WO2007097285A1 - 全反射レーザー照射法を用いた質量分析測定の定量化 - Google Patents

全反射レーザー照射法を用いた質量分析測定の定量化 Download PDF

Info

Publication number
WO2007097285A1
WO2007097285A1 PCT/JP2007/052974 JP2007052974W WO2007097285A1 WO 2007097285 A1 WO2007097285 A1 WO 2007097285A1 JP 2007052974 W JP2007052974 W JP 2007052974W WO 2007097285 A1 WO2007097285 A1 WO 2007097285A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample
prism
evanescent light
light
quantitative analysis
Prior art date
Application number
PCT/JP2007/052974
Other languages
English (en)
French (fr)
Inventor
Takashi Korenaga
Masayoshi Ito
Kouhei Shibamoto
Hironobu Fukuzawa
Original Assignee
Tokyo Metropolitan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Metropolitan University filed Critical Tokyo Metropolitan University
Publication of WO2007097285A1 publication Critical patent/WO2007097285A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/04Arrangements for introducing or extracting samples to be analysed, e.g. vacuum locks; Arrangements for external adjustment of electron- or ion-optical components
    • H01J49/0459Arrangements for introducing or extracting samples to be analysed, e.g. vacuum locks; Arrangements for external adjustment of electron- or ion-optical components for solid samples
    • H01J49/0463Desorption by laser or particle beam, followed by ionisation as a separate step
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/71Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light thermally excited
    • G01N21/718Laser microanalysis, i.e. with formation of sample plasma

Definitions

  • the present invention is a quantitative analysis of laser desorption mass spectrometry represented by MALDI-MS (Matrix Assisted Laser Desorption / lonization-Mass Spectrometry).
  • the present invention relates to a laser irradiation method that can be used as a method. Therefore, according to the present invention, it becomes possible to quantitatively analyze pollutants contained in a trace amount in the atmosphere and biomolecules present in a trace amount in the body, and can provide a very useful analysis method for all scientific fields.
  • LD-MS Laser Desorption Mass Spectrometry
  • MALDI—TOF—MS Microx Support
  • Mr. Koichi Tanaka who won the Nobel Prize in Chemistry in 2002, as one of the methods for analyzing macromolecules such as proteins.
  • Laser desorption-time-of-flight-mass spectrometry measuring devices are attracting attention.
  • the greatest feature of the MALDI method is to use a sample in which a compound collectively called a matrix is mixed in a large excess (hundred power thousand times) with a mixed crystal state.
  • Matrix molecules mixed in large excess are converted to thermal energy (vibration energy at the mouth) by absorbing the laser energy, so the irradiation laser (MALDI method generally uses a pulse width of about several ns).
  • Part of the matrix molecules contained in the reach region depth: several ⁇ m, diameter: several hundred ⁇ m
  • the target molecules in the mixed crystal state are vaporized together with the matrix molecules. Since the irradiation laser energy is not received directly, the rate of the dissociation reaction is smaller than the vaporization reaction. In other words, it is possible to greatly reduce the fragment signal generated by dissociation of molecules, which is very effective for identification of huge molecules.
  • MALD and TOF-MS have major drawbacks.
  • the identification of substances can be applied to very large molecules, but it is impossible to quantify the substances.
  • the resolution depends on the radius of curvature of the tip, and the tip of the metal short needle can be created with good reproducibility. Because it is very difficult, it is not suitable for quantitative analysis. In addition, the method using the principle of the near-field optical microscope has not yet reached the practical level because the sensitivity is still insufficient. Furthermore, it is very difficult to detect the number of molecules induced at a time by the surface plasmon electric field induced at the tip of a metal short needle.
  • Patent Document 1 JP 2004-264043
  • An object of the present invention is to quantitatively count the number of molecules of a sample by irradiating the sample with evanescent light without using a matrix in mass spectrometry. Means for solving the problem
  • a quantitative analysis method or apparatus for a sample in which laser light is introduced into a trapezoidal prism and totally reflected on the inner surface of the bottom surface of the prism, whereby evanescent light is reflected on the outer surface of the bottom surface.
  • a quantitative analysis method or apparatus for a sample characterized in that the sample applied to the outer surface is vaporized and ionized.
  • a quantitative analysis method or apparatus for a sample in which two laser beams having different wavelengths are introduced into a trapezoidal prism, and totally reflected on the inner surface of the bottom surface of the prism.
  • a method or apparatus for quantitative analysis of a sample characterized in that surface plasmon is induced on a metal coated on a bottom surface, and the sample coated on the metal is vaporized and ionized by the plasmon.
  • a sample quantitative analysis method or apparatus in which one of two laser beams having different wavelengths is introduced into a trapezoidal prism and totally reflected on the inner surface of the bottom surface of the prism.
  • evanescent light is generated on the outer surface of the bottom surface
  • the sample applied to the outer surface is vaporized by the evanescent light
  • the other laser light is outside the prism and close to the bottom surface of the prism.
  • a sample quantitative analysis method or apparatus wherein the sample is introduced in parallel to ionize the vaporized sample.
  • a quantitative analysis method or apparatus for a sample wherein one of two laser beams having different wavelengths is introduced into a trapezoidal prism and totally reflected on the inner surface of the bottom surface of the prism.
  • the surface plasmon is induced on the metal coated on the bottom surface of the prism, the sample applied on the metal is vaporized by the plasmon, and the other laser beam is external to the prism, and the bottom surface of the prism
  • a method or apparatus for quantitative analysis of a sample characterized in that the sample is introduced in parallel in the vicinity of the sample and the vaporized sample is turned on.
  • a quantitative analysis method or apparatus for a sample in which laser light is introduced into a trapezoidal prism and totally reflected on the inner surface of the bottom surface of the prism, so that it is formed outside the bottom surface of the prism.
  • a quantitative analysis method or apparatus for a sample characterized by inducing surface plasmon on a coated metal and evaporating and ionizing the sample introduced on top of the metal. The invention's effect
  • the present invention relates to a laser desorption mass spectrometry in which a sample is mixed in a matrix. Therefore, the number of molecules present in the volume can be counted by estimating the spot area of the light and the reach distance of the evanescent light, thereby enabling a quantitative analysis.
  • FIG. 1 An explanatory diagram of an example in which two laser beams are totally reflected on the bottom surface of a trapezoidal prism, and a sample is vaporized by using evanescent light generated thereby.
  • FIG.2 Explanatory drawing of an example of vaporizing and ionizing a sample on a metal thin film using surface plasmons generated by two laser beams
  • FIG. 3 One laser beam is totally reflected in the prism, and the other laser beam is directly irradiated onto the sample to vaporize and ionize the sample.
  • FIG.4 An illustration of an example of vaporizing and ionizing a sample by directly irradiating the sample with one laser beam on the metal thin film, and the other laser beam directly irradiating the sample.
  • FIG.5 Illustration of an example of vaporizing a sample with a single laser beam
  • YAG laser was used as the light source, and two lights of 1064nm wavelength and 532nm, 355nm or 266nm light were used. Light with a wavelength of 1064 nm was converted into long-wavelength light through an OPO (optical parametric oscillation) crystal. The two lights were overlapped through a dichroic mirror, condensed through a long-focus lens, and reflected to a trapezoidal prism (Dove prism).
  • OPO optical parametric oscillation
  • Long-wavelength infrared light is mainly used to induce vibrational excitation.
  • the purpose of infrared light that has been wavelength-converted by OPO is to vaporize efficiently by exciting specific vibrations such as the OH stretching vibration of the target molecule.
  • short wavelength ultraviolet light is mainly Irradiate for ionization of the converted molecules.
  • the focal length changes depending on the wavelength, it is necessary to match the focal point (condensing conditions on the sampler: fluence of laser intensity, spot diameter, etc.) before irradiating the prism.
  • the focal length is adjusted using a lens.
  • the irradiation delay time of the two lasers was 0 seconds.
  • the light source for LD uses a Spectra Fijik YAG laser (GCR11) with a pulse width of 8 ns and a repetition period of 1 to 30 Hz (variable).
  • the laser intensity is set so as to sufficiently satisfy the vaporization or ionization conditions.
  • FIG. 1 which is a long side and is referred to as “bottom surface” in the present invention.
  • the incident laser beam is totally reflected on the back side of the bottom surface of the trapezoidal prism (the inner surface of the prism), so that evanescent light (near-field light) is generated outside the bottom surface of the trapezoidal prism.
  • the intensity of the evanescent light attenuates exponentially with respect to the distance from the bottom of the trapezoidal prism, and the distance of 1 gives the incident wavelength, and the refractive index of the prism and air is n, n, and the incident angle.
  • evanescent light Since evanescent light is derived from electric lines of force due to induced dipoles on the prism surface, it has the same energy as incident light, and its existence region depends on the wavelength.
  • Matrix molecules are required when measuring molecules having a large molecular weight. In this case, since quantitative properties are greatly impaired, it is necessary to control the mixed crystal state of the sample well.
  • Infrared laser light (wavelength range: 1 to 4 ⁇ m) is a laser beam obtained by passing through an OPO (Optical Parametric Oscillation) crystal, which is a type of nonlinear optical crystal. Using.
  • OPO Optical Parametric Oscillation
  • the laser beam to be irradiated was condensed by a long focus lens in order to reduce the bias of the laser beam intensity on the irradiation surface in the prism.
  • an aspherical lens having no spherical aberration was used in order to avoid the deformation of the laser light intensity profile depending on the distance of the lens force. By controlling the distance between the two lenses, it was used as a long focal length lens.
  • the sample to be applied on the trapezoidal prism should be a very thin film of sub / m order. The reason is that when the sample thickness is large, the sample molecules near the trapezoidal prism surface that is vaporized by light irradiation are capped with sample molecules in the area that is not irradiated with light, so the amount of molecules that are vaporized accurately is specified. This is because I can't.
  • the spin coating method is a method of rotating a substrate at a high speed and dropping a solution, and the film thickness can be controlled by the rotation speed.
  • the reduction of the wetting angle is performed in order to modify the prism surface and greatly improve the wettability of the sample solvent to the prism surface.
  • hydrophilicity is improved, it is a titanium oxide coating that is known for its antibacterial action and super hydrophilicity.
  • the liquid film can be controlled to a submicrometer by applying a micrometer-order droplet onto the prism surface.
  • a benzene solution of fullerene was applied to the bottom surface of the Dove prism.
  • the wavelength of one incident laser beam is 532 nm, the intensity is about 1 mj / pulse, and the repetition frequency is 10 Hz.
  • the spectrum shown is an average of 1000 measurements.
  • Figure 6 shows the measurement results.
  • the vertical axis in Fig. 6 shows the strength ratio of various carbons in fullerene, and the horizontal axis shows these various carbons.
  • the mass per unit charge is indicated.
  • FIG. 7 is a plot of points where fullerene (C60) was diluted with acetone and applied to a plate, and the intensity of the desorbed and ionized fullerene was detected by TOF-MS using evanescent light.
  • the vertical axis represents the intensity of fullerene (60), and the horizontal axis represents the amount of fullerene (C60).
  • Point A (upper right) in Figure 7 shows the intensity of deionized fullerene (C60) when 100 ⁇ g of fullerene (C60) is diluted with acetone and applied to the plate.
  • Point B (middle) is Fullerene (C60) 100 ⁇ g diluted twice with acetone, ie, 50 ⁇ g fullerene (C60) strength, point C is 4 times diluted, ie 25 xg fullerene (C60)
  • Point D is a plot of the fullerene (C60) strength of 12.
  • Fig. 7 shows that these four points are in a linear relationship. From the strength of various carbons in fullerene shown in Fig. 6, it can be quantified for each type of carbon, that is, the diameter of evanescent light and By estimating the volume of evanescent light reaching from the attenuation distance, it is shown that the molecules of the vaporized sample can be quantified.
  • the laser light irradiation method is the same as in Example 1-1. However, the significance of laser light irradiation is different.
  • a metal thin film (such as gold or silver) is deposited on the bottom surface of the trapezoidal prism with a film thickness of about 50 degrees.
  • the incident laser light is totally reflected on the back side of the bottom surface of the trapezoidal prism, so that surface plasmons are excited by evanescent light on the metal thin film on the bottom surface of the trapezoidal prism.
  • the enhanced photoelectric field induced on the metal surface is estimated to be about 10 times the incident photoelectric field.
  • the surface irregularity becomes a metal thin film of about several dozens, the law of conservation of wave number is broken, which makes it possible to excite surface plasmons that do not depend on the incident angle.
  • the enhanced photoelectric field reaches an average of 3 to 4 digits compared to the incident photoelectric field, and locally an enhancement of several orders of magnitude or more has been reported. It is possible to induce a vaporization reaction more efficiently by exciting a sample on a metal surface using an enhanced photoelectric field via surface plasmon excitation. In addition, because it is in contact with metal, it can be used as a matrix as soon as energy transfer to the metal surface occurs.
  • the metal to be deposited on the prism surface is selected from metal species that can excite surface plasmons such as gold and silver with a single visible laser beam. Modification of the metal surface is not used because it affects surface plasmon excitation.
  • the thickness of the deposited film is preferably about 50 mm.
  • the sample is applied by dropping micrometer-order droplets.
  • the first laser beam is incident from the side of the trapezoidal prism.
  • the incident laser beam is totally reflected on the back side of the bottom surface of the trapezoidal prism, evanescent light is generated on the bottom surface of the trapezoidal prism.
  • the sample vaporized by the evanescent light becomes a punolem and exists in the region near the sample surface.
  • the plume is ionized by the second laser beam. In this case, the wavelengths of the two laser beams are different.
  • the time delay between the first laser beam and the second laser beam is controlled. This is because the plume generated by the first laser beam can cope with the time required for the plume to reach the optical path of the second laser beam, and the plume state change (such as relaxation of the excited state).
  • the first laser beam is incident from the side of the trapezoidal prism.
  • the irradiation method is the same as in Example 1-2.
  • the time delay between the first laser beam and the second laser beam is controlled. This is because the plume generated by the first laser beam can cope with the time required for the plume to reach the optical path of the second laser beam, and the plume state change (such as relaxation of the excited state).
  • the mechanism is the same as in Example 1-2, and the sample is vaporized using the enhanced photoelectric field generated by surface plasmons.
  • Example 5 The sample form in this example is the same as in Example 12 Example 5
  • a thin metal film (gold, silver, etc.) is deposited on the bottom of the trapezoidal prism with a film thickness of about 50 nm.
  • the incident laser light is totally reflected from the back side of the bottom surface of the trapezoid prism.
  • Surface plasmons are excited on the thin film by evanescent light.
  • the enhanced photoelectric field induced on the metal surface is estimated to be about 10 times the incident photoelectric field.
  • the surface irregularity becomes a metal thin film of about several dozens, the law of conservation of wave number is broken, which makes it possible to excite surface plasmons that do not depend on the incident angle.
  • the ratio of the enhanced photoelectric field to the incident photoelectric field reaches an average of 3 to 4 digits, and an enhancement of several digits or more is reported locally. It is possible to induce a vaporization reaction more efficiently by exciting a sample on a metal surface using an enhanced photoelectric field via surface plasmon excitation. In addition, because it is in contact with metal, it can be used as a matrix as soon as energy transfer to the metal surface occurs.
  • the number of sample molecules existing in the volume can be defined by estimating the light arrival volume, which makes it possible to discuss quantitativeness.
  • the accuracy of estimating the light arrival volume is inferior to that of the method of the first embodiment.
  • the estimate is the optical reach X spot area.
  • the metal to be deposited on the prism surface is selected from metal species that can excite surface plasmons such as gold and silver with a single visible laser beam. Modification of the metal surface is not used because it affects surface plasmon excitation.
  • the thickness of the deposited film is preferably about 50 mm.
  • the intensity of vaporizing the sample with only one laser is necessary.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

 本願発明の目的は、質量分析において、マトリックスを用いることなく、エバネッセント光を試料に照射することにより、試料の分子数を定量的にカウントすることである。  レーザー光を台形状のプリズムの底面に平行に導入し、該プリズムの底面の内面において全反射させることにより、該底面の外面においてエバネッセント光を生じせしめ、該エバネッセント光により該外面に塗布された試料を気化させることにより試料の定量的分析を行う。  

Description

明 細 書
全反射レーザー照射法を用いた質量分析測定の定量化
技術分野
[0001] 本願発明は、 MALDI— MS (Matrix Assisted Laser Desorption/lonization-Mass Sp ectrometry:マトリックス支援レーザー脱離イオンィ匕質量分析法)などに代表されるレ 一ザ一脱離質量分析法を定量分析法として用いることを可能とするレーザー照射方 法に関する。従って、本願発明により、大気中に極微量含まれる汚染物質及び体内 に極微量存在する生体分子等の定量分析が可能となり、あらゆる科学領域にとって 非常に有益な分析手法を提供できる。
背景技術
[0002] レーザー脱離-質量分析法(Laser Desorption Mass Spectrometry: LD-MS)は、 19 80年代に注目され、主に金属や半導体などの表面分析に用いられてきた。レーザー を用いているため、レンズを用いて容易に集光が可能であり、微小領域の分析が可 能である。
[0003] し力 ながら、イオンィ匕効率が低ぐまた、 目的分子を解離させてしまうなどの欠点を 持っており、巨大分子の測定が不可能とされていた。
[0004] そのような背景の中、たんぱく質などの巨大分子を分析する手法の一つとして、 20 02年のノーベル化学賞受賞者である田中耕一氏が開発した MALDI— TOF— MS (マ トリックス支援レーザー脱離-飛行時間型-質量分析)測定装置が注目を浴びている。
[0005] MALDI法の最大の特徴は、試料に対してマトリックスと総称される化合物を大過剰( 百倍力 千倍)に混合し、混晶状態とした試料を用いることである。大過剰に混合さ れたマトリックス分子は、レーザーエネルギーを吸収することにより熱エネルギー(ミク 口には振動エネルギー)に変換するため、照射レーザー(MALDI法では一般的に数 n s程度のパルス幅が用いられる)の到達領域 (深さ:数 μ m、径:数 100 μ m)に含まれる マトリックス分子の一部が、パルス幅が数 nsという短パルスレーザーの照射により急速 加熱され、気化あるいは昇華される(図 1参照)。
[0006] この時、混晶状態にあるターゲット分子は、マトリックス分子とともに気化されるが、 直接的に照射レーザーエネルギーを受け取らないため、気化反応に比べ解離反応 の割合が小さくなる。つまり、分子が解離することにより生じるフラグメント信号を大幅 に減少させることが可能となり、巨大な分子の同定に非常に有効となる。
[0007] しかしながら、 MALDト TOF-MSには大きな欠点がある。 MALDト TOF-MSを用いる ことにより、物質の同定はかなり巨大な分子にまで適用されるが、その物質を定量す ることが不可能となった。
[0008] なぜなら、試料はターゲット分子にマトリックス分子を大過剰に加えた後に混晶状態 を作るため、レーザーを照射した位置によりターゲット分子の試料中の存在比率が変 化してしまうからである。また、試料表面が粗ぐ光の侵入長が定義できないため、レ 一ザ一エネルギーの到達体積を見積もることが出来ない。
[0009] 従って、定量性を議論するためには、マトリックス分子を用いない試料形態にし、レ 一ザ一エネルギーの到達体積を制御する必要がある。
[0010] また、金属短針の先端にレーザー光を照射又はファイバ一中を伝播した光の漏れ 光を利用した (レ、わゆる近接場光学顕微鏡の原理を応用した)局所分析を目指すも のは、知られている(下記特許文献 1参照)。
[0011] しかし、上記方法では、金属短針の先端に誘起された表面プラズモンを利用するた め、その分解能は、先端の曲率半径に依存し、金属短針の先端を再現性良く作成す ることが非常に困難であるため、定量分析には不適である。また、この近接場光学顕 微鏡の原理を利用した手法は、実際にはまだまだ感度が足りず、実用レベルに達し ていない。さらに、金属短針の先端に誘起された表面プラズモン電場で一度に誘起 される分子数が非常に小さぐ検出が非常に困難である。
特許文献 1 :特開 2004— 264043
発明の開示
発明が解決しょうとする課題
[0012] 本願発明の目的は、質量分析において、マトリックスを用いることなぐエバネッセン ト光を試料に照射することにより、試料の分子数を定量的にカウントすることである。 課題を解決するための手段
[0013] 本願発明においては、上記課題を以下の手段によって解決することができる。 ( 1 )試料の定量的分析法又は装置であって、レーザー光を台形状のプリズムに導 入し、該プリズムの底面の内面において全反射させることにより、該底面の外面にお いて、エバネッセント光を生じせしめ、該外面に塗布された試料を気化及びイオンィ匕 させることを特徴とする試料の定量的分析法又は装置。
[0014] (2)試料の定量的分析法又は装置であって、波長の異なる 2つのレーザー光を台 形状のプリズムに導入し、該プリズムの底面の内面において全反射させることにより、 該プリズムの底面に被覆した金属上に表面プラズモンを誘起し、該プラズモンにより 該金属上に塗布した試料を気化及びイオン化させることを特徴とする試料の定量的 分析法又は装置。
[0015] (3)試料の定量的分析法又は装置であって、波長の異なる 2つのレーザー光のうち の一方を台形状のプリズムに導入し、該プリズムの底面の内面において全反射させ ることにより、該底面の外面においてエバネッセント光を生じせしめ、該エバネッセン ト光により該外面に塗布された試料を気化させ、他方のレーザー光を該プリズムの外 部であって、該プリズムの底面に近接して平行に導入し、該気化された試料をイオン 化することを特徴とする試料の定量的分析法又は装置。
[0016] (4)試料の定量的分析法又は装置であって、波長の異なる 2つのレーザー光のうち の一方を台形状のプリズムに導入し、該プリズムの底面の内面において全反射させ ることにより、該プリズムの底面に被覆した金属上に表面プラズモンを誘起し、該プラ ズモンにより該金属上に塗布した試料を気化させ、他方のレーザー光を該プリズムの 外部であって、該プリズムの底面に近接して平行に導入し、該気化された試料をィォ ンィ匕することを特徴とする試料の定量的分析法又は装置。
[0017] (5)試料の定量的分析法又は装置であって、レーザー光を台形状のプリズムに導 入し、該プリズムの底面の内面において全反射させることにより、該プリズムの底面外 部に被覆した金属上に表面プラズモンを誘起し、該金属の上部に導入した試料を気 化及びイオンィヒすることを特徴とする試料の定量的分析法又は装置。 発明の効果
[0018] 本願発明は、レーザー脱離質量分析法において、マトリックス中に試料を混入させ ないために、光のスポット面積及びエバネッセント光の到達距離を見積もることにより 、その体積中に存在する分子の数をカウントすることができ、定量的分析を可能とす るものである。
図面の簡単な説明
[0019] [図 1]2本のレーザー光を台形状プリズムの底面において全反射せしめ、それにより 生じたエバネッセント光を利用して試料を気化'イオンィ匕する例の説明図
[図 2]金属薄膜上の試料を 2本のレーザー光により生じた表面プラズモンを利用して 気化'イオン化する例の説明図
[図 3] 1本のレーザー光は、プリズム内の全反射、他方のレーザー光は、試料に直接 照射して試料を気化'イオン化する例の説明図
[図 4]金属薄膜上の試料を 1本のレーザー光は、プリズム内の全反射、他方のレーザ 一光は、試料に直接照射して試料を気化'イオン化する例の説明図
[図 5]1本のレーザー光で試料を気化'イオンィ匕する例の説明図
[図 6]本願発明を利用して、フラーレンの各種カーボンの強度割合を測定した例
[図 7]本願発明を使用した場合のフラーレンにおける強度と量の相関図
発明を実施するための最良の形態
[0020] 以下に、本願発明を実施するための最良の形態を示す。
実施例 1
[0021] < 2本のレーザー光のプリズム内入射(金属非使用) >の例
(1)レーザー光の照射方法
図 1に見られるように、 YAGレーザーを光源とし、波長 1064nmの光と 532nm、 35 5nm又は 266nmの光の 2本の光を用いた。波長 1064nmの光は、 OPO (光パラメト リック発振)結晶を通して、長波長の光に変換した。 2本の光は、ダイクロイツクミラーを 通して重ね合わせ、長焦点レンズを通して集光し、台形のプリズム(ドーブ 'プリズム D ove prism)へ レヽた。
[0022] 長波長の赤外光は、主に振動励起を誘起するために用いている。 OPOにより波長 変換された赤外光は、 目的分子の OH伸縮振動等といった固有の振動を励起するこ とによって効率的に気化するのが目的である。一方で、短波長の紫外光は、主に気 化された分子のイオン化のために照射してレ、る。
[0023] 波長によって焦点距離が変わってしまうため、プリズムに照射する前にその焦点(サ ンプノレ上における集光条件:レーザー強度のフルエンスやスポット径など)を一致さ せる必要があるので、複数のレンズを用いて、焦点距離の調整を行っている。 2本の レーザーの照射遅延時間は、 0秒とした。
[0024] LD用の光源は、スぺクトラ フィジーク社の YAGレーザー(GCR11)を用レ、、パルス 幅が 8 ns、繰り返し周期が 1〜30 Hz (可変)である。また、レーザー強度は、気化ある いはイオンィ匕条件を充分に満たすように設定されてレ、る。
[0025] レーザー光は、台形プリズムの側面から図 1の上面(長い辺であり、本願発明にお いては、「底面」という。)に平行に入射する。この場合、台形プリズムの底面の裏側( プリズムの内面)で入射レーザー光が全反射するため、台形プリズムの底面の外側で はエバネッセント光 (近接場光)が発生する。
[0026] エバネッセント光の強度は、台形プリズム底面からの距離に対して指数関数的に減 衰し、 1 となる距離は、入射波長をえ、プリズム、空気の屈折率を n、 n、入射角度
2 1
を Θとすると、以下の式で与えられる。
d= λ /2 π {n sin _n
2 θ 1 1 Ϋ
[0027] エバネッセント光は、プリズム表面の誘起双極子による電気力線に由来するため、 入射光と同じエネルギーを持ち、その存在領域は波長に依存する。
[0028] 一方で、通常のレーザー光に比べ、非常に局所的に存在するため、光学的に平滑 である台形プリズム表面上にぉレ、ては、よく規定されたナノ空間のみの光照射が可能 となる。
[0029] 言い換えると、エバネッセント光の到達領域から、その中に存在する試料分子の数 を間接的に見積もることによって定量分析を実現することが可能である。
[0030] 分子量の大きな分子などを測定する場合には Matrix分子が必要となるが、この場合 、定量性が大きく損なわれるため、試料の混晶状態などをうまく制御する必要がある。
[0031] Matrix分子を用いない場合においては、試料分子の振動励起のための赤外レーザ 一光と電子励起のための紫外レーザー光の 2本を同軸で照射することによりソフトな イオンィ匕を実現することができる (ί列えば、 International Journal of Mass Spectrometr y 241 (2005) 49-56等参照)。
[0032] 赤外レーザー光(波長領域: 1〜4 μ m)は、非線形光学結晶の一種である OPO (Op tical Parametric Oscillation:光パラメトリック発振)結晶を通すことにより得られたレー ザ一光を用いた。
[0033] また、照射するレーザー光は、プリズム内の照射面においてレーザー光強度の偏り を小さくするために、長焦点レンズにおいて集光した。本実施例においては、レンズ 力 の距離によってレーザー光強度のプロファイルが変形することを避けるために、 球面収差の無い非球面レンズを用いた。 2つのレンズ間距離を制御することにより、 長焦点レンズとして活用した。
[0034] (2)試料の形態
台形プリズム上に塗布する試料は、サブ/ mオーダーの極薄の膜とする。その理由 は、試料の厚みが大きい場合は、光照射によって気化される台形プリズム表面近傍 の試料分子が光照射されない領域の試料分子で蓋をされるため、正確に気化される 分子の量を特定できなレ、ためである。
[0035] 極薄である試料分子の膜を作成する手法として、スピンコーティング法、プリズム表 面の修飾による濡れ角の減少などを利用する。
[0036] スピンコーティング法とは、基板を高速に回転し、溶液を滴下する手法であり、回転 速度によって膜厚を制御することが可能である。
[0037] また、濡れ角の減少は、プリズム表面を修飾し、試料溶媒のプリズム表面への濡れ やすさを大幅に向上させるために行う。例えば、親水性の向上であれば、抗菌作用 や超親水性で知られている酸化チタンコーティングなどである。それに伴レ、、マイクロ メートルオーダーの液滴をプリズム表面に塗布するなどの手法により液膜をサブマイ クロメートルに制御することが可能となる。
[0038] (3)実験結果
試料としてフラーレンのベンゼン溶液をダブプリズムの底面に塗布した。入射レー ザ一光の波長は 532 nm、強度は約 1 mj/pulse、繰り返し周波数は 10 Hzである。なお 、示したスペクトルは 1000回測定の平均である。測定結果を図 6に示す。図 6の縦軸 は、フラーレンの各種カーボンの強度割合を示しており、横軸は、これら各種カーボ ンの電荷数あたりの質量を示してレ、る。
[0039] 図 7は、フラーレン(C60)を、アセトンで希釈してプレートへ塗布し、エバネッセント 光により、脱離イオン化したフラーレンの強度を TOF-MSで検出した点をプロットした ものである。縦軸はフラーレン(60)の強度を示し、横軸は、フラーレン(C60)の量を 示している。
図 7の点 A (右上)は、フラーレン(C60) 100 μ gをアセトンで希釈してプレートへ塗 布したときの脱離イオン化したフラーレン (C60)の強度であり、点 B (真中)は、フラー レン(C60) 100 μ gをアセトンで 2倍に希釈した場合、つまり 50 μ gのフラーレン(C60 )の強度であり、点 Cは、 4倍希釈した場合、つまり 25 x gのフラーレン (C60)の強度 であり、点 Dは 8倍希釈した場合、つまり 12. のフラーレン(C60)の強度をプロッ トしたものである。
この図 7より、これら 4点が直線関係にあることを示しており、図 6に示したフラーレン の各種カーボンの強度から、カーボンの種類ごとに、定量化できること、つまり、エバ ネッセント光の口径及び減衰距離からエバネッセント光到達の体積を見積もることに より、気化した試料の分子を定量化できることを示しているのである。
実施例 2
[0040] < 2本のレーザー光のプリズム内入射 (金属使用) >の場合
[0041] (1)レーザー光の照射方法
図 2に示すように、レーザー光の照射方法は実施例 1—1と同様である。ただし、レ 一ザ一光の照射意義が異なっている。
[0042] 台形プリズムの底面に金属薄膜 (金や銀など)を 50 應程度の膜厚で蒸着する。こ の台形プリズムの側面からレーザー光を入射した場合、台形プリズムの底面の裏側 で入射レーザー光が全反射するため、台形プリズムの底面の金属薄膜上では表面 プラズモンがエバネッセント光により励起される。
[0043] 表面プラズモン電場の減衰常数を見積もるのは困難である。その理由は、表面の 凹凸などの微細構造が強く影響するためである。ただし、平均的な見積もりであれば
、表面から指数関数的に減衰することが知られているので、基準となるものを導入す ることにより、定量的な評価をすることができる。 [0044] ただし、表面プラズモンは、表面のみを伝搬するため、プリズムの屈折率および金 属薄膜の屈折率などにより、表面プラズモン励起には最適入射角度が存在する。ま た、表面プラズモン励起に共鳴する波長が金属によって異なるため、蒸着する金属 種に依存した波長を選択する。
[0045] この場合、金属表面に誘起される増強光電場は、入射光電場の 10倍程度と見積も られる。一方で、表面凹凸が数 10 議程度の金属薄膜になると波数保存則が破れる ため、入射角度に依存することなぐ表面プラズモンを励起することが可能となる。
[0046] この場合、その増強光電場は、入射光電場に比べて平均して 3桁から 4桁にも達し、 局所的にはさらに数桁以上の増強が報告されている。表面プラズモン励起を介した 増強光電場を用いて金属表面の試料を励起することにより、より効率的に気化反応 を誘起することが可能である。また、金属と接しているため、金属表面へのエネルギ 一移動が起こりやすぐ Matrixとしても利用できる。
[0047] Matrix分子を試料に混入しないため、光到達体積を見積もることにより、その体積 中に存在する試料分子の数を規定できるため、定量性の議論が可能となる。この実 施例においては、金属薄膜を介しているため、光到達体積の見積もりは、実施例 1の 手法に比べその精度は劣る。
[0048] (2)試料の形態
プリズム表面に蒸着する金属は、金や銀などの表面プラズモン励起を可視レーザ 一光により可能とする金属種を選択する。金属表面の修飾は、表面プラズモン励起 に影響を及ぼすため、利用しない。蒸着膜の膜厚は、 50 匪程度が好ましい。試料の 塗布はマイクロメートルオーダーの液滴を滴下する。
実施例 3
[0049] <レーザー光 1本プリズム表面通過、 1本プリズム内入射 (金属非使用) >の場合 [0050] (1)レーザー光の照射方法
図 3に示すように、一本目のレーザー光を台形プリズムの側面から入射する。この 場合、台形プリズムの底面の裏側で入射レーザー光が全反射するため台形プリズム の底面ではエバネッセント光が発生する。
[0051] エバネッセント光により気化された試料は、プノレームとなり試料表面近傍領域に存 在するが、そのプルームを二本目のレーザー光によりイオン化する。この場合、二本 のレーザー光の波長は、異なっている。
[0052] また、一本目のレーザー光と二本目のレーザー光との時間遅延を制御する。これは 、一本目のレーザー光により生じるプルームが二本目のレーザー光の光路に到達す る時間、およびプルームの状態変化 (励起状態の緩和など)に対しても対応できるよ うにするためである。
[0053] (2)試料の形態
本実施例における試料形態は、実施例 1 1と同様である。 実施例 4
[0054] <レーザー光 1本プリズム表面通過、 1本プリズム内入射 (金属使用) >の場合
[0055] (1)レーザー光の照射方法
図 4に示すように、一本目のレーザー光を台形プリズムの側面から入射する。照射 方法は、上記実施例 1 _ 2と同様である。
[0056] また、一本目のレーザー光と二本目のレーザー光との時間遅延を制御する。これは 、一本目のレーザー光により生じるプルームが二本目のレーザー光の光路に到達す る時間、およびプルームの状態変化 (励起状態の緩和など)に対しても対応できるよ うにするためである。機構は実施例 1 _ 2と同様であり、表面プラズモンによる増強光 電場を利用して試料を気化させる。
[0057] (2)試料の形態
本実施例における試料形態は、実施例 1 2と同様とする 実施例 5
[0058] <レーザー光 1本プリズム内入射、試料表面吹付け(金属使用) >の場合
[0059] (1)レーザー光の照射方法
図 5に示すように、台形プリズムの底面に金属薄膜 (金や銀など)を 50 nm程度の膜 厚で蒸着する。この台形プリズムの側面からレーザー光を入射した場合、台形プリズ ムの底面の裏側で入射レーザー光が全反射するため、台形プリズムの底面の金属 薄膜上ではエバネッセント光により表面プラズモンが励起される。
[0060] ただし、表面プラズモンは、表面のみを伝搬するため、プリズムの屈折率および金 属薄膜の屈折率などにより、表面プラズモン励起には最適入射角度が存在する。ま た、表面プラズモン励起に共鳴する波長が金属によって異なるため、蒸着する金属 種に依存した波長を選択する。
[0061] この場合、金属表面に誘起される増強光電場は、入射光電場の 10倍程度と見積も られる。一方で、表面凹凸が数 10 議程度の金属薄膜になると波数保存則が破れる ため、入射角度に依存することなぐ表面プラズモンを励起することが可能となる。
[0062] この場合、その増強光電場の入射光電場に比率は、平均して 3桁から 4桁にも達し 、局所的にはさらに数桁以上の増強が報告されている。表面プラズモン励起を介した 増強光電場を用いて金属表面の試料を励起することにより、より効率的に気化反応 を誘起することが可能である。また、金属と接しているため、金属表面へのエネルギ 一移動が起こりやすぐ Matrixとしても利用できる。
[0063] Matrix分子を試料に混入しないため、光到達体積を見積もることにより、その体積 中に存在する試料分子の数を規定できるため、定量性の議論が可能となる。この実 施例においては、金属薄膜を介しているため、光到達体積の見積もりは、実施例 1の 手法に比べその精度は劣る。その見積もりは、光到達距離 Xスポット面積である。
[0064] (2)試料の形態
プリズム表面に蒸着する金属は、金や銀などの表面プラズモン励起を可視レーザ 一光により可能とする金属種を選択する。金属表面の修飾は、表面プラズモン励起 に影響を及ぼすため、利用しない。蒸着膜の膜厚は、 50 匪程度が好ましい。液体試 料は、表面プラズモンの存在する場所の上記金属表面に沿うように導入される。
[0065] 本実施例の場合、 1本のレーザーのみで試料を気化する強度が必要である。

Claims

請求の範囲
[1] 試料の定量的分析法であって、レーザー光を台形状のプリズムの底面に平行に導 入し、該プリズムの底面の内面において全反射させることにより、該底面の外面にお レ、てエバネッセント光を生じせしめ、該エバネッセント光により該外面に塗布された試 料を気化させることを特徴とする試料の定量的分析法。
[2] 請求項 1に記載の定量的分析法において、エバネッセント光の口径及び減衰距離 力 エバネッセント光到達の体積を見積もることにより、上記気化した試料中の分子 の数を算出することを特徴とする試料の定量的分析法。
[3] 請求項 2に記載の定量的分析法において、上記気化した試料をイオン化し、質量 分析を行うことを特徴とする試料の定量的分析法。
[4] 試料の定量的分析法であって、波長の異なる 2つのレーザー光を台形状のプリズ ムに導入し、該プリズムの底面の内面において全反射させることにより、該底面の外 面において、波長の長いエバネッセント光により該外面に塗布された試料を気化させ 、波長の短いエバネッセント光によりイオン化させることを特徴とする試料の定量的分 析法。
[5] 試料の定量的分析法であって、波長の異なる 2つのレーザー光を台形状のプリズ ムに導入し、該プリズムの底面の内面において全反射させることにより、該底面の外 面においてエバネッセント光を生じせしめ、該エバネッセント光により該プリズムの底 面を被覆した金属上に表面プラズモンを誘起し、該プラズモンにより該金属上に塗布 した試料を気化及びイオン化させることを特徴とする試料の定量的分析法。
[6] 試料の定量的分析法であって、波長の異なる 2つのレーザー光のうちの一方を台 形状のプリズムに導入し、該プリズムの底面の内面において全反射させることにより、 該底面の外面においてエバネッセント光を生じせしめ、該エバネッセント光により該 外面に塗布された試料を気化させ、他方のレーザー光を該プリズムの外部であって 、該プリズムの底面に近接して平行に導入し、該気化された試料に照射することによ り該試料をイオン化することを特徴とする試料の定量的分析法。
[7] 試料の定量的分析法であって、波長の異なる 2つのレーザー光のうちの一方を台 形状のプリズムに導入し、該プリズムの底面の内面において全反射させることにより、 該底面の外面においてエバネッセント光を生じせしめ、該エバネッセント光により該 プリズムの底面に被覆した金属上に表面プラズモンを誘起し、該プラズモンにより該 金属上に塗布した試料を気化させ、他方のレーザー光を該プリズムの外部であって 、該プリズムの底面に近接して平行に導入設置し、該気化された試料に照射すること により該試料をイオン化することを特徴とする試料の定量的分析法。
[8] 試料の定量的分析法であって、レーザー光を台形状のプリズムに導入し、該プリズ ムの底面の内面において全反射させることにより、該底面の外面においてエバネッセ ント光を生じせしめ、該エバネッセント光により該プリズムの底面外部に被覆した金属 上に表面プラズモンを誘起し、該プラズモンにより該金属の上部に導入した試料を気 化及びイオンィヒすることを特徴とする試料の定量的分析法。
[9] 試料の気化及びイオン化装置であって、レーザー光を台形状のプリズムの底面に 平行に導入し、該プリズムの底面の内面において全反射させることにより、該底面の 外面においてエバネッセント光を生じせしめ、該エバネッセント光により該外面に塗 布された試料を気化及びイオン化させることを特徴とする試料の気化及びイオン化装 置。
[10] 試料の気化及びイオン化装置であって、波長の異なる 2つのレーザー光を台形状 のプリズムに導入し、該プリズムの底面の内面において全反射させることにより、該底 面の外面において、エバネッセント光を生じせしめ、該外面に塗布された試料を気化 及びイオン化させることを特徴とする試料の気化及びイオン化装置。
[11] 試料の気化及びイオン化装置であって、波長の異なる 2つのレーザー光を台形状 のプリズムに導入し、該プリズムの底面の内面において全反射させることにより、該底 面の外面においてエバネッセント光を生じせしめ、該エバネッセント光により該プリズ ムの底面に被覆した金属上に表面プラズモンを誘起し、該プラズモンにより該金属上 に塗布した試料を気化及びイオン化させることを特徴とする試料の気化及びイオン化 装置。
[12] 試料の気化及びイオン化装置であって、波長の異なる 2つのレーザー光のうちの一 方を台形状のプリズムに導入し、該プリズムの底面の内面において全反射させること により、該底面の外面においてエバネッセント光を生じせしめ、該エバネッセント光に より該外面に塗布された試料を気化させ、他方のレーザー光を該プリズムの外部で あって、該プリズムの底面に近接して平行に導入し、該気化された試料に照射するこ とにより該試料をイオン化させることを特徴とする試料の気化及びイオン化装置。
[13] 試料の気化及びイオン化装置であって、波長の異なる 2つのレーザー光のうちの一 方を台形状のプリズムに導入し、該プリズムの底面の内面において全反射させること により、該底面の外面においてエバネッセント光を生じせしめ、該エバネッセント光に より該プリズムの底面に被覆した金属上に表面プラズモンを誘起し、該プラズモンに より該金属上に塗布した試料を気化させ、他方のレーザー光を該プリズムの外部で あって、該プリズムの底面に近接して平行に導入し、該気化された試料に照射するこ とにより該試料をイオン化させることを特徴とする試料の気化及びイオン化装置。
[14] 試料の気化及びイオン化装置であって、レーザー光を台形状のプリズムに導入し、 該プリズムの底面の内面において全反射させることにより、該底面の外面においてェ バネッセント光を生じせしめ、該エバネッセント光により該プリズムの底面に被覆した 金属上に表面プラズモンを誘起し、該表面プラズモンにより該金属の上部に導入し た試料を気化及びイオン化することを特徴とする試料の気化及びイオン化装置。
[15] 試料の定量的分析装置において、請求項 9から 14のいずれかに記載された試料 の気化及びイオン化装置を用いて、エバネッセント光の口径及び減衰距離を見積も ることにより、気化した試料中の分子の数を算出し、質量分析を行うことを特徴とする 試料の定量的分析装置。
PCT/JP2007/052974 2006-02-22 2007-02-19 全反射レーザー照射法を用いた質量分析測定の定量化 WO2007097285A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006045692A JP2007225395A (ja) 2006-02-22 2006-02-22 全反射レーザー照射法を用いた質量分析測定の定量化
JP2006-045692 2006-02-22

Publications (1)

Publication Number Publication Date
WO2007097285A1 true WO2007097285A1 (ja) 2007-08-30

Family

ID=38437325

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/052974 WO2007097285A1 (ja) 2006-02-22 2007-02-19 全反射レーザー照射法を用いた質量分析測定の定量化

Country Status (2)

Country Link
JP (1) JP2007225395A (ja)
WO (1) WO2007097285A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009081055A (ja) * 2007-09-26 2009-04-16 Tokyo Metropolitan Univ 表面プラズモンによるイオン化を利用した質量分析
JP5291378B2 (ja) * 2008-05-15 2013-09-18 スタンレー電気株式会社 フォトカソード装置
JP2010117245A (ja) * 2008-11-13 2010-05-27 Fujifilm Corp 質量分析方法
JP5875483B2 (ja) * 2012-08-14 2016-03-02 富士フイルム株式会社 質量分析装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11512518A (ja) * 1995-09-08 1999-10-26 ファルマシア バイオセンサー アーベー 表面プラズモン共鳴質量分析法
JP2004016609A (ja) * 2002-06-19 2004-01-22 Omron Healthcare Co Ltd 体液成分濃度測定方法及び体液成分濃度測定装置
WO2005095927A1 (ja) * 2004-03-31 2005-10-13 Omron Corporation 局在プラズモン共鳴センサ及び検査装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0466862A (ja) * 1990-07-06 1992-03-03 Hitachi Ltd 高感度元素分析法及び装置
JPH05142202A (ja) * 1991-11-26 1993-06-08 Hitachi Ltd ガス分析方法および装置
JP3654715B2 (ja) * 1996-07-11 2005-06-02 電気化学工業株式会社 シリコーンオイルの定量分析方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11512518A (ja) * 1995-09-08 1999-10-26 ファルマシア バイオセンサー アーベー 表面プラズモン共鳴質量分析法
JP2004016609A (ja) * 2002-06-19 2004-01-22 Omron Healthcare Co Ltd 体液成分濃度測定方法及び体液成分濃度測定装置
WO2005095927A1 (ja) * 2004-03-31 2005-10-13 Omron Corporation 局在プラズモン共鳴センサ及び検査装置

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
LEE I. ET AL.: "Laser-Induced Surface-Plasmon Desorption of Dye Molecules from Aluminum Films", ANALYTICAL CHEMISTRY, vol. 64, no. 5, 1 March 1992 (1992-03-01), pages 476 - 478, XP003016594 *
NEDELKOV D. ET AL.: "Biomolecular interaction analysis mass spectrometry: A comprehensive microscale proteomics approach", AMERICAN LABORATORY, vol. 33, no. 12, June 2001 (2001-06-01), pages 22 - 25, XP003016596 *
OWEGA S. ET AL.: "Surface Plasmon Resonance-Laser Desorption/Ionization-Time-of-Flight Mass Spectrometry", ANALYTICAL CHEMISTRY, vol. 70, no. 11, 1 June 1998 (1998-06-01), pages 2360 - 2365, XP000766189 *
SUYAMA T. ET AL.: "Laser Evanescent Wave-ho o Riyo shita Ryoshin Baisei Kagobutsu no Abura.Mizu Kaimen eno Kyuchaku Hyoka", POLYMER PREPRINTS, JAPAN, vol. 51, no. 5, 10 May 2002 (2002-05-10), pages 1044, XP003016595 *

Also Published As

Publication number Publication date
JP2007225395A (ja) 2007-09-06

Similar Documents

Publication Publication Date Title
US7910881B2 (en) Mass spectrometry with laser ablation
US6080586A (en) Sub-micron chemical imaging with near-field laser desorption
JP3345590B2 (ja) 基板処理方法及び装置
JP3618377B2 (ja) アルゴン存在下でのレーザにより発生したプラズマでの光学発光分光測定法による元素分析方法
JP6134975B2 (ja) 測定用デバイス、測定装置および方法
Woods et al. Depth profiling of heterogeneously mixed aerosol particles using single-particle mass spectrometry
WO2007097285A1 (ja) 全反射レーザー照射法を用いた質量分析測定の定量化
JP2005534041A (ja) 走査プローブ技術を用いた局部的に高分解能な表層の質量分光学的特性調査のための方法
Brummel et al. Ion beam induced desorption with postionization using high repetition femtosecond lasers
CN109884034A (zh) 一种飞秒等离子体光栅诱导击穿光谱检测的方法及装置
WO2014027447A1 (ja) 質量分析装置
Ghorai et al. Tip-enhanced laser ablation sample transfer for biomolecule mass spectrometry
JP2008256585A (ja) 元素分析装置および元素分析方法
JPWO2005074003A1 (ja) レーザ分析装置及び方法
US6451616B1 (en) Analysis of molecules bound to solid surfaces using selective bond cleavage processes
JP7164300B2 (ja) 汚染識別装置および方法
JP6180974B2 (ja) スパッタ中性粒子質量分析装置
CN111077134B (zh) 具有测碳功能的便携式libs***及碳元素的检测方法
JP2002122543A (ja) 元素分析装置および元素分析方法
JPH08189917A (ja) 質量分析装置
Kohno et al. Mechanisms of ion ejection from liquid beam under irradiation of laser by simultaneous detection of ions produced inside a liquid beam and ejected into a vacuum
Binetti et al. Abstraction of oxygen from dioxygen on Al (111) revealed by resonant multiphoton ionization laser spectrometry
Nakamura et al. Nanometer-scale depth resolution and sensitive surface analysis using laser ablation atomic fluorescence spectroscopy
US20240213012A1 (en) Ion generator, mass spectrometer and method of generating ions
JPH10206330A (ja) レーザ発光分光分析方法およびその装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07714500

Country of ref document: EP

Kind code of ref document: A1