WO2007105428A1 - Plasma generation device nozzle, plasma generation device, plasma surface treatment device, plasma generation method, and plasma surface treatment method - Google Patents

Plasma generation device nozzle, plasma generation device, plasma surface treatment device, plasma generation method, and plasma surface treatment method Download PDF

Info

Publication number
WO2007105428A1
WO2007105428A1 PCT/JP2007/053117 JP2007053117W WO2007105428A1 WO 2007105428 A1 WO2007105428 A1 WO 2007105428A1 JP 2007053117 W JP2007053117 W JP 2007053117W WO 2007105428 A1 WO2007105428 A1 WO 2007105428A1
Authority
WO
WIPO (PCT)
Prior art keywords
plasma
gas
dielectric cylinder
nozzle
electrode
Prior art date
Application number
PCT/JP2007/053117
Other languages
French (fr)
Japanese (ja)
Inventor
Shin-Ichi Kuroda
Masaru Ikeda
Original Assignee
National University Corporation Gunma University
Daikyo Seiko, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National University Corporation Gunma University, Daikyo Seiko, Ltd. filed Critical National University Corporation Gunma University
Priority to JP2008505018A priority Critical patent/JP4953255B2/en
Publication of WO2007105428A1 publication Critical patent/WO2007105428A1/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/2406Generating plasma using dielectric barrier discharges, i.e. with a dielectric interposed between the electrodes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/513Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using plasma jets
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/2406Generating plasma using dielectric barrier discharges, i.e. with a dielectric interposed between the electrodes
    • H05H1/2431Generating plasma using dielectric barrier discharges, i.e. with a dielectric interposed between the electrodes using cylindrical electrodes, e.g. rotary drums
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/32Plasma torches using an arc
    • H05H1/34Details, e.g. electrodes, nozzles
    • H05H1/3478Geometrical details

Definitions

  • the present invention can generate a stable plasma under atmospheric pressure and a low light temperature atmosphere, and can be applied to the surface regardless of the shape and size of the target substance.
  • the present invention relates to a nozzle for a plasma generation apparatus, a plasma generation apparatus, a plasma surface treatment apparatus, a plasma generation method, and a plasma surface treatment method that enable a modification process and a film formation process.
  • chemical treatment and low-pressure plasma treatment are known as surface treatment techniques such as etching of a solid surface or hydrophilization or hydrophobization of a solid surface.
  • chemical treatment chemical substances that are harmful to the human body are often used in large quantities, and post-treatment of these chemical substances is not easy, and the negative effects on the environment are often large.
  • low-pressure plasma treatment has less adverse effects on the human body than chemical treatment, and has relatively little adverse effect on the environment. Moreover, post-treatment of chemical substances is unnecessary or extremely easy.
  • the low-pressure plasma treatment has the advantage that a good surface state and surface properties can be realized. Specifically, the film formation technology using this is widely used as “low-pressure plasma CVD”.
  • Low-pressure plasma CVD are known. However, since low-pressure plasma processing is generally performed under a low-pressure vacuum condition of a few Torr or less, a large-scale vacuum device is required to perform this industrially, resulting in high equipment costs and processing costs. Become.
  • low-pressure plasma treatment is performed under vacuum is that when the pressure is near 100 Torr, the discharge starts to concentrate at one point, and near atmospheric pressure, it shifts to sparks and arc discharge, and the target substance is evenly distributed. This is because it cannot be processed. Also, conventional low-pressure plasma processing is not easy to perform discharge processing efficiently and with high productivity.
  • a corona discharge device uses a pointed discharge electrode, and gas can be turned into plasma by applying a direct high voltage.
  • an electrode is formed inside the surface of an inorganic substance such as ceramic.
  • the gas on the ceramic surface can be turned into plasma by applying an AC electric field.
  • this parallel plate type electrode is not suitable for mass processing or continuous processing because the shape and size of the material that can be processed is limited.
  • it eliminates the drawbacks of parallel plate electrodes, has fewer restrictions due to the shape and size of the material to be treated, and is uniformly low-temperature plasma with a relatively low applied voltage.
  • As a method of generating the plasma it is also considered that the plasma is ejected by a so-called torch type device.
  • a metal tube is used as the electrode, an inclined surface is formed with the edge of the injection port cut out, a voltage is applied to the metal tube electrode, and the gas supplied to the inside is cooled.
  • a technique for generating plasma and ejecting it from an injection port has been proposed (see Japanese Patent Application Laid-Open No. Hei 6-100825 7 (Patent No. 3 2 0 7 4 6 9)).
  • the target material in order to prevent the occurrence of arc discharge, the target material must be placed on the dielectric, and there are limitations on the surface treatment process, and the capacitor between the high-voltage electrode and the power supply is limited. Need to be connected in series.
  • the tip of the metal tube electrode is sharp, it is not suitable for a large area processing target, and cannot be used practically without a multiple structure.
  • the object of the present invention is to generate a stable plasma under atmospheric pressure and in a low temperature atmosphere, and without being restricted by the shape and size of the target substance, surface treatment (surface modification) in any place. It is an object of the present invention to provide a nozzle for a plasma generator, a plasma generator, a plasma surface treatment apparatus, a plasma generation method, and a plasma surface treatment method.
  • the gist of the nozzle for a plasma generator of the present invention is (1) to (5).
  • a nozzle for a plasma generator in which an outer electrode is formed on the outer peripheral surface of the dielectric cylinder and an inner electrode is formed on the inner peripheral surface in a tubular shape, and the outer electrode is on the tip side of the dielectric cylinder It is formed with a short width along the circumference of
  • the internal electrode is formed over almost the entire inner peripheral surface of the dielectric cylinder,
  • Nozzle for plasma generator characterized by
  • An electrode non-formation region is formed on the outer peripheral surface and / or the inner peripheral surface of the plasma injection port of the dielectric cylinder. .
  • a plasma generator nozzle in which an inner gas flow pipe is disposed coaxially with the dielectric cylinder in the dielectric cylinder,
  • the first gas flows between the inner peripheral surface of the dielectric cylinder and the outer peripheral surface of the internal gas flow pipe, and the second gas flows in the internal gas flow pipe.
  • the gist of the plasma generator of the present invention is (6) to (8).
  • a plasma generator comprising the nozzle for a plasma generator according to any one of (1) to (5),
  • An inert gas or a mixed gas of an inert gas and a reactive gas is circulated through the dielectric cylinder.
  • a plasma generator comprising the nozzle for a plasma generator according to (5),
  • the first gas is an inert gas or a mixed gas of an inert gas and a reactive gas
  • the second gas is a reactive gas, an inert gas, or a mixture of a reactive gas and an inert gas.
  • a plasma generator characterized by gas.
  • the gist of the surface treatment apparatus of the present invention is (9), (10).
  • a plasma surface treatment apparatus characterized in that the surface of an object is modified by non-polymerizable gas plasma.
  • a plasma surface treatment apparatus that performs film formation on the target surface by C V D.
  • the film forming process referred to in the present application is a concept including a modification process for the surface of the solid substance and the film itself generated by the low temperature plasma coming into contact with the surface of the solid substance during the film forming process.
  • the gist of the plasma generation method of the present invention is (1 1) and (1 2).
  • a plasma generating method using a nozzle for a plasma generator in which an outer electrode is formed on the outer peripheral surface of a dielectric cylinder and an inner electrode is formed in a tubular shape on the inner peripheral surface,
  • a plasma generating method comprising: generating plasma inside the dielectric cylinder at atmospheric pressure and low temperature, and discharging the jetted plasma from a plasma outlet of the dielectric cylinder.
  • the first gas is circulated between the inner peripheral surface of the dielectric cylinder and the outer peripheral surface of the internal gas flow pipe, the second gas is circulated during the gas introduction, and at atmospheric pressure and low temperature,
  • a plasma generation method characterized in that plasma is generated inside a dielectric cylinder, and the plasma that has been jetted is discharged from a plasma outlet of the dielectric cylinder.
  • the gist of the plasma surface treatment method of the present invention is (1 3) and (14).
  • (1 3) A surface treatment method to which the plasma generation method described in (1 1) or (1 2) is applied,
  • a plasma surface treatment method characterized in that a film is formed on a target surface by C V D.
  • FIG. 1 is an explanatory view showing a first embodiment of a nozzle for a plasma generator of the present invention and a plasma generator (plasma surface treatment apparatus) equipped with the nozzle, wherein (A) shows an inner electrode of a dielectric cylinder. The figure shows an example where the inner electrode is formed over the entire area up to the opening of the gas inlet tube. (.B) is the force that the internal electrode does not reach the opening of the gas inlet tube on the inner peripheral surface of the dielectric cylinder. It is a figure which shows the example formed over substantially the whole region.
  • Fig. 2 Nozzle for plasma generator of the present invention and plasma generation equipped with this nozzle
  • Fig. 3 is an illustration of the tip of a nozzle for a plasma generator.
  • Figure 4 (A) and (B) are diagrams showing how the nozzle for the plasma generator is used.
  • stable plasma can be generated under atmospheric pressure and in a low temperature atmosphere.
  • the plasma generated by the nozzle for the plasma generator of the present invention, the plasma generator equipped with this nozzle, and the plasma surface treatment apparatus is essentially different from the high temperature plasma by arc discharge, and is under atmospheric pressure and low temperature. It is a plasma that can be generated as a glow discharge or a silent discharge, and is called “low temperature plasma j” for high temperature plasma.
  • the plasma generator nozzle 1 used in the plasma generator 100 has an outer electrode 2 on the outer peripheral surface 1 1 1 of a dielectric cylinder 1 1 through which gas flows. 1 has an inner electrode 1 1 2 and an inner electrode 2 2 formed in a tubular shape.
  • the plasma generator 100 can also be used as a plasma surface treatment apparatus.
  • the plasma generating apparatus including those that can be used as the plasma surface processing apparatus is referred to.
  • the internal electrode 2 2 is formed over almost the entire inner peripheral surface of the dielectric cylinder 11, and the electrode non-forming region R is formed on the outer peripheral surface and the inner peripheral surface of the plasma injection port 1 1 3 of the dielectric cylinder 1 1. 1, R 2 is formed.
  • the outer electrode 2 1 and the inner electrode 2 2 are formed in close contact with the dielectric cylinder 1 1.
  • the position of the external electrode 2 1 relative to the internal electrode 2 2 may be fixed or configured to be movable in the axial direction.
  • the internal electrode may also be configured to be movable in the axial direction.
  • the external electrode 2 1 and the internal electrode 2 2 are connected to a high-frequency power source 4 1, and one of them (the external electrode 2 1 in this embodiment) is grounded.
  • a mixed gas G 0 of an inert gas and a reactive substance is circulated through the gas introduction pipe 5 1 in the dielectric cylinder 11, and by applying a high frequency repetitive pulse voltage from the high frequency power source 4 1, Gas injection port 1 1 3 side of electrode 2 2 has a high electric field (indicated by HEF), and low temperature plasma (plasma jet PSMJ) generated under atmospheric pressure is ejected from gas injection port 1 1 3 to form a film
  • a deposit S containing a reactive substance as a constituent is generated along with the ejection of a low temperature plasma (PSMJ).
  • the dielectric cylinder 11 is not limited to a cylindrical shape, and may be a rectangular cylinder, for example.
  • the plasma generating nozzle 1 used in the plasma generating apparatus 200 of the second embodiment has an internal gas in the dielectric cylinder 11 of the plasma generating nozzle 1 of FIG.
  • the flow pipe 3 1 is arranged coaxially with the dielectric cylinder 1 1.
  • the first gas G 1 circulates between the inner peripheral surface of the dielectric cylinder 1 1 and the outer peripheral surface of the internal gas distribution pipe 3 1 through the gas introduction pipe 5 1, and the gas introduction pipe into the internal gas distribution pipe 3 1.
  • the second gas G 2 is distributed through 5 2.
  • the first gas G 1 is an inert gas or a mixed gas of an inert gas and a reactive gas
  • the second gas G 2 is a reactive gas. It is a gas, an inert gas, or a mixed gas of a reactive gas and an inert gas.
  • the plasma injection port 1 1 3 side of the internal electrode 2 2 becomes a high electric field (indicated by HEF).
  • the low-temperature plasma (plasma jet PSMJ) generated under atmospheric pressure is ejected from the mouth 1 1 3, and during the film formation process, the deposition of reactive substances as constituents is accompanied by the ejection of the low-temperature plasma (PSMJ).
  • Object S is generated.
  • the plasma generated in the present invention is plasma obtained by dielectric barrier discharge or atmospheric pressure glow discharge.
  • the collision frequency between particles is extremely high, so that the electric energy injected into the plasma is easily converted to thermal energy through various collision processes.
  • the ultimate state is the thermal plasma state.
  • the generated sparks progress to arcs, resulting in a plasma temperature of tens of thousands. Reach C.
  • the streamer can be widely dispersed in the air.
  • the streamer can be spaced at a time interval of 1 to 1 ns. Randomly appears and disappears.
  • low-temperature plasma under atmospheric pressure is extremely heat-induced, and forms a low-temperature state by cutting off electric energy before it progresses. is doing. Therefore, this atmospheric pressure low temperature plasma is achieved by forming a transient continuous pulse discharge by applying a high frequency pulse voltage and inserting a dielectric, and the generated plasma is a pulsed plasma.
  • polymer materials such as silicone resin (including silicone rubber) and various ceramics such as glass can be used.
  • the external electrode 21 and the internal electrode 22 can be made of copper, aluminum, nickel, or other various metals. Regarding the arrangement of these electrodes, various methods such as crimping, bonding, plating, screwing, and fastening can be employed.
  • the dielectric cylinder 11 changes its electrostatic capacity depending on its dielectric constant and thickness, and the appropriate frequency changes accordingly. However, it is preferable that the dielectric breakdown voltage is sufficiently high.
  • the relative position is adjusted appropriately regardless of the arrangement illustrated in FIGS. It is possible.
  • the tips of the outer electrode 2 1 and the inner electrode 2 2 are not formed at a position protruding from the tip of the plasma injection port 1 13 (the tip of the dielectric cylinder 11). This is effective to prevent transition to abnormal discharge such as streamers.
  • the material of the dielectric cylinder 11 is silicon
  • the width of the external electrode 21 is 10 mm
  • the frequency of the high-frequency power supply is 67.3 kHz
  • H e Flow rate is 17 liters / minute
  • external electrode 21 is the ground electrode
  • electrode non-formation part R1 of internal electrode 21 and electrode of internal electrode 22 The length of the non-formed part R 2, that is, the most appropriate relative position of both electrodes was searched.
  • the tip position PO of the internal electrode 1 1 2 was set to “0”
  • the injection direction was set to [+]
  • the opposite direction was set to [1].
  • the position P 1 of the plasma injection port 1 1 3 of the dielectric cylinder 1 1 is 5 mm, 1 O mm, 3 O mm, and the tip position P 2 of the external electrode 2 1 is 0 mm, 15 mm.
  • the position of the dielectric cylinder 11 was stable at 10 mm than 5 mm, and the plasma etch PSMJ was generated for a long time, but it should not be too long as 30 mm. I understood.
  • the position P 2 of the external electrode 21 was the longest plasma jet P S M J when it was 15 mm, and was stably generated.
  • the conditions are such that a stable and long-time plasma jet P S M J can be obtained when the dielectric position P 1 is 10 mm and the external electrode position P 2 is ⁇ 5 mm. That is, the preferred lengths of the electrode non-formation regions R 1 and R 2 of the internal electrode 2 2 and the external electrode 2 1 are 10 mm and 15 mm, respectively.
  • R1 is preferably 5 to 20 mm, and R2 is preferably 5 to 30 mm.
  • inert gas such as helium and argon for plasma generation, and reactive gas that is plasma-excited for surface treatment of solid substances are circulated. Then, let the above open end be the injection port 1 1 3 so that the atmospheric low temperature plasma is ejected from this injection port.
  • a high-frequency pulse voltage is applied to, for example, either the external electrode 21 or the internal electrode 22, and the other electrode is grounded.
  • a high-frequency pulse wave is applied between the external electrode 2 1 and the internal electrode 2 2 with the external electrode 2 1 as a ground electrode.
  • the high-frequency power supply can apply a high-frequency pulse of 1 to 10 kHz or higher, and there is no particular limitation on the pulse waveform, but a repetitive pulse voltage with a sharp rise and fall can be applied. Then, plasma can be generated efficiently.
  • 'Voltage varies depending on the type and flow velocity of the plasma gas, and the material and thickness of the dielectric cylinder 11 above. Usually, it can be considered to be in the range of about S k VZmm to tens of k VZmm. An appropriate value is also determined for the frequency depending on the type of plasma gas, but for example, a range of 5 to 100 kHz higher than the frequency of general corona discharge is considered. Approximately 1 0 k H Z or more frequencies are considered to be preferred in the examples below.
  • helium is mainly used, but in addition to helium, argon, nitrogen, etc. can be used, and these are mixed with oxygen, other reactive gases, etc. Also good.
  • argon and a mixed gas of argon and nitrogen are preferable because the gas cost can be reduced.
  • the linear velocity of the inert gas is also considered appropriate due to the relationship with various operating conditions.
  • the force from 1900 cm per second to 5300 cm The generation of plasma jets has been confirmed in the linear velocity range, and a suitable range thereof is, for example, in the range of 3 80 cm to 760 cm per second in the examples described later.
  • the non-polymerizable gas that generates plasma is supplied inside the internal electrode 22 or inside the internal gas flow pipe 31. Alternatively, both are distributed and supplied into the plasma.
  • non-polymerization gases include inert gases such as helium and argon (which are also used as plasma generation gases), hydrogen, oxygen, nitrogen, water, ammonia, Reactive gas such as tetrafluoromethane, or it A gas in which these are mixed can be used.
  • a single inert gas such as helium may be circulated, or a mixed gas of argon and nitrogen inside the internal electrode 22 and oxygen gas in the internal gas distribution pipe 3 1. You may distribute in combination, such as distributing.
  • a reactive substance that is a raw material of the material to be formed is placed inside the internal electrode 22, or inside the collar gas flow pipe 3 1, or its Both are circulated and supplied into the plasma.
  • the reactive substances include organic compounds having radical polymerizability such as methyl methacrylate, general organic compounds such as benzene, and hexamethyl.
  • An organometallic compound such as disiloxane can be used.
  • a reactive gas such as oxygen may be circulated simultaneously as a compound for assisting the film forming reaction. By doing so, it is possible to modify the surface of the solid substance (film forming substance) and the generated substance itself, and it is possible to improve the adhesive strength of the film and to adjust the properties of the generated film It becomes.
  • the nozzle part can be handled as a part or member, and it can be considered that it can be hand-held.
  • a hand-held movable plasma generator it is possible to perform surface treatment of various types and shapes of objects with low-temperature plasma jets, both indoors and outdoors, at atmospheric pressure.
  • a high-frequency power source is connected to the plasma torch by a conductive wire, and a gas supply source (for example, a gas cylinder) is connected to the plasma torch by a gas supply hose, so that an operator can adjust the supply pressure and flow rate.
  • a plasma jet can be generated with the supplied gas, and the surface treatment can be performed on the object to be processed by the plasma jet.
  • the surface treatment of the solid substance can be performed with the low temperature plasma generated by the plasma generator of the present invention.
  • the most representative method is to perform surface treatment by injecting low-temperature plasma ejected from the ejection port onto the surface of the solid material.
  • surface treatment of a larger area can be efficiently performed.
  • Such assembly or combination is possible in various forms by insulating and protecting the external electrode 21 described above.
  • the reactive gas not only the reactive gas but also solid particles are supplied along with the supply and distribution of the gas, surface treatment is performed in plasma, and solid particles or droplets are supplied. Therefore, it can be considered to be used as a reactive material.
  • Example 1 In the plasma generator 100 shown in FIGS. 1 and 2, a silicon cone tube (outer diameter: 10 mm, inner diameter: 6 mm) was used as the dielectric cylinder 11. Also, stainless steel is used as the external electrode 21 and the internal electrode 22, and helium flows into the gas introduction pipe 51 as a flow gas for plasma generation, and the reactants As a result, a mixed gas of hexamethyldisiloxane and argon was used.
  • the external electrode 2 1 was used as a ground electrode, and a high-frequency voltage (67.3 KHz, 5 kV) was applied between the external electrode 2 1 and the internal electrode 2 2.
  • a high-frequency voltage (67.3 KHz, 5 kV) was applied between the external electrode 2 1 and the internal electrode 2 2.
  • the periphery of the plasma generator is open to the atmosphere
  • the length of the electrode non-formation region of the internal electrode is 15 mm
  • the length of the electrode non-formation region of the external electrode is 1 O mm
  • the width of the conductor was 2 O mm.
  • Stable plasma flow was generated by controlling the appropriate discharge voltage in the electrode non-formation region of the internal electrode and external electrode, and the film was injected onto the substrate for film formation.
  • Example 2 In the same manner as in Example 1, argon was used as the flow gas for plasma generation, and methyl methacrylate was used as the reactive gas. As a result of FT-IR measurement of the resulting film, it was found that the film component was a rosin-like compound very similar to methyl polymethyl methacrylate formed by radical polymerization.
  • Example 2 In the same manner as in Example 1, argon was used as a flow gas for plasma generation, and a mixed gas of tetramethoxysilane and oxygen was used as a reactive gas.
  • the obtained film was a hard inorganic substance very similar to silicon dioxide.
  • Example 2 In the same manner as in Example 1, helium, a mixed gas of helium and argon, and a mixed gas of argon and nitrogen were used as the flow gas for plasma generation, and the contact angle was measured.
  • a high frequency voltage of 68 kHz and 6 kV was applied between the external electrode 2 1 and the internal electrode 2 2.
  • the surrounding area of the atmospheric pressure low temperature plasma generator is opened to the atmosphere, the length of the electrode non-formation region of the internal electrode is 10 mm, and the length of the electrode non-formation region of the external electrode is 10 mm.
  • the width of the conductor part of the external electrode was 2 O mm.
  • a stable plasma jet is generated by controlling the appropriate discharge voltage by the electrode non-formation regions R l and R 2 between the external electrode 21 and the internal electrode 22, and is applied to a polycarbonate (PC) substrate.
  • the surface was modified by injecting for 1 minute, and the contact angle with water was measured before and after the modification. The results are shown in Table 2. In either case, it can be seen that the contact angle of polycarbonate (PC) was significantly reduced and the surface became hydrophilic.
  • Table 2 Table 2
  • G 1 has an argon flow rate of 5 liters Z, a nitrogen flow rate of 0.1 liters of mixed gas, and G 2 has a flow rate of 0 2 0
  • hexamethyldisiloxane was used as a monomer.
  • the plasma C V D was applied to the olefin-based thermoplastic plate by applying a voltage of 6 kV and a frequency of 20 kHz to this [I.
  • the oxygen permeability of this sample was measured.
  • the oxygen permeability was measured in the same manner using a sample of the same polyolefin-based thermoplastic resin plate as in Example 5 that was not treated at all. As a result, as shown in Table 3, the oxygen permeability was significantly reduced. As a result, it was shown that a film having a barrier property against a gas under atmospheric pressure can be produced by this apparatus.
  • the dielectric was made of ceramics (barium carbonate, barium titanate powder sintered on the internal electrode).
  • a silicone rubber tube (thickness 2 mm), a Teflon (registered trademark) tube (thickness 1.5 mm), a polyethylene tube (thickness l mni), a bull chloride tube (thickness 1 mm) material was used.
  • Discharge was performed by applying a high voltage to the plasma generating nozzles made of each material.
  • the plasma generating nozzle using ceramics cracked due to thermal expansion when voltage was applied.
  • resins other than silicone rubber holes were formed in the dielectric or melted.
  • silicon rubber was used, no damage or temperature increase was observed even when the operation was continued for more than 2 hours, and plasma was generated stably.
  • silicone rubber is flexible, it has good adhesion to the internal electrode, and in order to match the size with the electrode like other materials, operations such as sintering and scraping the inside of the dielectric tube are also possible. It was not necessary, and it was very easy to create a nozzle for generating plasma.
  • Figure 4 shows how the nozzle for generating plasma is used.
  • Figure 4 (A) Figure 4 (B) shows the start of plasma irradiation, and Figure 4 (B) shows the end of plasma irradiation.
  • a plastic vial 51 is formed by plasma irradiation to improve gas barrier properties.

Abstract

Provided is a plasma generation device nozzle capable of performing a surface treatment (surface reforming, film formation, etc.) at an arbitrary position and range without being constricted by a shape or size of an object and a plasma generation device having the nozzle. A plasma generation device nozzle (1) has an external electrode (21) formed in a tube shape on an outer circumference of a dielectric cylinder (11) and an internal electrode (22) formed in a tube shape on the inner circumference of the dielectric cylinder (11). The external electrode (21) is formed in a tape shape having a predetermined width along the circumference of the tip end of the dielectric cylinder (11). The internal electrode (22) is formed almost entire internal circumferential surface of the dielectric cylinder (11).

Description

プラズマ発生装置用ノ ズル、 プラズマ発生装置、 プラズマ表面処 理装置、 プラズマ発生方法およびプラズマ表面処理方法  NOZZLE FOR PLASMA GENERATOR, PLASMA GENERATOR, PLASMA SURFACE TREATMENT DEVICE, PLASMA GENERATION METHOD, AND PLASMA SURFACE TREATMENT METHOD
技術分野 Technical field
本発明は、 大気圧下かつ低明温雰囲気下において安定したプラズマ を発生させることができ、 対象物質の形状や大きさによらず表面に 田  The present invention can generate a stable plasma under atmospheric pressure and a low light temperature atmosphere, and can be applied to the surface regardless of the shape and size of the target substance.
改質処理や成膜処理を可能とするプラズマ発生装置用ノズル、 ブラ ズマ発生装置、 プラズマ表面処理装置、 プラズマ発生方法およびプ ラズマ表面処理方法に関する。 The present invention relates to a nozzle for a plasma generation apparatus, a plasma generation apparatus, a plasma surface treatment apparatus, a plasma generation method, and a plasma surface treatment method that enable a modification process and a film formation process.
背景技術 Background art
従来、 固体表面のエッチング、 または固体表面の親水化や疎水化 等の表面処理技術と して、 薬品処理および低圧プラズマ処理が知ら れている。 薬品処理においては、 人体に有害な化学物質を大量に使 用する場合も多いうえ、 これら化学物質の後処理が容易ではなく、 また環境への悪影響が大きく なる場合が多い。  Conventionally, chemical treatment and low-pressure plasma treatment are known as surface treatment techniques such as etching of a solid surface or hydrophilization or hydrophobization of a solid surface. In chemical treatment, chemical substances that are harmful to the human body are often used in large quantities, and post-treatment of these chemical substances is not easy, and the negative effects on the environment are often large.
これに対し、 低圧プラズマ処理は、 薬品処理に比べて人体への悪 影響が少なく、 しかも環境への悪影響が比較的少なく 、 しかも化学 物質の後処理は不要であるか極めて容易である。 また、 低圧プラズ マ処理は、 良好な表面状態や表面性状を実現できるという利点をも 有しており、 これを利用した成膜技術は、 具体的には 「低圧プラズ マ C V D」 と して広く知られている。 しかし、 低圧プラズマ処理は、 一般には数 T o r r以下という低 圧の真空条件下で行われるため、 これを工業的に行うためには大型 の真空装置が必要となり、 設備費や処理コス トが高く なる。 On the other hand, low-pressure plasma treatment has less adverse effects on the human body than chemical treatment, and has relatively little adverse effect on the environment. Moreover, post-treatment of chemical substances is unnecessary or extremely easy. In addition, the low-pressure plasma treatment has the advantage that a good surface state and surface properties can be realized. Specifically, the film formation technology using this is widely used as “low-pressure plasma CVD”. Are known. However, since low-pressure plasma processing is generally performed under a low-pressure vacuum condition of a few Torr or less, a large-scale vacuum device is required to perform this industrially, resulting in high equipment costs and processing costs. Become.
低圧プラズマ処理が真空条件下で行われる理由は、 圧力が 1 0 0 T o r r 付近の条件になると放電が一点に集中しはじめ、 大気圧付 近では火花やアーク放電に移行し、 対象物質の均一処理ができない からである。 また、 従来の低圧プラズマ処理では、 効率的に高い生 産性で放電処理することが容易ではない。  The reason why low-pressure plasma treatment is performed under vacuum is that when the pressure is near 100 Torr, the discharge starts to concentrate at one point, and near atmospheric pressure, it shifts to sparks and arc discharge, and the target substance is evenly distributed. This is because it cannot be processed. Also, conventional low-pressure plasma processing is not easy to perform discharge processing efficiently and with high productivity.
このよ うなことから、 大気圧下で放電させる種々の技術が提案さ れている。 たとえば、 コロナ放電装置は、 尖端放電電極を用い、 直 流高電圧の印加によ り気体をプラズマ化させることができる し、 沿 面放電技術では、セラ ミ ック等の無機物表面の内部に電極を形成し、 交流電界の印加によ りセラミ ツク表面の気体をプラズマ化させるこ とができる。 これらは、 何れも極めて部分的な放電である。  For this reason, various technologies for discharging at atmospheric pressure have been proposed. For example, a corona discharge device uses a pointed discharge electrode, and gas can be turned into plasma by applying a direct high voltage. In the surface discharge technology, an electrode is formed inside the surface of an inorganic substance such as ceramic. The gas on the ceramic surface can be turned into plasma by applying an AC electric field. These are all extremely partial discharges.
これに対して、 均一な放電であるグロ一放電を大気圧下で発生さ せる技術も提案されている (特開平 5 — 1 5 5 6 0 5号公報, 特開 平 6 — 1 1 9 9 9 5号公報参照) 。 この技術では、 放電空間が極め て小さく、 放電が不安定である。 この不都合を解決するために、 大 気圧グロ一放電プラズマの特徴を生かし、 しかも比較的低い印加電 圧で均一な大気圧グロ一放電を発生させる、 平行平板型電極構造を 用いた各種の改善技術が提案されている。  On the other hand, techniques for generating a glow discharge, which is a uniform discharge, under atmospheric pressure have also been proposed (Japanese Patent Laid-Open Nos. 5-1556 and 5-1, 19-1999). 9 Refer to publication No. 5). With this technology, the discharge space is extremely small and the discharge is unstable. In order to solve this inconvenience, various improved technologies using a parallel plate electrode structure that makes use of the characteristics of atmospheric pressure glow discharge plasma and generates uniform atmospheric pressure glow discharge at a relatively low applied voltage. Has been proposed.
しかし、 この平行平板型電極では、 処理できる物質の形状や大き さが限定されてしま うため大量処理や連続処理には適さない。一方、 平行平板型電極の欠点を解消し、 処理対象物質の形状や大きさによ る制約が少なく、 しかも比較的低い印加電圧で均一な低温プラズマ を生成させる方法と して、 いわゆる トーチ型構造の装置によってプ ラズマを噴出させることも検討されている。 However, this parallel plate type electrode is not suitable for mass processing or continuous processing because the shape and size of the material that can be processed is limited. On the other hand, it eliminates the drawbacks of parallel plate electrodes, has fewer restrictions due to the shape and size of the material to be treated, and is uniformly low-temperature plasma with a relatively low applied voltage. As a method of generating the plasma, it is also considered that the plasma is ejected by a so-called torch type device.
たとえば、 電極と して金属管を用い、 その噴射口の端縁を切欠い た状態で傾斜面を形成し、 この金属管電極に電圧を印加して、 その 内部に供給したガスによ り低温プラズマを生成させて噴射口よ り噴 出させる技術が提案されている(特開平 6 — 1 0 8 2 5 7号公報(特 許第 3 2 0 7 4 6 9号) 参照) 。 この技術では、 アーク放電の発生 を防ぐために処理対象物質を誘電体上に載置しなければならず、 表 面処理のプロセスと して制約があり、 高電圧極と電源との間にコン デンサを直列に連結することが必要となる。 しかも、 金属管電極の 先端が鋭いため、 広い面積の処理対象には適しておらず、 多重構造 にしない実際上の使用ができない。  For example, a metal tube is used as the electrode, an inclined surface is formed with the edge of the injection port cut out, a voltage is applied to the metal tube electrode, and the gas supplied to the inside is cooled. A technique for generating plasma and ejecting it from an injection port has been proposed (see Japanese Patent Application Laid-Open No. Hei 6-100825 7 (Patent No. 3 2 0 7 4 6 9)). In this technology, in order to prevent the occurrence of arc discharge, the target material must be placed on the dielectric, and there are limitations on the surface treatment process, and the capacitor between the high-voltage electrode and the power supply is limited. Need to be connected in series. Moreover, since the tip of the metal tube electrode is sharp, it is not suitable for a large area processing target, and cannot be used practically without a multiple structure.
また、二つの同心円状電極の間の環状領域でプラズマを発生させ、 - 長寿命の準安定原子や反応活性種のプラズマ噴流を生成する技術も 提案されているが (特表 2 0 0 1 — 5 0 8 9 5 1号公報参照) 、 こ の技術では、 プラズマ噴流の温度が 3 0 0 °C程度の高温度となり、 融点やガラス転移点の低いポリマー等の表面処理ができないという 問題がある。  In addition, a technology has been proposed in which plasma is generated in the annular region between two concentric electrodes, and a plasma jet of long-lived metastable atoms and reactive species is generated (Special Table 2 0 0 1 — This technology has the problem that the temperature of the plasma jet is as high as 300 ° C, and surface treatment of polymers with low melting points and glass transition points is not possible. .
発明の開示  Disclosure of the invention
本発明の目的は、 大気圧下、 かつ低温雰囲気下において安定した プラズマを発生させることができ、 対象物質の形状や大きさによる 制約を受けることなく 、 任意の場所 . 範囲の表面処理 (表面改質処 理 ' 成膜処理等) が可能なプラズマ発生装置用ノズル、 プラズマ発 生装置、 プラズマ表面処理装置、 プラズマ発生方法およびプラズマ 表面処理方法を提供することにある。 本発明のプラズマ発生装置用ノズルは、 ( 1 ) 〜 ( 5 ) を要旨と する。 The object of the present invention is to generate a stable plasma under atmospheric pressure and in a low temperature atmosphere, and without being restricted by the shape and size of the target substance, surface treatment (surface modification) in any place. It is an object of the present invention to provide a nozzle for a plasma generator, a plasma generator, a plasma surface treatment apparatus, a plasma generation method, and a plasma surface treatment method. The gist of the nozzle for a plasma generator of the present invention is (1) to (5).
( 1 ) 誘電体筒の外周面に外部電極が、 内周面に内部電極がそれぞ れ管状に形成されてなるプラズマ発生装置用ノズルであって、 前記外部電極は前記誘電体筒の先端側の周に沿って短幅に形成さ れ、 .  (1) A nozzle for a plasma generator in which an outer electrode is formed on the outer peripheral surface of the dielectric cylinder and an inner electrode is formed on the inner peripheral surface in a tubular shape, and the outer electrode is on the tip side of the dielectric cylinder It is formed with a short width along the circumference of
前記内部電極は前記誘電体筒の内周面のほぼ全域にわたり形成さ れ、  The internal electrode is formed over almost the entire inner peripheral surface of the dielectric cylinder,
ていることを特徴とするプラズマ発生装置用ノ ズル。 Nozzle for plasma generator, characterized by
( 2 ) 前記誘電体筒のプラズマ噴射口の外周面および/または内周 面には電極非形成領域が形 . 成されていることを特徴とする ( 1 ) に記載のプラズマ発生装置用- ノズノレ。  (2) An electrode non-formation region is formed on the outer peripheral surface and / or the inner peripheral surface of the plasma injection port of the dielectric cylinder. .
( 3 ) 前記外部電極は、 前記内部電極に対する位置が固定され、 ま たは軸方向に移動可能に構成されていることを特徴とする ( 1 ) ま たは ( 2 ) に記載のプラズマ発生装置用ノズル。  (3) The plasma generator according to (1) or (2), wherein the position of the external electrode relative to the internal electrode is fixed or movable in the axial direction. Nozzle.
(4 ) 前記誘電体筒が柔軟性を有することを特徴とする ( 1 ) から ( 3 ) の何れかに記載のプラズマ発生装置用ノズル。  (4) The nozzle for a plasma generator according to any one of (1) to (3), wherein the dielectric cylinder has flexibility.
( 5 ) 前記誘電体筒内に内部ガス流通管が、 前記誘電体筒と同軸に 配置されてなるプラズマ発生装置用ノ ズルであって、  (5) A plasma generator nozzle in which an inner gas flow pipe is disposed coaxially with the dielectric cylinder in the dielectric cylinder,
前記誘電体筒の内周面と前記内部ガス流通管の外周面との間に第 1のガスが流通し、前記内部ガス流通管中に第 2のガスが流通する、 ことを特徴とする ( 1 ) から ( 4 ) の何れかに記載のプラズマ発生 装置用ノ ズル。 本発明のプラズマ発生装置は、 ( 6 ) 〜 ( 8 ) を要旨とする。 ( 6 ) ( 1 ) から ( 5 ) の何れかに記載のプラズマ発生装置用ノズ ルを備えたプラズマ発生装置であって、 The first gas flows between the inner peripheral surface of the dielectric cylinder and the outer peripheral surface of the internal gas flow pipe, and the second gas flows in the internal gas flow pipe. The nozzle for a plasma generator according to any one of 1) to (4). The gist of the plasma generator of the present invention is (6) to (8). (6) A plasma generator comprising the nozzle for a plasma generator according to any one of (1) to (5),
前記外部電極と前記内部電極との間に高周波電圧を印加する電源 を備え、  A power source for applying a high-frequency voltage between the external electrode and the internal electrode;
前記誘電体筒には、 不活性ガスまたは不活性ガスと反応性ガスと の混合ガスが流通されることを特徴とするプラズマ発生装置。  An inert gas or a mixed gas of an inert gas and a reactive gas is circulated through the dielectric cylinder.
( 7 ) ( 5 ) に記載のプラズマ発生装置用ノズルを備えたプラズマ 発生装置であって、  (7) A plasma generator comprising the nozzle for a plasma generator according to (5),
前記外部電極と前記内部電極との間に高周波電圧を印加する電源 を備え、  A power source for applying a high-frequency voltage between the external electrode and the internal electrode;
前記第 1のガスが、 不活性ガスまたは不活性ガスと反応性ガスと- の混合ガス、 前記第 2のガスが、 反応性ガス、 不活性ガス、 または 反応性ガスと不活性ガスとの混合ガスであることを特徴とするブラ ズマ発生装置。  The first gas is an inert gas or a mixed gas of an inert gas and a reactive gas, and the second gas is a reactive gas, an inert gas, or a mixture of a reactive gas and an inert gas. A plasma generator characterized by gas.
( 8 ) 前記プラズマ発生装置用ノズルが低温下、 またはさ らに大気 圧下におかれたことを特徴とする請求の ( 6 ) または ( 7 ) に記載 のプラズマ発生装置。  (8) The plasma generator according to (6) or (7), wherein the nozzle for the plasma generator is placed at a low temperature or under atmospheric pressure.
本発明の表面処理装置は、 ( 9 ) , ( 1 0 ) を要旨とする。  The gist of the surface treatment apparatus of the present invention is (9), (10).
( 9 ) ( 6 ) から ( 8 ) の何れかに記載のプラズマ発生装置を用い た表面処理装置であって、  (9) A surface treatment apparatus using the plasma generator according to any one of (6) to (8),
非重合性ガスプラズマによ り対象の表面に改質処理を行う ことを 特徴とするプラズマ表面処理装置。 ( 1 0 ) ( 7 ) から ( 9 ) の何れかに記載のプラズマ発生装置を用 いた表面処理装置であって、 A plasma surface treatment apparatus characterized in that the surface of an object is modified by non-polymerizable gas plasma. (10) A surface treatment apparatus using the plasma generator according to any one of (7) to (9),
C V Dにより対象の表面に成膜処理を行う ことを特徴とするブラ ズマ表面処理装置。  A plasma surface treatment apparatus that performs film formation on the target surface by C V D.
. なお、 本願でいう製膜処理は、 製膜処理時に低温プラズマが固体 物質表面に接触することによ り生ずる、 固体物質表面や生成する膜 自体の改質処理を含む概念である。 Note that the film forming process referred to in the present application is a concept including a modification process for the surface of the solid substance and the film itself generated by the low temperature plasma coming into contact with the surface of the solid substance during the film forming process.
本発明のプラズマ発生方法は、 ( 1 1 ) , ( 1 2 ) を要旨とする。 The gist of the plasma generation method of the present invention is (1 1) and (1 2).
( 1 1 ) 誘電体筒の外周面に外部電極が、 内周面に内部電極がそれ ぞれ管状に形成されてなるプラズマ発生装置用ノズルを用いたブラ ズマ発生方法であって、 (11) A plasma generating method using a nozzle for a plasma generator, in which an outer electrode is formed on the outer peripheral surface of a dielectric cylinder and an inner electrode is formed in a tubular shape on the inner peripheral surface,
大気圧かつ低温下において、 前記誘電体筒の内側にプラズマを生 成させ、 ジェッ ト化した前記プラズマを前記誘電体筒のブラズマ噴 出口から吐出させることを特徴とするプラズマ発生方法。  A plasma generating method, comprising: generating plasma inside the dielectric cylinder at atmospheric pressure and low temperature, and discharging the jetted plasma from a plasma outlet of the dielectric cylinder.
( 1 2 ) 前記誘電体筒内に内部ガス流通管が、 前記誘電体筒と同軸 に配置されてなるプラズマ発生装置用ノズルを用いたプラズマ発生 方法であって、  (1 2) A plasma generation method using a nozzle for a plasma generator in which an internal gas flow pipe is disposed coaxially with the dielectric cylinder in the dielectric cylinder,
前記誘電体筒の内周面と前記内部ガス流通管の外周面との間に第 1のガスを流通させ、 前記ガス導入中に第 2のガスを流通させ、 大気圧かつ低温下において、 前記誘電体筒の内側にプラズマを生 成させ、 ジエツ ト化した前記プラズマを前記誘電体筒のプラズマ噴 出口から吐出させることを特徴とするプラズマ発生方法。  The first gas is circulated between the inner peripheral surface of the dielectric cylinder and the outer peripheral surface of the internal gas flow pipe, the second gas is circulated during the gas introduction, and at atmospheric pressure and low temperature, A plasma generation method characterized in that plasma is generated inside a dielectric cylinder, and the plasma that has been jetted is discharged from a plasma outlet of the dielectric cylinder.
本発明のプラズマ表面処理方法は、 ( 1 3 ) , ( 1 4 ) を要旨と する。 ( 1 3 ) ( 1 1 ) または ( 1 2 ) に記載のプラズマ発生方法を適用 した表面処理方法であって、 The gist of the plasma surface treatment method of the present invention is (1 3) and (14). (1 3) A surface treatment method to which the plasma generation method described in (1 1) or (1 2) is applied,
非重合性ガスプラズマにより対象の表面に改質処理を行う ことを 特徴とするプラズマ表  A plasma table characterized in that the surface of the target is modified by non-polymerizable gas plasma.
面処理方法。 Surface treatment method.
( 1 4 ) ( 1 1 ) または ( 1 2 ) に記載のプラズマ発生方法を適用 した表面処理方法であって、  (14) A surface treatment method to which the plasma generation method described in (11) or (12) is applied,
C V Dにより対象の表面に成膜処理を行う ことを特徴とするプラ ズマ表面処理方法。. 図面の簡単な説明 .  A plasma surface treatment method characterized in that a film is formed on a target surface by C V D. Brief description of the drawings.
図 1 : 本発明のプラズマ発生装置用ノズルおよびこのノズルを備 えたプラズマ発生装置 (プラズマ表面処理装置) の第 1実施形態を- 示す説明図であり 、 (A) は内部電極が誘電体筒の内周面のガス導 入管の開口部に至る全域にわたり形成された例を示す図、 (.B ) は 内部電極が誘電体筒の内周面のガス導入管の開口部には達しない力 S、 ほぼ全域にわたり形成された例を示す図である。  FIG. 1 is an explanatory view showing a first embodiment of a nozzle for a plasma generator of the present invention and a plasma generator (plasma surface treatment apparatus) equipped with the nozzle, wherein (A) shows an inner electrode of a dielectric cylinder. The figure shows an example where the inner electrode is formed over the entire area up to the opening of the gas inlet tube. (.B) is the force that the internal electrode does not reach the opening of the gas inlet tube on the inner peripheral surface of the dielectric cylinder. It is a figure which shows the example formed over substantially the whole region.
図 2 : 本発明のプラズマ発生装置用ノズルおよびこのノ ズルを備 えたプラズマ発生  Fig. 2: Nozzle for plasma generator of the present invention and plasma generation equipped with this nozzle
装置(プラズマ表面処理装置)の第 2実施形態を示す説明図である。 It is explanatory drawing which shows 2nd Embodiment of an apparatus (plasma surface treatment apparatus).
図 3 : プラズマ発生装置用ノ ズルの先端の説明図である。  Fig. 3 is an illustration of the tip of a nozzle for a plasma generator.
図 4 : ( A) , (B ) はプラズマ発生装置用ノ ズルの使用態様を 示す図である。  Figure 4: (A) and (B) are diagrams showing how the nozzle for the plasma generator is used.
発明の効果 本発明によれば、 大気圧下、 かつ低温雰囲気下において安定した プラズマを発生させることができる。 The invention's effect According to the present invention, stable plasma can be generated under atmospheric pressure and in a low temperature atmosphere.
また、 対象物質の形状や大きさによる制約を受けることなく 、 任 意の場所 · 範囲の表面処理 (表面改質処理 · 成膜処理等) も可能と なる。 発明を実施するための最良の形態  In addition, surface treatment (surface modification treatment, film formation treatment, etc.) at any location and range is possible without being restricted by the shape and size of the target substance. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の実施形態を説明する。  Hereinafter, embodiments of the present invention will be described.
本発明のプラズマ発生装置用ノズル、 このノズルを備えたプラズ マ発生装置、 およびプラズマ表面処理装置において発生されるブラ ズマは、 アーク放電による高温プラズマとは本質的に異なり、 大気 圧、 低温下においてグロ一放電や無声放電と して生成が可能なブラ ズマであり、 高温プラズマに対して 「低温プラズマ j と呼ばれてい- る。  The plasma generated by the nozzle for the plasma generator of the present invention, the plasma generator equipped with this nozzle, and the plasma surface treatment apparatus is essentially different from the high temperature plasma by arc discharge, and is under atmospheric pressure and low temperature. It is a plasma that can be generated as a glow discharge or a silent discharge, and is called “low temperature plasma j” for high temperature plasma.
図 1に示すよ うに、 第 1実施形態のプラズマ発生装置 1 0 0に使 用されるプラズマ発生装置用ノズル 1 は、 ガスが流通する誘電体筒 1 1 の外周面 1 1 1 に外部電極 2 1が、 内周面 1 1 2に内部電極 2 2がそれぞれ管状に形成されている。 なお、 プラズマ発生装置 1 0 0はプラズマ表面処理装置と しても使用できる。 以下、 プラズマ表 面処理装置と して使用できるものも含めてプラズマ発生装置と称す る。  As shown in FIG. 1, the plasma generator nozzle 1 used in the plasma generator 100 according to the first embodiment has an outer electrode 2 on the outer peripheral surface 1 1 1 of a dielectric cylinder 1 1 through which gas flows. 1 has an inner electrode 1 1 2 and an inner electrode 2 2 formed in a tubular shape. The plasma generator 100 can also be used as a plasma surface treatment apparatus. Hereinafter, the plasma generating apparatus including those that can be used as the plasma surface processing apparatus is referred to.
内部電極 2 2は誘電体筒 1 1の内周面のほぼ全域にわたり形成さ れ、 誘電体筒 1 1 のプラズマ噴射口 1 1 3の外周面およびノまたは 内周面には電極非形成領域 R 1, R 2が形成されている。 外部電極 2 1 と内部電極 2 2 とは誘電体筒 1 1 に密着して形成さ れている。 外部電極 2 1 の内部電極 2 2に対する位置は固定され、 または軸方向に移動可能に構成されていてもよい。 また、 内部電極 も軸方向に移動可能に構成されていてもよい。 The internal electrode 2 2 is formed over almost the entire inner peripheral surface of the dielectric cylinder 11, and the electrode non-forming region R is formed on the outer peripheral surface and the inner peripheral surface of the plasma injection port 1 1 3 of the dielectric cylinder 1 1. 1, R 2 is formed. The outer electrode 2 1 and the inner electrode 2 2 are formed in close contact with the dielectric cylinder 1 1. The position of the external electrode 2 1 relative to the internal electrode 2 2 may be fixed or configured to be movable in the axial direction. The internal electrode may also be configured to be movable in the axial direction.
外部電極 2 1 と内部電極 2 2は高周波電源 4 1 に接続されており、 その一方 (本実施形態では外部電極 2 1 ) は接地されている。  The external electrode 2 1 and the internal electrode 2 2 are connected to a high-frequency power source 4 1, and one of them (the external electrode 2 1 in this embodiment) is grounded.
本実施形態では、 誘電体筒 1 1 にはガス導入管 5 1 を通して不活 性ガスと反応性物質との混合ガス G 0が流通され、 高周波電源 4 1 による高周波繰り返しパルス電圧の印加によって、 内部電極 2 2の ガス噴射口 1 1 3側が高電界となり (H E Fで示す) 、 ガス噴射口 1 1 3 よ り、 大気圧下で生成された低温プラズマ (プラズマジエツ ト P S M J ) が噴出され、 成膜処理においては、 低温プラズマ ( P S M J ) の噴出と共に反応性物質を構成成分とする堆積物 Sが生成' される。  In the present embodiment, a mixed gas G 0 of an inert gas and a reactive substance is circulated through the gas introduction pipe 5 1 in the dielectric cylinder 11, and by applying a high frequency repetitive pulse voltage from the high frequency power source 4 1, Gas injection port 1 1 3 side of electrode 2 2 has a high electric field (indicated by HEF), and low temperature plasma (plasma jet PSMJ) generated under atmospheric pressure is ejected from gas injection port 1 1 3 to form a film In this case, a deposit S containing a reactive substance as a constituent is generated along with the ejection of a low temperature plasma (PSMJ).
誘電体筒 1 1は、 円筒状であるものに限られることはなく 、 たと えば角筒状と してもよい。  The dielectric cylinder 11 is not limited to a cylindrical shape, and may be a rectangular cylinder, for example.
図 2に示すよ うに、 第 2実施形態のプラズマ発生装置 2 0 0に使 用されるプラズマ発生装置用ノズル 1 は、 図 1 のプラズマ発生装置 用ノズル 1 の誘電体筒 1 1 内に内部ガス流通管 3 1が、 誘電体筒 1 1 と同軸に配置されている。 誘電体筒 1 1 の内周面と内部ガス流通 管 3 1 の外周面との間にガス導入管 5 1 を通して第 1 のガス G 1が 流通し、 内部ガス流通管 3 1中にガス導入管 5 2を通して第 2のガ ス G 2が流通する。 ここで、 第 1のガス G 1 は、 不活性ガスまたは 不活性ガスと反応性ガスと の混合ガス、 第 2のガス G 2は、 反応性 ガス、 不活性ガス、 または反応性ガスと不活性ガスとの混合ガスで ある。 As shown in FIG. 2, the plasma generating nozzle 1 used in the plasma generating apparatus 200 of the second embodiment has an internal gas in the dielectric cylinder 11 of the plasma generating nozzle 1 of FIG. The flow pipe 3 1 is arranged coaxially with the dielectric cylinder 1 1. The first gas G 1 circulates between the inner peripheral surface of the dielectric cylinder 1 1 and the outer peripheral surface of the internal gas distribution pipe 3 1 through the gas introduction pipe 5 1, and the gas introduction pipe into the internal gas distribution pipe 3 1. The second gas G 2 is distributed through 5 2. Here, the first gas G 1 is an inert gas or a mixed gas of an inert gas and a reactive gas, and the second gas G 2 is a reactive gas. It is a gas, an inert gas, or a mixed gas of a reactive gas and an inert gas.
第 2実施形態におけるプラズマ発生装置 2 0 0でも、 高周波電源 4 1 による高周波繰り返しパルス電圧の印加によって、 内部電極 2 2のプラズマ噴射口 1 1 3側が高電界となり ( H E Fで示す) 、 プ ラズマ噴射口 1 1 3 よ り、 大気圧下で生成された低温プラズマ (プ ラズマジェッ ト P S M J ) が噴出され、 成膜処理においては、 低温 プラズマ ( P S M J ) の噴出と共に反応性物質を構成成分とする堆 積物 Sが生成される。  Even in the plasma generator 200 according to the second embodiment, by applying a high-frequency repetitive pulse voltage from the high-frequency power source 4 1, the plasma injection port 1 1 3 side of the internal electrode 2 2 becomes a high electric field (indicated by HEF). The low-temperature plasma (plasma jet PSMJ) generated under atmospheric pressure is ejected from the mouth 1 1 3, and during the film formation process, the deposition of reactive substances as constituents is accompanied by the ejection of the low-temperature plasma (PSMJ). Object S is generated.
前述したよ う に、 本発明で発生させるプラズマは、 誘電体バリ ア 放電あるいは大気圧グロ一放電によって得られるプラズマである。  As described above, the plasma generated in the present invention is plasma obtained by dielectric barrier discharge or atmospheric pressure glow discharge.
大気圧下での放電では粒子間の衝突頻度が極めて高いため、 プラ ズマに注入した電気エネルギーが種々の衝突過程を経て熱エネルギ- ーへと変換されやすく なる。 その究極の状態が熱プラズマ状態であ る。 つま り、 熱プラズマ状態では発生した放電スパークがアークへ と進展することでプラズマ温度が数万。 Cにも達する。  In the discharge under atmospheric pressure, the collision frequency between particles is extremely high, so that the electric energy injected into the plasma is easily converted to thermal energy through various collision processes. The ultimate state is the thermal plasma state. In other words, in the thermal plasma state, the generated sparks progress to arcs, resulting in a plasma temperature of tens of thousands. Reach C.
熱プラズマ状態への移行を防ぐために、 電極間に誘電体を挿入す る と、 誘電体によって放電電流が抑制され、 同時にス ト リ ーマを空 間に広く分散させることができる。  If a dielectric is inserted between the electrodes to prevent the transition to the thermal plasma state, the discharge current is suppressed by the dielectric, and at the same time, the streamer can be widely dispersed in the air.
したがって、 電極間に誘電体を挿入することでスパークがアーク まで進展することを防ぎ、 さ らに高周波パルス電圧源などの印加に よってス ト リーマが 1〜 1 O n s の時間間隔で時 ■ 空間的にランダ ムに発生と消滅を繰り返すよ う になる。  Therefore, by inserting a dielectric between the electrodes, it is possible to prevent the spark from progressing to the arc, and by applying a high-frequency pulse voltage source or the like, the streamer can be spaced at a time interval of 1 to 1 ns. Randomly appears and disappears.
すなわち、 大気圧下での低温プラズマは、 プラズマの熱化が著し く,進行する前に電気エネルギーの注入を断つことで低温状態を形成 している。 したがって、 この大気圧低温プラズマは、 高周波パルス 電圧の印加と誘電体の挿入によ り過渡的な連続パルス放電を形成し、 発生するプラズマがパルスプラズマになっていることによって達成 される。 In other words, low-temperature plasma under atmospheric pressure is extremely heat-induced, and forms a low-temperature state by cutting off electric energy before it progresses. is doing. Therefore, this atmospheric pressure low temperature plasma is achieved by forming a transient continuous pulse discharge by applying a high frequency pulse voltage and inserting a dielectric, and the generated plasma is a pulsed plasma.
誘電体筒 1 1 の素材は、 シリ コーン樹脂 (シ リ コーンゴムを含む) 等の高分子材料や、 ガラス等の 種のセラ ミ ックスが使用できる。  As the material for the dielectric cylinder 11, polymer materials such as silicone resin (including silicone rubber) and various ceramics such as glass can be used.
また、 外部電極 2 1および内部電極 2 2は、 銅、 アルミニウム、 ニッケル、 その他の各種の金属が使用できる。 これら電極の配設に ついては、 圧着 ' 接着、 めっき、 螺着、 締着等の各種の手法が採用 できる。 なお、 誘電体筒 1 1は、 その誘電率と厚さによって静電容 量が変わり 、 これにともなって適切な周波数が変化することになる が、 絶縁破壌電圧が十分に高いことが好ま しい。  The external electrode 21 and the internal electrode 22 can be made of copper, aluminum, nickel, or other various metals. Regarding the arrangement of these electrodes, various methods such as crimping, bonding, plating, screwing, and fastening can be employed. The dielectric cylinder 11 changes its electrostatic capacity depending on its dielectric constant and thickness, and the appropriate frequency changes accordingly. However, it is preferable that the dielectric breakdown voltage is sufficiently high.
誘電体筒 1 1 と外部電極 2 1、 内部電極 2 2および内部ガス流通 · 管 3 1 の位置関係については、 図 1や図 2に例示した配置にかかわ らず、 相対的位置を適宜調整することが可能である。  Regarding the positional relationship between the dielectric cylinder 1 1, the external electrode 21, the internal electrode 2 2, and the internal gas flow tube 3 1, the relative position is adjusted appropriately regardless of the arrangement illustrated in FIGS. It is possible.
ただし、 外部電極 2 1、 内部電極 2 2 の先端は、 プラズマ噴射口 1 1 3の先端 (誘電体筒 1 1の先端) からはみ出す位置に形成され ることはない。 このことは、 ス ト リ ーマなどの異常放電への移行を 防ぐために有効である。  However, the tips of the outer electrode 2 1 and the inner electrode 2 2 are not formed at a position protruding from the tip of the plasma injection port 1 13 (the tip of the dielectric cylinder 11). This is effective to prevent transition to abnormal discharge such as streamers.
図 2に示したプラズマ発生装置 2 0 0について、 誘電体筒 1 1 の 材質をシリ コーン、 外部電極 2 1の幅を 1 0 m m、 高周波電源の周 波数を 6 7 . 3 k H z、 H e流量を 1 7 リ ッ トル/分、 外部電極 2 1 を接地電極と して、 上記のプラズマ発生条件に基づいて、 外部電 極 2 1 の電極非形成部 R 1および内部電極 2 2 の電極非形成部 R 2 の長さ、 すなわち両電極の'最も適切な相対位置を探した。 図 3に示すよ う に、内部電極 1 1 2 の先端位置 P Oを 「 0」 と し、 そこから噴射方向を [+ ] 、 これと反対方向を [一] と した。 そし て、 誘電体筒 1 1 のプラズマ噴射口 1 1 3の位置 P 1を、 5 mm、 1 O mm、 3 O mm、また外部電極 2 1 の先端位置 P 2を、 0 m m、 一 5 mm、 一 1 0 mmとそれぞれ変化させて、 出力されるプラズマ ジエツ ト P S M Jがより長く発生するよ うな条件を探る実験を行つ た。 For the plasma generator 200 shown in FIG. 2, the material of the dielectric cylinder 11 is silicon, the width of the external electrode 21 is 10 mm, and the frequency of the high-frequency power supply is 67.3 kHz, H e Flow rate is 17 liters / minute, external electrode 21 is the ground electrode, and based on the above plasma generation conditions, electrode non-formation part R1 of internal electrode 21 and electrode of internal electrode 22 The length of the non-formed part R 2, that is, the most appropriate relative position of both electrodes was searched. As shown in Fig. 3, the tip position PO of the internal electrode 1 1 2 was set to “0”, the injection direction was set to [+], and the opposite direction was set to [1]. The position P 1 of the plasma injection port 1 1 3 of the dielectric cylinder 1 1 is 5 mm, 1 O mm, 3 O mm, and the tip position P 2 of the external electrode 2 1 is 0 mm, 15 mm. An experiment was conducted to find out the conditions under which the output plasma jet PSMJ would be generated for a longer period of time, varying from 1 to 10 mm.
この結果、 誘電体筒 1 1の位置は、 5 mmよ り も 1 0 mmのもの が安定でプラズマ^エツ ト P S M Jが長く発生したが、 3 0 m mの よ うに長すぎても良く ないこ とがわかった。  As a result, the position of the dielectric cylinder 11 was stable at 10 mm than 5 mm, and the plasma etch PSMJ was generated for a long time, but it should not be too long as 30 mm. I understood.
また、 外部電極 2 1の位置 P 2は一 5 mmのときのプラズマジェ ッ ト P S M Jが最も長く、 安定に発生していた。  In addition, the position P 2 of the external electrode 21 was the longest plasma jet P S M J when it was 15 mm, and was stably generated.
以上のことから、 誘電***置 P 1が 1 0 mm、 外部電極位置 P 2. がー 5 m mである ときに、 安定かつ長時間のプラズマジエツ ト P S M J を得られる条件であると判断できる。 すなわち、 内部電極 2 2 と外部電極 2 1 の電極非形成領域 R 1, R 2の好適な長さはそれぞ れ、 1 0 mmと 1 5 mmであることが示された。  From the above, it can be determined that the conditions are such that a stable and long-time plasma jet P S M J can be obtained when the dielectric position P 1 is 10 mm and the external electrode position P 2 is −5 mm. That is, the preferred lengths of the electrode non-formation regions R 1 and R 2 of the internal electrode 2 2 and the external electrode 2 1 are 10 mm and 15 mm, respectively.
-通常、 電極非形成領域 R l , R 2は、 R 1 は 5〜 2 0 mm、 R 2 は 5〜 3 0 m mであることが好ま しレ、。  -Normally, in the electrode non-formation regions Rl and R2, R1 is preferably 5 to 20 mm, and R2 is preferably 5 to 30 mm.
表 1 誘電体筒 外部電極 内部電極 外部電極 table 1 Dielectric cylinder External electrode Internal electrode External electrode
1 1先端の 2 1先端の 2 2の電極 2 1の電極 エツト P S 位置 P 1 位置 P 2 非形成領域 非形成領域 M Jの長さ (mm) (mm) の長さ Λ 2 の長さ Λ 1 L  1 1 tip 2 1 tip 2 2 electrode 2 1 electrode Et PS position P 1 position P 2 Non-formed region Non-formed region MJ length (mm) (mm) length Λ 2 length Λ 1 L
、m m)  M m)
5 0 5 5 3 0 5 0 5 5 3 0
5 一 5 5 1 0 3 55 1 5 5 1 0 3 5
5 一 1 0 5 1 5 2 55 1 1 0 5 1 5 2 5
1 0 0 1 0 1 0 3 51 0 0 1 0 1 0 3 5
1 0 一 5 1 0 1 5 . 4 01 0 1 5 1 0 1 5 .4 0
3 0 一 5 3 0 3 5 2 0 3 0 1 5 3 0 3 5 2 0
本発明の大気圧低温プラズマ装置においては、 プラズマ生成のた めのヘリ ゥム、 アルゴン等の不活性ガスや、 固体物質の表面処理の ためにプラズマ励起される反応性ガスの各種のものが流通され、 前 記の開放端部を噴射口 1 1 3 と して、 この噴射口から大気圧低温プ ラズマが噴出されるよ うにする。 In the atmospheric pressure low-temperature plasma apparatus of the present invention, various kinds of inert gas such as helium and argon for plasma generation, and reactive gas that is plasma-excited for surface treatment of solid substances are circulated. Then, let the above open end be the injection port 1 1 3 so that the atmospheric low temperature plasma is ejected from this injection port.
プラズマ生成のためには、 高周波パルス電圧が、 たとえば外部電 極 2 1、 内部電極 2 2のいずれかに印加され、 他方の電極は接地さ れたものとする。 たとえば、 外部電極 2 1 を接地電極と し、 外部電 極 2 1 と内部電極 2 2 との間に高周波パルス波を印加することが好 適に考慮される。  For plasma generation, it is assumed that a high-frequency pulse voltage is applied to, for example, either the external electrode 21 or the internal electrode 22, and the other electrode is grounded. For example, it is preferable to consider that a high-frequency pulse wave is applied between the external electrode 2 1 and the internal electrode 2 2 with the external electrode 2 1 as a ground electrode.
高周波電源と しては、 1 〜 1 0 k H z以上の高周波パルスを印加 することができる電源であり、 パルスの波形に特に制限はないが立 ち上がり立ち下がり の急峻な繰り返しパルス電圧を印可すれば、 効 率よくプラズマを発生させることができる。 '電圧はプラズマガスの種類と流速、 そして上記の誘電体筒 1 1の 材質と肉厚によって変化される。 通常は、 約 S k VZmmから十数 k VZmmの範囲になる と考えることができる。 周波数についても プラズマガスの種類等によ り適正値が定められるが、 たとえば、 一 般のコロナ放電の周波数よりは高めの 5〜 1 0 0 k H zの範囲が考 慮される。 後述の実施例においてはおよそ 1 0 k H Z以上の周波数 が好適と考えられている。 The high-frequency power supply can apply a high-frequency pulse of 1 to 10 kHz or higher, and there is no particular limitation on the pulse waveform, but a repetitive pulse voltage with a sharp rise and fall can be applied. Then, plasma can be generated efficiently. 'Voltage varies depending on the type and flow velocity of the plasma gas, and the material and thickness of the dielectric cylinder 11 above. Usually, it can be considered to be in the range of about S k VZmm to tens of k VZmm. An appropriate value is also determined for the frequency depending on the type of plasma gas, but for example, a range of 5 to 100 kHz higher than the frequency of general corona discharge is considered. Approximately 1 0 k H Z or more frequencies are considered to be preferred in the examples below.
本発明における大気圧低温プラズマジエツ トの生成に際しては、 ヘリ ウムが主に用いられるが、 ヘリ ウム以外にもアルゴンや窒素等 も使用でき、 これらは酸素や他の反応性ガス等と混合されていても よい。特に、アルゴンおよびアルゴンと窒素の混合ガスを用いれば、 ガスのコス トを抑えられる ので好ま しい。  In the production of the atmospheric pressure low-temperature plasma jet in the present invention, helium is mainly used, but in addition to helium, argon, nitrogen, etc. can be used, and these are mixed with oxygen, other reactive gases, etc. Also good. In particular, argon and a mixed gas of argon and nitrogen are preferable because the gas cost can be reduced.
不活性ガスの線速度についても、 各種の操作条件との関係から適 切なものと されるが、 たとえば、 ヘリ ウムガスおよびアルゴンの場 合には、 毎秒 1 9 0 c m力 ら 5 3 0 0 c mの線速度範囲でプラズマ ジェッ トの発生が確認されており、 その好適な範囲は、 後述の実施 例においては、 たとえば、 毎秒 3 8 0 c mから 7 6 0 c mの範囲で ある。  The linear velocity of the inert gas is also considered appropriate due to the relationship with various operating conditions. For example, in the case of helium gas and argon, the force from 1900 cm per second to 5300 cm The generation of plasma jets has been confirmed in the linear velocity range, and a suitable range thereof is, for example, in the range of 3 80 cm to 760 cm per second in the examples described later.
そして、 本発明の非重合性ガスプラズマによる表面改質処理にお いては、 プラズマを発生させる非重合性ガスを、 内部電極 2 2の内 側、 も しく は内部ガス流通管 3 1の内側、 もしく はその両者を流通 させて上記プラズマ内に供給する。非重合ガスと しては、たとえば、 ヘリ ウム、 アルゴンなどの不活性ガス (これはプラズマ発生のため のガスと しても用いられる) 、 も しく は、 水素、 酸素、 窒素、 水、 アンモニア、 テ トラフルォロメタンなどの反応性ガス、 またはそれ らを混合したガスを用いることができる。 このとき、 たとえば、 へ リ.ゥムなどの不活性ガス単体を流通させてもよく、 または、 内部電 極 2 2の内側にアルゴンと窒素の混合ガス、 内部ガス流通管 3 1 に 酸素ガスを流通させるなど組み合わせて流通させてもよい。 In the surface modification treatment using the non-polymerizable gas plasma of the present invention, the non-polymerizable gas that generates plasma is supplied inside the internal electrode 22 or inside the internal gas flow pipe 31. Alternatively, both are distributed and supplied into the plasma. Examples of non-polymerization gases include inert gases such as helium and argon (which are also used as plasma generation gases), hydrogen, oxygen, nitrogen, water, ammonia, Reactive gas such as tetrafluoromethane, or it A gas in which these are mixed can be used. At this time, for example, a single inert gas such as helium may be circulated, or a mixed gas of argon and nitrogen inside the internal electrode 22 and oxygen gas in the internal gas distribution pipe 3 1. You may distribute in combination, such as distributing.
また、 本発明の C V Dによる表面処理においては、 成膜される物 質の原料となる反応性物質を、 内部電極 2 2の内側、 もしく は內部 ガス流通管 3 1 の内側、 もしく はその両者を流通させて上記プラズ マ内に供給するが、 反応性物質と しては、 メタク リル酸メチルのよ うなラジカル重合性を有する有機化合物、 ベンゼンのよ うな一般的 な有機化合物、 へキサメチルジシロキサンのような有機金属化合物 などを用いることができる。 また、 これら有機成分を含有する化合 物と ともに、 成膜反応を捕助する化合物と して酸素などの反応性ガ スを同時に流通させても良い。 そうすることによ り、 固体物質 (被' 成膜物質) 表面や生成する 自体の改質処理をも行う ことができ、 膜の接着強度の向上や生成する膜の性質を調整することが可能とな る。  Further, in the surface treatment by CVD according to the present invention, a reactive substance that is a raw material of the material to be formed is placed inside the internal electrode 22, or inside the collar gas flow pipe 3 1, or its Both are circulated and supplied into the plasma. The reactive substances include organic compounds having radical polymerizability such as methyl methacrylate, general organic compounds such as benzene, and hexamethyl. An organometallic compound such as disiloxane can be used. Further, together with the compound containing these organic components, a reactive gas such as oxygen may be circulated simultaneously as a compound for assisting the film forming reaction. By doing so, it is possible to modify the surface of the solid substance (film forming substance) and the generated substance itself, and it is possible to improve the adhesive strength of the film and to adjust the properties of the generated film It becomes.
本発明のプラズマ発生装置においては、 上記の説明からも明らか なよ うに、 二重筒状の管状体と ともに、 上記の不活性ガスや反応性 物質を供給して流通させるためのガスおよび反応物質の供給部とそ の流速、 供給量等をコン ト ロールするための制御部を有し、 さらに はプラズマ生成のための高周波電源とその制御部を適宜に備えてい る。 図 2 のプラズマ発生装置 2 0 0では、 ノ ズル部分を部品、 部材 と して扱う こともでき、 さ らに、 手持ち可動とするこ とも考慮する ことができる。 手持ち可動型のプラズマ発生装置とすることによって大気圧下で、 様々な種類と形状の対象に対して、 屋内や屋外を問わずに低温ブラ ズマの噴出でそれらの表面処理を行う ことができる。 In the plasma generator of the present invention, as is clear from the above description, the gas and reactant for supplying and circulating the above inert gas and reactive substance together with the double cylindrical tubular body Supply unit and a control unit for controlling the flow rate, supply amount, and the like, and further equipped with a high-frequency power source for plasma generation and its control unit as appropriate. In the plasma generator 200 of FIG. 2, the nozzle part can be handled as a part or member, and it can be considered that it can be hand-held. By using a hand-held movable plasma generator, it is possible to perform surface treatment of various types and shapes of objects with low-temperature plasma jets, both indoors and outdoors, at atmospheric pressure.
その際には、 高周波電源を導線によって、 プラズマ トーチに接続 し、 プラズマ トーチにはガス供給源 (例えばガスボンベ) がガス供 給用ホースで接続されていることで、 作業者が供給圧力や流量を調 整でき、 供給されたガスでプラズマ噴流を発生させ、 このプラズマ 噴流によって被処理対象に表面処理をすることができる。  At that time, a high-frequency power source is connected to the plasma torch by a conductive wire, and a gas supply source (for example, a gas cylinder) is connected to the plasma torch by a gas supply hose, so that an operator can adjust the supply pressure and flow rate. A plasma jet can be generated with the supplied gas, and the surface treatment can be performed on the object to be processed by the plasma jet.
本発明のプラズマ発生装置によって生成させた低温プラズマで固 体物質の表面処理を行う ことができる。 その最も代表的な方法と し ては、 噴射口 よ り噴出させた低温プラズマを固体物質表面に射出し て表面処理を行う ことである。 本発明の低温プラズマ トーチの複数 のものを集合も しく は組み合わせることで、 よ り大面積の表面処理- も効率的に可能になる。 このような集合も しく は組み合わせは、 上 記の外部電極 2 1 を絶縁保護することで様々な形態と して可能とさ れる。  The surface treatment of the solid substance can be performed with the low temperature plasma generated by the plasma generator of the present invention. The most representative method is to perform surface treatment by injecting low-temperature plasma ejected from the ejection port onto the surface of the solid material. By combining or combining a plurality of low-temperature plasma torches of the present invention, surface treatment of a larger area can be efficiently performed. Such assembly or combination is possible in various forms by insulating and protecting the external electrode 21 described above.
また、 本発明の装置においては、 前記のガスの供給と流通にとも なって、 反応性ガスだけではなく、 固体粒子を供給し、 プラズマ中 で表面処理することや、 固体粒子あるいは液滴を供給して反応性原 料と して使用することも考慮される。  In addition, in the apparatus of the present invention, not only the reactive gas but also solid particles are supplied along with the supply and distribution of the gas, surface treatment is performed in plasma, and solid particles or droplets are supplied. Therefore, it can be considered to be used as a reactive material.
以下に実施例を示し、 さ らに詳しく説明する。 もちろん以下の例 によって発明が限定されることはない。 実施例  Examples will be shown below and will be described in more detail. Of course, the invention is not limited by the following examples. Example
《実施例 1》 図 1および図 2に示したプラズマ発生装置 1 0 0において、 誘電 体筒 1 1 と してシリ コーン管 (外径 : 1 0 mm、 内径 : 6 mm) を 用いた。 また、 外部電極 2 1およぴ内部電極 2 2 と して、 ステンレ ススチールを使用 し、 プラズマ生成のためのフローガス と してヘリ ゥムをガス導入管 5 1 に流入し、 反応物質と しては、 へキサメチル ジシロ キサンとアルゴンの混合ガスを用いた。 Example 1 In the plasma generator 100 shown in FIGS. 1 and 2, a silicon cone tube (outer diameter: 10 mm, inner diameter: 6 mm) was used as the dielectric cylinder 11. Also, stainless steel is used as the external electrode 21 and the internal electrode 22, and helium flows into the gas introduction pipe 51 as a flow gas for plasma generation, and the reactants As a result, a mixed gas of hexamethyldisiloxane and argon was used.
外部電極 2 1 を接地電極と し、 外部電極 2 1 と内部電極 2 2 との 間に高周波電圧 ( 6 7. 3 K H z , 5 k V) を印加した。 その際、 プラズマ発生装置の周囲は大気中に開放し、 内部電極の電極非形成 領域の長さを 1 5 mm、 外部電極の電極非形成領域の長さを 1 O m mと し、 外部電極の導体部の幅を 2 O mmと した。 内部電極と外部 電極の電極非形成領域による適度な放電電圧の制御によって安定し たプラズマ嘖流を発生させ、 基材に射出して成膜を行った。  The external electrode 2 1 was used as a ground electrode, and a high-frequency voltage (67.3 KHz, 5 kV) was applied between the external electrode 2 1 and the internal electrode 2 2. At that time, the periphery of the plasma generator is open to the atmosphere, the length of the electrode non-formation region of the internal electrode is 15 mm, the length of the electrode non-formation region of the external electrode is 1 O mm, The width of the conductor was 2 O mm. Stable plasma flow was generated by controlling the appropriate discharge voltage in the electrode non-formation region of the internal electrode and external electrode, and the film was injected onto the substrate for film formation.
プラズマ噴流の射出と ともに、 シ リ コーン状の薄膜が効率よく成 膜された。 生成した薄膜を F T— I R測定することによ り、 S i — O— S i 結合に特異的な吸収が 1 0 4 4 c m - 1 に観測されるが、 この吸光度は成膜時間と ともに増大した。  Along with the injection of the plasma jet, a thin silicon film was formed efficiently. FT-IR measurement of the formed thin film shows that absorption specific to S i — O— S i bond is observed at 10 4 4 cm-1, but this absorbance increases with the deposition time. did.
大気圧低温プラズマ中で生成した準安定原子が電子状態のみが高 励起状態なのであって、 気体温度は常温付近とさほど変わらない。 このために、 高温のプラズマジエツ ト処理の時に生じやすい被処理 物の融解や燃焼などといった現象を引き起こすこと無しに表面を被 膜することが可能であり、 成膜技術と して極めて有効な方法である ことがわかる。  Only the electronic state of metastable atoms generated in atmospheric-pressure low-temperature plasma is in a highly excited state, and the gas temperature is not much different from around normal temperature. For this reason, it is possible to deposit the surface without causing phenomena such as melting and burning of the workpiece that are likely to occur during high-temperature plasma jet processing, and this is an extremely effective method as a deposition technology. I know that there is.
《実施例 2》 実施例 1 と同様にして、 プラズマ生成のためのフローガスにアル ゴン、 反応性ガスにメタク リル酸メチルを使用した。 得られた被膜 を F T— I R測定した結果、 膜成分はラジカル重合で生成するポリ メタタ リル酸メチルに極めて類似した榭脂状化合物であるこ とが判 明した。 Example 2 In the same manner as in Example 1, argon was used as the flow gas for plasma generation, and methyl methacrylate was used as the reactive gas. As a result of FT-IR measurement of the resulting film, it was found that the film component was a rosin-like compound very similar to methyl polymethyl methacrylate formed by radical polymerization.
《実施例 3》  Example 3
実施例 1 と同様にして、 プラズマ生成のためのフローガスにアル ゴン、 反応性ガスにテ トラメ トキシシランと酸素の混合ガスを使用 した。 得られた膜は、 二酸化珪素に極めて類似した硬質の無機物で あった。  In the same manner as in Example 1, argon was used as a flow gas for plasma generation, and a mixed gas of tetramethoxysilane and oxygen was used as a reactive gas. The obtained film was a hard inorganic substance very similar to silicon dioxide.
《実施例 4》 :  Example 4
実施例 1 と同様にして、 プラズマ生成のためのフローガスにヘリ ゥム、 ヘリ ゥムとアルゴンの混合ガス、 アルゴンと窒素の混合ガス を使用し、 接触角を測定した。  In the same manner as in Example 1, helium, a mixed gas of helium and argon, and a mixed gas of argon and nitrogen were used as the flow gas for plasma generation, and the contact angle was measured.
本実施例では、外部電極 2 1 と内部電極 2 2 との間に 6 8 k H z , 6 k Vの高周波電圧を印加した。 その際、 大気圧低温プラズマ発生 装置の周囲は大気中に開放し、 内部電極の電極非形成領域の長さを 1 0 mm, 外部電極の電極非形成領域の長さを 1 0 mmと し、 外部 電極の導体部の幅を 2 O mmと した。 外部電極 2 1 と内部電極 2 2 との電極非形成領域 R l , R 2による適度な放電電圧の制御によつ て安定したプラズマ噴流を発生させ、 ポリカーボネー ト ( P C ) 製 の基材に 1分間射出して表面改質を行い、 改質前後で水に対する接 触角の測定を行った。 その結果を表 2に示す。 いずれの場合にも、 ポリカーボネー ト ( P C) の接触角は著しく低下し、 表面が親水化 したことがわかる。 表 2 In this example, a high frequency voltage of 68 kHz and 6 kV was applied between the external electrode 2 1 and the internal electrode 2 2. At that time, the surrounding area of the atmospheric pressure low temperature plasma generator is opened to the atmosphere, the length of the electrode non-formation region of the internal electrode is 10 mm, and the length of the electrode non-formation region of the external electrode is 10 mm. The width of the conductor part of the external electrode was 2 O mm. A stable plasma jet is generated by controlling the appropriate discharge voltage by the electrode non-formation regions R l and R 2 between the external electrode 21 and the internal electrode 22, and is applied to a polycarbonate (PC) substrate. The surface was modified by injecting for 1 minute, and the contact angle with water was measured before and after the modification. The results are shown in Table 2. In either case, it can be seen that the contact angle of polycarbonate (PC) was significantly reduced and the surface became hydrophilic. Table 2
Figure imgf000021_0001
Figure imgf000021_0001
《実施例 5》  Example 5
実施例 1 と同様にして図 2の構造の装置を用いて、 G 1 にァルゴ ン流量 5 リ ッ トル Z分、 窒素流量 0. 1 リ ッ トル 分の混合ガス、 G 2 に 02流量 0 . 1 リ ッ トル 分、 モノ マーにへキサメチルジシ ロキサンを用いた。 In the same way as in Example 1, using the apparatus shown in Fig. 2, G 1 has an argon flow rate of 5 liters Z, a nitrogen flow rate of 0.1 liters of mixed gas, and G 2 has a flow rate of 0 2 0 For 1 liter, hexamethyldisiloxane was used as a monomer.
これに電圧 6 k V、 周波数 2 0 k H z を印力 [Iしてォレフィン系の 熱可塑性樹脂プレー ト上にプラズマ C V Dを行った。 このサンプル の酸素透過率を測定した。  The plasma C V D was applied to the olefin-based thermoplastic plate by applying a voltage of 6 kV and a frequency of 20 kHz to this [I. The oxygen permeability of this sample was measured.
比較例 1 と して、 実施例 5 と同じォレフィ ン系の熱可塑性樹脂プ レー トをなんら処理しないものをサンプルと して同様に酸素透過率 を測定した。 その結果、 表 3に示すよ うに酸素透過率が顕著に減少 した。 これによ り、 この装置によって大気圧下で気体に対するバリ ァ性のある膜が作成できることが示された。  As Comparative Example 1, the oxygen permeability was measured in the same manner using a sample of the same polyolefin-based thermoplastic resin plate as in Example 5 that was not treated at all. As a result, as shown in Table 3, the oxygen permeability was significantly reduced. As a result, it was shown that a film having a barrier property against a gas under atmospheric pressure can be produced by this apparatus.
表 3 酸素透過率 Table 3 Oxygen permeability
(cm3/m~*dayatm) (cm 3 / m ~ * dayatm)
比較例 1 79.4  Comparative Example 1 79.4
実施例 10.0  Example 10.0
《実施例 6》 Example 6
誘電体を、 セラミ ッ クス (炭酸バリ ウム、 チタン酸バリ ウムの粉 末を内部電極に焼結させたもの) によ り作成した。  The dielectric was made of ceramics (barium carbonate, barium titanate powder sintered on the internal electrode).
また、 樹脂と してシリ コーンゴムチューブ (厚さ 2 mm)、 テフ口 ン (登録商標) チューブ (厚さ 1 . 5 mm)、 ポリエチレンチューブ (厚さ l mni)、 塩化ビュルチューブ (厚さ 1 mm) の材質を使用し た。  In addition, as a resin, a silicone rubber tube (thickness 2 mm), a Teflon (registered trademark) tube (thickness 1.5 mm), a polyethylene tube (thickness l mni), a bull chloride tube (thickness 1 mm) material was used.
それぞれの材質で作成したプラズマ発生用ノズルに高電圧を印加 して放電を行った。  Discharge was performed by applying a high voltage to the plasma generating nozzles made of each material.
セラ ミ ックスを使ったプラズマ発生用ノズルは電圧を印加すると 熱膨張によ り割れが生じた。 また、 樹脂においてはシリ コーンゴム 以外では誘電体に穴が開いたり、 溶解してしまったり した。 シリ コ ーンゴムを使用したときは、 2時間以上連続運転した場合でも、 破 損や温度上昇は見られず、 安定してプラズマが発生した。 また、 シ リ コーンゴムは柔軟であるため、' 内部電極との密着性がよく 、 他の 材質のよ うに電極とのサイズを合わせるため、 焼結や誘電体チュー ブの内部を削るなどの操作も必要なく、 プラズマ発生用ノズルの作 成が非常に容易であった。  The plasma generating nozzle using ceramics cracked due to thermal expansion when voltage was applied. In addition, in the case of resins other than silicone rubber, holes were formed in the dielectric or melted. When silicon rubber was used, no damage or temperature increase was observed even when the operation was continued for more than 2 hours, and plasma was generated stably. In addition, since silicone rubber is flexible, it has good adhesion to the internal electrode, and in order to match the size with the electrode like other materials, operations such as sintering and scraping the inside of the dielectric tube are also possible. It was not necessary, and it was very easy to create a nozzle for generating plasma.
なお、 図 4にプラズマ発生用ノズルの使用態様を示す。 図 4 (A) はプラズマの照射開始の様子を示し、 図 4 ( B ) はプラズマの照射 終了の様子を示す。 これらの図ではプラスチック製のバイアル瓶 5 1 にプラズマ照射によ り成膜し、 ガスバリ ヤ性を向上させている。 Figure 4 shows how the nozzle for generating plasma is used. Fig. 4 (A) Figure 4 (B) shows the start of plasma irradiation, and Figure 4 (B) shows the end of plasma irradiation. In these figures, a plastic vial 51 is formed by plasma irradiation to improve gas barrier properties.

Claims

22 請求の範囲 22 Claim
1 . 誘電体筒の外周面に外部電極が、 内周面に内部電極がそれぞれ 管状に形成されてなるプラズマ発生装置用ノズルであって、  1. A nozzle for a plasma generator in which an outer electrode is formed on the outer peripheral surface of a dielectric cylinder, and an inner electrode is formed on an inner peripheral surface in a tubular shape,
' 前記外部電極は前記誘電体筒の先端側の周に沿って短幅に形成さ れ、 '' The external electrode is formed with a short width along the circumference on the tip side of the dielectric cylinder,
前記内部電極は前記誘電体筒の内周面のほぼ全域にわたり形成さ れ、  The internal electrode is formed over substantially the entire inner peripheral surface of the dielectric cylinder,
ていることを特徴とするプラズマ発生装置用ノ ズル。  Nozzle for plasma generator, characterized by
2 . 前記誘電体筒のプラズマ噴射口の外周面および Zまたは内周面 には電極非形成領域が形成されているこ とを特徴とする請求の範囲 第 1項に記載のプラ マ発生装置用ノズル。  2. An electrode non-formation region is formed on the outer peripheral surface and Z or inner peripheral surface of the plasma injection port of the dielectric cylinder, for the plasma generator according to claim 1 nozzle.
3 . 前記外部電極は、 前記内部電極に対する位置が固定され、 また は軸方向に移動可能に構成されているこ とを特徴とする請求の範囲 - 第 1項または第 2項に記載のプラズマ発生装置用ノズル。  3. The plasma generation according to claim 1 or 2, wherein the position of the external electrode is fixed with respect to the internal electrode or is movable in the axial direction. Equipment nozzle.
4 . 前記誘電体筒が柔軟性を有することを特徴とする請求の範囲第 1項から第 3項の何れかに記載のプラズマ発生装置用ノ ズル。  4. The nozzle for a plasma generator according to any one of claims 1 to 3, wherein the dielectric cylinder has flexibility.
5 . 前記誘電体筒内に内部ガス流通管が、 前記誘電体筒と同軸に配 置されてなるプラズマ発生装置用ノズルであって、  5. A plasma generating nozzle in which an internal gas flow pipe is disposed coaxially with the dielectric cylinder in the dielectric cylinder,
前記誘電体筒の内周面と前記内部ガス流通管の外周面との間に第 1 のガスが流通し、前記内部ガス流通管中に第 2のガスが流通する、 ことを特徴とする請求の範囲第 1項から第 4項の何れかに記載のプ ラズマ発生装置用ノズル。  The first gas flows between the inner peripheral surface of the dielectric cylinder and the outer peripheral surface of the internal gas flow pipe, and the second gas flows through the internal gas flow pipe. The nozzle for a plasma generator according to any one of items 1 to 4 of the range.
6 . 請求の範囲第 1項から第 5項の何れかに記載のプラズマ発生装 ' 置用ノズルを備えたプラズマ発生装置であって、 前記外部電極と前記内部電極との間に高周波電圧を印加する電源 を備 、 6. A plasma generator comprising the plasma generator nozzle according to any one of claims 1 to 5, comprising: A power source for applying a high-frequency voltage between the external electrode and the internal electrode;
前記誘電体筒には、 不活性ガスまたは不活性ガスと反応性ガスと の混合ガスが流通されることを特徴とするプラズマ発生装置。  An inert gas or a mixed gas of an inert gas and a reactive gas is circulated through the dielectric cylinder.
7 . 請求の範囲第 5項に記載のプラズマ発生装置用ノズルを備えた プラズマ発生装置であって、 7. A plasma generator provided with the nozzle for a plasma generator according to claim 5, comprising:
前記外部電極と前記内部電極との間に高周波電圧を印加する電源 を備え、  A power source for applying a high-frequency voltage between the external electrode and the internal electrode;
前記第 1のガスが、 不活性ガスまたは不活性ガス と反応性ガスと の混合ガス、 前記第 2のガスが、 反応性ガス、 不活性ガス、 または 反応性ガスと不活性ガスとの混合ガスであることを特徴とするブラ ズマ発生装置。  The first gas is an inert gas or a mixed gas of an inert gas and a reactive gas, and the second gas is a reactive gas, an inert gas, or a mixed gas of a reactive gas and an inert gas. A plasma generator characterized by the above.
8 . 前記プラズマ発生装置用ノズルが低温下、 またはさ らに大気圧' 下におかれたことを特徴とする請求の範囲第 6項または第 7項に記 載のプラズマ発生装置。  8. The plasma generator according to claim 6 or 7, wherein the nozzle for the plasma generator is placed at a low temperature or under atmospheric pressure.
9 . 請求の範囲第 6項から第 8項の何れかに記載のプラズマ発生装 置を用いた表面処理装置であって、  9. A surface treatment apparatus using the plasma generation apparatus according to any one of claims 6 to 8, comprising:
非重合性ガスプラズマにより対象の表面に改質処理を行う ことを 特徴とするプラズマ表面処理装置。  A plasma surface treatment apparatus characterized in that the surface of an object is modified by non-polymerizable gas plasma.
1 0 . 請求の範囲第 7項から第 9項の何れかに記載のプラズマ発生 装置を用いた表面処理装置であって、  10. A surface treatment apparatus using the plasma generator according to any one of claims 7 to 9, comprising:
C V Dによ り対象の表面に成膜処理を行う ことを特徴とするブラ ズマ表面処理装置。 A plasma surface treatment device that performs film formation on the target surface by CVD.
1 1 . 誘電体筒の外周面に外部電極が、 内周面に内部電極がそれぞ れ管状に形成されてなるプラズマ発生装置用ノズルを用いたプラズ マ発生方法であって、 1 1. A plasma generation method using a plasma generator nozzle in which an outer electrode is formed on an outer peripheral surface of a dielectric cylinder and an inner electrode is formed on an inner peripheral surface, respectively.
大気圧かつ低温下において、 前記誘電体筒の内側にプラズマを生 成させ、 ジェッ ト化した前記プラズマを前記誘電体筒のプラズマ噴 出口から吐出させることを特徴とするプラズマ発生方法。  A plasma generation method comprising generating plasma inside the dielectric cylinder at atmospheric pressure and low temperature, and discharging the jetted plasma from a plasma outlet of the dielectric cylinder.
1 2 . 前記誘電体筒内に内部ガス流通管が、 前記誘電体筒と同軸に 配置されてなるプラズマ発生装置用ノズルを用いたプラズマ発生方 法であって、  1 2. A plasma generation method using a nozzle for a plasma generator in which an internal gas flow pipe is disposed coaxially with the dielectric cylinder in the dielectric cylinder,
前記誘電体筒の内周面と前記内部ガス流通管の外周面との間に第 1 のガスを流通させ、 前記ガス導入中に第 2 のガスを流通させ、 大気圧かつ低温下において、 前記誘電体筒の内側にプラズマを生 成させ、 ジェッ ト化した前記プラズマを前記誘電体筒のプラズマ噴 出口から吐出させることを特徴とするプラズマ発生方法。  A first gas is circulated between an inner peripheral surface of the dielectric cylinder and an outer peripheral surface of the internal gas circulation pipe, and a second gas is circulated during the introduction of the gas. A plasma generation method comprising: generating plasma inside a dielectric cylinder; and discharging the jetted plasma from a plasma outlet of the dielectric cylinder.
1 3 . 請求の範囲第 1 1項または第 1 2項に記載のプラズマ発生方 法を適用した表面処理方法であって、 1 3. A surface treatment method to which the plasma generation method according to claim 1 1 or 1 2 is applied,
非重合性ガスプラズマによ り対象の表面に改質処理を行う ことを 特徴とするプラズマ表面処理方法。  A plasma surface treatment method characterized in that the surface of an object is modified by non-polymerizable gas plasma.
1 4 . 請求の範囲第 1 1項または第 1 2項に記載のプラズマ発生方 法を適用した表面処理方法であって、  1 4. A surface treatment method to which the plasma generation method according to claim 1 1 or 1 2 is applied,
C V Dによ り対象の表面に成膜処理を行う ことを特徴とするブラ ズマ表面処理方法。  A plasma surface treatment method characterized in that a film is formed on a target surface by C V D.
PCT/JP2007/053117 2006-02-13 2007-02-13 Plasma generation device nozzle, plasma generation device, plasma surface treatment device, plasma generation method, and plasma surface treatment method WO2007105428A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008505018A JP4953255B2 (en) 2006-02-13 2007-02-13 Nozzle for plasma generator, plasma generator, plasma surface treatment apparatus, plasma generation method and plasma surface treatment method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006-035182 2006-02-13
JP2006035182 2006-02-13
JP2006218724 2006-08-10
JP2006-218724 2006-08-10

Publications (1)

Publication Number Publication Date
WO2007105428A1 true WO2007105428A1 (en) 2007-09-20

Family

ID=38509265

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/053117 WO2007105428A1 (en) 2006-02-13 2007-02-13 Plasma generation device nozzle, plasma generation device, plasma surface treatment device, plasma generation method, and plasma surface treatment method

Country Status (2)

Country Link
JP (1) JP4953255B2 (en)
WO (1) WO2007105428A1 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008150703A (en) * 2006-11-20 2008-07-03 National Institute Of Advanced Industrial & Technology Processing method using modulated microplasma and apparatus therefor
JP2009221526A (en) * 2008-03-14 2009-10-01 Denso Corp Coating forming method, coating forming apparatus and polymerization method
JP2010539694A (en) * 2007-09-10 2010-12-16 ダウ・コーニング・アイルランド・リミテッド Atmospheric pressure plasma
JP2011026096A (en) * 2009-07-28 2011-02-10 Murata Mfg Co Ltd Gas conveyance apparatus
JP2011139031A (en) * 2009-12-03 2011-07-14 Fujifilm Corp Charge transport film, method for producing the same, and light-emitting element and photoelectric conversion element using the same
WO2012063742A1 (en) * 2010-11-09 2012-05-18 株式会社新川 Plasma device and method for manufacturing same
JP2013033603A (en) * 2011-08-01 2013-02-14 Shunsuke Hosokawa Creepage surface discharge type plasma jet generation apparatus
JP2013144766A (en) * 2011-12-16 2013-07-25 Meiritsu Component Kk Surface modifier
JPWO2011148996A1 (en) * 2010-05-25 2013-07-25 国立大学法人 熊本大学 Liquid medium for substance introduction and method for substance introduction into cells
JP2013220987A (en) * 2012-04-19 2013-10-28 Mitsuba Corp Carbon film, polymer product, method for manufacturing carbon film coated material, method of forming film, and film forming device
JP2015134331A (en) * 2014-01-17 2015-07-27 株式会社コバテクノロジー Repair method for vehicle components
JP2016507255A (en) * 2012-12-18 2016-03-10 リンデ アクチエンゲゼルシャフトLinde Aktiengesellschaft Apparatus for providing plasma flow
WO2018115774A1 (en) * 2016-12-22 2018-06-28 Universite De Pau Et Des Pays De L'adour Dielectric barrier discharge plasma reactor
EP3253183A4 (en) * 2015-01-27 2018-09-26 Fuji Machine Mfg. Co., Ltd. Atmospheric-pressure plasma generation device
CN109750276A (en) * 2019-01-28 2019-05-14 中国科学院电工研究所 Based on inert gas/oxygen plasma membrane deposition method and device
TWI739632B (en) * 2020-10-15 2021-09-11 明志科技大學 Surface modification device for treating tube inner wall
US11135626B2 (en) 2012-05-18 2021-10-05 Bruker Nano, Inc. Contamination removal apparatus and method
EP3506847B1 (en) * 2016-09-02 2022-04-20 Leibniz-Institut für Plasmaforschung und Technologie e.V. Device and methods for generating a plasma jet with associated endoscope and use

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101968709B1 (en) * 2017-12-19 2019-04-15 주식회사 메디덴 Plasma dental whitening apparatus

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03219082A (en) * 1989-11-30 1991-09-26 Sumitomo Precision Prod Co Ltd Blowoff-type surface treating device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4446597B2 (en) * 1997-10-20 2010-04-07 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア Coating deposit using atmospheric pressure plasma jet
JP4506110B2 (en) * 2003-06-26 2010-07-21 コニカミノルタホールディングス株式会社 Thin film forming method and thin film manufacturing apparatus
JP4746844B2 (en) * 2003-10-03 2011-08-10 三井化学株式会社 Discharge plasma generation method and apparatus

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03219082A (en) * 1989-11-30 1991-09-26 Sumitomo Precision Prod Co Ltd Blowoff-type surface treating device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TAMURA K. ET AL.: "Ryutai Anteika Corona-gata Taikiatsu Teion Plasma Torch no Kaihatsu to Kobunshi Hyomen Shori eno Oyo", DAI 15 KAI KENKYU HAPPYOKAI. TOKUBETSU KOENKAI YOKOSHU, 2004, pages 101 - 102, XP003024586 *

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008150703A (en) * 2006-11-20 2008-07-03 National Institute Of Advanced Industrial & Technology Processing method using modulated microplasma and apparatus therefor
JP2010539694A (en) * 2007-09-10 2010-12-16 ダウ・コーニング・アイルランド・リミテッド Atmospheric pressure plasma
JP2009221526A (en) * 2008-03-14 2009-10-01 Denso Corp Coating forming method, coating forming apparatus and polymerization method
JP2011026096A (en) * 2009-07-28 2011-02-10 Murata Mfg Co Ltd Gas conveyance apparatus
JP2011139031A (en) * 2009-12-03 2011-07-14 Fujifilm Corp Charge transport film, method for producing the same, and light-emitting element and photoelectric conversion element using the same
US9449732B2 (en) 2009-12-03 2016-09-20 Fujifilm Corporation Charge transport film, method for producing the same, and light-emitting element and photoelectric conversion element using the same
JPWO2011148996A1 (en) * 2010-05-25 2013-07-25 国立大学法人 熊本大学 Liquid medium for substance introduction and method for substance introduction into cells
JP6044032B2 (en) * 2010-05-25 2016-12-14 国立大学法人 熊本大学 Substance introduction method using plasma irradiation apparatus for substance introduction
US10573525B2 (en) 2010-11-09 2020-02-25 Shinkawa Ltd. Plasma apparatus and method for producing the same
JP2012104605A (en) * 2010-11-09 2012-05-31 Shinkawa Ltd Plasma device and method for producing the same
WO2012063742A1 (en) * 2010-11-09 2012-05-18 株式会社新川 Plasma device and method for manufacturing same
JP2013033603A (en) * 2011-08-01 2013-02-14 Shunsuke Hosokawa Creepage surface discharge type plasma jet generation apparatus
JP2013144766A (en) * 2011-12-16 2013-07-25 Meiritsu Component Kk Surface modifier
JP2013220987A (en) * 2012-04-19 2013-10-28 Mitsuba Corp Carbon film, polymer product, method for manufacturing carbon film coated material, method of forming film, and film forming device
US11135626B2 (en) 2012-05-18 2021-10-05 Bruker Nano, Inc. Contamination removal apparatus and method
JP2016507255A (en) * 2012-12-18 2016-03-10 リンデ アクチエンゲゼルシャフトLinde Aktiengesellschaft Apparatus for providing plasma flow
JP2015134331A (en) * 2014-01-17 2015-07-27 株式会社コバテクノロジー Repair method for vehicle components
EP3253183A4 (en) * 2015-01-27 2018-09-26 Fuji Machine Mfg. Co., Ltd. Atmospheric-pressure plasma generation device
EP3506847B1 (en) * 2016-09-02 2022-04-20 Leibniz-Institut für Plasmaforschung und Technologie e.V. Device and methods for generating a plasma jet with associated endoscope and use
US11633617B2 (en) 2016-09-02 2023-04-25 Leibniz-Institut für Plasmaforschung und Technologie e.V. Device and method for generating a plasma jet
FR3061402A1 (en) * 2016-12-22 2018-06-29 Universite De Pau Et Des Pays De L'adour PLASMA DISCHARGE REACTOR WITH DIELECTRIC BARRIER
WO2018115774A1 (en) * 2016-12-22 2018-06-28 Universite De Pau Et Des Pays De L'adour Dielectric barrier discharge plasma reactor
CN109750276A (en) * 2019-01-28 2019-05-14 中国科学院电工研究所 Based on inert gas/oxygen plasma membrane deposition method and device
TWI739632B (en) * 2020-10-15 2021-09-11 明志科技大學 Surface modification device for treating tube inner wall

Also Published As

Publication number Publication date
JP4953255B2 (en) 2012-06-13
JPWO2007105428A1 (en) 2009-07-30

Similar Documents

Publication Publication Date Title
JP4953255B2 (en) Nozzle for plasma generator, plasma generator, plasma surface treatment apparatus, plasma generation method and plasma surface treatment method
US11810756B2 (en) Plasma source and method for removing materials from substrates utilizing pressure waves
AU2014349815B2 (en) Method for generating an atmospheric plasma jet and atmospheric plasma minitorch device
US8328982B1 (en) Low-temperature, converging, reactive gas source and method of use
EP1808056B1 (en) Plasma process
US20060156983A1 (en) Low temperature, atmospheric pressure plasma generation and applications
JP2003514114A (en) Method and apparatus for plasma coating surface finishing
WO2008138901A1 (en) Enhancing plasma surface modification using high intensity and high power ultrasonic acoustic waves
KR20120135534A (en) Atmospheric pressure plasma jet
US20140248444A1 (en) Plasma Treatment Of Substrates
JP2005322416A (en) Atmospheric pressure low-temperature plasma device and surface treating method
Fei et al. Influence of additive gas on electrical and optical characteristics of non-equilibrium atmospheric pressure argon plasma jet
KR100491140B1 (en) Method and apparatus for removing contaminants from the surface of a substrate with atmospheric-pressure plasma
KR200306427Y1 (en) Apparatus for removing contaminants from the surface of a substrate with atmospheric-pressure plasma
LU93222B1 (en) Post-discharge plasma coating device for wired substrates
WO2021193651A1 (en) Atmospheric pressure remote plasma cvd device, film formation method, and plastic bottle manufacturing method
JP2014080647A (en) Plasma treatment apparatus and method of forming hetero film
WO2021065357A1 (en) Film forming device
AU2015258178B2 (en) Plasma source and method for removing materials from substrates utilizing pressure waves
JP2004055301A (en) Plasma treatment device and the plasma treatment method
JP2008053063A (en) Plasma processing device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07714617

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2008505018

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07714617

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)