WO2007114440A1 - Method for manufacturing image display - Google Patents

Method for manufacturing image display Download PDF

Info

Publication number
WO2007114440A1
WO2007114440A1 PCT/JP2007/057479 JP2007057479W WO2007114440A1 WO 2007114440 A1 WO2007114440 A1 WO 2007114440A1 JP 2007057479 W JP2007057479 W JP 2007057479W WO 2007114440 A1 WO2007114440 A1 WO 2007114440A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
image display
manufacturing
display device
electrons
Prior art date
Application number
PCT/JP2007/057479
Other languages
French (fr)
Japanese (ja)
Inventor
Shinya Nakamichi
Akiyoshi Yamada
Original Assignee
Kabushiki Kaisha Toshiba
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kabushiki Kaisha Toshiba filed Critical Kabushiki Kaisha Toshiba
Publication of WO2007114440A1 publication Critical patent/WO2007114440A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/38Exhausting, degassing, filling, or cleaning vessels
    • H01J9/39Degassing vessels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J11/00Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
    • H01J11/10AC-PDPs with at least one main electrode being out of contact with the plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J31/00Cathode ray tubes; Electron beam tubes
    • H01J31/08Cathode ray tubes; Electron beam tubes having a screen on or from which an image or pattern is formed, picked up, converted, or stored
    • H01J31/10Image or pattern display tubes, i.e. having electrical input and optical output; Flying-spot tubes for scanning purposes
    • H01J31/12Image or pattern display tubes, i.e. having electrical input and optical output; Flying-spot tubes for scanning purposes with luminescent screen
    • H01J31/123Flat display tubes
    • H01J31/125Flat display tubes provided with control means permitting the electron beam to reach selected parts of the screen, e.g. digital selection
    • H01J31/127Flat display tubes provided with control means permitting the electron beam to reach selected parts of the screen, e.g. digital selection using large area or array sources, i.e. essentially a source for each pixel group

Definitions

  • the present invention relates to a method for manufacturing an image display device including a front substrate and a rear substrate that are arranged to face each other.
  • a liquid crystal display (hereinafter referred to as LCD) that controls the intensity of light using the orientation of liquid crystal
  • a plasma display panel that emits a phosphor by ultraviolet rays of plasma discharge (Hereinafter referred to as “PDP”)
  • field emission display (hereinafter referred to as “FED”) that emits a phosphor by electron irradiation of a field emission electron emission device
  • phosphor emission by electron irradiation of a surface conduction electron emission device phosphor emission by electron irradiation of a surface conduction electron emission device.
  • SEDs Surface-conduction electron emission displays
  • the FED generally has a front substrate and a rear substrate opposed to each other with a predetermined gap therebetween, and these substrates are connected to each other at peripheral portions via a rectangular frame-shaped side wall.
  • a vacuum envelope is configured.
  • a phosphor screen is formed on the inner surface of the front substrate, and a plurality of electron-emitting devices are provided on the inner surface of the rear substrate as electron emission sources that excite the phosphor to emit light.
  • a plurality of support members are disposed between the substrates.
  • the potential on the back substrate side is almost the ground potential, and 10 kV, for example, is applied to the phosphor screen as the anode voltage.
  • the red, green, and blue phosphors that make up the phosphor screen are irradiated with electrons emitted from the electron-emitting devices, and the phosphors emit light to display an image.
  • Japanese Patent Laid-Open No. 11-191378 proposes a method of forming a non-evaporable getter layer in a region adjacent to the panel side of the PDP.
  • the front substrate and the rear substrate are put into a vacuum chamber and processed at a high temperature of 300 to 450 ° C. before becoming a product.
  • the degassing effect of the substrate is obtained.
  • the present invention has been made in view of the above points, and an object of the present invention is to provide a method for manufacturing an image display device that maintains high display performance over a long period of time.
  • a method for manufacturing an image display device is a method for manufacturing an image display device including an envelope composed of a plurality of substrates, and for at least one of the substrates, Irradiate electrons at high temperature.
  • An image display device manufacturing method is a method for manufacturing an image display device including an envelope constituted by a plurality of substrates, and performs a degassing process by heating.
  • the irradiated substrate is irradiated with electrons in a high temperature state.
  • FIG. 1 is a perspective view showing an SED according to an embodiment of the present invention.
  • Fig. 2 is a cross-sectional view of the SED along line II II in Fig. 1.
  • FIG. 3 schematically shows a processing chamber used in the manufacturing method according to the embodiment of the present invention.
  • FIG. 4 is a diagram comparing the amount of residual released gas between a substrate according to the present embodiment and a substrate according to a comparative example.
  • an SED provided with a surface conduction electron-emitting device will be described as an example.
  • this SED includes a front substrate 11 and a rear substrate 12 each having a rectangular glass plate force as insulating substrates, and these substrates have a gap of l to 3 mm. It is placed facing each other.
  • the front substrate 11 and the back substrate 12 constitute a flat rectangular vacuum envelope 10 whose peripheral portions are joined to each other via a rectangular frame-shaped side wall 13 and the inside is maintained in a vacuum state.
  • the side wall 13 functioning as a bonding member is sealed to the peripheral edge portion of the front substrate 11 and the peripheral edge portion of the rear substrate 12 by, for example, a sealing material 23 such as a low melting point glass or a low melting point metal. It is joined.
  • a plurality of spacers 14 are provided to support an atmospheric pressure load applied to the front substrate 11 and the rear substrate 12.
  • a plate-like or columnar spacer can be used as the spacer 14.
  • a phosphor screen 15 is formed as an image display surface.
  • the phosphor screen 15 has red, green, and blue phosphor layers 16 and a light shielding layer 17 formed in a matrix.
  • the phosphor layer 16 is formed in stripes or dots.
  • a metal back 20 having an aluminum film and the like is formed, and a getter film 22 is formed on the metal back.
  • a number of surface conduction electron-emitting devices 18 that emit electrons are provided on the inner surface of the rear substrate 12. These electron-emitting devices 18 are arranged in a plurality of columns and a plurality of rows corresponding to each pixel. Each electron-emitting device 18 includes an electron-emitting portion (not shown) and a pair of device electrodes for applying a voltage to the electron-emitting portion.
  • a large number of wirings 21 for supplying a potential to the electron-emitting device 18 are provided in a matrix shape, and ends thereof are drawn out of the vacuum envelope 10.
  • an anode voltage is applied to the phosphor screen 15 and the metal back 20 and electrons of a predetermined current amount are emitted from the electron-emitting device 18. Then, the electrons emitted from the electron-emitting device 18 are accelerated by the anode voltage and collide with the phosphor screen. As a result, the phosphor layer 16 of the phosphor screen 15 is excited to emit light and display a color image.
  • a front substrate 11 having a phosphor screen 15 and a metal back 20 formed on the inner surface, and a rear substrate 12 having an electron-emitting device 18 are prepared.
  • a side wall 13 and a plurality of spacers 14 are joined to the back substrate 12 in advance.
  • a sealing material is filled along the entire upper surface of the side wall 13.
  • indium was used as the sealing material.
  • the front substrate 11 and the rear substrate 12 are heat-treated in a processing chamber to perform a degassing process.
  • a plate-like heater 33 is provided in the processing chamber 30.
  • two electron emission sources 31 are provided in the processing chamber 30. These electron emission sources 31 irradiate electrons toward the substrate.
  • An exhaust pump 36 is connected to the processing chamber 30 so that the inside of the chamber can be evacuated.
  • the front substrate 11 is put into the processing chamber 30 and placed facing the heater 33. Thereafter, the inside of the processing chamber 30 is evacuated by the exhaust pump 36 to create a vacuum atmosphere. Subsequently, the front substrate 11 is heated to 200 to 550 ° C., preferably 250 to 350 ° C. by the heater 33, and the gas contained in the front substrate 11 and on the surface is released. In addition, with the substrate temperature of the front substrate 11 maintained at a high temperature of 200 ° C or higher, a voltage of 10 kV or more is applied from the power source 34 to the front substrate 11, and electrons are emitted from the electron emission source 31 to the front substrate 11 To do.
  • the amount of electron current applied to the front substrate 11 is defined by the amount of charge that is the product of the current density and time.
  • the amount of electron current is set higher than the amount of electron current emitted by 18 electron emitters during normal SED image display.For example, the current density is 2 mAZcm 2 for 3 hours. Process. This value is equivalent to 22 CZcm 2 in terms of charge, and corresponds to 1 Z 10 of the panel life at the time of product.
  • the charge amount range By setting the charge amount range to 1CZcm 2 or more, the effect of degassing the substrate can be obtained, and in order to prevent deterioration of the luminous efficiency of the phosphor, it is set to 50CZcm 2 or less. Further, the electron beam is scanned so that the entire surface of the front substrate 11 is irradiated, or electrons are irradiated while the front substrate 11 is moved relative to the electron emission source 31. During the degassing process, evacuation by the exhaust pump 36 is continued, and the desorbed gas components are exhausted from the processing chamber 30 to the outside, and the inside of the processing chamber is maintained in a clean vacuum state.
  • the atmosphere in the processing chamber 30 is preferably evacuated, but air or other gas atmosphere can be selected depending on the time and temperature.
  • the back substrate 12 is also degassed in the processing chamber 30 as described above.
  • a getter film is formed on the front substrate 11. Thereafter, the front substrate 11 and the rear substrate 12 are sealed with the side wall 13 in between, and the vacuum envelope 10 is formed.
  • the present inventor uses the processing chamber 30 described above to perform degassing by irradiating electrons with the substrate temperature heated to 300 ° C, and the substrate temperature to room temperature.
  • a substrate for comparison that has been degassed by irradiating electrons is prepared, and the SED envelope according to this embodiment and the envelope as a comparative example are formed using these substrates, respectively. did.
  • these SEDs were driven, and the amount of released gas when a certain time passed was compared.
  • the substrate that was degassed by irradiating electrons with the substrate temperature heated to 300 ° C. is a residual emission gas compared to the case of using the substrate of the comparative example. You can see that the amount is small. Therefore, according to this embodiment, the substrate can be efficiently degassed, the amount of gas released inside the SED during operation can be reduced, and the inside of the vacuum envelope can be maintained at a high degree of vacuum. Possible SEDs can be obtained. This makes it possible to obtain an SED that can maintain high display performance over a long period of time.
  • the present invention is not limited to the above-described embodiment, and can be embodied by modifying the constituent elements without departing from the scope in the implementation stage. Further, various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in the embodiment. For example, some components may be deleted from all the components shown in the embodiment. Furthermore, constituent elements over different embodiments may be appropriately combined.
  • the present invention is not limited to SED, and may be applied to other image display devices such as FED and PDP.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Manufacture Of Electron Tubes, Discharge Lamp Vessels, Lead-In Wires, And The Like (AREA)

Abstract

Disclosed is a method for manufacturing an image display which comprises an envelope composed of a plurality of substrates. In this method, at least one of substrates (11) is irradiated with electrons at a high temperature.

Description

画像表示装置の製造方法  Manufacturing method of image display device
技術分野  Technical field
[0001] 本発明は、対向配置された前面基板および背面基板を備えた画像表示装置の製 造方法に関する。  The present invention relates to a method for manufacturing an image display device including a front substrate and a rear substrate that are arranged to face each other.
背景技術  Background art
[0002] 近年、軽量'薄型の画像表示装置として、液晶の配向を利用して光の強弱を制御 する液晶ディスプレイ(以下、 LCDと称する)、プラズマ放電の紫外線により蛍光体を 発光させるプラズマディスプレイパネル (以下、 PDPと称する)、電界放出型電子放 出素子の電子照射により蛍光体を発光させるフィールドェミッションディスプレイ (以 下、 FEDと称する)、表面伝導型電子放出素子の電子照射により蛍光体を発光させ る表面伝導型電子放出ディスプレイ(以下、 SEDと称する)などが開発されている。  In recent years, as a lightweight and thin image display device, a liquid crystal display (hereinafter referred to as LCD) that controls the intensity of light using the orientation of liquid crystal, and a plasma display panel that emits a phosphor by ultraviolet rays of plasma discharge (Hereinafter referred to as “PDP”), field emission display (hereinafter referred to as “FED”) that emits a phosphor by electron irradiation of a field emission electron emission device, and phosphor emission by electron irradiation of a surface conduction electron emission device. Surface-conduction electron emission displays (hereinafter referred to as SEDs) that emit light have been developed.
[0003] 例えば FEDでは、一般に、所定の隙間を置!、て対向配置された前面基板および 背面基板を有し、これらの基板は、矩形枠状の側壁を介して周辺部同士を互いに接 合することにより真空外囲器を構成している。前面基板の内面には蛍光体スクリーン が形成され、背面基板の内面には蛍光体を励起して発光させる電子放出源として多 数の電子放出素子が設けられて 、る。  [0003] For example, the FED generally has a front substrate and a rear substrate opposed to each other with a predetermined gap therebetween, and these substrates are connected to each other at peripheral portions via a rectangular frame-shaped side wall. By doing so, a vacuum envelope is configured. A phosphor screen is formed on the inner surface of the front substrate, and a plurality of electron-emitting devices are provided on the inner surface of the rear substrate as electron emission sources that excite the phosphor to emit light.
[0004] 背面基板および前面基板に加わる大気圧荷重を支えるために、これら基板の間に は複数の支持部材が配設されて 、る。背面基板側の電位はほぼアース電位であり、 蛍光面にはアノード電圧として例えば 10kVが印加される。蛍光体スクリーンを構成 する赤、緑、青の蛍光体に電子放出素子から放出された電子を照射し、蛍光体を発 光させることによって画像を表示する。  [0004] In order to support an atmospheric pressure load applied to the back substrate and the front substrate, a plurality of support members are disposed between the substrates. The potential on the back substrate side is almost the ground potential, and 10 kV, for example, is applied to the phosphor screen as the anode voltage. The red, green, and blue phosphors that make up the phosphor screen are irradiated with electrons emitted from the electron-emitting devices, and the phosphors emit light to display an image.
[0005] このような FEDにお 、ては、真空外囲器内部を高 、真空度に維持することが重要 となる。すなわち、 FEDでは電子が前面基板の蛍光体に衝突することで蛍光体を発 光させているが、この時、多くの放出ガスが発生し、真空外囲器内部の真空度が大き く劣化する。これにより、背面基板上に形成された電子放出素子の電子放出特性が 劣化し、輝度の低下、色再現性の劣化、および寿命の短命化が発生する。その結果 、表示性能に優れた長寿命の画像表示装置の実現が困難となる。この対策としては 、製品となった状態での FED内部での放出ガスの量を少なくすることが必要となる。 [0005] In such an FED, it is important to maintain a high vacuum inside the vacuum envelope. In other words, in FED, electrons collide with the phosphor on the front substrate to cause the phosphor to emit light. At this time, a large amount of emitted gas is generated, and the degree of vacuum inside the vacuum envelope is greatly degraded. . As a result, the electron emission characteristics of the electron-emitting device formed on the back substrate are deteriorated, resulting in a decrease in luminance, a deterioration in color reproducibility, and a shortened life. as a result Therefore, it is difficult to realize a long-life image display device having excellent display performance. As a countermeasure, it is necessary to reduce the amount of released gas inside the FED in the product state.
[0006] また、長期間にわたって真空外囲器内を高い真空度に維持するため、外囲器内部 には不所望なガス分子を吸着するゲッタ層を設けることが通常行われる。このような ゲッタ層として、例えば、特開平 11— 191378号公報には、 PDPのパネル側辺に隣 り合う領域に非蒸発型ゲッタ層を形成する方法が提案されている。  [0006] In order to maintain a high degree of vacuum in the vacuum envelope over a long period of time, it is usual to provide a getter layer that adsorbs undesired gas molecules inside the envelope. As such a getter layer, for example, Japanese Patent Laid-Open No. 11-191378 proposes a method of forming a non-evaporable getter layer in a region adjacent to the panel side of the PDP.
[0007] また、特開 2001— 229824号公報に開示された方法によれば、製品となる前に、 前面基板および背面基板を真空チャンバ内に投入し、 300〜450°Cで高温処理す ることにより基板の脱ガス効果を得ている。  [0007] Further, according to the method disclosed in Japanese Patent Application Laid-Open No. 2001-229824, the front substrate and the rear substrate are put into a vacuum chamber and processed at a high temperature of 300 to 450 ° C. before becoming a product. Thus, the degassing effect of the substrate is obtained.
[0008] 上記のように、外囲器内にゲッタ層を設けてガスを吸着する場合、ゲッタのガス吸着 量には許容量があり、ある一定量以上のガス量に対しては効力を失ってしまう。その ため、真空外囲器内を長時間に亘つて高い真空特性に維持することが困難となる。  [0008] As described above, when a gas is adsorbed by providing a getter layer in the envelope, the gas adsorption amount of the getter has an allowable amount, and the effectiveness is lost for a certain amount of gas. End up. For this reason, it is difficult to maintain high vacuum characteristics in the vacuum envelope for a long time.
[0009] また、基板を加熱して脱ガスを行う場合、高温処理だけでは所望の性能に達するま での十分な効果が得られていない。この解決法として、加熱温度を更に上げることが 考えられるが、この場合、製造コストの問題および基板の変形の問題が出てくる。 発明の開示  [0009] In addition, when degassing is performed by heating the substrate, a sufficient effect is not obtained until the desired performance is achieved only by high-temperature treatment. As a solution to this problem, it is conceivable to further increase the heating temperature. In this case, however, there arises a problem of manufacturing cost and a problem of deformation of the substrate. Disclosure of the invention
[0010] この発明は以上の点に鑑みなされたもので、その目的は、長期間に渡って高い表 示性能を維持する画像表示装置の製造方法を提供することができる。  [0010] The present invention has been made in view of the above points, and an object of the present invention is to provide a method for manufacturing an image display device that maintains high display performance over a long period of time.
[0011] この発明の態様に係る画像表示装置の製造方法は、複数の基板によって構成され た外囲器を備えた画像表示装置の製造方法であって、前記基板の少なくとも 1つに 対して、高温の状態で電子を照射する。  [0011] A method for manufacturing an image display device according to an aspect of the present invention is a method for manufacturing an image display device including an envelope composed of a plurality of substrates, and for at least one of the substrates, Irradiate electrons at high temperature.
[0012] この発明の他の態様に係る画像表示装置の製造方法は、複数の基板によって構 成された外囲器を備えた画像表示装置の製造方法であって、加熱による脱ガス処理 を施した基板に、高温の状態で電子を照射する。  [0012] An image display device manufacturing method according to another aspect of the present invention is a method for manufacturing an image display device including an envelope constituted by a plurality of substrates, and performs a degassing process by heating. The irradiated substrate is irradiated with electrons in a high temperature state.
図面の簡単な説明  Brief Description of Drawings
[0013] [図 1]図 1は、この発明の実施形態に係る SEDを示す斜視図。  FIG. 1 is a perspective view showing an SED according to an embodiment of the present invention.
[図 2]図 2は、図 1の線 II IIに沿った SEDの断面図。  [Fig. 2] Fig. 2 is a cross-sectional view of the SED along line II II in Fig. 1.
[図 3]図 3は、この発明の実施形態に係る製造方法に用いる処理チャンバを概略的に 示す断面図。 FIG. 3 schematically shows a processing chamber used in the manufacturing method according to the embodiment of the present invention. FIG.
[図 4]図 4は、本実施形態に係る基板と、比較例に係る基板との残留放出ガス量を比 較して示す図。  [FIG. 4] FIG. 4 is a diagram comparing the amount of residual released gas between a substrate according to the present embodiment and a substrate according to a comparative example.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0014] 以下図面を参照しながら、この発明の実施形態に係る画像表示装置の製造方法に ついて詳細に説明する。 Hereinafter, a method for manufacturing an image display device according to an embodiment of the present invention will be described in detail with reference to the drawings.
始めに、本製造方法により製造される画像表示装置として、表面伝導型の電子放 出素子を備えた SEDを例にとって説明する。  First, as an image display device manufactured by this manufacturing method, an SED provided with a surface conduction electron-emitting device will be described as an example.
[0015] 図 1および図 2に示すように、この SEDは、絶縁基板としてそれぞれ矩形状のガラス 板力もなる前面基板 11、および背面基板 12を備え、これらの基板は l〜3mmの隙 間を置いて対向配置されている。前面基板 11および背面基板 12は、矩形枠状の側 壁 13を介して周縁部同士が接合され、内部が真空状態に維持された扁平な矩形状 の真空外囲器 10を構成している。接合部材として機能する側壁 13は、例えば、低融 点ガラス、低融点金属等の封着材 23により、前面基板 11の周縁部および背面基板 12の周縁部に封着され、これらの基板同士を接合している。  [0015] As shown in Figs. 1 and 2, this SED includes a front substrate 11 and a rear substrate 12 each having a rectangular glass plate force as insulating substrates, and these substrates have a gap of l to 3 mm. It is placed facing each other. The front substrate 11 and the back substrate 12 constitute a flat rectangular vacuum envelope 10 whose peripheral portions are joined to each other via a rectangular frame-shaped side wall 13 and the inside is maintained in a vacuum state. The side wall 13 functioning as a bonding member is sealed to the peripheral edge portion of the front substrate 11 and the peripheral edge portion of the rear substrate 12 by, for example, a sealing material 23 such as a low melting point glass or a low melting point metal. It is joined.
[0016] 真空外囲器 10の内部には、前面基板 11および背面基板 12に加わる大気圧荷重 を支えるため、複数のスぺーサ 14が設けられている。スぺーサ 14としては、板状ある いは柱状のスぺーサ等を用いることができる。  In the vacuum envelope 10, a plurality of spacers 14 are provided to support an atmospheric pressure load applied to the front substrate 11 and the rear substrate 12. As the spacer 14, a plate-like or columnar spacer can be used.
[0017] 前面基板 11の内面上には、画像表示面として、蛍光体スクリーン 15が形成されて いる。蛍光体スクリーン 15は、赤、緑、青の蛍光体層 16とマトリクス状に形成された遮 光層 17とを有して 、る。蛍光体層 16はストライプ状あるいはドット状に形成されて 、る 。この蛍光体スクリーン 15上には、アルミニウム膜等力もなるメタルバック 20が形成さ れて、更に、メタルバックに重ねてゲッタ膜 22が形成されている。  [0017] On the inner surface of the front substrate 11, a phosphor screen 15 is formed as an image display surface. The phosphor screen 15 has red, green, and blue phosphor layers 16 and a light shielding layer 17 formed in a matrix. The phosphor layer 16 is formed in stripes or dots. On the phosphor screen 15, a metal back 20 having an aluminum film and the like is formed, and a getter film 22 is formed on the metal back.
[0018] 背面基板 12の内面上には、蛍光体スクリーン 15の蛍光体層 16を励起する電子源 として、それぞれ電子を放出する多数の表面伝導型の電子放出素子 18が設けられ ている。これらの電子放出素子 18は、画素毎に対応して複数列および複数行に配 列されている。各電子放出素子 18は、図示しない電子放出部、この電子放出部に電 圧を印加する一対の素子電極等で構成されている。また、背面基板 12の内面には、 電子放出素子 18に電位を供給する多数本の配線 21がマトリック状に設けられ、その 端部は真空外囲器 10の外部に引出されている。 [0018] On the inner surface of the rear substrate 12, as a source of electrons that excites the phosphor layer 16 of the phosphor screen 15, a number of surface conduction electron-emitting devices 18 that emit electrons are provided. These electron-emitting devices 18 are arranged in a plurality of columns and a plurality of rows corresponding to each pixel. Each electron-emitting device 18 includes an electron-emitting portion (not shown) and a pair of device electrodes for applying a voltage to the electron-emitting portion. In addition, on the inner surface of the rear substrate 12, A large number of wirings 21 for supplying a potential to the electron-emitting device 18 are provided in a matrix shape, and ends thereof are drawn out of the vacuum envelope 10.
[0019] このような SEDでは、画像を表示する場合、蛍光体スクリーン 15およびメタルバック 20にアノード電圧を印加するとともに、電子放出素子 18から所定電流量の電子を放 出する。そして、電子放出素子 18から放出された電子をアノード電圧により加速して 蛍光体スクリーンへ衝突させる。これにより、蛍光体スクリーン 15の蛍光体層 16が励 起されて発光し、カラー画像を表示する。  In such an SED, when displaying an image, an anode voltage is applied to the phosphor screen 15 and the metal back 20 and electrons of a predetermined current amount are emitted from the electron-emitting device 18. Then, the electrons emitted from the electron-emitting device 18 are accelerated by the anode voltage and collide with the phosphor screen. As a result, the phosphor layer 16 of the phosphor screen 15 is excited to emit light and display a color image.
[0020] 次に、上記のように構成された SEDの製造方法について説明する。  [0020] Next, a method of manufacturing the SED configured as described above will be described.
まず、内面に蛍光体スクリーン 15およびメタルバック 20が形成された前面基板 11、 および電子放出素子 18が設けられた背面基板 12を用意する。また、予め、背面基 板 12上に側壁 13および複数のスぺーサ 14を接合しておく。更に、例えば、側壁 13 の上面全周に沿って封着材を充填しておく。ここでは、封着材としてインジウムを使 用した。続いて、これらの前面基板 11および背面基板 12を処理チャンバ内で熱処 理し、脱ガス処理を行う。  First, a front substrate 11 having a phosphor screen 15 and a metal back 20 formed on the inner surface, and a rear substrate 12 having an electron-emitting device 18 are prepared. In addition, a side wall 13 and a plurality of spacers 14 are joined to the back substrate 12 in advance. Further, for example, a sealing material is filled along the entire upper surface of the side wall 13. Here, indium was used as the sealing material. Subsequently, the front substrate 11 and the rear substrate 12 are heat-treated in a processing chamber to perform a degassing process.
[0021] 図 3に示すように、処理チャンバ 30内には、板状のヒータ 33が設けられている。処 理チャンバ 30には、例えば、 2つの電子放出源 31が設けられている。これらの電子 放出源 31は、基板に向けて電子を照射する。処理チャンバ 30には排気ポンプ 36が 接続され、チャンバ内部を真空排気可能となっている。  As shown in FIG. 3, a plate-like heater 33 is provided in the processing chamber 30. For example, two electron emission sources 31 are provided in the processing chamber 30. These electron emission sources 31 irradiate electrons toward the substrate. An exhaust pump 36 is connected to the processing chamber 30 so that the inside of the chamber can be evacuated.
[0022] 脱ガス処理においては、例えば、前面基板 11を処理チャンバ 30内に投入し、ヒー タ 33と対向して載置する。その後、排気ポンプ 36によって処理チャンバ 30内を排気 し、真空雰囲気とする。続いて、ヒータ 33により前面基板 11を 200〜550°C、望ましく は、 250〜350°Cに加熱し、前面基板 11内部および表面の含有ガスを放出させる。 また、前面基板 11の基板温度を 200°C以上の高温に維持した状態で、電源 34から 前面基板 11に 10kV以上の電圧を印加するとともに、電子放出源 31から前面基板 1 1に電子を照射する。ここでは、前面基板 11の内、蛍光体スクリーン 15が形成された 表面側に電子を照射する。電子の照射により、前面基板 11からのガス放出を促進す る。この際、前面基板 11の温度が 200°C以上に維持されているため、前面基板から 脱ガスされたガスが前面基板に再吸着することを防止することができる。 [0023] 前面基板 11に照射する電子の電流量は、電流密度と時間の積である電荷量により 規定される。電子の電流量は、 SEDの通常の画像表示時における電子放出素子 18 カゝら放出される電子の電流量よりも高く設定し、例えば、電流密度を 2mAZcm2、 3 時間の条件で、電子照射処理をする。この値は、電荷量で 22CZcm2に相当し、製 品時のパネルライフの 1 Z 10に相当する。 In the degassing process, for example, the front substrate 11 is put into the processing chamber 30 and placed facing the heater 33. Thereafter, the inside of the processing chamber 30 is evacuated by the exhaust pump 36 to create a vacuum atmosphere. Subsequently, the front substrate 11 is heated to 200 to 550 ° C., preferably 250 to 350 ° C. by the heater 33, and the gas contained in the front substrate 11 and on the surface is released. In addition, with the substrate temperature of the front substrate 11 maintained at a high temperature of 200 ° C or higher, a voltage of 10 kV or more is applied from the power source 34 to the front substrate 11, and electrons are emitted from the electron emission source 31 to the front substrate 11 To do. Here, electrons are irradiated to the surface side of the front substrate 11 on which the phosphor screen 15 is formed. Gas emission from the front substrate 11 is promoted by electron irradiation. At this time, since the temperature of the front substrate 11 is maintained at 200 ° C. or higher, the gas degassed from the front substrate can be prevented from being adsorbed again on the front substrate. [0023] The amount of electron current applied to the front substrate 11 is defined by the amount of charge that is the product of the current density and time. The amount of electron current is set higher than the amount of electron current emitted by 18 electron emitters during normal SED image display.For example, the current density is 2 mAZcm 2 for 3 hours. Process. This value is equivalent to 22 CZcm 2 in terms of charge, and corresponds to 1 Z 10 of the panel life at the time of product.
[0024] 投入電荷量の範囲は lCZcm2以上とすることにより、基板の脱ガスの効果が得ら れ、蛍光体の発光効率の劣化を防止するため、 50CZcm2以下に設定する。また、 前面基板 11の全面に電子が照射されるように、電子ビームをスキャンするか、あるい は、電子放出源 31に対して前面基板 11を相対的に移動させながら電子を照射する 。脱ガス処理の間、排気ポンプ 36による排気を継続し、基板力ゝら脱離したガス成分が 処理チャンバ 30から外部へ排出され、処理チャンバ内部は清浄な真空状態に維持 される。 [0024] By setting the charge amount range to 1CZcm 2 or more, the effect of degassing the substrate can be obtained, and in order to prevent deterioration of the luminous efficiency of the phosphor, it is set to 50CZcm 2 or less. Further, the electron beam is scanned so that the entire surface of the front substrate 11 is irradiated, or electrons are irradiated while the front substrate 11 is moved relative to the electron emission source 31. During the degassing process, evacuation by the exhaust pump 36 is continued, and the desorbed gas components are exhausted from the processing chamber 30 to the outside, and the inside of the processing chamber is maintained in a clean vacuum state.
[0025] 上記脱ガス処理の間、処理チャンバ 30内の雰囲気は真空にすることが望ましいが 、時間、温度により大気あるいは他のガス雰囲気を選択することも可能である。  During the degassing process, the atmosphere in the processing chamber 30 is preferably evacuated, but air or other gas atmosphere can be selected depending on the time and temperature.
[0026] 背面基板 12についても、上記と同様に、処理チャンバ 30内で脱ガス処理を行う。  The back substrate 12 is also degassed in the processing chamber 30 as described above.
所定時間脱ガス処理を行った後、前面基板 11にゲッタ膜を形成する。その後、前面 基板 11と背面基板 12とを側壁 13を挟んで封着し、真空外囲器 10を形成する。  After degassing for a predetermined time, a getter film is formed on the front substrate 11. Thereafter, the front substrate 11 and the rear substrate 12 are sealed with the side wall 13 in between, and the vacuum envelope 10 is formed.
[0027] 本発明者は、上述した処理チャンバ 30を用いて、基板温度を 300°Cに加熱した状 態で電子を照射して脱ガス処理した本実施形態の基板と、基板温度を室温とした状 態で電子を照射して脱ガス処理した比較用基板とを用意し、これらの基板を用いて それぞれ本実施形態に係る SEDの外囲器と、比較例としての外囲器とを形成した。 そして、これらの SEDを駆動し、一定時間経過した時の放出ガス量を比較した。  [0027] The present inventor uses the processing chamber 30 described above to perform degassing by irradiating electrons with the substrate temperature heated to 300 ° C, and the substrate temperature to room temperature. In this state, a substrate for comparison that has been degassed by irradiating electrons is prepared, and the SED envelope according to this embodiment and the envelope as a comparative example are formed using these substrates, respectively. did. Then, these SEDs were driven, and the amount of released gas when a certain time passed was compared.
[0028] その結果を図 4に示す。この図から、本実施形態のように、基板温度を 300°Cにカロ 熱した状態で電子を照射して脱ガスした基板は、比較例の基板を用いた場合に比較 して、残留放出ガス量が少ないことがわかる。従って、本実施の形態によれば、基板 を効率良く脱ガス処理することができ、動作時における SED内部でのガス放出量を 低減し、真空外囲器内部を高い真空度に維持することが可能な SEDを得ることがで きる。これにより、長期間に亘つて高い表示性能を維持可能な SEDを得ることができ る。 The results are shown in FIG. From this figure, as in this embodiment, the substrate that was degassed by irradiating electrons with the substrate temperature heated to 300 ° C. is a residual emission gas compared to the case of using the substrate of the comparative example. You can see that the amount is small. Therefore, according to this embodiment, the substrate can be efficiently degassed, the amount of gas released inside the SED during operation can be reduced, and the inside of the vacuum envelope can be maintained at a high degree of vacuum. Possible SEDs can be obtained. This makes it possible to obtain an SED that can maintain high display performance over a long period of time. The
[0029] なお、本発明は上記実施の形態に限定されるものではなぐ実施段階ではその要 旨を逸脱しない範囲で構成要素を変形して具体ィ匕できる。また、上記実施形態に開 示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成できる 。例えば、実施の形態に示される全構成要素から幾つかの構成要素を削除してもよ い。さらに、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。  It should be noted that the present invention is not limited to the above-described embodiment, and can be embodied by modifying the constituent elements without departing from the scope in the implementation stage. Further, various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in the embodiment. For example, some components may be deleted from all the components shown in the embodiment. Furthermore, constituent elements over different embodiments may be appropriately combined.
[0030] 更に、この発明は、 SEDに限らず、 FED、 PDP等の他の画像表示装置に適用して ちょい。  Furthermore, the present invention is not limited to SED, and may be applied to other image display devices such as FED and PDP.
産業上の利用可能性  Industrial applicability
[0031] 上記構成によれば、基板の内部ないし表面の含有ガスを効率良く脱ガスでき長期 間に渡って高 、表示性能を維持可能な画像表示装置の製造方法を得ることができる [0031] According to the above configuration, it is possible to obtain a method for manufacturing an image display device that can efficiently degas the gas contained in or on the surface of the substrate and maintain high display performance over a long period of time.

Claims

請求の範囲 The scope of the claims
[1] 複数の基板によって構成された外囲器を備えた画像表示装置の製造方法にぉ ヽ て、  [1] For a method of manufacturing an image display device including an envelope constituted by a plurality of substrates,
前記基板の少なくとも 1つに対して、高温の状態で電子を照射する画像表示装置 の製造方法。  A method for manufacturing an image display device, wherein at least one of the substrates is irradiated with electrons at a high temperature.
[2] 前記基板の少なくとも 1つに対して、基板を 200°Cないし 550°Cの温度に維持した 状態で、電子を照射する請求項 1に記載の画像表示装置の製造方法。  [2] The method for manufacturing an image display device according to [1], wherein at least one of the substrates is irradiated with electrons in a state where the substrate is maintained at a temperature of 200 ° C to 550 ° C.
[3] 前記基板が 250°Cないし 350°Cの温度の状態で、前記基板に電子を照射する請 求項 2に記載の画像表示装置の製造方法。 [3] The method for manufacturing an image display device according to claim 2, wherein the substrate is irradiated with electrons while the substrate is in a temperature range of 250 ° C. to 350 ° C.
[4] 前記基板を大気中、真空雰囲気中、あるいは、ガス雰囲気中のいずれかで加熱す る請求項 1に記載の画像表示装置の製造方法。 4. The method for manufacturing an image display device according to claim 1, wherein the substrate is heated in the air, in a vacuum atmosphere, or in a gas atmosphere.
[5] 前記電子照射の電荷量は、 1ないし 50CZcm2である請求項 1に記載の画像表示 装置の製造方法。 5. The method for manufacturing an image display device according to claim 1, wherein the charge amount of the electron irradiation is 1 to 50 CZcm 2 .
[6] 前記基板を 200°Cないし 550°Cで加熱中に、最高到達温度時もしくは降温時に前 記基板に電子を照射する請求項 1に記載の画像表示装置の製造方法。  6. The method for manufacturing an image display device according to claim 1, wherein the substrate is irradiated with electrons when the substrate is heated at 200 ° C. to 550 ° C. or when the maximum temperature is reached or when the temperature is lowered.
[7] 複数の基板によって構成された外囲器を備えた画像表示装置の製造方法にお!ヽ て、  [7] In a method for manufacturing an image display device including an envelope constituted by a plurality of substrates!
加熱による脱ガス処理を施した基板に、高温の状態で電子を照射する画像表示装 置の製造方法。  A method for manufacturing an image display device in which a substrate subjected to degassing treatment by heating is irradiated with electrons at a high temperature.
PCT/JP2007/057479 2006-04-06 2007-04-03 Method for manufacturing image display WO2007114440A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006105477A JP2007280763A (en) 2006-04-06 2006-04-06 Manufacturing method of image display device
JP2006-105477 2006-04-06

Publications (1)

Publication Number Publication Date
WO2007114440A1 true WO2007114440A1 (en) 2007-10-11

Family

ID=38563704

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/057479 WO2007114440A1 (en) 2006-04-06 2007-04-03 Method for manufacturing image display

Country Status (2)

Country Link
JP (1) JP2007280763A (en)
WO (1) WO2007114440A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000315458A (en) * 1999-04-28 2000-11-14 Toshiba Corp Method and equipment for manufacturing flat-type image display device
US20010009060A1 (en) * 1998-05-14 2001-07-26 Browning Jim J. Method for cleaning phosphor screens for use with field emission displays

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010009060A1 (en) * 1998-05-14 2001-07-26 Browning Jim J. Method for cleaning phosphor screens for use with field emission displays
JP2000315458A (en) * 1999-04-28 2000-11-14 Toshiba Corp Method and equipment for manufacturing flat-type image display device

Also Published As

Publication number Publication date
JP2007280763A (en) 2007-10-25

Similar Documents

Publication Publication Date Title
JP2000323072A (en) Air-tight container and image forming apparatus
KR20030065657A (en) Field emission display and manufacturing method thereof
US6702636B2 (en) Method and apparatus for manufacturing image display device
US6827621B1 (en) Method and apparatus for manufacturing flat image display device
WO2007114440A1 (en) Method for manufacturing image display
JP2008091149A (en) Manufacturing method of image display apparatus
JP2004071294A (en) Picture display device and its manufacturing method
KR100372735B1 (en) Field Emission Display
JP2002100311A (en) Picture display device and its manufacturing method
JP3454499B2 (en) Method of manufacturing image display device
JP4237469B2 (en) Display device
WO2006035713A1 (en) Image display
JP4005872B2 (en) Manufacturing method and manufacturing apparatus for image display device
JPH1064429A (en) Manufacture of image display device
JP2004349009A (en) Method of manufacturing image display device, apparatus for manufacture, and image display device manufactured by this method of manufacture
WO2005020271A1 (en) Image display device
JP2008204825A (en) Image display device and its manufacturing method
WO2004013886A1 (en) Method and apparatus for producing image display device
JP2004031276A (en) Manufacturing method of image display device
JPH11329243A (en) Manufacture of image display device
JP2005011557A (en) Manufacturing method of flat panel display device, and flat panel display device
JP2006019105A (en) Substrate treatment method and substrate treatment device
JP2000021338A (en) Image display device and manufacture thereof
JP2006092797A (en) Method and apparatus for treating substrate
JP2006100100A (en) Manufacturing method and manufacturing device for image display

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07740915

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07740915

Country of ref document: EP

Kind code of ref document: A1