WO2007105674A1 - Method for fabricating film-formed body by aerosol deposition - Google Patents

Method for fabricating film-formed body by aerosol deposition Download PDF

Info

Publication number
WO2007105674A1
WO2007105674A1 PCT/JP2007/054789 JP2007054789W WO2007105674A1 WO 2007105674 A1 WO2007105674 A1 WO 2007105674A1 JP 2007054789 W JP2007054789 W JP 2007054789W WO 2007105674 A1 WO2007105674 A1 WO 2007105674A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
film
raw material
fine particles
incident angle
Prior art date
Application number
PCT/JP2007/054789
Other languages
French (fr)
Japanese (ja)
Inventor
Michiyori Miura
Seiichi Yokoyama
Original Assignee
Hoya Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corporation filed Critical Hoya Corporation
Publication of WO2007105674A1 publication Critical patent/WO2007105674A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/02Coating starting from inorganic powder by application of pressure only
    • C23C24/04Impact or kinetic deposition of particles
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • C03C17/23Oxides
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/21Oxides
    • C03C2217/214Al2O3
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/17Deposition methods from a solid phase
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/30Aspects of methods for coating glass not covered above
    • C03C2218/32After-treatment
    • C03C2218/328Partly or completely removing a coating
    • C03C2218/33Partly or completely removing a coating by etching

Definitions

  • the present invention relates to a method for manufacturing a film-thickness film with a film thickness using an aerosol deposition method.
  • the aerosol deposition method (hereinafter referred to as the AD method) is a ceramic having a particle size of several tens of nanometers to several ⁇ m, or a mixture of raw materials such as fine metal particle particles mixed with gas.
  • a film is formed by spraying onto a substrate through a nozzle.
  • the AD method has attracted attention as a method capable of forming a dense film having the same crystal structure as that of fine particles as a raw material at a low substrate temperature and at a high film formation rate.
  • FIG. 6 is a schematic diagram showing the basic configuration of the film forming apparatus.
  • 61 is a deposition substrate
  • 62 is an XY stage that moves the deposition substrate 61
  • 63 is a nozzle
  • 64 is a deposition channel
  • 65 is a classifier
  • 66 is an aerosol generator
  • 67 is a high-pressure gas supply.
  • the raw material fine particles that also have ceramics or metal power are mixed with a carrier gas (not shown) supplied through a mass flow controller 68 inside the aerosol generator 66 to be aerosolized.
  • a carrier gas not shown
  • the inside of the film forming chamber 64 is depressurized to about 50 Pa by a vacuum pump (not shown), and the raw material aerosolized by the gas flow generated by the differential pressure between this pressure and the pressure inside the aerosol generator 66.
  • the fine particles are introduced into the film forming chamber 64 through the classifier 65, accelerated through the nozzle 63, and sprayed onto the film forming substrate 61.
  • the raw material particles transported by the gas are accelerated to several hundred mZs by passing through a nozzle with a fine opening of 1 mm or less.
  • the average particle size of the fine particles is 50 nm or more, and the shape thereof is an aspherical amorphous shape. It is disclosed that by forming a shape with corners beyond the force point, the impact force at the time of the substrate collision is concentrated on the corners, and the crushing of the raw material fine particles is promoted, resulting in a dense film formation. Has been.
  • Patent Document 1 Japanese Patent Laid-Open No. 2003-73855
  • the first means provided by the present invention is:
  • Aerosol deposition in which the raw material fine particles are mixed with a carrier gas to form an aerosol, and together with the carrier gas, the raw material fine particles are accelerated through a nozzle and sprayed toward the surface of the substrate to be deposited to form a film in a vacuum chamber.
  • the substrate incident angle of the raw material fine particles sprayed from the nozzle to the deposition surface of the deposition substrate is approximately 0 degrees, and only the substrate incidence angle and the etching effect at which the etching effect is manifested are manifested.
  • the method for producing a film-deposited body by the aerosol deposition method is characterized in that the film is formed while being changed up to an arbitrary angle in a range between the substrate incident angle and the substrate incident angle.
  • the second means provided by the present invention includes:
  • a change in the substrate incident angle is continuous and periodic, and is a method for manufacturing a film-formed body by an aerosol deposition method.
  • the third means provided by the present invention includes:
  • the change in the incident angle of the substrate is intermittent and periodic.
  • FIG. 7 is a schematic diagram schematically showing a cross-sectional structure of a film formed under a condition where the carrier gas flow rate is constant, in which 71 is a substrate, 72 is a film formation layer, and 73 is a green compact layer. It is.
  • the structure of the film prepared under the condition that the carrier gas flow rate is constant and the substrate incident angle of the raw material fine particles substantially coincides with the normal direction of the surface of the substrate 71 is as shown in FIG.
  • the diameter of the particles constituting the film forming body layer 72 was about 1Z10 to 1Z5, which is the particle diameter of the raw material fine particles.
  • the green compact layer 73 as the distance from the substrate 71 increases (as the film thickness increases), both the number and size of voids increase and the size of the particles constituting the green compact layer increases. It became clear that the diameter also increased and finally became the same as the particle diameter of the raw material fine particles. It is also clear that the boundary between the film-forming body layer 72 and the green compact layer 73 is not clearly distinguishable, and that the film-forming body layer force and the structure change to the green compact layer occur continuously. It became power.
  • the cause of the formation of the green compact layer 73 is that the raw material fine particles are crushed as the film thickness is increased. It means both crushing itself and crushing raw material particles already attached to the substrate surface. It turns out that it is difficult to live.
  • the cause of the crushing of the raw material fine particles is an impact force accompanying the release of the kinetic energy of the raw material fine particles at the time of the substrate collision, and the kinetic energy of the raw material fine particles is determined by the substrate collision speed. Is done.
  • the substrate collision speed of the raw material fine particles is determined by the flow rate of the carrier gas, the substrate collision speed of the raw material fine particles is always constant when the film is formed under a condition where the carrier gas flow rate is constant. Sometimes the kinetic energy solved is also constant. Therefore, ideally, crushing of the raw material fine particles should occur in the same manner regardless of the formed film thickness.
  • FIG. 8 is a diagram schematically showing the relationship between the pressure generated by the substrate collision of the raw material fine particles and the strain generated in the film forming body layer and the green compact layer.
  • the pressure (stress) and strain increase linearly according to the pressure in the region where the pressure is low (in the figure, the elastic deformation region).
  • the strain does not follow the pressure increase, and eventually breaks up (breaking point in the figure).
  • the pressure required for the occurrence of crushing hereinafter referred to as the following
  • the critical pressure is also increasing.
  • uncrushed raw material fine particles adhering to the substrate surface or fine particles that are insufficiently crushed are used as a source for forming the green compact layer. Need to be removed.
  • uncrushed raw material fine particles or fine particles that are not sufficiently crushed are considered to have a low adhesive force with the substrate surface or a film formed on the substrate, and can be removed relatively easily. Conceivable.
  • the present invention provides an etching effect of raw material fine particles incident on a substrate described below. Focusing on the fruit, it is intended to form a dense film body while removing uncrushed raw material fine particles or fine particles that are not sufficiently crushed.
  • 3 to 5 show the influence of the incident direction of the raw material fine particles, in other words, the incident angle.
  • FIG. 3a is a schematic diagram showing the relationship between the incident direction and the incident angle of the raw material fine particles, in which 31 is a substrate, 32 is a film formed, 33 is a nozzle, 34 is a nozzle opening, and 35 is Raw material fine particles ejected from the nozzle opening 34.
  • Fig. 3b schematically shows the shape of the film formed for a fixed time with the substrate position fixed.
  • 36 is the shape of the film formation body
  • 37 is a uniform film thickness line
  • P is the point where the thickest point is projected onto the substrate.
  • the incident direction of the raw material fine particles means a direction parallel to a straight line connecting the point P and the center of the nozzle opening 34 and toward the point P from the nozzle opening 34.
  • the substrate incident angle here means the angle ⁇ formed by the normal direction of the substrate surface and the incident direction, as shown in FIG. 3a.
  • FIG. 4 shows the relationship between the substrate incident angle and the film thickness of the film-deposited film formed for a certain period of time.
  • the arrow in the figure corresponds to the case where the carrier gas flow rate is small, and the mouth mark corresponds to the case where the carrier gas flow rate is large.
  • the film thickness is standardized by the film thickness obtained when the film is formed with a substrate incident angle of 0 degree.
  • the substrate incident angle exceeds 20 degrees, the film thickness of the film formation starts to decrease sharply, and when the carrier gas flow rate is small, the decrease is when the flow rate is large. Smaller than that. It is estimated that this is because the etching effect of particles incident on the substrate becomes obvious as the substrate incident angle increases.
  • FIG. 5 shows the relationship between the amount of decrease in film thickness and the incident angle after the raw material fine particles are allowed to enter the substrate for a certain period of time after forming a film-forming body having a certain film thickness.
  • the mark in the figure corresponds to the case where the carrier gas flow rate is small
  • the mouth mark corresponds to the case where the carrier gas flow rate is large.
  • the film thickness reduction amount of 0 means both the case where the film thickness does not decrease and the case where the raw material fine particles incident on the substrate are deposited and the film thickness is increased. .
  • the substrate incident angle at which the etching effect becomes apparent for example, the substrate incident angle at which the film thickness starts to decrease in FIG. 4 is referred to as “substrate incident angle at which the etching effect becomes apparent”.
  • substrate incident angle at which the etching effect becomes obvious both etching and film deposition occur simultaneously.
  • the substrate incident angle at which only the etching effect appears for example, in FIG. 5, the angle at which the film thickness begins to decrease is referred to as the “substrate incident angle at which only the etching effect appears”.
  • the substrate incident angle where only the etching effect is manifested film deposition does not occur and only etching proceeds.
  • the substrate incident angle at which the etching effect is manifested, and the substrate incident angle at which only the etching effect is manifested are not constant, but vary depending on, for example, the carrier gas flow rate.
  • the etching effect of the raw material fine particles can be controlled by appropriately selecting the substrate incident angle of the raw material fine particles and the carrier gas flow rate for the AD method.
  • the object of the present invention is to form the film while changing the substrate incident angle of the raw material fine particles ejected from the nozzle, thereby reconciling the above-mentioned etching effect and deposition effect, and the source of the formation of the green compact layer. In this way, it removes uncrushed raw material particles adhering to the substrate surface, or fine particles that are not sufficiently crushed, and does not form a film with a large thickness and excellent density. is there.
  • FIG 1 and 2 are schematic diagrams showing an embodiment of the present invention.
  • FIG. 1 is a diagram schematically showing how the angle formed between the nozzle and the substrate during film formation changes.
  • 11 is a nozzle
  • 13 is raw material fine particles ejected from the first nozzle.
  • the arrows and block arrows in the figure indicate the incident direction of the raw material particles 13 to the substrate, and (1), (2), (3), and (4) are added to the block arrows to indicate the order in which the substrates rotate. It is shown. That is, at the start of film formation, as shown in FIG. La, the raw material fine particles 13 are incident from a direction substantially perpendicular to the film formation surface of the substrate 21 and film formation is performed for a certain time.
  • the substrate 21 rotates clockwise and stops when the desired angle is reached, and film formation is performed for a certain period of time in this state (corresponding to FIG. 1 lb).
  • the substrate 21 is rotated again counterclockwise, is stationary in the state shown in FIG. La, and film formation is performed for a certain time.
  • the substrate 21 rotates counterclockwise and stops when a desired angle is reached, and film formation is performed for a certain time in this state (corresponding to FIG. 1c).
  • the substrate 21 rotates again clockwise, stops in the state shown in FIG. La, and film formation is performed for a certain time.
  • FIG. 2 shows this as a relationship between the film formation time and the incident angle of the raw material fine particles 13.
  • “0” corresponds to the case of FIG. La in which the raw material fine particles are incident on the substrate from the direction orthogonal to the substrate surface
  • the positive and negative maximum corresponds to, for example, the cases of FIG. Lb and FIG. Figure 2a shows the case where the substrate incident angle changes intermittently
  • Figure 2b shows the case where the same angle changes continuously.
  • the film formation can be continued or interrupted while the substrate is rotated.
  • the substrate incident angle of the raw material fine particles 13 is changed, and the state in which film deposition is preferentially performed and the etching effect becomes apparent or the etching is realized.
  • the film is formed while removing the uncrushed raw material fine particles adhering to the surface of the film forming body or particles that are not sufficiently crushed. The film is blocked and a dense film is formed.
  • Which region should be selected as the maximum or minimum value of the substrate incident angle, in other words, whether to select the substrate incident angle at which only the etching effect appears or the substrate incident angle at which the etching effect manifests It should be selected as appropriate depending on the type of raw material fine particles and the ease with which a green compact is produced.
  • Alumina particles having an average particle size of 0.7 ⁇ m were used as the raw material fine particles, and air was used as the carrier gas.
  • the nozzle opening of the nozzle is 5 nm X O. 3 nm, and the substrate used is quartz glass.
  • the carrier gas flow rate is 4 lZmin.
  • the fine alumina particles injected from the nozzle The substrate collision velocity of the particles was 240 mZs, and the deposition rate was ⁇ 5 ⁇ mZmin when the substrate incident angle of the alumina fine particles was 0 degree.
  • film formation was performed using alumina particles having an average particle size of 0.7 ⁇ m as the raw material fine particles and air as the transport gas.
  • the nozzle opening of the nozzle is 5 nm X O. 3 nm, and the substrate used is quartz glass.
  • the carrier gas flow rate is 4 lZmin
  • the substrate collision speed of the alumina fine particles injected from the nozzle cap at this time is 240 mZs, and when the substrate incident angle of alumina fine particles is 0 degree, the deposition rate is ⁇ 5 / z mZmin.
  • the angle is 25 degrees, it is ⁇ 4 ⁇ mZ min.
  • the substrate incident angle at the start of film formation was set to 0 degree, and the substrate incident angle was changed in the manner shown in Fig. 2a. That is, the substrate incident angle is kept at 0 degree, the film is formed for 2 minutes, the substrate incident angle is set to 25 degrees, the film is formed in the same manner for 2 minutes, and then the substrate incident angle is again set to 0 degree. By repeating the cycle of film formation for 2 minutes, a 40 m-thick alumina film was formed. The time required to change the incident angle was about 10 seconds.
  • a 40 ⁇ m-thick alumina film was formed under the same conditions as in Example 1. However, the substrate incident angle was changed to a sine wave as shown in Fig. 2b. The amplitude was 30 degrees (in this case the deposition rate was ⁇ 3 ⁇ mZmin) and the period was 3 minutes.
  • the film forming method according to the present invention is useful for stably producing a film-forming body having a thickness of more than 30 ⁇ m by using the AD method, and a component using the film-forming body, It can be used in industrial fields related to materials.
  • FIG. 1 is a diagram schematically showing a change in the substrate incident angle during film formation.
  • FIG. 2 is a schematic diagram showing a relationship between a film formation time and a substrate incident angle.
  • ⁇ 3 It is a schematic diagram for explaining the substrate incident angle.
  • FIG. 4 is a diagram showing a relationship between a film thickness of a film-formed body and a substrate incident angle.
  • FIG. 5 is a diagram showing the relationship between the film thickness reduction amount and the substrate incident angle.
  • FIG. 6 It is a schematic diagram showing the basic configuration of a film forming apparatus using the AD method.
  • FIG. 7 A schematic view schematically showing a cross-sectional structure of a sample formed by the AD method.
  • FIG. 8 is a diagram schematically showing the relationship between the pressure generated by substrate collision of raw material fine particles and the strain generated in the film formation layer and the green compact layer.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

There is provided a method for stably fabricating a film-formed body having a film thickness exceeding 30µm by aerosol deposition. The incident angle of raw material microparticles sprayed from a nozzle on a deposition substrate is changed, thereby fabricating the film-formed body while adjusting the balance between etching and deposition of the film.

Description

明 細 書  Specification
エアロゾルデポジション法による成膜体の製造方法  Method for producing film-forming body by aerosol deposition method
技術分野  Technical field
[0001] 本発明は、エアロゾルデポジション法を用いて膜厚の厚 、成膜体を製造する方法 に関する。  [0001] The present invention relates to a method for manufacturing a film-thickness film with a film thickness using an aerosol deposition method.
背景技術  Background art
[0002] エアロゾルデポジション法(以下、 AD法と記す)は、粒径が数十 nm〜数 μ mのセラ ミックスある 、は金属の微粒子カゝら成る原料をガスと混合してエアロゾルィ匕し、ノズル を通して基板に噴射して、被膜を形成する技術である。近年、 AD法は、低基板温度 で、かつ高成膜速度で、原料である微粒子と同様の結晶構造を有する緻密な被膜が 形成できる方法として着目されて ヽる。  [0002] The aerosol deposition method (hereinafter referred to as the AD method) is a ceramic having a particle size of several tens of nanometers to several μm, or a mixture of raw materials such as fine metal particle particles mixed with gas. In this technique, a film is formed by spraying onto a substrate through a nozzle. In recent years, the AD method has attracted attention as a method capable of forming a dense film having the same crystal structure as that of fine particles as a raw material at a low substrate temperature and at a high film formation rate.
[0003] AD法を用いた成膜装置について図 6を用いて説明する。図 6は、成膜装置の基本 構成を示した概略図である。図中、 61は被成膜基板、 62は被成膜基板 61を移動せ しめる XYステージ、 63はノズル、 64は成膜チャンノ 、 65は分級器、 66はエアロゾル 発生器、 67は高圧ガス供給源、 68はマスフロー制御器、 69はパイプライン、図中矢 印は基板走査方向を模式的に示したものである。セラミックスあるいは金属力もなる 原料微粒子は、エアロゾル発生器 66の内部でマスフロー制御器 68を介して供給さ れる搬送ガス(図示せず)と混合されてエアロゾルィ匕される。成膜チャンバ 64の内部 は、真空ポンプ(図示せず)で〜 50Pa程度に減圧されており、この圧力とエアロゾル 発生器 66内部の圧力との差圧によって生じるガス流によってエアロゾルィ匕された原 料微粒子は、分級器 65を介して成膜チャンバ 64内に導かれ、ノズル 63を通して加 速、被成膜基板 61に噴射される。ガスによって搬送された原料微粒子は、 1mm以下 の微小開口のノズルを通すことで数百 mZsまでに加速される。  A film forming apparatus using the AD method will be described with reference to FIG. FIG. 6 is a schematic diagram showing the basic configuration of the film forming apparatus. In the figure, 61 is a deposition substrate, 62 is an XY stage that moves the deposition substrate 61, 63 is a nozzle, 64 is a deposition channel, 65 is a classifier, 66 is an aerosol generator, and 67 is a high-pressure gas supply. 68, a mass flow controller, 69 a pipeline, and arrows in the figure schematically indicate the substrate scanning direction. The raw material fine particles that also have ceramics or metal power are mixed with a carrier gas (not shown) supplied through a mass flow controller 68 inside the aerosol generator 66 to be aerosolized. The inside of the film forming chamber 64 is depressurized to about 50 Pa by a vacuum pump (not shown), and the raw material aerosolized by the gas flow generated by the differential pressure between this pressure and the pressure inside the aerosol generator 66. The fine particles are introduced into the film forming chamber 64 through the classifier 65, accelerated through the nozzle 63, and sprayed onto the film forming substrate 61. The raw material particles transported by the gas are accelerated to several hundred mZs by passing through a nozzle with a fine opening of 1 mm or less.
[0004] 加速された原料微粒子は被成膜基板 61に衝突し、その運動エネルギーは一気に 解放され、皮膜が形成されること〖こなる。しかし、加速された原料微粒子が有する運 動エネルギーが全て基板に衝突した原料微粒子の温度上昇に費やされたとしても、 その温度は、例えばセラミックスの焼結に必要な温度等と比べると一桁程度低ぐ緻 密な成膜体が得られるメカニズムについては不明な点が多い。しかし、その成膜過程 には、原料微粒子の基板衝突時に発生する破砕が重要な役割を担って ヽると考えら れている。なお、 "原料微粒子の破砕"とは、基板に飛来した原料微粒子自体の破砕 と、既に基板表面に付着して ヽる原料微粒子の破砕の両者を意味する。 [0004] The accelerated raw material fine particles collide with the deposition target substrate 61, and the kinetic energy thereof is released at once, and a film is formed. However, even if all of the kinetic energy of the accelerated raw material fine particles is spent on raising the temperature of the raw material fine particles that have collided with the substrate, the temperature is, for example, an order of magnitude higher than the temperature necessary for sintering ceramics. Too low There are many unclear points regarding the mechanism by which a dense film is obtained. However, it is thought that crushing that occurs when the raw material particles collide with the substrate plays an important role in the film formation process. “Fracture of the raw material fine particles” means both of the crushing of the raw material fine particles that have come to the substrate and the crushing of the raw material fine particles that have already adhered to the substrate surface.
[0005] すなわち、特開 2003— 73855号公報においては、脆性材料から成る原料微粒子 の場合、その微粒子の平均粒径が 50nm以上で、かつ、その形状が非球形の不定 形形状で、少なくとも一力所以上、角を持つ形状とすることにより、当該角の部分に基 板衝突時の衝撃力が集中し、原料微粒子の破砕が促進される結果、緻密な成膜体 が得られることが開示されている。  [0005] That is, in JP-A-2003-73855, in the case of raw material fine particles made of a brittle material, the average particle size of the fine particles is 50 nm or more, and the shape thereof is an aspherical amorphous shape. It is disclosed that by forming a shape with corners beyond the force point, the impact force at the time of the substrate collision is concentrated on the corners, and the crushing of the raw material fine particles is promoted, resulting in a dense film formation. Has been.
特許文献 1:特開 2003 - 73855号公報  Patent Document 1: Japanese Patent Laid-Open No. 2003-73855
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0006] しかし、我々の AD法による膜厚の大きい成膜体を形成するための系統的な検討の 結果、〜 10 m程度の成膜体は比較的容易に形成されるものの、それ以上の膜厚 、例えば〜 30 mを超える膜厚の成膜体を安定に形成することが困難であることが 判明した。すなわち、成膜初期過程、換言すると膜厚が 10 m程度以下と薄い状態 においては、緻密な成膜体が得られるものの、膜厚が増大するにつれ緻密な成膜体 は形成されず、圧粉体のみが形成される、と云う問題があることが明らかとなった。 課題を解決するための手段 [0006] However, as a result of systematic examination for forming a film-forming body having a large film thickness by our AD method, a film-forming body of about 10 m is formed relatively easily, but more than that It has been found that it is difficult to stably form a film having a film thickness of, for example, a film thickness exceeding ˜30 m. In other words, in the initial stage of film formation, in other words, in a state where the film thickness is as thin as about 10 m or less, a dense film body can be obtained, but as the film thickness increases, a dense film body is not formed, so It became clear that there was a problem that only the body was formed. Means for solving the problem
[0007] 上記課題を解決するために、 [0007] In order to solve the above problems,
本発明により提供される第 1の手段は、  The first means provided by the present invention is:
原料微粒子を搬送ガスと混合してエアロゾル化し、該搬送ガスと共に、原料微粒子を ノズルを通して加速して被堆積基板表面に向けて噴射せしめることにより減圧チャン バ内で成膜体を形成するエアロゾルデポジション法であって、該ノズルから噴射され た原料微粒子の該被堆積基板の被堆積表面への基板入射角度を、略 0度から、エツ チング効果が顕在化する基板入射角度とエッチング効果のみが発現する基板入射 角度との間の範囲における任意の角度まで、変化させつつ成膜することを特徴とす るエアロゾルデポジション法による成膜体の製造方法である。 また、本発明により提供される第 2の手段は、 Aerosol deposition in which the raw material fine particles are mixed with a carrier gas to form an aerosol, and together with the carrier gas, the raw material fine particles are accelerated through a nozzle and sprayed toward the surface of the substrate to be deposited to form a film in a vacuum chamber. In this method, the substrate incident angle of the raw material fine particles sprayed from the nozzle to the deposition surface of the deposition substrate is approximately 0 degrees, and only the substrate incidence angle and the etching effect at which the etching effect is manifested are manifested. The method for producing a film-deposited body by the aerosol deposition method is characterized in that the film is formed while being changed up to an arbitrary angle in a range between the substrate incident angle and the substrate incident angle. The second means provided by the present invention includes:
前記第 1の手段において、該基板入射角度の変化が連続的かつ周期的であることを 特徴とするエアロゾルデポジション法による成膜体の製造方法である。  In the first means, a change in the substrate incident angle is continuous and periodic, and is a method for manufacturing a film-formed body by an aerosol deposition method.
[0008] 更に、本発明により提供される第 3の手段は、 [0008] Further, the third means provided by the present invention includes:
前記第 1の手段において、該基板入射角度の変化が間歇的かつ周期的であること を特徴とするエアロゾルデポジション法による成膜体の製造方法である。  In the first means, the change in the incident angle of the substrate is intermittent and periodic.
発明の効果  The invention's effect
[0009] 本発明により、 AD法を用いて〜 30 mを超える膜厚が厚ぐ緻密性に優れた成膜 体を安定して製造することが可能となる。  [0009] According to the present invention, it is possible to stably produce a film-formation body having an excellent denseness with a film thickness exceeding 30 m using the AD method.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0010] 発明者等は、上記課題を解決するために鋭意研究を行い、以下に述べる知見を得 るに至った。以下に、発明者等が得た知見について説明する。 [0010] The inventors have conducted intensive research to solve the above problems, and have obtained the following knowledge. Hereinafter, the knowledge obtained by the inventors will be described.
[0011] AD法で形成された膜であって、成膜初期段階では緻密な成膜体で、膜厚の増加 と共に圧粉体となった膜の組織を電子顕微鏡で観察した結果、例えば図 7に模式的 に示すような組織を有していることが明ら力となった。図 7は、搬送ガス流量が一定の 条件下で形成した膜の断面組織を模式的に示した概略図であり、図中 71は基板、 7 2は成膜体層、 73は圧粉体層である。すなわち、搬送ガス流量が一定で、原料微粒 子の基板入射角度が基板 71の表面の法線方向と略一致する条件下で作成した膜 の組織は、同図に示したように、成膜体層 72では緻密な膜が形成されており、かつ 成膜体層 72を構成する粒子の径は原料微粒子の粒径の約 1Z10〜1Z5であった 。一方、圧粉体層 73においては、基板 71からの距離が大きくなるにつれ (膜厚が増 加するにつれ)、空隙部の数、大きさ共に増大し、かつ圧粉体層を構成する粒子の 径も増大し、最終的には原料微粒子の粒径と同程度になることが明らかとなった。ま た、成膜体層 72と圧粉体層 73との境界は明瞭に区別できるものではなぐ成膜体層 力も圧粉体層への組織変化は連続的に発生していることも明ら力となった。  [0011] As a result of observing, with an electron microscope, the structure of a film formed by the AD method, which is a dense film formed in the initial stage of film formation and becomes a green compact as the film thickness increases. Clearly, having an organization as shown schematically in Fig. 7 became a powerful force. FIG. 7 is a schematic diagram schematically showing a cross-sectional structure of a film formed under a condition where the carrier gas flow rate is constant, in which 71 is a substrate, 72 is a film formation layer, and 73 is a green compact layer. It is. That is, the structure of the film prepared under the condition that the carrier gas flow rate is constant and the substrate incident angle of the raw material fine particles substantially coincides with the normal direction of the surface of the substrate 71 is as shown in FIG. In the layer 72, a dense film was formed, and the diameter of the particles constituting the film forming body layer 72 was about 1Z10 to 1Z5, which is the particle diameter of the raw material fine particles. On the other hand, in the green compact layer 73, as the distance from the substrate 71 increases (as the film thickness increases), both the number and size of voids increase and the size of the particles constituting the green compact layer increases. It became clear that the diameter also increased and finally became the same as the particle diameter of the raw material fine particles. It is also clear that the boundary between the film-forming body layer 72 and the green compact layer 73 is not clearly distinguishable, and that the film-forming body layer force and the structure change to the green compact layer occur continuously. It became power.
[0012] この観察結果より、圧粉体層 73が形成される原因は、膜厚の増加につれて原料微 粒子の破砕 (前述したように、 "原料微粒子の破砕"とは基板に飛来した原料微粒子 自体の破砕と既に基板表面に付着した原料微粒子の破砕の両者を意味する。 )が発 生し難くなつていることにあることが判る。 From this observation result, the cause of the formation of the green compact layer 73 is that the raw material fine particles are crushed as the film thickness is increased. It means both crushing itself and crushing raw material particles already attached to the substrate surface. It turns out that it is difficult to live.
[0013] 一方、原料微粒子が破砕される原因は、その基板衝突時における原料微粒子の有 する運動エネルギーの解放に伴う衝撃力であり、係る原料微粒子の有する運動エネ ルギ一は基板衝突速度によって決定される。ところで、原料微粒子の基板衝突速度 は、搬送ガスの流量によって決定されることから、搬送ガス流量が一定の条件下で成 膜する場合には、原料微粒子の基板衝突速度は常に一定であり、衝突時に解法さ れる運動エネルギーも一定になる。従って、理想的には、形成された膜厚の如何を 問わず、原料微粒子の破砕は同様に発生して然るべきである。  [0013] On the other hand, the cause of the crushing of the raw material fine particles is an impact force accompanying the release of the kinetic energy of the raw material fine particles at the time of the substrate collision, and the kinetic energy of the raw material fine particles is determined by the substrate collision speed. Is done. By the way, since the substrate collision speed of the raw material fine particles is determined by the flow rate of the carrier gas, the substrate collision speed of the raw material fine particles is always constant when the film is formed under a condition where the carrier gas flow rate is constant. Sometimes the kinetic energy solved is also constant. Therefore, ideally, crushing of the raw material fine particles should occur in the same manner regardless of the formed film thickness.
[0014] しかし、前述したように、 AD法で形成した膜の断面組織を電子顕微鏡で観察した 結果、膜厚の増加と共に、空隙部の数及びその大きさ、共に増大していることから、 以下に述べるような現象が発生してものと想定される。  However, as described above, as a result of observing the cross-sectional structure of the film formed by the AD method with an electron microscope, as the film thickness increases, the number and size of the voids both increase. It is assumed that the following phenomenon occurs.
[0015] 図 8は、原料微粒子の基板衝突によって発生する圧力と成膜体層及び圧粉体層に 発生する歪みとの関係を模式的に示した図である。一般的に、圧力 (応力)と歪みと は、同図に示したように、圧力が小さい領域では、圧力に応じて歪みは線形的に増 加するが(図中、弾性変形領域)、その後圧力の上昇に歪み量は追従しなくなり、最 終的には破砕に至る(図中破砕発生点)。圧粉体層においては、空隙部が多数存在 するため、緻密な成膜体層に比べて変形し易ぐ弾性変形領域が広いと考えられ、 結果として破砕が発生するために要する圧力(以下、臨界圧力と記す)も大きくなつて いると推定される。すなわち、原料微粒子の基板衝突によって発生する圧力が、成膜 体層における臨界圧力は超える力 圧粉体層の臨界圧力を下回る場合には、ー且 圧粉体層が形成されると、最早基板に付着した原料微粒子の破砕は発生せず、圧 粉体層が形成され続けることになる。  FIG. 8 is a diagram schematically showing the relationship between the pressure generated by the substrate collision of the raw material fine particles and the strain generated in the film forming body layer and the green compact layer. Generally, as shown in the figure, the pressure (stress) and strain increase linearly according to the pressure in the region where the pressure is low (in the figure, the elastic deformation region). The strain does not follow the pressure increase, and eventually breaks up (breaking point in the figure). In the green compact layer, since there are many voids, it is considered that the elastic deformation region that is easily deformed compared to the dense film formation layer is wide, and as a result, the pressure required for the occurrence of crushing (hereinafter referred to as the following) It is estimated that the critical pressure is also increasing. That is, when the pressure generated by the substrate collision of the raw material fine particles is lower than the critical pressure of the green compact layer exceeding the critical pressure in the film formation layer, and once the green compact layer is formed, the substrate The raw material fine particles adhering to the surface are not crushed, and the green compact layer continues to be formed.
[0016] このような圧粉体層の形成を阻止するためには、圧粉体層の形成の源となる、基板 表面に付着している未破砕の原料微粒子、若しくは破砕が不充分な微粒子を除去 することが必要となる。また、未破砕原料微粒子、若しくは破砕が不充分な微粒子は 、基板表面、あるいは基板に既に形成されている成膜体との密着力が低いと考えら れ、比較的容易に除去され得るものと考えられる。  [0016] In order to prevent the formation of such a green compact layer, uncrushed raw material fine particles adhering to the substrate surface or fine particles that are insufficiently crushed are used as a source for forming the green compact layer. Need to be removed. In addition, uncrushed raw material fine particles or fine particles that are not sufficiently crushed are considered to have a low adhesive force with the substrate surface or a film formed on the substrate, and can be removed relatively easily. Conceivable.
[0017] すなわち、本発明は、以下に説明する基板に入射する原料微粒子のエッチング効 果に着目し、未破砕原料微粒子、若しくは破砕が不充分な微粒子を除去しつつ緻密 な成膜体を形成せんとするものである。 That is, the present invention provides an etching effect of raw material fine particles incident on a substrate described below. Focusing on the fruit, it is intended to form a dense film body while removing uncrushed raw material fine particles or fine particles that are not sufficiently crushed.
[0018] 図 3〜5に原料微粒子の入射方向、換言すると入射角度の影響を示す。  3 to 5 show the influence of the incident direction of the raw material fine particles, in other words, the incident angle.
[0019] 図 3aは原料微粒子の入射方向と入射角度との関係を示す模式図で、図中 31は基 板、 32は成膜された膜、 33はノズル、 34はノズル開口部、 35はノズル開口部 34から 噴射された原料微粒子である。図 3bは基板位置を固定して一定時間形成された成 膜体の形状を模式的に示したものである。図中、 36は成膜体の形状、 37は等膜厚 線、 Pは最も膜厚の厚い点を基板に投影した点である。基板 31を固定し、一定時間 原料微粒子を基板表面に向けて噴射せしめた場合、原料微粒子 35は、ある程度の 方向分布を持って基板に入射するため、形成された成膜体は成膜体 36に示すよう な山型の形状となる。ここで云う、原料微粒子の入射方向とは点 Pとノズル開口部 34 の中心とを結ぶ直線に平行で、かつノズル開口部 34から点 Pに向かう方向の意であ る。大略的には、図 3aに示した矢印、及びブロック矢印で示した方向と理解される。 また、ここで云う基板入射角度とは、図 3aに示すように、基板表面法線方向と入射方 向とのなす角度、 Θの意である。  [0019] FIG. 3a is a schematic diagram showing the relationship between the incident direction and the incident angle of the raw material fine particles, in which 31 is a substrate, 32 is a film formed, 33 is a nozzle, 34 is a nozzle opening, and 35 is Raw material fine particles ejected from the nozzle opening 34. Fig. 3b schematically shows the shape of the film formed for a fixed time with the substrate position fixed. In the figure, 36 is the shape of the film formation body, 37 is a uniform film thickness line, and P is the point where the thickest point is projected onto the substrate. When the substrate 31 is fixed and the raw material fine particles are sprayed toward the substrate surface for a certain period of time, the raw material fine particles 35 are incident on the substrate with a certain degree of direction distribution. It has a mountain shape as shown in Here, the incident direction of the raw material fine particles means a direction parallel to a straight line connecting the point P and the center of the nozzle opening 34 and toward the point P from the nozzle opening 34. In general, it is understood to be the direction indicated by the arrow shown in FIG. 3a and the block arrow. In addition, the substrate incident angle here means the angle Θ formed by the normal direction of the substrate surface and the incident direction, as shown in FIG. 3a.
[0020] 図 4は基板入射角度と一定時間成膜した成膜体の膜厚との関係を示す。図中參印 は、搬送ガス流量が小さい場合、口印は搬送ガス流量が大きい場合に対応する。い ずれの場合も、基板入射角度が 0度で成膜した場合に得られる膜厚で規格化されて いる。同図に示したように、基板入射角度が 20度を超えた辺りから、成膜体の膜厚は 急激に減少しはじめ、搬送ガス流量が小さい場合の減少量は、同流量が大きい場合 に比べて小さい。この原因は、基板入射角度の増大と共に、基板に入射する粒子の エッチング効果が顕在化することにあると推定される。  FIG. 4 shows the relationship between the substrate incident angle and the film thickness of the film-deposited film formed for a certain period of time. The arrow in the figure corresponds to the case where the carrier gas flow rate is small, and the mouth mark corresponds to the case where the carrier gas flow rate is large. In either case, the film thickness is standardized by the film thickness obtained when the film is formed with a substrate incident angle of 0 degree. As shown in the figure, when the substrate incident angle exceeds 20 degrees, the film thickness of the film formation starts to decrease sharply, and when the carrier gas flow rate is small, the decrease is when the flow rate is large. Smaller than that. It is estimated that this is because the etching effect of particles incident on the substrate becomes obvious as the substrate incident angle increases.
[0021] 図 5は、一定の膜厚の成膜体を形成した後、一定時間、原料微粒子を基板に入射 せしめた後の膜厚減少量と入射角度との関係を示したものである。図 5と同様に、図 中參印は、搬送ガス流量が小さい場合、口印は搬送ガス流量が大きい場合に対応 する。また、同図において、膜厚減少量が 0とは、膜厚の減少が発生しない場合、及 び基板に入射された原料微粒子が堆積されて膜厚が増カロした場合の両者を意味す る。 [0022] 同図に示したように、搬送ガス流量が大きい場合、入射角度が 25度を超えた辺りか ら、膜厚減少が顕在化するのに対し、搬送ガス流量が小さい場合には入射角度が 4 0度を超えた辺りから膜厚減少が顕在化する。 FIG. 5 shows the relationship between the amount of decrease in film thickness and the incident angle after the raw material fine particles are allowed to enter the substrate for a certain period of time after forming a film-forming body having a certain film thickness. As in Fig. 5, the mark in the figure corresponds to the case where the carrier gas flow rate is small, and the mouth mark corresponds to the case where the carrier gas flow rate is large. In the figure, the film thickness reduction amount of 0 means both the case where the film thickness does not decrease and the case where the raw material fine particles incident on the substrate are deposited and the film thickness is increased. . [0022] As shown in the figure, when the carrier gas flow rate is large, the decrease in film thickness becomes apparent when the incident angle exceeds 25 degrees, whereas when the carrier gas flow rate is small, the incident gas is incident. The decrease in film thickness becomes apparent when the angle exceeds 40 degrees.
なお、以下において、エッチング効果が顕在化する基板入射角度、例えば図 4にお いて、膜厚が減少し始める基板入射角度を、「エッチング効果が顕在化する基板入 射角度」と記す。エッチング効果が顕在化する基板入射角度の場合、エッチング及 び膜の堆積という両現象が同時に発生する。また、エッチング効果のみが発現する 基板入射角度、例えば図 5において、膜厚が減少し始める角度を「エッチング効果の みが発現する基板入射角度」と記す。エッチング効果のみが発現する基板入射角度 の場合には、膜の堆積は起こらず、エッチングのみが進行する。  In the following, the substrate incident angle at which the etching effect becomes apparent, for example, the substrate incident angle at which the film thickness starts to decrease in FIG. 4 is referred to as “substrate incident angle at which the etching effect becomes apparent”. In the case of the substrate incident angle at which the etching effect becomes obvious, both etching and film deposition occur simultaneously. Further, the substrate incident angle at which only the etching effect appears, for example, in FIG. 5, the angle at which the film thickness begins to decrease is referred to as the “substrate incident angle at which only the etching effect appears”. In the case of the substrate incident angle where only the etching effect is manifested, film deposition does not occur and only etching proceeds.
図 4及び図 5に示したように、エッチング効果が顕在化する基板入射角度、及びェ ツチング効果のみが発現する基板入射角度は一定ではなぐ例えば搬送ガス流量に よって変化する。  As shown in FIGS. 4 and 5, the substrate incident angle at which the etching effect is manifested, and the substrate incident angle at which only the etching effect is manifested are not constant, but vary depending on, for example, the carrier gas flow rate.
[0023] 以上の結果から、 AD法にぉ ヽては、原料微粒子の基板入射角度、及び搬送ガス 流量を適当に選定することにより、原料微粒子のエッチング効果を制御できることが 理解される。  [0023] From the above results, it is understood that the etching effect of the raw material fine particles can be controlled by appropriately selecting the substrate incident angle of the raw material fine particles and the carrier gas flow rate for the AD method.
[0024] 本発明は、発明者等が得た上述の知見に基づいてなされたものである。すなわち、 本発明の目的は、ノズルから噴射された原料微粒子の基板入射角度を変化させつ つ成膜することにより、前述したエッチング効果と堆積効果とを調和させ、圧粉体層 の形成の源となる、基板表面に付着している未破砕の原料微粒子、若しくは破砕が 不充分な微粒子を除去しつつ、膜厚が厚ぐかつ緻密性に優れた成膜体を形成せ んとするものである。  The present invention has been made based on the above-mentioned knowledge obtained by the inventors. That is, the object of the present invention is to form the film while changing the substrate incident angle of the raw material fine particles ejected from the nozzle, thereby reconciling the above-mentioned etching effect and deposition effect, and the source of the formation of the green compact layer. In this way, it removes uncrushed raw material particles adhering to the substrate surface, or fine particles that are not sufficiently crushed, and does not form a film with a large thickness and excellent density. is there.
[0025] 以下、本発明の実施の形態について説明する。  Hereinafter, embodiments of the present invention will be described.
図 1及び図 2は本発明の実施の形態を示す模式図である。  1 and 2 are schematic diagrams showing an embodiment of the present invention.
[0026] 図 1は、成膜時におけるノズルと基板とのなす角度が変化する様子を模式的に示し た図である。図中、 11はノズル、 13は第 1のノズルから噴射される原料微粒子である 。また、図中の矢印、及びブロック矢印は、原料微粒子 13の基板入射方向を、またブ ロック矢印に(1) (2) (3) (4)と付したのは、基板が回転する順序を示したものである。 すなわち、成膜開始時には、図 laに示すように、原料微粒子 13は、基板 21の被成 膜面と略直交する方向から入射し、一定の時間、成膜が行われる。その後、基板 21 が時計方向に回転して、所望の角度に達した時に静止し、その状態で一定の時間、 成膜が行われる(図 lbに対応)。その後、再び基板 21は反時計方向に回転して、図 laに示す状態で静止して、また一定の時間、成膜が行われる。その後、基板 21は反 時計方向に回転し、所望の角度に達した時に静止し、その状態で一定の時間、成膜 が行われる(図 lcに対応)。その後、再び基板 21は時計方向に回転して、図 laに示 す状態で静止して、また一定の時間、成膜が行われる。以上のサイクルを繰り返すこ とにより、成膜体の形成が行われる。図 2には、その様子を、成膜時間と原料微粒子 1 3の入射角度との関係として示す。図中、 "0"は、原料微粒子が基板表面に直交する 方向から基板に入射する図 laの場合に対応し、また正負の極大は、例えば、図 lb、 図 lcの場合に対応する。図 2aは、間歇的に基板入射角度が変化する場合、図 2bは 連続的に同角度が変化する場合を示している。特に図 2aの場合には、基板が回転 する間、成膜を持続しても、また中断してもどちらでも構わない。 FIG. 1 is a diagram schematically showing how the angle formed between the nozzle and the substrate during film formation changes. In the figure, 11 is a nozzle, and 13 is raw material fine particles ejected from the first nozzle. The arrows and block arrows in the figure indicate the incident direction of the raw material particles 13 to the substrate, and (1), (2), (3), and (4) are added to the block arrows to indicate the order in which the substrates rotate. It is shown. That is, at the start of film formation, as shown in FIG. La, the raw material fine particles 13 are incident from a direction substantially perpendicular to the film formation surface of the substrate 21 and film formation is performed for a certain time. Thereafter, the substrate 21 rotates clockwise and stops when the desired angle is reached, and film formation is performed for a certain period of time in this state (corresponding to FIG. 1 lb). After that, the substrate 21 is rotated again counterclockwise, is stationary in the state shown in FIG. La, and film formation is performed for a certain time. Thereafter, the substrate 21 rotates counterclockwise and stops when a desired angle is reached, and film formation is performed for a certain time in this state (corresponding to FIG. 1c). Thereafter, the substrate 21 rotates again clockwise, stops in the state shown in FIG. La, and film formation is performed for a certain time. By repeating the above cycle, the film formation is formed. FIG. 2 shows this as a relationship between the film formation time and the incident angle of the raw material fine particles 13. In the figure, “0” corresponds to the case of FIG. La in which the raw material fine particles are incident on the substrate from the direction orthogonal to the substrate surface, and the positive and negative maximum corresponds to, for example, the cases of FIG. Lb and FIG. Figure 2a shows the case where the substrate incident angle changes intermittently, and Figure 2b shows the case where the same angle changes continuously. Particularly in the case of FIG. 2a, the film formation can be continued or interrupted while the substrate is rotated.
[0027] このように、成膜中に基板を回転させることにより、原料微粒子 13の基板入射角度 を変化せしめ、膜の堆積が優先的に行われる状態と、エッチング効果が顕在化する 、又はエッチング効果のみが発現する状態を交互に繰り返すことにより、成膜体表面 に付着した未破砕原料微粒子、あるいは破砕が不充分な粒子を除去しつつ、膜が 形成されるため、圧粉体の形成は阻止され、緻密な成膜体が形成されることになる。 基板入射角度の極大、あるいは極小値としてどの領域を選定する力、換言すると、ェ ツチング効果のみが発現する基板入射角度を選定するか、あるいはエッチング効果 が顕在化する基板入射角度を選定するかは、原料微粒子の種類、あるいは圧粉体 の生じ易さによって適宜選定されるべきものである。  Thus, by rotating the substrate during film formation, the substrate incident angle of the raw material fine particles 13 is changed, and the state in which film deposition is preferentially performed and the etching effect becomes apparent or the etching is realized. By alternately repeating the state in which only the effect appears, the film is formed while removing the uncrushed raw material fine particles adhering to the surface of the film forming body or particles that are not sufficiently crushed. The film is blocked and a dense film is formed. Which region should be selected as the maximum or minimum value of the substrate incident angle, in other words, whether to select the substrate incident angle at which only the etching effect appears or the substrate incident angle at which the etching effect manifests It should be selected as appropriate depending on the type of raw material fine particles and the ease with which a green compact is produced.
[0028] 以下、実施例を用いて、本発明の実施の形態について、更に詳細に説明する。  Hereinafter, embodiments of the present invention will be described in more detail using examples.
比較例  Comparative example
[0029] 原料微粒子として平均粒径が 0. 7 μ mのアルミナ粒子を用い、搬送ガスとして空気 を用いて成膜した。ノズルのノズル開口は、 5nm X O. 3nmで、用いた基板は石英ガ ラスである。搬送ガス流量は、 4lZminで、このときノズルカゝら噴射されたアルミナ微 粒子の基板衝突速度は、共に 240mZsで、アルミナ微粒子の基板入射角度が 0度 の場合、その堆積速度は〜 5 μ mZminであった。 [0029] Alumina particles having an average particle size of 0.7 μm were used as the raw material fine particles, and air was used as the carrier gas. The nozzle opening of the nozzle is 5 nm X O. 3 nm, and the substrate used is quartz glass. The carrier gas flow rate is 4 lZmin. At this time, the fine alumina particles injected from the nozzle The substrate collision velocity of the particles was 240 mZs, and the deposition rate was ~ 5 μmZmin when the substrate incident angle of the alumina fine particles was 0 degree.
同条件下で成膜した結果、膜厚が 10 mを超えた辺りから圧粉体の形成が顕著に 認められ、 30 mを超える膜厚の成膜体は形成できな力つた。  As a result of film formation under the same conditions, the formation of green compacts was remarkably observed when the film thickness exceeded 10 m, and a film with a film thickness exceeding 30 m could not be formed.
実施例 1  Example 1
[0030] 比較例と同様、原料微粒子として平均粒径が 0. 7 μ mのアルミナ粒子を用い、搬 送ガスとして空気を用いて成膜した。ノズルのノズル開口は、 5nm X O. 3nmで、用 いた基板は石英ガラスである。搬送ガス流量は、 4lZminで、このときノズルカゝら噴射 されたアルミナ微粒子の基板衝突速度は 240mZsで、アルミナ微粒子の基板入射 角度が 0度の場合、その堆積速度は〜 5 /z mZminで、同角度が 25度の場合は〜 4 μ mZ minであつに。  [0030] As in the comparative example, film formation was performed using alumina particles having an average particle size of 0.7 μm as the raw material fine particles and air as the transport gas. The nozzle opening of the nozzle is 5 nm X O. 3 nm, and the substrate used is quartz glass. When the carrier gas flow rate is 4 lZmin, the substrate collision speed of the alumina fine particles injected from the nozzle cap at this time is 240 mZs, and when the substrate incident angle of alumina fine particles is 0 degree, the deposition rate is ~ 5 / z mZmin. When the angle is 25 degrees, it is ~ 4 μmZ min.
[0031] 成膜開始時の基板入射角度を 0度に設定し、図 2aに示した態様で基板入射角度 を変化させた。すなわち、基板入射角度を 0度に保持して、 2分間成膜した後、基板 入射角度を 25度に設定して同様に 2分間成膜し、その後基板入射角度を再び 0度 に設定して 2分間成膜する、と云うサイクルを繰り返して、 40 m厚のアルミナ成膜体 を形成した。なお、入射角度を変化させるのに要した時間は約 10秒であった。  [0031] The substrate incident angle at the start of film formation was set to 0 degree, and the substrate incident angle was changed in the manner shown in Fig. 2a. That is, the substrate incident angle is kept at 0 degree, the film is formed for 2 minutes, the substrate incident angle is set to 25 degrees, the film is formed in the same manner for 2 minutes, and then the substrate incident angle is again set to 0 degree. By repeating the cycle of film formation for 2 minutes, a 40 m-thick alumina film was formed. The time required to change the incident angle was about 10 seconds.
実施例 2  Example 2
[0032] 実施例 1と同様の条件で 40 μ m厚のアルミナ成膜体を形成した。ただし、基板入射 角度は、図 2bに示したように、正弦波状に変化させた。振幅は 30度 (この場合の堆 積速度は〜 3 μ mZminであった)で周期は 3分であった。  [0032] A 40 μm-thick alumina film was formed under the same conditions as in Example 1. However, the substrate incident angle was changed to a sine wave as shown in Fig. 2b. The amplitude was 30 degrees (in this case the deposition rate was ~ 3 μmZmin) and the period was 3 minutes.
産業上の利用可能性  Industrial applicability
[0033] 本発明により成る成膜方法は、 AD法を用いて、 30 μ mを超える厚さの成膜体を安 定に製造する上で有用であり、係る成膜体を用いた部品、材料に係る産業分野にお いて利用可能である。 [0033] The film forming method according to the present invention is useful for stably producing a film-forming body having a thickness of more than 30 μm by using the AD method, and a component using the film-forming body, It can be used in industrial fields related to materials.
図面の簡単な説明  Brief Description of Drawings
[0034] [図 1]成膜時の基板入射角度の変化の様子を模式的に示した図である。 [0034] FIG. 1 is a diagram schematically showing a change in the substrate incident angle during film formation.
[図 2]成膜時間と基板入射角度との関係を示す模式図である。 圆 3]基板入射角度を説明するための模式図である。 FIG. 2 is a schematic diagram showing a relationship between a film formation time and a substrate incident angle. 圆 3] It is a schematic diagram for explaining the substrate incident angle.
[図 4]成膜体の膜厚と基板入射角度との関係を示す図である。  FIG. 4 is a diagram showing a relationship between a film thickness of a film-formed body and a substrate incident angle.
圆 5]膜厚減少量と基板入射角度との関係を示す図である。 [5] FIG. 5 is a diagram showing the relationship between the film thickness reduction amount and the substrate incident angle.
圆 6]AD法を用いた成膜装置の基本構成を示した概略図である。 [6] It is a schematic diagram showing the basic configuration of a film forming apparatus using the AD method.
圆 7]AD法で形成した試料の断面組織を模式的に示した概略図である。 [7] A schematic view schematically showing a cross-sectional structure of a sample formed by the AD method.
[図 8]原料微粒子の基板衝突によって発生する圧力と成膜体層及び圧粉体層に発 生する歪みとの関係を模式的に示した図である  FIG. 8 is a diagram schematically showing the relationship between the pressure generated by substrate collision of raw material fine particles and the strain generated in the film formation layer and the green compact layer.
符号の説明 Explanation of symbols
11 ノズル  11 nozzles
13 ノズルから噴射される原料微粒子  13 Raw material fine particles injected from the nozzle
31 基板  31 Board
32 成膜された膜  32 Deposited film
33 ノズル  33 nozzles
34 ノズル開口咅  34 Nozzle opening
35 ノズル開口部 44が噴射された原料微粒子  35 Raw material fine particles injected from nozzle opening 44
36 成膜体の形状  36 Shape of film formation
37 等膜厚線  37 equal film thickness
61 被成膜基板  61 Deposition substrate
62 XYステージ  62 XY stage
63 ノズル  63 nozzles
64 成膜チャンバ  64 Deposition chamber
65 分級器  65 classifier
66 エアロゾル発生器  66 aerosol generator
67 高圧ガス供給源  67 High-pressure gas supply source
68 マスフロー制御器  68 Mass flow controller
69 パイプライン  69 Pipeline
71 基板  71 board
72 成膜体層 圧粉体層 72 Deposition layer Green compact layer
最も膜厚の厚 ヽ点を基板に投影した点 Thickness of the most film thickness Point projected on the substrate

Claims

請求の範囲 The scope of the claims
[1] 原料微粒子を搬送ガスと混合してエアロゾル化し、該搬送ガスと共に、原料微粒子 をノズルを通して加速して被堆積基板表面に向けて噴射せしめることにより減圧チヤ ンバ内で成膜体を形成するエアロゾルデポジション法であって、該ノズルから噴射さ れた原料微粒子の該被堆積基板の被堆積表面への基板入射角度を、略 0度から、 エッチング効果が顕在化する基板入射角度とエッチング効果のみが発現する基板入 射角度との間の範囲における任意の角度まで、変化させつつ成膜することを特徴と するエアロゾルデポジション法による成膜体の製造方法。  [1] The raw material fine particles are mixed with a carrier gas to form an aerosol, and together with the carrier gas, the raw material fine particles are accelerated through a nozzle and sprayed toward the surface of the substrate to be deposited to form a film body in a vacuum chamber. In the aerosol deposition method, the substrate incident angle of the raw material fine particles ejected from the nozzle to the deposition surface of the deposition substrate is set from approximately 0 degrees, and the substrate incidence angle and the etching effect at which the etching effect becomes apparent. A method for producing a film-deposited body by an aerosol deposition method, characterized in that the film is formed while being changed to an arbitrary angle in a range between the substrate incident angle where only the substrate appears.
[2] 該基板入射角度の変化が連続的かつ周期的であることを特徴とする請求項 1記載 のエアロゾルデポジション法による成膜体の製造方法。  2. The method for producing a film-formed body by the aerosol deposition method according to claim 1, wherein the change in the substrate incident angle is continuous and periodic.
[3] 該基板入射角度の変化が間歇的かつ周期的であることを特徴とする請求項 1記載 のエアロゾルデポジション法による成膜体の製造方法。  [3] The method for producing a film-formed body by the aerosol deposition method according to [1], wherein the change in the substrate incident angle is intermittent and periodic.
PCT/JP2007/054789 2006-03-13 2007-03-12 Method for fabricating film-formed body by aerosol deposition WO2007105674A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006068420A JP2009132944A (en) 2006-03-13 2006-03-13 Method for forming film-deposited body by aerosol deposition method
JP2006-068420 2006-03-13

Publications (1)

Publication Number Publication Date
WO2007105674A1 true WO2007105674A1 (en) 2007-09-20

Family

ID=38509495

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/054789 WO2007105674A1 (en) 2006-03-13 2007-03-12 Method for fabricating film-formed body by aerosol deposition

Country Status (3)

Country Link
JP (1) JP2009132944A (en)
TW (1) TW200741032A (en)
WO (1) WO2007105674A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012060309A1 (en) 2010-11-02 2012-05-10 日本碍子株式会社 Crystal production method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001003180A (en) * 1999-04-23 2001-01-09 Agency Of Ind Science & Technol Low temperature forming method of superfine particle molding of brittle material
JP2001038274A (en) * 1999-05-21 2001-02-13 Agency Of Ind Science & Technol Method for leveled film formation of superfine particle material
JP2005076104A (en) * 2003-09-02 2005-03-24 Toto Ltd Manufacturing device of composite structure

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001003180A (en) * 1999-04-23 2001-01-09 Agency Of Ind Science & Technol Low temperature forming method of superfine particle molding of brittle material
JP2001038274A (en) * 1999-05-21 2001-02-13 Agency Of Ind Science & Technol Method for leveled film formation of superfine particle material
JP2005076104A (en) * 2003-09-02 2005-03-24 Toto Ltd Manufacturing device of composite structure

Also Published As

Publication number Publication date
JP2009132944A (en) 2009-06-18
TW200741032A (en) 2007-11-01

Similar Documents

Publication Publication Date Title
KR101110371B1 (en) Plasma resistant crystal ceramic coating film and manufacturing method of the same
WO2010128572A1 (en) Method for forming zirconia film
US9180519B2 (en) Three-dimensional nanostructures and method for fabricating the same
KR20100011576A (en) Plasma-resistant ceramic coated substrate
WO2008038583A1 (en) Cmp conditioner and process for producing the same
Naoe et al. Effect of process for producing Al2O3 particles on deposition efficiency in aerosol deposition method
JP5273700B2 (en) Photocatalytic titanium oxide film and method for producing the same
JP5909737B2 (en) Yttria film deposition method
WO2007105670A1 (en) Method for fabricating film-formed body by aerosol deposition
JP5649026B2 (en) Method for forming zirconia film
KR101043588B1 (en) Method Of Forming Ceramic Coating Layer having the Resistant Plasma
WO2007105674A1 (en) Method for fabricating film-formed body by aerosol deposition
JP2008111154A (en) Method for forming coating film
JP2003213451A (en) Method of fabricating composite structure
JP2007246943A (en) Method for making body having formed from brittle material by aerosol deposition method
JP2005279953A (en) Ceramic structure and its manufacturing method
JP5649028B2 (en) Method for forming zirconia film
KR101336755B1 (en) Thin film coating method of hard metal
JP2011084787A (en) Method for forming zirconia film
JP2003073855A (en) Method for making body having film formed from fine particle of brittle material at low temperature
JP5561743B2 (en) Brittle material fine particle film
KR20190060495A (en) Vacuum suspension plasma spray aparattus and vacuum suspension plasma spray method
JP2002194560A (en) Method for forming brittle material structure at low temperature
Azarmi et al. Fabrication of Ceramic Coatings by Cold-Spraying agglomerated Y2O3 particles
KR20080065079A (en) Synthesis of thin film of tube type materials and products thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07738261

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07738261

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP