WO2007116956A1 - Fixing structure for detection member and electric supercharger - Google Patents

Fixing structure for detection member and electric supercharger Download PDF

Info

Publication number
WO2007116956A1
WO2007116956A1 PCT/JP2007/057726 JP2007057726W WO2007116956A1 WO 2007116956 A1 WO2007116956 A1 WO 2007116956A1 JP 2007057726 W JP2007057726 W JP 2007057726W WO 2007116956 A1 WO2007116956 A1 WO 2007116956A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
detection member
teeth
fixing structure
hall element
Prior art date
Application number
PCT/JP2007/057726
Other languages
French (fr)
Japanese (ja)
Inventor
Tomohiro Takenaga
Tatsuo Iida
Original Assignee
Toyota Jidosha Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Jidosha Kabushiki Kaisha filed Critical Toyota Jidosha Kabushiki Kaisha
Publication of WO2007116956A1 publication Critical patent/WO2007116956A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B39/00Component parts, details, or accessories relating to, driven charging or scavenging pumps, not provided for in groups F02B33/00 - F02B37/00
    • F02B39/16Other safety measures for, or other control of, pumps
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/142Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices
    • G01D5/145Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices influenced by the relative movement between the Hall device and magnetic fields
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P3/00Measuring linear or angular speed; Measuring differences of linear or angular speeds
    • G01P3/42Devices characterised by the use of electric or magnetic means
    • G01P3/44Devices characterised by the use of electric or magnetic means for measuring angular speed
    • G01P3/48Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage
    • G01P3/481Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage of pulse signals
    • G01P3/487Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage of pulse signals delivered by rotating magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • H02K11/21Devices for sensing speed or position, or actuated thereby
    • H02K11/215Magnetic effect devices, e.g. Hall-effect or magneto-resistive elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/46Fastening of windings on the stator or rotor structure
    • H02K3/52Fastening salient pole windings or connections thereto
    • H02K3/521Fastening salient pole windings or connections thereto applicable to stators only
    • H02K3/522Fastening salient pole windings or connections thereto applicable to stators only for generally annular cores with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/12Casings or enclosures characterised by the shape, form or construction thereof specially adapted for operating in liquid or gas
    • H02K5/128Casings or enclosures characterised by the shape, form or construction thereof specially adapted for operating in liquid or gas using air-gap sleeves or air-gap discs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/04Engines with exhaust drive and other drive of pumps, e.g. with exhaust-driven pump and mechanically-driven second pump
    • F02B37/10Engines with exhaust drive and other drive of pumps, e.g. with exhaust-driven pump and mechanically-driven second pump at least one pump being alternatively or simultaneously driven by exhaust and other drive, e.g. by pressurised fluid from a reservoir or an engine-driven pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B39/00Component parts, details, or accessories relating to, driven charging or scavenging pumps, not provided for in groups F02B33/00 - F02B37/00
    • F02B39/02Drives of pumps; Varying pump drive gear ratio
    • F02B39/08Non-mechanical drives, e.g. fluid drives having variable gear ratio
    • F02B39/10Non-mechanical drives, e.g. fluid drives having variable gear ratio electric
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/08Insulating casings

Definitions

  • the present invention relates to a detection member fixing structure and an electric supercharger, and more particularly to a detection member fixing structure mounted on a vehicle and an electric supercharger.
  • Japanese Patent Application Laid-Open No. 4-28 9 7 5 9 describes that the axial length is shortened by arranging a hole sensor between teeth of a stator of a motor.
  • the conventional technology has a problem in that a groove is formed on the teeth for fixing the hall sensor, and the fixing structure becomes complicated.
  • the present invention has been made to solve the above-described problems, and provides a detection member fixing structure capable of fixing the detection member with a simple structure and an electric supercharger using the same.
  • the purpose is to do.
  • the detection member fixing structure includes a stator core having a plurality of radially extending tooth portions, a detection member that is positioned between adjacent tooth portions and detects rotation of the rotor, and between the tooth portions.
  • a mold member for molding the detection member is a stator core having a plurality of radially extending tooth portions, a detection member that is positioned between adjacent tooth portions and detects rotation of the rotor, and between the tooth portions.
  • the detection member fixing structure configured as described above, the detection member is fixed between the tooth portions by the mold member. Therefore, the detection unit can be fixed with a simple structure as compared with the case where a groove is provided in the tooth portion.
  • An electric supercharger includes a rotating electric machine having the above-described detection member fixing structure, and a compressor wheel and a turbine wheel connected to the rotating electric machine.
  • the electric supercharger configured as described above, it is possible to provide an electric supercharger that is easy to manufacture with a simple structure of the detection member of the rotating electrical machine and that has a low manufacturing cost.
  • the mold member fills the slot portion between the teeth portions, and the inner peripheral surface of the mold member facing the mouth and the inner peripheral surface of the teeth portion facing the rotor form the same surface. .
  • the inner peripheral surface of the tooth portion and the inner peripheral surface of the mold member constitute the same surface, when the rotor rotates, air vortices are generated and the rotational resistance is reduced. it can.
  • the fixing structure of the detection member includes a stator core having a plurality of teeth extending in the radial direction, and a cylindrical holding that contacts the inner peripheral surface of the teeth facing the rotor and surrounds the rotor A member, and a detection member that is held by the holding member and positioned between adjacent teeth portions to detect rotation of the rotor.
  • the detection member is held by the holding member and positioned between adjacent tooth portions.
  • the holding member abuts on the inner peripheral surface of the tooth portion and surrounds the rotor. As a result, the holding member is positioned on the inner peripheral side of the tooth portion, and the rotor is further positioned on the inner peripheral side thereof. Therefore, the detection member can be reliably held by the cylindrical holding member.
  • the thermal expansion coefficient and the number of holding members are greater than or equal to the thermal expansion coefficient of the stator core.
  • the holding member tends to expand greatly, and is attached to the inner peripheral surface of the teeth portion of the stator core.
  • the holding member is reliably positioned on the inner peripheral surface of the tooth portion.
  • the inner peripheral surface facing the rotor of the holding member is a smooth surface without unevenness. In this case, since the inner peripheral surface of the holding member is smooth without any irregularities, air vortices hardly occur on the holding member surface. As a result, the rotational resistance of the rotor can be reduced.
  • the detection member fixing structure includes a stator core having a plurality of teeth portions extending in the radial direction, and a plurality of claw portions extending between the plurality of teeth portions and extending in the rotation axis direction.
  • a holding member having an annular portion that couples the plurality of claw portions, and a detection member that is held by the holding member and detects rotation of the rotor.
  • the detection member fixing structure configured as described above, the detection member is attached to the claw portion, and the detection member is fixed.
  • the detection member can be fixed simply by inserting the holding member having the claw portion between the teeth portions, and the detection member can be fixed with a simple configuration.
  • each of the plurality of claw portions abuts on an adjacent tooth portion and seals a slot portion between the tooth portions.
  • the slot portion is sealed by the claw portion, air can be prevented from entering the slot portion.
  • the rotational resistance of the rotor can be reduced.
  • FIG. 1 is a diagram showing a configuration of an engine system on which an electric supercharger according to Embodiment 1 of the present invention is mounted.
  • Fig. 2 is a cross-sectional view of the rotating electrical machine.
  • FIG. 3 is a diagram for explaining the orientation of the Hall element.
  • FIG. 4 is a diagram for explaining the orientation of the Hall element.
  • FIG. 5 is a perspective view of the holder.
  • FIG. 6 is a perspective view of a holder according to another aspect.
  • FIG. 7 is a cross-sectional view of the stator of the rotating electrical machine according to the second embodiment of the present invention.
  • FIG. 8 is a perspective view of the holder.
  • FIG. 9 is a cross-sectional view parallel to the shaft of the rotating electrical machine.
  • FIG. 10 is a cross-sectional view showing a rotating electrical machine according to a comparative example.
  • FIG. 11 is a cross-sectional view of a rotating electrical machine according to Embodiment 3 of the present invention.
  • FIG. 12 is a cross-sectional view along the line X I I—X I in FIG.
  • FIG. 13 is a diagram for explaining the method of manufacturing the rotating electrical machine according to the third embodiment.
  • FIG. 14 is a cross-sectional view of a rotating electrical machine according to Embodiment 4 of the present invention.
  • FIG. 15 is a cross-sectional view of a rotating electrical machine according to a comparative example.
  • FIG. 16 is a cross-sectional view of a rotating electrical machine according to the present invention.
  • FIG. 17 is a plan view of the rotating electrical machine according to the fifth embodiment of the present invention.
  • FIG. 18 is an enlarged sectional view showing the Hall element.
  • FIG. 19 is a schematic diagram of a resolver according to the sixth embodiment of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 is a diagram showing a configuration of an engine system on which the electric supercharger according to the first embodiment of the present invention is mounted.
  • an engine system equipped with an electric supercharger according to an embodiment of the present invention includes an engine 1 0 0 and an electric supercharger 2 that supercharges air sent to engine 1 0 0. 0 0, Electric supercharger 2 0 0 Intercooler that cools the compressed air 1 6 2, Engine 1 0 0 Engine ECU (Electronic Control Unit) 2 5 0, Electric supercharger And a supercharger ECU 3 4 0 for controlling the machine 2 0 0.
  • the engine system according to this embodiment is mounted on a vehicle such as an automobile.
  • the engine £ 11 2 5 0 and the turbocharger £ 11 3 4 0 may be integrated into one ECU.
  • the engine E C U 2 5 0 and the supercharger E C U .3 4 0 are connected so as to be capable of bidirectional communication. Air sucked from the suction hole 1 5 0 is filtered by the air cleaner 1 5 2. The air filtered by the air cleaner 15 2 circulates through the intake passage 15 6 to the electric turbocharger 2 0 0. The air flowing into the electric supercharger 20 0 0 is compressed by the compressor wheel 2 0 6 in the compressor housing 2 0 2, then flows through the intake passage 1 6 0 and is cooled by the intercooler 1 6 2. The air cooled by the intercooler 1 6 2 flows through the intake passage 1 0 2 and is taken into the engine 1 0 0.
  • An air flow meter 1 5 4 for detecting the amount of intake air is provided in the middle of the intake passage 1 5 6.
  • the air flow meter 1 5 4 transmits a signal indicating the detected intake air amount to the engine E C U 2 5 0.
  • the intercooler 1 6 2 cools the air that has been compressed by the compressor hoist 1 2 6 and has risen in temperature.
  • the volume of cooled air is smaller than before cooling. Therefore, more air is sent to the engine 100.
  • a bypass passage 1 5 8 that bypasses the intake passage 1 56 and the intake passage 1 60 is provided, and the flow rate of the air flowing through the bypass passage 1 5 8 is adjusted in the middle of the bypass passage 1 5 8
  • Air bypass valve 1 6 4 is provided. Air bypass valve 1 6 4 operates in response to a control signal received from engine E C U 2 5 0.
  • a throttle valve 16 6 that adjusts the flow rate of the air flowing through the intake passage 10 2 is provided in the middle of the intake passage 10 2.
  • the throttle valve 1 6 6 is driven by a throttle motor 1 6 8.
  • the intake pipe pressure sensor 1 70 detects the pressure of air in the intake passage 1 0 2.
  • the intake pipe pressure sensor 1 7 0 transmits a signal indicating the detected air pressure to the engine E C U 2 5 0.
  • the intake air temperature sensor 1 7 2 detects the temperature of air in the intake passage 1 0 2.
  • the intake air temperature sensor 1 7 2 transmits a signal indicating the detected air temperature to the engine E C U 2 5 0.
  • the engine 100 includes a cylinder head (not shown) and a cylinder block 1 1 2.
  • the cylinder block 1 1 2 is provided with a plurality of cylinders in the vertical direction in FIG. In each cylinder, pistons 11 and 14 are provided so as to be slidable in a predetermined direction.
  • the piston 1 1 4 is connected to the crankshaft 1 2 0 via a connecting rod 1 1 6. Piston 1 1 4, connecting rod 1 1 6 and crankshaft 1 2
  • a crank mechanism is formed by zero.
  • a combustion chamber 1 0 8 is formed in the upper part of the piston 1 1 4.
  • the combustion chamber 10 8 is provided with a spark plug 110 and a fuel injection injector 10 6 toward the combustion chamber 10 8.
  • the engine 100 is described as a direct injection engine, but is not limited to a direct injection engine.
  • the engine may be an internal combustion engine, a port injection type engine, or a diesel engine.
  • it is not limited to reciprocating type engines, but can be rotary engines.
  • the cylinder head is provided with an intake passage 10 0 2 and an exhaust passage 1 3 0 so as to be connected to the combustion chamber 1 0 8, respectively.
  • An intake valve 10 4 is provided between the intake passage 1 0 2 and the combustion chamber 1 0 8.
  • An exhaust valve 1 2 8 is provided between the air passage 1 3 0 and the combustion chamber 1 0 8.
  • the intake valve 10 4 and the exhaust valve 1 2 8 are driven by camshafts (not shown) that rotate in conjunction with the crankshaft 1 2 0. '
  • the air flowing through the intake passage 1 0.2 is sucked into the combustion chamber 1 0 8 when the piston 1 1 4 is lowered and the intake valve 1 0 4 is opened.
  • the air flowing into the combustion chamber 10 8 is mixed with the fuel injected from the fuel injection injector 10 6.
  • the intake valve 10 4 is closed and the piston 1 1 4 is raised to the vicinity of the top dead center, the air mixed with the fuel is ignited and burned in the ignition plug 1 1 0.
  • Piston 1 1 4 is pushed down by the pressure of combustion.
  • the vertical motion of the piston 1 14 is converted into the rotational motion of the crankshaft 1 2 0 via the crank mechanism.
  • the exhaust valve 1 2 8 is opened.
  • a pulley (not shown) is provided at one end of the crankshaft 120.
  • the pulley is connected via a belt 1 2 4 to a pulley provided on the rotating shaft of the alternator 1 2 6.
  • the alternator 1 2 6 is activated by the rotation of the clantasust 1 2 0 to generate electricity.
  • the timing rotor 1 1 8 is provided on the crankshaft 1 2 0 and rotates together with the crankshaft 1 2 0. A plurality of protrusions are provided on the outer periphery of the timing rotor 1 1 8 at predetermined intervals.
  • the crank position sensor 1 2 2 is provided to face the protrusion of the timing rotor 3 0 4. When the timing rotor 1 1 8 rotates, the protrusion of the timing rotor 1 1 8 and the crank position Because the air gap with the sensor 1 2 2 changes, the magnetic flux passing through the coil part of the crank position sensor 1 2 2 increases and decreases, and an electromotive force is generated in the coil part.
  • the crank position sensor 1 2 2 sends a signal representing the electromotive force to the engine ECU 2 5 0.
  • the engine ECU 2 5 0 detects the crank angle based on the signal transmitted from the crank position sensor 1 2 2.
  • the vehicle is provided with a vehicle speed sensor (not shown) on the wheel, and detects the rotation speed (rotation speed) of the wheel.
  • the vehicle speed sensor sends a signal indicating the detection result to the engine E C U.
  • the engine E C U calculates the vehicle speed from the number of wheel revolutions.
  • the engine ECU 2 5 0 performs arithmetic processing based on signals sent from each sensor such as intake pressure, intake air temperature, intake air volume, wheel speed, maps and programs stored in the memory. Control the traps to achieve the desired operating state.
  • the electric supercharger 2 0 0 is provided between the compressor housing 2 0 2, the turbine housing 2 0 4 provided opposite to the compressor housing 2 0 2, and the compressor housing 2 0 2 and the turbine housing 2 0 4.
  • the rotating electrical machine 2 1 6 to be housed, and a shaft 2 10 as a rotating shaft of the rotating electrical machine 2 16 are provided.
  • a compressor wheel (also called a compressor rotor, a compressor blade, etc.) 2 0 6 is stored in the compressor housing 2 0 2.
  • the compressor hoist 20 6 compresses (supercharges) the air filtered by the air cleaner 15 2.
  • a turbine wheel (also called a turbine rotor, turbine blade, etc.) 2 0 8 is accommodated in the turbine housing 2 4.
  • the turbine wheel 20 8 is rotated by exhaust gas.
  • the compressor wheel 2 0 6 and the turbine wheel 2 0 8 are respectively provided at both ends of the shaft 2 1 0. That is, when the turbine wheel 20 8 is rotated by the exhaust gas, the compressor wheel 2 06 also rotates.
  • a rotating electrical machine 2 16 having a shaft 2 10 as a rotating shaft is provided between the compressor wheel 20 6 and the turbine wheel 20 8.
  • the shaft 2 10 is rotatably supported by the housing of the rotating electrical machine 2 1 6.
  • the rotating electrical machine 2 1 6 is connected to the turbocharger EDU according to the control signal of the turbocharger ECU 3 4 0.
  • a rotational force is applied to the shaft 210 by the electric power supplied from the 330.
  • the supercharger EDU 330 uses the electric power supplied from the high voltage battery 320 to supply electric power corresponding to the control signal input from the supercharger ECU 340 to the rotating electric machine 216.
  • the turbocharger EDU330 is, for example, an inverter.
  • the rotating electrical machine 216 is provided with a sensor (not shown in FIG. 1) for determining the position of the rotor.
  • the sensor detects the rotational position (rotational angle) and rotational speed of the rotor 1210.
  • the sensor transmits a signal indicating the detection result to the supercharger ⁇ 340.
  • This sensor is composed of, for example, a hall sensor.
  • the high voltage battery 320 is electrically connected to the DCZDC converter 310.
  • the DC / DC converter 310 is electrically connected to the alternator 126 described above. Therefore, the electric power generated by alternator 126 is boosted to an appropriate voltage by DC / DC converter 310 and then supplied to high voltage battery 320. Thereby, the high voltage battery 320 is charged.
  • the electric power generated in the alternator 126 is supplied to the low voltage battery 300. Thereby, the low voltage battery 300 is charged.
  • the low voltage battery 300 supplies power to the engine ECU 250, the supercharger ECU 340, and the like.
  • the supercharger ECU 340 performs arithmetic processing based on the information transmitted from the engine ECU 250, the signal transmitted from the rotor position sensor, and the map and program stored in the memory. Control traps so that 200 is in the desired operating state.
  • the exhaust gas is guided from the exhaust passage 130 into the turbine housing 204 after the air mixed with fuel in the engine 100 is combusted.
  • the exhaust gas then rotates the turbine wheel 208, and the rotational force is transmitted to the shaft 210. Thereafter, the exhaust gas flows through the exhaust pipe 180 and is guided to the catalyst 182.
  • the exhaust gas guided to the catalyst 182 is discharged outside the vehicle in a purified state.
  • the air taken from outside the vehicle to be supplied to the engine 100 is filtered by the air cleaner 152, then flows through the intake passage 156 and is guided into the compressor housing 202.
  • the air is compressed (supercharged) by a compressor wheel 206 that rotates together with the shaft 210. Compressed air is It is guided to the tur- cooler 6 2 and is sucked into the combustion chamber 1 0 8 through the intake passage 1 0 2 of the engine 1 0 0 in a cooled state.
  • the supercharger ECU 3 40 is used when the air compressed in the compressor wheel 2 06 does not reach a desired supercharging pressure in the low speed range of the engine 1 0 0 (for example, the rotation of the engine 1 0 0 When the number is equal to or less than a predetermined number of revolutions), the rotary electric machine 2 16 is driven so that the supercharging pressure in the compressor housing 2 0 2 is forcibly increased.
  • FIG. 2 is a cross-sectional view of the rotating electrical machine.
  • FIG. 2 is a cross-sectional view in a direction perpendicular to the rotation axis.
  • rotating electric machine 2 16 has rotor 1 2 1 0 located at the center and stator 1 3 0 0 surrounding rotor 1 2 1 0.
  • a shaft 2 1 0 is provided at the center of the rotor 1 2 1 0, and the shaft 2 1 0 constitutes a rotating shaft.
  • the rotor 1 2 1 0 is held rotatably around the shaft 2 1 0 in the direction indicated by the arrow R.
  • Rotor 1 2 10 has rotor core 1 2 1 1 constituted by laminated electromagnetic steel plates and permanent magnet 1 2 1 2 embedded in rotor core 1 2 1 1.
  • the permanent magnet 1 2 1 2 is inserted into a hole provided in the rotor core 1 2 1 1 and fixed with, for example, an adhesive.
  • the permanent magnet 1 2 1 2 is configured to extend in a direction along the shaft 2 10.
  • the rotor core 1 2 1 1 is not limited to a magnetic steel sheet, and may be made of, for example, a material obtained by compressing and sintering a magnetic material powder.
  • Stator 1 3 0 0 is a stator core 1 3 1 0 located on the outer periphery, and stator core 1
  • This embodiment shows an example of a concentrated-powered three-phase AC motor.
  • the rotating electrical machine 2 16 is not limited to a three-phase AC motor, and may be either a DC motor or an AC motor.
  • it may be an induction motor, a synchronous motor, or an AC commutator motor, and each may be either single phase or three phase.
  • the coin 1 3 2 0 is formed by winding a copper wire around the teeth 1 3 1 1. Between the plurality of tooth portions 1 3 1 1 is a slot portion 1 3 1 2, and a coil is disposed in this portion. In this embodiment, the number of teeth 1 3 1 1 is 6 which is a force S, but is not limited to this, and more or less teeth 1 3 1 1 may be adopted. Yes.
  • Hall elements 1 4 ′ 1 0 are arranged between adjacent tooth portions 1 3 1 1. Hall element 1 4 1 0 is held by holder 1 4 0 0. The outer peripheral surface 1 4 0 6 of Honoreda 1 4 0 0 is in contact with the inner peripheral surface 1 3 1 3 of the teeth 1 3 1 1. The inner peripheral surface 1 4 0 5 of the holder 1 4 0 0 is a cylindrical surface and faces the rotor 1 2 1 0.
  • the shaft 2 1 0 as the rotating shaft of the rotor 1 2 1 0 is connected to the turbine wheel 2 0 8 and the compressor wheel 2 0 6 to constitute a so-called turbocharged shaft.
  • the present invention is not limited to this, and the rotating electrical machine 2 1.6 may rotate the rotor of the supercharger.
  • the rotating electrical machine 2 1 is used to assist the rotation of the turbocharger that uses exhaust energy.
  • the present invention is not limited to this, and the rotating electrical machine according to the present invention is used to assist the rotation of the supercharger that supercharges the intake air without using the energy of the exhaust 2 1
  • Holder 1 4 0 0 is made of a non-magnetic material so as not to affect the magnetic characteristics of rotor 1 2 1 0 and stator 1 3 0 0.
  • the hall element 1 4 1 0 is fixed to the outer peripheral surface of the holder 1 4 0 0, and the hall element 1 4 1 0 can detect the rotation angle of the rotor 1 2 1 0 and the number of rotations. .
  • Hall element 1 4 1 0 only one Hall element 1 4 1 0 is provided.
  • the present invention is not limited to this, and a plurality of Hall elements 1 4 1 0 may be provided.
  • FIG. 3 and 4 are diagrams for explaining the orientation of the Hall element.
  • the element surface (main surface) of Hall element 1 4 1 0 is inclined with respect to rotor 1 2 1 0, the magnitude of the magnetic flux of permanent magnet 1 2 1 2 is It may decrease and cause detection error. As a result, the S ZN ratio and position detection accuracy may deteriorate. is there. '
  • Hall element 1 4 1 0 (hole I C) is arranged between teeth portions 1 3 1 1 of stator core 1 3 1 0. It is desirable that the Hall element 1 4 1 0 can detect only the permanent magnet 1 2 1 2 component of the rotor 1 2 1 0 for accurate position detection of the rotor 1 2 1 0. Normally, when the coil 1 3 2 0 is energized, the teeth 1 3 1 1 form a pole. If the Hall element 1 4 1 0 is placed near the teeth 1 3 1 1, it is easily affected by current flow and the S / N ratio deteriorates. On the other hand, since there is no pole between the tooth parts 1 3 1 1, it is not easily affected by energization.
  • the Hall element 1 4 1 0 or the Hall IC is placed between the tooth parts 1 3 1 1.
  • the S / N ratio can be improved.
  • the motor shaft length can be shortened by embedding the Hall element 1 4 1 0 between the teeth 1 3 1 1. It should be noted that other elements that can detect the magnetic flux component may be used in place of the Honoré element 14 10.
  • FIG. 5 is a perspective view of the holder.
  • holder 1400 has a cylindrical shape, and both its inner peripheral surface 1405 and outer peripheral surface 1406 are cylindrical surfaces. It is preferable that the thickness of the holder 140 4 0 (the distance from the inner peripheral surface 14 0 5 to the outer peripheral surface 1 4 0 6) is thinner.
  • the outer peripheral surface 1 4 0 6 of the holder 1 4 0 0 0 has a shape with no irregularities, but this is not a limitation, and the inner peripheral surface 1 3 1 3 of the tooth portion 1 3 1 1 is not limited to this.
  • a groove may be provided in a portion of the outer peripheral surface 1 4 0 6 to be contacted, and the tooth portion 1 3 1 1 may be fitted in this groove. By fitting the teeth 1 3 1 1 into the groove, the holder 1 4 0 0 can be positioned reliably.
  • the holder 1 4 0 0 is made of a light non-magnetic material such as plastic or aluminum.
  • FIG. 6 is a perspective view of a holder according to another aspect.
  • a plurality of through holes 1 4 0 1 force S from the inner peripheral surface 1 4 0 5 of holder 1 4 0 0 ′ to the outer peripheral surface 1 4 0 6 may be provided.
  • a teeth portion 1 3 11 may be provided so as to cover a part of the through hole 1 4 0 1.
  • Adjacent through holes 1 4 Hall element 1 4 1 0 is fixed between 0 1 and 1.
  • the shape of the through hole 1 4 0 1 is rectangular in FIG. 6, but through holes 1 4 0 1 of various shapes such as a round shape and an oval shape may be provided.
  • the detection member fixing structure includes a stator core 1 3 1 0 having a plurality of radially extending tooth portions 1 3 1 1 and an inner circumference of the tooth portion 1 3 1 1 facing the rotor 1 2 1 0.
  • Holder 1 4 0 0 as a cylindrical holding member that contacts the surface 1 3 1 3 and surrounds the rotor 1 2 1 0 and between the adjacent tooth portions 1 3 1 1
  • a Hall element 1 4 1 0 as a detection member for detecting the rotation of the rotor 1 2 1 0.
  • the thermal expansion coefficient of the holder 140 is larger than that of the stator core 13 10.
  • the inner circumferential surface 1 4 0 5 facing the rotor 1 2 1 0 of the holder 1 4 0 0 is a smooth surface without unevenness.
  • the holder 140 has a cylindrical shape.
  • the present invention is not limited to this, and it may be a rectangular tube shape. In the case of a rectangular tube shape (square shape), the flat surface of the square shape may contact the inner peripheral surface 1 3 1 3 of the tooth portion 1 3 1 1. On the contrary, the square corner portion may contact the inner peripheral surface 1 3 1 3 of the tooth portion 1 3 1 1.
  • FIG. 7 is a cross-sectional view of the stator of the rotating electrical machine according to the second embodiment of the present invention.
  • the Hall element 1 4 1 0 is attached to the claw portion 1 4 0 2 of the holder 1 4 0 0. Different from the rotating electrical machine according to Form 1.
  • the claw portion 1 4 0 2 is inserted between the tooth portions 1 3 1 1.
  • the claw portion 1402 is thin and flat, and has an inner peripheral surface 1405 and an outer peripheral surface 14060.
  • Inner circumferential surface 1 4 0 5 faces rotor 1 2 1 0, teeth 1
  • the inner peripheral surface 1313 of 31 1 is almost flush with the inner surface.
  • the two inner peripheral surfaces 1405 and 1313 constitute the same plane, but there may be a step between them.
  • a Hall element 1410 as a detection member is held so as to penetrate from the inner peripheral surface 1405 to the outer peripheral surface 1406.
  • FIG. 8 is a perspective view of the holder.
  • holder 1400 has an annular portion 1 407 and a claw portion 1402 connected to annular portion 1407.
  • the annular portion 1407 has a circular shape (cylindrical shape), and a plurality of claw portions 1402 are arranged on the thrust end surface (axial end surface).
  • the claw portions 1402 extend along the rotation axis direction, and are arranged in parallel to each other.
  • the teeth portion 131 1 is fitted between the side surfaces 1403 of the claw portion. Since the tooth portion 1313 is fitted between the claw portions 1402, the holder 1400 does not enter the inner peripheral side of the tooth portion 1311, as in the first embodiment. Therefore, the holder 1400 is not interposed between the inner peripheral surface 1313 of the tooth portion 1311 and the rotor 1210, and the distance between the tooth portion 1311 and the rotor 1210 can be reduced.
  • the force that the Hall element 1410 is provided in only one claw 1402 is not limited to this, and the Hall element 1410 may be provided in each of the plurality of claws 1402. .
  • the axial end surface of the claw portion 1402 (the end surface farthest from the annular portion 1407) is fitted into the concave portion 1403 of the lid portion 1404. It should be noted that the lid 1404 does not have the recess 1403 and the lid 1404 may be bonded to the claw 1402. Further, the lid 1404 may not be present.
  • FIG. 9 is a cross-sectional view parallel to the shaft of the rotating electrical machine.
  • Hall element 1410 held by claw portion 1402 of holder 1400 is located at a substantially central portion in the longitudinal direction of shaft 210 of stator core 1310. Hall element 1410 does not have to be positioned at the center, and may be positioned at any portion in the longitudinal direction.
  • a coil 1320 is wound around the stator core 1310.
  • Stator core 1310 faces rotor 1210.
  • the rotor 1210 is a shaft as a rotating shaft.
  • Ft 2 1 0 is fixed.
  • the shaft 2 1 0 is rotatably held by a bearing 2 1 1.
  • the rotor 1 2 1 0 is composed of a rotor core 1 2 1 1 and permanent magnets 1 2 1 2 embedded in the rotor core 1 2 1 1.
  • the permanent magnet 1 2 1 2 extends in the longitudinal direction along the shaft 2 10.
  • FIG. 10 is a cross-sectional view showing a rotating electrical machine according to a comparative example.
  • the permanent magnet for detection 1 4 1 5 is attached to the small shuff 2 1 0, and the position of this permanent magnet 1 4 1 5 is set in the hole.
  • Element 1 4 1 0 detects.
  • the Hall element 1 4 10 is arranged outside the rotating electrical machine.
  • Permanent magnet for detection: 4 1 5 is placed away from the permanent magnet 1 2 1 2 to be independent of the magnetic field of the rotor 1 2 10. Therefore, the shaft length becomes long.
  • the product of the present invention shown in FIG. 9 can shorten the shaft length and increase the speed. Further, since the position of the rotor 1 2 1 0 can be detected by the magnetic field of the permanent magnet 1 2 1 2 constituting the rotor 1 2 1 0, the position detection accuracy and the S / N ratio can be improved.
  • the detection member fixing structure according to the second embodiment is inserted between the stator core 1 3 1 0 having a plurality of tooth portions 1 3 1 1 extending in the radial direction and the plurality of tooth portions 1 3 1 1.
  • a holder 1 4 0 0 as a holding member having a plurality of claw portions 1 4 0 2 extending in the rotation axis direction and an annular portion 1 4 0 7 connecting the plurality of claw portions 1 4 0 2;
  • a Hall element 1 4 1 0 is provided as a detection member that is held by 1 4 0 2 and detects the rotation of the rotor 1 2 1 0.
  • Each of the plurality of claw portions 1 4 0 2 is in contact with the adjacent tooth portion 1 3 1 1 and seals the slot portion 1 3 1 2 between the tooth portions 1 3 1 1.
  • the detection member fixing structure according to the second embodiment configured as described above has the same effect as the detection member fixing structure according to the first embodiment.
  • FIG. 11 is a cross-sectional view of a rotating electrical machine according to Embodiment 3 of the present invention.
  • holder 1 3 5 0 and hall element 1 4 1 0 are both molded with 7 red members 1 3 3 0
  • Hall element 1 4 1 0 is holder 1 3 5 0 is supported, and a bus bar 1 3 5 1 as a pattern wiring is provided on the holder 1 3 5 0.
  • the bus bar 1 3 5 1 is connected to the Hall element 1 4 1 0 and plays a role of transmitting a signal detected by the Hall element 1 4 1 0.
  • Mold member 1 3 3 0 is made of insulating resin such as varnish, and stator core 1 3 1 0 has coil 1 3 2 0, holder 1 3 5 0, bus bar 1 3 5 1 and hall element 1 4 1 0 etc. There is a function to unite.
  • the mold member 1 3 3 0 has a function of sealing the entire ring-shaped stator core 1 3 10.
  • the holder 1 3 5 0 can employ various shapes shown in the first and second embodiments.
  • FIG. 12 is a cross-sectional view taken along the line XII— “XII” in FIG. 11.
  • the rotating electrical machine 2 1 6 is a rotor 1 2 that rotates about a shaft 2 10. 1 0 and a stator 1 3 0 0 that generates a magnetic field for driving the rotor 1 2 1 0.
  • the stator 1 3 0 0 includes a stator core 1 3 1 0 made of a magnetic material, and a stator core 1 3 1 0 has a coil 1 3 2 0 wound around a tooth portion 1 3 1 1, and the coil 1 3 2 0 is fitted between adjacent teeth 3 ⁇ 45 1 3 1 1.
  • the slot portion 1 3 1 2 between the slot portions 1 3 1 1 is filled with the hoe element 1 4 1 0, and the slot portion 1 3 1 2 is filled with the mold member 1 3 3 0.
  • Hall element 1 4 1 0 is held in contact with the outer peripheral surface 1 4 0 6 of the holder 1 4 0 0.
  • the shape of the holder 1 4 0 0 can be the one shown in the first and second embodiments.
  • . 13 is a diagram for explaining a method of manufacturing a rotating electrical machine according to Embodiment 3. Referring to FIG. 13, when Hall element 1 4 1 0 is attached to rotating electrical machine 2 1 6 First, coil 1 3 2 0 is placed on the stator core 1 3 1 0.
  • stator 1 3 0 0 After the stator 1 3 0 0 is completed, the Honoré element 1 4 1 0 is attached to the holder 1 3 5 0, and the Hall element Connect bus bar 1 3 5 1 as pattern wiring to 1 4 1 0. Fit such an assembly to stator core 1 3 1 0. Then, stator core 1 3 1 0, hole element 1 4 1 0, and holder 1 By rotating resin with 400, the rotating electric machine 2 16 shown in Fig. 11 is completed.
  • the Hall element 1 4 1 0 is connected to the Hall element 1 4 1 0 using the holder 1 4 0 0 formed with the bus bar 1 3 5 1 as the wiring pattern of the Hall element 1 4 1 0.
  • the Hall element 1 4 1 0 is embedded in the stator 1 3 0 0 with the positioning of the data 1 3 0 0 and the Hall element 1 4 1 0 is fixed by resin molding.
  • the stator 1 3 0 0 is susceptible to vibrations from the rotating electrical machine 2 1 6 (motor) and heat generated by the coils 1 3 2 0 and the rotor 1 2 1 0. Therefore, before inserting the Hall element 1 4 1 0 between the teeth 1 3 1 1, the bus bar 1 3 5 1 on which the wiring of the Hall element is formed is fixed to the holder 1 4 0 0, and this is fixed to the stator 1 By embedding in 300, it prevents the rotor position detection accuracy from deteriorating due to the positional deviation of Hall element 14 10.
  • stator 1300 by integrally molding the stator 1300 with resin, it is possible to improve the fixing and cooling performance of the sensor, and to dramatically improve durability against vibration, which is a major problem with the motor assist turbo installed in the engine. Can be improved. In addition, the cost can be reduced by using the Hall element 14 10 having lower heat resistance than before.
  • the holder 1 4 0 As a method other than the bus bar 1 3 5 1, it is also possible to form a wiring pattern on the holder 1 4 0 0.
  • the hall element 1 4 1 0 is fixed to the holder 1 4 0 0 and the lead wire of the hall element 1 4 1 0 is welded to the bus bar 1 3 5 1.
  • the holder 1 4 0 0 is inserted into the stator 1 3 0 0 and fixed with an adhesive or the like.
  • the mold element 1 3 3 0 as a resin mold fixes the hall element 1 4 10 and also fixes the welding point with the lead wire and the bus bar 1 3 5 1.
  • the detection member fixing structure is positioned between the stator core 1 3 1 0 having a plurality of teeth portions 1 3 1 1 extending in the radial direction and the adjacent tooth portions 1 3 1 1, and the rotor Hall element 1 4 1 0 as detection member for detecting rotation of 1 2 1 0 and monored member 1 3 3 0 for molding Hall element 1 4 1 0 between teeth portions 1 3 1 1 .
  • FIG. 14 is a cross-sectional view of a rotating electrical machine according to Embodiment 4 of the present invention.
  • Hall element 1 4 1 0 is fixed by mold member 1 3 3 0 and a holder is provided. This is different from the rotating electrical machine 2 16 according to the third embodiment.
  • Mold member 1 The inner peripheral surface 1 3 3 1 of 3 3 0 has a cylindrical shape, and a part of the Hall element 1 4 1 0 is exposed from the inner peripheral surface 1 3 3 1 force of the cylinder.
  • a part of the Hall element 14 10 does not necessarily have to be exposed from the mold member 1 3 30, and the Hall element 1 4 10 may be covered with the mold member 1 3 30.
  • only one Hall element 1 4 1 0 is provided.
  • the present invention is not limited to this, and a plurality of hall elements 1 4 1 0 may be provided between the tooth portions 1 3 1 1. .
  • FIG. 15 is a cross-sectional view of a rotating electrical machine according to a comparative example.
  • FIG. 16 is a cross-sectional view of a rotating electrical machine according to the present invention.
  • FIG. 1 S in rotating electrical machine 2 1 6 according to the comparative example, a gap of slot portion 1 3 1 2 is generated between teeth portions 1 3 1 1. Therefore, when the rotor 1 2 10 rotates in the direction indicated by the arrow R, a spiral air vortex in the direction indicated by the arrow R 1 is generated. This vortex causes loss during rotation. In other words, air vortices are created by the unevenness between the teeth 1 3 1 1 during driving, which becomes a loss and the efficiency deteriorates. As shown in FIG.
  • the mold member 1 3 3 0 fills the slot portion 1 3 1 2 between the plurality of tooth portions 1 3 1 1, and the mold member Since the inner peripheral surface 1 3 3 1 of 1 3 3 0 has a cylindrical shape, the vortex indicated by the arrow R 1 as shown in FIG. 15 does not occur. As a result, the loss can be further reduced.
  • FIG. 17 is a plan view of a rotating electrical machine according to Embodiment 5 of the present invention.
  • the rotating electrical machine 2 1 6 according to the fifth embodiment of the present invention has a plurality of tooth portions 1 3 1 1, and a slot is provided between the plurality of tooth portions 1 3 1 1.
  • Part 1 3 1 2 is formed.
  • U-phase coil 1 3 2 U as an annular stator core 1 3 1 0 and a plurality of teeth 1 3 1 1 distributed in windings, some of which are located in the slot 1 3 1 2 V-phase coinore 1 3 2 V and W-phase coil 1 3 2 W.
  • a plurality of winding phases U phase coil 1 3 2 U, V phase coil 1 3 2 V and W phase coil 1 3 2 W are wound directly around tooth portion 1 3 1 1.
  • a winding method using an inserter may be employed.
  • a rotating electrical machine 2 16 as a motor / generator has a cylindrical stator core 1 3 1 0 and a rotor 1 2 1 0 facing the inner peripheral surface of the stator core 1 3 1 0.
  • Stator core 1310 is made of a magnetic material such as iron or an iron alloy.
  • the stator core 1310 has a plurality of tooth portions 1311 extending in the radial direction, and a slot portion 1312 as a recess is provided between the tooth portions 1311.
  • Slot portion 1312 is shaped to open to the inner peripheral side of stator core 1310.
  • the U-phase coil 132U, the V-phase coil 132′V, and the W-phase coil 132W, which are three-phase negative wires, are wound around the teeth portion 1311 so as to fit into the slot ⁇ 312.
  • the U-phase coil 132U, the V-phase coil / le 132V and the W-phase coinore 132W are attached so as to be displaced from each other on the circumference.
  • the V-phase coil 132U, the V-phase coil 1 32V and the W-phase coil 132W So-called “distributed winding” constitutes the stator 1300.
  • the rotor 1210 has a rotor core 1211 attached to the shaft 210 and a permanent magnet 1212 embedded in the rotor core 1211.
  • the rotor core 121 1 is made of a magnetic material such as iron or an iron alloy.
  • the permanent magnets 1212 are arranged in the vicinity of the outer periphery of the rotor core 1211 at substantially equal intervals. In FIG. 17, the number of permanent magnets 1212 is eight. In this embodiment, an eight-pole motor is shown. However, the number of magnetic poles is not limited to this, and various numbers of magnetic poles are used. May be.
  • the shaft 210 may be joined not only to the turbine shaft but also to a part of the power transmission device. That is, the rotating electrical machine according to the present invention does not assist the turbine rotation, but instead assists the driving of a part of the power transmission device or converts the rotational energy generated in the power transmission device into electric energy. It may be used as a part.
  • a hole element 1410 as a rotation sensor is embedded in a slot portion 1312 between adjacent teeth portions 1311.
  • FIG. 18 is an enlarged cross-sectional view of the Hall element.
  • the hole element 1410 is inserted into the slot portion 1312 between the tooth portions 1311 and is in contact with the tooth portion 1311.
  • the Hall element 1410 is molded by the mold member 1330 and the position is fixed. Also in this embodiment, the hall element 1410 may be fixed using a holder as shown in the first to third embodiments.
  • the rotating electrical machine according to the fifth embodiment configured as described above has the same effects as the rotating electrical machine according to the first embodiment.
  • FIG. 19 is a schematic diagram of a resolver according to the sixth embodiment of the present invention.
  • resolver 6440 is a rotation sensor that detects the magnet position with high accuracy for high-efficiency control of the motor and generator.
  • the resolver stator 40 has a resolver stator stator core 6441, a rotation shaft 6443 provided in the center of the resonance lever stator core 6441, and an elliptical resolver rotor 6442 attached to the outer periphery of the rotation shaft 6443. Is provided with at least three coils 6444 A, 6444 B, 6444C.
  • the resolver stator 6420 is composed of a resonator stator core 6441 and 64444 C between the coils 6444 A and 64448.
  • An excitation alternating current is passed through the coil 6'444A, and an output based on this is detected by the coils 6444B and 6444C.
  • the two output coils 6444 B and 6444C are arranged with an electrical shift of 90 °. Since the resolver rotor 6442 has an elliptical shape, when the resolver rotor 6 442 rotates, the distance between the resolver stator core 6441 and the resolver rotor 6442 changes.
  • an output corresponding to the position of resolver rotor 6442 is generated in coils 6444B and 6444C, and the absolute position can be detected from the difference between these outputs. It can also be used as a rotation sensor by calculating the position change within a certain time with a CPU (Central Processing Unit).
  • CPU Central Processing Unit
  • a hall element 1410 is attached to the resolver stator core 6441.
  • the mounting method of the Hall element 1410 the one shown in Embodiment 1 and S can be adopted. That is, the detection member fixing structure according to the present invention can be applied not only to a rotating electric machine but also to a resolver.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Supercharger (AREA)

Abstract

A fixing structure for a detection member capable of surely positioning the detection member. The fixing structure comprises a stator core (1310) having a plurality of radially extending teeth parts (1311), hole elements (1410) each positioned between the adjacent teeth parts (1311) and serving as a detection member for detecting the rotation of the rotor (1210), and mold members (1330) for molding the hole elements (1410) between the teeth parts (1311).

Description

明細書 検出部材の固定構造および電動過給機 技術分野  Description Detection member fixing structure and electric supercharger Technical Field
この発明は、 検出部材の固定構造および電動過給機に関し、 より特定的には、 車両に搭戴される検出部材の固定構造および電動過給機に関するものである。 背景技術  The present invention relates to a detection member fixing structure and an electric supercharger, and more particularly to a detection member fixing structure mounted on a vehicle and an electric supercharger. Background art
従来、 センサの固定構造は、 たとえば特開平 4— 2 8 9 7 5 9号公報に開示さ れている。 発明の開示  Conventionally, a sensor fixing structure is disclosed in, for example, Japanese Patent Application Laid-Open No. Hei 4-2889759. Disclosure of the invention
特開平 4— 2 8 9 7 5 9号公報では、 モータの固定子のティース間にホールセ ンサを配置することで軸方向長さを短縮することが記載されている。 しカゝしなが ら、 従来の技術ではホールセンサの固定のためにティース上に溝を形成しており、 固定構造が複雑になるという問題があつた。  Japanese Patent Application Laid-Open No. 4-28 9 7 5 9 describes that the axial length is shortened by arranging a hole sensor between teeth of a stator of a motor. However, the conventional technology has a problem in that a groove is formed on the teeth for fixing the hall sensor, and the fixing structure becomes complicated.
そこで、 この発明は上述のような問題点を解決するためになされたものであり、 簡単な構造で検出部材を固定することができる検出部材の固定構造およびそれを 用いた電動過給機を提供することを目的とする。  Accordingly, the present invention has been made to solve the above-described problems, and provides a detection member fixing structure capable of fixing the detection member with a simple structure and an electric supercharger using the same. The purpose is to do.
この発明に従った検出部材の固定構造は、 半径方向に延びる複数のティース部 を有するステータコアと、 隣り合うティース部の間に位置決めされてロータの回 転を検出する検出部材と、 ティース部間に検出部材をモールドするモールド部材 とを備える。  The detection member fixing structure according to the present invention includes a stator core having a plurality of radially extending tooth portions, a detection member that is positioned between adjacent tooth portions and detects rotation of the rotor, and between the tooth portions. A mold member for molding the detection member.
このように構成された検出部材の固定構造では、 ティース部間に、 モールド部 材により検出部材が固定される。 そのため、 ティース部に溝を付ける場合に比べ て簡単な構造で検出部を固定することができる。  In the detection member fixing structure configured as described above, the detection member is fixed between the tooth portions by the mold member. Therefore, the detection unit can be fixed with a simple structure as compared with the case where a groove is provided in the tooth portion.
この発明に従った電動過給機は、 上述の検出部材の固定構造を備えた回転電機 と、 回転電機に接続されるコンプレッサホイールおよびタービンホイールとを備 える。 このように構成された電動過給機では、 回転電機に検出部材が簡単な構造 で製造が容易で、 製造コストの低下した電動過給機を提供することができる。 好ましくは、 ティース部の間のスロット部をモールド部材が充填しており、 口 ータに向かい合うモールド部材の内周面と、 ロータに向かい合うティース部の内 周面とは同一面を構成している。 この場合、 ティース部の内周面とモールド部材 の内周面とが同一面を構成しているため、 ロータが回転したときに空気の渦が生 じにぐくなり回転抵抗を低下させることができる。 An electric supercharger according to the present invention includes a rotating electric machine having the above-described detection member fixing structure, and a compressor wheel and a turbine wheel connected to the rotating electric machine. Yeah. In the electric supercharger configured as described above, it is possible to provide an electric supercharger that is easy to manufacture with a simple structure of the detection member of the rotating electrical machine and that has a low manufacturing cost. Preferably, the mold member fills the slot portion between the teeth portions, and the inner peripheral surface of the mold member facing the mouth and the inner peripheral surface of the teeth portion facing the rotor form the same surface. . In this case, since the inner peripheral surface of the tooth portion and the inner peripheral surface of the mold member constitute the same surface, when the rotor rotates, air vortices are generated and the rotational resistance is reduced. it can.
この発明の別の局面に従った検出部材の固定構造は、 半径方向に延びる複数の ティース部を有するステータコアと、 ロータに向かい合うティース部の内周面に 当接してロータを取囲む筒状の保持部材と、 保持部材に保持されて隣り合うティ ース部間に位置決めされロータの回転を検出する検出部材とを備える。  The fixing structure of the detection member according to another aspect of the present invention includes a stator core having a plurality of teeth extending in the radial direction, and a cylindrical holding that contacts the inner peripheral surface of the teeth facing the rotor and surrounds the rotor A member, and a detection member that is held by the holding member and positioned between adjacent teeth portions to detect rotation of the rotor.
このように構成された検出部材の固定構造では、 検出部材は保持部材に保持さ れて隣り合うティース部間に位置決めされる。  In the detection member fixing structure configured as described above, the detection member is held by the holding member and positioned between adjacent tooth portions.
保持部材はティース部の内周面に当接してロータを取囲む。 その結果、 ティー ス部の内周側に保持部材が位置し、 さらにその内周側にロータが位置するため、 筒状の保持部材により確実に検出部材を保持することができる。  The holding member abuts on the inner peripheral surface of the tooth portion and surrounds the rotor. As a result, the holding member is positioned on the inner peripheral side of the tooth portion, and the rotor is further positioned on the inner peripheral side thereof. Therefore, the detection member can be reliably held by the cylindrical holding member.
好ましくは、 保持部材の熱膨張^、数はステータコアの熱膨張係数よりも大きい か同じである。 この場合、 ズテータコアおよびロータが高温となった場合には保 持部材が大きく膨張しようとし、 ステータコアのティース部め内周面に貼付く形 状となる。 その結果、 確実に保持部材がティース部の内周面に位置決めされる。 好ましくは、 保持部材のロータに向かい合う内周面は凹凸がなく平滑な面であ る。 この場合、 保持部材の内周面に凹凸がなく平滑な面とされるため保持部材表 面で空気の渦が生じにくくなる。 その結果、 ロータの回転抵抗を低下させること ができる。  Preferably, the thermal expansion coefficient and the number of holding members are greater than or equal to the thermal expansion coefficient of the stator core. In this case, when the stator core and the rotor become high temperature, the holding member tends to expand greatly, and is attached to the inner peripheral surface of the teeth portion of the stator core. As a result, the holding member is reliably positioned on the inner peripheral surface of the tooth portion. Preferably, the inner peripheral surface facing the rotor of the holding member is a smooth surface without unevenness. In this case, since the inner peripheral surface of the holding member is smooth without any irregularities, air vortices hardly occur on the holding member surface. As a result, the rotational resistance of the rotor can be reduced.
この発明のさらに別の局面に従った検出部材の固定構造は、 半径方向に延びる 複数のティース部を有するステータコアと、 複数のティース部の間に挿入される 回転軸方向に延びる複数の爪部と、 複数の爪部を結合する環状部とを有する保持 部材と、 保持部材に保持されてロータの回転を検出する検出部材とを備える。 このように構成された検出部材の固定構造では、 爪部に検出部材を取付け、 そ の爪部を有する保持部材をティース部の間に揷入するだけで検出部材を固定する ' ことができ、 簡単な構成で検出部材を固定することができる。 The detection member fixing structure according to still another aspect of the present invention includes a stator core having a plurality of teeth portions extending in the radial direction, and a plurality of claw portions extending between the plurality of teeth portions and extending in the rotation axis direction. A holding member having an annular portion that couples the plurality of claw portions, and a detection member that is held by the holding member and detects rotation of the rotor. In the detection member fixing structure configured as described above, the detection member is attached to the claw portion, and the detection member is fixed. The detection member can be fixed simply by inserting the holding member having the claw portion between the teeth portions, and the detection member can be fixed with a simple configuration.
好ましくは、 複数の爪部の各々は隣接するティース部に当接してティ一ス部間 のスロット部を封止する。 この場合、 スロット部が爪部により封止されるためス ロット部へ空気が入り込むことを防止できる。 その結果、 ロータの回転抵抗を低 下させることができる。  Preferably, each of the plurality of claw portions abuts on an adjacent tooth portion and seals a slot portion between the tooth portions. In this case, since the slot portion is sealed by the claw portion, air can be prevented from entering the slot portion. As a result, the rotational resistance of the rotor can be reduced.
この発明に従えば、 ティース部に複雑な固定構造を形成するこ ίな 'ぐ'歯単な擰 成で検出部材を固定することができる。 図面の簡単な説明  According to the present invention, it is possible to fix the detection member with a simple and simple formation that forms a complicated fixing structure in the tooth portion. Brief Description of Drawings
図 1は、 この発明の実施の形態 1に従った電動過給機が搭載されるヱンジンシ ステムの構成を示す図である。  FIG. 1 is a diagram showing a configuration of an engine system on which an electric supercharger according to Embodiment 1 of the present invention is mounted.
図 2は、 回転電機の断面図である。  Fig. 2 is a cross-sectional view of the rotating electrical machine.
図 3は、 ホール素子の向きを説明するための図である。  FIG. 3 is a diagram for explaining the orientation of the Hall element.
図 4は、 ホール素子の向きを説明するための図である。  FIG. 4 is a diagram for explaining the orientation of the Hall element.
図 5は、 ホルダの斜視図である。  FIG. 5 is a perspective view of the holder.
図 6は、 別の局面に従ったホルダの斜視図である。  FIG. 6 is a perspective view of a holder according to another aspect.
図 7は、 この発明の実施の形態 2に従つた回転電機のステータの断面図である。 図 8は、 ホルダの斜視図である。  FIG. 7 is a cross-sectional view of the stator of the rotating electrical machine according to the second embodiment of the present invention. FIG. 8 is a perspective view of the holder.
図 9は、 回転電機のシャフトに平行な断面図である。  FIG. 9 is a cross-sectional view parallel to the shaft of the rotating electrical machine.
図 1 0は、 比較例に従った回転電機を示す断面図である。  FIG. 10 is a cross-sectional view showing a rotating electrical machine according to a comparative example.
図 1 1は、 この発明の実施の形態 3に従った回転電機の断面図である。  FIG. 11 is a cross-sectional view of a rotating electrical machine according to Embodiment 3 of the present invention.
図 1 2は、 図 1 1中の X I I— X I し锒に沿った断面図である。  FIG. 12 is a cross-sectional view along the line X I I—X I in FIG.
図 1 3は、 実施の形態 3に従った回転電機の製造方法を説明するための図であ る。  FIG. 13 is a diagram for explaining the method of manufacturing the rotating electrical machine according to the third embodiment.
図 1 4は、 この発明の実施の形 ¾ 4に従った回転電機の断面図である。  FIG. 14 is a cross-sectional view of a rotating electrical machine according to Embodiment 4 of the present invention.
図 1 5は、 比較例に従った回転電機の断面図である。  FIG. 15 is a cross-sectional view of a rotating electrical machine according to a comparative example.
図 1 6は、 本発明に従った回転電機の断面図である。  FIG. 16 is a cross-sectional view of a rotating electrical machine according to the present invention.
図 1 7は、 この発明の実施の形態 5に従った回転電機の平面図である。 図 1 8は、 ホール素子を拡大して示す断面図である。 FIG. 17 is a plan view of the rotating electrical machine according to the fifth embodiment of the present invention. FIG. 18 is an enlarged sectional view showing the Hall element.
図 1 9は、 この発明の実施の形態 6に従ったレゾルバの模式図である。 発明を実施するための最良の形態  FIG. 19 is a schematic diagram of a resolver according to the sixth embodiment of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 この発明の実施の形態について、 図面を参照して説明する。 なお、 以下 の実施の形態では同一または相当する部分については.同一の参照符号を付し、' そ 'の説明については繰返さない。  Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following embodiments, the same or corresponding parts will be denoted by the same reference numerals, and the description thereof will not be repeated.
(実施の形態 1 )  (Embodiment 1)
図 1は、 この発明の実施の形態 1に従った電動過給機が搭載されるエンジンシ ステムの構成を示す図である。 図 1を参照して、 この発明の実施の形態に従った 電動過給機が搭載されたエンジンシステムはエンジン 1 0 0と、 エンジン 1 0 0 に送られる空気を過給する電動過給機 2 0 0と、 電動過給機 2 0 0で圧縮された 空気を冷却するインタークーラー 1 6 2と、 エンジン 1 0 0の動作を制御するェ ンジン E C U (Electronic Control Unit) 2 5 0と、 電動過給機 2 0 0を制御 する過給機 E C U 3 4 0とを含む。 この実施の形態に係るエンジンシステムは、 自動車などの車両に搭載される。 なお、 ェンジン£〇11 2 5 0と過給機£〇11 3 4 0は 1つの E C Uに統合するようにしてもよい。 本実施の形態において、 ェン ジン E C U 2 5 0と過給機 E C U .3 4 0とは、 双方向で通信可能に接続される。 吸入孔 1 5 0から吸入される空気は、 ェアークリーナ 1 5 2によりろ過される。 ェアークリーナ 1 5 2によりろ過された空気は、 吸気通路 1 5 6を介して電動過 給機 2 0 0に流通する。 電動過給機 2 0 0に流通した空気はコンプレッサハウジ ング 2 0 2内のコンプレッサホイール 2 0 6で圧縮された後、 吸気通路 1 6 0を 流通してインタークーラー 1 6 2で冷却される。 インタークーラー 1 6 2で冷却 された空気は、 吸気通路 1 0 2を流通して、 エンジン 1 0 0に吸入される。  FIG. 1 is a diagram showing a configuration of an engine system on which the electric supercharger according to the first embodiment of the present invention is mounted. Referring to FIG. 1, an engine system equipped with an electric supercharger according to an embodiment of the present invention includes an engine 1 0 0 and an electric supercharger 2 that supercharges air sent to engine 1 0 0. 0 0, Electric supercharger 2 0 0 Intercooler that cools the compressed air 1 6 2, Engine 1 0 0 Engine ECU (Electronic Control Unit) 2 5 0, Electric supercharger And a supercharger ECU 3 4 0 for controlling the machine 2 0 0. The engine system according to this embodiment is mounted on a vehicle such as an automobile. It should be noted that the engine £ 11 2 5 0 and the turbocharger £ 11 3 4 0 may be integrated into one ECU. In the present embodiment, the engine E C U 2 5 0 and the supercharger E C U .3 4 0 are connected so as to be capable of bidirectional communication. Air sucked from the suction hole 1 5 0 is filtered by the air cleaner 1 5 2. The air filtered by the air cleaner 15 2 circulates through the intake passage 15 6 to the electric turbocharger 2 0 0. The air flowing into the electric supercharger 20 0 0 is compressed by the compressor wheel 2 0 6 in the compressor housing 2 0 2, then flows through the intake passage 1 6 0 and is cooled by the intercooler 1 6 2. The air cooled by the intercooler 1 6 2 flows through the intake passage 1 0 2 and is taken into the engine 1 0 0.
吸気通路 1 5 6の途中には、 吸入空気量を検出するエアーフローメータ 1 5 4 が設けられる。 エアーフローメータ 1 5 4は、 検出した吸入空気量を示す信号を エンジン E C U 2 5 0に送信する。  An air flow meter 1 5 4 for detecting the amount of intake air is provided in the middle of the intake passage 1 5 6. The air flow meter 1 5 4 transmits a signal indicating the detected intake air amount to the engine E C U 2 5 0.
ィンターク一ラー 1 6 2は、 コンプレッサホイ一ノレ 2 0 6により圧縮されて温 度が上昇した空気を冷却する。 冷却した空気の体積は、 冷却前に比べて小さくな つているため、 より多くの空気がエンジン 1 0 0に送り込まれる。 The intercooler 1 6 2 cools the air that has been compressed by the compressor hoist 1 2 6 and has risen in temperature. The volume of cooled air is smaller than before cooling. Therefore, more air is sent to the engine 100.
また、 吸気通路 1 5 6と吸気通路 1 6 0とをバイパスするバイパス通路 1 5 8 が設けられ、 バイパス通路 1 5 8の途中には、 バイパス通路 1 5 8を流通する空 気の流量を調整するエアーバイパスバルブ 1 6 4が設けられる。 エアーバイパス バルブ 1 6 4は、 エンジン E C U 2 5 0から受信する制御信号に応じて作動する。 吸気通路 1 0 2の途中には、 吸気通路 1 0 2に流通する空気の流量を調整する スロッ トルバルブ 1 6 6が設けられている。 スロッ トルバルブ 1 6 6は、 スロッ トルモータ 1 6 8により駆動される。 スロッ トルモータ 1 6 8は、 エンジン E C Also, a bypass passage 1 5 8 that bypasses the intake passage 1 56 and the intake passage 1 60 is provided, and the flow rate of the air flowing through the bypass passage 1 5 8 is adjusted in the middle of the bypass passage 1 5 8 Air bypass valve 1 6 4 is provided. Air bypass valve 1 6 4 operates in response to a control signal received from engine E C U 2 5 0. A throttle valve 16 6 that adjusts the flow rate of the air flowing through the intake passage 10 2 is provided in the middle of the intake passage 10 2. The throttle valve 1 6 6 is driven by a throttle motor 1 6 8. Throttle motor 1 6 8 engine E C
U 2 5 0から受信する制御信号に応じて駆動する。 Drive according to the control signal received from U 2 5 0.
また、 吸気通路 1 0 2の途中には、 吸気管圧力センサ 1 7 0と吸気温度 ^ンサ In the middle of the intake passage 1 0 2, there is an intake pipe pressure sensor 1 7 0 and an intake air temperature sensor.
1 7 2が設けられる。 吸気管圧力センサ 1 7 0は、 吸気通路 1 0 2内の空気の圧 カを検知する。 吸気管圧力センサ 1 7 0は、 検知した空気の圧力を示す信号をェ ンジン E C U 2 5 0に送信する。 吸気温度センサ 1 7 2は、 吸気通路 1 0 2内の 空気の温度を検知する。 吸気温度センサ 1 7 2は、 検知した空気の温度を示す信 号をエンジン E C U 2 5 0に送信する。 1 7 2 is provided. The intake pipe pressure sensor 1 70 detects the pressure of air in the intake passage 1 0 2. The intake pipe pressure sensor 1 7 0 transmits a signal indicating the detected air pressure to the engine E C U 2 5 0. The intake air temperature sensor 1 7 2 detects the temperature of air in the intake passage 1 0 2. The intake air temperature sensor 1 7 2 transmits a signal indicating the detected air temperature to the engine E C U 2 5 0.
エンジン 1 0 0は、 シリンダへッド (図示せず) とシリンダブ口ック 1 1 2と を含む。 シリンダブ口ック 1 1 2には、 図 1の紙面上下方向に複数の気筒が設け られる。 そして、 各気筒内には、 所定の方向に摺動可能にピストン 1 1 4が設け られる。 ピス トン 1 1 4は、 コンロッド 1 1 6を介してクランクシャフト 1 2 0 に連結される。 ピストン 1 1 4、 コンロッド 1 1 6およびクランクシャフト 1 2 The engine 100 includes a cylinder head (not shown) and a cylinder block 1 1 2. The cylinder block 1 1 2 is provided with a plurality of cylinders in the vertical direction in FIG. In each cylinder, pistons 11 and 14 are provided so as to be slidable in a predetermined direction. The piston 1 1 4 is connected to the crankshaft 1 2 0 via a connecting rod 1 1 6. Piston 1 1 4, connecting rod 1 1 6 and crankshaft 1 2
0によりクランク機構が形成される。 A crank mechanism is formed by zero.
ピス トン 1 1 4の上部においては、 燃焼室 1 0 8が形成される。 燃焼室 1 0 8 には、 燃焼室 1 0 8に向けて点火プラグ 1 1 0と燃料噴射インジェクタ 1 0 6と が設けられる。 本実施の形態において、 エンジン 1 0 0は直噴エンジンであると して説明するが、 特に直噴エンジンに限定されるものではない。 たとえば、 ェン ジン 1 0 0は内燃機関であればよく、 ポート噴射型のエンジンであってもよいし、 ディーゼルエンジンであってもよレ、。 また、 レシプロ型のエンジンに限られず、 ロータリーエンジンであってもよレヽ。 さらに、 シリンダの配置に関しては、 直列型、 V型、 W型、 水平対向型などの さまざまな形状を採用することが可能である。 In the upper part of the piston 1 1 4, a combustion chamber 1 0 8 is formed. The combustion chamber 10 8 is provided with a spark plug 110 and a fuel injection injector 10 6 toward the combustion chamber 10 8. In the present embodiment, the engine 100 is described as a direct injection engine, but is not limited to a direct injection engine. For example, the engine may be an internal combustion engine, a port injection type engine, or a diesel engine. Also, it is not limited to reciprocating type engines, but can be rotary engines. Furthermore, with regard to the cylinder arrangement, in-line type, V type, W type, horizontally opposed type, etc. Various shapes can be employed.
シリンダへッドには、 吸気通路 1 0 2と排気通路 1 3 0とがそれぞれ燃焼室 1 0 8に接続するように設けられる。 吸気通路 1 0 2と燃焼室 1 0 8との間には、 吸気バルブ 1 0 4が設けられる。 気通路 1 3 0と燃焼室 1 0 8.との間には、 排 気バルブ 1 2 8が設けられる。 吸気バルブ 1 0 4および排気バルブ 1 2 8は、 ク ランクシャフト 1 2 0と連動して回転するカムシャフ ト (図示せず) により駆動 される。 '  The cylinder head is provided with an intake passage 10 0 2 and an exhaust passage 1 3 0 so as to be connected to the combustion chamber 1 0 8, respectively. An intake valve 10 4 is provided between the intake passage 1 0 2 and the combustion chamber 1 0 8. An exhaust valve 1 2 8 is provided between the air passage 1 3 0 and the combustion chamber 1 0 8. The intake valve 10 4 and the exhaust valve 1 2 8 are driven by camshafts (not shown) that rotate in conjunction with the crankshaft 1 2 0. '
吸気通路 1 0. 2を流通する空気は、 ピストン 1 1 4が下降するときに、 吸気バ ルブ 1 0 4が開かれて燃焼室 1 0 8に吸引される。 燃焼室 1 0 8に流通した空気 は、 燃料嘖射インジェクタ 1 0 6から噴射された燃料と混合される。 吸気バルブ 1 0 4が閉じて、 ピストン 1 1 4が上死点付近まで上昇したときに点火ブラグ 1 1 0において燃料と混合された空気が点火されて燃焼する。 燃焼による圧力によ りピストン 1 1 4が押し下げられる。 このとき、 ピス トン 1 1 4の上下運動がク ランク機構を介してクランクシャフト 1 2 0の回転運動に変換される。 そして、 ピストン 1 1 4が下死点付近まで下降したとき、 排気バルブ 1 2 8が開く。 ビス トン 1 1 4が再び上昇するとき、 燃焼室 1 0 8で燃焼させられた空気、 すなわち 排気ガスは、 排気通路 1 3 0を流通する。 排気通路 1 3 0を流通した空気は、 電 動過給機 2 0 0のタービンホイ一ノレ 2 0 8を駆動させた後に、 排気管 1 8 0を流 通して触媒 1 8 2へ導かれる。 排気ガスは、 触媒 1 8 2により浄化された後、 車 外に排出される。  The air flowing through the intake passage 1 0.2 is sucked into the combustion chamber 1 0 8 when the piston 1 1 4 is lowered and the intake valve 1 0 4 is opened. The air flowing into the combustion chamber 10 8 is mixed with the fuel injected from the fuel injection injector 10 6. When the intake valve 10 4 is closed and the piston 1 1 4 is raised to the vicinity of the top dead center, the air mixed with the fuel is ignited and burned in the ignition plug 1 1 0. Piston 1 1 4 is pushed down by the pressure of combustion. At this time, the vertical motion of the piston 1 14 is converted into the rotational motion of the crankshaft 1 2 0 via the crank mechanism. When the piston 1 1 4 is lowered to near the bottom dead center, the exhaust valve 1 2 8 is opened. When the piston 1 14 rises again, the air combusted in the combustion chamber 10 8, that is, the exhaust gas, flows through the exhaust passage 1 3 0. The air flowing through the exhaust passage 1 3 0 is driven to the catalyst 1 8 2 through the exhaust pipe 1 80 after driving the turbine wheel 2 0 8 of the electric supercharger 2 0 0. The exhaust gas is purified by the catalyst 1 8 2 and then discharged outside the vehicle.
クランクシャフト 1 2 0の一端には、 プーリ (図示せず) が設けられる。 ブー リはベルト 1 2 4を介してオルタネータ 1 2 6の回転軸に設けられたプーリに連 結される。 クランタシャスト 1 2 0の回転によりオルタネータ 1 2 6が作動して、 発電が行なわれる。  A pulley (not shown) is provided at one end of the crankshaft 120. The pulley is connected via a belt 1 2 4 to a pulley provided on the rotating shaft of the alternator 1 2 6. The alternator 1 2 6 is activated by the rotation of the clantasust 1 2 0 to generate electricity.
タイミングロータ 1 1 8は、 クランクシャフト 1 2 0に設けられており、 クラ ンクシャフト 1 2 0とともに回転する。 タイミングロータ 1 1 8の外周には、 予 め定められた間隔で複数の突起が設けられている。 クランクポジションセンサ 1 2 2はタイミングロータ 3 0 4の突起に対向して設けられている。 タイミングロ ータ 1 1 8が回転すると、 タイミングロータ 1 1 8の突起と、 クランクポジショ ンセンサ 1 2 2とのエアーギャップが変化するため、 クランクポジションセンサ 1 2 2のコイル部を通過する磁束が增減し、 コイル部に起電力が発生する。 クラ ンクポジションセンサ 1 2 2は起電力を表わす信号をエンジン E C U 2 5 0に送 信する。 エンジン E C U 2 5 0は、 クランクポジションセンサ 1 2 2から送信さ れた信号に基づいて、 クランク角を検出する。 The timing rotor 1 1 8 is provided on the crankshaft 1 2 0 and rotates together with the crankshaft 1 2 0. A plurality of protrusions are provided on the outer periphery of the timing rotor 1 1 8 at predetermined intervals. The crank position sensor 1 2 2 is provided to face the protrusion of the timing rotor 3 0 4. When the timing rotor 1 1 8 rotates, the protrusion of the timing rotor 1 1 8 and the crank position Because the air gap with the sensor 1 2 2 changes, the magnetic flux passing through the coil part of the crank position sensor 1 2 2 increases and decreases, and an electromotive force is generated in the coil part. The crank position sensor 1 2 2 sends a signal representing the electromotive force to the engine ECU 2 5 0. The engine ECU 2 5 0 detects the crank angle based on the signal transmitted from the crank position sensor 1 2 2.
また、 車両には、 車速センサ (図示せず) が車輪に設けられ、 車輪の回転数 (回転速度) を検知する。 車速センサは、 検出結果を示す信号をエンジン E C U に送信する。 エンジン E C Uは、 車輪の回転数から車速を算出する。'エンジン E C U 2 5 0は、 吸気圧、 吸気温度、 吸入空気量、 車輪速度など各センサから送信 された信号、 メモリに記憶されたマップおよびプログラムに基づいて演算処理を 行ない、 エンジン 1 0 0が所望の運転状態となるように、 捕機類を制御する。 電動過給機 2 0 0は、 コンプレッサハウジング 2 0 2と、 コンプレッサハウジ ング 2 0 2に対向して設けられるタービンハウジング 2 0 4と、 コンプレッサハ ウジング 2 0 2およびタービンハウジング 2 0 4の間に収納される回転電機 2 1 6と、 回転電機 2 1 6の回転軸となるシャフト 2 1 0とを有する。  Further, the vehicle is provided with a vehicle speed sensor (not shown) on the wheel, and detects the rotation speed (rotation speed) of the wheel. The vehicle speed sensor sends a signal indicating the detection result to the engine E C U. The engine E C U calculates the vehicle speed from the number of wheel revolutions. 'The engine ECU 2 5 0 performs arithmetic processing based on signals sent from each sensor such as intake pressure, intake air temperature, intake air volume, wheel speed, maps and programs stored in the memory. Control the traps to achieve the desired operating state. The electric supercharger 2 0 0 is provided between the compressor housing 2 0 2, the turbine housing 2 0 4 provided opposite to the compressor housing 2 0 2, and the compressor housing 2 0 2 and the turbine housing 2 0 4. The rotating electrical machine 2 1 6 to be housed, and a shaft 2 10 as a rotating shaft of the rotating electrical machine 2 16 are provided.
コンプレッサハウジング 2 0 2内には、 コンプレッサホイール (コンプレッサ ロータ、 コンプレッサプレードなどとも呼ばれる。 ) 2 0 6が収納される。 コン プレッサホイ一 2 0 6は、 ェアークリーナ 1 5 2によりろ過された空気を圧縮 (過給) する。  A compressor wheel (also called a compressor rotor, a compressor blade, etc.) 2 0 6 is stored in the compressor housing 2 0 2. The compressor hoist 20 6 compresses (supercharges) the air filtered by the air cleaner 15 2.
タービンハウジング 2 0 4内には、 タービンホイール (タービンロータ、 ター ビンブレードなどとも呼ばれる。 ) 2 0 8が収納される。 タービンホイール 2 0 8は、 排気ガスにより回転させられる。  A turbine wheel (also called a turbine rotor, turbine blade, etc.) 2 0 8 is accommodated in the turbine housing 2 4. The turbine wheel 20 8 is rotated by exhaust gas.
コンプレッサホイール 2 0 6とタービンホイール 2 0 8とは、 シャフト 2 1 0 の両端にそれぞれ設けられる。 すなわち、 排気ガスによりタービンホイール 2 0 8が回転させられると、 コンプレッサホイ^"ル 2 0 6も回転する。  The compressor wheel 2 0 6 and the turbine wheel 2 0 8 are respectively provided at both ends of the shaft 2 1 0. That is, when the turbine wheel 20 8 is rotated by the exhaust gas, the compressor wheel 2 06 also rotates.
また、 コンプレッサホイール 2 0 6とタービンホイール 2 0 8との間には、 シ ャフト 2 1 0を回転軸とする回転電機 2 1 6が設けられる。 シャフト 2 1 0は、 回転電機 2 1 6のハウジングにより回転自在に支持されている。  Further, between the compressor wheel 20 6 and the turbine wheel 20 8, a rotating electrical machine 2 16 having a shaft 2 10 as a rotating shaft is provided. The shaft 2 10 is rotatably supported by the housing of the rotating electrical machine 2 1 6.
回転電機 2 1 6は、 過給機 E C U 3 4 0の制御信号に応じて過給機 E D U (Electronic Drive Unit) 330から供給される電力によりシャフト 210に 回転力を付与する。 過給機 EDU330は、 高圧バッテリ 320から供給される 電力を用いて、 過給機 ECU 340から入力される制御信号に応じた電力を回転 電機 216に供給する。 過給機 EDU330は、 たとえば、 インバータである。 回転電機 216には、 回転子の位置を求めるためのセンサ (図 1では示さず) が設けられる。 センサはロータ 1210の回転位置 (回転角) および回転数を検 知する。 センサは、 検知結果を示す信号を過給機 Εθϋ 340に送信する。 この センサは、 たとえばホールセンサで構成される。 The rotating electrical machine 2 1 6 is connected to the turbocharger EDU according to the control signal of the turbocharger ECU 3 4 0. (Electronic Drive Unit) A rotational force is applied to the shaft 210 by the electric power supplied from the 330. The supercharger EDU 330 uses the electric power supplied from the high voltage battery 320 to supply electric power corresponding to the control signal input from the supercharger ECU 340 to the rotating electric machine 216. The turbocharger EDU330 is, for example, an inverter. The rotating electrical machine 216 is provided with a sensor (not shown in FIG. 1) for determining the position of the rotor. The sensor detects the rotational position (rotational angle) and rotational speed of the rotor 1210. The sensor transmits a signal indicating the detection result to the supercharger Εθϋ 340. This sensor is composed of, for example, a hall sensor.
高圧バッテリ 320は、 DCZDCコンバータ 310の電気的に接続される。 DC/DCコンバータ 310は、 上述したオルタネータ 126に電気的に接続さ れる。 したがって、 オルタネータ 126において発電された電力は、 DC/DC コンバータ 310にて適切な電圧に昇圧された後に、 高圧バッテリ 320に供給 される。 これにより、 高圧バッテリ 320が充電される。 た、 オルタネータ 1 26において発電された電力は、 低圧バッテリ 300に供給される。 これにより、 低圧バッテリ 300が充電される。 低圧バッテリ 300は、 エンジン ECU 25 0や過給機 ECU 340などに電力を供給する。  The high voltage battery 320 is electrically connected to the DCZDC converter 310. The DC / DC converter 310 is electrically connected to the alternator 126 described above. Therefore, the electric power generated by alternator 126 is boosted to an appropriate voltage by DC / DC converter 310 and then supplied to high voltage battery 320. Thereby, the high voltage battery 320 is charged. In addition, the electric power generated in the alternator 126 is supplied to the low voltage battery 300. Thereby, the low voltage battery 300 is charged. The low voltage battery 300 supplies power to the engine ECU 250, the supercharger ECU 340, and the like.
過給機 ECU 340は、 エンジン ECU 250から送信される情報、 ロータの 位置センサから送信された信号、 および、 メモリに記憶されたマップぉよびプロ グラムに基づいて演算処理を行ない、 電動過給機 200が所望の作動状態となる ように捕機類を制御する。 以上のような構成を有する電動過給機 200において は、 エンジン 100で燃料と混合された空気が燃焼された後、 排気ガスは、 排気 通路 130からタービンハウジング 204内へ導かれる。 排気ガスはそこでター ビンホイール 208を回転させ、 その回転力がシャフト 210に伝達される。 そ の後、 排気ガスは、 排気管 180を流通して触媒 182に導かれる。 触媒 182 に導かれた排気ガスは、 浄化された状態で車外へ排出される。  The supercharger ECU 340 performs arithmetic processing based on the information transmitted from the engine ECU 250, the signal transmitted from the rotor position sensor, and the map and program stored in the memory. Control traps so that 200 is in the desired operating state. In the electric supercharger 200 having the above-described configuration, the exhaust gas is guided from the exhaust passage 130 into the turbine housing 204 after the air mixed with fuel in the engine 100 is combusted. The exhaust gas then rotates the turbine wheel 208, and the rotational force is transmitted to the shaft 210. Thereafter, the exhaust gas flows through the exhaust pipe 180 and is guided to the catalyst 182. The exhaust gas guided to the catalyst 182 is discharged outside the vehicle in a purified state.
—方、 エンジン 100に供給するため車外より吸入された空気は、 エアークリ ーナ 152によってろ過された後、 吸気通路 156を流通してコンプレッサハウ ジング 202内に導かれる。 空気はシャフト 210と一体となって回転するコン プレッサホイール 206によって圧縮 (過給) される。 圧縮された空気は、 イン タークーラ 6 2に導かれ、 冷却された状態でエンジン 1 0 0の吸気通路 1 0 2を介して燃焼室 1 0 8に吸入される。 On the other hand, the air taken from outside the vehicle to be supplied to the engine 100 is filtered by the air cleaner 152, then flows through the intake passage 156 and is guided into the compressor housing 202. The air is compressed (supercharged) by a compressor wheel 206 that rotates together with the shaft 210. Compressed air is It is guided to the tur- cooler 6 2 and is sucked into the combustion chamber 1 0 8 through the intake passage 1 0 2 of the engine 1 0 0 in a cooled state.
また、 過給機 E C U 3 4 0は、 エンジン 1 0 0の低回転域において、 コンプレ ッサホイール 2 0 6において圧縮される空気が所望の過給圧に到達しない場合 (たとえば、 エンジン 1 0 0の回転数が予め定められた回転数以下である場合) には、 回転電機 2 1 6を駆動することにより、 コンプレッサハウジング 2 0 2で の過給圧が強制的に上昇するように制御する。  Further, the supercharger ECU 3 40 is used when the air compressed in the compressor wheel 2 06 does not reach a desired supercharging pressure in the low speed range of the engine 1 0 0 (for example, the rotation of the engine 1 0 0 When the number is equal to or less than a predetermined number of revolutions), the rotary electric machine 2 16 is driven so that the supercharging pressure in the compressor housing 2 0 2 is forcibly increased.
図 2は、 回転電機の断面図である。 なお、 図 2は回転軸に直交する方向での断 面図である。 図 2を参照して、 回転電機 2 1 6は中心部に位置するロータ 1 2 1 0と、 ロータ 1 2 1 0を取囲むステータ 1 3 0 0とを有する。 ロータ 1 2 1 0の 中心にはシャフト 2 1 0が設けられ、 シャフト 2 1 0は回転軸を構成している。 シャフト 2 1 0を中心にロータ 1 2 1 0は矢印 Rで示す方向に回転可能に保持さ れている。 ロータ 1 2 1 0は積層された電磁鋼板により構成されるロータコア 1 2 1 1と、 ロータコア 1 2 1 1に埋込まれる永久磁石 1 2 1 2とを有する。 永久 磁石 1 2 1 2はロータコア 1 2 1 1に設けられた穴に挿入され、 たとえば接着剤 で固定される。 永久磁石 1 2 1 2はシャフト 2 1 0に沿った方向に延びるように 構成されている。  Fig. 2 is a cross-sectional view of the rotating electrical machine. FIG. 2 is a cross-sectional view in a direction perpendicular to the rotation axis. Referring to FIG. 2, rotating electric machine 2 16 has rotor 1 2 1 0 located at the center and stator 1 3 0 0 surrounding rotor 1 2 1 0. A shaft 2 1 0 is provided at the center of the rotor 1 2 1 0, and the shaft 2 1 0 constitutes a rotating shaft. The rotor 1 2 1 0 is held rotatably around the shaft 2 1 0 in the direction indicated by the arrow R. Rotor 1 2 10 has rotor core 1 2 1 1 constituted by laminated electromagnetic steel plates and permanent magnet 1 2 1 2 embedded in rotor core 1 2 1 1. The permanent magnet 1 2 1 2 is inserted into a hole provided in the rotor core 1 2 1 1 and fixed with, for example, an adhesive. The permanent magnet 1 2 1 2 is configured to extend in a direction along the shaft 2 10.
ロータコア 1 2 1 1は、 電磁鋼板に限られず、 たとえば磁性材料の粉末を圧縮 し、 かつ焼結した材料で構成されていてもよい。  The rotor core 1 2 1 1 is not limited to a magnetic steel sheet, and may be made of, for example, a material obtained by compressing and sintering a magnetic material powder.
ステータ 1 3 0 0は外周に位置するステータコア 1 3 1 0と、 ステータコア 1 Stator 1 3 0 0 is a stator core 1 3 1 0 located on the outer periphery, and stator core 1
3 1 0のティース部 1 3 1 1に巻付けられたコイル 1 3 2 0とを有する。 この実 施の形態では、 集中卷きの三相交流モータの例を示している。 なお、 三相交流モ ータに限られず、 回転電機 2 1 6は直流モータまたは交流モータのいずれであつ てもよい。 さらに、 交流モータの場合、 誘導モータ、 同期モータ、 交流整流子モ ータでもよく、 それぞれ、 単相または三相のいずれであってもよい。 3 1 0 teeth portion 1 3 1 1 and coil 1 3 2 0 wound around. This embodiment shows an example of a concentrated-powered three-phase AC motor. Note that the rotating electrical machine 2 16 is not limited to a three-phase AC motor, and may be either a DC motor or an AC motor. Furthermore, in the case of an AC motor, it may be an induction motor, a synchronous motor, or an AC commutator motor, and each may be either single phase or three phase.
コィノレ 1 3 2 0は、 ティース部 1 3 1 1に銅線を巻くことによって構成される。 複数のティース部 1 3 1 1の間がスロット部 1 3 1 2であり、 この部分にコイル が配置される。 なお、 ティース部 1 3 1 1の数はこの実施の形態では 6である力 S、 これに限られず、 さらに多い、 または少ないティース部 1 3 1 1を採用してもよ い。 The coin 1 3 2 0 is formed by winding a copper wire around the teeth 1 3 1 1. Between the plurality of tooth portions 1 3 1 1 is a slot portion 1 3 1 2, and a coil is disposed in this portion. In this embodiment, the number of teeth 1 3 1 1 is 6 which is a force S, but is not limited to this, and more or less teeth 1 3 1 1 may be adopted. Yes.
この実施の形態では三相交流モータを示しているので、 u相、 V相および W相 を構成するコイルがそれぞれ結線される。 なお、 結線方法としては、 デルタ結線 または Y結線のいずれをも採用することが可能である。 ロータ 1 2 1 0とステー タ 1 3 0 0との間には矢印で示すような磁力線が発生しており、 磁力線の向きは ロータ 1 2 1 0が回転するとともに、 さらこ、 コイル.1 3 2 0に流される電流が 変化することにより逐次変化する。  In this embodiment, since a three-phase AC motor is shown, the coils constituting the u phase, the V phase, and the W phase are respectively connected. As a connection method, either delta connection or Y connection can be adopted. Magnetic lines of force as shown by the arrows are generated between the rotor 1 2 1 0 and the stator 1 3 0 0, and the direction of the magnetic line of force is as follows: It changes sequentially as the current flowing to 20 changes.
隣り合うティース部 1 3 1 1間にホール素子 1 4' 1 0が配置される。 ホール素 子 1 4 1 0はホルダ 1 4 0 0に保持されている。 ホノレダ 1 4 0 0の外周面 1 4 0 6はティ ス部 1 3 1 1の内周面 1 3 1 3と接触している。 ホルダ 1 4 0 0の内 周面 1 4 0 5は円筒面であり、 ロータ 1 2 1 0に向かい合つている。  Hall elements 1 4 ′ 1 0 are arranged between adjacent tooth portions 1 3 1 1. Hall element 1 4 1 0 is held by holder 1 4 0 0. The outer peripheral surface 1 4 0 6 of Honoreda 1 4 0 0 is in contact with the inner peripheral surface 1 3 1 3 of the teeth 1 3 1 1. The inner peripheral surface 1 4 0 5 of the holder 1 4 0 0 is a cylindrical surface and faces the rotor 1 2 1 0.
なお、 この実施の形態では、 ロータ 1 2 1 0の回転軸としてのシャフト 2 1 0 はタービンホイール 2 0 8およびコンプレッサホイール 2 0 6に接続されており、 いわゆるターボチャージの軸を構成しているが、 これに限られず、 回転電機 2 1 . 6はスーパーチャージャのロータを回転させてもよい。 この実施の形態では、 排 気のエネルギを利用するターボチャージャの回転を補助するために回転電機 2 1 In this embodiment, the shaft 2 1 0 as the rotating shaft of the rotor 1 2 1 0 is connected to the turbine wheel 2 0 8 and the compressor wheel 2 0 6 to constitute a so-called turbocharged shaft. However, the present invention is not limited to this, and the rotating electrical machine 2 1.6 may rotate the rotor of the supercharger. In this embodiment, the rotating electrical machine 2 1 is used to assist the rotation of the turbocharger that uses exhaust energy.
6を用いているが、 これに限られず、 排気のエネルギを用いることなく吸気を過 給するスーパーチャージャの回転を補助するために本発明に従つた回転電機 2 1However, the present invention is not limited to this, and the rotating electrical machine according to the present invention is used to assist the rotation of the supercharger that supercharges the intake air without using the energy of the exhaust 2 1
6を採用してもよい。 6 may be adopted.
ホルダ 1 4 0 0は、 ロータ 1 2 1 0およびステータ 1 3 0 0の磁気特性に影響 を与えないために非磁性材料により構成される。 ホルダ 1 4 0 0の外周面にホー ル素子 1 4 1 0が固着されており、 ホール素子 1 4 1 0はロータ 1 2 1 0の回転 角度おょぴ回転数を検出することが可能である。  Holder 1 4 0 0 is made of a non-magnetic material so as not to affect the magnetic characteristics of rotor 1 2 1 0 and stator 1 3 0 0. The hall element 1 4 1 0 is fixed to the outer peripheral surface of the holder 1 4 0 0, and the hall element 1 4 1 0 can detect the rotation angle of the rotor 1 2 1 0 and the number of rotations. .
この実施の形態では、 ホール素子 1 4 1 0は 1つだけ設けられているが、 これ に限られず、 複数個のホール素子 1 4 1 0を設けてもよレ、。  In this embodiment, only one Hall element 1 4 1 0 is provided. However, the present invention is not limited to this, and a plurality of Hall elements 1 4 1 0 may be provided.
図 3および図 4はホール素子の向きを説明するための図である。 図 3を参照し て、 ホール素子 1 4 1 0の素子面 (主表面) をロータ 1 2 1 0に対して傾斜して 配置した場合には、 永久磁石 1 2 1 2の磁束の大きさが減少し、 誤って検出を生 じるおそれがある。 そのため、 S ZN比および位置検出精度が悪化するおそれが ある。 ' 3 and 4 are diagrams for explaining the orientation of the Hall element. Referring to FIG. 3, when the element surface (main surface) of Hall element 1 4 1 0 is inclined with respect to rotor 1 2 1 0, the magnitude of the magnetic flux of permanent magnet 1 2 1 2 is It may decrease and cause detection error. As a result, the S ZN ratio and position detection accuracy may deteriorate. is there. '
図 4を参照して、 ホーノレ素子 1 4 1 0の主表面をロータ 1 2 1 0の法線方向に 設置した場合には、 磁石の磁束成分に対し法線方向にホール素子 1 4 1 0が配置 されるため磁束を有効に検出できる。 そのため、 S /N比おょぴ位置検出精度が 向上する。  Referring to FIG. 4, when the main surface of the Honoré element 1 4 1 0 is installed in the normal direction of the rotor 1 2 1 0, the Hall element 1 4 1 0 is in the normal direction with respect to the magnetic flux component of the magnet. Because it is arranged, the magnetic flux can be detected effectively. As a result, the S / N ratio detection accuracy is improved.
ホール素子 1 4 1 0 (ホール I C ) は、 ステータコア 1 3 1 0のティース部 1 3 1 1間に配置される。 ホール素子 1 4 1 0は、 正確なロータ 1 2 1 0の位置検 出のために、 ロータ 1 2 1 0の永久磁石 1 2 1 2成分のみを検出できることが望 ましい。 通常、 コイル 1 3 2 0に通電するとティース部 1 3 1 1は極を形成する。 ティース部 1 3 1 1付近にホール素子 1 4 1 0を配置すると通電による影響を受 けやすく S /N比が悪化する。 これに対して、 ティース部 1 3 1 1間は極を持た ないため、 通電による影響を受けにくい、 よって、 ホール素子 1 4 1 0またはホ ール I Cをティース部 1 3 1 1間に配置することで S /N比を向上させることが できる。 また、 ティース部 1 3 1 1間にホール素子 1 4 1 0を埋込むことでモー タ軸長を短縮できる。 なお、 ホーノレ素子 1 4 1 0に代えて、 磁束成分を検出でき る他の素子を用いてもよい。  Hall element 1 4 1 0 (hole I C) is arranged between teeth portions 1 3 1 1 of stator core 1 3 1 0. It is desirable that the Hall element 1 4 1 0 can detect only the permanent magnet 1 2 1 2 component of the rotor 1 2 1 0 for accurate position detection of the rotor 1 2 1 0. Normally, when the coil 1 3 2 0 is energized, the teeth 1 3 1 1 form a pole. If the Hall element 1 4 1 0 is placed near the teeth 1 3 1 1, it is easily affected by current flow and the S / N ratio deteriorates. On the other hand, since there is no pole between the tooth parts 1 3 1 1, it is not easily affected by energization. Therefore, the Hall element 1 4 1 0 or the Hall IC is placed between the tooth parts 1 3 1 1. As a result, the S / N ratio can be improved. Also, the motor shaft length can be shortened by embedding the Hall element 1 4 1 0 between the teeth 1 3 1 1. It should be noted that other elements that can detect the magnetic flux component may be used in place of the Honoré element 14 10.
図 5は、 ホルダの斜視図である。 図 5を参照して、 ホルダ 1 4 0 0は円筒形状 であり、 その内周面 1 4 0 5および外周面 1 4 0 6はともに円筒面である。 ホル ダ 1 4 0 0の厚み (内周面 1 4 0 5から外周面 1 4 0 6までの距離) は薄い方が 好ましい。 ホルダ 1 4 0 0の外周面 1 4 0 6は、 この実施の形態では凹凸が存在 しない形状とされているが、 これに限られず、 ティース部 1 3 1 1の内周面 1 3 1 3に接触する外周面 1 4 0 6の部分に溝が設けられ、 この溝にティース部 1 3 1 1が嵌まり合っていてもよレ、。 溝にティース部 1 3 1 1を嵌め合わせることで ホルダ 1 4 0 0の確実な位置決めが可能となる。 ホルダ 1 4 0 0はプラスチック またはアルミニウムなどの軽量な非磁性材料で構成される。  FIG. 5 is a perspective view of the holder. Referring to FIG. 5, holder 1400 has a cylindrical shape, and both its inner peripheral surface 1405 and outer peripheral surface 1406 are cylindrical surfaces. It is preferable that the thickness of the holder 140 4 0 (the distance from the inner peripheral surface 14 0 5 to the outer peripheral surface 1 4 0 6) is thinner. In this embodiment, the outer peripheral surface 1 4 0 6 of the holder 1 4 0 0 0 has a shape with no irregularities, but this is not a limitation, and the inner peripheral surface 1 3 1 3 of the tooth portion 1 3 1 1 is not limited to this. A groove may be provided in a portion of the outer peripheral surface 1 4 0 6 to be contacted, and the tooth portion 1 3 1 1 may be fitted in this groove. By fitting the teeth 1 3 1 1 into the groove, the holder 1 4 0 0 can be positioned reliably. The holder 1 4 0 0 is made of a light non-magnetic material such as plastic or aluminum.
図 6は、 別の局面に従ったホルダの斜視図である。 図 6を参照して、 ホルダ 1 4 0 0'の内周面 1 4 0 5から外周面 1 4 0 6に到達するまでの貫通穴 1 4 0 1力 S 複数設けられていてもよい。 また、 図 6で示すように、 貫通穴 1 4 0 1の一部分 を覆うようにティース部 1 3 1 1が設けられていてもよい。 隣り合う貫通穴 1 4 0 1の間にホール素子 1 4 1 0が固着される。 貫通穴 1 4 0 1の形状は、 図 6で は矩形であるが、 丸型、 楕円型などのさまざまな形状の貫通穴 1 4 0 1を設けて あよい。 FIG. 6 is a perspective view of a holder according to another aspect. Referring to FIG. 6, a plurality of through holes 1 4 0 1 force S from the inner peripheral surface 1 4 0 5 of holder 1 4 0 0 ′ to the outer peripheral surface 1 4 0 6 may be provided. Further, as shown in FIG. 6, a teeth portion 1 3 11 may be provided so as to cover a part of the through hole 1 4 0 1. Adjacent through holes 1 4 Hall element 1 4 1 0 is fixed between 0 1 and 1. The shape of the through hole 1 4 0 1 is rectangular in FIG. 6, but through holes 1 4 0 1 of various shapes such as a round shape and an oval shape may be provided.
この発明に従った検出部材の固定構造は、 半径方向に延びる複数のティース部 1 3 1 1を有するステータコア 1 3 1 0と、 ロータ 1 2 1 0に向かい合うティー ス部 1 3 1 1の内周面 1 3 1 3に当接してロータ 1 2 1 0を取囲む筒状の保持部 材としてのホルダ 1 4 0 0と、 ホノレダ 1 4 0 0に保持され- 隣り合うティース部 1 3 1 1間に位置決めされ、 ロータ 1 2 1 0の回転を検出する検出部材としての ホール素子 1 4 1 0を備える。 また、 ホルダ 1 4 0 0の熱膨張係数はステータコ ァ 1 3 1 0の熱膨張係数よりも大きい。 ホルダ 1 4 0 0のロータ 1 2 1 0に向力、 い合う内周面 1 4 0 5は凹凸がなく平滑な面である。  The detection member fixing structure according to the present invention includes a stator core 1 3 1 0 having a plurality of radially extending tooth portions 1 3 1 1 and an inner circumference of the tooth portion 1 3 1 1 facing the rotor 1 2 1 0. Holder 1 4 0 0 as a cylindrical holding member that contacts the surface 1 3 1 3 and surrounds the rotor 1 2 1 0 and between the adjacent tooth portions 1 3 1 1 And a Hall element 1 4 1 0 as a detection member for detecting the rotation of the rotor 1 2 1 0. In addition, the thermal expansion coefficient of the holder 140 is larger than that of the stator core 13 10. The inner circumferential surface 1 4 0 5 facing the rotor 1 2 1 0 of the holder 1 4 0 0 is a smooth surface without unevenness.
このように構成された検出部材としてのホール素子 1 4 1 0の固定構造では、 まず隣り合うティース部 1 3 1 1間にホール素子 1 4 1 0を設置しているため、 磁極の影響を受けにくくなる。  In the fixing structure of the Hall element 1 4 1 0 as the detection member configured as described above, since the Hall element 1 4 1 0 is first installed between the adjacent tooth portions 1 3 1 1, it is affected by the magnetic pole. It becomes difficult.
さらに、 筒型のホルダ 1 4 0 0にホール素子 1 4 1 0が保持されているため、 ホール素子 1 4 1 0が安定して保持される。 さらに、 筒型のホルダ 1 4 0 0は回 転電機のティース部 1 3 1 1の内周面 1 3 1 3と接触しており、 位置が固定され る。 その結果、 より確実にホール素子 1 4 1 0を保持することができる。 なお、 実施の形態ではホルダ 1 4 0 0を円筒形状としたが、 これに限られるものではな く、 角筒形状としてもよレ、。 角筒形状 (角型) とした場合には、 角型の平坦な面 がティース部 1 3 1 1の内周面 1 3 1 3に当たってもよい。 これとは反対に、 角 型の角部分がティース部 1 3 1 1の内周面 1 3 1 3に当たってもよい。  Further, since the hall element 1 4 1 0 is held by the cylindrical holder 1 4 0 0, the hall element 1 4 1 0 is stably held. Further, the cylindrical holder 14 400 is in contact with the inner peripheral surface 1 3 1 3 of the tooth portion 1 3 11 of the rotating electrical machine, and the position is fixed. As a result, the Hall element 14 1 10 can be held more reliably. In the embodiment, the holder 140 has a cylindrical shape. However, the present invention is not limited to this, and it may be a rectangular tube shape. In the case of a rectangular tube shape (square shape), the flat surface of the square shape may contact the inner peripheral surface 1 3 1 3 of the tooth portion 1 3 1 1. On the contrary, the square corner portion may contact the inner peripheral surface 1 3 1 3 of the tooth portion 1 3 1 1.
(実施の形態 2 )  (Embodiment 2)
図 7は、 この発明の実施の形態 2に従った回転電機のステータの断面図である。 図 1を参照して、 この発明の実施の形態 2に従った回転電機では、 ホルダ 1 4 0 0の爪部 1 4 0 2にホール素子 1 4 1 0が取付けられている点で、 実施の形態 1 に従った回転電機と異なる。 爪部 1 4 0 2はティース部 1 3 1 1間に挿入されて いる。 爪部 1 4 0 2は薄肉かつ扁平形状であって内周面 1 4 0 5および外周面 1 4 0 6を有する。 内周面 1 4 0 5はロータ 1 2 1 0に向かい合い、 ティース部 1 31 1の内周面 1313とほぼ同一平面を構成している。 なお、 この実施の形態 では 2つの内周面 1405, 1 3 13が同一平面を構成しているが、 これらの間 に段差があってもよい。 FIG. 7 is a cross-sectional view of the stator of the rotating electrical machine according to the second embodiment of the present invention. Referring to FIG. 1, in the rotating electrical machine according to the second embodiment of the present invention, the Hall element 1 4 1 0 is attached to the claw portion 1 4 0 2 of the holder 1 4 0 0. Different from the rotating electrical machine according to Form 1. The claw portion 1 4 0 2 is inserted between the tooth portions 1 3 1 1. The claw portion 1402 is thin and flat, and has an inner peripheral surface 1405 and an outer peripheral surface 14060. Inner circumferential surface 1 4 0 5 faces rotor 1 2 1 0, teeth 1 The inner peripheral surface 1313 of 31 1 is almost flush with the inner surface. In this embodiment, the two inner peripheral surfaces 1405 and 1313 constitute the same plane, but there may be a step between them.
内周面 1405から外周面 1406へ貫通するように検出部材としてのホール 素子 1410が保持されている。  A Hall element 1410 as a detection member is held so as to penetrate from the inner peripheral surface 1405 to the outer peripheral surface 1406.
図 8はホルダの斜視図である。 図 8を参照して、 ホルダ 1400は、 環状部 1 407と、 環状部 1407に接続された爪部 1402とを有する。 環状部 140 7は円形状 (円筒形状) であり、 そのスラスト端面 (アキシャル端面) に複数の 爪部 1402が配置される。 爪部 1402は回転軸方向に沿って延びており、 互 · いに平行に配置されている。 爪部の側面 1403間にティース部 131 1が嵌め 合わせられる。 ティース部 131 3が爪部 1402の間に嵌め合わせられるため、 実施の形態 1のようにティース部 131 1の内周側にホルダ 1400が入り込む ことがない。 そのため、 ティース部 13 1 1の内周面 13 13とロータ 1 210 との間にホルダ 1400が介在せず、 ティース部 131 1とロータ 1210との 間の距離を小さくすることが可能となる。  FIG. 8 is a perspective view of the holder. Referring to FIG. 8, holder 1400 has an annular portion 1 407 and a claw portion 1402 connected to annular portion 1407. The annular portion 1407 has a circular shape (cylindrical shape), and a plurality of claw portions 1402 are arranged on the thrust end surface (axial end surface). The claw portions 1402 extend along the rotation axis direction, and are arranged in parallel to each other. The teeth portion 131 1 is fitted between the side surfaces 1403 of the claw portion. Since the tooth portion 1313 is fitted between the claw portions 1402, the holder 1400 does not enter the inner peripheral side of the tooth portion 1311, as in the first embodiment. Therefore, the holder 1400 is not interposed between the inner peripheral surface 1313 of the tooth portion 1311 and the rotor 1210, and the distance between the tooth portion 1311 and the rotor 1210 can be reduced.
図 8では、 1ケ所の爪部 1402にのみホール素子 1410が設けられている 力 これに限られるものではなく、 複数の爪部 1402の各々にホール素子 14 10が設けられていてもよレ、。  In FIG. 8, the force that the Hall element 1410 is provided in only one claw 1402 is not limited to this, and the Hall element 1410 may be provided in each of the plurality of claws 1402. .
爪部 1402の軸方向端面 (環状部 1407から最も遠い端面) は蓋部 140 4の凹部 1403に嵌め合わせられる。 なお、 蓋部 1404に凹部 1403が存 在せず、 蓋部 1404が爪部 1402に接着されてもよレ、。 さらに、 蓋部 140 4が存在しなくてもよい。  The axial end surface of the claw portion 1402 (the end surface farthest from the annular portion 1407) is fitted into the concave portion 1403 of the lid portion 1404. It should be noted that the lid 1404 does not have the recess 1403 and the lid 1404 may be bonded to the claw 1402. Further, the lid 1404 may not be present.
図 9は、 回転電機のシャフトに平行な断面図である。 図 9を参照して、 ホルダ 1400の爪部 1402に保持されたホール素子 1410がステ^-タコア 131 0のシャフト 210の長手方向のほぼ中央部に位置している。 なお、 ホール素子 1410は中央部に位置する必要はなく、 長手方向のどの部分に位置決めされて いてもよい。  FIG. 9 is a cross-sectional view parallel to the shaft of the rotating electrical machine. Referring to FIG. 9, Hall element 1410 held by claw portion 1402 of holder 1400 is located at a substantially central portion in the longitudinal direction of shaft 210 of stator core 1310. Hall element 1410 does not have to be positioned at the center, and may be positioned at any portion in the longitudinal direction.
ステータコア 1310にコイル 1320が巻かれている。 ステータコア 131 0はロータ 1210と向かい合つている。 ロータ 1210は回転軸としてのシャ フト 2 1 0に固定されている。 シャフト 2 1 0はベアリング 2 1 1により回転可 能に保持されている。 ロータ 1 2 1 0はロータコア 1 2 1 1と、 ロータコア 1 2 1 1に埋込まれた永久磁石 1 2 1 2とにより構成される。 永久磁石 1 2 1 2はシ ャフト 2 1 0に沿って長手方向に延びている。 A coil 1320 is wound around the stator core 1310. Stator core 1310 faces rotor 1210. The rotor 1210 is a shaft as a rotating shaft. Ft 2 1 0 is fixed. The shaft 2 1 0 is rotatably held by a bearing 2 1 1. The rotor 1 2 1 0 is composed of a rotor core 1 2 1 1 and permanent magnets 1 2 1 2 embedded in the rotor core 1 2 1 1. The permanent magnet 1 2 1 2 extends in the longitudinal direction along the shaft 2 10.
図 1 0は、 比較例に従った回転電機を示す断面図である。 図 1 0を参照して、 比較例に従った回転電機 2 1 6では、 シャフ小 2 1 0に検出用の永久磁石 1 4 1 5が取付けられ、 この永久磁石 1 4 1 5の位置をホール素子 1 4 1 0が検出する。 このような比較例に従った回転電機 2 1 6では、 回転電機外部にホール素子 1 4 1 0が配置されている。 検出用の永久磁石: 4 1 5はロータ 1 2 1 0の磁界と独 立させるために永久磁石 1 2 1 2から離して設置している。 よって、 軸長が長く なってしまう。 これに対し、 図 9で示す本発明品では、 軸長を短縮でき高速化が 可能となる。 また、 ロータ 1 2 1 0を構成する永久磁石 1 2 1 2の磁界でロータ 1 2 1 0の位置を検出することができるため、 位置の検出精度および S /N比を 向上させることができる。  FIG. 10 is a cross-sectional view showing a rotating electrical machine according to a comparative example. Referring to FIG. 10, in the rotating electrical machine 2 1 6 according to the comparative example, the permanent magnet for detection 1 4 1 5 is attached to the small shuff 2 1 0, and the position of this permanent magnet 1 4 1 5 is set in the hole. Element 1 4 1 0 detects. In the rotating electrical machine 2 16 according to such a comparative example, the Hall element 1 4 10 is arranged outside the rotating electrical machine. Permanent magnet for detection: 4 1 5 is placed away from the permanent magnet 1 2 1 2 to be independent of the magnetic field of the rotor 1 2 10. Therefore, the shaft length becomes long. In contrast, the product of the present invention shown in FIG. 9 can shorten the shaft length and increase the speed. Further, since the position of the rotor 1 2 1 0 can be detected by the magnetic field of the permanent magnet 1 2 1 2 constituting the rotor 1 2 1 0, the position detection accuracy and the S / N ratio can be improved.
すなわち、 実施の形態 2に従った検出部材の固定構造は、 半径方向に延びる複 数のティース部 1 3 1 1を有するステータコア 1 3 1 0と、 複数のティース部 1 3 1 1の間に挿入される回転軸方向に延びる複数の爪部 1 4 0 2と、 複数の爪部 1 4 0 2を結合する環状部 1 4 0 7とを有する保持部材としてのホルダ 1 4 0 0 と、 爪部 1 4 0 2に保持されてロータ 1 2 1 0の回転を検出する検出部材として のホール素子 1 4 1 0を備える。 複数の爪部 1 4 0 2の各々は、 隣接するティー ス部 1 3 1 1に当接してティース部 1 3 1 1間のスロット部 1 3 1 2を封止して いる。  That is, the detection member fixing structure according to the second embodiment is inserted between the stator core 1 3 1 0 having a plurality of tooth portions 1 3 1 1 extending in the radial direction and the plurality of tooth portions 1 3 1 1. A holder 1 4 0 0 as a holding member having a plurality of claw portions 1 4 0 2 extending in the rotation axis direction and an annular portion 1 4 0 7 connecting the plurality of claw portions 1 4 0 2; A Hall element 1 4 1 0 is provided as a detection member that is held by 1 4 0 2 and detects the rotation of the rotor 1 2 1 0. Each of the plurality of claw portions 1 4 0 2 is in contact with the adjacent tooth portion 1 3 1 1 and seals the slot portion 1 3 1 2 between the tooth portions 1 3 1 1.
このように構成された実施の形態 2に従った検出部材の固定構造でも、 実施の 形態 1に従った検出部材の固定構造と同様の効果がある。  The detection member fixing structure according to the second embodiment configured as described above has the same effect as the detection member fixing structure according to the first embodiment.
(実施の形態 3 )  (Embodiment 3)
図 1 1は、 この発明の実施の形態 3に従った回転電機の断面図である。 図 1 1 を参照して、 この発明の実施の形態 3に従った回転電機では、 ホルダ 1 3 5 0、 ホール素子 1 4 1 0がともにモー 7レド部材 1 3 3 0でモールドされている点で、 実施の形態 1および 2に従った回転電機と異なる。 ホール素子 1 4 1 0はホルダ 1 3 5 0に支持されており、 ホルダ 1 3 5 0上にパターン配線としてのバスバー 1 3 5 1が設けられる。 バスバー 1 3 5 1はホール素子 1 4 1 0に接続され、 ホ ール素子 1 4 1 0で検出された信号を伝達する役割を果たす。 モールド部材 1 3 3 0はワニスなどの絶縁性樹脂によって構成され、 ステータコア 1 3 1 0にコィ ル 1 3 2 0、 ホルダ 1 3 5 0、 バスバー 1 3 5 1およびホール素子 1 4 1 0など を一体化させる働きがある。 FIG. 11 is a cross-sectional view of a rotating electrical machine according to Embodiment 3 of the present invention. Referring to FIG. 11, in the rotating electrical machine according to the third embodiment of the present invention, holder 1 3 5 0 and hall element 1 4 1 0 are both molded with 7 red members 1 3 3 0 Thus, it differs from the rotating electrical machine according to the first and second embodiments. Hall element 1 4 1 0 is holder 1 3 5 0 is supported, and a bus bar 1 3 5 1 as a pattern wiring is provided on the holder 1 3 5 0. The bus bar 1 3 5 1 is connected to the Hall element 1 4 1 0 and plays a role of transmitting a signal detected by the Hall element 1 4 1 0. Mold member 1 3 3 0 is made of insulating resin such as varnish, and stator core 1 3 1 0 has coil 1 3 2 0, holder 1 3 5 0, bus bar 1 3 5 1 and hall element 1 4 1 0 etc. There is a function to unite.
モールド部材 1 3 3 0はリング状のステータコア 1 3 1 0全体を封止する働き がある。 ホルダ 1 3 5 0は上述の実施の形態 1および 2で示したさまざまな形状 のものを採用することが可能である。  The mold member 1 3 3 0 has a function of sealing the entire ring-shaped stator core 1 3 10. The holder 1 3 5 0 can employ various shapes shown in the first and second embodiments.
図 1 2は、 図 1 1中の X I I— "X I I線に沿った断面図である。 図 1 2を参照 して、 回転電機 2 1 6は、 シャフト 2 1 0を中心として回転するロータ 1 2 1 0 と、 ロータ 1 2 1 0を駆動させるための磁界を発生させるステータ 1 3 0 0とを 有する。 ステータ 1 3 0 0は、 磁'性材料からなるステータコア 1 3 1 0と、 ステ ータコア 1 3 1 0のティース部 1 3 1 1に卷かれたコイル 1 3 2 0とを有し、 コ ィル 1 3 2 0は隣り合うティース ¾5 1 3 1 1の間に嵌め合わせられている。 ティ ース部 1 3 1 1の間のスロット部 1 3 1 2にホー 素子 1 4 1 0が封入され、 ス ロット部 1 3 1 2はモールド部材 1 3 3 0で充填されている。 ホール素子 1 4 1 0はホルダ 1 4 0 0の外周面 1 4 0 6に当接して保持されている。 ホルダ 1 4 0 0の形状は、 実施の形態 1および 2で示したものを採用することができる。 図 1 3は、 実施の形態 3に従った回転電機の製造方法を説明するための図であ る。 図 1 3を参照して、 回転電機 2 1 6にホール素子 1 4 1 0を取付ける場合に は、 まずステータコア 1 3 1 0にコイル 1 3 2 0を卷く。 ステ一タ 1 3 0 0が完 成した後にホ^^ダ 1 3 5 0にホーノレ素子 1 4 1 0を取付け、 ホール素子 1 4 1 0 にパターン配線としてのバスバー 1 3 5 1を接続する。 このようなアッセンブリ をステータコア 1 3 1 0に嵌め合わせる。 その後、 ステータコア 1 3 1 0とホー ル素子 1 4 1 0とホルダ 1 4 0 0と樹脂モールドすることで図 1 1で示す回転電 機 2 1 6が完成する。  FIG. 12 is a cross-sectional view taken along the line XII— “XII” in FIG. 11. As shown in FIG. 12, the rotating electrical machine 2 1 6 is a rotor 1 2 that rotates about a shaft 2 10. 1 0 and a stator 1 3 0 0 that generates a magnetic field for driving the rotor 1 2 1 0. The stator 1 3 0 0 includes a stator core 1 3 1 0 made of a magnetic material, and a stator core 1 3 1 0 has a coil 1 3 2 0 wound around a tooth portion 1 3 1 1, and the coil 1 3 2 0 is fitted between adjacent teeth ¾5 1 3 1 1. The slot portion 1 3 1 2 between the slot portions 1 3 1 1 is filled with the hoe element 1 4 1 0, and the slot portion 1 3 1 2 is filled with the mold member 1 3 3 0. Hall element 1 4 1 0 is held in contact with the outer peripheral surface 1 4 0 6 of the holder 1 4 0 0. The shape of the holder 1 4 0 0 can be the one shown in the first and second embodiments. . 13 is a diagram for explaining a method of manufacturing a rotating electrical machine according to Embodiment 3. Referring to FIG. 13, when Hall element 1 4 1 0 is attached to rotating electrical machine 2 1 6 First, coil 1 3 2 0 is placed on the stator core 1 3 1 0. After the stator 1 3 0 0 is completed, the Honoré element 1 4 1 0 is attached to the holder 1 3 5 0, and the Hall element Connect bus bar 1 3 5 1 as pattern wiring to 1 4 1 0. Fit such an assembly to stator core 1 3 1 0. Then, stator core 1 3 1 0, hole element 1 4 1 0, and holder 1 By rotating resin with 400, the rotating electric machine 2 16 shown in Fig. 11 is completed.
すなわち、 この実施の形態では、 ホール素子 1 4 1 0の配線パターンとしての バスバー 1 3 5 1を形成したホルダ 1 4 0 0を用いてホール素子 1 4 1 0とステ ータ 1 3 0 0の位置決めをしたままステータ 1 3 0 0内にホール素子 1 4 1 0を 埋込み、 樹脂モールドによりホール素子 1 4 1 0を固定するものである。 In other words, in this embodiment, the Hall element 1 4 1 0 is connected to the Hall element 1 4 1 0 using the holder 1 4 0 0 formed with the bus bar 1 3 5 1 as the wiring pattern of the Hall element 1 4 1 0. The Hall element 1 4 1 0 is embedded in the stator 1 3 0 0 with the positioning of the data 1 3 0 0 and the Hall element 1 4 1 0 is fixed by resin molding.
ホール素子 1 4 1 0の位置がずれるとロータ 1 2 1 0の検出精度が悪化する。 また、 ステータ 1 3 0 0内は回転電機 2 1 6 (モータ) による振動やコイル 1 3 2 0、 ロータ 1 2 1 0の発熱による影響を受けやすい。 そこで、 ティース部 1 3 1 1間にホール素子 1 4 1 0を揷入する前に、 ホール素子の配線を形成したバス バー 1 3 5 1をホルダ 1 4 0 0に固定し、 これをステータ 1 3 0 0内に埋込むこ とでホール素子 1 4 1 0の位置ずれによるロータの位置検出精度の悪化を回避し ている。 さらに、 樹脂にてステータ 1 3 0 0内を一体モールドすることでセンサ の固定および冷却性を向上させることができ、 エンジンに搭載するモータアシス トターボで大きな問題となる振動に対しても耐久性を飛躍的に向上させることが できる。 また、 従来より耐熱の低いホール素子 1 4 1 0を用いることで低コスト 化を図ることができる。  If the position of the Hall element 1 4 1 0 is shifted, the detection accuracy of the rotor 1 2 1 0 deteriorates. Also, the stator 1 3 0 0 is susceptible to vibrations from the rotating electrical machine 2 1 6 (motor) and heat generated by the coils 1 3 2 0 and the rotor 1 2 1 0. Therefore, before inserting the Hall element 1 4 1 0 between the teeth 1 3 1 1, the bus bar 1 3 5 1 on which the wiring of the Hall element is formed is fixed to the holder 1 4 0 0, and this is fixed to the stator 1 By embedding in 300, it prevents the rotor position detection accuracy from deteriorating due to the positional deviation of Hall element 14 10. Furthermore, by integrally molding the stator 1300 with resin, it is possible to improve the fixing and cooling performance of the sensor, and to dramatically improve durability against vibration, which is a major problem with the motor assist turbo installed in the engine. Can be improved. In addition, the cost can be reduced by using the Hall element 14 10 having lower heat resistance than before.
バスバー 1 3 5 1以外の方法として、 ホルダ 1 4 0 0に配線パターンを形成し ておくことも可能である。 ホール素子 1 4 1 0をホルダ 1 4 0 0に固定するとと もにホール素子 1 4 1 0のリード線をバスバー 1 3 5 1に溶着させる。 ホルダ 1 4 0 0をステータ 1 3 0 0内に挿入し接着剤等で固定する。 この状態のまま樹脂 モールドとしてのモールド部材 1 3 3 0によりホール素子 1 4 1 0の固定ととも にリード線およびバスバー 1 3 5 1との溶着点も固定する。  As a method other than the bus bar 1 3 5 1, it is also possible to form a wiring pattern on the holder 1 4 0 0. The hall element 1 4 1 0 is fixed to the holder 1 4 0 0 and the lead wire of the hall element 1 4 1 0 is welded to the bus bar 1 3 5 1. The holder 1 4 0 0 is inserted into the stator 1 3 0 0 and fixed with an adhesive or the like. In this state, the mold element 1 3 3 0 as a resin mold fixes the hall element 1 4 10 and also fixes the welding point with the lead wire and the bus bar 1 3 5 1.
すなわち、 この発明に従った検出部材の固定構造は、 半径方向に延びる複数の ティース部 1 3 1 1を有するステータコア 1 3 1 0と、 隣り合うティース部 1 3 1 1の間に位置決めされてロータ 1 2 1 0の回転を検出する検出部材としてのホ ール素子 1 4 1 0と、 ティース部 1 3 1 1間にホール素子 1 4 1 0をモールドす るモーノレド部材 1 3 3 0とを備える。  That is, the detection member fixing structure according to the present invention is positioned between the stator core 1 3 1 0 having a plurality of teeth portions 1 3 1 1 extending in the radial direction and the adjacent tooth portions 1 3 1 1, and the rotor Hall element 1 4 1 0 as detection member for detecting rotation of 1 2 1 0 and monored member 1 3 3 0 for molding Hall element 1 4 1 0 between teeth portions 1 3 1 1 .
(実施の形態 4 )  (Embodiment 4)
図 1 4は、 この発明の実施の形態 4に従った回転電機の断面図である。 図 1 4 を参照して、 この発明の実施の形態 4に従った回転電機 2 1 6では、 モールド部 材 1 3 3 0によりホール素子 1 4 1 0が固定されており、 かつホルダが設けられ ていない点で、 実施の形態 3に従った回転電機 2 1 6と異なる。 モールド部材 1 3 3 0の内周面 1 3 3 1が円筒形状とされており、 その円筒の内周面 1 3 3 1力 らホール素子 1 4 1 0の一部分が露出している。 なお、 ホール素子 1 4 1 0の一 部分は必ずしもモールド部材 1 3 3 0から露出している必要はなく、 モールド部 材 1 3 3 0にホール素子 1 4 1 0が覆われていてもよい。 この実施の形態では、 1つのホール素子 1 4 1 0のみが設けられているが、 これに限られず複数のホー ル素子 1 4 1 0がティース部 1 3 1 1間に設けられていてもよい。 FIG. 14 is a cross-sectional view of a rotating electrical machine according to Embodiment 4 of the present invention. Referring to FIG. 14, in rotating electric machine 2 1 6 according to the fourth embodiment of the present invention, Hall element 1 4 1 0 is fixed by mold member 1 3 3 0 and a holder is provided. This is different from the rotating electrical machine 2 16 according to the third embodiment. Mold member 1 The inner peripheral surface 1 3 3 1 of 3 3 0 has a cylindrical shape, and a part of the Hall element 1 4 1 0 is exposed from the inner peripheral surface 1 3 3 1 force of the cylinder. Note that a part of the Hall element 14 10 does not necessarily have to be exposed from the mold member 1 3 30, and the Hall element 1 4 10 may be covered with the mold member 1 3 30. In this embodiment, only one Hall element 1 4 1 0 is provided. However, the present invention is not limited to this, and a plurality of hall elements 1 4 1 0 may be provided between the tooth portions 1 3 1 1. .
図 1 5は、 比較例に従った回転電機の断面図である。 図 1 6は、 本発明に従つ た回転電機の断面図である。 図 1 Sを参照して、 比較例に従った回転電機 2 1 6 では、 ティース部 1 3 1 1間にスロット部 1 3 1 2の隙間が生じている。 このた め、 矢印 Rで示す方向にロータ 1 2 1 0が回転すると矢印 R 1で示す方向の渦巻 き状の空気の渦が生じる。 この渦により回転時に損失が発生する。 すなわち、 駆 動時にティース部 1 3 1 1間の凹凸により空気の渦ができてこれが損失となり効 率が悪化する。 図 1 6で示すように本発明に従った回転電機 2 1 6では、 複数の ティース部 1 3 1 1間のスロッ ト部 1 3 1 2をモールド部材 1 3 3 0が充填し、 かつモールド部材 1 3 3 0の内周面 1 3 3 1が円筒形状であるため、 図 1 5で示 すような矢印 R 1で示す渦が発生しない。 その結果、 損失をさらに低減すること が可能となる。  FIG. 15 is a cross-sectional view of a rotating electrical machine according to a comparative example. FIG. 16 is a cross-sectional view of a rotating electrical machine according to the present invention. Referring to FIG. 1 S, in rotating electrical machine 2 1 6 according to the comparative example, a gap of slot portion 1 3 1 2 is generated between teeth portions 1 3 1 1. Therefore, when the rotor 1 2 10 rotates in the direction indicated by the arrow R, a spiral air vortex in the direction indicated by the arrow R 1 is generated. This vortex causes loss during rotation. In other words, air vortices are created by the unevenness between the teeth 1 3 1 1 during driving, which becomes a loss and the efficiency deteriorates. As shown in FIG. 16, in the rotating electrical machine 2 1 6 according to the present invention, the mold member 1 3 3 0 fills the slot portion 1 3 1 2 between the plurality of tooth portions 1 3 1 1, and the mold member Since the inner peripheral surface 1 3 3 1 of 1 3 3 0 has a cylindrical shape, the vortex indicated by the arrow R 1 as shown in FIG. 15 does not occur. As a result, the loss can be further reduced.
(実施の形態 5 ) - 図 1 7は、 この発明の実施の形態 5に従った回転電機の平面図である。 図 1 7 を参照して、. この発明の実施の形態 5に従った回転電機 2 1 6は複数のティース 部 1 3 1 1を有し、 その複数のティース部 1 3 1 1間にはスロット部 1 3 1 2が 形成されている。 環状のステータコア 1 3 1 0と、 複数のティース部 1 3 1 1に 分布巻きされて、 その一部がスロット部 1 3 1 2に位置する複数の卷線相として の U相コイル 1 3 2 U、 V相コィノレ 1 3 2 Vおよび W相コイル 1 3 2 Wとを備え る。 複数の卷線相である U相コイル 1 3 2 U、 V相コイル 1 3 2 Vおよび W相コ ィル 1 3 2 Wはティース部 1 3 1 1に直巻きされている。 なお、 直巻きだけでな く、 インサータを用いた巻き方法を採用してもよい。  (Embodiment 5)-Fig. 17 is a plan view of a rotating electrical machine according to Embodiment 5 of the present invention. Referring to FIG. 17, the rotating electrical machine 2 1 6 according to the fifth embodiment of the present invention has a plurality of tooth portions 1 3 1 1, and a slot is provided between the plurality of tooth portions 1 3 1 1. Part 1 3 1 2 is formed. U-phase coil 1 3 2 U as an annular stator core 1 3 1 0 and a plurality of teeth 1 3 1 1 distributed in windings, some of which are located in the slot 1 3 1 2 V-phase coinore 1 3 2 V and W-phase coil 1 3 2 W. A plurality of winding phases U phase coil 1 3 2 U, V phase coil 1 3 2 V and W phase coil 1 3 2 W are wound directly around tooth portion 1 3 1 1. In addition to direct winding, a winding method using an inserter may be employed.
モータ/ジェネレータとしての回転電機 2 1 6は、 筒状のステータコア 1 3 1 0と、 ステータコア 1 3 1 0の内周面側に向かい合うロータ 1 2 1 0とを有する。 ステータコア 1310は鉄または鉄合金などの磁性体により構成される。 ステー タコア 1310は半径方向に延びる複数のティース部 1311を有しており、 テ ィース部 1311の間には凹部としてのスロット部 1312が設けられている。 スロッ ト部 1312は、 ステータコア 1310の内周側に開口するような形状と される。 A rotating electrical machine 2 16 as a motor / generator has a cylindrical stator core 1 3 1 0 and a rotor 1 2 1 0 facing the inner peripheral surface of the stator core 1 3 1 0. Stator core 1310 is made of a magnetic material such as iron or an iron alloy. The stator core 1310 has a plurality of tooth portions 1311 extending in the radial direction, and a slot portion 1312 as a recess is provided between the tooth portions 1311. Slot portion 1312 is shaped to open to the inner peripheral side of stator core 1310.
三相の卷線相である U相コイル 132U、 V相コイル 132' Vおよび W相コィ ル 132Wは、 それぞれスロット眘 312に嵌まり合うようにティース部 13 11に巻付けられている。  The U-phase coil 132U, the V-phase coil 132′V, and the W-phase coil 132W, which are three-phase negative wires, are wound around the teeth portion 1311 so as to fit into the slot 眘 312.
U相コイル 132U、 V相コィ/レ 132Vおよび W相コィノレ 132Wは、 互い に円周上でずれるように卷付けられており、 V相コイル 132U、 V相コイル 1 32Vおよび W相コイル 132Wは、 いわゆる 「分布巻き」 されてステータ 13 00を構成している。  The U-phase coil 132U, the V-phase coil / le 132V and the W-phase coinore 132W are attached so as to be displaced from each other on the circumference.The V-phase coil 132U, the V-phase coil 1 32V and the W-phase coil 132W So-called “distributed winding” constitutes the stator 1300.
ロータ 1210はシャフト 210に取付けられたロータコア 1211と、 ロー タコア 1211に埋込まれた永久磁石 1212とを有する。 ロータコア 121 1 は鉄または鉄合金などの磁性体により構成される。 永久磁石 1212はロータコ ァ 1211の外周近傍にほぼ等間隔を隔てて配置される。 永久磁石 1212の数 は図 17では 8個であり、 この実施の形態では 8極のモータを示しているが、 磁 極の数はこれに限られるものではなく、 さまざまな磁極の数を採用してもよい。 シャフト 210はタービンシャフトのみならず動力伝達装置の一部分に接合さ れてもよい。 すなわち、 本発明に従った回転電機は、 タービン回転を補助するも のでなく、'動力伝達装置の一部分の駆動を補助するか、 または動力伝達装置で発 生した回転エネルギを電力エネルギに変える装置の一部分として用いられていて よい。  The rotor 1210 has a rotor core 1211 attached to the shaft 210 and a permanent magnet 1212 embedded in the rotor core 1211. The rotor core 121 1 is made of a magnetic material such as iron or an iron alloy. The permanent magnets 1212 are arranged in the vicinity of the outer periphery of the rotor core 1211 at substantially equal intervals. In FIG. 17, the number of permanent magnets 1212 is eight. In this embodiment, an eight-pole motor is shown. However, the number of magnetic poles is not limited to this, and various numbers of magnetic poles are used. May be. The shaft 210 may be joined not only to the turbine shaft but also to a part of the power transmission device. That is, the rotating electrical machine according to the present invention does not assist the turbine rotation, but instead assists the driving of a part of the power transmission device or converts the rotational energy generated in the power transmission device into electric energy. It may be used as a part.
隣り合うティース部 1311間のスロット部 1312に回転センサとしてのホ ール素子 1410が埋込まれている。  A hole element 1410 as a rotation sensor is embedded in a slot portion 1312 between adjacent teeth portions 1311.
図 18は、 ホール素子を拡大して示す断面図である。 図 18を参照して、 ホー ノレ素子 1410はティース部 1311の間のスロット部 1312に挿入されて、 かつティース部 1311と当接している。 ホール素子 1410はモールド部材 1 330でモールドされて位置が固定されている。 また、 この実施の形態においても、 実施の形態 1から 3で示したようなホルダ を用いてホール素子 1410を固定してもよい。 FIG. 18 is an enlarged cross-sectional view of the Hall element. Referring to FIG. 18, the hole element 1410 is inserted into the slot portion 1312 between the tooth portions 1311 and is in contact with the tooth portion 1311. The Hall element 1410 is molded by the mold member 1330 and the position is fixed. Also in this embodiment, the hall element 1410 may be fixed using a holder as shown in the first to third embodiments.
このように構成された、 実施の形態 5に従った回転電機でも、 実施の形態 1に 従った回転電機と同様の効果がある。  The rotating electrical machine according to the fifth embodiment configured as described above has the same effects as the rotating electrical machine according to the first embodiment.
(実施の形態 6) .  (Embodiment 6)
図 1 9は、 この発明の実施の形態 6に従ったレゾルバの模式図である。 図 1 9 を参照して、 レゾルバ 6440は回転センサであり、 モータおよびジェネレータ の高効率制御のために磁石位置を高精度で検出するセンサである。 レゾルバ 64 FIG. 19 is a schematic diagram of a resolver according to the sixth embodiment of the present invention. Referring to Fig. 19, resolver 6440 is a rotation sensor that detects the magnet position with high accuracy for high-efficiency control of the motor and generator. Resolver 64
40はレゾノレバステータコア 6441と、 レゾノレバステータコア 6441の中央 に設けられる回転シャフト 6443と、 回転シャフト 6443の外周に取付けら れた楕円形状のレゾルバロータ 6442とを有し、 レゾルバステータコア 644 1には、 少なくとも 3つのコイル 6444 A, 6444 B, 6444Cが設けら れる。 レゾノレバステータコア 6441とコイル 6444 A, 64448か間64 44 Cがレゾルバステータ 6420 構成している。 40 has a resolver stator stator core 6441, a rotation shaft 6443 provided in the center of the resonance lever stator core 6441, and an elliptical resolver rotor 6442 attached to the outer periphery of the rotation shaft 6443. Is provided with at least three coils 6444 A, 6444 B, 6444C. The resolver stator 6420 is composed of a resonator stator core 6441 and 64444 C between the coils 6444 A and 64448.
コイル 6'444 Aには励起用交流電流が流され、 これに基づく出力がコイル 6 444 B, 6444Cで検出される。  An excitation alternating current is passed through the coil 6'444A, and an output based on this is detected by the coils 6444B and 6444C.
2つの出力用のコイル 6444 B, 6444Cは、 電気的に 90° ずつずれて 配置される。 レゾルバロータ 6442が楕円形状であるため、 レゾルバロータ 6 442が回転すると、 レゾルバステータコア6441とレゾルバロータ 6442 との距離が変化する。  The two output coils 6444 B and 6444C are arranged with an electrical shift of 90 °. Since the resolver rotor 6442 has an elliptical shape, when the resolver rotor 6 442 rotates, the distance between the resolver stator core 6441 and the resolver rotor 6442 changes.
コイル 6444 Αに交流電流を流せば、 コイル 6444B, 6444Cには、 レゾルバロータ 6442の位置に応じた出力が発生し、 この出力の差から絶対位 置を検出することができる。 一定時間内の位置の変化を CPU (中央演算ュニッ ト) にて演算することにより、 回転センサとしても使用することができる。  If an alternating current is passed through coil 6444, an output corresponding to the position of resolver rotor 6442 is generated in coils 6444B and 6444C, and the absolute position can be detected from the difference between these outputs. It can also be used as a rotation sensor by calculating the position change within a certain time with a CPU (Central Processing Unit).
また、 レゾルバステータコア 6441にはホール素子 1410が取付けられる。 ホール素子 1410の取付け方は実施の形態 1カゝら Sで示したものを採用するこ とができる。 すなわち、 本発明に従った検出部材の固定構造は、 回転電機だけで なくレゾルバに対しても適用することが可能である。  In addition, a hall element 1410 is attached to the resolver stator core 6441. As the mounting method of the Hall element 1410, the one shown in Embodiment 1 and S can be adopted. That is, the detection member fixing structure according to the present invention can be applied not only to a rotating electric machine but also to a resolver.
今回開示された実施の形態はすべての点で例示であって制限的なものではない と考えられるべきである。 本発明の範囲は上記した説明ではなくて請求の範囲に よって示され、 請求の範囲と均等の意味および範囲内でのすべての変更が含まれ ることが意図される。 Embodiment disclosed this time is an illustration and restrictive at no points. Should be considered. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

Claims

請求の範囲 The scope of the claims
1. 半径方向に延びる複数のティース部 (131 1) を有するステータコア (1 3 10) と、 1. a stator core (1 3 10) having a plurality of teeth (131 1) extending in a radial direction;
隣り合うティース部 (13 1 1) の間に位置決めされてロータ (1210) の 回転を検出する検出部材 (1410) と、  A detection member (1410) positioned between adjacent teeth (13 1 1) to detect rotation of the rotor (1210);
前記ティース部 (131 1) 間に前記検出部材 (1410) をモールドするモ 一ルド部材 (1330) とを備えた、 検出部材の固定構造。  A detection member fixing structure comprising: a mold member (1330) for molding the detection member (1410) between the teeth (131 1).
2. 請求の範囲 1に記載の検出部材の固定構造を備えた回転電機 (21 6) と、 前記回転電機 (216) に接続されるコンプレッサホイール (206) および タービンホイール (208) とを備えた、 電動過給機。  2. A rotating electrical machine (21 6) provided with the detection member fixing structure according to claim 1, and a compressor wheel (206) and a turbine wheel (208) connected to the rotating electrical machine (216) Electric supercharger.
3. 前記ティース部 (13 1 1) の間のス口ット部を前記モールド部材 (133 0) が充填しており、 ロータ (1 210) に向かい合う前記モールド部材 (13 30) の内周面と、 ロータ (1 2 10) に向かい合う前記ティース部 (1 3 1 1) の内周面とは同一面を構成している、 請求の範囲 1に記載の検出部材の固定 構造。  3. The mold member (133 0) fills the spout between the teeth (13 1 1), and the inner peripheral surface of the mold member (13 30) facing the rotor (1 210) The detection member fixing structure according to claim 1, wherein an inner peripheral surface of the teeth portion (1 3 1 1) facing the rotor (1 2 10) forms the same surface.
4. 半径方向に延びる複数のティース部を有するステータコア (1310) と、 ロータ (1210) に向かい合う前記ティース部 (13 1 1) の内周面に当接 して前記ロータ (1210) を取囲む筒状の保持部材 (1400) と、  4. A stator core (1310) having a plurality of teeth extending in the radial direction, and a cylinder surrounding the rotor (1210) in contact with the inner peripheral surface of the teeth (13 1 1) facing the rotor (1210) Shaped holding member (1400),
前記保持部材 (1400) に保持されて隣り合うティース部 (131 1) 間に 位置決めされ前記ロータ (1 210) の回転を検出する検出部材 (1410) と を備えた、 検出部材の固定構造。  A detection member fixing structure comprising: a detection member (1410) which is held between the adjacent tooth portions (131 1) and is detected by the holding member (1400) and which detects the rotation of the rotor (1210).
5. 前記保持部材 (1400) の熱膨張係数は前記ステータコア (13 10) の 熱膨張係数よりも大きいか同じである、 請求の範囲 4に記載の検出部材の固定構 造。  5. The detection member fixing structure according to claim 4, wherein a thermal expansion coefficient of the holding member (1400) is greater than or equal to a thermal expansion coefficient of the stator core (13 10).
6. 前記保持部材 (1400) の前記ロータ (1210) に向かい合う内周面は 凹凸がなく平滑な面である、 請求の範囲 4に記載の検出部材の固定構造。  6. The detection member fixing structure according to claim 4, wherein an inner peripheral surface of the holding member (1400) facing the rotor (1210) is a smooth surface without unevenness.
7. 半径方向に延びる複数のティース部 (131 1) を有するステータコア (1 3 10) と、 複数のティース部 (13 1 1) の間に挿入される回転軸方向に延びる複数の爪 部 (1402) と、 複数の爪部 (1402) を結合する環状部 (1407) とを 有する保持部材 (1400) と、 7. a stator core (1 3 10) having a plurality of teeth (131 1) extending in the radial direction; A holding member having a plurality of claw portions (1402) inserted between the plurality of teeth portions (13 1 1) and extending in the rotation axis direction, and an annular portion (1407) connecting the plurality of claw portions (1402) 1400)
前記保持部材 (1400) に保持されて前記ロータ (1210) の回転を検出 する検出部材 (1410) とを備えた、 検出部材の固定構造。  A detection member fixing structure comprising: a detection member (1410) which is held by the holding member (1400) and detects the rotation of the rotor (1210).
8. 複数の爪部 (1402) の各々は隣接するティース部 (131 1) に当接し て前記ティース部間のスロッ ト部を封止する、 請求の範囲 7に記載の検出部材の 固定構造。  8. The detection member fixing structure according to claim 7, wherein each of the plurality of claw portions (1402) abuts on an adjacent tooth portion (131 1) to seal a slot portion between the tooth portions.
PCT/JP2007/057726 2006-04-04 2007-03-30 Fixing structure for detection member and electric supercharger WO2007116956A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-103328 2006-04-04
JP2006103328A JP2007282336A (en) 2006-04-04 2006-04-04 Structure of fixing detecting member and electric supercharger

Publications (1)

Publication Number Publication Date
WO2007116956A1 true WO2007116956A1 (en) 2007-10-18

Family

ID=38581236

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/057726 WO2007116956A1 (en) 2006-04-04 2007-03-30 Fixing structure for detection member and electric supercharger

Country Status (2)

Country Link
JP (1) JP2007282336A (en)
WO (1) WO2007116956A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2214296A1 (en) * 2009-02-03 2010-08-04 Robert Bosch Gmbh Electronically communated motor assembly
CN102903843A (en) * 2012-09-29 2013-01-30 上海航天汽车机电股份有限公司传感器分公司 Hall chip location device
WO2014040651A1 (en) * 2012-09-17 2014-03-20 Pierburg Pump Technology Gmbh Electrical split-cage or canned coolant pump
CN105720761A (en) * 2016-04-09 2016-06-29 哈尔滨工业大学 Block type iron core winding method of compact permanent magnet brushless motor
CN105720709A (en) * 2016-04-09 2016-06-29 哈尔滨工业大学 Stator structure of compact permanent magnet brushless structure
EP2244358A4 (en) * 2008-03-13 2017-02-22 Nidec Corporation Motor

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010035287A (en) * 2008-07-25 2010-02-12 Hitachi Ltd Cylindrical linear motor, and electromagnetic suspension and motor-driven power steering device using the same
JP5599368B2 (en) * 2011-06-08 2014-10-01 三菱電機株式会社 Motor rotor structure of electric turbocharger and its assembly method
JP2015080355A (en) * 2013-10-18 2015-04-23 株式会社一宮電機 Brushless motor
WO2024070367A1 (en) * 2022-09-29 2024-04-04 株式会社Ihi Supercharger

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5849074A (en) * 1981-09-16 1983-03-23 Shibaura Eng Works Co Ltd Brushless motor
JPS61280753A (en) * 1985-06-05 1986-12-11 Toshiba Corp Variable speed permanent magnet motor
JPS6257576U (en) * 1985-09-27 1987-04-09
JPH01313626A (en) * 1988-06-10 1989-12-19 Isuzu Motors Ltd Driving device for turbocharger equipped with rotary electric machine
JPH04289759A (en) * 1991-03-18 1992-10-14 Matsushita Electric Ind Co Ltd Brushless motor
JPH10243596A (en) * 1997-02-25 1998-09-11 Toshiba Corp Motor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5849074A (en) * 1981-09-16 1983-03-23 Shibaura Eng Works Co Ltd Brushless motor
JPS61280753A (en) * 1985-06-05 1986-12-11 Toshiba Corp Variable speed permanent magnet motor
JPS6257576U (en) * 1985-09-27 1987-04-09
JPH01313626A (en) * 1988-06-10 1989-12-19 Isuzu Motors Ltd Driving device for turbocharger equipped with rotary electric machine
JPH04289759A (en) * 1991-03-18 1992-10-14 Matsushita Electric Ind Co Ltd Brushless motor
JPH10243596A (en) * 1997-02-25 1998-09-11 Toshiba Corp Motor

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2244358A4 (en) * 2008-03-13 2017-02-22 Nidec Corporation Motor
EP3402052A1 (en) * 2008-03-13 2018-11-14 Nidec Corporation Motor
EP2214296A1 (en) * 2009-02-03 2010-08-04 Robert Bosch Gmbh Electronically communated motor assembly
WO2014040651A1 (en) * 2012-09-17 2014-03-20 Pierburg Pump Technology Gmbh Electrical split-cage or canned coolant pump
US10415568B2 (en) 2012-09-17 2019-09-17 Pierburg Pump Technology Gmbh Electrical split-cage or canned coolant pump
CN102903843A (en) * 2012-09-29 2013-01-30 上海航天汽车机电股份有限公司传感器分公司 Hall chip location device
CN105720761A (en) * 2016-04-09 2016-06-29 哈尔滨工业大学 Block type iron core winding method of compact permanent magnet brushless motor
CN105720709A (en) * 2016-04-09 2016-06-29 哈尔滨工业大学 Stator structure of compact permanent magnet brushless structure
CN105720709B (en) * 2016-04-09 2017-12-22 哈尔滨工业大学 A kind of stator structure of compact permanent magnetic brushless

Also Published As

Publication number Publication date
JP2007282336A (en) 2007-10-25

Similar Documents

Publication Publication Date Title
WO2007116956A1 (en) Fixing structure for detection member and electric supercharger
US8393152B2 (en) Electric supercharger
CN101310094B (en) Compressor casing for an exhaust gas turbocharger
KR900001291B1 (en) Auxiliary apparatus for internal combustion engine
US4769993A (en) Turbocharger for internal combustion engines
JP4635924B2 (en) Intake module
JP6890567B2 (en) Supercharger for combustion engine
JP4239723B2 (en) A drive system including a generator motor and a computer-readable recording medium storing a program for causing a computer to control the generator motor
JP4720517B2 (en) Electric turbocharger
JP2008115752A (en) Control device for electric supercharger
JP4407288B2 (en) Supercharger position detection device
EP1357275A1 (en) Modelling of the thermal behaviour of a switched reluctance motor driving a supercharger of an internal combustion engine
JP4165598B2 (en) Electric turbocharger
JP2001303986A (en) Motor-driven throttle valve assembly, torque motor assembly and its manufacturing method
JP2012062777A (en) Electric supercharger
JP4654981B2 (en) Fixed structure of magnetic flux detection element
JP2008063974A (en) Electric supercharger
JPS61237830A (en) Turbo-charger for internal-combustion engine
JP5606562B2 (en) Electric supercharger control device
KR20170128316A (en) Rotor of an electric rotating machine with permanent magnets
WO2024070367A1 (en) Supercharger
JPH0544536B2 (en)
JP4735427B2 (en) Control device for internal combustion engine
JP2005086947A (en) Control unit of electric motor
JP2008121477A (en) Electric supercharger

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07741162

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07741162

Country of ref document: EP

Kind code of ref document: A1