WO2007109976A1 - Procédé pour recycler du ni et du co issus de minerai d'oxyde de nickel ou de minerai de silicate de nickel - Google Patents

Procédé pour recycler du ni et du co issus de minerai d'oxyde de nickel ou de minerai de silicate de nickel Download PDF

Info

Publication number
WO2007109976A1
WO2007109976A1 PCT/CN2007/000783 CN2007000783W WO2007109976A1 WO 2007109976 A1 WO2007109976 A1 WO 2007109976A1 CN 2007000783 W CN2007000783 W CN 2007000783W WO 2007109976 A1 WO2007109976 A1 WO 2007109976A1
Authority
WO
WIPO (PCT)
Prior art keywords
nickel
ore
cobalt
silicate
grade
Prior art date
Application number
PCT/CN2007/000783
Other languages
English (en)
Chinese (zh)
Inventor
Yu Zhang
Xiaoming Cheng
Original Assignee
Yu Zhang
Xiaoming Cheng
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yu Zhang, Xiaoming Cheng filed Critical Yu Zhang
Publication of WO2007109976A1 publication Critical patent/WO2007109976A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • C22B23/005Preliminary treatment of ores, e.g. by roasting or by the Krupp-Renn process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/30Combinations with other devices, not otherwise provided for
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/24Binding; Briquetting ; Granulating
    • C22B1/2406Binding; Briquetting ; Granulating pelletizing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/24Binding; Briquetting ; Granulating
    • C22B1/242Binding; Briquetting ; Granulating with binders
    • C22B1/244Binding; Briquetting ; Granulating with binders organic
    • C22B1/245Binding; Briquetting ; Granulating with binders organic with carbonaceous material for the production of coked agglomerates
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • C22B23/02Obtaining nickel or cobalt by dry processes
    • C22B23/021Obtaining nickel or cobalt by dry processes by reduction in solid state, e.g. by segregation processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention relates to a method for recovering nickel or cobalt from nickel oxide or nickel silicate ore. It belongs to the field of mineral processing engineering. Background technique
  • nickel Due to the excellent properties of nickel metal, nickel has become an indispensable raw material for the defense industry and the civil industry, and it has an extremely important position and role in the national economy.
  • nickel deposits There are three types of nickel deposits known in the world: copper-nickel sulfide deposits, nickel oxide deposits, and weathering shell nickel silicate deposits.
  • the nickel oxide deposit is a loose clay-like ore composed of hydrated leaching of nickel-containing olivine in the tropical or subtropical region through large-scale long-term weathering leaching. Due to the oxidation of iron, the ore is red, so it is called laterite ore. Laterite ore and nickel silicate deposits account for three-quarters of the world's reserves, but currently nickel is mainly smelted from nickel sulphide ore, accounting for about 60%.
  • nickel silicate mine The main reason is the extraction of nickel from nickel sulphide ore, the use of simple and economical mechanical beneficiation methods, and the nickel oxide ore.
  • the smelting technology of nickel silicate mine has not yet passed, and it is impossible to sort nickel oxide ore by conventional beneficiation methods, especially Nickel silicate mine is difficult to use.
  • China's second largest nickel ore Yuanjiang nickel mine is a nickel silicate mine. The reserves have been surveyed and cleared to about 540,000 tons. Since the Soviet Union helped us build in the 1950s, it has been nearly 60 years old, but it has not been very good so far. Development.
  • China's nickel resources had less than 7 million tons of reserves (metals), and under the existing mining technology conditions, the available for mining was even lower.
  • China's nickel ore is dominated by poor ore, and is concentrated in a few provinces and autonomous regions.
  • the Jinchuan mining area in Gansu is the largest copper-copper-nickel deposit in the country, accounting for 70% of the national reserves; the second is Xinjiang, the nickel metal reserves are around 860,000 tons; the third place is Jinping and Yuanjiang in Yunnan.
  • the reserves of nickel ore are less than 700,000 tons, while the Yuanjiang nickel ore is a nickel silicate mine.
  • the Jianchaling in Shaanxi ranks four, and the reserves of nickel-gold ore are around 200,000 tons. However, it is mainly lean ore, and the rich ore with a grade above 1% is less than 40,1.
  • Sichuan's Zhouba nickel mine mining, indiscriminate mining
  • molybdenum-nickel mine near Zunyi
  • Guizhou Fanjingshan copper-nickel-nickel mine
  • nickel mines in Guangxi North Guangxi area the degree of investigation is very low and it is difficult to calculate reserves. With the deepening of exploration work, it is possible to find nickel oxide ore resources with large reserves and good quality.
  • the known basic treatment methods for nickel oxide ore and nickel silicate are as follows: nickel iron smelting, sulfur smelting, reduction roasting, ammonia leaching, and high pressure sulfuric acid leaching.
  • the factories that use ferronickel smelting mainly include French Nickel's New Caledonian Donanbo Smelter, Columbia's Cerro Tossa Plant, and Sumitomo Corporation's Hachino Smelter.
  • the product produced has a nickel mass fraction of 20 to 30% and a nickel recovery of 90 to 95%. Cobalt cannot be recovered.
  • the process firstly breaks the ore to 50 ⁇ 150mm, then sends it to the drying kiln to dry until the ore is neither bonded nor pulverized, and then sent to the calcined rotary kiln, at 700 ° C, drying, preheating and calcining to produce calcined sand.
  • the nickel-sulphur smelting production process is to add sulphur to produce low-nickel sulphur in the 1500 ⁇ 1600 °C smelting process for producing ferronickel smelting process, and then to produce high-nickel sulphur by converter blowing.
  • the main factories producing high-nickel sulphur are France Nickel's New Caledonian Donibo smelter, Sulawesi, Indonesia, and Thoreau Ak Smelter.
  • High nickel sulfur products generally have a nickel mass fraction of 79% and a sulfur mass fraction of 19.5%.
  • the full process nickel recovery rate is about 70%.
  • the reduction roasting ammonia leaching process is to dry and grind the laterite ore, and to reduce and calcine at a temperature of 600 to 700 ° C to reduce nickel, cobalt and part of iron to an alloy, and then to carry out a countercurrent ammonia leaching of 4 stages, using nickel and cobalt.
  • Ammonia forms a property of the complex, and a valuable metal such as nickel or cobalt enters the leachate.
  • the leaching solution is sulfided and precipitated, and the mother liquor is precipitated to remove iron and ammonia to produce basic nickel sulphate.
  • the basic nickel sulphate is then calcined to form nickel oxide, and the nickel powder can also be produced by reduction.
  • the high-pressure acid leaching process dissolves valuable metals such as nickel and cobalt with iron and aluminum minerals with dilute sulfuric acid at a temperature of 250 to 270 ° C and a temperature of 4 to 5 MPa.
  • a certain pH is controlled.
  • Conditions such as iron, aluminum and silicon are hydrolyzed into the slag, and nickel and cobalt are selectively introduced into the solution.
  • the leachate is neutralized and precipitated with hydrogen sulfide to produce high quality nickel-cobalt sulfide.
  • Nickel cobalt sulfide Produce the final product through a traditional refining process.
  • the earliest pressurized acid leaching smelter was the Mao's smelting plant in Cuba.
  • An object of the present invention is to provide a method for recovering valuable minerals such as nickel and cobalt from nickel oxide ore and nickel silicate ore.
  • the material is treated by chlorination and roasting-magnetic separation process, and the nickel grade is 5 ⁇ 15%, the recovery is 80 ⁇ 85%; the cobalt grade is 0.3 ⁇ 1.7%. , recovery rate of 70 ⁇ 80% nickel-cobalt mixed concentrate.
  • Raw ore treatment The raw ore nickel oxide or nickel silicate mine is ground to -200 mesh to 80-90wt%, and the coke powder is added to the ore weight of 5 ⁇ 15% (to ensure the weak reduction in the next separation roasting furnace) Atmosphere), 10 ⁇ 30 chlorinating agent, 0.1 ⁇ 1.0% auxiliary agent, made into pellets with a particle size of 5 ⁇ 15mm, then dried, dried to a water content of ⁇ 5 ⁇ 10wt%, the chlorinating agent includes sodium chloride (NaCl) or calcium chloride (C a Cl 2) one kind of said adjuvant comprises copper chloride (CuCl), ammonium chloride (NH 4 C1), P551, MOP, dimethylsulfide One or more of the copper carbamic acid, the adjusted coke powder ratio is used to ensure the weak reduction atmosphere in the next roasting treatment furnace,
  • Separation roasting treatment After drying, the pellets enter the separation rotary kiln for roasting.
  • the pulverized coal is used to provide the required heat, and the counter-flow roasting method is adopted. The direction of addition is reversed.
  • the temperature of the high temperature zone of the control rotary kiln is 1000 ⁇ 1300°C
  • the temperature of the kiln tail is 400 ⁇ 600°C
  • the rotation speed of the rotary kiln is 0.75 ⁇ 2 rev/min
  • the residence time of the material in the furnace is 1 ⁇ 2 hours.
  • Magnetic separation treatment After the water quenching, the isolated product is crushed and ground to -200 mesh accounted for 75 ⁇ 95wt%, and then entered into a magnetic separator with a magnetic field strength of 1500 ⁇ 3000 Gauss. When the ore grade is 0.8 ⁇ 2%, When the cobalt grade is 0.08 ⁇ 0.15%, the nickel grade is 5 ⁇ 15% and the recovery is 80 ⁇ 85% after the separation and roasting. The cobalt grade is 0.3 ⁇ 1.7%, and the recovery is 70 ⁇ 80% nickel. Cobalt mixed concentrate;
  • the present invention recovers valuable metals such as nickel and cobalt in a more comprehensive manner, and has good economic benefits.
  • FIG. 1 is a process flow diagram of the present invention. detailed description
  • Example 1 Yuanjiang nickel silicate ore, the ore contains 1.2% nickel, the cobalt grade is 0.08 ⁇ 0.1%, the ore is broken to -3mm-Omm, and then polished with Raymond to -200 mesh, 80 ⁇ 90wt%, The coke powder with a particle size of -3mm - 0mm is 12.5wt%, the chlorinating agent CaCl 2 is 25wt%, and the auxiliary agent MOP is 0.5%.
  • Example 2 Philippine laterite nickel ore.
  • the ore sample is taken from the Philippines.
  • the ore contains 1.28% nickel and 0.041% cobalt.
  • the ore is crushed to -3 mm - 0 mm, and then ground with Raymond to -200 mesh to account for 80 to 90 wt%, and coke powder having a particle size of -3 mm to 0 mm is added to 10 wt%/.
  • chlorinating agent (NaC 1) 30 wt%, auxiliary (copper dimethyl thiocarbamate) 0.6wt% mixed ball, particle size 5-100mm, dry in air to moisture ⁇ 3 ⁇ 5% , adding high temperature zone temperature of 1000 ⁇ 1200 °C, kiln tail temperature of 400 ⁇ 500 °C in the isolation rotary kiln, roasting, rotary kiln rotation speed of 1 rev / min, roasting time 1.5 ⁇ 2 hours, roasting fuel for pulverized coal, The roasting method is countercurrent roasting, the calcined product is discharged into the pool and quenched, and the water quenched product is mined. After crushing and grinding, the fineness of grinding is -200 mesh and 90% by weight.
  • the magnetic product is nickel-cobalt mixed concentrate, mixed concentrate.
  • the nickel grade was 6.44%, the recovery was 82.03%, the cobalt grade was 0.19%, and the recovery was 71.14%.
  • Example 3 Hanyuan cobalt-nickel ore, the ore contains 0.14% nickel and 0.25% cobalt. The ore is crushed to -3mm ⁇ 0mm, and then rubbed with Raymond to -200 mesh to occupy 80 ⁇ 90wt%, and the coke powder with a particle size of -3mm ⁇ 0mm is added with 5wt%, chlorinating agent (CaCl 2 ) 23wt%, and auxiliary agent.
  • chlorinating agent CaCl 2
  • the refined nickel grade is 0.72%, the recovery rate is 4.67%, the cobalt grade is 1.12%, and the recovery rate is 4.07°/.
  • the total recovery of cobalt is 70.1%, and the total recovery of nickel is 71.29%.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

La présente invention concerne un procédé pour recycler du Ni et du Co issus de minerai d'oxyde de nickel ou de minerai de silicate de nickel, qui comprend les opérations suivantes : fragmentation de minerai brut d'oxyde de nickel ou de minerai brut de silicate de nickel de sorte que 80-90% en poids du minerai a une granulométrie de -200 mesh; adjonction de 5-15% de poudre de coke, de 10-30% d'agent de chloration et de 0,1-1,0% d'agent auxiliaire, les pourcentages se rapportant au poids du minerai brut; mise sous forme de pastilles pour obtenir des pastilles ayant une granulométrie de 5-15 mm; séchage; calcination des pastilles séchées dans un four rotatif pour réaliser une ségrégation pendant 1-2 heures, la température de la zone haute température du four étant régulée pour valoir 1000-1300 °C, la température de sortie du four étant de 400-600 °C, la vitesse de rotation étant de 0,75-2 révolutions par minute; puis séparation du produit qui a été refroidi à l'eau dans un séparateur magnétique dont l'intensité du champ magnétique vaut 1500-3000G; et éventuellement obtention d'un mélange concentré de Ni-Co ayant une teneur en nickel de 5-15%, une récupération de Ni de 80-85%, une teneur en cobalt de 0,3-1,7% et une récupération de Co de 70-80%.
PCT/CN2007/000783 2006-03-24 2007-03-12 Procédé pour recycler du ni et du co issus de minerai d'oxyde de nickel ou de minerai de silicate de nickel WO2007109976A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CNB2006100107748A CN100383259C (zh) 2006-03-24 2006-03-24 从氧化镍矿硅酸镍矿中回收镍钴的方法
CN200610010774.8 2006-03-24

Publications (1)

Publication Number Publication Date
WO2007109976A1 true WO2007109976A1 (fr) 2007-10-04

Family

ID=36946351

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2007/000783 WO2007109976A1 (fr) 2006-03-24 2007-03-12 Procédé pour recycler du ni et du co issus de minerai d'oxyde de nickel ou de minerai de silicate de nickel

Country Status (2)

Country Link
CN (1) CN100383259C (fr)
WO (1) WO2007109976A1 (fr)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101862703A (zh) * 2010-05-17 2010-10-20 昆明理工大学 一种鲕状贫赤铁矿生产铁精矿的选冶联合方法
CN101869871A (zh) * 2010-05-29 2010-10-27 大冶有色金属公司 一种长石矿除铁降杂联合工艺选矿方法
CN101898168A (zh) * 2010-07-21 2010-12-01 衡阳县湘雁矿业有限公司 采用强磁浮选去除长石矿杂质的选矿方法
CN113957266A (zh) * 2021-10-29 2022-01-21 张雷 煤基焦化还原焙烧焦炭磁选优化红土镍矿的方法及装置
CN114480883A (zh) * 2021-12-16 2022-05-13 成都先进金属材料产业技术研究院股份有限公司 一种镍离子协同去除钒溶液中硅和铬以制备高纯五氧化二钒的方法
CN115747519A (zh) * 2022-11-02 2023-03-07 中南大学 一种镍矿资源综合利用的方法
CN117721325A (zh) * 2024-02-07 2024-03-19 矿冶科技集团有限公司 一种从红土镍矿中提取镍钴铁的方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101073790B (zh) * 2006-12-22 2010-05-19 昆明贵金属研究所 不同类型红土镍矿的还原-磨选处理方法
CN101392331B (zh) * 2008-10-10 2010-08-25 建德市新安江镍合金有限公司 回转窑处理镍矿的冶炼工艺
CN101864524B (zh) * 2009-04-15 2012-05-23 中国科学院过程工程研究所 利用碳酸钠碱熔法处理低品位红土镍矿的清洁生产工艺
CN101701275B (zh) * 2009-11-18 2011-07-20 昆明理工大学 一种硅酸镍矿回转窑直接还原制备镍铁的方法
CN101912815B (zh) * 2010-08-25 2011-12-28 中南大学 一种从氯化离析低品位红土矿中富集钴镍的磁选方法
CN102312109B (zh) * 2011-09-16 2014-07-30 重庆大学 真空碳热还原从石煤矿石中提取与分离镍钼的工艺
CN103911514B (zh) * 2013-01-06 2016-03-02 中石化上海工程有限公司 废旧硬质合金磨削料的回收处理方法
CN103540768A (zh) * 2013-10-18 2014-01-29 左晓娟 一体化蛇纹石镍元素冶炼工艺
CN105648238B (zh) * 2014-12-08 2018-07-13 张家彦 一种获取镍基料的制备方法
CN106702157A (zh) * 2015-08-01 2017-05-24 江学艺 金属矿的还原处理方法及金属矿的还原处理炉

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4911290B1 (fr) * 1970-07-29 1974-03-15
US3871873A (en) * 1972-11-06 1975-03-18 Le Nickel Fr1972110672 39190 Method for producing nickel by segregation of its oxide ores
US3904400A (en) * 1971-02-26 1975-09-09 Basic Inc Segregation roast process for the recovery of nickel from lateritic ore
SU749925A1 (ru) * 1976-08-12 1980-07-23 Государственный научно-исследовательский институт цветных металлов Способ переработки окисленных никелевых руд
CN2325401Y (zh) * 1998-06-30 1999-06-23 肖安雄 一种离析焙烧回转窑

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4911290B1 (fr) * 1970-07-29 1974-03-15
US3904400A (en) * 1971-02-26 1975-09-09 Basic Inc Segregation roast process for the recovery of nickel from lateritic ore
US3871873A (en) * 1972-11-06 1975-03-18 Le Nickel Fr1972110672 39190 Method for producing nickel by segregation of its oxide ores
SU749925A1 (ru) * 1976-08-12 1980-07-23 Государственный научно-исследовательский институт цветных металлов Способ переработки окисленных никелевых руд
CN2325401Y (zh) * 1998-06-30 1999-06-23 肖安雄 一种离析焙烧回转窑

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KUMMING METALLURGY INSTITUTE: "A Process for Segragating A Nickel Silicate Ore", YUNNAN METALLURGY, no. 6, 1976, pages 18 - 27 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101862703A (zh) * 2010-05-17 2010-10-20 昆明理工大学 一种鲕状贫赤铁矿生产铁精矿的选冶联合方法
CN101869871A (zh) * 2010-05-29 2010-10-27 大冶有色金属公司 一种长石矿除铁降杂联合工艺选矿方法
CN101869871B (zh) * 2010-05-29 2011-11-16 大冶有色设计研究院有限公司 一种长石矿除铁降杂联合工艺选矿方法
CN101898168A (zh) * 2010-07-21 2010-12-01 衡阳县湘雁矿业有限公司 采用强磁浮选去除长石矿杂质的选矿方法
CN113957266A (zh) * 2021-10-29 2022-01-21 张雷 煤基焦化还原焙烧焦炭磁选优化红土镍矿的方法及装置
CN113957266B (zh) * 2021-10-29 2023-09-05 张雷 煤基焦化还原焙烧焦炭磁选优化红土镍矿的方法及装置
CN114480883A (zh) * 2021-12-16 2022-05-13 成都先进金属材料产业技术研究院股份有限公司 一种镍离子协同去除钒溶液中硅和铬以制备高纯五氧化二钒的方法
CN114480883B (zh) * 2021-12-16 2023-11-21 成都先进金属材料产业技术研究院股份有限公司 一种镍离子协同去除钒溶液中硅和铬以制备高纯五氧化二钒的方法
CN115747519A (zh) * 2022-11-02 2023-03-07 中南大学 一种镍矿资源综合利用的方法
CN117721325A (zh) * 2024-02-07 2024-03-19 矿冶科技集团有限公司 一种从红土镍矿中提取镍钴铁的方法
CN117721325B (zh) * 2024-02-07 2024-05-14 矿冶科技集团有限公司 一种从红土镍矿中提取镍钴铁的方法

Also Published As

Publication number Publication date
CN100383259C (zh) 2008-04-23
CN1827799A (zh) 2006-09-06

Similar Documents

Publication Publication Date Title
WO2007109976A1 (fr) Procédé pour recycler du ni et du co issus de minerai d'oxyde de nickel ou de minerai de silicate de nickel
WO2017185946A1 (fr) Procédé pour traiter du minerai de nickel de latérite de médiocre qualité et procédé de valorisation associé
CN112080636B (zh) 一种利用红土镍矿生产电池级硫酸镍盐的方法
CN109097562B (zh) 一种红土镍矿选择性硫化焙烧的方法
Zhai et al. A green process for recovering nickel from nickeliferous laterite ores
CN101514401B (zh) 一种从低品位红土镍矿高效富集镍钴的方法
CN101323904A (zh) 回转窑红土镍矿富集镍铁精矿的方法
CN102534206A (zh) 一种褐铁型红土镍矿的浸出方法
CN101230422A (zh) 一种从红土镍矿中富集镍及联产铁红的方法
CN111424167A (zh) 处理红土镍矿的方法
CN107267776B (zh) 一种红土镍矿直接还原-选矿富集生产镍铁的方法
CN103757200B (zh) 一种红土镍矿分离富集镍铁的方法
CN102534194A (zh) 一种红土镍矿生产镍铁的方法
CN102373329A (zh) 一种红土镍矿富集镍和铁方法
CN109355492A (zh) 一种利用低品位红土镍矿制备镍铁合金的方法
CN101418359A (zh) 一种从红土镍矿中提取铁及高品位镍铁合金的方法
CN110527848A (zh) 一种红土镍矿闪速炉还原熔炼生产镍铁的方法
CN101792865B (zh) 一种红土镍矿的干燥预还原方法
AU776553B2 (en) Direct atmospheric leaching of highly-serpentinized saprolitic nickel laterite ores with sulphuric acid
CN102643976B (zh) 用于红土镍矿生产镍铁颗粒的复合添加剂及其使用方法
CN103555930B (zh) 高镁质贫镍红土矿还原焙烧方法
CN117926027A (zh) 一种红土镍矿石的综合利用方法
CN212247156U (zh) 处理红土镍矿的***
CN102560240A (zh) 一种红土镍矿生产镍铁合金的工艺
CN102321797A (zh) 从钒钛磁铁矿中提取钴并制备超细钴粉的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07720378

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07720378

Country of ref document: EP

Kind code of ref document: A1