧力に応じて凹む材料、例えばゴム材を適 用させておき、その凹み具合に基づいて圧力を計測してもよい。具体的には、圧力 センサ 401の内部に油や生理食塩水等の液体を充填しておく。圧迫袋 38やチューブ 37内の圧力により、圧力センサ 401の凹み具合に応じて押し出された液体量を圧力 センサ部 40は認識する。圧力センサ部 40は、圧力センサ 401の凹み情報に基づいて 圧力情報を算出して、圧力演算部 46に出力する。
[0083] なお、ここでは、圧迫袋 38内に圧力センサ 401を設けた力 シリンダ 92の表面ゃチュ ーブ 37内に圧力センサを配置してもよい。
[0084] ここで、前記圧力センサ部 40では、圧迫袋 38内部の圧力を計測する形態を示した 力 圧迫袋 38外部で圧力を計測する形態を図 10、図 11に示す。
[0085] この形態では、図 10に示すように、圧迫袋 38内の圧力を計測するための圧力セン サ 402を圧迫袋 38と超音波探触子 12の間に設置する。圧力センサ 402は、感圧抵抗 材料やチタン酸ジルコン酸鉛等の圧電材料、半導体圧力センサ等である。圧迫袋 38 の膨張、収縮により、圧迫袋 38と超音波探触子 12の間に設置された圧力センサ 402 は圧迫状況が変わる。圧力センサ 402は圧力を検出し、その圧力情報は圧力センサ 部 40に伝達される。圧力センサ部 40は、圧力センサ 402の圧力情報を算出して、圧力 演算部 46に出力する。
[0086] 図 10は、コンベックス型探触子 60の周囲に圧力センサ 402を配置した図である。
[0087] 圧迫袋 38が膨張すると、圧迫袋 38と圧力センサ 402が密着する状態になり、圧力セ ンサ 402の締め付けの圧力が大きくなる。逆に圧迫袋 38が収縮すると、圧力センサ 40 2に対し、圧迫袋 38が開放される状態になり、圧力センサ 402の締め付けの圧力が小 さくなる。このように、圧迫袋 38の締め付け圧力を計測することにより圧迫袋 38の内部 の圧力 P(t)を間接的に評価することができる。圧力センサ 402を液体に浸す必要がな V、ので、防水性の圧力センサでなくても実現することができる。
[0088] また、図 11に示すように、圧力センサ 403を液体注入出操作部 44の押し子 88の背面 に設置させてもよい。つまり、押し子 88と押し子固定部 86の間に圧力センサ 403が配 置される。
[0089] 押し子 88と押し子固定部 86の間に圧力センサ 403を介在した状態で、シリンダ 92の 内部でピストン 90を往復運動させ、シリンダ 88内部の液体に外力を与える。外力を与 えられた液体はチューブ 37を介して圧迫袋 38に到達され、押し子 88及びピストン 90の 運動により液体が押し出された分だけ圧迫袋 38を膨張させる。逆に押し子 88を引くと 、圧迫袋 38の液体がシリンダ 88に引き出され、圧迫袋 38を収縮させる。この運動では 、圧迫袋 38を膨張させればさせるほど、圧迫袋 38内の圧力が大きくなり、押し子 88に 伝達される力が大きくなる。
[0090] 圧迫袋 38の膨張、収縮に伴い、圧迫袋 38から押し子 88に圧力が伝達され圧力セン サ 403が圧迫されるため、圧迫袋 38に負荷している圧力 P(t)を間接的に計測すること ができる。つまり、上記式より、生体組織に加えられている圧迫の圧力 Ptarget(t)を求 めることができる。
[0091] 圧力センサ 403はその圧力を検出し、図示はしていないが、その圧力情報は圧力セ ンサ部 40に伝達される。圧力センサ部 40は、圧力センサ 403の圧力情報を算出して、 圧力演算部 46に出力する。圧力センサ 403を液体に浸す必要がないので、防水性の 圧力センサでなくても実現することができる。
[0092] 上記第 1の実施形態又は第 2の実施形態に適用させる流量センサ部 42の様々な形 態について図 12〜図 16を用いて説明する。
[0093] 図 12に示す形態では、流量センサ部 42内の位置センサ 421が押し子固定部 86に連 結して設置されている。位置センサ 421は、一般的なエンコーダや、赤外線などの光 学的なセンサ等からなる。押し子 88の位置 (=ピストン 90の位置)を位置センサ 421によ り検出するようになっている。
[0094] シリンダ 92の断面積と、位置センサ 421により検出される押し子 88の移動量との積は 、圧迫袋 38に押し出される流量に相当する。つまり、押し子 88の位置を検出すること により圧迫袋 38に流れ込んだ液体の流量を計測することができる。
[0095] 例えば、シリンダ 92の断面積 S、押し子 88の初期位置 X0、押し子位置 X(X0≤X≤X max)とすると、時刻 tにおいて押し子位置が X = X(t)の時、圧迫袋 38に流れ込んでい る液体の流量は、数 4に示すように、
{数 4}V(t) = S X (X(t) X0)
となる。この方法によれば、位置センサ 421を利用するため、圧迫袋 38に流れ込んだ 液体の流量を、より直接的かつ確実に計測することができる。流量センサ部 42は、圧 迫袋 38に注入出された液体の流量を測定し、流量情報を圧力演算部 46へ出力する
[0096] このように、流量センサ部 42も液体注入出操作部 44に装備することができる。図 11 に示した形態と組み合わせると、圧力センサと流量センサを液体注入出操作部 44に 装備される。そのため、付加的に必要になる装置を全て液体注入出操作部 44内に収 めることができる。 [0097] 上記形態では、圧迫袋 38に流れ込んだ液体の体積の情報に基づ 、て圧力を計測 する形態を示したが、その流量を超音波受信信号の情報力 読み取り、その情報に 基づ!/ヽて組織対象に加わって!/ヽる圧力を計測する形態を説明する。圧迫袋 38の膨 張を超音波受信信号で評価し、液体注入出操作部 44により流入出された液体の流 量を計測する形態を図 13〜図 16に示す。
[0098] 図 13に示すように、 RF信号フレームデータから圧迫袋 38の膜面を認識して圧迫袋 3 8の膨らみ具合を演算する圧迫袋膜面距離演算部 48を有して 、る。取得された超音 波受信信号を整相加算された複数の RF信号フレームデータを格納する RF信号フレ ームデータ記憶部 28は、圧迫袋膜面距離演算部 48に RF信号フレームデータを出力 する。圧迫袋膜面距離演算部 48では、 RF信号フレームデータを用いて超音波探触 子 12の超音波送受信面力 圧迫袋 38の膜面までの距離 (圧迫袋膜面距離) dを解析 し、その結果を圧力演算部 46に出力するようになっている。また、圧迫袋 38内部の水 圧を計測するための圧力センサ部 40が圧迫袋 38と連結され、圧力センサ部 40で検出 された圧力情報 Pが圧力演算部 46に出力されるようになっている。
[0099] 圧力演算部 46は、圧力センサ部 40力 取得した圧力情報と圧迫袋膜面距離演算 部 48で演算された圧迫袋 38膜面距離に基づ 、て、圧迫袋 38と接する被検体 10の超 音波走査領域の圧力を求める。
[0100] この具体例を図 14を用いて説明する。図 14は、圧迫袋膜面距離演算部 48における 圧迫袋膜面距離の演算方法を示す図である。
[0101] グラフの波形 110は、圧迫袋 38を介して超音波探触子 12を生体組織に接触して超 音波を送受信した時、或る一つの超音波振動子において受信された超音波受信信 号波形である。縦軸が RF信号 (超音波受信信号)の強度、横軸が超音波探触子の超 音波送受信面からの距離を示す。
[0102] 圧迫袋 38の内部には水などの液体を入れている力 水は超音波散乱体を含まない ため、超音波反射強度は生体組織に比べて非常に弱い。また、圧迫袋 38は非常に 薄い膜で作成されているが水の音響インピーダンスとは異なるため、水と圧迫袋 38の 膜面の境界において超音波は大きな反射を起こす。
[0103] 圧迫袋膜面距離演算部 48は、 RF信号 (超音波受信信号)に図に示すような圧迫袋 膜面を判定するための適切な閾値を設定させることにより、超音波送受信面力 探 索して初めてこの閾値を超えたときの距離を求めれば水と圧迫袋の境界位置 111を 容易に検出する。この境界までの距離を圧迫袋膜面距離 dとして取得する。
[0104] まず、被検体 10に圧迫袋 38を接触させて ヽな ヽ状態で、液体注入出操作部 44を用 いて液体を圧迫袋 38に注入出させ、圧力センサ部 40は圧迫袋 38内部の圧力を測定 し、圧迫袋膜面距離演算部 48は圧迫袋膜面距離を測定する。この時計測されたそ れぞれの圧力と圧迫袋膜面距離の関係を圧力演算部 46内のメモリに一時保存する
[0105] そして、被検体 10に圧迫袋 38を接触させて被検体を圧迫した状態で、液体注入出 操作部 44は液体を圧迫袋 38に注入出させ、圧力センサ部 40は圧迫袋 38内部の圧力 を測定し、圧迫袋膜面距離演算部 48は圧迫袋膜面距離を測定する。圧力演算部 46 は、この時計測されたそれぞれの圧力と圧迫袋膜面距離の関係と、メモリ内に一時 保存された圧力と圧迫袋膜面距離の関係とから所定の圧迫袋膜面距離における圧 力の差を演算し、この圧力の差を圧迫袋 38と接する被検体 10の超音波走査領域の 圧力として弾性情報演算部 32に出力する。
[0106] 次に圧力演算部 46に入力された圧力情報 Pと圧迫袋膜面距離情報 dを用いて圧迫 袋 38が生体組織を圧迫している圧力を計測する形態を図 15、図 16を用いて具体的 に説明する。
[0107] まず、図 15に示すように、圧迫袋 38に対象糸且織が接触していないフリーな状態で、 圧迫袋 38の内部圧力と圧迫袋膜面距離の関係を求める。このとき、圧迫袋 38には生 体組織が接触するのではなぐ空気中にさらされることになる。
[0108] 生体組織の場合とは異なり、圧迫袋と空気との間での音響インピーダンスの違いが 非常に大きいため、図 15の B-m。de画像に示すように多重散乱として圧迫袋膜面距 離の整数倍の間隔で高輝度な縞状の模様が現れるが、水と圧迫袋 38の境界で大き な反射がおこるため、圧迫袋膜面距離演算部 48は、適切な閾値を設定することにより 圧迫袋膜面距離 dを求めることができる。
[0109] つまり、超音波探触子 12の中心軸に対し最も手前に位置する境界位置 111を圧迫 袋膜面距離 dとして求めることができる。 [0110] この圧迫袋 38の内部圧力と圧迫袋膜面距離の関係は、組織圧迫に適したあらかじ め設定された圧迫袋膜面距離の範囲 [0, dmax](dmaxは lcm程度)で求めるようにすれ ばよい。グラフの実線が圧力と圧迫袋膜面距離の関係を示す。以下この関係を基準 状態 P0(d)、この作業をキャリブレーションと呼称する。
[0111] 図 16のグラフは、圧迫袋 38に対象組織が接触していないフリーな状態の圧迫袋膜 面距離と圧力の関係を示す図 15のグラフの実線 465に、対象部位を圧迫した状態で 得られる流量と圧力の関係を対応させて示したものである。
[0112] そして、組織弾性の診断に移行し、対象組織の圧迫過程における任意の時刻 "こ おいて、圧力情報 P(t)、圧迫袋膜面距離情報 d(t)を取得する (点 X)。
[0113] このとき、同一の圧迫袋膜面距離 d(t)において、圧迫袋 38に対象組織が接触してい ないときの基準状態では、どれだけの内部圧力が加わっているかを、 P0(d(t》として求 めることができる (点 Y)。 P(t)のこの基準状態からの差分力 現時刻 tにおいて生体組 織に加えられている圧迫の圧力 Ptarget(t)であり、数 5に示すように、
{数 5}Ptarget(t) = P(t) P0(d(t》
として求めることができる。
[0114] 図 13〜図 16では、あるひとつの超音波振動子における受信信号において圧迫袋 膜面距離 dを求める方法を示したが、これに限らず、超音波送受信面に備えられてい るすべての超音波振動子によってそれぞれ受信された超音波受信信号波形を用い てそれぞれに圧迫袋膜面距離 dを求め、それらの平均値として最終的な圧迫袋膜面 距離 dを決定するようになって 、てもよ 、。
[0115] また、 RF信号 (超音波受信信号)に対して閾値処理により圧迫袋膜面距離の検出を 行う方法を示したが、これに限らず、 RF信号 (超音波受信信号)を用いて構築される B -modeなどの診断画像を用いて同様の処理を行うようになって 、てもよ 、。
[0116] また、圧迫袋膜面距離の検出をするため、閾値を設定することによる二値化処理の 方法で実現することを示したが、それに限らず、例えば輪郭抽出などに広く適用され て 、るリージヨングローイング法や画像認識などに適用されて 、るパターンマッチング 法などの画像処理方法に従って実現するようになって!/、てもよ!/、。
[0117] この形態によれば、圧迫袋 38の膨らみ具合を信号処理で求めるため、流量センサ 部 42が不要となり、簡便に対象組織に加わっている圧力を評価することができる。
[0118] 前記形態では、生体組織との接触がないフリーな状態で圧迫袋を膨張'収縮して、 基準状態 P0(V)の関係を把握するキャリブレーション作業を前提にしたが、あらかじめ この基準状態 P0(V)の関係が把握されている圧迫袋 38を適用し、その関係を圧力演 算部 46内のメモリに記憶させておけば、このようなキャリブレーション作業を省略する ことができる。
[0119] また、流量センサ部 42は、予め液体注入出操作部 44を用いて例えば 5ccの液体を 圧迫袋 38に注入出させ、圧迫袋膜面距離 dlを計測しておき、注入した流量と圧迫袋 膜面距離との関係を演算して求めてもよい。具体的には、液体の流量を圧迫膜面距 離で除することにより、圧迫膜面距離が lmm辺り移動することで流入される液体の流 量を演算する。そして、計測した圧迫膜面距離に応じた液体の流量を演算する。
[0120] 上記第 1の実施形態又は第 2の実施形態に適用させる液体注入出操作部 44を用い て、自動で圧迫袋 38を圧迫する形態を図 17に示す。図 17(a)に示す液体注入出操作 部 44は、モータユニット 132と、モータユニット 132を制御するモータ制御部 130と、モ ータユニット 132の駆動により移動する板材 134と、板材 134を支えるスプリング 135と、 板材 134に連結されるピストン 136と、ピストン 136を内包するシリンダ 137と、シリンダ 13 7を固定するシリンダ固定具 141と、液体の流れを制御するコック 139と力もなる。スプリ ング 135は、板材 134と固定具 141とに連結されており、モータユニット 132とスプリング 1 35により板材 135が左右往復運動するようになっている。
[0121] モータユニット 132は、楕円型の回転体 1321と、回転体 1321を回転させるモータ 132 2とからなる。モータ制御部 130の指令により、モータ 1322を回転させると楕円形の回 転体 1321は、回転軸 1323を中心にして板材 134に外接しながら回転する。板材 134は 、回転体 1321の回転により左方向に押され、スプリング 135により回転体 132の反対方 向 (右方向)に押されて、左右に往復運動する。
[0122] 往復運動した板材 134と一体化に形成されたピストン 136も共に往復運動する。そし て、シリンダ 137内の液体がピストン 136により押し出され、押し出された液体は圧迫袋 38に到達する。そして、液体が押し出された圧迫袋 38が膨張する。
[0123] 回転体 1321の回転軸 1323の位置及び短軸.長軸の長さに基づいて、板材 134の往 復運動のストロークが決まる。例えば、回転体の 1321の中心に回転軸 1323が設置さ れている場合、楕円の短軸と長軸の差分だけ板材 134が往復運動することになる。ま た、回転軸 1323が回転体 1321の中心よりずれて設置されている場合、回転軸 1323が 、ずれた分だけストローク範囲が変わる。
[0124] すなわち、ストローク力 回転体 1321の回転軸 1323の位置及び短軸.長軸の長さを 設定することにより、ピストン 136による液体の注入量を設定することができる。例えば 、シリンダ 92の断面積を用いて、 1ストローク当たりの液体の注入量が 0.2cc〜1.0cc程 度の範囲であることが実現できるように設定することもできる。
[0125] なお、回転体 1321は様々な形状があり、取替え可能であってもよい。また、モータ 1 322にはエンコーダが設けられており、そのエンコーダは画像表示器 26に接続されて いる。画像表示器 26上でモータ 1322の回転情報を把握することもできる。
[0126] 図 17(b)に示す液体注入出操作部 44は、ワイヤーユニット 138を用いて板材 134を押 す形態である。ワイヤー 1381を駆動するワイヤーユニット 138と、ワイヤーユニット 138 を制御するモータ制御部 130と、ワイヤー 1381と板材 134とに接続され、ワイヤー 1381 の運動を板材 134に連絡する回転部材 140と、左右に往復運動する板材 134と、板材 134を支えるスプリング 135と、板材 134に連結されるピストン 136と、ピストン 136を内包 するシリンダ 137と、シリンダ 137を固定するシリンダ固定具 141と、液体の流れを制御 するコック 139と力もなる。スプリング 135は、板材 134と固定具 141とに連結されており、 ワイヤーユニット 138とスプリング 135により板材 135が左右往復運動するようになって いる。
[0127] ワイヤーユニット 138には、ワイヤー 1381を左右方向に移動させるモータが内蔵され ており、ワイヤー 1381を左右方向に往復運動させることができる。回転部材 140は、中 心軸 1401を中心にして回転するようになっており、ワイヤー 1381を右側に移動させる と、板材 134を左側に押し、ワイヤー 1381を左側に移動させると、板材 134を右側に引 くようになっている。
[0128] 板材 134の動作に基づぐ圧迫袋 38への液体の伝達については、図 17(a)で説明し たことと同様であるので、ここでは省略する。
[0129] ワイヤーユニット 138は、ワイヤーの 1381のストローク幅を調整することができる。例え ば、シリンダ 92の断面積を用いて、 1ストローク当たりの液体の注入量が 0.2cc〜1.0cc 程度の範囲であることが実現できるように設定することもできる。
[0130] 上述した自動で圧迫袋 38を圧迫する形態は、モータ 1322又はワイヤー 1381による 回転運動をピストン 136の直線運動に変換させるクランク機構を有するものであるが、 この形態に限らず、直線運動する機構を有し、ピストン 136を直線運動させたりするも のであってもよい。
[0131] 前記形態では、体内用のコンベックス型の探触子を例にして説明したが、これに限 らず、図 18に示すような被検体 10の体外から圧迫することができるリニア探触子でもよ ぐ任意の超音波探触子に適用することができる。圧迫袋 38は、被検体 10の体外から 圧迫するものである。
[0132] リニア型超音波探触子の複数の振動子素子 150の前面に圧迫袋 38が設置されてい る。超音波探触子 12内に圧力センサ部 40と、流量センサ部 42と、液体注入出操作部 44とを備えている。圧力センサ部 40で検出された圧力情報と、流量センサ部 42で検 出された流量情報は、圧力演算部 46に出力される。
[0133] まず、被検体 10の外部から圧迫袋 38を接触させて 、な 、状態で、圧力センサ部 40 は圧迫袋 38内部の圧力を測定し、この圧力値を圧力演算部 46内のメモリに一時保存 する。そして、操作者は、超音波探触子 12を被検体 10に接触させ圧迫させる。被検 体 10を圧迫させた状態で、圧力センサ部 40は圧迫袋 38内部の圧力を測定する。この 時、圧迫前後において圧迫袋 38内の液体の体積は一定である。圧力演算部 46は、メ モリ内に保存された圧迫する前の圧力と、圧迫した後の圧力の差を演算し、この圧力 の差を圧迫袋 38と接する被検体 10の超音波走査領域の圧力として弾性情報演算部 32に出力する。
[0134] ここでは、第 1の実施形態を適用した場合を示したが、第 2の実施形態も適用できる 。また、圧力センサ部 40と、流量センサ部 42と、液体注入出操作部 44は、超音波探触 子に内蔵されて ヽなくてもょ ヽ。

Claims

請求の範囲
[1] 被検体に加える圧力を計測する圧力計測手段を備えた超音波探触子において、 液体が充填され、超音波送受信面に設置されるとともに前記被検体を圧迫する圧迫 袋を備え、前記圧力計測手段は前記圧迫袋内に充填された液体の圧力を計測する ことを特徴とする超音波探触子。
[2] 前記圧迫袋への前記液体の注入量を調整する調整部を備えることを特徴とする請 求項 1記載の超音波探触子。
[3] 前記被検体の体腔内に挿入されて用いられるものであり、前記圧迫袋は、前記被 検体の体内から圧迫するものであることを特徴とする請求項 1記載の超音波探触子。
[4] 前記被検体の体外に接触させて用いられるものであり、前記圧迫袋は、前記被検 体の体外力 圧迫するものであることを特徴とする請求項 1記載の超音波探触子。
[5] 前記圧力計測手段は、前記圧迫袋に内在していることを特徴とする請求項 1記載の 超音波探触子。
[6] 前記圧迫袋内に液体を注入出させて前記圧迫袋を膨張又は収縮させる液体注入 出手段を備え、前記圧力計測手段は、前記液体注入出手段に設置されていることを 特徴とする請求項 1記載の超音波探触子。
[7] 超音波探触子と、前記超音波探触子を介して被検体の断層部位の RF信号フレー ムデータに基づ ヽて断層像を構成する断層画像構成手段と、前記 RF信号フレーム データに基づいて前記断層部位における組織の歪み又は弾性率を求める弾性情報 演算手段と、前記弾性情報演算手段で求めた歪み又は弾性率に基づ!、て前記断層 部位における弾性画像を生成する弾性画像構成手段と、前記断層像及び Z又は前 記弾性画像を表示する表示手段とを備える超音波診断装置において、
前記超音波探触子の超音波送受信面に設置され、液体が充填される圧迫袋と、前 記圧迫袋内に液体を注入出させて前記圧迫袋を膨張又は収縮させる液体注入出手 段と、前記圧迫袋内に充填された液体の圧力を計測する圧力計測手段と、前記圧力 計測手段で計測された圧力情報に基づ!、て、前記圧迫袋に接する前記被検体の超 音波走査領域の圧力を演算する圧力演算手段とを備え、前記弾性情報演算手段は 前記圧力情報を用いて弾性率を演算することを特徴とする超音波診断装置。
[8] 前記圧力演算手段は、前記圧力計測手段により、前記被検体に前記圧迫袋を接 触させて!/、な 、状態で計測した第 1の圧力値と、前記被検体に前記圧迫袋を接触さ せた状態で計測した第 2の圧力値との差に基づ 、て、前記圧迫袋に接する前記被検 体の超音波走査領域の圧力を演算することを特徴とする請求項 7記載の超音波診断 装置。
[9] 前記圧迫袋への前記液体の流入出量を計測する流量計測手段を備え、前記圧力 演算手段は、前記流量計測手段で計測された流入出量に基づいて、前記圧迫袋に 接する前記被検体の超音波走査領域の圧力を演算することを特徴とする請求項 7記 載の超音波診断装置。
[10] 前記圧迫袋内の液体の体積を一定にするコックを備えることを特徴とする請求項 7 又は請求項 9記載の超音波診断装置。
[11] 前記圧力計測手段は、所定の流量時に前記圧力情報を求めることを特徴とする請 求項 9記載の超音波診断装置。
[12] 前記圧力演算手段は、前記圧力計測手段により、前記被検体に前記圧迫袋を接 触させて!/、な!/、状態で前記所定の流量値の時に計測した第 1の圧力値と、前記被検 体に前記圧迫袋を接触させた状態で前記所定の流量値の時に計測した第 2の圧力 値との差に基づいて、前記圧迫袋に接する前記被検体の超音波走査領域の圧力を 演算することを特徴とする請求項 11記載の超音波診断装置。
[13] 前記圧力計測手段は、前記圧迫袋に内在していることを特徴とする請求項 7記載の 超音波診断装置。
[14] 前記圧力計測手段は、前記液体の圧力により凹むダイヤフラムの膜と、前記ダイヤ フラムの膜の凹みを計測する歪みゲージとを有することを特徴とする請求項 7記載の 超音波診断装置。
[15] 前記圧力計測手段は、前記圧迫袋と前記超音波探触子の間に設置されていること を特徴とする請求項 5乃至 11記載の超音波診断装置。
[16] 前記圧力計測手段は、前記液体注入出手段に設置されていることを特徴とする請 求項 7記載の超音波診断装置。
[17] 前記流量計測手段は、前記 RF信号フレームデータを用いて前記圧迫袋の流量を 計測することを特徴とする請求項 7記載の超音波診断装置
[18] 前記流量計測手段は、前記 RF信号フレームデータから前記圧迫袋の膜面を検出 し、前記圧迫袋の流量を計測することを特徴とする請求項 17記載の超音波診断装置
[19] 前記液体注入出手段は、本体部と、前記本体部に固定され、内部に液体が充填さ れているシリンダと、前記シリンダ内に配置され、前記圧迫袋へ液体を押し出したり引 き出したりするピストン及び押し子と、前記押し子を固定するための押し子固定部と、 前記押し子を駆動する操作部とを有していることを特徴とする請求項 7記載の超音波 診断装置。
[20] 前記押し子には圧力計測手段が備えられており、前記圧力計測手段は、前記押し 子の駆動で前記圧迫袋力 伝達される圧力を計測することを特徴とする請求項 19記 載の超音波診断装置。
PCT/JP2007/057730 2006-04-07 2007-04-06 超音波探触子及び超音波診断装置 WO2007116957A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US12/296,120 US20100036243A1 (en) 2006-04-07 2007-04-06 Ultrasonic probe and ultrasonic diagnostic apparatus
CN2007800125749A CN101415367B (zh) 2006-04-07 2007-04-06 超声波探头及超声波诊断装置
JP2008509879A JP5188959B2 (ja) 2006-04-07 2007-04-06 超音波探触子及び超音波診断装置
EP07741166.8A EP2008591B1 (en) 2006-04-07 2007-04-06 Ultrasonic probe and ultrasonograph

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006105916 2006-04-07
JP2006-105916 2006-04-07

Publications (1)

Publication Number Publication Date
WO2007116957A1 true WO2007116957A1 (ja) 2007-10-18

Family

ID=38581237

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/057730 WO2007116957A1 (ja) 2006-04-07 2007-04-06 超音波探触子及び超音波診断装置

Country Status (5)

Country Link
US (1) US20100036243A1 (ja)
EP (1) EP2008591B1 (ja)
JP (1) JP5188959B2 (ja)
CN (1) CN101415367B (ja)
WO (1) WO2007116957A1 (ja)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102131466B (zh) * 2008-08-25 2014-04-30 株式会社日立医疗器械 超声波诊断装置及超声波图像显示方法
WO2010026823A1 (ja) * 2008-09-08 2010-03-11 株式会社 日立メディコ 超音波診断装置及び超音波画像表示方法
CN102469989B (zh) * 2009-07-07 2014-04-16 株式会社日立医疗器械 超声波诊断装置和超声波测量方法
JP5943598B2 (ja) * 2011-12-26 2016-07-05 キヤノン株式会社 被検体情報取得装置
WO2013160837A1 (en) * 2012-04-26 2013-10-31 Koninklijke Philips N.V. Sensing apparatus for sensing an object
KR20140140331A (ko) * 2013-05-29 2014-12-09 삼성메디슨 주식회사 생체에 가해지는 압력을 검출하는 초음파 시스템 및 방법
JP2015020013A (ja) * 2013-07-23 2015-02-02 キヤノン株式会社 被検体情報取得装置およびその制御方法
US20160089110A1 (en) * 2014-09-29 2016-03-31 Siemens Medical Solutions Usa, Inc. Conformal interface for medical diagnostic ultrasound volume imaging
KR102361612B1 (ko) * 2014-12-16 2022-02-10 삼성메디슨 주식회사 초음파 진단장치 및 그에 따른 초음파 진단 장치의 동작 방법
CN104622511B (zh) * 2015-01-26 2017-06-20 首都医科大学附属北京天坛医院 一种利用超声波检测骨骼肌机械力学参数的装置及超声波检测方法
CN115932057A (zh) * 2016-03-21 2023-04-07 伊索诺健康公司 可穿戴式超声***及方法
DE102017221330A1 (de) * 2017-11-28 2019-05-29 Ulrich A. Baumann Druckmessvorrichtung zur Druckmessung und/oder Elastizitätsmessung einer Vene oder eines Organs und zur Kombination mit einer Ultraschallmesseinheit sowie System und Verfahren zur Druckmessung und/oder Elastizitätsmessung einer Vene oder eines Organs
KR20190081316A (ko) * 2017-12-29 2019-07-09 삼성전자주식회사 청소용 이동장치 및 그 제어방법
CN108852410A (zh) * 2018-05-17 2018-11-23 庄艳芳 一种超声科组合式检测诊断彩超装置及其使用方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61107774A (ja) * 1984-10-30 1986-05-26 バア−−ブラウン コ−ポレ−シヨン 圧力感知装置及びその製作方法
JPH02154131A (ja) * 1988-10-04 1990-06-13 Peter Von Berk Extrakorp Syst Medizintech Gmbh プレッシャメータカテーテル
JPH08112280A (ja) * 1994-10-13 1996-05-07 Olympus Optical Co Ltd 機械走査型超音波プローブ
JPH08322842A (ja) * 1995-05-31 1996-12-10 Aloka Co Ltd 体腔内挿入型超音波探触子
WO2004105615A1 (ja) * 2003-05-30 2004-12-09 Hitachi Medical Corporation 超音波探触子及び超音波弾性画像撮影装置
JP2005021710A (ja) * 2004-09-06 2005-01-27 Olympus Corp 注液装置
JP2005066041A (ja) * 2003-08-25 2005-03-17 Hitachi Medical Corp 超音波探触子及び超音波診断装置
JP2005144155A (ja) * 2003-10-20 2005-06-09 National Institute Of Advanced Industrial & Technology 超音波を利用した軟組織の粘弾性推定装置およびプログラム
JP2007014424A (ja) * 2005-07-05 2007-01-25 Olympus Medical Systems Corp 超音波医療システム及びカプセル型医療装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4771638A (en) * 1985-09-30 1988-09-20 Kabushiki Kaisha Toyota Chuo Kenkyusho Semiconductor pressure sensor
US5265612A (en) * 1992-12-21 1993-11-30 Medical Biophysics International Intracavity ultrasonic device for elasticity imaging
SE513524C2 (sv) * 1994-02-18 2000-09-25 Gambro Med Tech Ab System jämte förfarande för beräkning och/eller övervakning av ett vätskeflöde i en dialysapparat
US5551434A (en) * 1994-06-22 1996-09-03 Kabushiki Kaisha Toshiba Ultrasonic imaging diagnosis apparatus
US6595957B1 (en) * 2000-01-31 2003-07-22 Ethicon, Inc. Surgical fluid management system with a dampening chamber
US6691047B1 (en) * 2000-03-16 2004-02-10 Aksys, Ltd. Calibration of pumps, such as blood pumps of dialysis machine
US20020138216A1 (en) * 2001-02-16 2002-09-26 Merit Medical Systems, Inc., Systems and methods for accurately measuring fluid
WO2003056828A1 (en) * 2001-12-28 2003-07-10 Koninklijke Philips Electronics N.V. Transparent access of stb mhp digital tv middleware to ip video content
US7297116B2 (en) * 2003-04-21 2007-11-20 Wisconsin Alumni Research Foundation Method and apparatus for imaging the cervix and uterine wall
US20060071985A1 (en) * 2004-10-06 2006-04-06 Therien Patrick J Fluid sensing apparatus for an ink supply system
ES2401503T3 (es) * 2005-12-02 2013-04-22 Baxter Corporation Englewood Sistema de llenado de líquido médico automático

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61107774A (ja) * 1984-10-30 1986-05-26 バア−−ブラウン コ−ポレ−シヨン 圧力感知装置及びその製作方法
JPH02154131A (ja) * 1988-10-04 1990-06-13 Peter Von Berk Extrakorp Syst Medizintech Gmbh プレッシャメータカテーテル
JPH08112280A (ja) * 1994-10-13 1996-05-07 Olympus Optical Co Ltd 機械走査型超音波プローブ
JPH08322842A (ja) * 1995-05-31 1996-12-10 Aloka Co Ltd 体腔内挿入型超音波探触子
WO2004105615A1 (ja) * 2003-05-30 2004-12-09 Hitachi Medical Corporation 超音波探触子及び超音波弾性画像撮影装置
JP2005066041A (ja) * 2003-08-25 2005-03-17 Hitachi Medical Corp 超音波探触子及び超音波診断装置
JP2005144155A (ja) * 2003-10-20 2005-06-09 National Institute Of Advanced Industrial & Technology 超音波を利用した軟組織の粘弾性推定装置およびプログラム
JP2005021710A (ja) * 2004-09-06 2005-01-27 Olympus Corp 注液装置
JP2007014424A (ja) * 2005-07-05 2007-01-25 Olympus Medical Systems Corp 超音波医療システム及びカプセル型医療装置

Also Published As

Publication number Publication date
EP2008591B1 (en) 2015-09-09
EP2008591A4 (en) 2011-01-12
JP5188959B2 (ja) 2013-04-24
CN101415367B (zh) 2013-07-17
JPWO2007116957A1 (ja) 2009-08-20
US20100036243A1 (en) 2010-02-11
CN101415367A (zh) 2009-04-22
EP2008591A1 (en) 2008-12-31

Similar Documents

Publication Publication Date Title
JP5188959B2 (ja) 超音波探触子及び超音波診断装置
JP5400919B2 (ja) 超音波診断装置の作動方法及び超音波診断装置
US8007438B2 (en) Ultrasound probe and ultrasound elasticity imaging apparatus
JP4798719B2 (ja) 圧迫部材、超音波探触子及び超音波診断装置
EP1803404B1 (en) Ultrasonic probe of type to be inserted in body, and ultrasonic imaging device
WO2008016022A1 (fr) Dispositif de pressage, sonde ultrasonore et dispositif de diagnostic ultrasonore utilisant le dispositif de pressage
JP2005066041A5 (ja)
CN1964670B (zh) 超声波探头以及超声波成像装置
JP6144990B2 (ja) 超音波画像撮像装置及び超音波画像撮像方法
JP5354599B2 (ja) 組織硬度評価装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07741166

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2008509879

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2007741166

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 200780012574.9

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12296120

Country of ref document: US