WO2007115546A2 - Verfahren zur herstellung einer leiterbahnstruktur sowie eine derart hergestellte leiterbahnstruktur - Google Patents

Verfahren zur herstellung einer leiterbahnstruktur sowie eine derart hergestellte leiterbahnstruktur Download PDF

Info

Publication number
WO2007115546A2
WO2007115546A2 PCT/DE2007/000605 DE2007000605W WO2007115546A2 WO 2007115546 A2 WO2007115546 A2 WO 2007115546A2 DE 2007000605 W DE2007000605 W DE 2007000605W WO 2007115546 A2 WO2007115546 A2 WO 2007115546A2
Authority
WO
WIPO (PCT)
Prior art keywords
conductor track
track structure
carrier material
high molecular
conductive
Prior art date
Application number
PCT/DE2007/000605
Other languages
English (en)
French (fr)
Other versions
WO2007115546A3 (de
Inventor
Gerhard Naundorf
Original Assignee
Lpkf Laser & Electronics Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lpkf Laser & Electronics Ag filed Critical Lpkf Laser & Electronics Ag
Priority to EP07007393A priority Critical patent/EP1845170A3/de
Publication of WO2007115546A2 publication Critical patent/WO2007115546A2/de
Publication of WO2007115546A3 publication Critical patent/WO2007115546A3/de

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/105Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern by conversion of non-conductive material on or in the support into conductive material, e.g. by using an energy beam
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1603Process or apparatus coating on selected surface areas
    • C23C18/1607Process or apparatus coating on selected surface areas by direct patterning
    • C23C18/1608Process or apparatus coating on selected surface areas by direct patterning from pretreatment step, i.e. selective pre-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1635Composition of the substrate
    • C23C18/1639Substrates other than metallic, e.g. inorganic or organic or non-conductive
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1635Composition of the substrate
    • C23C18/1639Substrates other than metallic, e.g. inorganic or organic or non-conductive
    • C23C18/1641Organic substrates, e.g. resin, plastic
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/1851Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material
    • C23C18/1862Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material by radiant energy
    • C23C18/1868Radiation, e.g. UV, laser
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • C23C18/2006Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30
    • C23C18/2026Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30 by radiant energy
    • C23C18/204Radiation, e.g. UV, laser
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/18Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material
    • H05K3/181Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material by electroless plating
    • H05K3/182Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material by electroless plating characterised by the patterning method
    • H05K3/185Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material by electroless plating characterised by the patterning method by making a catalytic pattern by photo-imaging
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0373Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement containing additives, e.g. fillers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0206Materials
    • H05K2201/0209Inorganic, non-metallic particles
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/10Using electric, magnetic and electromagnetic fields; Using laser light
    • H05K2203/107Using laser light
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49124On flat or curved insulated base, e.g., printed circuit, etc.

Definitions

  • the invention relates to a method for metallizing a conductor track structure on a substrate in an electroless metallization as well as a conductor track structure produced by the method on a substrate.
  • Such methods are used in practice, for example, in the production of circuit substrates made of thermoplastic materials by means of an injection molding process, the so-called Ml D technology, where MID is synonymous with Molded Interconnect Device to understand.
  • Ml D technology where MID is synonymous with Molded Interconnect Device to understand.
  • the aim of MID technology is to combine electrical and mechanical functions in one component.
  • the printed conductors are integrated into the housing and thus replace the conventional printed circuit board. Weight and installation space can be effectively reduced.
  • methods according to the MID technology have the advantage that the tool costs can be kept comparatively low.
  • the number of required process steps can be reduced, so that a very economical production of medium-sized quantities is possible.
  • DE 197 23 734 A1 and DE 197 31 346 A1 have already disclosed processes in which non-conductive metal chelate complexes are introduced into a nonconductive carrier material for the production of fine, firmly adhering conductor track structures and metallized nuclei are structured therefrom by laser radiation which initiate a subsequent chemically reductive metallization in the irradiated partial areas.
  • a generic method and a conductor track structure produced by the method are known, for example, from WO 03/005784 A2.
  • WO 00/35259 A2 describes a process for the production of fine metallic conductor structures on an electrically nonconductive support material, in which an electrically non-conductive heavy metal complex, which is built up with organic complexing agents, is applied to the support material or introduced into the support material is, the carrier material in the region of the conductor tracks to be selectively exposed to UV radiation, wherein heavy metal nuclei are released and this area is chemically reductively metallized.
  • an electrically non-conductive heavy metal complex which is built up with organic complexing agents
  • DE 37 08 235 A1 and DE 39 42 472 A1 relate to the processing of aluminum nitride ceramics by means of electromagnetic radiation.
  • the object of the invention is to create a possibility of creating a further improved method for metallizing a printed conductor structure on a carrier material in an electroless metallizing bath. Furthermore, the invention has the object to provide a printed conductor structure produced by this method.
  • the first object is achieved by a method according to the features of claim 1.
  • the dependent claims 2 to 10 relate to particularly expedient developments of the invention.
  • the printed conductor structure in which the printed conductor structure is formed on a high molecular weight workpiece
  • Material surface of the support material is produced as electrically conductive surface phases with highly reactive aluminum particles by breaking up finely divided contained in the support material non-conductive aluminum nitride, which are released simultaneously under nitrogen formation and ablation of the high molecular weight material, such as a polymer in high concentration, the areas in The environment of the interconnect structure remain unchanged.
  • an accelerated process for adherent metallization of a surface structure in electroless baths is created, which is realized on the surface of material-modified high molecular weight materials by aluminum nuclei.
  • the metal nuclei are released by electromagnetic radiation from aluminum nitride.
  • the invention is significantly improved over the prior art, characterized in that the electrically non-conductive aluminum nitride particles contained in the material split off in the release of aluminum nuclei nitrogen and thereby the germs are protected from oxidation in the nitrogen atmosphere.
  • the specific properties of the incorporated aluminum nitride powder also have an advantageous effect on the properties of the carrier material, which leads to improved thermal conductivity, lower thermal expansion, improved bondability to the printed conductor structure and more favorable electrical high frequency suitability.
  • This process proves to be particularly promising if a metallization of the conductor track structure of the support material is carried out in an electroless plating bath and thus the nuclei with high nuclei per unit area on the surface of the material, protected from oxidation in the nitrogen atmosphere for accelerated metal deposition contribute significantly in electroless baths.
  • the growth rates of the conventional chemical-reductive processes are increased by the liberated A1 particles and their high nuclei number / unit area from about 0.1 ⁇ m / 10 min to 1 ⁇ m / 10 min already at the beginning of the metallization process and thus the economic efficiency of this time-consuming production step significantly improved.
  • the combination of the high molecular weight material, in particular of a polymer with aluminum nitride also avoids that in subsequent soldering processes on the interconnects outgass electrolyte inclusions of the chemical-reductive bath, because due to the low proportion of aluminum nitride powder of predominantly about 1% to 10% and the sheath the aluminum nitride particles are avoided by the material matrix, in particular plastic matrix electrolyte inclusions.
  • the combination with the high molecular weight materials further leads to the formation of nitrogen by small ablation of polymer particles and Aiuminiumkeimen form a microporous conductor structure surface in the structure area, which causes a firm anchoring of the electroless metal structure and thus a high adhesive strength of aufmetallêten tracks.
  • nitride particles are finely distributed throughout the carrier material, activation by electromagnetic radiation in bores is also possible.
  • the fast and reliable chemical-reductive metal deposition in the through holes of advantage.
  • the addition of 1, 0 to 5.0% yttrium oxide to aluminum nitride has an advantageous effect on the adhesion of the metallization.
  • the highly reactive aluminum particles of the conductor track structures of the carrier material allow a problem-free, almost arbitrary layer structure through the metallization.
  • a further development of the process is particularly practical in which at least one of chromium, copper, nickel or gold is applied during metallization in the electroless plating bath, whereby in particular a layer structure with individual layers of all the above constituents proves to be expedient. In addition, this allows a much accelerated metallization.
  • the energy input for breaking up the finely divided aluminum nitride contained in the support material can be realized in different ways.
  • it is particularly promising to use a modification in which the electromagnetic radiation of a laser, in particular of the wavelength range from 0.125 to 11.0 ⁇ m, is used so as to enable a selective disruption of the aluminum nitride by the laser beam.
  • the printed conductor structures can be generated by means of the laser beam in writing or in a single step by means of a template limiting the energy input.
  • the aluminum nitride compound incorporated as active substance has the advantage that the decomposition of the compound with electromagnetic radiation is also possible with low energy density and thus, in addition to energy saving, also a longer service life of the laser sources used.
  • the support material can be available at room temperature both in a liquid and in a solid, in particular formable state.
  • the aluminum particles are formed by simultaneously breaking off the high molecular weight material, in particular of the polymer, by splitting off the aluminum nitride contained in the carrier material, thereby producing an adhesion-promoting structural surface.
  • the layer structure is favored in a simple manner by the nitrogen enclosing the processing zone, which serves to avoid undesired oxidation, in that the structure surface improves the adhesion. At the same time the process is accelerated.
  • the carrier material can be arbitrarily selected according to the individual purpose of use.
  • the non-conductive carrier material comprises a plastic or a polymer ceramic. Due to its high temperature resistance, the latter material makes it possible, for example, to use it in the environment of internal combustion engines and heating devices or as an integral part of a component thereof.
  • the second-mentioned object to provide a conductor track structure created by this method on a substrate, according to the invention is achieved in that the conductor tracks on high molecular weight material surfaces of the carrier material as highly reactive aluminum particles by breaking up finely divided contained in the substrate non-conductive aluminum nitride produced and the areas in the environment Track structure are unchanged. Due to the high molecular weight, the aluminum nitride-containing material as a carrier material, the interconnects with the formation of nitrogen by small ablation of polymer particles can be realized, which is formed in the structural area microporous conductor structure surface by the aluminum nuclei, the solid anchoring of the electroless metal structure and thus a high adhesive strength the metallized conductor tracks causes.
  • non-conductive support material in addition to aluminum particles containing higher oxides with the structure of the spinels or organic thermally stable metal chelate, so that the aluminum particles as admixture further, also serving as the basis for the production of the conductor track structures nenden Particles, such as metal nuclei, which allow by breaking up finely divided in the carrier material contained non-conductive metal compounds by means of electromagnetic radiation optimal adaptation to different requirements.
  • the invention allows for various embodiments. To further clarify its basic principle, one of them is shown in the drawing and will be described below. This shows each in a principle sketch in
  • FIG. 1 shows a perspective view of a carrier material in the production of printed conductor structures by means of electromagnetic radiation
  • FIG. 2 is a sectional view of a section of the carrier material shown in FIG. 1 cut and enlarged along the line H-II; FIG.
  • FIG 3 is a perspective view of the carrier material shown in Figure 1 in a metallizing bath.
  • FIG 4 shows the sectional view of the carrier material shown in Figure 2 with a copper layer.
  • a plate-shaped carrier material 2 is first exposed to a selective electromagnetic radiation 3 of an Nd: YAG laser, around the conductor track structures 1 on the carrier material 2 as highly reactive aluminum particles by breaking up finely distributed in the carrier material
  • the support material 2 is hung, for example, by means of a frame, not shown, in the metallization bath designed as a commercially available chemically reductive copper-plating bath 5.
  • the copper layers 6 shown in FIG. 6 are de-energized to the printed conductor structures 1 built.

Abstract

Die Erfindung betrifft ein Verfahren zur Herstellung eines Trägermaterials (2) in stromlosen Metallisierungsbädern sowie eine nach dem Verfahren hergestellte Leiterbahnstruktur (1) auf dem Trägermaterial (2). Zu diesem Zweck wird das plattenförmige Trägermaterial (2) zunächst einer selektiven elektromagnetischen Strahlung (3) eines Nd:YAG-Lasers ausgesetzt, um die Leiterbahnstrukturen (1) auf dem Trägermaterial (2) als hochreaktive Aluminiumpartikel durch Aufbrechen von feinstverteilt in dem Trägermaterial (2) enthaltenen nicht leitenden Aluminiumnitrid zu erzeugen. Gleichzeitig wird dabei Stickstoff freigesetzt, welcher eine unerwünschte Oxidation der Aluminiumpartikel verhindert. Anschließend wird auf die Leiterbahnstruktur (1) zumindest eine Kupferschicht stromlos aufgebracht. Auf diese Weise wird ein beschleunigtes Verfahren zur haftfesten Metallisierung einer Oberflächenstruktur in stromlosen Bädern geschaffen.

Description

Anmelder:
LPKF Laser & Electronics AG Osteriede 7 30827 Garbsen
Unser Zeichen: LPK-102-PCT 03.04.2007
Verfahren zur Herstellung einer Leiterbahnstruktur sowie eine derart hergestellte Leiterbahnstruktur
Die Erfindung betrifft ein Verfahren zur Metallisierung einer Leiterbahnstruktur auf einem Trägermaterial in einem stromlosen Metallisierungsbad sowie eine nach dem Verfahren hergestellte Leiterbahnstruktur auf einem Trägermaterial.
Derartige Verfahren werden in der Praxis beispielsweise bei der Herstellung von Schaltungsträgern aus thermoplastischen Kunststoffen mittels eines Spritzgießverfahrens eingesetzt, der so genannten Ml D-Technologie, wobei MID gleichbedeutend mit Moulded Interconnect Device zu verstehen ist. Ziel der MID-Technologie ist es, elektrische und mechanische Funktionen in einem Bauteil zu vereinen. Die Leiterbahnen werden hierbei in das Gehäuse integ- riert und substituieren so die konventionelle Leiterplatte. Gewicht und Einbauraum können effektiv reduziert werden. Gegenüber alternativen Herstellungsverfahren, weisen Verfahren nach der MID-Technologie den Vorteil auf, dass die Werkzeugkosten vergleichsweise niedrig gehalten werden können. Außerdem kann die Zahl der erforderlichen Prozessschritte verringert werden, so dass eine sehr wirtschaftliche Herstellung auch mittelgroßer Stückzahlen möglich ist.
Zu dem genannten Zweck sind bereits durch die DE 197 23 734 A1 und DE 197 31 346 A1 Verfahren bekannt geworden, bei denen zur Herstellung feiner, festhaftender Leiterbahnstrukturen in ein nicht leitendes Trägermaterial nicht leitende Metallchelatkomplexe einge- bracht und von diesen mittels Laserstrahlung strukturiert Metallisierungskeime abgespalten werden, die in den bestrahlten Teilflächen eine nachfolgende chemisch reduktive Metallisierung initiieren. Ein gattungsgemäßes Verfahren sowie eine nach dem Verfahren hergestellte Leiterbahnstruktur sind beispielsweise durch die WO 03/005784 A2 bekannt. Um einfach und sicher herzustellende Leiterbahnstrukturen auf Schaltungsträgern zur Verfügung zu stellen, die ei- nen vergleichsweise geringen Anteil keimbildender Zusätze enthalten, zudem auch bei Löttemperaturen stabil sind und ferner ein einfaches und sicheres Verfahren zur Herstellung von Leiterbahnstrukturen schaffen, werden dabei thermisch hochstabile, in wässrigen, sauren oder alkalischen Metallisierungsbädern beständige und nicht lösliche, nicht leitende höhere Oxide auf der Basis von Spinelle in das Trägermaterial eingemischt, und das Trägermaterial zu Bauteilen verarbeitet oder auf Bauteile als Beschichtung aufgetragen sowie im Bereich der zu erzeugenden Leiterbahnstrukturen mittels einer elektromagnetischen Strahlung Schwermetallkeime freigesetzt und diese Bereiche dann chemisch reduktiv metallisiert.
Durch die WO 00/35259 A2 ist ein Verfahren zur Herstellung von feinen metallischen Leiter- bahnstrukturen auf einem elektrisch nicht leitenden Trägermaterial beschrieben, bei dem ein elektrisch nicht leitender Schwermetallkomplex, der mit organischen Komplexbildnern aufgebaut ist, auf das Trägermaterial aufgebracht oder in das Trägermaterial eingebracht wird, das Trägermaterial im Bereich der zu erzeugenden Leiterbahnstrukturen selektiv einer UV- Strahlung ausgesetzt wird, wobei Schwermetallkeime freigesetzt werden und dieser Bereich chemisch reduktiv metallisiert wird. Dabei ist eine Feinstrukturierung der Leiterbahnen mittels eines vereinfachten und sicheren Verfahrens möglich.
Ferner beziehen sich die DE 37 08 235 A1 sowie die DE 39 42 472 A1 auf die Bearbeitung von Aluminiumnitrid-Keramiken mittels elektromagnetischer Strahlung.
Vor diesem Hintergrund liegt der Erfindung die Aufgabe zugrunde, eine Möglichkeit zu schaffen, ein weiter verbessertes Verfahren zur Metallisierung einer Leiterbahnstruktur auf einem Trägermaterial in einem stromlosen Metallisierungsbad zu schaffen. Weiterhin liegt der Erfindung die Aufgabe zugrunde, eine nach diesem Verfahren hergestellte Leiterbahnstruktur zu schaffen.
Die erstgenannte Aufgabe wird erfindungsgemäß mit einem Verfahren gemäß den Merkmalen des Anspruchs 1 gelöst. Die Unteransprüche 2 bis 10 betreffen besonders zweckmäßige Weiterbildungen der Erfindung.
Erfindungsgemäß werden also bei dem Verfahren zur Herstellung einer Leiterbahnstruktur auf einem Trägermaterial, bei dem die Leiterbahnstruktur auf einer hochmolekularen Werk- Stoffoberfläche des Trägermaterials als elektrisch leitfähige Oberflächenphasen mit hochreaktiven Aluminiumpartikeln durch Aufbrechen von feinstverteilt in dem Trägermaterial enthaltenen nicht leitenden Aluminiumnitrid erzeugt wird, die gleichzeitig unter Stickstoffbildung und Ablation des hochmolekularen Werkstoffes, beispielsweise ein Polymer, in hoher Kon- zentration freigesetzt werden, wobei die Bereiche im Umfeld der Leiterbahnstruktur unverändert verbleiben. Hierdurch wird ein beschleunigtes Verfahren zur haftfesten Metallisierung einer Oberflächenstruktur in stromlosen Bädern geschaffen, das auf der Oberfläche von stofflich modifizierten hochmolekularen Werkstoffen durch Aluminiumkeime realisiert wird. Dabei werden die Metallkeime durch elektromagnetische Strahlung aus Aluminiumnitrid frei- gesetzt. Die Erfindung ist gegenüber dem Stand der Technik dadurch wesentlich verbessert, dass die im Werkstoff enthaltenen elektrisch nicht leitenden Aluminiumnitrid-Partikel bei der Freisetzung der Aluminiumkeime Stickstoff abspalten und dadurch die Keime in der Stickstoffatmosphäre vor Oxidation geschützt sind. Vorteilhaft auf die Eigenschaften des Trägermaterials wirken sich auch die spezifischen Eigenschaften des eingearbeiteten Aluminiumnit- rid-Pulvers aus, die zur verbesserten Wärmeleitfähigkeit, geringeren Wärmeausdehnung, verbesserter Bondbarkeit auf der Leiterbahnstruktur und günstigerer elektrischer Hochfrequenzeignung führen.
Dieser Prozess erweist sich dann als besonders Erfolg versprechend, wenn eine Metallisie- rung der Leiterbahnstruktur des Trägermaterials in einem stromlosen Metallisierungsbad durchgeführt wird und somit die mit hoher Keimzahl pro Flächeneinheit auf der Oberfläche des Werkstoffes entstehenden, in der Stickstoffatmosphäre vor Oxidation geschützten Keime zur beschleunigten Metallabscheidung in stromlosen Bädern wesentlich beitragen. Die Aufwachsraten der herkömmlichen chemisch-reduktiven Verfahren werden durch die freigesetz- ten A1 -Partikel und ihre hohe Keimzahl/Flächeneinheit von etwa 0,1 μm/10 min auf 1 μm/10 min schon unmittelbar zu Beginn des Metallisierungsprozesses erhöht und damit die Wirtschaftlichkeit dieses zeitaufwendigen Fertigungsschrittes wesentlich verbessert. Die Kombination des hochmolekularen Werkstoffs, insbesondere eines Polymers mit Aluminiumnitrid vermeidet außerdem, dass bei nachfolgenden Lötprozessen auf den Leiterbahnen Elektro- lyteinschlüsse des chemisch-reduktiven Bades ausgasen, da aufgrund des geringen Anteils des Aluminiumnitridpulvers von vorwiegend ca. 1% bis 10% und der Umhüllung der Aluminiumnitridpartikel durch die Werkstoffmatrix, insbesondere Kunststoffmatrix Elektrolyteinschlüsse vermieden werden. Die Kombination mit den hochmolekularen Werkstoffen führt weiterhin dazu, dass die Leiterbahnen unter Bildung von Stickstoff durch geringe Ablation von Polymer-Partikeln und Aiuminiumkeimen eine im Strukturbereich mikroporöse Leiterstrukturoberfläche bilden, die eine feste Verankerung des stromlosen Metallaufbaus und dadurch eine hohe Haftfestigkeit der aufmetallisierten Leiterbahnen bewirkt. Da die Aluminium- nitridpartikel im gesamten Trägermaterial fein verteilt vorliegen, ist auch eine Aktivierung durch elektromagnetische Strahlung in Bohrungen möglich. Hierbei ist besonders die schnelle und zuverlässige chemisch-reduktive Metallabscheidung in den Durchgangsbohrungen von Vorteil. Der Zusatz von 1 ,0 bis 5,0% Yttriumoxid zu Aluminiumnitrid wirkt sich vorteilhaft auf die Haftfestigkeit der Metallisierung aus.
Die hochreaktiven Aluminiumpartikel der Leiterbahnstrukturen des Trägermaterials ermöglichen einen problemlosen, nahezu beliebigen Schichtaufbau durch die Metallisierung. Besonders praxisnah ist hingegen eine Weiterbildung des Verfahrens, bei dem bei der Metalli- sierung in dem stromlosen Metallisierungsbad zumindest Chrom, Kupfer, Nickel oder Gold aufgebracht wird, wobei sich insbesondere ein Schichtaufbau mit einzelnen Schichten aller vorstehenden Bestandteile als zweckmäßig erweist. Zudem wird dadurch eine wesentlich beschleunigte Metallisierung ermöglicht.
Der Energieeintrag zum Aufbrechen des feinstverteilt in dem Trägermaterial enthaltenen Aluminiumnitrids ist auf unterschiedliche Weise realisierbar. Besonders Erfolg versprechend ist hingegen eine Abwandlung, bei der die elektromagnetische Strahlung eines Lasers, insbesondere des Wellenlängenbereiches von 0,125 bis 11,0 μm eingesetzt wird, um so ein selektives Aufbrechen des Aluminiumnitrids durch den Laserstrahl zu ermöglichen. Selbst- verständlich können die Leiterbahnstrukturen mittels des Laserstrahls schreibend oder in einem einzigen Schritt mittels einer den Energieeintrag begrenzenden Schablone erzeugt werden. Gegenüber anderen laserinduzierten Verfahren hat die als Wirksubstanz eingearbeitete Aluminiumnitridverbindung den Vorteil, dass die Zersetzung der Verbindung mit elektromagnetischer Strahlung auch mit niedriger Energiedichte möglich ist und dadurch neben Energieeinsparung auch eine höhere Lebensdauer der eingesetzten Laserquellen möglich wird.
In der Praxis erweist es als besonders sinnvoll, wenn im Bereich der zu erzeugenden Leiterbahnen mittels der elektromagnetischen Strahlung gleichzeitig hochreaktive Aluminium- Partikel unter Stickstoffbildung und Polymerabtrag freigesetzt und dann chemisch reduktiv metallisiert werden, um auf diese Weise einen zuverlässig beherrschbaren und in einem kurzen Zeitraum durchführbaren Prozess zu schaffen. Die gleichzeitige Ablation führt zu Hinter- schneidungen, an denen die Aluminiumkeime an der Oberfläche anliegen und die von der Metallisierung ausgefüllt werden
Weiterhin erweist es sich als besonders Erfolg versprechend, wenn das thermisch hochstabile, in wässrigen sauren und alkalischen Metallisierungsbädern beständige und nicht lösliche Aluminiumnitridpulver in die hochmolekularen Werkstoffoberflächen des Trägermaterials mit an sich bekannten Verfahren eingearbeitet und das Trägermaterial zu Bauteilen verarbeitet oder das Trägermaterial auf Bauteile als eine Beschichtung aufgetragen wird. Hierdurch wird eine besonders vielseitige Einsatzmöglichkeit des so geschaffenen aktivierbaren Trägerma- terials realisiert. Das Trägermaterial kann hierzu bei Raumtemperatur sowohl in einem flüssigen als auch in einem festen, insbesondere formbaren Zustand verfügbar sein.
Außerdem ist es ebenfalls besonders vorteilhaft, wenn gemäß einer Ausgestaltung des erfindungsgemäßen Verfahrens durch das Aufbrechen des in dem Trägermaterial enthaltenen Aluminiumnitrids die Aluminiumpartikel bei gleichzeitiger Ablation des hochmolekularen Werkstoffes, insbesondere des Polymers unter Stickstoffabspaltung gebildet und dabei eine haftvermittelnde Strukturoberfläche erzeugt wird. Hierdurch wird in einfacher Weise der Schichtaufbau durch den die Bearbeitungszone einschließenden Stickstoff, welcher der Vermeidung einer unerwünschten Oxidation dient, begünstigt, indem die Strukturoberfläche die Anhaftung verbessert. Zugleich wird der Prozess dadurch beschleunigt.
Grundsätzlich kann das Trägermaterial entsprechend dem individuellen Verwendungszweck beliebig ausgewählt werden. Für die Praxis hat sich jedoch eine Ausführungsform als besonders vorteilhaft erwiesen, bei der das nicht leitende Trägermaterial einen Kunststoff oder eine Polymerkeramik aufweist. Der letztgenannte Werkstoff ermöglicht aufgrund seiner hohen Temperaturbeständigkeit beispielsweise den Einsatz in der Umgebung von Brennkraftmaschinen und Heizeinrichtungen oder als integraler Bestandteil eines Bauelementes derselben.
Die zweitgenannte Aufgabe, eine nach diesem Verfahren geschaffene Leiterbahnstruktur auf einem Trägermaterial zu schaffen, wird erfindungsgemäß dadurch gelöst, dass die Leiterbahnstrukturen auf hochmolekularen Werkstoffoberflächen des Trägermaterials als hochreaktive Aluminiumpartikel durch Aufbrechen von feinstverteilt in dem Trägermaterial enthaltenen nicht leitenden Aluminiumnitrid hergestellt und die Bereiche im Umfeld der Leiterbahn- struktur unverändert sind. Durch den hochmolekularen, das Aluminiumnitrid enthaltenden Werkstoff als Trägermaterial sind die Leiterbahnen unter Bildung von Stickstoff durch geringe Ablation von Polymer-Partikeln realisierbar, wobei durch die Aluminiumkeime eine im Strukturbereich mikroporöse Leiterstrukturoberfläche gebildet ist, die eine feste Verankerung des stromlosen Metallaufbaus und dadurch eine hohe Haftfestigkeit der aufmetallisierten Leiter- bahnen bewirkt. Dabei erweist es sich zudem als besonders praxisgerecht, wenn das nicht leitende Trägermaterial zusätzlich zu Aluminiumpartikeln höhere Oxide mit der Struktur der Spinelle oder organische thermisch stabile Metallchelatkomplexe enthält, so dass die Aluminiumpartikel als Beimischung weiterer, ebenfalls als Basis für die Erzeugung der Leiterbahnstrukturen die- nende Partikel, beispielsweise Metallkeime, die durch Aufbrechen von feinstverteilt in dem Trägermaterial enthaltenen nicht leitenden Metallverbindungen mittels elektromagnetische Strahlung eine optimale Anpassung an unterschiedliche Anforderungen gestatten.
Die Erfindung lässt verschiedene Ausführungsformen zu. Zur weiteren Verdeutlichung ihres Grundprinzips ist eine davon in der Zeichnung dargestellt und wird nachfolgend beschrieben. Diese zeigt jeweils in einer Prinzipsskizze in
Fig.1 eine perspektivische Darstellung eines Trägermaterials bei der Herstellung von Leiterbahnstrukturen mittels elektromagnetischer Strahlung;
Fig.2 eine entlang der Linie H-Il geschnittene und vergrößerte Darstellung eines Abschnittes des in Figur 1 gezeigten Trägermaterials;
Fig.3 eine perspektivische Darstellung des in Figur 1 gezeigten Trägermaterials in einem Metallisierungsbad;
Fig.4 die in Figur 2 gezeigte Schnittdarstellung des Trägermaterials mit einer Kupferschicht.
Das erfindungsgemäße Verfahren sowie die auf diese Weise realisierbare Herstellung von Leiterbahnstrukturen 1 wird anhand der Figuren 1 bis 3 näher dargestellt. Dabei wird ein plat- tenförmiges Trägermaterial 2 zunächst einer selektiven elektromagnetischen Strahlung 3 eines Nd:YAG-Lasers ausgesetzt, um die Leiterbahnstrukturen 1 auf dem Trägermaterial 2 als hochreaktive Aluminiumpartikel durch Aufbrechen von feinstverteilt in dem Trägermaterial
2 enthaltenen nicht leitenden Aluminiumnitrid zu erzeugen. Gleichzeitig wird dabei Stickstoff freigesetzt, welcher eine unerwünschte Oxidation der Aluminiumpartikel verhindert.
Wie in der Schnittdarstellung der Figur 2 zu erkennen, führt das Aufbrechen des in dem Trägermaterial 2 enthaltenen nicht leitenden Aluminiumnitrids in Form einer leitenden Schicht aus Aluminiumpartikeln zugleich zu einer Ablation der oberflächennahen Schicht des Trä- germaterials 2, so dass die Aluminiumpartikel in einer nutenförmigen Ausnehmung 4 entstehen. Diese Ausnehmung 4 begünstigt neben der dadurch erzeugten haftvermittelnden Struk- turoberfläche der Aluminiumpartikel den in Figur 3 gezeigten stromlosen Schichtaufbau in einem Metallisierungsbad 5.
Im Anschluss an eine Behandlung in einem Ultraschall-Reinigungsbad wird das Trägermaterial 2 beispielsweise mittels eines nicht dargestellten Gestells in das als ein handelsübliches chemisch reduktives Verkupferungsbad ausgeführte Metallisierungsbad gehängt 5. Hier werden in den bestrahlten Bereichen die in Figur 6 dargestellten Kupferschichten 6 stromlos auf die Leiterbahnstrukturen 1 aufgebaut.

Claims

Anmelder:LPKF Laser & Electronics AG Osteriede 7 30827 GarbsenUnser Zeichen: LPK-102-PCT 03.04.2007PATENTANSPRÜCHE
1. Verfahren zur Herstellung einer Leiterbahnstruktur auf einem stofflich modifizierten hochmolekularen Werkstoff als Trägermaterial in einem stromlosen Metallisierungsbad, dadurch gekennzeichnet, dass die Leiterbahnstruktur auf einer hochmolekularen Werkstoffoberfläche des Trägermaterials als elektrisch leitfähige Oberflächenphasen mit hochreaktiven Aluminiumpartikeln durch Aufbrechen von feinstverteilt in dem Trägermaterial enthaltenen nicht leitenden Aluminiumnitrid erzeugt wird, die gleichzeitig unter Stickstoffbildung und Ablation des hochmolekularen Werkstoffes in hoher Konzentration freigesetzt werden, wobei die Bereiche im Umfeld der Leiterbahnstruktur unverändert verbleiben.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass eine Metallisierung der Leiterbahnstruktur des Trägermaterials in einem stromlosen Metallisierungsbad durchgeführt wird.
3. Verfahren nach den Ansprüchen 1 oder 2, dadurch gekennzeichnet, dass bei der Metallisierung zumindest Chrom, Kupfer, Nickel und/oder Gold aufgebracht wird.
4. Verfahren nach zumindest einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die elektromagnetische Strahlung eines Lasers eingesetzt wird.
5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass die elektromagnetische Strahlung eines Lasers des Wellenlängenbereiches von 0,125 bis 11 ,0 μm eingesetzt wird.
6. Verfahren nach zumindest einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass im Bereich der zu erzeugenden Leiterbahnstruktur mittels der elektromagnetischen Strahlung gleichzeitig hochreaktive Aluminium-Partikel unter Stickstoffbildung und Abtrag des hochmolekularen Werkstoffes, insbesondere Polymerabtrag, freigesetzt und dann chemisch reduktiv metallisiert werden.
7. Verfahren nach zumindest einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das thermisch hochstabile, in wässrigen sauren und alkalischen Metallisierungsbädern beständige und nicht lösliche Aluminiumnitridpulver in zumindest eine hochmolekulare Werkstoffoberfläche des Trägermaterials mit an sich bekannten Verfahren eingearbeitet und das Trägermaterial zu Bauteilen verarbeitet und/oder das Trägermaterial auf Bauteile als eine Beschichtung aufgetragen wird.
8. Verfahren nach zumindest einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass durch das Aufbrechen des in dem Trägermaterial enthaltenen Aluminiumnitrids die Aluminiumpartikel bei gleichzeitiger Ablation des hochmolekularen Werkstoffes, insbesondere des Polymers unter Stickstoffabspaltung gebildet und dabei eine haftvermittelnde Strukturoberfläche erzeugt wird.
9. Verfahren nach zumindest einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass zur weiteren Erhöhung der Haftfestigkeit der Metallschicht ein Gemisch von Aluminiumnitrid mit 1 bis 5% Yttriumoxid eingesetzt wird.
10. Verfahren nach zumindest einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass als nichtleitendes Trägermaterial ein Kunststoff oder eine Polymerkeramik eingesetzt wird.
11. Eine gemäß einem Verfahren nach zumindest einem der vorhergehenden Ansprüche geschaffene Leiterbahnstruktur (1) auf einem Trägermaterial (2), dadurch gekennzeichnet, dass die Leiterbahnstruktur (1) auf hochmolekularen Werkstoffoberflächen des Trägermaterials (2) als hochreaktive Aluminiumpartikel durch Aufbrechen von feinstverteilt in dem Trägermaterial (2) enthaltenen nicht leitenden Aluminiumnitrid hergestellt und die Bereiche im Umfeld der Leiterbahnstruktur (1) unverändert sind.
12. Leiterbahnstruktur (1) nach Anspruch 11 , dadurch gekennzeichnet, dass das nichtleitende Trägermaterial (2) zusätzlich zu Aluminiumpartikeln höhere Oxide mit der Struktur der Spinelle und/oder organische thermisch stabile Metallchelatkomplexe enthält.
13. Leiterbahnstruktur (1) nach Anspruch 11 oder 12, dadurch gekennzeichnet, dass das nichtleitende Trägermaterial (2) einen Kunststoff oder eine Polymerkeramik aufweist.
PCT/DE2007/000605 2006-04-12 2007-04-03 Verfahren zur herstellung einer leiterbahnstruktur sowie eine derart hergestellte leiterbahnstruktur WO2007115546A2 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP07007393A EP1845170A3 (de) 2006-04-12 2007-04-11 Verfahren zur Herstellung einer Leiterbahnstruktur sowie eine derart hergestellte Leiterbahnstruktur

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006017630.8 2006-04-12
DE102006017630A DE102006017630A1 (de) 2006-04-12 2006-04-12 Verfahren zur Herstellung einer Leiterbahnstruktur sowie eine derart hergestellte Leiterbahnstruktur

Publications (2)

Publication Number Publication Date
WO2007115546A2 true WO2007115546A2 (de) 2007-10-18
WO2007115546A3 WO2007115546A3 (de) 2007-12-27

Family

ID=38514630

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2007/000605 WO2007115546A2 (de) 2006-04-12 2007-04-03 Verfahren zur herstellung einer leiterbahnstruktur sowie eine derart hergestellte leiterbahnstruktur

Country Status (3)

Country Link
US (1) US20070247822A1 (de)
DE (1) DE102006017630A1 (de)
WO (1) WO2007115546A2 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7799601B2 (en) 2008-01-24 2010-09-21 Infineon Technologies Ag Electronic device and method of manufacturing same

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110192445A1 (en) * 2008-03-13 2011-08-11 Florian Solzbacher High precision, high speed solar cell arrangement to a concentrator lens array and methods of making the same
US8033014B2 (en) * 2008-07-07 2011-10-11 Unimicron Technology Corp. Method of making a molded interconnect device
TWI355220B (en) * 2008-07-14 2011-12-21 Unimicron Technology Corp Circuit board structure
US20100077610A1 (en) * 2008-10-01 2010-04-01 Unimicron Technology Corp. Method for manufacturing three-dimensional circuit
TWI394506B (zh) * 2008-10-13 2013-04-21 Unimicron Technology Corp 多層立體線路的結構及其製作方法
US8051560B2 (en) * 2009-10-16 2011-11-08 Unimicron Technology Corp. Method of fabricating a solder pad structure
US20110094778A1 (en) * 2009-10-27 2011-04-28 Cheng-Po Yu Circuit board and fabrication method thereof
DK2584065T3 (da) * 2009-12-17 2014-07-14 Byd Co Ltd Overflademetalliseringsmetode, metode til fremstilling af plastgenstand og plastgenstand fremstillet derved
CN102978593B (zh) * 2009-12-17 2015-07-22 比亚迪股份有限公司 塑料表面选择性金属化的方法
US9435035B2 (en) * 2010-01-15 2016-09-06 Byd Company Limited Metalized plastic articles and methods thereof
CN102071424B (zh) 2010-02-26 2012-05-09 比亚迪股份有限公司 一种塑料制品的制备方法及一种塑料制品
US8952919B2 (en) 2011-02-25 2015-02-10 Taiwan Green Point Enterprises Co., Ltd. Capacitive touch sensitive housing and method for making the same
US8621749B2 (en) 2010-03-12 2014-01-07 Taiwan Green Point Enterprises Co., Ltd Non-deleterious technique for creating continuous conductive circuits
US20120273261A1 (en) 2010-10-20 2012-11-01 Taiwan Green Point Enterprises Co., Ltd. Circuit substrate having a circuit pattern and method for making the same
CN102071411B (zh) 2010-08-19 2012-05-30 比亚迪股份有限公司 一种塑料制品的制备方法及一种塑料制品
FR2965822A1 (fr) * 2010-10-07 2012-04-13 Valeo Securite Habitacle Procede de fabrication et de decoration par metallisation de pieces d'aspect pour vehicule automobile
TWI613177B (zh) * 2011-11-16 2018-02-01 製陶技術股份有限公司 製造一基材的方法
TW201729654A (zh) 2011-11-28 2017-08-16 綠點高新科技股份有限公司 導電線路的製備方法
WO2013189531A1 (de) * 2012-06-20 2013-12-27 Siemens Medical Instruments Pte. Ltd. Spritzgegossener leitungsträger mit integrierter leiterplatte
TWI561132B (en) 2013-11-01 2016-12-01 Ind Tech Res Inst Method for forming metal circuit, liquid trigger material for forming metal circuit and metal circuit structure
KR101722744B1 (ko) 2014-10-23 2017-04-03 주식회사 엘지화학 전자기파 조사에 의한 도전성 패턴 형성용 조성물, 이를 사용한 도전성 패턴 형성 방법과, 도전성 패턴을 갖는 수지 구조체
DE102019106134A1 (de) * 2019-03-11 2020-09-17 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Konzept zum Herstellen eines Dreidimensionalen Schaltungsträgers

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0227371A1 (de) * 1985-12-11 1987-07-01 Kabushiki Kaisha Toshiba Keramische Substrate und Verfahren zur Herstellung derselben
DE3708235A1 (de) * 1987-03-13 1988-09-22 Siemens Ag Verfahren zur herstellung von leiterbahnen an aus aluminium-nitrid a1 n bestehendem substratmaterial
WO1989002697A1 (en) * 1987-09-14 1989-03-23 Hughes Aircraft Company Induced metallization process by way of dissociating aluminum nitride ceramic
DE3942472A1 (de) * 1989-12-22 1991-06-27 Asea Brown Boveri Beschichtungsverfahren
US6255671B1 (en) * 1998-01-05 2001-07-03 International Business Machines Corporation Metal embedded passivation layer structure for microelectronic interconnect formation, customization and repair

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19723734C2 (de) * 1997-06-06 2002-02-07 Gerhard Naundorf Leiterbahnstrukturen auf einem nichtleitenden Trägermaterial und Verfahren zu ihrer Herstellung
DE19731346C2 (de) * 1997-06-06 2003-09-25 Lpkf Laser & Electronics Ag Leiterbahnstrukturen und ein Verfahren zu deren Herstellung
CN1294639A (zh) * 1998-12-10 2001-05-09 格哈德·瑙恩多夫 线路结构的生产方法
CN1326435C (zh) * 2001-07-05 2007-07-11 Lpkf激光和电子股份公司 导体轨道结构的制造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0227371A1 (de) * 1985-12-11 1987-07-01 Kabushiki Kaisha Toshiba Keramische Substrate und Verfahren zur Herstellung derselben
DE3708235A1 (de) * 1987-03-13 1988-09-22 Siemens Ag Verfahren zur herstellung von leiterbahnen an aus aluminium-nitrid a1 n bestehendem substratmaterial
WO1989002697A1 (en) * 1987-09-14 1989-03-23 Hughes Aircraft Company Induced metallization process by way of dissociating aluminum nitride ceramic
DE3942472A1 (de) * 1989-12-22 1991-06-27 Asea Brown Boveri Beschichtungsverfahren
US6255671B1 (en) * 1998-01-05 2001-07-03 International Business Machines Corporation Metal embedded passivation layer structure for microelectronic interconnect formation, customization and repair

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7799601B2 (en) 2008-01-24 2010-09-21 Infineon Technologies Ag Electronic device and method of manufacturing same

Also Published As

Publication number Publication date
WO2007115546A3 (de) 2007-12-27
US20070247822A1 (en) 2007-10-25
DE102006017630A1 (de) 2007-10-18

Similar Documents

Publication Publication Date Title
WO2007115546A2 (de) Verfahren zur herstellung einer leiterbahnstruktur sowie eine derart hergestellte leiterbahnstruktur
EP1274288B1 (de) Leiterbahnstrukturen und Verfahren zu ihrer Herstellung
CN109844178B (zh) 一种在聚合物制品表面上形成导电迹线的方法
WO2003005784A2 (de) Leiterbahnstrukturen und verfahren zu ihrer herstellung
EP1191127B1 (de) Verfahren zur selektiven Metallisierung dielektrischer Materialien
EP2360294B1 (de) Verfahren zum Metallisieren von an der Oberfläche mindestens zwei verschiedene Kunststoffe aufweisenden Gegenständen
DE3543613A1 (de) Verfahren zum metallisieren von keramischen oberflaechen
DE10054544A1 (de) Verfahren zum chemischen Metallisieren von Oberflächen
DE102012100299A1 (de) Verfahren zur selektiven Herstellung einer Leiterbahnstruktur sowie eine nach dem Verfahren hergestellte Leiterbahnstruktur
EP0815292B1 (de) Verfahren zum selektiven oder partiellen elektrolytischen metallisieren von oberflächen von substraten aus nichtleitenden materialien
DE60206820T2 (de) Quelllösung zur Texturierung harzartiger Materialien und Abbeizen und Entfernen harzartiger Materialien
EP0997061B1 (de) Verfahren zum metallisieren eines elektrisch nichtleitende oberflächenbereiche aufweisenden substrats
AU1574600A (en) Process for depositing conducting layer on substrate
EP1845170A2 (de) Verfahren zur Herstellung einer Leiterbahnstruktur sowie eine derart hergestellte Leiterbahnstruktur
EP0406678A1 (de) Quellmittel zur Vorbehandlung von Kunstharzen vor einer stromlosen Metallisierung
WO2001076334A1 (de) Verfahren zum erzeugen von lötfähigen und funktionellen oberflächen auf schaltungsträgern
Ermantraut et al. Laser induced selective metallization of 3D ceramic interconnect devices
EP0647089A1 (de) Verfahren zur Herstellung von dreidimensionalen Kunststoffteilen mit integrierten Leiterzügen
EP0650537B1 (de) Metallisierung von kunststoffen
DE102013208395B3 (de) Bauteil mit metallhaltiger, selbstorganisierter Schicht, Verfahren zu deren Herstellung sowie Verwendung
DE102014114986A1 (de) Verfahren zur Herstellung einer elektrisch leitfähigen Struktur sowie ein mit diesem Verfahren hergestelltes Trägermaterial
WO2018229138A1 (de) Verfahren zur herstellung eines schaltungsträgers
DE102014221306A1 (de) Schaltungsträger und Schaltungsmodul

Legal Events

Date Code Title Description
122 Ep: pct application non-entry in european phase

Ref document number: 07722163

Country of ref document: EP

Kind code of ref document: A2