WO2007116803A1 - Optical organic/inorganic composite material and optical element - Google Patents

Optical organic/inorganic composite material and optical element Download PDF

Info

Publication number
WO2007116803A1
WO2007116803A1 PCT/JP2007/056849 JP2007056849W WO2007116803A1 WO 2007116803 A1 WO2007116803 A1 WO 2007116803A1 JP 2007056849 W JP2007056849 W JP 2007056849W WO 2007116803 A1 WO2007116803 A1 WO 2007116803A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
composite material
organic
fine particles
inorganic composite
Prior art date
Application number
PCT/JP2007/056849
Other languages
French (fr)
Japanese (ja)
Inventor
Masako Kikuchi
Hideaki Wakamatsu
Original Assignee
Konica Minolta Opto, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Opto, Inc. filed Critical Konica Minolta Opto, Inc.
Publication of WO2007116803A1 publication Critical patent/WO2007116803A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics

Definitions

  • the present invention relates to an optical organic-inorganic composite material in which inorganic fine particles are dispersed in a thermoplastic resin and an optical element composed of the optical organic-inorganic composite material.
  • optical pickup devices such as players, recorders, and drives that read and record information on optical information recording media such as MO, CD, and DVD are equipped with optical pickup devices.
  • the optical pickup device includes an optical element unit that irradiates an optical information recording medium with light having a predetermined wavelength emitted from a light source, and receives the reflected light with a light receiving element.
  • the optical element unit receives the light as optical information.
  • the reflective layer of the recording medium has an optical element such as a lens for condensing light by the light receiving element.
  • the optical element of the optical pickup device is preferably made of plastic as a material because it can be manufactured at low cost by means such as injection molding.
  • a plastic applicable to an optical element a copolymer of cyclic olefin and ⁇ -age refin (for example, Patent Document 1) is known.
  • An optical element unit using plastic as a material is required to be a substance having optical stability such as a glass lens.
  • optical plastic materials such as annular olefins have significantly improved the change in refractive index due to water absorption, which is extremely low in water absorption compared to conventional plastics for lenses.
  • temperature dependence of the optical properties has not been solved yet, and the temperature dependence of the refractive index is currently more than an order of magnitude larger than that of inorganic glass.
  • Patent Document 2 As a method for reducing the temperature dependence I dn / dT I of the refractive index, an optical in which fine particles with dnZdT> 0 are dispersed in a polymeric host material with dn / dT ⁇ 0 is described. A product has been proposed. Also, Patent Document 3, 0 ⁇ I dn / dT I ⁇ 5. Satisfy 0 X 10- 5, a thermoplastic ⁇ material inorganic fine particles are dispersed is proposed, Ru.
  • Patent Document 1 JP 2002-105131 A (Page 4)
  • Patent Document 2 Japanese Patent Laid-Open No. 2002-207101 (Claims)
  • Patent Document 3 Japanese Patent Application Laid-Open No. 2005-325349 (Claims)
  • optical pickup devices have been developed to shorten the wavelength of a laser light source used as a light source for reproducing information recorded on an optical disk or recording information on an optical disk.
  • Laser light sources with a wavelength of 405 nm such as blue-violet semiconductor lasers and blue-violet SHG lasers that perform wavelength conversion of infrared semiconductor lasers using second harmonic generation are being put into practical use.
  • the object of the present invention is to sufficiently improve the temperature dependence of the optical characteristics while using a thermoplastic resin that can produce an optical element at a lower cost than a glass material, and to shorten the wavelength around 405 nm. It is to provide an organic / inorganic composite material for optical use that is excellent in light transmittance with respect to the light and an optical element using the composite material.
  • the first aspect of the present invention provides:
  • the refractive index n and the refractive index n satisfy the conditions defined by the following formulas (1) to (3), and m p
  • the temperature change rate of the refractive index of the organic / inorganic composite material for optics is dn ZdT
  • the temperature change rate dn ZdT satisfies the condition defined by the following formula (4)!
  • the volume fraction of the inorganic fine particles occupying in the optical organic-inorganic composite material is ⁇
  • the volume fraction ⁇ preferably satisfies the condition defined by the following formula (5).
  • the inorganic fine particles are composite oxide particles in which a key oxide and one or more metal oxides other than the key are combined.
  • the particle size of D of the inorganic fine particles is X (nm), and the particle size of D of the inorganic fine particles is Y
  • the particle diameters X and Y preferably satisfy the conditions defined by the following formulas (6) and (7).
  • the distribution function of inorganic fine particles dG F (D) X dD (G is the number of particles, D is the particle size) is integrated to 0.5 (50 number%) and 0.9 (90 number%) of the total number of particles. Each shows an equal particle size.
  • the thermoplastic resin preferably has a cyclic olefin structure.
  • the second aspect of the present invention is: An optical element formed using the above-mentioned organic / inorganic composite material for optics, and condensing the light beam in an optical pickup device that reproduces and / or records information using a light beam having a wavelength of 390 to 420 nm. It is characterized by being used for
  • the optical element is preferably an objective lens!
  • the temperature dependence of optical properties is sufficiently improved while using a thermoplastic resin capable of producing an optical element at a lower cost than a glass material, and a short wavelength near 405 nm. It is possible to provide an organic-inorganic composite material for optics that is excellent in light transmittance with respect to the above light and an optical element using the composite material (see Examples 1 and 2 below). Brief Description of Drawings
  • FIG. 1 is a schematic diagram showing an internal structure of an optical pickup device 1.
  • the optical organic-inorganic composite material according to the present invention is a material in which inorganic fine particles are dispersed in a thermoplastic resin, and the optical element according to the present invention is obtained by molding the optical organic-inorganic composite material. .
  • thermoplastic resin thermoplastic resin
  • inorganic fine particles inorganic fine particles
  • C additives constituting the optical organic-inorganic composite material
  • the thermoplastic resin is a host material in the optical organic-inorganic composite material according to the present invention.
  • the thermoplastic resin satisfies the above formula (1), and as the composite material, the above-described formula (2) to If it can satisfy (4) (see below), it can be arbitrarily selected from transparent thermoplastic resins generally used as optical materials.
  • the thermoplastic resin may be acrylic resin, cyclic olefin resin, polycarbonate resin, polyester resin, polyether resin, polyamide resin or polyimide resin. Particularly preferred is a preferred cyclic olefin. Specific examples include compounds described in JP-A-2003-73559, and preferred compounds are shown in Table 1 below.
  • thermoplastic resin has a moisture absorption rate from the viewpoint of dimensional stability as an optical material.
  • Polyolefin resin polyethylene, polypropylene
  • fluororesin polytetrafluoroethylene
  • Teflon registered trademark
  • AF DuPont
  • cyclic olefin resin Japan
  • ZEON ZEONEX
  • Mitsui Chemicals APEL
  • JSR Aton
  • Chicona TOPAS
  • Inden Z styrene resin polycarbonate resin, etc.
  • the water absorption rate is considered to be substantially the same as the average value of the water absorption rate in each individual resin, and the average water absorption rate is 0. It should be less than 2%.
  • the inorganic fine particles dispersed in the thermoplastic resin are not particularly limited as long as they satisfy the above (2) and can satisfy the above formulas (1), (3) and (4) as a composite material. (See below).
  • I dn / dT I of the organic / inorganic composite material for optics it is necessary to appropriately select and Z or design thermoplastic resin and inorganic fine particles. / Will be described later.
  • the inorganic fine particles are appropriately selected from oxide fine particles, metal salt fine particles, semiconductor fine particles and the like that do not absorb, emit, emit fluorescence, or the like in the wavelength region used as an optical element. Can be used.
  • a key oxide hereinafter referred to as “silica”
  • one or more metal oxides other than key are complexed. It is preferable to have composite oxide particles U ⁇
  • the metals constituting the metal oxide other than silicon include Li, Na, Mg, Al, K :, Ca, Sc, Ti, V, Cr, Mn. , Fe, Co, Ni, Cu, Zn, Rb, Sr, Y, Nb, Zr, Mo, Ag, Cd, In, Sn, Sb, Cs, Ba, La, Ta, Hf, W, Ir, Tl, Pb , Bi, and rare earth metals.
  • oxides in which silica and metal oxides such as Al, Ti, Nb, Zr, Y, W, La, Gd, and Ta are combined are more preferable.
  • the composition distribution of the composite oxide particles is not particularly limited, and silica and other metal oxides may be dispersed substantially uniformly or may form a core shell.
  • silica and other metal oxides when the silica and other metal oxides are averagely distributed without being localized, there is no refractive index distribution in the inorganic fine particles, and in the inorganic fine particles. In view of the ability to suppress light scattering, it is more preferable that silica and other metal oxides are distributed on the average in the composite oxide particles.
  • Silica and other metal oxides constituting the composite oxide particles may each exist as crystals or may be amorphous.
  • the content ratio of the silica and the metal oxide other than silica can be arbitrarily determined according to the type of metal oxide and the refractive index value of the inorganic fine particles to be produced.
  • the inorganic fine particles dispersed in the thermoplastic resin in the optical organic-inorganic composite material may be one kind of inorganic fine particles as long as the light transmittance is not lowered. Use several types of inorganic fine particles together. By using a plurality of types of inorganic fine particles having different properties, the optical properties required for the optical element can be improved more efficiently.
  • the optical organic-inorganic composite material according to the present invention has a wavelength of 390 ⁇ !
  • the average particle size of the inorganic fine particles had to be 50 nm or less.
  • the dispersion of the inorganic fine particles into the thermoplastic resin may be difficult and the desired performance may not be obtained.
  • the diameter is preferably from 1 to 50 nm, more preferably from 1 to 30 nm.
  • the “average particle diameter” here is a volume average value of diameters (sphere converted particle diameters) when each inorganic fine particle is converted into a sphere having the same volume.
  • the shape of the inorganic fine particles is not particularly limited, but spherical inorganic fine particles are preferably used.
  • the minimum diameter of the inorganic fine particles (minimum value of the distance between the tangents when drawing two tangents in contact with the outer periphery of the inorganic fine particles)
  • Z maximum diameter (the two tangents in contact with the outer periphery of the inorganic fine particles)
  • the maximum value of the distance between the tangents in the case of drawing is preferably 0.5 to 1.0, and more preferably 0.7 to 1.0! / ⁇ .
  • the inorganic fine particles are preferably subjected to a surface treatment.
  • the surface treatment method for inorganic fine particles include surface treatment with a surface modifier such as a coupling agent, polymer grafting, and surface treatment with a mechanochemical.
  • Examples of the surface modifier used for the surface treatment of inorganic fine particles include silane coupling agents, silicone oil-based, titanate-based, aluminate-based and zirconate-based coupling agents. These are not particularly limited, but can be appropriately selected depending on the types of inorganic fine particles and thermoplastic resin. Also, two or more different types The above surface treatment may be performed simultaneously or at different times.
  • Examples of the silane coupling agent include bursilazane trimethylchlorosilane, dimethyldichlorosilane, methyltrichlorosilane, trimethylalkoxysilane, dimethyldialkoxysilane, methyltrialkoxysilane, and hexamethyldisilazane. Hexamethyldisilazane or the like is preferably used to cover the surface of the fine particles widely.
  • silicone oil coupling agent examples include straight silicone oils such as dimethyl silicone oil, methyl phenyl silicone oil, and methyl hydrogen silicone oil, amino-modified silicone oil, epoxy-modified silicone oil, and carboxy-modified silicone oil.
  • Alkyl modified silicone oil, higher fatty acid ester modified silicone oil, hydrophilic special modified silicone oil, higher alkoxy modified silicone oil N'oiru it is possible to use a higher fatty acid containing modified silicone oil and modified silicone oil and fluorine-modified silicone oil.
  • These surface treatment agents may be appropriately diluted with hexane, toluene, methanol, ethanol, acetone, water, or the like.
  • Examples of the surface treatment with the surface modifier include a wet heating method, a wet filtration method, a dry stirring method, an integral blend method, and a granulation method.
  • the dry stirring method is preferably used from the viewpoint of suppressing particle aggregation, but is not limited thereto.
  • the surface-modified inorganic fine particles obtained depending on the surface-modifying agent used may have different properties, and the surface-modifying agent is selected for the affinity with the thermoplastic resin used in obtaining the organic / inorganic composite material for optics. It is also possible to plan.
  • the ratio of the surface modification is not particularly limited, but the ratio of the surface modifier is preferably in the range of 10 to 99 mass% with respect to the inorganic fine particles after the surface modification. Must be in the mass% range More preferred ,.
  • additives hereinafter also referred to as compounding agents
  • compounding agents can be added as needed during the production process and the molding process of the organic / inorganic composite material for optics.
  • the additive is not particularly limited, but mainly includes plasticizers, antioxidants, light stabilizers, etc.
  • heat stabilizers, weather stabilizers, ultraviolet absorbers, Stabilizers such as near-infrared absorbers; grease modifiers such as lubricants; anti-clouding agents such as soft polymers and alcoholic compounds; colorants such as dyes and pigments; antistatic agents, flame retardants, and fillers Can be mentioned.
  • These compounding agents can be used alone or in combination of two or more, and the compounding amount is appropriately selected within a range not impairing the effects described in the present invention.
  • the thermoplastic resin contains at least a plasticizer or an antioxidant.
  • the plasticizer is not particularly limited, but is a phosphate ester plasticizer, a phthalate ester plasticizer, a trimellitic ester plasticizer, a pyromellitic acid plasticizer, a glycolate plasticizer, a ken Examples include acid ester plasticizers and polyester plasticizers.
  • Phosphate ester plasticizers include triphenyl phosphate, tricresyl phosphate, cresyl diphenyl phosphate, octyl diphenyl phosphate, diphenyl benzoyl phosphate, trioctyl phosphate, tributyl phosphate, etc.
  • Acid ester plasticizers include jetyl phthalate, dimethoxyethyl phthalate, dimethyl phthalate, dioctyl phthalate, dibutyl phthalate, di-2-ethyl hexyl phthalate, butyl benzyl phthalate, diphenyl phthalate, and dicyclohexyl.
  • glycolate plasticizers such as lauryl pyromellitate, tetraethyl pyromellitate, etc.
  • ester plasticizers examples thereof include extensivelye, tri-n-butyl citrate, acetyl acetyl citrate, acetyl nitrile n-butyl citrate, acetyl acetyl n- (2-ethyl hexyl) citrate and the like.
  • antioxidants examples include phenolic antioxidants, phosphorus antioxidants, phenolic antioxidants, etc. Among them, phenolic antioxidants, especially alkyl-substituted phenolic agents. Antioxidants are preferred. By blending these antioxidants, it is possible to prevent the coloring and strength of the optical element from being deteriorated due to oxidative degradation during molding without lowering transparency, heat resistance and the like.
  • the anti-oxidation agent can be used alone or in combination of two or more, and the blending amount thereof is appropriately selected within a range not impairing the object of the present invention. A range of 0.001 to 5 parts by mass is preferable with respect to parts by mass, and a range of 0.01 to 1 parts by mass is more preferable.
  • phenolic acid rust inhibitor conventionally known ones can be used, such as 2-t petit lu 6- (3-t-butyl-2 hydroxy-5-methylbenzyl) -4-methylphenol acrylate. 2, 4 di-t-amyl 6- (1- (3,5 di-t-amyl 2-hydroxyphenol) ethyl) furatrate, etc.
  • JP-A 63-179953 1 Atallate compounds described in Japanese Patent No.
  • Phosphorus antioxidants include triphenyl phosphite, diphenyl isodecyl phosphite, ferrodiisodecyl phosphite, tris (norphenol) phosphite, tris (dinolephenol).
  • tris (norfol) phosphite, tris (dinolfol) phosphite, and tris (2,4 di-tert-butylphenol) phosphite are preferred for monophosphite compounds. Etc. are particularly preferred.
  • antioxidative agent for diacids examples include dilauryl 3,3 thiodipropionate, dimyristyl 3,3'-thiodipropionate, distearyl 3,3-thiodipropionate, lauryl stearyl 3,3 Thiodipropionate, pentaerythritol-tetrakis— (—lauryl thiopropionate), 3, 9 bis (2 dodecylthioethyl) 2, 4, 8, 10 -tetraoxaspiro [5, 5] undecane, etc. Is mentioned.
  • the light-resistant stabilizer examples include benzophenone-based light-resistant stabilizer, benzotriazole-based light-resistant stabilizer, hindered amine-based light-resistant stabilizer, and the like.
  • hindered amine it is preferable to use a light-resistant stabilizer.
  • HALS hindered amine light-resistant stabilizers
  • molecular weight in terms of polystyrene by liquid chromatography using tetrahydrofuran as a solvent Mn force i 000 to 10,000 The power of 2,000 to 5,000 is more like a girl, and those of 2,800 to 3,800 are particularly preferred.
  • Mn is too small, when HALS is blended by heat-melting and kneading it into a thermoplastic resin, it will not volatilize due to volatilization, or foaming or silver streaks will occur during heat-melt molding such as injection molding. This is because the problem arises when the stability of Caloe is reduced.
  • the optical element Force is also generated as gas from volatile components. For this reason, when Mn is too large, the dispersibility in the thermoplastic resin is lowered, the transparency of the optical element is lowered, and the effect of improving the light resistance is reduced. Therefore, by setting the HALS Mn within the above range, an optical element excellent in processing stability, low gas generation property and transparency can be obtained.
  • the HALS includes N, ⁇ ', N g, N' "—tetrakis [4, 6 bis ( ⁇ butyl — (N-methyl 2, 2, 6, 6-tetramethylpiperidine 1 4- 4) 7) Diazadecane 1, 10 Diamine, Dibutylamine, 1, 3, 5 Triazine, N, N 'Bis (2, 2, 6, 6-tetramethyl-4-piperidyl) butyramine Polycondensate with poly [ ⁇ (1, 1, 3, 3-tetramethylbutyl) amino-1, 3,5 triazine 1, 2,4 dil ⁇ ⁇ (2, 2, 6, 6-tetramethyl-1, 4 Piperidyl) imino ⁇ hexamethylene ⁇ (2,2,6,6-tetramethyl-1-piperidyl) imino ⁇ ], 1,6-hexanediamin-1 N, N'-bis (2,2,6,6-tetramethyl- 4 Piperidyl) and polycondensate of morpholine-2, 4, 6 trichloro 1, 3, 5
  • the compounding amount of the above-mentioned various additives with respect to the optical organic-inorganic composite material is preferably in the range of 0.01 to 20 parts by mass with respect to 100 parts by mass of the thermoplastic resin. More preferably, the content is in the range of 0.05 to 10 parts by mass. This is because if the addition amount is too small, the effect of improving the light resistance cannot be sufficiently obtained. Therefore, when used as an optical element such as a lens, coloring occurs due to irradiation with a laser or the like, and the blending amount of HALS is large. If the amount is too much, a part of the gas is generated as a gas, and the dispersibility of the additive in the thermoplastic resin is reduced, so that the transparency of the optical element is lowered.
  • optical organic-inorganic composite material manufacturing method (and optical element manufacturing method)
  • the optical organic-inorganic composite material according to the present invention has an average particle diameter of 50 nm in the host material made of thermoplastic resin as described above. Obtained by dispersing the following inorganic fine particles
  • the manufacturing method is not particularly limited.
  • a method for producing an optical organic-inorganic composite material a method of forming a composite by polymerizing thermoplastic resin in the presence of inorganic fine particles, and formation of inorganic fine particles in the presence of thermoplastic resin.
  • a method of compounding a method of compounding inorganic fine particles in a liquid that becomes a solvent for thermoplastic resin, and then removing the solvent, and preparing inorganic particles and thermoplastic resin separately, Any method such as a method of compounding by melt kneading, melt kneading in a state containing a solvent, or the like may be applied.
  • melt-kneading method it is preferable to use a melt-kneading method from the viewpoint of reducing the amount of volatile substances used.
  • Laboplast Mill, Brabender, Banbury Examples include closed kneaders or batch kneaders such as single mixers, kneaders and rolls, and it is also possible to use continuous melt kneaders such as single screw extruders and twin screw extruders. is there.
  • the melt kneading method When used as a method for producing an optical organic-inorganic composite material, the raw material thermoplastic resin and inorganic fine particles may be added and kneaded all at once, or added in stages. And may be kneaded.
  • a continuous melt-kneading apparatus such as an extruder, it is possible to add components to be added stepwise from the middle of the cylinder.
  • thermoplastic resin and inorganic fine particles in a divided manner may be a method in which one component is added in several portions! /, And one component is added all at once. It may be a method of adding other different components in stages, or a method combining these methods.
  • melt kneading method when used as a method for producing an optical organic-inorganic composite material, a component (inorganic) that has not been previously added with components other than the thermoplastic resin after kneading the thermoplastic resin in advance. Fine particles, additives, etc.) are added, and further melt-kneaded. In this case as well, these inorganic fine particles, additives and the like may be added all at once and kneaded, and may be added in stages and kneaded.
  • the above-described inorganic fine particles can be added in a powdered or aggregated state.
  • various dispersion treatment machines such as a bead mill disperser, an ultrasonic disperser, a high-speed agitation disperser, and a high-pressure disperser are applicable, and a bead mill disperser is preferably used. it can.
  • a bead mill disperser zirconia beads such as zirconia beads and glass beads can be preferably used.
  • the diameter of the beads to be used is within a range of 0.001 to 0.1 mm, which is preferably a small diameter.
  • the melt-kneading process is selected from among inert gases such as nitrogen, helium, neon, argon, krypton, and xenon. It is preferable to carry out in an atmosphere of one kind of gas or a mixture of two or more kinds of gases.
  • the gas used during the melt-kneading process may be a general gas such as carbon dioxide, ethylene gas, or hydrogen gas, or a gas that is not reactive with the material to be kneaded (the material to be kneaded). If so, it may be used by mixing with the inert gas described above.
  • thermoplastic resin or inorganic fine particles it is difficult to completely eliminate the influence including oxygen adsorbed on thermoplastic resin or inorganic fine particles, so the amount of oxygen in the reaction system is suppressed to 1% or less. It is more preferable to suppress it to 0.2% or less. This is because coloring occurs at the same time as the thermoplastic resin deteriorates due to the oxygen-oxidation reaction with oxygen.
  • optical element according to the present invention can be manufactured by molding the optical organic-inorganic composite material as described above.
  • the molding method is not particularly limited, but in order to obtain a molded product excellent in characteristics such as low birefringence, mechanical strength, and dimensional accuracy, a melt molding method is applied as the molding method. It is preferable to do this.
  • the melt molding method include commercially available press molding, commercially available extrusion molding, and commercially available injection molding. From the viewpoint of moldability and productivity, it is preferable to apply injection molding.
  • the molding conditions in the molding process are appropriately selected depending on the purpose of use or the molding method, but the temperature of the organic / inorganic composite material for optics in the injection molding imparts appropriate fluidity to the thermoplastic resin during molding. This prevents the occurrence of silver streaks due to the thermal decomposition of the thermoplastic resin as well as the occurrence of sink marks and distortions in the molded product, and further, the yellowing of the molded product is effective. From the standpoint of preventing it, it is preferable to be in the range of 150 to 400 ° C, more preferably in the range of 200 to 350 ° C, and particularly preferably in the range of 200 to 330 ° C. . (E) Properties of optical organic-inorganic composite materials
  • the optical organic-inorganic composite material according to the present invention has, as one characteristic, a refractive index n and a refractive index n of the following formula (n) where n is the refractive index of the thermoplastic resin and n is the refractive index of the inorganic fine particles.
  • the temperature change rate dn ZdT satisfies the following formula (4): It has the characteristics of
  • thermoplastic resin and inorganic fine particles are the light m p of wavelength 405 nm.
  • the "temperature change rate dn ZdT" of the refractive index of the organic-inorganic composite material for optics is obtained when the sample temperature is changed from 23 ° C to 60 ° C using a light source with a wavelength of 405 ⁇ m. It means the rate of change of refractive index.
  • the refractive index n of the thermoplastic resin and the refractive index of the organic organic-inorganic composite material can be measured using a known refractometer, for example, an Abbe refractometer (DR-M2 manufactured by Atago Co., Ltd.) It can be measured using a refractometer (KPR-200 manufactured by Cal-U Optical Co., Ltd.) or the like.
  • a known refractometer for example, an Abbe refractometer (DR-M2 manufactured by Atago Co., Ltd.) It can be measured using a refractometer (KPR-200 manufactured by Cal-U Optical Co., Ltd.) or the like.
  • the refractive index for light with a wavelength of 405 nm is clear.
  • thermoplastic resin satisfying 1.5 ⁇ n and inorganic fine particles satisfying 1.5 ⁇ n m p
  • the optical organic-inorganic composite material according to the present invention is characterized by satisfying all the conditions defined by the above formulas (1) to (3).
  • optical organic-inorganic composite material satisfies the condition defined by the above formula (3)
  • an optical pickup device using a blue-violet laser light source as an optical element composed of the optical organic-inorganic composite material is used. Even when it was used as an optical element, it was found that the optical element did not deteriorate in light transmission.
  • the content of the inorganic fine particles in the optical organic-inorganic composite material is not particularly limited as long as the effects of the present invention can be exerted, and the thermoplastic resin and the inorganic fine particles are not limited. It can be arbitrarily determined according to the type.
  • the volume fraction ⁇ of the inorganic fine particles occupying is preferably 0.25 or more, more preferably 0.3 or more! /.
  • the content of inorganic fine particles is high! In this case, it may be difficult to add inorganic fine particles to the thermoplastic resin, or the optical organic / inorganic composite material may be hard and kneading or molding may be difficult, or the specific gravity of the optical organic / inorganic composite material may be increased.
  • the volume fraction ⁇ of the inorganic fine particles in the optical organic-inorganic composite material is preferably 0.5 or less, and more preferably 0.4 or less. .
  • the optical organic-inorganic composite material according to the present invention has, as another characteristic, when the volume fraction of inorganic fine particles in the optical organic-inorganic composite material is ⁇ , the volume fraction ⁇ is It is more preferable to satisfy the condition specified by the following formula (5). It is more preferable to satisfy the condition specified by the following formula (5.1).
  • thermoplastic resin greatly affects the physical properties of the optical organic / inorganic composite material.
  • the optical organic-inorganic composite material preferably has a water absorption rate of 0.2% by mass or less for thermoplastic resin as another characteristic, more preferably 0.1% by mass or less. preferable.
  • the degree of mixing of the thermoplastic resin and the inorganic fine particles is not particularly limited, but the optical organic / inorganic composite material has other characteristics such as D of the inorganic fine particles.
  • the particle size is X (nm) and the particle size of D is Y (nm)
  • the particle size X is X (nm)
  • Y preferably satisfy the conditions defined by the following formulas (6), (7).
  • the above “D” is the fraction of inorganic fine particles contained in the optical organic-inorganic composite material.
  • Integral force of cloth function dG F (D) X dD (G is the number of particles, D is the particle size).
  • the above “D” represents the distribution of inorganic fine particles contained in the organic / inorganic composite material for optics.
  • Integral force of the function dG F (D) X dD (G is the number of particles, D is the particle size).
  • D that is, the particle diameter X in the above formula (6) has a wavelength of 390 ⁇ ! ⁇ 420nm
  • the wavelength is 390 nn! ⁇
  • the light transmittance with respect to a light beam of 420 nm it is preferably 30 nm or less, more preferably 20 nm or less, and further preferably 15 nm or less.
  • a method for obtaining the distribution function a section of an optical organic-inorganic composite material in which inorganic fine particles are dispersed in a thermoplastic resin is prepared, a transmission electron micrograph is obtained, and the obtained photograph is used.
  • the method include image analysis and a method using light scattering.
  • the distribution function in the present embodiment is obtained by the X-ray small angle scattering method from the viewpoint of the measurement object, the particle diameter range, and the like.
  • the distribution function is RINT2500ZPC manufactured by Rigaku Corporation as a measuring device (small-angle wide-angle X-ray diffractometer), and the device power obtained is a program for determining the X-ray small-angle scattering curve force particle size distribution. Calculated using NANO-solver Ver3.0 manufactured by Rigaku Corporation.
  • Examples of the means satisfying the conditions defined by the above formulas (6) and (7) include a method of appropriately mixing the inorganic fine particles and the thermoplastic resin and the conditions thereof.
  • the method for appropriately modifying the surface of the child may be selected.
  • kneading energy is defined as a value obtained by multiplying the torque during kneading by the number of rotations and integrating the time, and changes the heating temperature, rotor (screw) rotation number, kneading time, etc. in the setting conditions during the kneading apparatus. Adjustment is possible.
  • the optical organic-inorganic composite material can be applied to an optical element or the like.
  • the molded product can be used in various forms such as a spherical shape, a rod shape, a plate shape, a columnar shape, a tubular shape, a tubular shape, a fibrous shape, a film or a sheet shape, and has a low birefringence and a transparent shape. , Mechanical strength, heat resistance, and low water absorption, suitable for various optical elements
  • an imaging lens of a camera As a specific application example, as an optical lens or an optical prism, an imaging lens of a camera; a lens such as a microscope, an endoscope, or a telescope lens; an all-light transmission lens such as a spectacle lens CD, CD-ROM, WORM (recordable optical disc), MO (rewritable optical disc; magneto-optical disc), MD (mini disc), DVD (digital video disc) and other optical disc pickup lenses
  • Laser scanning system lenses such as f0 lenses and sensor lenses of laser beam printers; prism lenses of the camera finder system.
  • optical applications include light guide plates such as liquid crystal displays; optical films such as polarizing films, retardation films, and light diffusion films; light diffusion plates; optical cards; liquid crystal display element substrates.
  • an optical element such as a pickup lens or a laser scanning system lens that requires low birefringence.
  • a blue-violet laser light source is used. It is suitably used for an optical element of an optical pickup device.
  • FIG. 1 is a schematic diagram showing the internal structure of the optical pickup device 1.
  • the optical pickup device 1 in the present embodiment includes a semiconductor laser oscillator 2 that is a light source.
  • This semiconductor laser oscillator 2 emits light of 390 to 420 nm as a light beam.
  • a collimator 3, a beam splitter 4, a 1Z4 wavelength plate 5, an aperture 6, and an objective lens 7 are sequentially arranged in a direction away from the semiconductor laser oscillator 2. It is arranged.
  • a sensor lens group 8 and a sensor 9 that also have two sets of lens forces are sequentially arranged in a direction close to the beam splitter 4 and in a direction orthogonal to the optical axis of the blue light described above. Yes.
  • the objective lens 7 as an optical element is disposed at a position facing the optical disc D, and condenses the blue light emitted from the semiconductor laser oscillator 2 on one surface of the optical disc D. It is summer.
  • Such an objective lens 7 is provided with a two-dimensional actuator 10, and the objective lens 7 is movable on the optical axis by the operation of the two-dimensional actuator 10.
  • the optical pickup device 1 in the present embodiment is configured to record information on the optical disc D.
  • blue light is emitted from the semiconductor laser oscillator 2 at the time of reproducing information recorded on the optical disk D.
  • the emitted blue light becomes a light beam L, is transmitted through the collimator 3 and collimated into infinite parallel light, and then transmitted through the beam splitter 4 to pass through the 1Z4 wave plate 5.
  • the beam splitter 4 to pass through the 1Z4 wave plate 5.
  • a focused spot is formed on the information recording surface D via the protective substrate D of the optical disk D.
  • the light that forms the focused spot is changed by the information pits on the information recording surface D of the optical disc D.
  • the objective lens 7 As described above, in the optical pickup device 1, the objective lens 7 as an optical element is used to collect light (light bundle) in the optical pickup device 1.
  • the numerical aperture NA required for the objective lens 7 is also different. In this embodiment, it is a high-density optical disc D, and its numerical aperture is set to 0.85.
  • silica (RX200 manufactured by Nippon Aerosil Co., Ltd., average particle size 12 nm) was simply used as “inorganic fine particles A”.
  • inorganic fine particles B Alumina C (Alumina manufactured by Nippon Aerosil Co., Ltd., average particle size 13 nm) l l. 5 g was put into a 300 cc eggplant flask, depressurized to lOTorr or less, and heated at 190 ° C. for 1 hour. Thereafter, the inside of the Nasflasco was replaced with argon, and 0.7 g of hexamethyldisilazane (HMDS-3 manufactured by Shin-Etsu Chemical Co., Ltd.) was added and stirred well at 300 ° C. for 2 hours. The obtained alumina fine particles were subjected to surface treatment, and the alumina fine particles were designated as “inorganic fine particles B”.
  • HMDS-3 hexamethyldisilazane
  • TMOS tetramethoxysilane
  • pure water 6 43.2g and 26 A mixed solution of 104.8 g% aqueous ammonia was added dropwise over 150 minutes while maintaining the liquid temperature at 25 ° C.
  • the obtained mixed solution was divided into four, and 30 cc / min of a mixed solution of titanium tetraisopropoxide and 40 g of isopropanol was added to each mixed solution.
  • silica Z-titanium composite oxide particles were subjected to surface treatment, and the silica Z-titanium composite oxide particles were designated as “inorganic fine particles C to F”.
  • the inorganic fine particles C to F are different in the amount of titanium tetraisopropoxide used for obtaining the silica Z tita mixed sol, and each inorganic fine particle obtained as a result of TEM observation was obtained.
  • the average particle size of particles C to F is shown in Table 2 below.
  • 112 g of tetraethoxysilane was dissolved in 3200 g of ethanol, and 116 g of 28% aqueous ammonia was added to the solution, and the solution was allowed to stand at room temperature for 24 hours to obtain a particle dispersion.
  • 400 g of water was added to the obtained particle dispersion, ethanol in the particle dispersion was removed at 80 ° C., and then the particle dispersion was treated with cation exchange resin (Amberlite IR1 20BH AG), pH 3 A silica dispersion of 6 was obtained.
  • silica dispersion was divided into four parts, and each silica dispersion was charged with acid salt and zirconium octahydrate in the range of 5g to 40g, and added at 60 ° C.
  • Four types of uniform silica Z zirconia dispersions were obtained by dissolution. Thereafter, each silica Z zirconia dispersion was heated to 100 ° C., heated for 5 hours, and then subjected to ultrafiltration while washing with water to remove the generated hydrochloric acid to obtain a pH 5 dispersion. Thereafter, each silica Z-zircoua dispersion was concentrated while heating at 100 ° C., and 50 ml of liquid was obtained. After adding 50 ml of diethylene glycol, the mixture was further heated to reflux for 10 hours.
  • Ethanol in each silica Z-zirconium dispersion was distilled while 100 ml of each silica Z-zircoua dispersion obtained was charged with methyl ethyl ketone, and finally, four types of methyl ethyl ketone dispersions were obtained.
  • the inorganic fine particles G to J are different in the amount of the acid salt-zirconium octahydrate added to the silica dispersion, and the respective inorganic fine particles G to G obtained from the results of TEM observation were obtained. J flat The average particle size is shown in Table 2 below.
  • Silica Z-alumina composite oxide particles (manufactured by Hosokawa Micron Corporation, average particle size 98 nm) l l. 5 g was placed in a 300 cc eggplant flask, depressurized to less than lOTorr, and heated at 190 ° C for 1 hour. Thereafter, the inside of the eggplant flask was replaced with argon, and hexamethyldisilazane (HMDS-3 manufactured by Shin-Etsu Chemical Co., Ltd.) was stirred well at 0.2 g and 300 ° C for 2 hours. The obtained silica Z-alumina composite oxide particles were subjected to a surface treatment, and the silica Z-alumina composite oxide particles were designated as “inorganic fine particles K”.
  • Cycloolefin resin (APEL5014 manufactured by Mitsui Chemicals) was used as the thermoplastic resin, and inorganic fine particles were used as the inorganic fine particles.
  • Inorganic fine particle A was melt-kneaded with the thermoplastic resin to prepare an organic / inorganic composite material for optical use, and this was designated as “Sample 1”.
  • a lab plast mill (labor plast mill KF-6V manufactured by Toyo Seiki Seisakusho Co., Ltd.) was used as a kneading device, and the above thermoplastic resin and inorganic fine particles A were kneaded for 10 minutes under nitrogen at lOOrpm. Vacuum degassing was performed at 20 Torr for a minute. Further, at the time of the melt kneading, the surface treatment of the inorganic fine particles A was performed by appropriately adding a surface treatment agent.
  • the content of the inorganic fine particles A was such that the volume fraction ⁇ of the inorganic fine particles A in the sample 1 was 0.25.
  • Example 2 In the preparation of Sample 1, the inorganic fine particles A were changed to the inorganic fine particles B. Otherwise, an optical organic-inorganic composite material was prepared in the same manner as described in the preparation of Sample 1 above. This was designated as “Sample 2”.
  • the content of the inorganic fine particles B was adjusted so that the volume fraction ⁇ of the inorganic fine particles B in the sample 2 was 0.3.
  • sample 3 The content of the inorganic fine particles C is different for each of the samples 3 to 7, and the sample having a volume fraction ⁇ of the inorganic fine particles C in the sample of 0.1 is referred to as "sample 3"
  • Sample 4 has a volume fraction ⁇ of inorganic fine particles occupying 0.2
  • sample 5 has a volume fraction ⁇ of inorganic fine particles C occupying 0.25 in the sample
  • Sample 6 has a volume fraction ⁇ of inorganic fine particles C occupying 0.3
  • sample 7 has a volume fraction ⁇ of inorganic fine particles C occupying 0.4 in the sample. did.
  • Example 1 In the preparation of Sample 1, the inorganic fine particles A were changed to inorganic fine particles D, E, and F, respectively. Otherwise, three types of optical organic-inorganic composite materials for optics were used in the same manner as described in the preparation of Sample 1. These were prepared and designated as “Samples 8 to 10”.
  • the contents of the inorganic fine particles D, E, and F were set so that the volume fraction ⁇ of the inorganic fine particles D, E, and F in the samples 8 to 10 was 0.3.
  • the content of the inorganic fine particles G differs for each of the samples 11 to 15, and the sample having the volume fraction ⁇ of the inorganic fine particles G in the sample of 0.1 is referred to as "Sample 11".
  • the sample with the volume fraction ⁇ of the inorganic fine particles G occupying 0.2 is “Sample 12”
  • the sample with the volume fraction ⁇ of the inorganic fine particles G occupying 0.25 in the sample is “Sample 13”
  • the sample Sample 14 has a volume fraction ⁇ of inorganic fine particles G occupying 0.3
  • sample 15 has a volume fraction ⁇ of inorganic fine particles G occupy 0.4 in the sample. did.
  • inorganic fine particles A were changed to inorganic fine particles H, I, J, and K, respectively, and the other four types of optical organic-inorganic composite materials were used in the same manner as described in the preparation of Sample 1 above. And these were designated as “Samples 16 to 19”.
  • a commercially available standard refraction liquid (Mortex Co., Ltd., Cargill standard refraction liquid) having a refractive index in the range of 1.45 to L75 at a wavelength of 405 nm was prepared in steps of about 0.01.
  • the inorganic fine particles A to K to be evaluated are dispersed in the standard refractive liquid, and the transmittance of each dispersion at a wavelength of 405 nm is highest.
  • the refractive index of the refracting liquid was defined as “refractive index n” in light of each inorganic fine particle A to K having a wavelength of 405 nm.
  • the refractive index n of each inorganic fine particle A to K is shown in Table 2 below.
  • thermoplastic resin cycloolefin resin (APEL5014 manufactured by Mitsui Chemicals)
  • APEL5014 manufactured by Mitsui Chemicals
  • thermoplastic resin was heated and melted, and then formed into a plate having a thickness of 3 mm.
  • This plate is processed and polished, and the refractive index of the thermoplastic resin at a wavelength of 405 nm at 23 ° C is measured using an automatic refractometer (KPR-200, manufactured by Kalyu Optical Co., Ltd.).
  • KPR-200 automatic refractometer
  • the refractive index n of the thermoplastic resin is shown in Table 2 below.
  • each of the samples 1 to 19 was heated and melted, and then formed into a plate having a thickness of 3 mm.
  • Each of these plates is processed and polished, and using an automatic refractometer (KPR-200 manufactured by Kalyu Optical Co., Ltd.), the temperature of each sample 1-19 is changed from 23 ° C to 60 ° C,
  • the temperature change rate of the refractive index accompanying the temperature change was calculated for each sample 1-19.
  • the calculation result was defined as the “temperature change rate dn ZdT” of the refractive index of each sample 1-19.
  • Table 2 shows the temperature change rate dn / dT (X 10 "V ° O of each sample 1-19.
  • each sample 1-19 was heated and melted, each sample 1-19 was formed into a plate shape having a thickness of 3 mm.
  • X-ray small angle scattering measurement was performed using a small-angle wide-angle X-ray diffractometer (RINT2500ZPC, manufactured by Rigaku Corporation), and the particle size distribution of inorganic fine particles A to K in each sample 1 to 19 was obtained. .
  • analysis was performed using analysis software (NANO-sol ver Ver3.0 manufactured by Rigaku Corporation).
  • blank data necessary for the analysis was obtained by placing a measurement sample on the incident side of the light receiving slit box and measuring under the same conditions.
  • the scatterer model was a sphere, blank data was removed and slit correction was performed, and fitting was performed to determine the particle size distribution of each of the inorganic fine particles A to K. Calculate the values of D and D based on the particle size distribution obtained, and set the value of D to ⁇ X (nm) ''
  • each sample 1-19 was heated and melted, each sample 1-19 was formed into a plate shape having a thickness of 3 mm.
  • the transmittance in the thickness direction with respect to light having a wavelength of 405 nm was measured with a spectrophotometer (UV-3150, manufactured by Shimadzu Corporation). The measurement results are shown in Table 2 below.
  • An objective lens for an optical pickup device having the following standards is prepared (molded) from each sample 1 to 19, and the spherical aberration A SA [RMS of each objective lens that occurs when the operating temperature of the optical pickup device rises by 30 ° C (However, A SA is the 3rd, 5th, 7th, 9th squared Sum, NA is the numerical aperture on the light exit side of each objective lens. ) 0
  • a SA is the 3rd, 5th, 7th, 9th squared Sum
  • NA is the numerical aperture on the light exit side of each objective lens.
  • samples 4 9 12 17 and! Comparison with comparative sample 1 3 10 11 18 19
  • Sample 4 9 12 ⁇ : 17 has high light transmittance value, excellent light transmittance, low
  • a SA value, ie, temperature change The variation of the spherical aberration due to is sufficiently reduced.
  • the optical organic-inorganic composite material in which inorganic fine particles having an average particle size of 50 nm or less are dispersed in a thermoplastic resin is defined by the above formulas (1) to (4). It can be seen that satisfying the above conditions is useful.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

An optical organic/inorganic composite material which includes a thermoplastic resin and, despite this, is sufficiently improved in the temperature dependence of optical properties and highly transmits even short-wavelength lights having a wavelength around 405 nm; and an optical element comprising the composite material. The optical organic/inorganic composite material is characterized in that when the refractive indices of the thermoplastic resin and the fine inorganic particles are expressed by nm and np, respectively, then the material satisfies the following relationships (1) to (3) and when the refractive-index change with temperature of the optical organic/inorganic composite material is expressed by dnc/dT, then the material satisfies the following relationship (4). 1.5≤nm≤1.7 (1), 1.5≤np≤1.7 (2), |np-nm|≤0.1 (3), 0≤|dnc/dT|≤9.0x10-5 (4)

Description

明 細 書  Specification
光学用有機無機複合材料及び光学素子  Optical organic / inorganic composite material and optical element
技術分野  Technical field
[0001] 本発明は、熱可塑性榭脂中に無機微粒子が分散された光学用有機無機複合材料 と当該光学用有機無機複合材料で構成された光学素子に関する。  [0001] The present invention relates to an optical organic-inorganic composite material in which inorganic fine particles are dispersed in a thermoplastic resin and an optical element composed of the optical organic-inorganic composite material.
背景技術  Background art
[0002] MO、 CD、 DVDと 、つた光情報記録媒体に対して、情報の読み取りや記録を行な うプレーヤー、レコーダー、ドライブといった情報機器には、光ピックアップ装置が備 えられている。光ピックアップ装置は、光源から発した所定波長の光を光情報記録媒 体に照射し、反射した光を受光素子で受光する光学素子ユニットを備えており、光学 素子ユニットはこれらの光を光情報記録媒体の反射層ゃ受光素子で集光させるため のレンズ等の光学素子を有して 、る。  [0002] Information devices such as players, recorders, and drives that read and record information on optical information recording media such as MO, CD, and DVD are equipped with optical pickup devices. The optical pickup device includes an optical element unit that irradiates an optical information recording medium with light having a predetermined wavelength emitted from a light source, and receives the reflected light with a light receiving element. The optical element unit receives the light as optical information. The reflective layer of the recording medium has an optical element such as a lens for condensing light by the light receiving element.
[0003] 光ピックアップ装置の光学素子は、射出成形等の手段により安価に作製できる等の 点で、プラスチックを材料として適用することが好ましい。光学素子に適用可能なブラ スチックとしては、環状ォレフィンと α—才レフインの共重合体 (例えば、特許文献 1) 等が知られている。 [0003] The optical element of the optical pickup device is preferably made of plastic as a material because it can be manufactured at low cost by means such as injection molding. As a plastic applicable to an optical element, a copolymer of cyclic olefin and α-age refin (for example, Patent Document 1) is known.
[0004] プラスチックを材料として適用した光学素子ユニットにおいては、ガラスレンズのよう な光学的安定性を有する物質であることが求められている。例えば、環状ォレフィン のような光学用プラスチック物質は、従来レンズ用プラスチックとして用いられてきた Ρ ΜΜΑに比べて吸水率が極めて低ぐ吸水による屈折率の変化が大幅に改善されて いる。し力しながら、光学特性の温度依存性 (温度変動に伴う屈折率変動)について は未だ解決されておらず、屈折率の温度依存性は無機ガラスより一桁以上大き ヽの が現状である。  [0004] An optical element unit using plastic as a material is required to be a substance having optical stability such as a glass lens. For example, optical plastic materials such as annular olefins have significantly improved the change in refractive index due to water absorption, which is extremely low in water absorption compared to conventional plastics for lenses. However, the temperature dependence of the optical properties (refractive index fluctuation due to temperature fluctuation) has not been solved yet, and the temperature dependence of the refractive index is currently more than an order of magnitude larger than that of inorganic glass.
[0005] 上記のような光学用プラスチック物質の短所を改善する方法の 1つとして、微細粒 子充填材を使用する方法が提案されている。例えば特許文献 2には、屈折率の温度 依存性 I dn/dT Iを減少する方法として、 dn/dT< 0であるポリマー状ホスト物質 中に、 dnZdT>0である微細粒子が分散された光学製品が提案されている。また、 特許文献 3には、 0≤ I dn/dT I ≤5. 0 X 10—5を満たす、無機微粒子が分散され た熱可塑性榭脂材料が提案されて 、る。 [0005] As one method for improving the disadvantages of the optical plastic material as described above, a method using a fine particle filler has been proposed. For example, in Patent Document 2, as a method for reducing the temperature dependence I dn / dT I of the refractive index, an optical in which fine particles with dnZdT> 0 are dispersed in a polymeric host material with dn / dT <0 is described. A product has been proposed. Also, Patent Document 3, 0≤ I dn / dT I ≤5. Satisfy 0 X 10- 5, a thermoplastic榭脂material inorganic fine particles are dispersed is proposed, Ru.
特許文献 1 :特開 2002— 105131号公報 (第 4頁)  Patent Document 1: JP 2002-105131 A (Page 4)
特許文献 2:特開 2002— 207101号公報 (特許請求の範囲)  Patent Document 2: Japanese Patent Laid-Open No. 2002-207101 (Claims)
特許文献 3:特開 2005 - 325349号公報 (特許請求の範囲)  Patent Document 3: Japanese Patent Application Laid-Open No. 2005-325349 (Claims)
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0006] ところで、近年光ピックアップ装置にお!ヽて、光ディスクに記録された情報の再生や 、光ディスクへの情報の記録のための光源として使用されるレーザ光源の短波長化 が進み、例えば、青紫色半導体レーザや、第 2高調波発生を利用して赤外半導体レ 一ザの波長変換を行う青紫色 SHGレーザ等の波長 405nmのレーザ光源が実用化 されつつある。 By the way, in recent years, optical pickup devices have been developed to shorten the wavelength of a laser light source used as a light source for reproducing information recorded on an optical disk or recording information on an optical disk. Laser light sources with a wavelength of 405 nm such as blue-violet semiconductor lasers and blue-violet SHG lasers that perform wavelength conversion of infrared semiconductor lasers using second harmonic generation are being put into practical use.
[0007] これら青紫色レーザ光源を使用すると、 DVDと同じ開口数 (NA)の対物レンズを使 用する場合は、直径 12cmの光ディスクに対して、 15〜20GBの情報の記録が可能 となり、対物レンズの NAを 0. 85まで高めた場合には、直径 12cmの光ディスクに対 して、 23〜27GBの情報の記録が可能となる。  [0007] When these blue-violet laser light sources are used, when an objective lens having the same numerical aperture (NA) as that of a DVD is used, information of 15 to 20 GB can be recorded on an optical disk having a diameter of 12 cm. When the NA of the lens is increased to 0.85, 23 to 27 GB of information can be recorded on an optical disk with a diameter of 12 cm.
[0008] このような青紫色レーザ光源を用いた光ピックアップ装置の光学素子に対し、上記 のような無機微粒子が分散された榭脂材料を適用しょうとした場合、 CDや DVDの場 合に比べて、無機微粒子による光散乱の影響が無視できなくなるという問題があり、 特許文献 2, 3に記載された技術を用いても、青紫色レーザ光の光散乱による光透過 率の低下は解決されない。  [0008] When trying to apply a resin material in which inorganic fine particles are dispersed as described above to an optical element of an optical pickup device using such a blue-violet laser light source, compared to the case of CD or DVD Therefore, there is a problem that the influence of light scattering by the inorganic fine particles cannot be ignored, and even if the techniques described in Patent Documents 2 and 3 are used, the decrease in light transmittance due to light scattering of blue-violet laser light cannot be solved.
[0009] 本発明の目的は、ガラス材料と比較して安価に光学素子を作製できる熱可塑性榭 脂を用いながら、光学特性の温度依存性も充分に改善されるとともに、波長 405nm 付近の短波長の光に対しても光透過性に優れる光学用有機無機複合材料及び当 該複合材料を用いた光学素子を提供することである。  [0009] The object of the present invention is to sufficiently improve the temperature dependence of the optical characteristics while using a thermoplastic resin that can produce an optical element at a lower cost than a glass material, and to shorten the wavelength around 405 nm. It is to provide an organic / inorganic composite material for optical use that is excellent in light transmittance with respect to the light and an optical element using the composite material.
課題を解決するための手段  Means for solving the problem
[0010] 上記課題を解決するため本発明の第 1の形態は、  [0010] In order to solve the above problems, the first aspect of the present invention provides:
平均粒子径が 50nm以下の無機微粒子が熱可塑性榭脂中に分散された光学用有 機無機複合材料であって、 Inorganic particles with an average particle size of 50 nm or less dispersed in thermoplastic resin Machine inorganic composite material,
前記熱可塑性榭脂の屈折率を nと、前記無機微粒子の屈折率を nとしたとき、前 m p  When the refractive index of the thermoplastic resin is n and the refractive index of the inorganic fine particles is n, m p
記屈折率 n及び前記屈折率 nが下記式(1)〜(3)で規定する条件を満たし、かつ、 m p  The refractive index n and the refractive index n satisfy the conditions defined by the following formulas (1) to (3), and m p
当該光学用有機無機複合材料の屈折率の温度変化率を dn ZdTとしたとき、前記 温度変化率 dn ZdTが下記式 (4)で規定する条件を満たすことを特徴として!/ヽる。  When the temperature change rate of the refractive index of the organic / inorganic composite material for optics is dn ZdT, the temperature change rate dn ZdT satisfies the condition defined by the following formula (4)!
[0011] 1. 5≤n ≤1. 7 … (1) [0011] 1. 5≤n ≤1. 7… (1)
1. 5≤n≤1. 7 … (2)  1. 5≤n≤1. 7… (2)
P  P
I n — n  I n — n
m I ≤0. 1 … (3)  m I ≤0. 1… (3)
p  p
0≤ I dn /dT I ≤9. O X 10_5 … (4) 0≤ I dn / dT I ≤9. OX 10_ 5 … (4)
上記光学用有機無機複合材料にお!、ては、  In the above optical organic-inorganic composite material!
当該光学用有機無機複合材料中に占める前記無機微粒子の体積分率を Φとした とき、前記体積分率 Φが下記式 (5)で規定する条件を満たすのが好ま 、。  When the volume fraction of the inorganic fine particles occupying in the optical organic-inorganic composite material is Φ, the volume fraction Φ preferably satisfies the condition defined by the following formula (5).
[0012] 0. 25≤Φ≤0. 5 … (5) [0012] 0. 25≤Φ≤0. 5… (5)
上記光学用有機無機複合材料にお!、ては、  In the above optical organic-inorganic composite material!
前記無機微粒子が、ケィ素酸ィ匕物とケィ素以外の 1種類以上の金属酸ィ匕物とが複 合ィ匕した複合酸ィ匕物粒子であるのが好まし 、。  Preferably, the inorganic fine particles are composite oxide particles in which a key oxide and one or more metal oxides other than the key are combined.
[0013] 上記光学用有機無機複合材料においては、 [0013] In the optical organic-inorganic composite material,
前記無機微粒子の D の粒子径を X(nm)と、前記無機微粒子の D の粒子径を Y  The particle size of D of the inorganic fine particles is X (nm), and the particle size of D of the inorganic fine particles is Y
50 90  50 90
(nm)としたとき、前記粒子径 X, Yが下記式 (6)、(7)で規定する条件を満たすのが 好ましい。  (nm), the particle diameters X and Y preferably satisfy the conditions defined by the following formulas (6) and (7).
[0014] X≤30 … (6) [0014] X≤30… (6)
Y-X≤30 … (7)  Y-X≤30… (7)
ただし、上記 D 及び D は、当該光学用有機無機複合材料中に含有される前記  However, the above D and D are those contained in the optical organic-inorganic composite material.
50 90  50 90
無機微粒子の分布関数 dG = F (D) X dD (Gは粒子数、 Dは粒子径)の積分が、全 粒子数の 0. 5 (50個数%)、0. 9 (90個数%)に等しい粒子径をそれぞれ示す。  The distribution function of inorganic fine particles dG = F (D) X dD (G is the number of particles, D is the particle size) is integrated to 0.5 (50 number%) and 0.9 (90 number%) of the total number of particles. Each shows an equal particle size.
[0015] 上記光学用有機無機複合材料においては、  [0015] In the optical organic-inorganic composite material,
前記熱可塑性榭脂が環状ォレフィン構造を有するのが好ましい。  The thermoplastic resin preferably has a cyclic olefin structure.
[0016] 本発明の第 2の形態は、 上記光学用有機無機複合材料を用いて成形された光学素子であって、 波長 390〜420nmの光束を用いて情報の再生及び Z又は記録を行う光ピックアツ プ装置中で、前記光束を集光するのに用いられることを特徴として 、る。 [0016] The second aspect of the present invention is: An optical element formed using the above-mentioned organic / inorganic composite material for optics, and condensing the light beam in an optical pickup device that reproduces and / or records information using a light beam having a wavelength of 390 to 420 nm. It is characterized by being used for
[0017] 上記光学素子は対物レンズであるのが好まし!/、。 [0017] The optical element is preferably an objective lens!
発明の効果  The invention's effect
[0018] 本発明によれば、ガラス材料と比較して安価に光学素子を作製できる熱可塑性榭 脂を用いながら、光学特性の温度依存性も充分に改善されるとともに、波長 405nm 付近の短波長の光に対しても光透過性に優れる光学用有機無機複合材料及び当 該複合材料を用いた光学素子を提供することができる(下記実施例 1, 2参照)。 図面の簡単な説明  [0018] According to the present invention, the temperature dependence of optical properties is sufficiently improved while using a thermoplastic resin capable of producing an optical element at a lower cost than a glass material, and a short wavelength near 405 nm. It is possible to provide an organic-inorganic composite material for optics that is excellent in light transmittance with respect to the above light and an optical element using the composite material (see Examples 1 and 2 below). Brief Description of Drawings
[0019] [図 1]光ピックアップ装置 1の内部構造を示す模式図である。 FIG. 1 is a schematic diagram showing an internal structure of an optical pickup device 1.
符号の説明  Explanation of symbols
[0020] 1 光ピックアップ装置 [0020] 1 Optical pickup device
2 半導体レーザ発振器  2 Semiconductor laser oscillator
3 コリメータ  3 Collimator
4 ビームスプリッタ  4 Beam splitter
5 1Z4波長板  5 1Z4 wave plate
6 絞り  6 Aperture
7 対物レンズ (光学素子)  7 Objective lens (optical element)
8 センサーレンズ群  8 Sensor lens group
9 センサー  9 Sensor
10 2次元ァクチユエータ  10 Two-dimensional actuator
D 光ディスク  D Optical disc
D 保護基板  D Protective board
1  1
D 情報記録面  D Information recording surface
2  2
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0021] 以下、図面を参照しながら本発明を実施するための最良の形態について説明する 。ただし、以下に述べる実施形態には、本発明を実施するために技術的に好ましい 種々の限定が付されているが、発明の範囲は以下の実施形態及び図示例に限定さ れるものではない。 Hereinafter, the best mode for carrying out the present invention will be described with reference to the drawings. . However, the embodiments described below are given various technically preferable limitations for carrying out the present invention, but the scope of the invention is not limited to the following embodiments and illustrated examples.
[0022] 本発明に係る光学用有機無機複合材料は熱可塑性榭脂中に無機微粒子が分散 された材料であり、本発明に係る光学素子は当該光学用有機無機複合材料を成形 したものである。  The optical organic-inorganic composite material according to the present invention is a material in which inorganic fine particles are dispersed in a thermoplastic resin, and the optical element according to the present invention is obtained by molding the optical organic-inorganic composite material. .
[0023] 以下では、始めに、光学用有機無機複合材料を構成する (A)熱可塑性榭脂、 (B) 無機微粒子及び (C)添加剤の種類等についてそれぞれ説明し、その後に当該光学 用有機無機複合材料の (D)製造方法、 (E)特性及び (F)適用例につ!、てそれぞれ 説明する。  [0023] In the following, first, the types of (A) thermoplastic resin, (B) inorganic fine particles and (C) additives constituting the optical organic-inorganic composite material will be described. The (D) production method, (E) characteristics, and (F) application examples of organic-inorganic composite materials will be explained.
(A)熱可塑性榭脂  (A) Thermoplastic resin
熱可塑性榭脂は本発明に係る光学用有機無機複合材料中でホスト材料となるもの で、当該熱可塑性榭脂としては、前記式(1)を満足し、複合材料として前記式 (2)〜 (4)を満足し得るものであれば (後述参照)、光学材料として一般的に用いられる透 明の熱可塑性榭脂から任意に選択可能である。光学素子としての加工性の観点から 、当該熱可塑性榭脂は、アクリル榭脂、環状ォレフィン榭脂、ポリカーボネート榭脂、 ポリエステル榭脂、ポリエーテル榭脂、ポリアミド榭脂又はポリイミド榭脂であることが 好ましぐ環状ォレフィンであることが特に好ましい。具体例として、特開 2003— 735 59号公報に記載の化合物を挙げることができ、その好ましい化合物を下記表 1に示 す。  The thermoplastic resin is a host material in the optical organic-inorganic composite material according to the present invention. The thermoplastic resin satisfies the above formula (1), and as the composite material, the above-described formula (2) to If it can satisfy (4) (see below), it can be arbitrarily selected from transparent thermoplastic resins generally used as optical materials. From the viewpoint of processability as an optical element, the thermoplastic resin may be acrylic resin, cyclic olefin resin, polycarbonate resin, polyester resin, polyether resin, polyamide resin or polyimide resin. Particularly preferred is a preferred cyclic olefin. Specific examples include compounds described in JP-A-2003-73559, and preferred compounds are shown in Table 1 below.
[0024] [表 1] [0024] [Table 1]
Figure imgf000007_0001
Figure imgf000007_0001
なお、当該熱可塑性榭脂は、光学材料としての寸法安定性の観点から、吸湿率が The thermoplastic resin has a moisture absorption rate from the viewpoint of dimensional stability as an optical material.
0. 2%以下であることが望ましいため、ポリオレフイン榭脂(ポリエチレン、ポリプロピレ ン)、フッ素樹脂(ポリテトラフルォロエチレン、テフロン (登録商標) AF:デュポン社製 )、環状ォレフィン榭脂(日本ゼオン製: ZEONEX、三井化学製: APEL、 JSR製:ァ 一トン、チコナ製: TOPAS)、インデン Zスチレン系榭脂、ポリカーボネート榭脂等が 好適に用いられる。 0.2% or less is desirable. Polyolefin resin (polyethylene, polypropylene), fluororesin (polytetrafluoroethylene, Teflon (registered trademark) AF: DuPont), cyclic olefin resin (Japan) ZEON: ZEONEX, Mitsui Chemicals: APEL, JSR: Aton, Chicona: TOPAS), Inden Z styrene resin, polycarbonate resin, etc. Preferably used.
[0026] また、上述したような 2種以上の榭脂を用いる場合においては、その吸水率は、個 々の榭脂における吸水率の平均値と略同一と考えられ、その平均の吸水率が 0. 2% 以下になればよい。  [0026] Further, in the case of using two or more kinds of the above-mentioned coffins, the water absorption rate is considered to be substantially the same as the average value of the water absorption rate in each individual resin, and the average water absorption rate is 0. It should be less than 2%.
(B)無機微粒子  (B) Inorganic fine particles
上記熱可塑性榭脂中に分散される無機微粒子は前記 (2)を満足し、複合材料とし て前記式( 1)、 (3)及び (4)を満足し得るものであれば特に限定はなく(後述参照)用 いることができる。特に、光学用有機無機複合材料の I dn/dT Iが前記式 (4)を満 たす為には、熱可塑性榭脂及び無機微粒子を適宜選択及び Z又は設計する必要 があるがそれにつ!/、ては後述する。  The inorganic fine particles dispersed in the thermoplastic resin are not particularly limited as long as they satisfy the above (2) and can satisfy the above formulas (1), (3) and (4) as a composite material. (See below). In particular, in order for I dn / dT I of the organic / inorganic composite material for optics to satisfy the above formula (4), it is necessary to appropriately select and Z or design thermoplastic resin and inorganic fine particles. / Will be described later.
[0027] 具体的には、当該無機微粒子として、酸化物微粒子、金属塩微粒子、半導体微粒 子などの中から、光学素子として使用する波長領域において吸収、発光、蛍光等が 生じないものを適宜選択して使用することができる。当該無機微粒子は、前記式 (2) で規定する条件を満たすためには、ケィ素酸化物(以下「シリカ」という。)とケィ素以 外の 1種類以上の金属酸化物とが複合化した複合酸化物粒子であることが好ま Uヽ Specifically, the inorganic fine particles are appropriately selected from oxide fine particles, metal salt fine particles, semiconductor fine particles and the like that do not absorb, emit, emit fluorescence, or the like in the wavelength region used as an optical element. Can be used. In order for the inorganic fine particles to satisfy the condition defined by the above formula (2), a key oxide (hereinafter referred to as “silica”) and one or more metal oxides other than key are complexed. It is preferable to have composite oxide particles U ヽ
[0028] 当該複合酸ィ匕物粒子において、ケィ素以外の金属酸ィ匕物を構成する金属としては 、 Li、 Na、 Mg、 Al、 K:、 Ca、 Sc、 Ti、 V、 Cr、 Mn、 Fe、 Co、 Ni、 Cu、 Zn、 Rb、 Sr、 Y、 Nb、 Zr、 Mo、 Ag、 Cd、 In、 Sn、 Sb、 Cs、 Ba、 La、 Ta、 Hf、 W、 Ir、 Tl、 Pb、 Bi 及び希土類金属からなる群より適宜選ぶことができる。これらの中でも、当該複合酸 化物粒子としては、シリカと Al、 Ti、 Nb、 Zr、 Y、 W、 La、 Gd、 Taなどの金属酸化物 が複合された酸ィ匕物がより好ま 、。 [0028] In the composite oxide particles, the metals constituting the metal oxide other than silicon include Li, Na, Mg, Al, K :, Ca, Sc, Ti, V, Cr, Mn. , Fe, Co, Ni, Cu, Zn, Rb, Sr, Y, Nb, Zr, Mo, Ag, Cd, In, Sn, Sb, Cs, Ba, La, Ta, Hf, W, Ir, Tl, Pb , Bi, and rare earth metals. Among these, as the composite oxide particles, oxides in which silica and metal oxides such as Al, Ti, Nb, Zr, Y, W, La, Gd, and Ta are combined are more preferable.
[0029] 当該複合酸化物粒子の組成分布は特に限定されず、シリカと他の金属酸化物が、 略均一に分散していてもよいし、コアシェルを形成していてもよい。複合酸化物粒子 中で、シリカと他の金属酸ィ匕物とが、局在することなく平均的に分布している状態で は無機微粒子内の屈折率分布が存在せず、無機微粒子内での光散乱が抑えられる こと力ら、当該複合酸ィ匕物粒子はシリカと他の金属酸ィ匕物とが平均的に分布している のがより好ましい。 [0030] 複合酸化物粒子を構成する、シリカと他の金属酸化物はそれぞれ結晶として存在 していてもよいし、非晶質であってもよい。 [0029] The composition distribution of the composite oxide particles is not particularly limited, and silica and other metal oxides may be dispersed substantially uniformly or may form a core shell. In the composite oxide particles, when the silica and other metal oxides are averagely distributed without being localized, there is no refractive index distribution in the inorganic fine particles, and in the inorganic fine particles. In view of the ability to suppress light scattering, it is more preferable that silica and other metal oxides are distributed on the average in the composite oxide particles. [0030] Silica and other metal oxides constituting the composite oxide particles may each exist as crystals or may be amorphous.
[0031] 複合酸ィ匕物粒子において、シリカとシリカ以外の金属酸ィ匕物の含有比は、金属酸 化物の種類や作製する無機微粒子の屈折率値により任意に決めることができる。  [0031] In the composite oxide particles, the content ratio of the silica and the metal oxide other than silica can be arbitrarily determined according to the type of metal oxide and the refractive index value of the inorganic fine particles to be produced.
[0032] 光学用有機無機複合材料にお!ヽて熱可塑性榭脂中に分散される無機微粒子は、 光線透過率を低下させない範囲であれば、 1種類の無機微粒子を用いてもよぐ複 数種類の無機微粒子を併用してもょ ヽ。異なる性質を有する複数種類の無機微粒子 を用いることで、光学素子に必要とされる光学特性を更に効率よく向上させることもで きる。  [0032] The inorganic fine particles dispersed in the thermoplastic resin in the optical organic-inorganic composite material may be one kind of inorganic fine particles as long as the light transmittance is not lowered. Use several types of inorganic fine particles together. By using a plurality of types of inorganic fine particles having different properties, the optical properties required for the optical element can be improved more efficiently.
[0033] 本発明に係る光学用有機無機複合材料が、波長 390ηπ!〜 420nmの光束に対し 光透過性を有するためには、無機微粒子の平均粒子径が 50nm以下である必要が あることがゎカゝつた。さらに、無機微粒子の平均粒子径が lnm未満の場合、当該無 機微粒子の熱可塑性榭脂への分散が困難になり所望の性能が得られない恐れがあ ること力ら、無機微粒子の平均粒子径は l〜50nmであることが好ましぐ l〜30nm であることがさらに好ましい。ここでいう「平均粒子径」とは、各無機微粒子を同体積の 球に換算した時の直径 (球換算粒子径)の体積平均値である。  [0033] The optical organic-inorganic composite material according to the present invention has a wavelength of 390ηπ! In order to have light transmittance with respect to a light beam of ˜420 nm, it was found that the average particle size of the inorganic fine particles had to be 50 nm or less. Furthermore, if the average particle size of the inorganic fine particles is less than 1 nm, the dispersion of the inorganic fine particles into the thermoplastic resin may be difficult and the desired performance may not be obtained. The diameter is preferably from 1 to 50 nm, more preferably from 1 to 30 nm. The “average particle diameter” here is a volume average value of diameters (sphere converted particle diameters) when each inorganic fine particle is converted into a sphere having the same volume.
[0034] 無機微粒子の形状は、特に限定されるものではな ヽが、球状の無機微粒子が好適 に用いられる。具体的には、無機微粒子の最小径 (無機微粒子の外周に接する 2本 の接線を引く場合における当該接線間の距離の最小値) Z最大径 (無機微粒子の外 周に接する 2本の接線を引く場合における当該接線間の距離の最大値)が 0. 5〜1 . 0であること力好ましく、 0. 7〜1. 0であること力更に好まし!/ヽ。  [0034] The shape of the inorganic fine particles is not particularly limited, but spherical inorganic fine particles are preferably used. Specifically, the minimum diameter of the inorganic fine particles (minimum value of the distance between the tangents when drawing two tangents in contact with the outer periphery of the inorganic fine particles) Z maximum diameter (the two tangents in contact with the outer periphery of the inorganic fine particles) The maximum value of the distance between the tangents in the case of drawing is preferably 0.5 to 1.0, and more preferably 0.7 to 1.0! / ヽ.
[0035] 無機微粒子は表面処理が施されていることが好ましい。無機微粒子の表面処理の 方法としては、カップリング剤等の表面修飾剤による表面処理、ポリマーグラフト、メカ ノケミカルによる表面処理などが挙げられる。  [0035] The inorganic fine particles are preferably subjected to a surface treatment. Examples of the surface treatment method for inorganic fine particles include surface treatment with a surface modifier such as a coupling agent, polymer grafting, and surface treatment with a mechanochemical.
[0036] 無機微粒子の表面処理に用いられる表面修飾剤としては、シラン系カップリング剤 を始め、シリコーンオイル系、チタネート系、アルミネート系及びジルコネート系カップ リング剤等が挙げられる。これらは特に限定されるものではないが、無機微粒子及び 熱可塑性榭脂の種類により適宜選択することが可能である。また、異なる種類の 2以 上の表面処理を同時に又は異なる時に行ってもよい。 [0036] Examples of the surface modifier used for the surface treatment of inorganic fine particles include silane coupling agents, silicone oil-based, titanate-based, aluminate-based and zirconate-based coupling agents. These are not particularly limited, but can be appropriately selected depending on the types of inorganic fine particles and thermoplastic resin. Also, two or more different types The above surface treatment may be performed simultaneously or at different times.
[0037] 上記シラン系カップリング剤としては、ビュルシラザントリメチルクロロシラン、ジメチ ルジクロロシラン、メチルトリクロロシラン、トリメチルアルコキシシラン、ジメチルジアル コキシシラン、メチルトリアルコキシシラン、へキサメチルジシラザン等が挙げられ、無 機微粒子の表面を広く覆うためにへキサメチルジシラザン等が好適に用いられる。  [0037] Examples of the silane coupling agent include bursilazane trimethylchlorosilane, dimethyldichlorosilane, methyltrichlorosilane, trimethylalkoxysilane, dimethyldialkoxysilane, methyltrialkoxysilane, and hexamethyldisilazane. Hexamethyldisilazane or the like is preferably used to cover the surface of the fine particles widely.
[0038] 上記シリコーンオイル系カップリング剤としては、ジメチルシリコーンオイル、メチル フエニルシリコーンオイル、メチルハイドロジェンシリコーンオイル等のストレートシリコ ーンオイルや、ァミノ変性シリコーンオイル、エポキシ変性シリコーンオイル、カルボキ シル変性シリコーンオイル、カルビノール変性シリコーンオイル、メタクリル変性シリコ ーンオイル、メルカプト変性シリコーンオイル、フエノール変性シリコーンオイル、片末 端反応性変性シリコーンオイル、異種官能基変性シリコーンオイル、ポリエーテル変 性シリコーンオイル、メチルスチリル変性シリコーンオイル、アルキル変性シリコーンォ ィル、高級脂肪酸エステル変性シリコーンオイル、親水性特殊変性シリコーンオイル 、高級アルコキシ変性シリコーンオイル、高級脂肪酸含有変性シリコーンオイル及び フッ素変性シリコーンオイル等の変性シリコーンオイルを用いることが可能である。  [0038] Examples of the silicone oil coupling agent include straight silicone oils such as dimethyl silicone oil, methyl phenyl silicone oil, and methyl hydrogen silicone oil, amino-modified silicone oil, epoxy-modified silicone oil, and carboxy-modified silicone oil. , Carbinol-modified silicone oil, methacryl-modified silicone oil, mercapto-modified silicone oil, phenol-modified silicone oil, one-end reactive modified silicone oil, heterogeneous functional group-modified silicone oil, polyether-modified silicone oil, methylstyryl-modified silicone oil Alkyl modified silicone oil, higher fatty acid ester modified silicone oil, hydrophilic special modified silicone oil, higher alkoxy modified silicone oil N'oiru, it is possible to use a higher fatty acid containing modified silicone oil and modified silicone oil and fluorine-modified silicone oil.
[0039] これらの表面処理剤はへキサン、トルエン、メタノール、エタノール、アセトン、水等 で適宜希釈して用いられてもよ ヽ。  [0039] These surface treatment agents may be appropriately diluted with hexane, toluene, methanol, ethanol, acetone, water, or the like.
[0040] 上記表面修飾剤による表面処理の方法としては、湿式加熱法、湿式濾過法、乾式 攪拌法、インテグルブレンド法、造粒法等が挙げられる。 lOOnm以下の表面改質を 行う場合、乾式攪拌法が粒子凝集抑制の観点から好適に用いられるが、これに限定 されるものではない。  [0040] Examples of the surface treatment with the surface modifier include a wet heating method, a wet filtration method, a dry stirring method, an integral blend method, and a granulation method. When surface modification of lOOnm or less is performed, the dry stirring method is preferably used from the viewpoint of suppressing particle aggregation, but is not limited thereto.
[0041] これらの表面修飾剤は、 1種類のみが用いられてもよいし、複数種類が併用されて ちょい。  [0041] Only one type of these surface modifiers may be used, or a plurality of types may be used in combination.
[0042] 用いる表面修飾剤によって得られる表面修飾済みの無機微粒子は性状が異なるこ とがあり、光学用有機無機複合材料を得るにあたって用いる熱可塑性榭脂との親和 性を、表面修飾剤を選ぶことによって図ることも可能である。表面修飾の割合は、特 に限定されるものではないが、表面修飾後の無機微粒子に対して、表面修飾剤の割 合が 10〜99質量%の範囲であることが好ましぐ 30〜98質量%の範囲であることが より好まし 、。 [0042] The surface-modified inorganic fine particles obtained depending on the surface-modifying agent used may have different properties, and the surface-modifying agent is selected for the affinity with the thermoplastic resin used in obtaining the organic / inorganic composite material for optics. It is also possible to plan. The ratio of the surface modification is not particularly limited, but the ratio of the surface modifier is preferably in the range of 10 to 99 mass% with respect to the inorganic fine particles after the surface modification. Must be in the mass% range More preferred ,.
(c)添加剤  (c) Additive
光学用有機無機複合材料の製造工程及び成形工程にぉ 、ては、必要に応じて各 種添加剤(以下、配合剤とも 、う)を添加することができる。  Various additives (hereinafter also referred to as compounding agents) can be added as needed during the production process and the molding process of the organic / inorganic composite material for optics.
[0043] 添加剤については、格別限定はないが、主には、可塑剤、酸化防止剤、耐光安定 剤等が挙げられ、それ以外にも、熱安定剤、耐候安定剤、紫外線吸収剤、近赤外線 吸収剤等の安定剤;滑剤等の榭脂改質剤;軟質重合体、アルコール性化合物等の 白濁防止剤;染料や顔料等の着色剤;帯電防止剤、難燃剤、フイラ一等が挙げられ る。これらの配合剤は、単独で、あるいは 2種以上を組み合わせて用いることが可能 であり、その配合量は本発明に記載の効果を損なわない範囲で適宜選択される。特 に、熱可塑性榭脂が少なくとも可塑剤又は酸化防止剤が含有されていることが好まし い。  [0043] The additive is not particularly limited, but mainly includes plasticizers, antioxidants, light stabilizers, etc. In addition, heat stabilizers, weather stabilizers, ultraviolet absorbers, Stabilizers such as near-infrared absorbers; grease modifiers such as lubricants; anti-clouding agents such as soft polymers and alcoholic compounds; colorants such as dyes and pigments; antistatic agents, flame retardants, and fillers Can be mentioned. These compounding agents can be used alone or in combination of two or more, and the compounding amount is appropriately selected within a range not impairing the effects described in the present invention. In particular, it is preferable that the thermoplastic resin contains at least a plasticizer or an antioxidant.
(C. 1)可塑剤  (C. 1) Plasticizer
可塑剤としては、特に限定されるものではないが、リン酸エステル系可塑剤、フタル 酸エステル系可塑剤、トリメリット酸エステル系可塑剤、ピロメリット酸系可塑剤、グリコ レート系可塑剤、クェン酸エステル系可塑剤、ポリエステル系可塑剤等が挙げられる  The plasticizer is not particularly limited, but is a phosphate ester plasticizer, a phthalate ester plasticizer, a trimellitic ester plasticizer, a pyromellitic acid plasticizer, a glycolate plasticizer, a ken Examples include acid ester plasticizers and polyester plasticizers.
[0044] リン酸エステル系可塑剤としては、トリフエ-ルホスフェート、トリクレジルホスフェート 、クレジルジフエ-ルホスフェート、ォクチルジフエ-ルホスフェート、ジフエニノレビフエ -ルホスフェート、トリオクチルホスフェート、トリブチルホスフェート等、フタル酸エステ ル系可塑剤では、ジェチルフタレート、ジメトキシェチルフタレート、ジメチルフタレー ト、ジォクチルフタレート、ジブチルフタレート、ジー 2—ェチルへキシルフタレート、ブ チルベンジルフタレート、ジフエ-ルフタレート、ジシクロへキシルフタレート等、トリメリ ット酸系可塑剤では、トリブチルトリメリテート、トリフエ-ルトリメリテート、トリェチルトリメ リテート等、ピロメリット酸エステル系可塑剤では、テトラブチルピロメリテート、テトラフ ェニルピロメリテート、テトラエチルピロメリテート等、グリコレート系可塑剤では、トリア セチン、トリブチリン、ェチルフタリルェチルダリコレート、メチルフタリルェチルダリコレ ート、ブチルフタリルブチルダリコレート等、クェン酸エステル系可塑剤では、トリェチ ルシトレート、トリー n—ブチルシトレート、ァセチルトリェチルシトレート、ァセチルトリ —n—ブチルシトレート、ァセチルトリ— n— (2—ェチルへキシル)シトレート等が挙げ られる。 [0044] Phosphate ester plasticizers include triphenyl phosphate, tricresyl phosphate, cresyl diphenyl phosphate, octyl diphenyl phosphate, diphenyl benzoyl phosphate, trioctyl phosphate, tributyl phosphate, etc. Acid ester plasticizers include jetyl phthalate, dimethoxyethyl phthalate, dimethyl phthalate, dioctyl phthalate, dibutyl phthalate, di-2-ethyl hexyl phthalate, butyl benzyl phthalate, diphenyl phthalate, and dicyclohexyl. For phthalates and other trimellitic acid plasticizers, tributyl trimellitate, triphenyl trimellitate, triethyl trimellitate, etc., and for pyromellitic acid ester plasticizers, tetrabutyl pyromelitate and tet Examples of glycolate plasticizers such as lauryl pyromellitate, tetraethyl pyromellitate, etc. For ester plasticizers, Examples thereof include lucrate, tri-n-butyl citrate, acetyl acetyl citrate, acetyl nitrile n-butyl citrate, acetyl acetyl n- (2-ethyl hexyl) citrate and the like.
(C. 2)酸化防止剤  (C.2) Antioxidant
酸ィ匕防止剤としては、フエノール系酸ィ匕防止剤、リン系酸化防止剤、ィォゥ系酸ィ匕 防止剤等が挙げられ、これらの中でもフエノール系酸ィ匕防止剤、特にアルキル置換 フエノール系酸ィ匕防止剤が好ましい。これらの酸化防止剤を配合することにより、透 明性、耐熱性等を低下させることなぐ成形時の酸化劣化等による光学素子の着色 や強度低下を防止できる。また、酸ィ匕防止剤は、それぞれ単独で、あるいは 2種以上 を組み合わせて用いることができ、その配合量は、本発明の目的を損なわない範囲 で適宜選択されるが、熱可塑性榭脂 100質量部に対して、 0. 001〜5質量部の範囲 であることが好ましぐ 0. 01〜1質量部の範囲であることがより好ましい。  Examples of the antioxidant include phenolic antioxidants, phosphorus antioxidants, phenolic antioxidants, etc. Among them, phenolic antioxidants, especially alkyl-substituted phenolic agents. Antioxidants are preferred. By blending these antioxidants, it is possible to prevent the coloring and strength of the optical element from being deteriorated due to oxidative degradation during molding without lowering transparency, heat resistance and the like. In addition, the anti-oxidation agent can be used alone or in combination of two or more, and the blending amount thereof is appropriately selected within a range not impairing the object of the present invention. A range of 0.001 to 5 parts by mass is preferable with respect to parts by mass, and a range of 0.01 to 1 parts by mass is more preferable.
フエノール系酸ィ匕防止剤としては、従来公知のものが適用可能であり、 2— t プチ ルー 6— (3— t—ブチル—2 ヒドロキシ— 5—メチルベンジル)—4—メチルフエ-ル アタリレート、 2, 4 ジ一 t ァミル一 6— (1— (3, 5 ジ一 t—ァミル一 2 ヒドロキシ フエ-ル)ェチル)フ -ルアタリレート等の特開昭 63— 179953号公報ゃ特開平 1 — 168643号公報に記載されるアタリレート系化合物;ォクタデシル一 3— (3, 5 ジ —t ブチル 4 ヒドロキシフエ-ル)プロピオネート、 2, 2' —メチレン一ビス(4— メチル 6— t—ブチルフエノール)、 1, 1, 3 トリス(2—メチル 4 ヒドロキシ一 5 —t ブチルフエニル)ブタン、 1, 3, 5 トリメチルー 2, 4, 6 トリス(3, 5 ジ一 t— ブチル 4—ヒドロキシベンジル)ベンゼン、テトラキス(メチレン一 3— (3' , 5' —ジ —tーブチルー^ ーヒドロキシフエ-ルプロピオネート))メタン [すなわち、ペンタエリ スリメチルーテトラキス(3— (3, 5—ジ tーブチルー 4ーヒドロキシフエ-ルプロピオ ネート))]、トリエチレングリコールビス(3— (3— t—ブチルー 4ーヒドロキシー5—メチ ルフエニル)プロピオネート)等のアルキル置換フエノール系化合物;6— (4—ヒドロキ シ—3, 5 ジ—tーブチルァニリノ)—2, 4 ビスォクチルチオ—1, 3, 5 トリァジン 、 4 ビスォクチルチオ 1, 3, 5 トリァジン、 2—ォクチルチオ—4, 6 ビス一(3, 5 ジ— t—ブチル—4—ォキシァ-リノ)— 1, 3, 5 トリァジン等のトリアジン基含有 フエノール系化合物等が挙げられる。 As the phenolic acid rust inhibitor, conventionally known ones can be used, such as 2-t petit lu 6- (3-t-butyl-2 hydroxy-5-methylbenzyl) -4-methylphenol acrylate. 2, 4 di-t-amyl 6- (1- (3,5 di-t-amyl 2-hydroxyphenol) ethyl) furatrate, etc. JP-A 63-179953 1 — Atallate compounds described in Japanese Patent No. 168643; Octadecyl mono 3— (3,5 di-t-butyl 4-hydroxyphenol) propionate, 2, 2 ′ —methylene monobis (4-methyl 6-t— Butylphenol), 1, 1, 3 Tris (2-methyl 4-hydroxy 1-5-butyl butyl) butane, 1, 3, 5 Trimethyl 2, 4, 6 Tris (3, 5 Di-tert-butyl 4-hydroxybenzyl) Benzene, Tetrakis (Methylene-1-3- (3 ', 5' -Di-tert-butyl- ^ Hydroxyphenol propionate)) methane [ie, pentaerythrimethyl-tetrakis (3— (3,5-di-tert-butyl-4-hydroxyphenol propionate))], triethylene glycol bis (3 -— (3-tert-butyl-4-hydroxy) Alkyl-substituted phenolic compounds such as 5-methylphenyl) propionate); 6- (4-hydroxy-3,5 di-tert-butylanilino) -2, 4 bisoctylthio-1, 3, 5 triazine, 4 bisoctylthio 1, 3, 5 Triazine, 2-octylthio-4,6 bis (3,5 di-tert-butyl-4-oxy-lino)-1, 3, 5 Triazine group such as triazine Examples include phenol compounds.
[0046] リン系酸化防止剤としては、トリフエ-ルホスフアイト、ジフエ-ルイソデシルホスファ イト、フエ-ルジイソデシルホスフアイト、トリス(ノ -ルフエ-ル)ホスファイト、トリス(ジノ -ルフエ-ル)ホスファイト、トリス(2, 4 ジ一 t—ブチルフエ-ル)ホスファイト、 10— (3, 5 ジ一 t—ブチル 4 ヒドロキシベンジル) 9, 10 ジヒドロ一 9—ォキサ一 10 ホスファフェナントレン一 10—オキサイド等のモノホスファイト系化合物; 4, 4' -ブチリデン ビス(3—メチル— 6— t ブチルフエ-ル—ジ—トリデシルホスファイト )、4, 4' —イソプロピリデン—ビス(フエ-ル―ジ—アルキル(C12〜C15)ホスファ イト)等のジホスファイト系化合物等が挙げられる。これらの中でも、モノホスファイト系 化合物が好ましぐトリス(ノ -ルフヱ-ル)ホスファイト、トリス(ジノ -ルフヱ-ル)ホスフ アイト、トリス(2, 4 ジ一 t—ブチルフエ-ル)ホスファイト等が特に好ましい。  [0046] Phosphorus antioxidants include triphenyl phosphite, diphenyl isodecyl phosphite, ferrodiisodecyl phosphite, tris (norphenol) phosphite, tris (dinolephenol). Phosphite, tris (2,4 di-tert-butylphenol) phosphite, 10— (3,5 di-tert-butyl 4-hydroxybenzyl) 9, 10 dihydro-9-oxa 10 phosphaphenanthrene 10— Monophosphite compounds such as oxides; 4, 4'-butylidene bis (3-methyl-6-t-butylphenol-di-tridecyl phosphite), 4, 4'-isopropylidene-bis (phenol) Examples thereof include diphosphite compounds such as di-alkyl (C12 to C15) phosphate. Among these, tris (norfol) phosphite, tris (dinolfol) phosphite, and tris (2,4 di-tert-butylphenol) phosphite are preferred for monophosphite compounds. Etc. are particularly preferred.
[0047] ィォゥ系酸ィ匕防止剤としては、ジラウリル 3, 3 チォジプロピオネート、ジミリスチル 3, 3' —チォジプロピピオネート、ジステアリル 3, 3—チォジプロピオネート、ラウリル ステアリル 3, 3—チォジプロピオネート、ペンタエリスリトールーテトラキス—( —ラウ リル チォープロピオネート)、 3, 9 ビス(2 ドデシルチオェチル) 2, 4, 8, 10 ーテトラオキサスピロ [5, 5]ゥンデカン等が挙げられる。  [0047] Examples of the antioxidative agent for diacids include dilauryl 3,3 thiodipropionate, dimyristyl 3,3'-thiodipropionate, distearyl 3,3-thiodipropionate, lauryl stearyl 3,3 Thiodipropionate, pentaerythritol-tetrakis— (—lauryl thiopropionate), 3, 9 bis (2 dodecylthioethyl) 2, 4, 8, 10 -tetraoxaspiro [5, 5] undecane, etc. Is mentioned.
(C. 3)耐光安定剤  (C.3) Light-resistant stabilizer
耐光安定剤としては、ベンゾフエノン系耐光安定剤、ベンゾトリアゾール系耐光安定 剤、ヒンダードアミン系耐光安定剤等が挙げられるが、本発明においては、光学素子 の透明性、耐着色性等の観点から、ヒンダードアミン系耐光安定剤を用いるのが好ま しい。ヒンダードアミン系耐光安定剤(以下「HALS」という。)の中でも、テトラヒドロフ ランを溶媒として用いた液体クロマトグラフィーによるポリスチレン換算の分子量 Mn 力 i, 000〜10, 000であるちの力 S女子まし <、 2, 000〜5, 000であるちの力 り女子まし く、 2, 800〜3, 800であるものが特に好ましい。 Mnが小さすぎると、 HALSを熱可 塑性榭脂に加熱溶融混練して配合する際に、揮発のため所定量を配合できない、ま たは、射出成形等の加熱溶融成形時に発泡やシルバーストリークが生じるなどカロェ 安定性が低下するといつた問題が生じるからである。  Examples of the light-resistant stabilizer include benzophenone-based light-resistant stabilizer, benzotriazole-based light-resistant stabilizer, hindered amine-based light-resistant stabilizer, and the like. In the present invention, from the viewpoint of transparency of the optical element, coloring resistance, etc., hindered amine It is preferable to use a light-resistant stabilizer. Among hindered amine light-resistant stabilizers (hereinafter referred to as “HALS”), molecular weight in terms of polystyrene by liquid chromatography using tetrahydrofuran as a solvent Mn force i, 000 to 10,000 The power of 2,000 to 5,000 is more like a girl, and those of 2,800 to 3,800 are particularly preferred. If Mn is too small, when HALS is blended by heat-melting and kneading it into a thermoplastic resin, it will not volatilize due to volatilization, or foaming or silver streaks will occur during heat-melt molding such as injection molding. This is because the problem arises when the stability of Caloe is reduced.
[0048] また、ランプを点灯させた状態で光学素子を長時間使用する場合には、光学素子 力も揮発性成分がガスとなって発生する。このため、 Mnが大き過ぎると、熱可塑性榭 脂への分散性が低下して、光学素子の透明性が低下し、耐光性改良の効果が低減 する。したがって、 HALSの Mnを上述した範囲とすることにより、加工安定性、低ガ ス発生性及び透明性に優れた光学素子が得られる。 [0048] When the optical element is used for a long time with the lamp turned on, the optical element Force is also generated as gas from volatile components. For this reason, when Mn is too large, the dispersibility in the thermoplastic resin is lowered, the transparency of the optical element is lowered, and the effect of improving the light resistance is reduced. Therefore, by setting the HALS Mn within the above range, an optical element excellent in processing stability, low gas generation property and transparency can be obtained.
[0049] 上記 HALSとしては、 N, Ν' , Nグ , N' " —テトラキス一〔4, 6 ビス一 {ブチル — (N—メチル 2, 2, 6, 6—テトラメチルピペリジン一 4—ィル)アミノ}—トリァジン一 2 ィル〕 4, 7 ジァザデカン 1, 10 ジァミン、ジブチルァミンと 1, 3, 5 トリア ジンと、 N, N' ビス(2, 2, 6, 6—テトラメチルー 4ーピペリジル)ブチルァミンとの 重縮合物、ポリ〔{ (1, 1, 3, 3—テトラメチルブチル)ァミノ一 1, 3, 5 トリアジン一 2 , 4 ジィル } { (2, 2, 6, 6—テトラメチル一 4 ピペリジル)イミノ}へキサメチレン { (2 , 2, 6, 6—テトラメチル一 4 ピペリジル)ィミノ }〕、 1, 6 へキサンジァミン一 N, N ' —ビス(2, 2, 6, 6—テトラメチル— 4 ピペリジル)と、モルフォリン— 2, 4, 6 トリ クロ口一 1, 3, 5 トリァジンとの重縮合物、ポリ〔(6 モルフォリノ一 s トリァジン一 2 , 4 ジィル) (2, 2, 6, 6, —テトラメチル— 4 ピペリジル)ィミノ〕—へキサメチレン〔 (2, 2, 6, 6—テトラメチルー 4ーピペリジル)ィミノ〕等のピぺリジン環がリアジン骨格 を介して複数結合した高分子量 HALS ;コハク酸ジメチルと 4ーヒドロキシ 2, 2, 6, 6—テトラメチルー 1ーピペリジンエタノールとの重合物、 1, 2, 3, 4 ブタンテトラ力 ノレボン酸と、 1, 2, 2, 6, 6 ペンタメチノレー 4ーピペリジノーノレと、 3, 9 ビス(2 ヒ ドロキシ 1, 1ージメチルェチル) 2, 4, 8, 10—テトラオキサスピロ [5, 5]ゥンデ カンとの混合エステルイ匕物等のピぺリジン環がエステル結合を介して結合した高分 子量 HALS等が挙げられる。  [0049] The HALS includes N, Ν ', N g, N' "—tetrakis [4, 6 bis ({butyl — (N-methyl 2, 2, 6, 6-tetramethylpiperidine 1 4- 4) 7) Diazadecane 1, 10 Diamine, Dibutylamine, 1, 3, 5 Triazine, N, N 'Bis (2, 2, 6, 6-tetramethyl-4-piperidyl) butyramine Polycondensate with poly [{(1, 1, 3, 3-tetramethylbutyl) amino-1, 3,5 triazine 1, 2,4 dil} {(2, 2, 6, 6-tetramethyl-1, 4 Piperidyl) imino} hexamethylene {(2,2,6,6-tetramethyl-1-piperidyl) imino}], 1,6-hexanediamin-1 N, N'-bis (2,2,6,6-tetramethyl- 4 Piperidyl) and polycondensate of morpholine-2, 4, 6 trichloro 1, 3, 5 triazine, poly [(6 morpholino s triazine 1, 2, 4 diyl Multiple piperidine rings such as (2, 2, 6, 6, —tetramethyl-4-piperidyl) imino] -hexamethylene [(2, 2, 6, 6-tetramethyl-4-piperidyl) imino] via the lyazine skeleton Bound high molecular weight HALS; polymer of dimethyl succinate and 4-hydroxy 2, 2, 6, 6-tetramethyl-1-piperidine ethanol, 1, 2, 3, 4 butane tetra force norlevonic acid, 1, 2, 2, 6 , 6 Pentamethinole 4-piperidinanol and 3, 9 bis (2 hydroxy 1,1-dimethylethyl) 2, 4, 8, 10-tetraoxaspiro [5, 5] undecane High molecular weight HALS in which a piperidine ring is bonded via an ester bond can be mentioned.
[0050] これらの中でも、ジブチルァミンと 1, 3, 5 トリァジンと、 N, N' —ビス(2, 2, 6, 6 —テトラメチル一 4 ピペリジル)プチルァミンとの重縮合物、ポリ〔{ (1, 1, 3, 3—テト ラメチノレブチノレ)アミノー 1, 3, 5 トリアジンー 2, 4 ジィル } { (2, 2, 6, 6—テトラメ チル一 4 ピペリジル)イミノ}へキサメチレン { (2, 2, 6, 6—テトラメチル一 4 ピペリ ジル)イミノ}〕、コハク酸ジメチルと、 4ーヒドロキシ 2, 2, 6, 6—テトラメチルー 1ーピ ペリジンエタノールとの重合物等の Mnが 2, 000〜5, 000の範囲であるものが好ま しい。 (C. 4)配合量等 [0050] Among these, polycondensates of dibutylamine, 1,3,5 triazine and N, N'-bis (2,2,6,6-tetramethyl-4-piperidyl) ptyramine, poly [{(1 , 1, 3, 3—Tetramethinolevbutinole) amino 1, 3, 5 triazine 2, 4 dil} {(2, 2, 6, 6-tetramethyl-1-piperidyl) imino} hexamethylene {(2, 2, 6, 6-tetramethyl-4-piperidyl) imino}], dimethyl succinate and 4-hydroxy 2, 2, 6, 6-tetramethyl-1-piperidineethanol polymer Mn is 2,000 Those in the range of ~ 5,000 are preferred. (C. 4) Compounding amount, etc.
光学用有機無機複合材料に対する上述した各種添加剤の配合量は、熱可塑性榭 脂 100質量部に対して、 0. 01〜20質量部の範囲であることが好ましぐ 0. 02-15 質量部の範囲であることがより好ましぐ 0. 05〜 10質量部であることが特に好ましい 。これは、添加量が少なすぎると耐光性の改良効果が十分に得られないため、レンズ 等の光学素子として使用する場合、レーザ等の照射によって着色が生じてしまい、 H ALSの配合量が多すぎると、その一部がガスとなって発生するとともに、添加剤の熱 可塑性榭脂への分散性が低下するため、当該光学素子の透明性が低下するからで ある。  The compounding amount of the above-mentioned various additives with respect to the optical organic-inorganic composite material is preferably in the range of 0.01 to 20 parts by mass with respect to 100 parts by mass of the thermoplastic resin. More preferably, the content is in the range of 0.05 to 10 parts by mass. This is because if the addition amount is too small, the effect of improving the light resistance cannot be sufficiently obtained. Therefore, when used as an optical element such as a lens, coloring occurs due to irradiation with a laser or the like, and the blending amount of HALS is large. If the amount is too much, a part of the gas is generated as a gas, and the dispersibility of the additive in the thermoplastic resin is reduced, so that the transparency of the optical element is lowered.
[0051] また、上記添加剤に加え、光学用有機無機複合材料には、最も低いガラス転移温 度が 30°C以下である化合物を配合することが好ましい。これによつて、光学素子の透 明性、耐熱性、機械的強度などの諸特性を低下させることなぐ長時間の高温高湿 度環境下での白濁を防止できるからである。  [0051] In addition to the above-mentioned additives, it is preferable to add a compound having the lowest glass transition temperature of 30 ° C or lower to the optical organic-inorganic composite material. This is because it is possible to prevent white turbidity in a high-temperature and high-humidity environment for a long time without degrading various characteristics such as transparency, heat resistance, and mechanical strength of the optical element.
(D)光学用有機無機複合材料の製造方法 (及び光学素子の製造方法) 本発明に係る光学用有機無機複合材料は、上述したように熱可塑性榭脂からなる ホスト材料中に平均粒子径 50nm以下の無機微粒子を分散することにより得られるが (D) Optical organic-inorganic composite material manufacturing method (and optical element manufacturing method) The optical organic-inorganic composite material according to the present invention has an average particle diameter of 50 nm in the host material made of thermoplastic resin as described above. Obtained by dispersing the following inorganic fine particles
、その製造方法は、特に限定されるものではない。 The manufacturing method is not particularly limited.
[0052] 具体的に光学用有機無機複合材料の製造方法としては、無機微粒子存在下で熱 可塑性榭脂を重合させることで複合化する方法、熱可塑性榭脂の存在下で無機微 粒子を形成し複合化する方法、無機微粒子を熱可塑性榭脂の溶媒になる液中に分 散液とし、その後溶媒を除去することで複合化する方法、無機微粒子と熱可塑性榭 脂を別々に用意し、溶融混練、溶媒を含んだ状態での溶融混練などで複合化する 方法等、何れの方法を適用してもよい。 [0052] Specifically, as a method for producing an optical organic-inorganic composite material, a method of forming a composite by polymerizing thermoplastic resin in the presence of inorganic fine particles, and formation of inorganic fine particles in the presence of thermoplastic resin. A method of compounding, a method of compounding inorganic fine particles in a liquid that becomes a solvent for thermoplastic resin, and then removing the solvent, and preparing inorganic particles and thermoplastic resin separately, Any method such as a method of compounding by melt kneading, melt kneading in a state containing a solvent, or the like may be applied.
[0053] 上記した各種添加剤はこのような複合ィ匕の過程のどの工程でカ卩えても良いが、複 合ィ匕に支障のな 、添加タイミングを選択できる。 [0053] The above-mentioned various additives may be collected in any step of the composite cake process, but the addition timing can be selected without hindering the composite cake.
[0054] 上記の製造方法の中でも、揮発性物質の使用量を低減させる観点から、溶融混練 法を利用することが好まし 、。 [0054] Among the above production methods, it is preferable to use a melt-kneading method from the viewpoint of reducing the amount of volatile substances used.
[0055] 溶融混練法に適用可能な装置としては、ラボプラストミル、ブラベンダー、バンバリ 一ミキサー、ニーダー及びロール等のような密閉式混練装置又はバッチ式混練装置 が挙げられ、更に単軸押出機や、二軸押出機等のように連続式溶融混練装置を用 いることも可能である。 [0055] As an apparatus applicable to the melt-kneading method, Laboplast Mill, Brabender, Banbury Examples include closed kneaders or batch kneaders such as single mixers, kneaders and rolls, and it is also possible to use continuous melt kneaders such as single screw extruders and twin screw extruders. is there.
[0056] 光学用有機無機複合材料の製造方法として溶融混練法を利用する場合、原料で ある熱可塑性榭脂と、無機微粒子とを一括で添加し混練してもよいし、段階的に分割 添加して混練してもよい。また、押出機等の連続式の溶融混練装置を用いる場合に おいては、段階的に添加する成分をシリンダーの中途部から添加することも可能であ る。  [0056] When the melt kneading method is used as a method for producing an optical organic-inorganic composite material, the raw material thermoplastic resin and inorganic fine particles may be added and kneaded all at once, or added in stages. And may be kneaded. In addition, when using a continuous melt-kneading apparatus such as an extruder, it is possible to add components to be added stepwise from the middle of the cylinder.
[0057] 上述した熱可塑性榭脂及び無機微粒子を分割添加する方法は、一成分を数回に 分けて添加する方法であってもよ!/、し、一成分を一括で添加してそれとは異なる他の 成分を段階的に添加する方法であってもよ 、し、又はこれらの方法を組合せた方法 であってもよい。  [0057] The above-described method of adding thermoplastic resin and inorganic fine particles in a divided manner may be a method in which one component is added in several portions! /, And one component is added all at once. It may be a method of adding other different components in stages, or a method combining these methods.
[0058] また、押出機等の連続式溶融混練装置を用いる場合においては、段階的に添カロ する成分をシリンダーの中途部力 添加することも可能である。  [0058] When a continuous melt-kneading apparatus such as an extruder is used, it is possible to add a half-cylinder force of the component to be added in stages.
[0059] 更に、光学用有機無機複合材料の製造方法として溶融混練法を利用する場合、熱 可塑性榭脂を予め混練した後、熱可塑性榭脂以外の成分で予め添加しなかった成 分 (無機微粒子や添加剤等)を添加し、さらに溶融混練する。この場合も、これら無機 微粒子や添加剤等を一括で添加して混練してもょ ヽし、段階的に分割添加して混練 してちよい。  [0059] Further, when the melt kneading method is used as a method for producing an optical organic-inorganic composite material, a component (inorganic) that has not been previously added with components other than the thermoplastic resin after kneading the thermoplastic resin in advance. Fine particles, additives, etc.) are added, and further melt-kneaded. In this case as well, these inorganic fine particles, additives and the like may be added all at once and kneaded, and may be added in stages and kneaded.
[0060] また、溶融混練法を利用した製造方法の場合、上述した無機微粒子は、粉体又は 凝集状態のまま添加すること可能である。  [0060] In addition, in the case of a production method using a melt-kneading method, the above-described inorganic fine particles can be added in a powdered or aggregated state.
[0061] 無機微粒子を液中に分散させた状態で添加することも可能であるが、この場合にお いては、混練後に脱揮処理を行うことが必要である。 [0061] Although it is possible to add the inorganic fine particles dispersed in the liquid, in this case, it is necessary to perform a devolatilization treatment after the kneading.
[0062] 液中に分散させた状態で添加する場合、無機微粒子の凝集粒子を予め一次粒子 に分散させた後に添加することが好ま U、。 [0062] When added in a state of being dispersed in the liquid, it is preferable to add after the aggregated particles of inorganic fine particles have been dispersed in the primary particles in advance U ,.
[0063] 当該分散処理としては、ビーズミル分散機、超音波分散機、高速攪拌型分散機及 び高圧分散機等の各種分散処理機が適用可能であるが、ビーズミル分散機を好適 に用いることができる。 [0064] ビーズミル分散機で使用されるビーズとしては、ジルコユアビーズや、ガラスビーズ 等が挙げられる力 ジルコ-ァビーズが好適に用いることができる。また、使用される ビーズの径寸法は、小さいものが好ましぐ直径が 0. 001-0. 1mmの範囲内である ことがより好ましい。 [0063] As the dispersion treatment, various dispersion treatment machines such as a bead mill disperser, an ultrasonic disperser, a high-speed agitation disperser, and a high-pressure disperser are applicable, and a bead mill disperser is preferably used. it can. [0064] As beads used in the bead mill disperser, zirconia beads such as zirconia beads and glass beads can be preferably used. In addition, it is more preferable that the diameter of the beads to be used is within a range of 0.001 to 0.1 mm, which is preferably a small diameter.
[0065] なお、溶融混練法を利用して光学用有機無機複合材料を作製する場合、その溶融 混練処理は、不活性ガスである窒素、ヘリウム、ネオン、アルゴン、クリプトン、キセノ ンの中力 選択される一種のガス又は二種以上の混合ガスの雰囲気下で行なわれる ことが好ましい。当該溶融混練処理中に用いるガスは、炭酸ガス、エチレンガス及び 水素ガス等の一般的なガスであってもよいし、混練される物質 (被混練物質)に対し 反応性を有さな 、ガスであれば、上述した不活性ガスと混合されて用いられてもよ 、  [0065] In the case of producing an optical organic-inorganic composite material using a melt-kneading method, the melt-kneading process is selected from among inert gases such as nitrogen, helium, neon, argon, krypton, and xenon. It is preferable to carry out in an atmosphere of one kind of gas or a mixture of two or more kinds of gases. The gas used during the melt-kneading process may be a general gas such as carbon dioxide, ethylene gas, or hydrogen gas, or a gas that is not reactive with the material to be kneaded (the material to be kneaded). If so, it may be used by mixing with the inert gas described above.
[0066] 更に、溶融混練法を利用して光学用有機無機複合材料を作製する場合、溶融混 練装置における反応系内では、残留する酸素を極力排除することが好ましい。 [0066] Further, in the case of producing an optical organic-inorganic composite material by using a melt-kneading method, it is preferable to eliminate residual oxygen as much as possible in the reaction system in the melt-kneading apparatus.
[0067] しかし、実際には熱可塑性榭脂又は無機微粒子に吸着した酸素を含め、完全にそ の影響を排除することは困難であるため、反応系内における酸素量を 1%以下に抑 えることが好ましぐ 0. 2%以下に抑えることがより好ましい。これは、酸素による酸ィ匕 反応によって熱可塑性榭脂が劣化すると同時に、着色が発生するからである。  [0067] However, in practice, it is difficult to completely eliminate the influence including oxygen adsorbed on thermoplastic resin or inorganic fine particles, so the amount of oxygen in the reaction system is suppressed to 1% or less. It is more preferable to suppress it to 0.2% or less. This is because coloring occurs at the same time as the thermoplastic resin deteriorates due to the oxygen-oxidation reaction with oxygen.
[0068] 以上のような光学用有機無機複合材料を成形することにより、本発明に係る光学素 子を製造することができる。  [0068] The optical element according to the present invention can be manufactured by molding the optical organic-inorganic composite material as described above.
[0069] その成形方法は、特に限定されるものではないが、低複屈折性、機械強度、寸法 精度等の特性に優れた成形物を得るためには、当該成形方法として溶融成形法を 適用するのが好ましい。溶融成形法としては、市販のプレス成形、市販の押し出し成 形、市販の射出成形等が挙げられるが、成形性及び生産性の観点から、射出成形を 適用するのが好ましい。  [0069] The molding method is not particularly limited, but in order to obtain a molded product excellent in characteristics such as low birefringence, mechanical strength, and dimensional accuracy, a melt molding method is applied as the molding method. It is preferable to do this. Examples of the melt molding method include commercially available press molding, commercially available extrusion molding, and commercially available injection molding. From the viewpoint of moldability and productivity, it is preferable to apply injection molding.
[0070] また、成形工程における成形条件は、使用目的又は成形方法により適宜選択され るが、射出成形における光学用有機無機複合材料の温度は、成形時に適度な流動 性を熱可塑性榭脂に付与して成形品のヒケや、ひずみの発生とともに、熱可塑性榭 脂の熱分解によるシルバーストリークの発生を防止し、さらには、成形物の黄変を効 果的に防止する観点から、 150〜400°Cの範囲であることが好ましぐ 200〜350°C の範囲であることがより好ましぐ 200〜330°Cの範囲であることが特に好ましい。 (E)光学用有機無機複合材料の特性 [0070] The molding conditions in the molding process are appropriately selected depending on the purpose of use or the molding method, but the temperature of the organic / inorganic composite material for optics in the injection molding imparts appropriate fluidity to the thermoplastic resin during molding. This prevents the occurrence of silver streaks due to the thermal decomposition of the thermoplastic resin as well as the occurrence of sink marks and distortions in the molded product, and further, the yellowing of the molded product is effective. From the standpoint of preventing it, it is preferable to be in the range of 150 to 400 ° C, more preferably in the range of 200 to 350 ° C, and particularly preferably in the range of 200 to 330 ° C. . (E) Properties of optical organic-inorganic composite materials
(E. 1)特性 1  (E.1) Characteristics 1
本発明に係る光学用有機無機複合材料は、一の特性として、熱可塑性榭脂の屈 折率を n、無機微粒子の屈折率を nとしたとき、屈折率 n及び屈折率 nが下記式( m p m p  The optical organic-inorganic composite material according to the present invention has, as one characteristic, a refractive index n and a refractive index n of the following formula (n) where n is the refractive index of the thermoplastic resin and n is the refractive index of the inorganic fine particles. mpmp
1)〜 (3)で規定する条件を満たし、かつ、当該光学用有機無機複合材料の屈折率 の温度変化率を dn ZdTとしたとき、温度変化率 dn ZdTが下記式 (4)を満たす、と いう特性を有している。  When the conditions defined in 1) to (3) are satisfied and the temperature change rate of the refractive index of the optical organic-inorganic composite material is dn ZdT, the temperature change rate dn ZdT satisfies the following formula (4): It has the characteristics of
[0071] 1. 5≤n ≤1. 7 … (1) [0071] 1. 5≤n ≤1. 7… (1)
1. 5≤n≤1. 7 … (2)  1. 5≤n≤1. 7… (2)
P  P
I n— n … (3)  I n— n… (3)
p m I ≤0. 1  p m I ≤0. 1
0≤ I dn /dT I ≤9. O X 10_5 … (4) 0≤ I dn / dT I ≤9. OX 10_ 5 … (4)
ここで、熱可塑性榭脂及び無機微粒子の「各屈折率 n , n」は、波長 405nmの光 m p  Here, “each refractive index n, n” of the thermoplastic resin and inorganic fine particles is the light m p of wavelength 405 nm.
源を用いて、試料温度 23°Cで測定したときの屈折率を意味する。  This means the refractive index when measured using a source at a sample temperature of 23 ° C.
[0072] また、光学用有機無機複合材料の屈折率の「温度変化率 dn ZdT」は、波長 405η mの光源を用いて、試料温度を 23°Cから 60°Cまで変化させたときの、屈折率の変化 率を意味する。 [0072] Also, the "temperature change rate dn ZdT" of the refractive index of the organic-inorganic composite material for optics is obtained when the sample temperature is changed from 23 ° C to 60 ° C using a light source with a wavelength of 405ηm. It means the rate of change of refractive index.
[0073] 熱可塑性榭脂の屈折率 nと光学用有機無機複合材料の屈折率は、公知の屈折 計を用いて測定することができ、例えばアッベ屈折計 (ァタゴ社製 DR-M2)、自動屈 折計 (カル-ユー光学工業株式会社製 KPR-200)等を用いて測定することができる。  [0073] The refractive index n of the thermoplastic resin and the refractive index of the organic organic-inorganic composite material can be measured using a known refractometer, for example, an Abbe refractometer (DR-M2 manufactured by Atago Co., Ltd.) It can be measured using a refractometer (KPR-200 manufactured by Cal-U Optical Co., Ltd.) or the like.
[0074] 他方、無機微粒子の屈折率 nについては、波長 405nmの光に対する屈折率が明  On the other hand, with respect to the refractive index n of the inorganic fine particles, the refractive index for light with a wavelength of 405 nm is clear.
P  P
らかになつている標準屈折液を用いて、ベッケ線法などにより測定することができる。  It can be measured by the Becke line method or the like using a standard refraction liquid that is smooth.
[0075] 上記光学用有機無機複合材料から構成された光学素子の温度特性として、例えば[0075] As a temperature characteristic of the optical element composed of the optical organic-inorganic composite material, for example,
、光ピックアップ装置の使用温度が 30°C上昇した際に生じる球面収差変化 (以下「ΔSpherical aberration change that occurs when the operating temperature of the optical pickup device increases by 30 ° C (hereinafter referred to as `` Δ
SA」という。)が挙げられる。 SA ". ).
[0076] 本発明者らは、 1. 5≤nを満たす熱可塑性榭脂及び 1. 5≤nを満たす無機微粒 m p [0076] The inventors of the present invention have described that thermoplastic resin satisfying 1.5≤n and inorganic fine particles satisfying 1.5≤n m p
子の組み合わせで得られる光学用有機無機複合材料が、上記式 (4)で規定する条 件を満たす場合に、その材料で構成された光学素子は A SAが小さくなり、当該光学 素子の温度特性が十分改善されることを発見した。 The organic / inorganic composite material for optical use obtained by the combination of the It was found that the optical element composed of the material has a smaller ASA and the temperature characteristics of the optical element are sufficiently improved.
[0077] さらに、当該光学素子が対物レンズである場合、光学素子の屈折率が 1. 7を超え ると、そのレンズの光ディスク側の形状力 Sメニスカスになり、レンズ周辺部と光ディスク とが衝突する危険性があることから、本発明に係る光学用有機無機複合材料は、上 記式(1)〜(3)で規定する条件を全て満たすことを特徴とするものである。  [0077] Further, when the optical element is an objective lens, if the refractive index of the optical element exceeds 1.7, the shape force S meniscus of the optical disk side of the lens becomes, and the lens peripheral part collides with the optical disk. Therefore, the optical organic-inorganic composite material according to the present invention is characterized by satisfying all the conditions defined by the above formulas (1) to (3).
[0078] また、光学用有機無機複合材料が上記式 (3)で規定する条件を満たすことにより、 当該光学用有機無機複合材料で構成した光学素子を、青紫色レーザ光源を用いた 光ピックアップ装置の光学素子として用いた場合にも、その光学素子は光透過性の 低下が発生しな 、ことがわ力つた。  [0078] In addition, when the optical organic-inorganic composite material satisfies the condition defined by the above formula (3), an optical pickup device using a blue-violet laser light source as an optical element composed of the optical organic-inorganic composite material is used. Even when it was used as an optical element, it was found that the optical element did not deteriorate in light transmission.
(E. 2)特性 2  (E.2) Characteristics 2
また、光学用有機無機複合材料では、光学用有機無機複合材料中に占める無機 微粒子の含有量は、本発明の効果を発揮できる範囲であれば特に限定されず、熱 可塑性榭脂と無機微粒子の種類により任意に決めることができる。  Further, in the optical organic-inorganic composite material, the content of the inorganic fine particles in the optical organic-inorganic composite material is not particularly limited as long as the effects of the present invention can be exerted, and the thermoplastic resin and the inorganic fine particles are not limited. It can be arbitrarily determined according to the type.
[0079] しかし、無機微粒子の含有量が少な!/ヽ場合、本発明の目的である光学特性の温度 依存性を改善する効果が小さくなる可能性があることから、光学用有機無機複合材 料中に占める無機微粒子の体積分率 Φは 0. 25以上であることが好ましぐ 0. 3以 上であることがより好まし!/、。  [0079] However, when the content of the inorganic fine particles is small! / ヽ, the effect of improving the temperature dependence of the optical characteristics, which is the object of the present invention, may be reduced. The volume fraction Φ of the inorganic fine particles occupying is preferably 0.25 or more, more preferably 0.3 or more! /.
[0080] 他方、無機微粒子の含有率が高!、場合、無機微粒子の熱可塑性榭脂への添加が 難しくなつたり、光学用有機無機複合材料が硬くなつて混練や成形が困難となったり 、光学用有機無機複合材料の比重が大きくなつたりする等の問題が生じる可能性が あることから、光学用有機無機複合材料中に占める無機微粒子の体積分率 Φは 0. 5以下であることが好ましぐ 0. 4以下であることがより好ましい。  [0080] On the other hand, the content of inorganic fine particles is high! In this case, it may be difficult to add inorganic fine particles to the thermoplastic resin, or the optical organic / inorganic composite material may be hard and kneading or molding may be difficult, or the specific gravity of the optical organic / inorganic composite material may be increased. The volume fraction Φ of the inorganic fine particles in the optical organic-inorganic composite material is preferably 0.5 or less, and more preferably 0.4 or less. .
[0081] すなわち、本発明に係る光学用有機無機複合材料は、他の特性として、その光学 用有機無機複合材料中に占める無機微粒子の体積分率を Φとしたとき、当該体積 分率 Φが下記式 (5)で規定する条件を満たすのが好ましぐ下記式 (5. 1)で規定す る条件を満たすのがより好まし 、。  That is, the optical organic-inorganic composite material according to the present invention has, as another characteristic, when the volume fraction of inorganic fine particles in the optical organic-inorganic composite material is Φ, the volume fraction Φ is It is more preferable to satisfy the condition specified by the following formula (5). It is more preferable to satisfy the condition specified by the following formula (5.1).
[0082] 0. 25≤Φ≤0. 5 … (5) 0. 3≤Φ≤0. 4 … (5. 1) [0082] 0. 25≤Φ≤0. 5… (5) 0. 3≤Φ≤0. 4… (5. 1)
なお、光学用有機無機複合材料中に占める無機微粒子の体積分率 Φは、 Φ = ( 光学用有機無機複合材料中の無機微粒子の総体積) / (光学用有機無機複合材料 の体積)によって算出されるものである。  The volume fraction Φ of the inorganic fine particles in the optical organic / inorganic composite material is calculated by Φ = (total volume of the inorganic fine particles in the optical organic / inorganic composite material) / (volume of the optical organic / inorganic composite material) It is what is done.
(Ε. 3)特性 3  (Ε. 3) Characteristics 3
光学用有機無機複合材料では、熱可塑性樹脂の吸水率が、光学用有機無機複合 材料の物性に大きく影響する。  In optical organic / inorganic composite materials, the water absorption rate of the thermoplastic resin greatly affects the physical properties of the optical organic / inorganic composite material.
[0083] そのため、光学用有機無機複合材料は、他の特性として、熱可塑性榭脂の吸水率 が 0. 2質量%以下であることが好ましぐ 0. 1質量%以下であることがより好ましい。 熱可塑性榭脂の吸水率を上記で規定する条件とすることにより、光学素子の構成材 料として当該光学用有機無機複合材料を使用する場合、環境の変化での屈折率の 変化が許容範囲に入ってくる。 [0083] Therefore, the optical organic-inorganic composite material preferably has a water absorption rate of 0.2% by mass or less for thermoplastic resin as another characteristic, more preferably 0.1% by mass or less. preferable. By setting the water absorption rate of the thermoplastic resin as described above, when the optical organic-inorganic composite material is used as a constituent material of the optical element, the change in the refractive index due to the environmental change is within an allowable range. Come in.
(Ε. 4)特性 4  (Ε. 4) Characteristics 4
光学用有機無機複合材料では、熱可塑性榭脂と無機微粒子との混合の程度は特 に限定されるものではないが、当該光学用有機無機複合材料は、他の特性として、 無機微粒子の D の粒子径を X(nm)と、 D の粒子径を Y(nm)としたとき、粒子径 X  In the organic organic / inorganic composite material, the degree of mixing of the thermoplastic resin and the inorganic fine particles is not particularly limited, but the optical organic / inorganic composite material has other characteristics such as D of the inorganic fine particles. When the particle size is X (nm) and the particle size of D is Y (nm), the particle size X
50 90  50 90
, Yが下記式 (6) , (7)で規定する条件を満たしていることが好ましい。  , Y preferably satisfy the conditions defined by the following formulas (6), (7).
[0084] X≤30 … (6) [0084] X≤30 (6)
Y-X≤30 … (7)  Y-X≤30… (7)
ここで、上記「D 」は、光学用有機無機複合材料中に含有される無機微粒子の分  Here, the above “D” is the fraction of inorganic fine particles contained in the optical organic-inorganic composite material.
50  50
布関数 dG=F (D) X dD (Gは粒子数、 Dは粒子径)の積分力 全粒子数の 0. 5 (50 個数%)に等しい粒子径を示す。  Integral force of cloth function dG = F (D) X dD (G is the number of particles, D is the particle size).
[0085] 他方、上記「D 」は、光学用有機無機複合材料中に含有される無機微粒子の分布 [0085] On the other hand, the above "D" represents the distribution of inorganic fine particles contained in the organic / inorganic composite material for optics.
90  90
関数 dG=F (D) X dD (Gは粒子数、 Dは粒子径)の積分力 全粒子数の 0. 9 (90個 数%)に等しい粒子径を示す。  Integral force of the function dG = F (D) X dD (G is the number of particles, D is the particle size).
[0086] なお、 D 、すなわち、上記式(6)における粒子径 Xは、波長 390ηπ!〜 420nmの [0086] It should be noted that D, that is, the particle diameter X in the above formula (6) has a wavelength of 390ηπ! ~ 420nm
50  50
光束に対する光透過性を向上させるために、 30nm以下であることが好ましぐ 20η m以下であることがより好ましぐ lOnm以下であることがさらに好ましい。 [0087] 一方、 D — D 、すなわち、上記式(7)における Y— Xについても、波長 390nn!〜In order to improve the light transmittance with respect to the luminous flux, it is preferably 30 nm or less, more preferably 20 ηm or less, and even more preferably lOnm or less. On the other hand, for D — D, that is, Y—X in the above equation (7), the wavelength is 390 nn! ~
90 50 90 50
420nmの光束に対する光透過性を向上させるためには、 30nm以下であることが好 ましぐ 20nm以下であることがより好ましぐ 15nm以下であることがさらに好ましい。  In order to improve the light transmittance with respect to a light beam of 420 nm, it is preferably 30 nm or less, more preferably 20 nm or less, and further preferably 15 nm or less.
[0088] 上記分布関数を求める方法としては、無機微粒子が熱可塑性榭脂中に分散された 光学用有機無機複合材料の切片を作成し、透過型電子顕微鏡写真を得て、得られ た写真から画像解析を行って求める方法や、光散乱等を利用する方法等が挙げら れる。 [0088] As a method for obtaining the distribution function, a section of an optical organic-inorganic composite material in which inorganic fine particles are dispersed in a thermoplastic resin is prepared, a transmission electron micrograph is obtained, and the obtained photograph is used. Examples of the method include image analysis and a method using light scattering.
[0089] 本実施形態における分布関数は、測定対象や、粒子径の範囲等の観点から、 X線 小角散乱法によって求めたものとなっている。具体的には、当該分布関数は、 測定装置 (小角広角 X線回折装置)として理学電機株式会社製 RINT2500ZPCを 、その装置力 得られた X線小角散乱曲線力 粒子径分布を求めるためのプロダラ ムとして理学電機株式会社製 NANO— solver Ver3. 0を用いて算出したものとな つている。  [0089] The distribution function in the present embodiment is obtained by the X-ray small angle scattering method from the viewpoint of the measurement object, the particle diameter range, and the like. Specifically, the distribution function is RINT2500ZPC manufactured by Rigaku Corporation as a measuring device (small-angle wide-angle X-ray diffractometer), and the device power obtained is a program for determining the X-ray small-angle scattering curve force particle size distribution. Calculated using NANO-solver Ver3.0 manufactured by Rigaku Corporation.
[0090] 上記式 (6) , (7)で規定する条件を満たす手段としては、無機微粒子と熱可塑性榭 脂の混合方法及びその条件を適宜選択することが挙げられるが、カロえて、無機微粒 子の表面修飾の方法を適宜選択することが挙げられる。本発明において、溶融混練 による複合化を行う場合、混練エネルギーを最適化することが好ましい。混練ェネル ギ一は、混練時のトルクに回転数を乗じて時間で積分した値として定義され、混練装 置中の設定条件における加熱温度、ロータ (スクリュー)回転数及び混練時間等を変 化させることにより調整が可能である。  [0090] Examples of the means satisfying the conditions defined by the above formulas (6) and (7) include a method of appropriately mixing the inorganic fine particles and the thermoplastic resin and the conditions thereof. The method for appropriately modifying the surface of the child may be selected. In the present invention, when compounding by melt kneading is performed, it is preferable to optimize kneading energy. The kneading energy is defined as a value obtained by multiplying the torque during kneading by the number of rotations and integrating the time, and changes the heating temperature, rotor (screw) rotation number, kneading time, etc. in the setting conditions during the kneading apparatus. Adjustment is possible.
(F)光学用有機無機複合材料の適用例  (F) Application examples of organic-inorganic composite materials for optics
上記光学用有機無機複合材料はその成形物が光学素子等に適用可能である。  The optical organic-inorganic composite material can be applied to an optical element or the like.
[0091] 成形物としては、球状、棒状、板状、円柱状、筒状、チューブ状、繊維状、フィルム またはシート形状など種々の形態で使用することができ、また、低複屈折性、透明性 、機械強度、耐熱性、低吸水性に優れるため、各種光学素子への適用が好適である  [0091] The molded product can be used in various forms such as a spherical shape, a rod shape, a plate shape, a columnar shape, a tubular shape, a tubular shape, a fibrous shape, a film or a sheet shape, and has a low birefringence and a transparent shape. , Mechanical strength, heat resistance, and low water absorption, suitable for various optical elements
[0092] 具体的な適用例としては、光学レンズや、光学プリズムとしては、カメラの撮像系レ ンズ;顕微鏡、内視鏡、望遠鏡レンズ等のレンズ;眼鏡レンズ等の全光線透過型レン ズ; CD、 CD-ROM, WORM (追記型光ディスク)、 MO (書き変え可能な光デイス ク;光磁気ディスク)、 MD (ミニディスク)、 DVD (デジタルビデオディスク)等の光ディ スクのピックアップレンズ;レーザビームプリンターの f 0レンズ、センサー用レンズ等 のレーザ走査系レンズ;カメラのファインダ一系のプリズムレンズ等が挙げられる。 [0092] As a specific application example, as an optical lens or an optical prism, an imaging lens of a camera; a lens such as a microscope, an endoscope, or a telescope lens; an all-light transmission lens such as a spectacle lens CD, CD-ROM, WORM (recordable optical disc), MO (rewritable optical disc; magneto-optical disc), MD (mini disc), DVD (digital video disc) and other optical disc pickup lenses Laser scanning system lenses such as f0 lenses and sensor lenses of laser beam printers; prism lenses of the camera finder system.
[0093] その他の光学用途としては、液晶ディスプレイなどの導光板;偏光フィルム、位相差 フィルム、光拡散フィルム等の光学フィルム;光拡散板;光カード;液晶表示素子基板 等が挙げられる。 [0093] Other optical applications include light guide plates such as liquid crystal displays; optical films such as polarizing films, retardation films, and light diffusion films; light diffusion plates; optical cards; liquid crystal display element substrates.
[0094] 上述した成形物の中でも、低複屈折性が要求されるピックアップレンズや、レーザ 走査系レンズ等の光学素子として用いられるのが好適であり、特に、青紫色レーザ光 源を用 、た光ピックアップ装置の光学素子に好適に用いられる。  [0094] Among the above-mentioned molded products, it is preferable to be used as an optical element such as a pickup lens or a laser scanning system lens that requires low birefringence. In particular, a blue-violet laser light source is used. It is suitably used for an optical element of an optical pickup device.
[0095] 以下、図 1を参照しながら、上記光学用有機無機複合材料によって成形された光 学素子が用いられた光ピックアップ装置 1につ 、て説明する。  Hereinafter, an optical pickup device 1 using an optical element molded from the above optical organic-inorganic composite material will be described with reference to FIG.
[0096] 図 1は、光ピックアップ装置 1の内部構造を示す模式図である。  FIG. 1 is a schematic diagram showing the internal structure of the optical pickup device 1.
[0097] 本実施形態における光ピックアップ装置 1には、図 1に示すように、光源である半導 体レーザ発振器 2が具備されて ヽる。この半導体レーザ発振器 2は 390〜420nmの 光を光束として出射するものである。当該半導体レーザ発振器 2から出射される青色 光の光軸上には、半導体レーザ発振器 2から離間する方向に向かって、コリメータ 3、 ビームスプリッタ 4、 1Z4波長板 5、絞り 6、対物レンズ 7が順次配設されている。  As shown in FIG. 1, the optical pickup device 1 in the present embodiment includes a semiconductor laser oscillator 2 that is a light source. This semiconductor laser oscillator 2 emits light of 390 to 420 nm as a light beam. On the optical axis of the blue light emitted from the semiconductor laser oscillator 2, a collimator 3, a beam splitter 4, a 1Z4 wavelength plate 5, an aperture 6, and an objective lens 7 are sequentially arranged in a direction away from the semiconductor laser oscillator 2. It is arranged.
[0098] また、ビームスプリッタ 4と近接した位置であって、上述した青色光の光軸と直交す る方向には、 2組のレンズ力もなるセンサーレンズ群 8、センサー 9が順次配設されて いる。  [0098] In addition, a sensor lens group 8 and a sensor 9 that also have two sets of lens forces are sequentially arranged in a direction close to the beam splitter 4 and in a direction orthogonal to the optical axis of the blue light described above. Yes.
[0099] 光学素子である対物レンズ 7は、光ディスク Dに対向した位置に配置されるものであ つて、半導体レーザ発振器 2から出射された青色光を、光ディスク Dの一面上に集光 するようになつている。このような対物レンズ 7には、 2次元ァクチユエータ 10が具備さ れており、この 2次元ァクチユエータ 10の動作により、対物レンズ 7は、光軸上を移動 自在となっている。  [0099] The objective lens 7 as an optical element is disposed at a position facing the optical disc D, and condenses the blue light emitted from the semiconductor laser oscillator 2 on one surface of the optical disc D. It is summer. Such an objective lens 7 is provided with a two-dimensional actuator 10, and the objective lens 7 is movable on the optical axis by the operation of the two-dimensional actuator 10.
[0100] 次に、光ピックアップ装置 1の作用について説明する。  Next, the operation of the optical pickup device 1 will be described.
[0101] 本実施形態における光ピックアップ装置 1は、光ディスク Dへの情報の記録動作時 や、光ディスク Dに記録された情報の再生動作時に、半導体レーザ発振器 2から青 色光を出射する。出射された青色光は、図 1に示すように、光線 Lとなって、コリメ一 タ 3を透過して無限平行光にコリメートされた後、ビームスプリッタ 4を透過して、 1Z4 波長板 5を透過する。さら〖こ、絞り 6及び対物レンズ 7を透過した後、光ディスク Dの保 護基板 Dを介して情報記録面 Dに集光スポットを形成する。 [0101] The optical pickup device 1 in the present embodiment is configured to record information on the optical disc D. In addition, blue light is emitted from the semiconductor laser oscillator 2 at the time of reproducing information recorded on the optical disk D. As shown in FIG. 1, the emitted blue light becomes a light beam L, is transmitted through the collimator 3 and collimated into infinite parallel light, and then transmitted through the beam splitter 4 to pass through the 1Z4 wave plate 5. To Penetrate. Further, after passing through the diaphragm 6 and the objective lens 7, a focused spot is formed on the information recording surface D via the protective substrate D of the optical disk D.
1 2  1 2
[0102] 集光スポットを形成した光は、光ディスク Dの情報記録面 Dで情報ピットによって変  [0102] The light that forms the focused spot is changed by the information pits on the information recording surface D of the optical disc D.
2  2
調され、情報記録面 Dによって反射される。そして、この反射光は、光線しとなって、  And reflected by the information recording surface D. And this reflected light becomes a light ray,
2 2 対物レンズ 7及び絞り 6を順次透過した後、 1Z4波長板 5によって偏光方向が変更さ れ、ビームスプリッタ 4で反射する。その後、当該反射光は、センサーレンズ群 8を透 過して非点収差が与えられ、センサー 9で受光されて、最終的には、センサー 9によ つて光電変換されることによって電気的な信号となる。このように、光ピックアップ装置 1では、特に、光学素子としての対物レンズ 7が、当該光ピックアップ装置 1中で光 (光 束)を集光するのに用いられて 、る。  2 2 After sequentially passing through the objective lens 7 and the aperture 6, the polarization direction is changed by the 1Z4 wavelength plate 5 and reflected by the beam splitter 4. Thereafter, the reflected light passes through the sensor lens group 8 to be given astigmatism, is received by the sensor 9, and is finally subjected to photoelectric conversion by the sensor 9 to produce an electrical signal. It becomes. As described above, in the optical pickup device 1, the objective lens 7 as an optical element is used to collect light (light bundle) in the optical pickup device 1.
[0103] 以後、このような動作が繰り返し行われ、光ディスク Dに対する情報の記録動作や、 光ディスク Dに記録された情報の再生動作が完了する。  Thereafter, such an operation is repeatedly performed, and the operation of recording information on the optical disc D and the operation of reproducing information recorded on the optical disc D are completed.
[0104] なお、光ディスク Dにおける保護基板 Dの厚さ寸法及び情報ピットの大きさにより、  [0104] Depending on the thickness dimension of the protective substrate D and the size of the information pit in the optical disc D,
1  1
対物レンズ 7に要求される開口数 NAも異なる。本実施形態においては、高密度な光 ディスク Dであり、その開口数は 0. 85に設定されている。  The numerical aperture NA required for the objective lens 7 is also different. In this embodiment, it is a high-density optical disc D, and its numerical aperture is set to 0.85.
実施例  Example
[0105] 以下、実施例 1, 2を挙げて本発明を具体的に説明するが、本発明はこれらに限定 されるものではない。  [0105] Hereinafter, the present invention will be specifically described with reference to Examples 1 and 2. However, the present invention is not limited thereto.
[実施例 1]  [Example 1]
(1)試料の作製  (1) Sample preparation
(1. 1)無機微粒子の調製  (1) Preparation of inorganic fine particles
(1. 1. 1)無機微粒子 Aの調製  (1. 1. 1) Preparation of inorganic fine particles A
シリカ(日本ァエロジル社製 RX200,平均粒子径 12nm)をそのまま単に「無機微 粒子 A」とした。  Silica (RX200 manufactured by Nippon Aerosil Co., Ltd., average particle size 12 nm) was simply used as “inorganic fine particles A”.
(1. 1. 2)無機微粒子 Bの調製 アルミナ C (日本ァエロジル社製アルミナ、平均粒子径 13nm) l l. 5gを 300ccナス フラスコに入れて lOTorr以下まで減圧し、 190°Cで 1時間加熱した。その後、ナスフ ラスコ内をアルゴンで置換し、へキサメチルジシラザン (信越ィ匕学工業社製 HMDS-3) を 0. 7g加え、 300°Cで 2時間よく攪拌した。得られたアルミナ微粒子は表面処理が 施されており、当該アルミナ微粒子を「無機微粒子 B」とした。 (1. 1. 2) Preparation of inorganic fine particles B Alumina C (Alumina manufactured by Nippon Aerosil Co., Ltd., average particle size 13 nm) l l. 5 g was put into a 300 cc eggplant flask, depressurized to lOTorr or less, and heated at 190 ° C. for 1 hour. Thereafter, the inside of the Nasflasco was replaced with argon, and 0.7 g of hexamethyldisilazane (HMDS-3 manufactured by Shin-Etsu Chemical Co., Ltd.) was added and stirred well at 300 ° C. for 2 hours. The obtained alumina fine particles were subjected to surface treatment, and the alumina fine particles were designated as “inorganic fine particles B”.
(1. 1. 3)無機微粒子 C〜Fの調製  (1. 1. 3) Preparation of inorganic fine particles C to F
純水 463. lg、 26%アンモニア水 104. 8g及びメタノール 4255. Ogの混合液に対 し、テトラメトキシシラン (TMOS) 3192g及びメタノール 229. 4gの混合液と、純水 6 43. 2g及び 26%アンモニア水 104. 8gの混合液とを、液温を 25°Cに保ちつつ 150 分かけて滴下した。得られた混合液を 4分割し、各混合液に対し、チタンテトライソプ ロポキシドとイソプロパノール 40gとの混合液を毎分 30ccずつ添カ卩した。この際、イソ プロパノール 40gに混合するチタンテトライソプロポキシドの量を 100g〜1500gの間 で変化させて、シリカに対するチタンの量を変化させることで、 4種類のシリカ Zチタ ユア混合ゾルを得た。  Pure water 463.lg, 26% ammonia water 104.8g and methanol 4255.Og mixed solution, tetramethoxysilane (TMOS) 3192g and methanol 229.4g mixed solution, pure water 6 43.2g and 26 A mixed solution of 104.8 g% aqueous ammonia was added dropwise over 150 minutes while maintaining the liquid temperature at 25 ° C. The obtained mixed solution was divided into four, and 30 cc / min of a mixed solution of titanium tetraisopropoxide and 40 g of isopropanol was added to each mixed solution. At this time, by changing the amount of titanium tetraisopropoxide mixed with 40 g of isopropanol between 100 g and 1500 g and changing the amount of titanium relative to silica, four types of silica Z titaure mixed sol were obtained. .
[0106] これらの各シリカ Zチタニア混合ゾルを常圧下で加熱蒸留して容量を一定に保ち つつ純水を滴下し、蒸留塔の塔頂温が 100°Cに達して pHが 8以下になったのを確 認した時点で純水の滴下を終了し、 4種類の無機微粒子の分散液を得た。  [0106] Each of these silica Z titania mixed sols was heated and distilled under normal pressure to drop pure water while keeping the volume constant, and the top temperature of the distillation column reached 100 ° C, resulting in a pH of 8 or less. When it was confirmed that the addition of pure water was completed, four types of inorganic fine particle dispersions were obtained.
[0107] さらに、得られた各分散液にメチルトリメトキシシランを 4g添加し、室温にて 1時間攪 拌した後、 2時間還流を行った。その後、常圧下で加熱蒸留して容量を一定に保ち つつメチルェチルケトンを滴下し、塔頂温が 79°Cに達して水分が 1. 0%以下になつ たのを確認した時点で滴下を終了し、室温まで冷却した後、 3 mメンブランフィルタ 一を用いて精密濾過を行 ヽ、 4種類のメチルェチルケトン分散シリカ Zチタ-ァ混合 ゾルを得た。その後、各メチルェチルケトン分散シリカ Zチタ-ァ混合ゾル中の溶媒 を減圧下留去してシリカ Zチタ-ァ複合酸ィ匕物粒子を得た。得られたシリカ Zチタ- ァ複合酸化物粒子は表面処理が施されており、当該シリカ Zチタ-ァ複合酸化物粒 子を「無機微粒子 C〜F」とした。  [0107] Further, 4 g of methyltrimethoxysilane was added to each of the obtained dispersions, and the mixture was stirred at room temperature for 1 hour and then refluxed for 2 hours. Then, methyl ethyl ketone was added dropwise while maintaining the volume constant by heating and distilling under normal pressure, and when it was confirmed that the top temperature reached 79 ° C and the water content was 1.0% or less. After cooling to room temperature, microfiltration was performed using a 3 m membrane filter to obtain four types of methyl ethyl ketone-dispersed silica Z-titer mixed sol. Thereafter, the solvent in each methyl ethyl ketone-dispersed silica Z-titer mixed sol was distilled off under reduced pressure to obtain silica Z-titanium composite oxide particles. The obtained silica Z-titanium composite oxide particles were subjected to surface treatment, and the silica Z-titanium composite oxide particles were designated as “inorganic fine particles C to F”.
[0108] なお、無機微粒子 C〜Fは上記シリカ Zチタ-ァ混合ゾルを得る際に用いたチタン テトライソプロボキシドの量が異なっており、 TEM観察の結果力 求めた、各無機微 粒子 C〜Fの平均粒子径を下記表 2に記載した。 [0108] The inorganic fine particles C to F are different in the amount of titanium tetraisopropoxide used for obtaining the silica Z tita mixed sol, and each inorganic fine particle obtained as a result of TEM observation was obtained. The average particle size of particles C to F is shown in Table 2 below.
(1. 1. 4)無機微粒子 G〜Jの調製  (1. 1. 4) Preparation of inorganic fine particles G to J
テトラエトキシシラン 112gをエタノール 3200g中に溶解させてその溶液中に 28% アンモニア水 116gを添加し、当該溶液を室温で攪拌したまま 24時間放置し、粒子 分散液を得た。得られた粒子分散液に水 400gを加え、 80°Cでその粒子分散液中の エタノールを除去し、その後当該粒子分散液を陽イオン交換榭脂 (アンバーライト IR1 20BH AG)で処理し、 pH3. 6のシリカ分散液を得た。  112 g of tetraethoxysilane was dissolved in 3200 g of ethanol, and 116 g of 28% aqueous ammonia was added to the solution, and the solution was allowed to stand at room temperature for 24 hours to obtain a particle dispersion. 400 g of water was added to the obtained particle dispersion, ethanol in the particle dispersion was removed at 80 ° C., and then the particle dispersion was treated with cation exchange resin (Amberlite IR1 20BH AG), pH 3 A silica dispersion of 6 was obtained.
[0109] 得られたシリカ分散液を 4分割し、各シリカ分散液に対し、酸塩ィ匕ジルコニウム 8水 和物を各 5g〜40gの範囲で変化させて添カ卩し、 60°Cで溶解させ、 4種類の均一なシ リカ Zジルコニァ分散液を得た。その後、各シリカ Zジルコニァ分散液を 100°Cに昇 温し、 5時間加熱後、水洗しながら限外ろ過して発生した塩酸を除去し、 pH5の分散 液とした。その後、各シリカ Zジルコユア分散液を 100°Cで加熱しながら濃縮し、 50 mlの液を得たところで、ジエチレングリコール 50mlを添カ卩し更に 10時間加熱還流し た。 [0109] The obtained silica dispersion was divided into four parts, and each silica dispersion was charged with acid salt and zirconium octahydrate in the range of 5g to 40g, and added at 60 ° C. Four types of uniform silica Z zirconia dispersions were obtained by dissolution. Thereafter, each silica Z zirconia dispersion was heated to 100 ° C., heated for 5 hours, and then subjected to ultrafiltration while washing with water to remove the generated hydrochloric acid to obtain a pH 5 dispersion. Thereafter, each silica Z-zircoua dispersion was concentrated while heating at 100 ° C., and 50 ml of liquid was obtained. After adding 50 ml of diethylene glycol, the mixture was further heated to reflux for 10 hours.
[0110] このようにして得られた 4種類の各シリカ Zジルコユア分散液に対し、 0. lgの塩ィ匕 アルミニウム 6水和物をカ卩え、室温で 1時間放置した。その後、各シリカ Zジルコユア 分散液に対し、エタノール 50mlをカ卩えてよく攪拌した後、更にエタノールをカ卩えなが ら分画分子量 30000の限外ろ過膜を用いて各シリカ Zジルコユア分散液を洗浄した 。得られた各シリカ Zジルコユア分散液 100mlにメチルェチルケトンをカ卩えながら各 シリカ Zジルコニウム分散液中のエタノールを溜出させ、最終的に 4種類のメチルェ チルケトン分散液を得た。  [0110] To each of the four types of silica Z-zircoua dispersions thus obtained, 0.1 lg of salty aluminum hexahydrate was added and allowed to stand at room temperature for 1 hour. Then, after adding 50 ml of ethanol to each silica Z-zircoua dispersion and stirring well, wash each silica Z-zircoua dispersion using an ultrafiltration membrane with a molecular weight cut off of 30000 while further adding ethanol. did . Ethanol in each silica Z-zirconium dispersion was distilled while 100 ml of each silica Z-zircoua dispersion obtained was charged with methyl ethyl ketone, and finally, four types of methyl ethyl ketone dispersions were obtained.
[0111] 得られた各メチルェチルケトン分散液に対し、ジメチルジェトキシシラン lgと氷酢酸 0. lgを添加して 1時間加熱還流し、その後各分散液を乾燥させて、 4種類の疎水化 粉体を得た。このようにして得られた各疎水化粉体は、表面処理が施されたシリカ Z ジルコユア複合酸ィ匕物粒子であり、当該シリカ Zジルコユア複合酸ィ匕物粒子を「無機 微粒子 G〜J」とした。  [0111] To each of the obtained methyl ethyl ketone dispersions, dimethyljetoxysilane (lg) and glacial acetic acid (0.1 lg) were added, and the mixture was heated to reflux for 1 hour. A powder was obtained. Each hydrophobized powder thus obtained is a surface-treated silica Z zircoure composite oxide particle, and the silica Z zircoure composite oxide particle is referred to as “inorganic fine particles G to J”. It was.
[0112] なお、無機微粒子 G〜Jは上記シリカ分散液に添加した酸塩ィ匕ジルコニウム 8水和 物の添加量が異なっており、 TEM観察の結果カゝら求めた、各無機微粒子 G〜Jの平 均粒子径を下記表 2に記載した。 [0112] It should be noted that the inorganic fine particles G to J are different in the amount of the acid salt-zirconium octahydrate added to the silica dispersion, and the respective inorganic fine particles G to G obtained from the results of TEM observation were obtained. J flat The average particle size is shown in Table 2 below.
(1. 1. 5)無機微粒子 Kの調製  (1. 1. 5) Preparation of inorganic fine particles K
シリカ Zアルミナ複合酸ィ匕物粒子(ホソカワミクロン社製,平均粒子径 98nm) l l. 5 gを 300ccナスフラスコに入れ lOTorr以下まで減圧し、 190°Cで 1時間加熱した。そ の後、ナスフラスコ内をアルゴンで置換し、へキサメチルジシラザン (信越ィ匕学工業社 製 HMDS- 3)を 0. 2gカ卩ぇ 300°Cで 2時間よく攪拌した。得られたシリカ Zアルミナ複 合酸化物粒子は表面処理が施されており、当該シリカ Zアルミナ複合酸ィヒ物粒子を 「無機微粒子 K」とした。  Silica Z-alumina composite oxide particles (manufactured by Hosokawa Micron Corporation, average particle size 98 nm) l l. 5 g was placed in a 300 cc eggplant flask, depressurized to less than lOTorr, and heated at 190 ° C for 1 hour. Thereafter, the inside of the eggplant flask was replaced with argon, and hexamethyldisilazane (HMDS-3 manufactured by Shin-Etsu Chemical Co., Ltd.) was stirred well at 0.2 g and 300 ° C for 2 hours. The obtained silica Z-alumina composite oxide particles were subjected to a surface treatment, and the silica Z-alumina composite oxide particles were designated as “inorganic fine particles K”.
(1. 2)試料 1の作製  (1.2) Preparation of sample 1
熱可塑性榭脂としてシクロォレフイン榭脂(三井ィ匕学製 APEL5014)を、無機微粒子 として無機微粒子 Αを用いた。無機微粒子 Aを当該熱可塑性榭脂と溶融混練して光 学用有機無機複合材料を作製し、これを「試料 1」とした。詳しくは、混練装置としてラ ボプラストミル (株式会社東洋精機製作所製ラボプラストミル KF-6V)を用い、上記熱 可塑性榭脂と無機微粒子 Aとを窒素下において lOOrpmで 10分間混練し、終了前 に 2分間 20Torrで減圧脱気を行った。また、当該溶融混練時には、適宜表面処理 剤を加えることで無機微粒子 Aの表面処理を行った。  Cycloolefin resin (APEL5014 manufactured by Mitsui Chemicals) was used as the thermoplastic resin, and inorganic fine particles were used as the inorganic fine particles. Inorganic fine particle A was melt-kneaded with the thermoplastic resin to prepare an organic / inorganic composite material for optical use, and this was designated as “Sample 1”. Specifically, a lab plast mill (labor plast mill KF-6V manufactured by Toyo Seiki Seisakusho Co., Ltd.) was used as a kneading device, and the above thermoplastic resin and inorganic fine particles A were kneaded for 10 minutes under nitrogen at lOOrpm. Vacuum degassing was performed at 20 Torr for a minute. Further, at the time of the melt kneading, the surface treatment of the inorganic fine particles A was performed by appropriately adding a surface treatment agent.
[0113] なお、無機微粒子 Aの含有量は、試料 1中に占める無機微粒子 Aの体積分率 Φが 0. 25となるようにした。 [0113] The content of the inorganic fine particles A was such that the volume fraction Φ of the inorganic fine particles A in the sample 1 was 0.25.
(1. 3)試料 2の作製  (1.3) Preparation of sample 2
上記試料 1の作製にぉ ヽて無機微粒子 Aを無機微粒子 Bに変更し、それ以外は上 記試料 1の作製で記載したのと同様の方法で光学用有機無機複合材料を作製して これを「試料 2」とした。  In the preparation of Sample 1, the inorganic fine particles A were changed to the inorganic fine particles B. Otherwise, an optical organic-inorganic composite material was prepared in the same manner as described in the preparation of Sample 1 above. This was designated as “Sample 2”.
[0114] なお、無機微粒子 Bの含有量は、試料 2中に占める無機微粒子 Bの体積分率 Φが 0. 3となるよう〖こした。  [0114] The content of the inorganic fine particles B was adjusted so that the volume fraction Φ of the inorganic fine particles B in the sample 2 was 0.3.
(1. 4)試料 3〜7の作製  (1.4) Preparation of samples 3-7
上記試料 1の作製にぉ ヽて無機微粒子 Aを無機微粒子 Cに変更し、それ以外は無 機微粒子 Cの含有量を変えながら上記試料 1の作製で記載したのと同様の方法で 5 種類の光学用有機無機複合材料を作製してこれらを「試料 3〜7」とした。 [0115] なお、無機微粒子 Cの含有量は試料 3〜7ごとに異なり、試料中に占める無機微粒 子 Cの体積分率 Φが 0. 1であるものを「試料 3」と、試料中に占める無機微粒子じの 体積分率 Φが 0. 2であるものを「試料 4」と、試料中に占める無機微粒子 Cの体積分 率 Φが 0. 25であるものを「試料 5」と、試料中に占める無機微粒子 Cの体積分率 Φ が 0. 3であるものを「試料 6」と、試料中に占める無機微粒子 Cの体積分率 Φが 0. 4 であるものを「試料 7」とした。 In the same manner as described in the preparation of Sample 1 above, the inorganic fine particles A were changed to the inorganic fine particles C, and the contents of the inorganic fine particles C were changed. Optical organic-inorganic composite materials were prepared and designated as “Samples 3 to 7”. [0115] The content of the inorganic fine particles C is different for each of the samples 3 to 7, and the sample having a volume fraction Φ of the inorganic fine particles C in the sample of 0.1 is referred to as "sample 3" Sample 4 has a volume fraction Φ of inorganic fine particles occupying 0.2, sample 5 has a volume fraction Φ of inorganic fine particles C occupying 0.25 in the sample, Sample 6 has a volume fraction Φ of inorganic fine particles C occupying 0.3, and sample 7 has a volume fraction Φ of inorganic fine particles C occupying 0.4 in the sample. did.
(1. 5)試料 8〜 10の作製  (1.5) Preparation of samples 8-10
上記試料 1の作製において無機微粒子 Aを無機微粒子 D, E, Fにそれぞれ変更し 、それ以外は上記試料 1の作製で記載したのと同様の方法で 3種類の光学用有機無 機複合材料を作製してこれらを「試料 8〜10」とした。  In the preparation of Sample 1, the inorganic fine particles A were changed to inorganic fine particles D, E, and F, respectively. Otherwise, three types of optical organic-inorganic composite materials for optics were used in the same manner as described in the preparation of Sample 1. These were prepared and designated as “Samples 8 to 10”.
[0116] なお、各無機微粒子 D, E, Fの含有量は、試料 8〜10中に占める無機微粒子 D, E, Fの体積分率 Φが 0. 3となるようにした。 [0116] The contents of the inorganic fine particles D, E, and F were set so that the volume fraction Φ of the inorganic fine particles D, E, and F in the samples 8 to 10 was 0.3.
(1. 6)試料 11〜15の作製  (1.6) Preparation of samples 11-15
上記試料 1の作製にぉ ヽて無機微粒子 Aを無機微粒子 Gに変更し、それ以外は無 機微粒子 Gの含有量を変えながら上記試料 1の作製で記載したのと同様の方法で 5 種類の光学用有機無機複合材料を作製してこれらを「試料 11〜15」とした。  In the preparation of Sample 1, the inorganic fine particles A were changed to the inorganic fine particles G. Otherwise, the content of the inorganic fine particles G was changed, and the five methods were used in the same manner as described in the preparation of the above Sample 1. Optical organic-inorganic composite materials were prepared and designated as “Samples 11 to 15”.
[0117] なお、無機微粒子 Gの含有量は試料 11〜15ごとに異なり、試料中に占める無機微 粒子 Gの体積分率 Φが 0. 1であるものを「試料 11」と、試料中に占める無機微粒子 G の体積分率 Φが 0. 2であるものを「試料 12」と、試料中に占める無機微粒子 Gの体 積分率 Φが 0. 25であるものを「試料 13」と、試料中に占める無機微粒子 Gの体積分 率 Φが 0. 3であるものを「試料 14」と、試料中に占める無機微粒子 Gの体積分率 Φ が 0. 4であるものを「試料 15」とした。 [0117] The content of the inorganic fine particles G differs for each of the samples 11 to 15, and the sample having the volume fraction Φ of the inorganic fine particles G in the sample of 0.1 is referred to as "Sample 11". The sample with the volume fraction Φ of the inorganic fine particles G occupying 0.2 is “Sample 12”, the sample with the volume fraction Φ of the inorganic fine particles G occupying 0.25 in the sample is “Sample 13”, and the sample Sample 14 has a volume fraction Φ of inorganic fine particles G occupying 0.3, and sample 15 has a volume fraction Φ of inorganic fine particles G occupy 0.4 in the sample. did.
(1. 7)試料 16〜19の作製  (1.7) Preparation of samples 16-19
上記試料 1の作製において無機微粒子 Aを無機微粒子 H、 I、 J、 Kにそれぞれ変更 し、それ以外は上記試料 1の作製で記載したのと同様の方法で 4種類の光学用有機 無機複合材料を作製してこれらを「試料 16〜19」とした。  In the preparation of Sample 1, inorganic fine particles A were changed to inorganic fine particles H, I, J, and K, respectively, and the other four types of optical organic-inorganic composite materials were used in the same manner as described in the preparation of Sample 1 above. And these were designated as “Samples 16 to 19”.
[0118] なお、各無機微粒子 Η、 I、 J、 Kの含有量は、試料 16〜19中に占める無機微粒子 Η、 I、 J、 Kの体積分率 Φが 0. 3となるようにした。 (2)無機微粒子及び試料の評価 [0118] The content of each inorganic fine particle Η, I, J, K was set so that the volume fraction Φ of the inorganic fine particles Η, I, J, K in the samples 16-19 was 0.3. . (2) Evaluation of inorganic fine particles and samples
(2. 1)無機微粒子の屈折率の評価方法  (2.1) Evaluation method of refractive index of inorganic fine particles
市販の標準屈折液 (株式会社モリテックス、カーギル標準屈折液)の中から、波長 4 05nmの光における屈折率が 1. 45〜: L 75の範囲の液を、約 0. 01刻みで用意した 。次に、超音波洗浄機を用いて、上記標準屈折液中に対し評価しょうとする無機微 粒子 A〜Kを分散させ、各分散液の波長 405nmの光における透過率が最も高くなつ たときの屈折液の屈折率を、各無機微粒子 A〜Kの波長 405nmの光における「屈折 率 n」とした。各無機微粒子 A〜Kの屈折率 nを下記表 2に示す。  A commercially available standard refraction liquid (Mortex Co., Ltd., Cargill standard refraction liquid) having a refractive index in the range of 1.45 to L75 at a wavelength of 405 nm was prepared in steps of about 0.01. Next, using an ultrasonic cleaner, the inorganic fine particles A to K to be evaluated are dispersed in the standard refractive liquid, and the transmittance of each dispersion at a wavelength of 405 nm is highest. The refractive index of the refracting liquid was defined as “refractive index n” in light of each inorganic fine particle A to K having a wavelength of 405 nm. The refractive index n of each inorganic fine particle A to K is shown in Table 2 below.
P P  P P
(2. 2)熱可塑性榭脂及び試料の屈折率及び dnZdT変化率の評価方法  (2.2) Evaluation method of refractive index and dnZdT change rate of thermoplastic resin and sample
無機微粒子 A〜Kが添加されて 、な 、熱可塑性榭脂 (シクロォレフィン榭脂(三井 化学製 APEL5014) )を加熱溶融した後、厚さ寸法が 3mmのプレート状に成形した 。このプレートを加工研磨し、自動屈折計 (カル-ユー光学工業製 KPR— 200)を用 いて、当該熱可塑性榭脂の 23°Cでの波長 405nmの光における屈折率を測定し、そ の測定結果を当該熱可塑性榭脂の「屈折率 n」とした。当該熱可塑性榭脂の屈折率 nを下記表 2に示す。  After adding inorganic fine particles A to K, thermoplastic resin (cycloolefin resin (APEL5014 manufactured by Mitsui Chemicals)) was heated and melted, and then formed into a plate having a thickness of 3 mm. This plate is processed and polished, and the refractive index of the thermoplastic resin at a wavelength of 405 nm at 23 ° C is measured using an automatic refractometer (KPR-200, manufactured by Kalyu Optical Co., Ltd.). The result was defined as “refractive index n” of the thermoplastic resin. The refractive index n of the thermoplastic resin is shown in Table 2 below.
[0119] 上記と同様に、各試料 1〜19をそれぞれ加熱溶融した後、厚さ寸法が 3mmのプレ ート状に成形した。これら各プレートを加工研磨し、自動屈折計 (カル-ユー光学ェ 業製 KPR— 200)を用いて、各試料 1〜19の温度を 23°Cから 60°Cまで変化させて 各温度での波長 405nmの光における屈折率を測定するとともに、その温度変動に 伴う屈折率の温度変化率を試料 1〜19ごとに算出した。その算出結果を各試料 1〜 19の屈折率の「温度変化率 dn ZdT」とした。各試料 1〜19の温度変化率 dn /dT ( X 10"V°Oを下記表 2に示す。  [0119] In the same manner as described above, each of the samples 1 to 19 was heated and melted, and then formed into a plate having a thickness of 3 mm. Each of these plates is processed and polished, and using an automatic refractometer (KPR-200 manufactured by Kalyu Optical Co., Ltd.), the temperature of each sample 1-19 is changed from 23 ° C to 60 ° C, In addition to measuring the refractive index of light with a wavelength of 405 nm, the temperature change rate of the refractive index accompanying the temperature change was calculated for each sample 1-19. The calculation result was defined as the “temperature change rate dn ZdT” of the refractive index of each sample 1-19. Table 2 below shows the temperature change rate dn / dT (X 10 "V ° O of each sample 1-19.
(2. 3)試料中での無機微粒子の分散状態の評価方法  (2.3) Evaluation method of dispersion state of inorganic fine particles in sample
各試料 1〜19を加熱溶融した後、それら各試料 1〜19を厚さ寸法が 3mmのプレー ト状に成形した。これら各プレートについて、小角広角 X線回折装置 (理学電機株式 会社製 RINT2500ZPC)を用いて X線小角散乱測定を行い、各試料 1〜19中の無 機微粒子 A〜Kの粒子径分布を求めた。  After each sample 1-19 was heated and melted, each sample 1-19 was formed into a plate shape having a thickness of 3 mm. For each of these plates, X-ray small angle scattering measurement was performed using a small-angle wide-angle X-ray diffractometer (RINT2500ZPC, manufactured by Rigaku Corporation), and the particle size distribution of inorganic fine particles A to K in each sample 1 to 19 was obtained. .
[0120] 当該測定は透過法による以下の条件で行った。この際、各試料 1〜19の厚さは 1 / ix は各試料 1〜19の質量吸収係数)となるように調整した。 [0120] The measurement was performed by the transmission method under the following conditions. At this time, the thickness of each sample 1-19 is 1 / ix was adjusted to be the mass absorption coefficient of each sample 1-19.
ターゲット:銅  Target: Copper
出力: 40kV—200mA  Output: 40kV—200mA
1stスリット: 0. 04mm  1st slit: 0.04mm
2nd^リツ卜: 0. 03mm  2nd ^ Ritsu: 0.03mm
受光スリット: 0. lmm  Receiving slit: 0. lmm
散乱スリット:0. 2mm  Scattering slit: 0.2 mm
測定法: 2 0 FTスキャン法  Measurement method: 2 0 FT scan method
測定範囲: 0. 1° 〜6°  Measurement range: 0.1 ° to 6 °
サンプリング: 0. 04°  Sampling: 0.04 °
計数時間: 30秒  Counting time: 30 seconds
得られた散乱パターンに基づ ヽて、解析ソフト(理学電機株式会社製 NANO - sol ver Ver3. 0)を用いて解析を行った。ここで、解析に必要なブランクデータは、測 定用試料を受光スリットボックスの入射側に設置して、同条件で測定することによって 得た。当該解析は、散乱体のモデルを球とし、ブランクデータの除去、スリット補正を 行った後、フィッティングを行い、各無機微粒子 A〜Kの粒子径分布を求めた。得ら れた粒子径分布に基づいて D 及び D の数値を計算し、当該 D の値を「X (nm)」  Based on the obtained scattering pattern, analysis was performed using analysis software (NANO-sol ver Ver3.0 manufactured by Rigaku Corporation). Here, blank data necessary for the analysis was obtained by placing a measurement sample on the incident side of the light receiving slit box and measuring under the same conditions. In this analysis, the scatterer model was a sphere, blank data was removed and slit correction was performed, and fitting was performed to determine the particle size distribution of each of the inorganic fine particles A to K. Calculate the values of D and D based on the particle size distribution obtained, and set the value of D to `` X (nm) ''
50 90 50  50 90 50
と、当該 D の値を「Y (nm)」とした。各試料 1〜19の Xと (Y— X)との各値を下記表 2 The value of D was “Y (nm)”. Table 2 shows the values of X and (Y—X) for each sample 1-19.
90  90
に示す。 Shown in
(2. 4)試料の光線透過率の測定  (2.4) Measurement of light transmittance of sample
各試料 1〜19を加熱溶融した後、それら各試料 1〜19を厚さ寸法が 3mmのプレー ト状に成形した。得られたプレート状の各試料 1〜19について、分光光度計 (株式会 社島津製作所製 UV— 3150)により、波長 405nmの光における厚さ方向の透過率 を測定した。その測定結果を下記表 2に示す。  After each sample 1-19 was heated and melted, each sample 1-19 was formed into a plate shape having a thickness of 3 mm. With respect to each of the obtained plate-like samples 1 to 19, the transmittance in the thickness direction with respect to light having a wavelength of 405 nm was measured with a spectrophotometer (UV-3150, manufactured by Shimadzu Corporation). The measurement results are shown in Table 2 below.
(2. 5)試料の A SAの評価 (2.5) Evaluation of sample A SA
各試料 1〜 19から以下の規格を有する光ピックアップ装置用の対物レンズを作製 ( 成形)し、光ピックアップ装置の使用温度が 30°C上昇した際に生じる各対物レンズの 球面収差 A SA[ RMS]を評価した(ただし、 A SAは 3次、 5次、 7次、 9次の二乗 和、 NAは各対物レンズにおける光の出射側の開口数である。 )0その評価結果を下 記表 2に示す。 An objective lens for an optical pickup device having the following standards is prepared (molded) from each sample 1 to 19, and the spherical aberration A SA [RMS of each objective lens that occurs when the operating temperature of the optical pickup device rises by 30 ° C (However, A SA is the 3rd, 5th, 7th, 9th squared Sum, NA is the numerical aperture on the light exit side of each objective lens. ) 0 The evaluation results are shown in Table 2 below.
[0122] なお、各試料 1〜19において、 A SAの値が 0. 07以下であれば、無収差レンズと して実用可能であると判断することができる。  [0122] In each of samples 1 to 19, if the value of ASA is 0.07 or less, it can be determined that it can be used as an aberration-free lens.
(規格)  (Standard)
使用波長(λ ) :405ηπι  Wavelength used (λ): 405ηπι
NA: 0. 85  NA: 0. 85
レンズ瞳径: φ 2. 5mm  Lens pupil diameter: φ 2.5mm
保護基板厚: 0. 0875mm  Protective board thickness: 0.0875mm
[0123] [表 2] [0123] [Table 2]
Figure imgf000031_0001
Figure imgf000031_0001
(3)まとめ  (3) Summary
表 2に示す通り、試料 4〜8 12〜: 16と比較の試料 1〜3 9〜11 17〜19とを対 比すると、試料 4〜8 12〜16は光線透過率の値が高くて光透過性に優れ、 A SA の値が小さい、即ち、温度変化による球面収差の変動が充分に低減されている。こ れにより、平均粒子径が 50nm以下の無機微粒子を熱可塑性樹脂に分散させた光 学用有機無機複合材料にぉ ヽては、上記式(1)〜 (4)で規定する条件を満たすの が有用であることがわかる。 [実施例 2] As shown in Table 2, when comparing samples 4 to 8 12 to 16 and comparative samples 1 to 39 9 to 11 17 to 19, samples 4 to 8 12 to 16 have high light transmittance values and light. Excellent transparency and a small A SA value, that is, the variation of spherical aberration due to temperature change is sufficiently reduced. As a result, for the organic / inorganic composite material for optical use in which inorganic fine particles having an average particle size of 50 nm or less are dispersed in a thermoplastic resin, the conditions defined by the above formulas (1) to (4) are satisfied. Is useful. [Example 2]
(1)試料の作製並びに無機微粒子及び試料の評価  (1) Preparation of samples and evaluation of inorganic fine particles and samples
上記実施例 1の「(1)試料の作製」の項目の記載にぉ 、て、熱可塑性榭脂として「シ クロォレフィン榭脂(三井ィ匕学製 APEL5014)」に代えて「ポリカーボネート榭脂(帝 人化成株式会社製パンライト AD— 5503)」を用 、た。それ以外は上記実施例 1に記 載した手法と同様にして試料 1〜19を作製した。  According to the description of the item “(1) Preparation of sample” in Example 1 above, “polycarbonate resin (Imperial) was used instead of“ cycloolefin resin (APEL5014 manufactured by Mitsui Chemicals) ”as the thermoplastic resin. Pankalite AD-5503) manufactured by NHI Kasei Co., Ltd. was used. Samples 1 to 19 were prepared in the same manner as described in Example 1 except for the above.
[0125] その後、各試料 1〜19について、上記実施例 1の「(2)無機微粒子及び試料の評 価」の項目に記載したのと同様の評価を行った。その評価結果を下記表 3に示す。 [0125] Thereafter, each sample 1 to 19 was evaluated in the same manner as described in the item "(2) Evaluation of inorganic fine particles and sample" in Example 1 above. The evaluation results are shown in Table 3 below.
[0126] [表 3] [0126] [Table 3]
() ()
Figure imgf000033_0001
Figure imgf000033_0001
(2)まとめ  (2) Summary
表 3に示す通り、試料 4 9 12 17と!:匕較の試料 1 3 10 11 18 19とを対 比すると、試料 4 9 12〜: 17は光線透過率の値が高くて光透過性に優れ、 A SA の値が小さい、即ち、温度変化による球面収差の変動が充分に低減されている。こ れにより、実施例 1と同様に、平均粒子径が 50nm以下の無機微粒子を熱可塑性榭 脂に分散させた光学用有機無機複合材料においては、上記式 (1)〜(4)で規定す る条件を満たすのが有用であることがわかる。  As shown in Table 3, samples 4 9 12 17 and! : Comparison with comparative sample 1 3 10 11 18 19 Sample 4 9 12 ~: 17 has high light transmittance value, excellent light transmittance, low A SA value, ie, temperature change The variation of the spherical aberration due to is sufficiently reduced. Thus, in the same manner as in Example 1, the optical organic-inorganic composite material in which inorganic fine particles having an average particle size of 50 nm or less are dispersed in a thermoplastic resin is defined by the above formulas (1) to (4). It can be seen that satisfying the above conditions is useful.

Claims

請求の範囲 [1] 平均粒子径が 50nm以下の無機微粒子が熱可塑性榭脂中に分散された光学用有 機無機複合材料であって、前記熱可塑性榭脂の屈折率を nと、前記無機微粒子の 屈折率を nとしたとき、前記屈折率 n及び前記屈折率 nが下記式 (1)〜(3)で規定 P m p する条件を満たし、かつ、当該光学用有機無機複合材料の屈折率の温度変化率を d n ZdTとしたとき、前記温度変化率 dn ZdTが下記式 (4)で規定する条件を満たす ことを特徴とする光学用有機無機複合材料。 Claims [1] An organic inorganic composite material for optics in which inorganic fine particles having an average particle diameter of 50 nm or less are dispersed in a thermoplastic resin, wherein the refractive index of the thermoplastic resin is n, and the inorganic When the refractive index of the fine particles is n, the refractive index n and the refractive index n satisfy the condition P mp defined by the following formulas (1) to (3), and the refractive index of the optical organic-inorganic composite material An organic-inorganic composite material for optics, wherein the temperature change rate dn ZdT satisfies the condition defined by the following formula (4), where
1. 5≤n ≤1. 7 … (1)  1. 5≤n ≤1. 7… (1)
1. 5≤n≤1. 7 … (2)  1. 5≤n≤1. 7… (2)
P  P
I n— n I ≤0. 1 … (3)  I n— n I ≤0. 1… (3)
p m  p m
0≤ I dn /dT I ≤9. O X 10_5 … (4) 0≤ I dn / dT I ≤9. OX 10_ 5 … (4)
[2] 請求の範囲第 1項に記載の光学用有機無機複合材料において、当該光学用有機無 機複合材料中に占める前記無機微粒子の体積分率を Φとしたとき、前記体積分率 Φが下記式 (5)で規定する条件を満たすことを特徴とする光学用有機無機複合材料 [2] In the optical organic-inorganic composite material according to claim 1, wherein the volume fraction of the inorganic fine particles in the optical organic-inorganic composite material is Φ, the volume fraction Φ is Optical organic-inorganic composite material characterized by satisfying the condition defined by the following formula (5)
0. 25≤Φ≤0. 5 … (5) 0. 25≤Φ≤0. 5… (5)
[3] 請求の範囲第 1項又は第 2項に記載の光学用有機無機複合材料において、前記無 機微粒子が、ケィ素酸ィ匕物とケィ素以外の 1種類以上の金属酸ィ匕物とが複合ィ匕した 複合酸化物粒子であることを特徴とする光学用有機無機複合材料。  [3] The optical organic-inorganic composite material according to claim 1 or 2, wherein the organic fine particles are a key oxide and one or more metal oxides other than the key oxide. An organic-inorganic composite material for optical use, wherein the composite oxide particles are composite oxide particles.
[4] 請求の範囲第 1項〜第 3項のいずれか 1項に記載の光学用有機無機複合材料にお いて、前記無機微粒子の D の粒子径を X(nm)と、前記無機微粒子の D の粒子径  [4] In the optical organic-inorganic composite material according to any one of claims 1 to 3, the particle size of D of the inorganic fine particles is X (nm), and the inorganic fine particle D particle size
50 90 を Y(nm)としたとき、前記粒子径 X, Yが下記式 (6)、(7)で規定する条件を満たすこ とを特徴とする光学用有機無機複合材料。  An organic-inorganic composite material for optics, wherein the particle diameters X and Y satisfy the conditions defined by the following formulas (6) and (7), where 50 90 is Y (nm).
X≤30 … (6)  X≤30… (6)
Y-X≤30 … (7)  Y-X≤30… (7)
(ただし、 D 及び D は、当該光学用有機無機複合材料中に含有される前記無機  (However, D and D are the above-mentioned inorganic substances contained in the optical organic-inorganic composite material.
50 90  50 90
微粒子の分布関数 dG = F (D) X dD (Gは粒子数、 Dは粒子径)の積分が、全粒子 数の 0.  The integral of the fine particle distribution function dG = F (D) X dD (G is the number of particles, D is the particle size) is 0 for the total number of particles.
5 (50個数%)、0. 9 (90個数%)に等しい粒子径をそれぞれ示す。 ) [5] 請求の範囲第 1項〜第 4項のいずれか 1項に記載の光学用有機無機複合材料にお Vヽて、前記熱可塑性榭脂が環状ォレフィン構造を有することを特徴とする光学用有 機無機複合材料。 The particle sizes are equal to 5 (50 number%) and 0.9 (90 number%), respectively. ) [5] The optical organic-inorganic composite material according to any one of claims 1 to 4, wherein the thermoplastic resin has a cyclic olefin structure. Organic inorganic composite material.
[6] 請求の範囲第 1項〜第 5項のいずれか 1項に記載の光学用有機無機複合材料を用 V、て成形された光学素子であって、波長 390〜420nmの光束を用いて情報の再生 及び Z又は記録を行う光ピックアップ装置中で、前記光束を集光するのに用いられ ることを特徴とする光学素子。  [6] An optical element formed by using the organic-inorganic composite material for optical use according to any one of claims 1 to 5, using a light beam having a wavelength of 390 to 420 nm. An optical element used for condensing the luminous flux in an optical pickup device for reproducing and Z-recording information.
[7] 請求の範囲第 6項に記載の光学素子において、対物レンズであることを特徴とする光 学素子。  7. The optical element according to claim 6, wherein the optical element is an objective lens.
PCT/JP2007/056849 2006-04-07 2007-03-29 Optical organic/inorganic composite material and optical element WO2007116803A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006106710 2006-04-07
JP2006-106710 2006-04-07

Publications (1)

Publication Number Publication Date
WO2007116803A1 true WO2007116803A1 (en) 2007-10-18

Family

ID=38581097

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/056849 WO2007116803A1 (en) 2006-04-07 2007-03-29 Optical organic/inorganic composite material and optical element

Country Status (1)

Country Link
WO (1) WO2007116803A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009020116A1 (en) * 2007-08-09 2009-02-12 Konica Minolta Opto, Inc. Resin material for optical purposes, and optical element utilizing the same
CN113939477A (en) * 2019-06-12 2022-01-14 株式会社德山 Amorphous silica-titania composite oxide powder, resin composition, dispersion liquid, and method for producing silica-coated silica-titania composite oxide powder

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005010756A (en) * 2003-05-23 2005-01-13 Olympus Corp Optical system
JP2005325349A (en) * 2004-04-16 2005-11-24 Konica Minolta Opto Inc Thermoplastic resin material and optical element made thereof
JP2006070069A (en) * 2004-08-31 2006-03-16 Konica Minolta Opto Inc Thermoplastic resin material and optical element obtained using the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005010756A (en) * 2003-05-23 2005-01-13 Olympus Corp Optical system
JP2005325349A (en) * 2004-04-16 2005-11-24 Konica Minolta Opto Inc Thermoplastic resin material and optical element made thereof
JP2006070069A (en) * 2004-08-31 2006-03-16 Konica Minolta Opto Inc Thermoplastic resin material and optical element obtained using the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009020116A1 (en) * 2007-08-09 2009-02-12 Konica Minolta Opto, Inc. Resin material for optical purposes, and optical element utilizing the same
CN113939477A (en) * 2019-06-12 2022-01-14 株式会社德山 Amorphous silica-titania composite oxide powder, resin composition, dispersion liquid, and method for producing silica-coated silica-titania composite oxide powder
EP3984956A4 (en) * 2019-06-12 2023-06-28 Tokuyama Corporation Amorphous silica-titania composite oxide powder, resin composition, liquid dispersion, and method for producing silica-coated silica-titania composite oxide powder
CN113939477B (en) * 2019-06-12 2023-09-01 株式会社德山 Amorphous silica titania composite oxide powder, resin composition, dispersion liquid, and method for producing silica titania composite oxide powder coated with silica

Similar Documents

Publication Publication Date Title
JP2008001895A (en) Optical plastic material and optical element
JPWO2009020116A1 (en) Optical resin material and optical element using the same
WO2006061982A1 (en) Process for producing thermoplastic composite material, thermoplastic composite material, and optical element
JP5163640B2 (en) Optical organic / inorganic composite material and optical element
JP2007231237A (en) Organic-inorganic composite material, optical element, and method for producing organic-inorganic composite material
WO2007138924A1 (en) Optical pickup device
JP2006299183A (en) Non-aqueous fine particle dispersion and thermoplastic composite material and optical element
WO2007116803A1 (en) Optical organic/inorganic composite material and optical element
JP2007254681A (en) Thermoplastic composite material and optical element
JP2008280443A (en) Method for producing composite resin material, composite resin material, and optical element
JP2007161980A (en) Masterbatch, optical element, method for producing masterbatch, and method for manufacturing optical element
JP5277457B2 (en) Method for producing composite metal oxide fine particle-containing resin material, and optical element using the same
JP2008074635A (en) Core-shell type silicon oxide particle, method for producing the same, inorganic particulate-dispersed resin composition and optical element using the same
JP2007137984A (en) Composite material and optical element
WO2006051699A1 (en) Resin composition and optical device using same
WO2008044342A1 (en) Organic/inorganic composite material and optical element
JP2006299032A (en) Thermoplastic resin composition and optical element
JP2007206197A (en) Optical resin material and optical element
JP2007264581A (en) Method for manufacturing optical inorganic material, and optical inorganic material, optical resin material, and optical element
JPWO2008015999A1 (en) Composite material and optical element
JP2008074923A (en) Inorganic material for optical use, method for preparing the same, resin material for optical use and optical element by using the same
WO2006049015A1 (en) Thermoplastic resin composition and optical device using same
JP2006213759A (en) Optical material and optical element
JP2007197606A (en) Resin material for optics, optical element, and method for producing resin material for optics
JP2006299001A (en) Method for making inorganic/organic composite thermoplastic material and resin composition for optical element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07740287

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 07740287

Country of ref document: EP

Kind code of ref document: A1