WO2007093203A1 - Stylingprodukt - Google Patents

Stylingprodukt Download PDF

Info

Publication number
WO2007093203A1
WO2007093203A1 PCT/EP2006/010680 EP2006010680W WO2007093203A1 WO 2007093203 A1 WO2007093203 A1 WO 2007093203A1 EP 2006010680 W EP2006010680 W EP 2006010680W WO 2007093203 A1 WO2007093203 A1 WO 2007093203A1
Authority
WO
WIPO (PCT)
Prior art keywords
shaped body
product according
copolymer
film
forming
Prior art date
Application number
PCT/EP2006/010680
Other languages
English (en)
French (fr)
Inventor
Thorsten Knappe
Original Assignee
Henkel Kommanditgesellschaft Auf Aktien
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henkel Kommanditgesellschaft Auf Aktien filed Critical Henkel Kommanditgesellschaft Auf Aktien
Publication of WO2007093203A1 publication Critical patent/WO2007093203A1/de

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • A61K8/0216Solid or semisolid forms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/81Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • A61K8/8141Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • A61K8/8152Homopolymers or copolymers of esters, e.g. (meth)acrylic acid esters; Compositions of derivatives of such polymers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q5/00Preparations for care of the hair
    • A61Q5/06Preparations for styling the hair, e.g. by temporary shaping or colouring
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/80Process related aspects concerning the preparation of the cosmetic composition or the storage or application thereof
    • A61K2800/87Application Devices; Containers; Packaging

Definitions

  • the present invention relates to a product for treating keratinous fibers, comprising at least one shaped body for hair styling and a metering device containing the molded body or bodies, and a method for the temporary deformation of keratinous fibers using this product.
  • Styling agents for the deformation of keratinous fibers have long been known and find use in various embodiments for the construction, for refreshing and for fixing hairstyles, which can be obtained in many hair types only using firming agents.
  • Both hair treatment products which serve a permanent, as well as those that serve a temporary shaping of the hair, play an important role.
  • Temporary shapes which should give a good grip, without affecting the healthy appearance of the hair, such as their gloss, can be achieved for example by hair sprays, hair waxes, hair gels, hair drier, etc.
  • Corresponding temporary shaping agents usually contain synthetic polymers as the shaping component. Preparations containing a dissolved or dispersed polymer can be applied to the hair by means of propellant gases or by a pumping mechanism. Hair gels and hair waxes, however, are usually not applied directly to the hair, but distributed by means of a comb or hands in the hair.
  • Known forms of temporary styling agents can often not be dosed with satisfactory accuracy.
  • the stability of the products can be problematic for prolonged storage under unfavorable conditions.
  • the amount of styling polymer that can be incorporated into the styling agent is limited for reasons of stability.
  • the degree of hold of a styling agent depends essentially on the type and amount of the molding polymer, thus the degree of hold to be achieved is limited.
  • the known forms of temporary styling agents also generally require a large amount of excipients that do not serve the actual design of the hairstyle, but the formulation of the respective agent.
  • the styling agents often contain large amounts of organic solvents.
  • the preparation as hair spray also requires other organic compounds that are used as blowing agents. This has the consequence that the Environment is contaminated with volatile organic compounds (VOCs); on the other hand, the product volume and thus the volume of the required packaging increases considerably.
  • VOCs volatile organic compounds
  • WO 01/45647 A2 describes moldings which, in addition to conventional cosmetic constituents, contain from 5 to 80% by weight of a disintegrant and from 5 to 40% by weight of a thickener. After being dissolved in water, the moldings give viscous preparations which, depending on the other ingredients of the moldings, serve a wide variety of cosmetic purposes. Among other things, the use is called as a styling agent.
  • WO 2004/082650 A1 discloses shaped bodies for styling hairstyles which comprise, in a cosmetically acceptable carrier, at least one polymer, at least one disintegrants and at least one cosmetic active ingredient.
  • the packaging of the shaped bodies in both documents, between primary packaging, the shaped body, i. the packaging, which is in contact with the mold surface directly on its inside, and the secondary packaging distinguished.
  • the secondary packaging is merely optional, whereby it is explicitly stated that no requirements are placed on such a packaging, so that all customary materials and systems can be used.
  • the package is called one or more moldings in a bag or bag made of paper and / or plastic film or in a resealable tube made of glass, plastic or metal.
  • the type of packaging tablet-shaped styling agent has special significance. If the styling tablets are filled into conventional containers, for example crucibles, cardboard boxes or cans, the user usually removes the required number of styling tablets by hand. There is a risk that moisture is introduced into the packaging, so that the styling tablets dissolve in the course of time in the packaging and then stick together and with the walls of the package. In principle, this can be avoided with the packaging of individual or a small number of shaped articles proposed in WO 01/45647 A2 and WO 2004/082650 A1, for example in a moisture-impermeable film. Accordingly, for example, in the packaging of tablet-shaped dishwashing agents proceed.
  • Object of the present invention was therefore to provide a styling product for the temporary shaping of keratinic fibers available, which allows an excellent and durable styling result, is in the most compact form available, and even with regular use allows accurate and easy dosing.
  • a first subject of the present invention is therefore a product for the treatment of keratinic fibers consisting of
  • a metering device comprising at least one storage chamber and at least one closure element
  • the storage chamber contains the molding or bodies.
  • keratinic fibers are understood to mean furs, wool, feathers and, in particular, human hair.
  • the products according to the invention allow a very simple and reliable dosing of the moldings and allow the removal of individual moldings without touching the moldings remaining in the dosing apparatus with the hands.
  • the shaped body for styling contains at least one film-forming and / or setting polymer.
  • the film-forming and / or setting polymer is preferably contained in the molding in an amount of from 1 to 100% by weight, more preferably from 5 to 50% by weight, most preferably from 10 to 40% by weight, based on the total molding.
  • film-forming and / or setting polymers may be included. These film-forming and / or setting polymers may be both permanent and temporary cationic, anionic, nonionic or amphoteric.
  • an ionic film-forming and / or setting polymer with an amphoteric and / or nonionic film-forming and / or setting polymer is used in common.
  • the use of at least two oppositely charged film-forming and / or setting polymers is also preferred. In the latter case, a particular embodiment may in turn additionally contain at least one further amphoteric and / or nonionic film-forming and / or setting polymer.
  • Film-forming polymers are polymers which leave a continuous film on the skin, the hair or the nails when drying.
  • Such film formers can be used in a wide variety of cosmetic products, such as for example face masks, make-up, hair fixatives, hair sprays, hair gels, hair waxes, hair treatments, shampoos or nail varnishes.
  • Particularly preferred are those polymers which have sufficient solubility in water, alcohol or water / alcohol mixtures. This makes it possible to produce appropriate solutions that can be applied or processed in a simple manner.
  • the film-forming polymers may be of synthetic or natural origin.
  • Film-forming polymers furthermore include those polymers which, when used in 0.01 to 20% strength by weight aqueous, alcoholic or aqueous-alcoholic solution, are capable of depositing a transparent polymer film on the hair.
  • the film-forming polymers may be anionic, amphoteric, nonionic, permanent cationic or temporarily cationically charged.
  • Suitable and inventively preferably used synthetic film-forming, hair-fixing polymers are homopolymers or copolymers which are composed of at least one of the following monomers: vinylpyrrolidone, vinylcaprolactam, vinyl esters such as vinyl acetate, vinyl alcohol, acrylamide, methacrylamide, alkyl and dialkylacrylamide, alkyl and Dialkyl methacrylamide, alkyl acrylate, alkyl methacrylate, propylene glycol or ethylene glycol, wherein the alkyl groups of these monomers are preferably C 1 - to C 7 alkyl groups, more preferably C 1 - to C 3 alkyl groups.
  • Examples include homopolymers of vinylcaprolactam, vinylpyrrolidone or N-vinylformamide.
  • Further suitable synthetic film-forming, hair-fixing polymers are copolymers of vinyl pyrrolidone and vinyl acetate, terpolymers of vinylpyrrolidone, vinyl acetate and vinyl propionate, polyacrylamides, for example, under the trade designations Akypomine ® P 191 by the company CHEM-Y, Emmerich or Sepigel ® 305 by the company Seppic be distributed; Which are marketed under the trade names Elvanol.RTM ® from DuPont or Vinol ® 523/540 by Air Products polyvinyl alcohols as well as polyethylene glycol / polypropylene glycol copolymers, for example, under the trade names Ucon ® Union Carbide sold.
  • Suitable natural film-forming polymers include cellulose derivatives, eg. B. hydroxypropyl cellulose having a molecular weight of 30,000 to 50,000 g / mol, which is sold for example under the trade name Nisso Sl ® by Lehmann & Voss, Hamburg, and strong derivatives, such as modified corn starch, for example, under the trade name Amaze ® from National Starch, Bridgewater / NJ.
  • cellulose derivatives eg. B. hydroxypropyl cellulose having a molecular weight of 30,000 to 50,000 g / mol
  • strong derivatives such as modified corn starch, for example, under the trade name Amaze ® from National Starch, Bridgewater / NJ.
  • Firming polymers contribute to the maintenance and / or build-up of the hair volume and hair fullness of the overall hairstyle.
  • These so-called setting polymers are at the same time film-forming polymers and therefore generally typical substances for shaping hair treatment compositions such as hair fixatives, hair foams, hair waxes, hair sprays.
  • the film formation can be quite selective and connect only a few fibers.
  • Substances which further impart hydrophobic properties to the hair are preferred because they reduce the tendency of the hair to absorb moisture, that is, water. As a result, the limp drooping of the strands of hair is reduced, thus ensuring a long-lasting hairstyle structure and preservation.
  • the test method for this is often the so-called curl retention test applied.
  • These polymeric substances can also be successfully incorporated into leave-on and rinse-off hair treatments or shampoos. Since polymers are often multifunctional, that is, show several applications-wise desirable effects, numerous polymers can be found in several groups divided according to the particular mode of action, as well as in the CTFA Handbook. Because of the importance of polymers in particular, they should therefore be listed explicitly in the form of their INCI names. In this list, therefore, of course, especially the mentioned film-forming polymers again.
  • Examples of common film-forming, setting polymers are acrylamide / ammonium acrylate copolymer, acrylamide / DMAPA acrylate / methoxy PEG methacrylate copolymer, acrylamidopropyltrimonium chloride / acrylamide copolymer, acrylamidopropyltrimonium Chlorides / Acrylates Copolymer, Acrylates / Acetoacetoxyethyl Methacrylate Copolymer, Acrylates / Acrylamide Copolymer, Acrylates / Ammonium Methacrylate Copolymer, Acrylates / t-Butyl Acrylamide Copolymer, Acrylates Copolymer, Acrylates / C1-2 Succinates / Hydroxy Acrylates Copolymer, Acrylates / Lauryl Acrylates / Stearyl Acrylates / Ethylamine Oxides Methacrylate Copolymer, Acrylates / Octylacrylamide Copolymer
  • the hair styling moldings comprise at least one film-forming and / or setting polymer composed of vinylpyrrolidone-vinyl acetate copolymers, vinyl acetate-crotonic acid copolymers, vinylcaprolactam-vinylpyrrolidone-dimethylaminoethyl methacrylate copolymers, octylacrylamide-acrylate-butylaminoethyl methacrylate copolymers and quaternized vinylpyrrolidone copolymers. Dimethylaminoethylmethacrylat copolymers is selected.
  • the film-forming and / or setting the polymer to the vinylpyrrolidone-vinyl acetate copolymers Luviskol ® VA 64 powder or PVP / VA S 630, the vinyl acetate-crotonic acid copolymers, sold under the trade name Aristoflex ® A 60, the vinylcaprolactam vinyl pyrrolidone-dimethylaminoethyl methacrylate copolymer with tradename Advantage ® LC-e, that available under the name Amphomer ® amphoteric octylacrylamide-acrylate-butylaminoethyl-methacrylate copolymer or quaternized by reaction with diethyl vinylpyrrolidone-dimethylaminoethyl methacrylate copolymer available under the Trade name Gafquat ® 755N is sold.
  • the shaped bodies for hairstyling preferably contain at least one vinylpyrrolidone / vinyl acetate copolymer.
  • the shaped body preferably further contains at least one disintegrating agent.
  • disintegrants are also often described in the literature as disintegration aids or disintegration agents. Such substances are incorporated into the moldings in order to shorten the disintegration times.
  • disintegration agent or "disintegration accelerator” is understood as meaning excipients which are suitable for rapid disintegration of moldings in water or gastric juice and for the release of the pharmaceuticals in resorbable form.
  • disintegrating agent for the purposes of the present invention includes gas-evolving components, preformed and trapped gases and disintegrants and mixtures thereof.
  • gas-evolving components are used as disintegrants. Upon contact with water, these components react with each other to form in-situ formation of gases which generate a pressure in the molded body which causes it to disintegrate into smaller particles.
  • suitable acids Preference is given to mono-, di- or trihydric acids having a pK a of from 1.0 to 6.9.
  • Preferred acids are citric, malic, maleic, malonic, itaconic, tartaric, oxalic, glutaric, glutamic, lactic, fumaric, glycolic and mixtures thereof. Particularly preferred is citric acid.
  • the citric acid in particulate form, the particles having a diameter of less than 1000 ⁇ m, in particular less than 700 ⁇ m, very particularly preferably less than 400 ⁇ m.
  • Other alternative suitable acids are the homopolymers or copolymers of acrylic acid, maleic acid, methacrylic acid or itaconic acid having a molecular weight of 2,000 to 200,000. Particularly preferred are homopolymers of acrylic acid and copolymers of acrylic acid and maleic acid.
  • preferred bases are alkali metal silicates, carbonates, bicarbonates and mixtures thereof. Metasilicates, bicarbonates and carbonates are particularly preferred, bicarbonates are most preferred.
  • particulate hydrogencarbonates having a particle diameter of less than 1000 ⁇ m, in particular less than 700 ⁇ m, very particularly preferably less than 400 ⁇ m.
  • Sodium or potassium salts of the above bases are particularly preferred.
  • the gas is preformed or trapped so that upon onset of dissolution of the molded article, gas evolution begins and further dissolution is accelerated.
  • suitable gases are air, carbon dioxide, N 2 O, oxygen and / or other non-toxic, non-combustible gases.
  • disintegrating agents in a third, particularly preferred embodiment of the present invention disintegrating agents, disintegrating agents, also referred to as disintegrants or disintegrating agents, are incorporated into the moldings in order to shorten the disintegration times.
  • Swelling disintegration aids are, for example, synthetic polymers such as polyvinylpyrrolidone (PVP) or natural polymers or modified natural substances such as cellulose and starch and their derivatives, alginates or casein derivatives.
  • PVP polyvinylpyrrolidone
  • natural polymers such as polyvinylpyrrolidone (PVP) or natural polymers or modified natural substances such as cellulose and starch and their derivatives, alginates or casein derivatives.
  • Disintegrating agents based on cellulose are used as preferred disintegrating agents in the context of the present invention, so that preferred shaped bodies contain such cellulose-based disintegrating agents in amounts of from 5 to 80% by weight, preferably from 5 to 30% by weight, based on the total shaped body.
  • Pure cellulose has the formal gross composition (C 6 H 10 Os) n and is formally a ⁇ -1,4-polyacetal of cellobiose, which in turn is composed of two molecules of glucose.
  • Suitable celluloses consist of about 500 to 5000 glucose units and therefore have average molecular weights of 50,000 to 500,000.
  • Cellulose-based disintegrating agents which can be used in the context of the present invention are also cellulose derivatives obtainable by polymer-analogous reactions of cellulose.
  • Such chemically modified celluloses include, for example, products of esterifications or etherifications in which hydroxy hydrogen atoms have been substituted.
  • Celluloses in which the hydroxy groups have been replaced by functional groups which are not bonded via an oxygen atom can also be used as cellulose derivatives.
  • the group of cellulose derivatives includes, for example, alkali metal celluloses, carboxymethylcellulose (CMC), cellulose esters and ethers, and aminocelluloses.
  • the cellulose derivatives mentioned are preferably not used as the sole cellulosic disintegrating agent but are used in admixture with cellulose.
  • the content of these mixtures of cellulose derivatives is preferably below 50% by weight, particularly preferably below 20% by weight, based on the cellulose-based disintegrating agent. It is particularly preferred to use cellulose-based disintegrating agent which is free of cellulose derivatives.
  • the cellulose used as a disintegration aid can not be used in finely divided form, but must be converted into a coarser form, for example, granulated or compacted, before admixing with the premixes to be tabletted.
  • the particle sizes of such Disintegrating agents are usually above 200 microns, preferably at least 90 wt .-% between 300 and 1600 microns and in particular at least 90 wt .-% between 400 and 1200 microns.
  • Such disintegration auxiliaries are for example available commercially under the name of Arbocel ® from Rettenmaier.
  • a preferred disintegration assistants for example, Arbocel ® TF-30-HG.
  • microcrystalline cellulose is preferably used as a cellulose-based disintegrant or as a component of this component.
  • This microcrystalline cellulose is obtained by partial hydrolysis of celluloses under conditions which attack and completely dissolve only the amorphous regions (about 30% of the total cellulose mass) of the celluloses, leaving the crystalline regions (about 70%) intact.
  • Subsequent deaggregation of the microfine celluloses produced by the hydrolysis yields the microcrystalline celluloses which have primary particle sizes of about 5 ⁇ m and can be compacted, for example, into granules having an average particle size of 200 ⁇ m.
  • Suitable microcrystalline cellulose is available commercially for example under the trade name Avicel ®.
  • disintegrants which may be present within the meaning of the invention are, for example, collidone, alginic acid and their alkali metal salts, amorphous or even partially crystalline layered silicates (bentonites), polyacrylates or polyethylene glycols.
  • the disintegrating agents can be homogeneously distributed macroscopically in the molded body, but microscopically they form zones of increased concentration due to their production.
  • the shaped bodies for styling hairstuff 5 to 80 wt .-% of a disintegrating agent Preferably, the shaped bodies for styling hairstuff 5 to 80 wt .-% of a disintegrating agent.
  • film-forming and / or setting polymers on the one hand, and suitable disintegrating agents, on the other hand, some film-forming and / or setting polymers, for example polyvinylpyrrolidone, are at the same time disintegrants.
  • some film-forming and / or setting polymers for example polyvinylpyrrolidone, are at the same time disintegrants.
  • a further disintegrating agent is added, more preferably a disintegrating agent based on cellulose.
  • the accelerated dissolution of the shaped bodies can also be achieved by pre-granulation of the further constituents of the shaped body.
  • the shaped bodies for hairstyle design contain, in addition to the disintegrants, a mixture of starch and at least one saccharide.
  • a mixture of starch and at least one saccharide is preferred.
  • Said mixture is preferably present in a weight ratio of starch and the saccharides used from 10: 1 to 1: 10, more preferably from 1: 1 to 1: 10, most preferably from 1: 4 to 1: 7 in the molding.
  • the disaccharides used are preferably selected from lactose, maltose, sucrose, trehalose, turanose, gentiobiose, melibiose and cellobiose. Particular preference is given to using lactose, maltose and sucrose and very particularly preferably lactose.
  • the starch-disaccharide mixture is contained in the shaped body, for example, in an amount of 5 to 60% by weight, preferably 20 to 40% by weight, based on the mass of the entire shaped body.
  • Film-forming and / or setting polymer and disintegrating agent may have a thickening effect. Accordingly, the molded articles do not necessarily contain further thickening agents.
  • the shaped bodies preferably contain at least one thickener, more preferably in an amount of from 5 to 40% by weight.
  • the thickener is an anionic, synthetic polymer.
  • Preferred anionic groups are the carboxylate and sulfonate groups.
  • anionic monomers from which the polymeric anionic thickeners may consist are acrylic acid, methacrylic acid, crotonic acid, itaconic acid, maleic anhydride and 2-acrylamido-2-methylpropanesulfonic acid.
  • the acidic groups may be wholly or partly present as sodium, potassium, ammonium, mono- or triethanolammonium salt.
  • Preferred monomers are maleic anhydride and in particular 2-acrylamido-2-methylpropanesulfonic acid and acrylic acid.
  • Preferred anionic homopolymers are uncrosslinked and crosslinked polyacrylic acids. Allyl ethers of pentaerythritol, sucrose and propylene may be preferred crosslinking agents. Such compounds are for example available under the trade drawing Carbopol ® commercially. Also preferred is the homopolymer of 2-acrylamido-2-methylpropanesulfonic acid, which is available for example under the name Rheothik ® 11-80 is commercially. Within this embodiment, it may further be preferred to use copolymers of at least one anionic monomer and at least one nonionic monomer. With regard to the anionic monomers, reference is made to the substances listed above. Preferred nonionic monomers are acrylamide, methacrylamide, acrylic acid esters, methacrylic acid esters, itaconic acid mono- and diesters, vinylpyrrolidone, vinyl ethers and vinyl esters.
  • Preferred anionic copolymers are, for example, copolymers of acrylic acid, methacrylic acid or their C 1 - to C 6 -alkyl esters, as sold under the INCI declaration Acrylates Copolymers.
  • a preferred commercial product is, for example, Aculyn ® 33 from Rohm & Haas.
  • preference is also given to copolymers of acrylic acid, methacrylic acid or their C 1 - to C 6 -alkyl esters and the esters of an ethylenically unsaturated acid and an alkoxylated fatty alcohol.
  • Suitable ethylenically unsaturated acids are, in particular, acrylic acid, methacrylic acid and itaconic acid; suitable alkoxylated fatty alcohols are in particular steareth-20 or ceteth-20.
  • Such copolymers are sold by Rohm & Haas under the trade name Aculyn ® 22 and by National Starch under the trade names Structure ® Structure 2001 ® 3,001th
  • Preferred anionic copolymers are also acrylic acid-acrylamide copolymers and in particular polyacrylamide copolymers with sulfonic acid-containing monomers.
  • a particularly preferred anionic copolymer consists of 70 to 55 mol% of acrylamide and 30 to 45 mol% of 2-acrylamido-2-methylpropanesulfonic acid, wherein the sulfonic acid group is wholly or partly in the form of sodium, potassium, ammonium, mono- or triethanolammonium Salt is present.
  • This copolymer can also be crosslinked, with preference being given to crosslinking agents used being polyolefinically unsaturated compounds such as tetraallyloxythane, allylsucrose, allylpentaerythritol and methylenebisacrylamide.
  • crosslinking agents used being polyolefinically unsaturated compounds such as tetraallyloxythane, allylsucrose, allylpentaerythritol and methylenebisacrylamide.
  • Such a polymer is contained in the commercial products Sepigel ® 305 and Simulgel® ® 600 from SEPPIC.
  • the use of these compounds, in addition to the polymer component, a hydrocarbon mixture (C 13 - C 14 -lsoparaffin or Isohexadecan) and a non-ionic emulsifier (Laureth-7 or polysorbate-80) has proved to be particularly advantageous in the context of the teaching of the invention.
  • Polymers of maleic anhydride and methyl vinyl ether, in particular those with crosslinks, are preferred thickeners.
  • a cross-linked with 1, 9-decadiene maleic acid methyl vinyl ether copolymer is available under the name ® Stabileze QM.
  • the thickener is a cationic synthetic polymer.
  • Preferred cationic groups are quaternary ammonium groups.
  • such polymers in which the quaternary ammonium group over a C 1 . 4- hydrocarbon group are bonded to a constructed from acrylic acid, methacrylic acid or their derivatives polymer backbone have been found to be particularly suitable.
  • R 1 -H or -CH 3
  • R 2, R 3 and R 4 are independently selected from Ci. 4 alkyl, alkenyl or hydroxyalkyl groups
  • m 1, 2, 3 or 4
  • n is a natural number
  • X ' is a physiologically acceptable organic or inorganic anion
  • copolymers consisting essentially of the in formula (I ) and nonionic monomer units are particularly preferred cationic thickeners.
  • R 1 is a methyl group
  • R 2 , R 3 and R 4 are methyl groups
  • m has the value 2.
  • Suitable physiologically acceptable counterions X ' are, for example, halide ions, sulfate ions, phosphate ions, methosulfate ions and organic ions such as lactate, citrate, tartrate and acetate ions. Preference is given to halide ions, in particular chloride.
  • a particularly suitable homopolymer is, if desired crosslinked, poly (methacryloyl oxyethyltrimethylammoniumchlorid) with the INCI name Polyquaternium-37.
  • the crosslinking can be carried out with the aid of poly olefinically unsaturated compounds, for example divinylbenzene, tetraallyloxyethane, methylenebisacrylamide, diallyl ether, polyallylpolyglyceryl ethers, or allyl ethers of sugars or sugar derivatives such as erythritol, pentaerythritol, arabitol, monnitol, sorbitol, sucrose or glucose.
  • Methylenebisacrylamide is a preferred crosslinking agent.
  • the homopolymer is preferably used in the form of a non-aqueous polymer dispersion which should not have a polymer content of less than 30% by weight.
  • Such polymer dispersions are available under the names Salcare ® SC 95 (about 50% polymer content, an additional component: Mineral oil (INCI name: Mineral Oil) and tridecyl-polyoxypropylene-polyoxyethylene-ether (INCI name: PPG-1 trideceth-6) ) and Salcare ® SC 96 (about 50% polymer content, additional components: mixture of diesters of propylene glycol with a mixture of caprylic and Capric acid (INCI name: Propylene Glycol Dicaprylate / Dicaprate) and tridecyl polyoxypropylene polyoxyethylene ether (INCI name: PPG-1-Trideceth-6) are commercially available.
  • Copolymers having monomer units of the formula (I) contain as nonionic monomer units preferably acrylamide, methacrylamide, acrylic acid-C M -alkyl ester and methacrylic acid-C 1-4 -alkyl ester. Among these nonionic monomers, the acrylamide is particularly preferred. These copolymers can also be crosslinked, as described above for the homopolymers. A copolymer preferred according to the invention is the crosslinked acrylamide-methacryloyloxyethyltrimethylammonium chloride copolymer. Such copolymers in which the monomers are present in a weight ratio of about 20:80, commercially available as about 50% non-aqueous polymer dispersion under the name Salcare ® SC 92nd
  • naturally occurring thickeners are used.
  • Preferred thickening agents of this embodiment are, for example, nonionic guar gum.
  • both modified and unmodified guar gums can be used.
  • Unmodified guar gums are, for example, sold under the trade name Jaguar ® C from Rhone Poulenc.
  • Modified guar gums preferred according to the invention contain Cr to C 6 -hydroxyalkyl groups. Preferably, the groups are hydroxymethyl, hydroxyethyl, hydroxypropyl and hydroxybutyl.
  • Such modified guar gums are known in the art and can be prepared, for example, by reaction of the guar gums with alkylene oxides.
  • the degree of hydroxyalkylation which corresponds to the number of alkylene oxide molecules consumed in relation to the number of guar gums of free hydroxy groups, is preferably between 0.4 and 1.2.
  • modified guar gum under the trade names Jaguar ® HP8, Jaguar ® HP60, Jaguar ® HP120, Jaguar DC 293 and Jaguar ® ® HP105 Rhone Poulenc are commercially available.
  • biosaccharide gums of microbial origin such as scleroglucan gums or xanthan gums, gums from plant exudates such as gum arabic, ghatti gum, karaya gum, gum tragacanth, carrageenan gum, agar agar, locust bean gum, pectins, Alginates, starch fractions and derivatives such as amylose, amylopectin and dextrins, cellulose derivatives such as methylcellulose, carboxyalkylcelluloses and hydroxyalkylcelluloses.
  • scleroglucan gums or xanthan gums gums from plant exudates such as gum arabic, ghatti gum, karaya gum, gum tragacanth, carrageenan gum, agar agar, locust bean gum, pectins, Alginates, starch fractions and derivatives such as amylose, amylopectin and dextrins, cellulose derivative
  • Preferred hydroxyalkylcelluloses are, in particular, the hydroxyethylcelluloses Hercules are marketed under the names Cellosize ® Amerchol and Natrosol ®.
  • Suitable carboxyalkyl are especially the carboxymethylcelluloses as sold under the names Blanose ® by Aqualon, Aquasorb ® and ambergum ® from Hercules and Cellgon ® from Montello.
  • phyllosilicates have proven to be particularly suitable in the context of the present invention.
  • clays such as bentonite, and synthetic layered silicates such as that sold by Sud Chemie under the trademark Optigel ® magnesium phyllosilicate are preferred.
  • the thickening agents are contained in the moldings preferably in an amount of 10 to 40 wt .-%, in particular from 15 to 30 wt .-%.
  • the hair styling moldings contain at least one inorganic and at least one organic thickener.
  • the hair styling moldings may further contain the auxiliaries and additives conventionally added to conventional styling agents.
  • auxiliaries and additives are care substances.
  • a silicone oil and / or a silicone gum can be used as a care material.
  • Silicone oils or silicone gums which are suitable according to the invention are in particular dialkyl and alkylaryl siloxanes, for example dimethylpolysiloxane and methylphenylpolysiloxane, and also their alkoxylated, quaternized or else anionic derivatives. Preference is given to cyclic and linear polydialkylsiloxanes, their alkoxylated and / or aminated derivatives, dihydroxypoly-dimethylsiloxanes and polyphenylalkylsiloxanes.
  • Silicone oils cause a wide variety of effects. For example, at the same time they influence the dry and wet combability, the grip of dry and wet hair and the shine.
  • the term silicone oils is understood by the person skilled in the art as meaning several structures of silicon-organic compounds. These are first dimethiconols and dimethicones, such as the marketed by Dow Corning under the name Dow Corning ® 193 Surfactant PEG-12 dimethicones understood. These may be both linear and branched as well as cyclic or cyclic and branched.
  • dimethicone copolyols such as those available from Dow Corning under the name Dow Corning® 5330 Fluid are sold, and amino-functional silicones, especially the silicones, which are summarized under the INCI name Amodimethicone.
  • a conditioner also a cationic surfactant can be used.
  • Cationic surfactants of the quaternary ammonium compounds, esterquats and amidoamines are preferred.
  • Preferred quaternary ammonium compounds are ammonium halides, in particular chlorides and bromides, such as alkyltrimethylammonium chlorides, dialkyldimethylammonium chlorides and thalkylmethylammonium chlorides, eg.
  • the long alkyl chains of the above-mentioned surfactants preferably have 10 to 18 carbon atoms.
  • the amount of conditioning surfactant must be carefully tailored to the overall composition.
  • the addition of surface-active constituents is dispensed with.
  • Nurturing polymers are also suitable as a care substance.
  • a first group of caring polymers are the cationic polymers.
  • Cationic polymers are to be understood as meaning polymers which have a group in the main and / or side chain which may be “temporary” or “permanent” cationic.
  • “permanently cationic” refers to those polymers which have a cationic group, irrespective of the pH of the agent. These are usually polymers containing a quaternary nitrogen atom, for example in the form of an ammonium group.
  • Preferred cationic groups are quaternary ammonium groups.
  • such polymers in which the quaternary ammonium group are bonded via a C ⁇ -hydrocarbon group to a polymer main chain composed of acrylic acid, methacrylic acid or derivatives thereof have proven to be particularly suitable.
  • a particularly suitable homopolymer is, if desired, crosslinked, poly (meth acryloyloxyethyltrimethylammonium chloride) with the INCI name Polyquaternium-37.
  • the crosslinking can be carried out with the aid of poly olefinically unsaturated compounds, for example divinylbenzene, tetraallyloxyethane, methylenebisacrylamide, diallyl ether, polyallylpolyglyceryl ethers, or allyl ethers of sugars or sugar derivatives such as erythritol, pentaerythritol, arabitol, mannitol, sorbitol, sucrose or glucose.
  • poly olefinically unsaturated compounds for example divinylbenzene, tetraallyloxyethane, methylenebisacrylamide, diallyl ether, polyallylpolyglyceryl ethers, or allyl ethers of sugars or sugar derivatives such as
  • Methylenebisacrylamide is a preferred crosslinking agent.
  • cationized protein hydrolysates are to be paid to the cationic polymers, wherein the underlying protein hydrolyzate from the animal, for example from collagen, milk or keratin, from the plant, for example from wheat, corn, rice, potatoes, soy or almonds, marine life forms, for example from fish collagen or algae, or biotechnologically derived protein hydrolysates.
  • the protein hydrolyzates on which the cationic derivatives according to the invention are based can be obtained from the corresponding proteins by chemical, in particular alkaline or acid hydrolysis, by enzymatic hydrolysis and / or a combination of both types of hydrolysis.
  • cationic protein hydrolyzates are to be understood as meaning quaternized amino acids and mixtures thereof.
  • the quaternization of the protein hydrolyzates or amino acids is often carried out using quaternary ammonium salts such as N, N-dimethyl-N- (n-alkyl) -N- (2-hydroxy-3-chloro-n-propyl) ammonium halides.
  • the cationic protein hydrolysates may also be further derivatized.
  • the cationic protein hydrolysates and derivatives according to the invention those mentioned under the INCI names in the "International Cosmetic Ingredient Dictionary and Handbook", (seventh edition 1997, The Cosmetic, Toiletry, and Fragrance Association 1101 17 th Street, NW, Suite 300 Cocodimonium Hydroxypropyl Hydrolyzed Casein, Cocodimonium Hydroxypropyl Hydrolyzed Collagen, Cocodimonium Hydroxypropyl Hydrolyzed Collagen, Cocodimonium Hydroxypropyl Hydrolyzed Hair Keratin, Cocodimonium Hydroxypropyl Hydrolyzed Keratin, Cocodimonium Hydroxypropyl Hydrolyzed Rice Protein, Cocodimonium Hydroxypropyl Hydrolyzed Soy Protein, Cocodimonium Hydroxypropyl Hydrolyzed Wheat Protein, Hydroxypropyl Arginine Lauryl / Myristyl Ether HCl, Hydroxypropy
  • polymers which can be used according to the invention are amphoteric polymers.
  • At least one vitamin, a provitamin, a vitamin precursor and / or one of their derivatives can furthermore be used.
  • vitamins, pro-vitamins and vitamin precursors are preferred, which are usually assigned to groups A, B, C, E, F and H. Particularly preferred are vitamins belonging to the B group or to the vitamin B complex, most preferably vitamin B 5 (pantothenic acid, panthenol and pantolactone).
  • At least one plant extract can be used.
  • extracts are produced by extraction of the whole plant. However, in individual cases it may also be preferred to prepare the extracts exclusively from flowers and / or leaves of the plant.
  • short-chain carboxylic acids may in particular be advantageous.
  • carboxylic acids which may be saturated or unsaturated and / or straight-chain or branched or cyclic and / or aromatic and / or heterocyclic and have a molecular weight of less than 750.
  • preference may be given to saturated or unsaturated straight-chain or branched carboxylic acids having a chain length of from 1 to 16 C atoms in the chain, very particular preference being given to those having a chain length of from 1 to 12 C atoms in the chain.
  • protein hydrolysates and / or their derivatives wherein the use of protein hydrolysates of plant origin, eg. Soy, almond, pea, potato and wheat protein hydrolysates, is preferred.
  • Such products are, for example, under the trademarks Gluadin ® (Cognis), diamine ® (Diamalt) ® (Inolex), Hydrosoy ® (Croda), hydro Lupine ® (Croda), hydro Sesame ® (Croda), Hydro tritium ® (Croda) and Crotein ® (Croda) available.
  • protein hydrolysates Although the use of the protein hydrolysates is preferred as such, amino acid mixtures otherwise obtained may be used in their place, if appropriate. Also possible is the use of derivatives of protein hydrolysates, for example in the form of their fatty acid condensation products. Such products are sold for example under the names Lamepon ® (Cognis), Lexein ® (Inolex), Crolastin ® (Croda), Crosilk ® (Croda) or Crotein ® (Croda).
  • enzymes, pearl extracts and lipids and oily substances for example vegetable oils, liquid paraffin oils, isoparaffin oils, synthetic hydrocarbons and ester oils, are suitable as a care substance.
  • auxiliaries and additives can be added.
  • UV filters are not subject to any general restrictions with regard to their structure and their physical properties. Rather, all UV filters which can be used in the cosmetics sector and whose absorption maximum is in the UVA (315-400 nm), in the UVB (280-315 nm) or in the UVC ( ⁇ 280 nm), are suitable. Area is located. UV filters with an absorption maximum in the UVB range, in particular in the range from about 280 to about 300 nm, are particularly preferred.
  • the UV filters preferred according to the invention can be selected, for example, from substituted benzophenones, p-aminobenzoic acid esters, diphenylacrylic acid esters, cinnamic acid esters, salicylic acid esters, benzimidazoles and o-aminobenzoic acid esters.
  • An example is here 2-hydroxy-4-methoxybenzophenone-5-sulfonic acid and its sodium salt (Benzophenone-4; Uvasorb ® S 5; Uvinul ® MS 40) mentioned.
  • the shaped bodies for hairstyling further contain at least one or more substantive dyes.
  • the shaped bodies for styling hair can contain alkalizing agents, usually alkali metal or alkaline earth metal hydroxides, ammonia or organic amines.
  • alkalizing agents are monoethanolamine, monoisopropanolamine, 2-amino-2-methyl-propanol, 2-amino-2-methyl-1,3-propanediol, 2-amino-2-ethyl-1,3-propanediol, 2-amino-2 -methylbutanol and triethanolamine and alkali and alkaline earth metal hydroxides.
  • monoethanolamine, triethanolamine and 2-amino-2-methyl-propanol and 2-amino-2-methyl-1, 3-propanediol are preferred within the scope of this group.
  • ⁇ -amino acids such as ⁇ -aminocaproic acid as alkalizing agent is also possible.
  • the hair styling moldings may take any geometric shape, such as concave, convex, biconcave, biconvex, cubic, tetragonal, orthorhombic, cylindrical, spherical, cylinder segment, disc, tetrahedral, dodecahedral, octahedral, conical, pyramidal, ellipsoid, five, seven and octagonal prismatic as well as rhombohedral forms. Even completely irregular surfaces such as arrow or animal shapes, trees, clouds, etc. can be realized.
  • the geometric shape is matched to the metering device.
  • a simple geometric shape such as cubes, cuboids, spheres and corresponding space elements with flat side surfaces and in particular cylindrical configurations to choose with a circular or oval cross-section.
  • This cylindrical configuration detects the presentation form from the tablet to compact cylinder pieces with a height to diameter ratio greater than 1.
  • the base molding has corners and edges, these are preferably rounded.
  • an embodiment with rounded corners and chamfered edges is preferred.
  • the various components of the shaped body are not compressed to form a uniform tablet, but tablets are produced during tabletting, which have a plurality of layers, ie at least two layers. It is also possible that these different layers have different dissolution rates. This can result in advantageous performance properties of the molded body. For example, if components are included in the moldings that interact negatively, it is possible to incorporate one component in the faster soluble layer and incorporate the other component into a slower soluble layer so that the components do not already during the dissolution process react with each other.
  • the moldings can usually be produced by compression in commercially available hydraulic presses, eccentric presses or rotary presses. Suitable procedures are described, for example, in WO 01/45647 A2 on pages 16-20, to which reference is explicitly made here.
  • the shaped bodies are packaged in a metering device. This allows the safe and reliable dosage and removal of the moldings.
  • the metering device is preferably designed so that the moldings can be removed individually from a storage chamber by manual actuation of a closure element.
  • Dispensing devices for dispensable piece goods suitable for dispensing tablets, sweeteners or other solid, lumpy foods in the pharmaceutical and food industries are suitable as metering devices, for example.
  • metering device Commercially available sweetener dispensers or a drop shaft tablet dispenser according to DE 197 37 746 A1 and DE 197 37 747 A1 are preferably used as the metering device, and the metering device is particularly preferably a commercially available sweetener dispenser.
  • a second aspect of the invention is a process for temporarily deforming keratinous fibers, wherein at least one shaped body is taken from the product according to the invention, this is dissolved in water and the resulting viscous preparation is applied to the fibers.
  • the application of the resulting application preparation is carried out in a customary manner, for example by distributing the preparation with the hands or a comb in the hair.
  • This approach has the advantage that only the amount of actually required moldings is removed. The remaining in the product moldings are not affected and therefore do not come in contact with moisture or dirt particles.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Birds (AREA)
  • Epidemiology (AREA)
  • Cosmetics (AREA)

Abstract

Produkt zur Behandlung keratinischer Fasern, bestehend aus (A) einer Dosiervorrichtung, umfassend mindestens eine Vorratskammer und mindestens ein Verschlusselement, und (B) mindestens einem Formkörper zur Frisurengestaltung, enthaltend mindestens ein filmbildendes und/oder festigendes Polymer, wobei die Vorratskammer den oder die Formkörper enthalt, sowie ein Verfahren zur temporären Verformung keratinischer Fasern unter Verwendung dieses Produkts.

Description

"Stylingprodukt"
Die vorliegende Erfindung betrifft ein Produkt zur Behandlung keratinischer Fasern, bestehend aus mindestens einem Formkörper zur Frisurengestaltung und einer Dosiervorrichtung, die den oder die Formkörper enthält, sowie ein Verfahren zur temporären Verformung keratinischer Fasern unter Verwendung dieses Produkts.
Stylingmittel zur Verformung keratinischer Fasern sind lange bekannt und finden in verschiedener Ausgestaltung Einsatz zum Aufbau, zur Auffrischung und zur Fixierung von Frisuren, die sich bei vielen Haartypen nur unter Verwendung festigender Wirkstoffe erhalten lassen. Dabei spielen sowohl Haarbehandlungsmittel, die einer permanenten, als auch solche, die einer temporären Formgebung der Haare dienen, eine wichtige Rolle. Temporäre Formgebungen, die einen guten Halt ergeben sollen, ohne das gesunde Aussehen der Haare, wie zum Beispiel deren Glanz, zu beeinträchtigen, können beispielsweise durch Haarsprays, Haarwachse, Haargele, Fönwellen etc. erzielt werden.
Entsprechende Mittel zur temporären Formgebung enthalten als formgebende Komponente üblicherweise synthetische Polymere. Zubereitungen, die ein gelöstes oder dispergiertes Polymer enthalten, können mittels Treibgasen oder durch einen Pumpmechanismus auf das Haar aufgebracht werden. Haargele und Haarwachse werden hingegen in der Regel nicht direkt auf das Haar appliziert, sondern mittels eines Kamms oder der Hände im Haar verteilt.
Bekannte Formen temporärer Stylingmittel lassen sich oftmals nicht mit zufriedenstellender Genauigkeit dosieren. Auch die Stabilität der Produkte kann bei längerer Lagerung unter ungünstigen Bedingungen problematisch sein. Insbesondere bei Gelen ist die Menge an formgebendem Polymer, die in das Stylingmittel eingearbeitet werden kann, aus Stabilitätsgründen limitiert. Da der Haltegrad eines Stylingmittels im wesentlichen von der Art und Menge des formgebenden Polymers abhängt, ist damit auch der zu erreichende Haltegrad limitiert. Die bekannten Formen temporärer Stylingmittel erfordern zudem in der Regel eine große Menge an Hilfsstoffen, die nicht der eigentlichen Gestaltung der Frisur, sondern der Formulierung des jeweiligen Mittels dienen. So enthalten die Stylingmittel oftmals große Mengen organischer Lösungsmittel. Die Konfektionierung als Haarspray erfordert zudem weitere organische Verbindungen, die als Treibmittel Verwendung finden. Dies hat zum einen die Folge, dass die Umwelt mit flüchtigen organischen Verbindungen (VOC) belastet wird, zum anderen erhöht sich so das Produktvolumen und damit das Volumen der benötigten Verpackungen erheblich.
Um diese Nachteile der üblichen Formen temporärer Stylingmittel zu vermeiden, wurde bereits vorgeschlagen, Stylingmittel als feste Formkörper, insbesondere in Form von Tabletten zu konfektionieren.
So beschreibt WO 01/45647 A2 Formkörper, die neben üblichen kosmetischen Bestandteilen 5 bis 80 Gew.-% eines Zerfallshilfsmittels und 5 bis 40 Gew.-% eines Verdickungsmittels enthalten. Die Formkörper ergeben nach Auflösung in Wasser viskose Zubereitungen, die in Abhängigkeit von den weiteren Inhaltsstoffen der Formkörper verschiedensten kosmetischen Zwecken dienen. Unter anderem wird der Einsatz als Stylingmittel genannt.
Aus WO 2004/082650 A1 sind Formkörper zur Frisurengestaltung bekannt, die in einem kosmetisch akzeptablen Träger mindestens ein Polymer, mindestens einen Zerfallshilfsmittel und mindestens einen kosmetischen Wirkstoff enthalten.
Bezüglich der Verpackung der Formkörper wird in beiden Dokumenten zwischen Primärverpackung der Formkörper, d.h. der Verpackung, die an ihrer Innenseite direkt mit der Formkörperoberfläche in Kontakt ist, und der Sekundärverpackung unterschieden. Die Sekundärverpackung ist lediglich optional, wobei explizit ausgeführt wird, dass an eine solche Verpackung keinerlei Anforderungen gestellt werden, so dass alle üblichen Materialien und Systeme eingesetzt werden können. Als Primärverpackung wird die Verpackung jeweils eines oder mehrerer Formkörper in einem Sack oder Beutel aus Papier und/oder Kunststofffolie oder in einem wiederverschließbaren Röhrchen aus Glas, Kunststoff oder Metall genannt.
Es hat sich aber gezeigt, dass der Art der Verpackung tablettenförmiger Stylingmittel besondere Bedeutung zukommt. Werden die Stylingtabletten in übliche Behältnisse, beispielsweise Tiegel, Kartonagen oder Dosen abgefüllt, so entnimmt der Anwender die benötigte Anzahl an Stylingtabletten in der Regel mit den Händen. Dabei besteht die Gefahr, dass Feuchtigkeit in die Verpackung eingetragen wird, so dass sich die Stylingtabletten im Laufe der Zeit in der Verpackung anlösen und dann miteinander und mit den Wänden der Verpackung verkleben. Dies lässt sich prinzipiell mit der in WO 01/45647 A2 und WO 2004/082650 A1 vorgeschlagenen Verpackung einzelner oder einer kleinen Anzahl von Formkörpern in beispielsweise eine für Feuchtigkeit undurchlässige Folie vermeiden. Entsprechend wird beispielsweise bei der Verpackung von tablettenförmigen Geschirrspülmitteln vorgegangen. Da die Menge an Stylingmittel, die für eine Anwendung benötigt wird, jedoch relativ gering ist, und Stylingtabletten daher vergleichsweise klein sind, ist dieses Vorgehen aus ökonomischen und ökologischen Gründen nicht sinnvoll. Aufgabe der vorliegenden Erfindung war es daher, ein Stylingprodukt zur temporären Formgebung keratinischer Fasern zur Verfügung zur stellen, das ein hervorragendes und haltbares Stylingergebnis ermöglicht, in möglichst kompakter Form vorliegt, und auch bei regelmäßigem Einsatz genaues und einfaches Dosieren erlaubt.
Es wurde nunmehr gefunden, dass dies durch Konfektionierung eines festen, tablettenförmigen Stylingmittels in einer geeigneten Dosiervorrichtung erreicht werden kann.
Ein erster Gegenstand der vorliegenden Erfindung ist daher ein Produkt zur Behandlung keratinischer Fasern, bestehend aus
(A) einer Dosiervorrichtung, umfassend mindestens eine Vorratskammer und mindestens ein Verschlusselement, und
(B) mindestens einem Formkörper zur Frisurengestaltung, enthaltend mindestens ein filmbildendes und/oder festigendes Polymer,
wobei die Vorratskammer den oder die Formkörper enthält.
Unter keratinischen Fasern sind dabei erfindungsgemäß Pelze, Wolle, Federn und insbesondere menschliche Haare zu verstehen.
Die erfindungsgemäßen Produkte erlauben eine sehr einfache und zuverlässige Dosierung der Formkörper und erlauben die Entnahme einzelner Formkörper ohne dass die in der Dosiervorrichtung verbleibenden Formkörper mit den Händen berührt werden.
Der Formkörper zur Frisurengestaltung enthält mindestens ein filmbildendes und/oder festigendes Polymer.
Das filmbildende und/oder festigende Polymer ist in dem Formkörper vorzugsweise in einer Menge von 1 bis 100 Gewichtsprozent, besonders bevorzugt von 5 bis 50 Gewichtsprozent, ganz besonders bevorzugt in einer Menge von 10 bis 40 Gewichtsprozent, bezogen auf den gesamten Formkörper, enthalten. Selbstverständlich können auch mehrere filmbildende und/oder festigende Polymere enthalten sein. Dabei können diese filmbildenden und/oder festigenden Polymere sowohl permanent als auch temporär kationisch, anionisch, nichtionisch oder amphoter sein. Bei der Verwendung von mindestens zwei filmbildenden und/oder festigenden Polymeren können diese selbstverständlich unterschiedliche Ladungen aufweisen. Erfindungsgemäß bevorzugt kann es sein, wenn ein ionisches filmbildendes und/oder festigendes Polymer mit einem amphoteren und/oder nichtionischen filmbildenden und/oder festigenden Polymer gemeinsam verwendet wird. Auch die Verwendung mindestens zweier gegensätzlich geladener filmbildender und/oder festigender Polymere ist bevorzugt. In letzterem Falle kann eine besondere Ausführungsform wiederum zusätzlich mindestens ein weiteres amphoteres und/oder nichtionisches filmbildendes und/oder festigendes Polymer enthalten.
Da Polymere häufig multifunktional sind, können deren Funktionen nicht immer klar und eindeutig voneinander abgegrenzt werden. Insbesondere gilt dies für filmbildende und festigende Polymere. Viele Polymere, die primär als filmbildend beschrieben werden, haben auch festigende Eigenschaften und umgekehrt. Es wird an dieser Stelle daher explizit darauf verwiesen, dass im Rahmen der vorliegenden Erfindung sowohl filmbildende als auch festigende Polymere wesentlich sind. Da beide Eigenschaften nicht völlig unabhängig voneinander sind, werden unter dem Begriff „festigende Polymere" auch immer „filmbildende Polymere" verstanden und umgekehrt.
Zu den bevorzugten Eigenschaften der filmbildenden Polymeren zählt die Filmbildung. Unter filmbildenden Polymeren sind solche Polymere zu verstehen, welche beim Trocknen einen kontinuierlichen Film auf der Haut, dem Haar oder den Nägeln hinterlassen. Derartige Filmbildner können in den unterschiedlichsten kosmetischen Produkten wie beispielsweise Gesichtsmasken, Make-up, Haarfestigern, Haarsprays, Haargelen, Haarwachsen, Haarkuren, Shampoos oder Nagellacken verwendet werden. Bevorzugt sind insbesondere solche Polymere, die eine ausreichende Löslichkeit in Wasser, Alkohol oder Wasser/Alkohol-Gemischen besitzen. So lassen sich entsprechende Lösungen herstellen, die sich auf einfache Art und Weise anwenden bzw. weiterverarbeiten lassen. Die filmbildenden Polymere können synthetischen oder natürlichen Ursprungs sein.
Unter filmbildenden Polymeren werden weiterhin solche Polymere verstanden, die bei Anwendung in 0,01 bis 20 Gew.-%-iger wässriger, alkoholischer oder wässrigalkoholischer Lösung in der Lage sind, auf dem Haar einen transparenten Polymerfilm abzuscheiden. Die filmbildenden Polymere können dabei sowohl anionisch, amphoter, nicht-ionisch, permanent kationisch oder temporär kationisch geladen sein.
Geeignete und erfindungsgemäß bevorzugt eingesetzte synthetische, filmbildende, haarfestigende Polymere sind Homo- oder Copolymere, die aus mindestens einem der folgenden Monomere aufgebaut sind: Vinylpyrrolidon, Vinylcaprolactam, Vinylester wie z.B. Vinylacetat, Vinylalkohol, Acrylamid, Methacrylamid, Alkyl- und Dialkylacrylamid, Alkyl- und Dialkyl- methacrylamid, Alkylacrylat, Alkylmethacrylat, Propylenglykol oder Ethylenglykol, wobei die Alkylgruppen dieser Monomere vorzugsweise C1- bis C7-Alkylgruppen, besonders bevorzugt C1- bis C3-Alkylgruppen sind. Beispielhaft seien genannt Homopolymere des Vinylcaprolactams, des Vinylpyrrolidons oder des N-Vinylformamids. Weitere geeignete synthetische filmbildende, haarfestigende Polymere sind z.B. Copolymerisate aus Vinylpyrrolidon und Vinylacetat, Terpolymere aus Vinylpyrrolidon, Vinylacetat und Vinylpropionat, Polyacrylamide, die beispielsweise unter den Handelsbezeichnungen Akypomine® P 191 von der Firma CHEM-Y, Emmerich, oder Sepigel® 305 von der Firma Seppic vertrieben werden; Polyvinylalkohole, die beispielsweise unter den Handelsbezeichnungen Elvanol® von Du Pont oder Vinol® 523/540 von der Firma Air Products vertrieben werden sowie Polyethylenglykol/Polypropylenglykol-Copolymere, die beispielsweise, unter den Handelsbezeichnungen Ucon® der Union Carbide vertrieben werden.
Geeignete natürliche filmbildende Polymere sind z.B. Cellulosederivate, z. B. Hydroxypropyl- cellulose mit einem Molekulargewicht von 30.000 bis 50.000 g/mol, welche beispielsweise unter der Handelsbezeichnung Nisso Sl® von der Firma Lehmann & Voss, Hamburg, vertrieben wird, und Starkederivate, wie z.B. modifizierte Maisstärke, welche beispielsweise unter der Handelsbezeichnung Amaze® von der Firma National Starch, Bridgewater/NJ, vertrieben wird.
Festigende Polymere tragen zum Halt und/oder zum Aufbau des Haarvolumens und der Haarfülle der Gesamtfrisur bei. Diese sogenannten festigenden Polymere sind gleichzeitig auch filmbildende Polymere und daher generell typische Substanzen für formgebende Haarbehandlungsmittel wie Haarfestiger, Haarschäume, Haarwachse, Haarsprays. Die Filmbildung kann dabei durchaus punktuell sein und nur einige Fasern miteinander verbinden.
Substanzen, welche dem Haar weiterhin hydrophobe Eigenschaften verleihen, sind hierbei bevorzugt, weil sie die Tendenz des Haares, Feuchtigkeit, also Wasser, zu absorbieren, verringern. Dadurch wird das schlaffe Herunterhängen der Haarsträhnen vermindert und somit ein langanhaltender Frisurenaufbau und -erhalt gewährleistet. Als Testmethode hierfür wird häufig der sogenannte curl-retention - Test angewendet. Diese polymeren Substanzen können weiterhin erfolgreich in leave-on und rinse-off Haarkuren oder Shampoos eingearbeitet werden. Da Polymere häufig multifunktional sind, das heißt mehrere anwendungstechnisch erwünschte Wirkungen zeigen, finden sich zahlreiche Polymere in mehreren nach der jeweiligen Wirkungsweise eingeteilten Gruppen, so auch im CTFA Handbuch. Wegen der Bedeutung gerade der festigenden Polymere sollen diese daher explizit in Form ihrer INCI - Namen aufgelistet werden. In dieser Liste finden sich somit selbstverständlich gerade auch die genannten filmbildenden Polymere wieder.
Beispiele für gebräuchliche filmbildende, festigende Polymere sind Acrylamide/Ammonium Acrylate Copolymer, Acrylamides/DMAPA Acrylates/Methoxy PEG Methacrylate Copolymer, Acrylamidopropyltrimonium Chloride/Acrylamide Copolymer, Acrylamidopropyltrimonium Chloride/Acrylates Copolymer, Acrylates/Acetoacetoxyethyl Methacrylate Copolymer, Acrylates/Acrylamide Copolymer, Acrylates/Ammonium Methacrylate Copolymer, Acrylates/t- Butylacrylamide Copolymer, Acrylates Copolymer, Acrylates/C1-2 Succinates/Hydroxyacrylates Copolymer, Acrylates/Lauryl Acrylate/Stearyl Acrylate/Ethylamine Oxide Methacrylate Copolymer, Acrylates/Octylacrylamide Copolymer, Acrylates/Octylacrylamide/Diphenyl Amodimethicone Copolymer, Acrylates/Stearyl Acrylate/Ethylamine Oxide Methacrylate Copolymer, Acrylates/VA Copolymer, Acrylates/VP Copolymer, Adipic Acid/Diethylenetriamine Copolymer, Adipic Acid/Dimethylaminohydroxypropyl Diethylenetriamine Copolymer, Adipic Acid/Epoxypropyl Diethylenetriamine Copolymer, Adipic Acid/Isophthalic Acid/Neopentyl Glycol/Trimethylolpropane Copolymer, AIIyI Stearate/VA Copolymer, Aminoethylacrylate Phosphate/Acrylates Copolymer, Aminoethylpropanediol-Acrylates/Acrylamide Copolymer, Aminoethylpropanediol-AMPD- Acrylates/Diacetoneacrylamide Copolymer, Ammonium VA/Acrylates Copolymer, AMPD- Acrylates/Diacetoneacrylamide Copolymer, AMP-Acrylates/Allyl Methacrylate Copolymer, AMP- Acrylates/C1-18 Alkyl Acrylates/C1-8 Alkyl Acrylamide Copolymer, AMP- Acrylates/Diacetoneacrylamide Copolymer, AMP-Acrylates/Dimethylaminoethylmethacrylate Copolymer, Bacillus/Rice Bran Extract/Soybean Extract Ferment Filtrate, Bis- Butyloxyamodimethicone/PEG-60 Copolymer, Butyl Acrylate/Ethylhexyl Methacrylate Copolymer, Butyl Acrylate/Hydroxypropyl Dimethicone Acrylate Copolymer, Butylated PVP, Butyl Ester of Ethylene/MA Copolymer, Butyl Ester of PVM/MA Copolymer, Calcium/Sodium PVM/MA Copolymer, Com Starch/Acrylamide/ Sodium Acrylate Copolymer, Diethylene Glycol- amine/Epichlorohydrin/Piperazine Copolymer, Dimethicone Crosspolymer, Diphenyl Amodimethicone, Ethyl Ester of PVM/MA Copolymer, Hydrolyzed Wheat Protein/PVP Crosspolymer, Isobutylene/Ethyltnaleimide/ Hydroxyethylmaleimide Copolymer, Isobutylene/MA Copolymer, Isobutylmethacrylate/Bis-Hydroxypropyl Dimethicone Acrylate Copolymer, Isopropyl Ester of PVM/MA Copolymer, Lauryl Acrylate Crosspolymer, Lauryl Methacrylate/Glycol Dimethacrylate Crosspolymer, MEA-Sulfite, Methacrylic Acid/Sodium Acrylamidomethyl Propane Sulfonate Copolymer, Methacryloyl Ethyl Betaine/Acrylates Copolymer, Octyl- acrylamide/Acrylates/Butylaminoethyl Methacrylate Copolymer, PEG/PPG-25/25
Dimethicone/Acrylates Copolymer, PEG-8/SMDI Copolymer, Polyacrylamide, Polyacrylate-6, Polybeta-Alanine/Glutaric Acid Crosspolymer, Polybutylene Terephthalate, Polyester-1 , Polyethylacrylate, Polyethylene Terephthalate, Polymethacryloyl Ethyl Betaine, Polypentaerythrityl Terephthalate, Polyperfluoroperhydrophenanthrene, Polyquaternium-1, Polyquaternium-2, Polyquatemium-4, Polyquaternium-5, Polyquaternium-6, Polyquaternium-7, Polyquaternium-8, Polyquaternium-9, Polyquaternium-10, Polyquaternium-11 , Polyquaternium-12, Polyquaternium- 13, Polyquaternium-14, Polyquaternium-15, Polyquaternium-16, Polyquaternium-17, Polyquaternium-18, Polyquaternium-19, Polyquaternium-20, Polyquaternium-22, Polyquaternium- 24, Polyquaternium-27, Polyquatemium-28, Polyquaternium-29, Polyquaternium-30, Polyquaternium-31 , Polyquaternium-32, Polyquaternium-33, Polyquaternium-34, Polyquaternium- 35, Polyquaternium-36, Polyquatemium-37, Polyquaternium-39, Polyquaternium-45, Polyquaternium-46, Polyquaternium-47, Polyquaternium-48, Polyquaternium-49, Polyquatemium- 50, Polyquaternium-55, Polyquaternium-56, Polysilicone-9, Polyurethane-1 , Polyurethane-6, Polyurethane-10, Polyvinyl Acetate, Polyvinyl Butyral, Polyvinylcaprolactam, Polyvinylformamide, Polyvinyl Imidazolinium Acetate, Polyvinyl Methyl Ether, Potassium Butyl Ester of PVM/MA Copolymer, Potassium Ethyl Ester of PVM/MA Copolymer, PPG-70 Polyglyceryl-10 Ether, PPG- 12/SMDI Copolymer, PPG-51/SMDI Copolymer, PPG-10 Sorbitol, PVM/MA Copolymer, PVP, PVP/VA/ltaconic Acid Copolymer, PVP/VA/Vinyl Propionate Copolymer, Rhizobian Gum, Rosin Acrylate, Shellac, Sodium Butyl Ester of PVM/MA Copolymer, Sodium Ethyl Ester of PVM/MA Copolymer, Sodium Polyacrylate, Sterculia Urens Gum, Terephthalic Acid/Isophthalic Acid/Sodium Isophthalic Acid Sulfonate/Glycol Copolymer, Trimethylolpropane Triacrylate, Trimethylsiloxysilylcarbamoyl Pullulan, VA/Crotonates Copolymer, VA/Crotonates/Methacryloxy- benzophenone-1 Copolymer, VA/Crotonates/Vinyl Neodecanoate Copolymer, VA/Crotonates/Vinyl Propionate Copolymer, VA/DBM Copolymer, VA/Vinyl Butyl Benzoate/Crotonates Copolymer, Vinylamine/Vinyl Alcohol Copolymer, Vinyl Capro- lactam/VP/Dimethylaminoethyl Methacrylate Copolymer, VP/Acrylates/Lauryl Methacrylate Copolymer, VP/Dimethylaminoethylmethacrylate Copolymer, VP/DMAPA Acrylates Copolymer, VP/Hexadecene Copolymer, VP/VA Copolymer, VP/Vinyl Caprolactam/DMAPA Acrylates Copolymer, Yeast Palmitate.
Vorzugsweise enthalten die Formkörper zur Frisurengestaltung mindestens ein filmbildendes und/oder festigendes Polymer, das aus Vinylpyrrolidon-Vinylacetat-Copolymeren, Vinylacetat- Crotonsäure-Copolymeren, Vinylcaprolactam-Vinylpyrrolidon-Dimethylaminoethylmethacrylat- Copolymeren, Octylacrylamid-Acrylat-Butylaminoethyl-Methacrylat-Copolymeren und quaternierten Vinylpyrrolidon-Dimethylaminoethylmethacrylat-Copolymeren ausgewählt ist.
Besonders bevorzugt handelt es sich bei dem filmbildenden und/oder festigenden Polymer um die Vinylpyrrolidon-Vinylacetat-Copolymeren Luviskol® VA 64 Pulver oder PVP/VA S 630, das Vinylacetat-Crotonsäure-Copolymere, das unter der Handelsbezeichnung Aristoflex® A 60 vertrieben wird, das Vinylcaprolactam-Vinylpyrrolidon-Dimethylaminoethylmethacrylat-Copolymer mit der Handelsbezeichnung Advantage® LC-E, das unter der Bezeichnung Amphomer® erhältliche amphotere Octylacrylamid-Acrylat-Butylaminoethyl-Methacrylat-Copolymer oder das durch Umsetzung mit Diethylsulfat quaternierte Vinylpyrrolidon-Dimethylaminoethylmethacrylat- Copolymer, das unter der Handelsbezeichnung Gafquat® 755N vertrieben wird.
Insbesondere bevorzugt enthalten die Formkörper zur Frisurengestaltung wenigstens ein Vinylpyrrolidon-Vinylacetat-Copolymer.
Um eine schnelle und gleichmäßige Auflösung des Formkörpers zur Frisurengestaltung beim Kontakt mit Wasser, d.h. bei der Herstellung der eigentlichen Anwendungszubereitung, zu gewährleisten, enthält der Formkörper vorzugsweise ferner mindestens ein Zerfallshilfsmittel. Derartige Zerfallshilfsmittel werden in der Literatur häufig auch als Desintegrationshilfsmittel oder Formkörpersprengmittel beschrieben. Derartige Substanzen werden in die Formkörper eingearbeitet, um die Zerfallszeiten zu verkürzen. Unter Formkörpersprengmitteln bzw. Zerfallsbeschleunigern werden gemäß Römpp (9. Auflage, Bd. 6, S. 4440) und Voigt "Lehrbuch der pharmazeutischen Technologie" (6. Auflage, 1987, S. 182-184) Hilfsstoffe verstanden, die für den raschen Zerfall von Formkörpern in Wasser oder Magensaft und für die Freisetzung der Pharmaka in resorbierbarer Form sorgen. Der Begriff Zerfallshilfsmittel umfasst im Sinne der vorliegenden Erfindung Gas-entwickelnde Komponenten, vorgebildete und eingeschlossene Gase und Sprengmittel sowie deren Mischungen.
Diese Stoffe vergrößern bei Zutritt des Lösemittels, beispielsweise Wasser, ihr Volumen, wobei einerseits das Eigenvolumen vergrößert (Quellung), andererseits auch über die Freisetzung von Gasen ein Druck erzeugt werden kann, der den Formkörper in kleinere Partikel zerfallen lässt. In der Pharmazie werden zu diesem Zweck vor allem Celluloseabkömmlinge oder Polymere eingesetzt.
In einer Ausführungsform der vorliegenden Erfindung werden als Zerfallshilfsmittel Gasentwickelnde Komponenten eingesetzt. Diese Komponenten reagieren bei Kontakt mit Wasser miteinander unter in-situ Bildung von Gasen, die im Formkörper einen Druck erzeugen, der diesen in kleinere Partikel zerfallen lässt. Ein Beispiel für ein derartiges System sind spezielle Kombinationen von geeigneten Säuren mit Basen. Bevorzugt sind ein-, zwei- oder dreiwertige Säuren mit einem pKa-Wert von 1 ,0 bis 6,9. Bevorzugte Säuren sind Citronensäure, Äpfelsäure, Maleinsäure, Malonsäure, Itaconsäure, Weinsäure, Oxalsäure, Glutarsäure, Glutaminsäure, Milchsäure, Fumarsäure, Glykolsäure sowie deren Mischungen. Besonders bevorzugt ist Citronensäure. Ganz besonders bevorzugt kann es sein, die Citronensäure in Teilchenform einzusetzen, wobei die Teilchen einen Durchmesser unterhalb von 1000μm, insbesondere kleiner als 700μm, ganz besonders bevorzugt kleiner als 400μm, aufweisen. Weitere alternative geeignete Säuren sind die Homopolymere oder Copolymere von Acrylsäure, Maleinsäure, Methacrylsäure oder Itaconsäure mit einem Molekulargewicht von 2000 bis 200 000. Besonders bevorzugt sind Homopolymere der Acrylsäure und Copolymere aus Acrylsäure und Maleinsäure. Bevorzugte Basen sind erfindungsgemäß Alkalimetallsilikate, Carbonate, Hydrogencarbonate sowie deren Mischungen. Metasilicate, Hydrogencarbonate und Carbonate sind besonders bevorzugt, Hydrogencarbonate sind ganz besonders bevorzugt. Besonders bevorzugt sind teilchenförmige Hydrogencarbonate mit einem Teilchendurchmesser von weniger als 1000μm, insbesondere weniger als 700μm, ganz besonders bevorzugt weniger als 400μm. Natrium oder Kaliumsalze der oben genannten Basen sind besonders bevorzugt. In einer weiteren Ausführungsform der vorliegenden Erfindung ist das Gas vorgebildet oder eingeschlossen, so dass bei Einsetzen der Auflösung des Formkörpers die Gasentwicklung beginnt und die weitere Auflösung beschleunigt. Beispiele geeigneter Gase sind Luft, Kohlendioxid, N2O, Sauerstoff und/oder weitere nicht-toxische, nicht-brennbare Gase.
In einer dritten, besonders bevorzugten Ausführungsform der vorliegenden Erfindung werden als Zerfallshilfsmittel Sprengmittel, auch als Desintegrationshilfsmittel oder Formkörpersprengmittel bezeichnet, in die Formkörper eingearbeitet, um die Zerfallszeiten zu verkürzen.
Diese Stoffe, vergrößern bei Wasserzutritt ihr Volumen (Quellung). Quellende Desintegrationshilfsmittel sind beispielsweise synthetische Polymere wie Polyvinylpyrrolidon (PVP) oder natürliche Polymere bzw. modifizierte Naturstoffe wie Cellulose und Stärke und ihre Derivate, Alginate oder Casein-Derivate.
Als bevorzugte Desintegrationsmittel werden im Rahmen der vorliegenden Erfindung Desintegrationsmittel auf Cellulosebasis eingesetzt, so dass bevorzugte Formkörper ein solches Desintegrationsmittel auf Cellulosebasis in Mengen von 5 bis 80 Gew.-%, vorzugsweise 5 bis 30 Gew.-%, bezogen auf den gesamten Formkörper enthalten. Reine Cellulose weist die formale Bruttozusammensetzung (C6H10Os)n auf und stellt formal betrachtet ein ß-1 ,4-Polyacetal von Cellobiose dar, die ihrerseits aus zwei Molekülen Glucose aufgebaut ist. Geeignete Cellulosen bestehen dabei aus ca. 500 bis 5000 Glucose-Einheiten und haben demzufolge durchschnittliche Molmassen von 50.000 bis 500.000. Als Desintegrationsmittel auf Cellulosebasis verwendbar sind im Rahmen der vorliegenden Erfindung auch Cellulose-Derivate, die durch polymeranaloge Reaktionen aus Cellulose erhältlich sind. Solche chemisch modifizierten Cellulosen umfassen dabei beispielsweise Produkte aus Veresterungen bzw. Veretherungen, in denen Hydroxy- Wasserstoffatome substituiert wurden. Aber auch Cellulosen, in denen die Hydroxy-Gruppen gegen funktionelle Gruppen, die nicht über ein Sauerstoffatom gebunden sind, ersetzt wurden, lassen sich als Cellulose-Derivate einsetzen. In die Gruppe der Cellulose-Derivate fallen beispielsweise Alkalicellulosen, Carboxymethylcellulose (CMC), Celluloseester und -ether sowie Aminocellulosen. Die genannten Cellulosederivate werden vorzugsweise nicht als einzige Desintegrationsmittel auf Cellulosebasis eingesetzt, sondern in Mischung mit Cellulose verwendet. Der Gehalt dieser Mischungen an Cellulosederivaten beträgt vorzugsweise unterhalb 50 Gew.-%, besonders bevorzugt unterhalb 20 Gew.-%, bezogen auf das Desintegrationsmittel auf Cellulosebasis. Besonders bevorzugt wird als Desintegrationsmittel auf Cellulosebasis reine Cellulose eingesetzt, die frei von Cellulosederivaten ist.
Die als Desintegrationshilfsmittel eingesetzte Cellulose kann nicht in feinteiliger Form eingesetzt, sondern muss vor dem Zumischen zu den zu verpressenden Vorgemischen in eine gröbere Form überführt, beispielsweise granuliert oder kompaktiert werden. Die Teilchengrößen solcher Desintegrationsmittel liegen zumeist oberhalb 200 μm, vorzugsweise zu mindestens 90 Gew.-% zwischen 300 und 1600 μm und insbesondere zu mindestens 90 Gew.-% zwischen 400 und 1200 μm. Solche Desintegrationshilfsmittel sind beispielsweise im Handel unter der Bezeichnung Arbocel® von der Firma Rettenmaier erhältlich. Ein bevorzugtes Desintegrationshilfsmittel ist beispielsweise Arbocel® TF-30-HG.
Als Desintegrationsmittel auf Cellulosebasis oder als Bestandteil dieser Komponente wird bevorzugt mikrokristalline Cellulose verwendet. Diese mikrokristalline Cellulose wird durch partielle Hydrolyse von Cellulosen unter solchen Bedingungen erhalten, die nur die amorphen Bereiche (ca. 30% der Gesamt-Cellulosemasse) der Cellulosen angreifen und vollständig auflösen, die kristallinen Bereiche (ca. 70%) aber unbeschadet lassen. Eine nachfolgende Desaggregation der durch die Hydrolyse entstehenden mikrofeinen Cellulosen liefert die mikrokristallinen Cellulosen, die Primärteilchengrößen von ca. 5 μm aufweisen und beispielsweise zu Granulaten mit einer mittleren Teilchengröße von 200 μm kompaktierbar sind. Geeignete mikrokristalline Cellulose ist beispielsweise unter dem Handelsnamen Avicel® kommerziell erhältlich.
Weitere Sprengmittel, die im Sinne der Erfindung zugegen sein können, sind beispielsweise Kollidon, Alginsäure und deren Alkalisalze, amorphe oder auch teilweise kristalline Schichtsilicate (Bentonite), Polyacrylate oder Polyethylenglycole. Die Sprengmittel können im Formkörper makroskopisch betrachtet homogen verteilt vorliegen, mikroskopisch gesehen bilden sie jedoch herstellungsbedingt Zonen erhöhter Konzentration.
Vorzugsweise enthalten die Formkörper zur Frisurengestaltung 5 bis 80 Gew.-% eines Zerfallshilfsmittels.
Wie den obigen Aufzählungen geeigneter filmbildender und/oder festigender Polymere einerseits, und geeigneter Zerfallshilfsmittel andererseits entnommen werden kann, sind einige filmbildende und/oder festigende Polymere, beispielsweise Polyvinylpyrrolidon, gleichzeitig auch Zerfallshilfsmittel. Enthalten die Formkörper solche filmbildenden und/oder festigenden Polymere, kann auf den Zusatz weiterer Zerfallshilfsmittel verzichtet werden. Vorzugsweise wird jedoch ein weiteres Zerfallshilfsmittel zugegeben, besonders bevorzugt ein Desintegrationsmittel auf Cellulosebasis.
Die beschleunigte Auflösung der Formkörper kann auch durch Vorgranulierung der weiteren Bestandteile des Formkörpers erreicht werden.
In einer bevorzugten Ausführungsform enthalten die Formkörper zur Frisurengestaltung zusätzlich zum Zerfallshilfsmittel ein Gemisch aus Stärke und mindestens einem Saccharid. Die Verwendung von Disacchariden ist bevorzugt. Das besagte Gemisch liegt bevorzugt in einem Gewichtsverhältnis von Stärke und den eingesetzten Sacchariden von 10 : 1 bis 1 : 10, besonders bevorzugt von 1 : 1 bis 1 : 10, ganz besonders bevorzugt von 1 : 4 bis 1 : 7 in dem Formkörper vor.
Die verwendeten Disaccharide sind bevorzugt ausgewählt aus Lactose, Maltose, Saccharose, Trehalose, Turanose, Gentiobiose, Melibiose und Cellobiose. Besonders bevorzugt werden Lactose, Maltose und Saccharose und ganz besonders bevorzugt Lactose eingesetzt.
Die Stärke-Disaccharid-Mischung ist in dem Formkörper beispielsweise in einer Menge von 5 bis 60 Gew.%, bevorzugt von 20 bis 40 Gew.% bezogen auf die Masse des gesamten Formkörpers, enthalten.
Filmbildendes und/oder festigendes Polymer und Zerfallshilfsmittel können verdickend wirken. Die Formkörper müssen demnach nicht unbedingt weitere Verdickungsmittel enthalten.
Vorzugsweise enthalten die Formkörper jedoch mindestens ein Verdickungsmittel, besonders bevorzugt in einer Menge von 5 bis 40 Gew.-%.
Bezüglich dieser Verdickungsmittel bestehen keine prinzipiellen Einschränkungen. Es können sowohl organische als auch rein anorganische Verdickungsmittel zum Einsatz kommen.
Gemäß einer bevorzugten Ausführungsform handelt es sich bei dem Verdickungsmittel um ein anionisches, synthetisches Polymer. Bevorzugte anionische Gruppen sind die Carboxylat- und die Sulfonatgruppe.
Beispiele für anionische Monomere, aus denen die polymeren anionischen Verdickungsmittel bestehen können, sind Acrylsäure, Methacrylsäure, Crotonsäure, Itaconsäure, Maleinsäureanhydrid und 2-Acrylamido-2-methylpropansulfonsäure. Dabei können die sauren Gruppen ganz oder teilweise als Natrium-, Kalium-, Ammonium-, Mono- oder Triethanolammonium-Salz vorliegen. Bevorzugte Monomere sind Maleinsäureanhydrid sowie insbesondere 2-Acrylamido-2-methyl- propansulfonsäure und Acrylsäure.
Bevorzugte anionische Homopolymere sind unvernetzte und vernetzte Polyacrylsäuren. Dabei können Allylether von Pentaerythrit, von Sucrose und von Propylen bevorzugte Vernetzungs- agentien sein. Solche Verbindungen sind beispielsweise unter dem Warenzeichnen Carbopol® im Handel erhältlich. Ebenfalls bevorzugt ist das Homopolymer der 2-Acrylamido-2-methylpropan- sulfonsäure, das beispielsweise unter der Bezeichnung Rheothik®11-80 im Handel erhältlich ist. Innerhalb dieser Ausführungsform kann es weiterhin bevorzugt sein, Copolymere aus mindestens einem anionischen Monomer und mindestens einem nichtionogenen Monomer einzusetzen. Bezüglich der anionischen Monomere wird auf die oben aufgeführten Substanzen verwiesen. Bevorzugte nichtionogene Monomere sind Acrylamid, Methacrylamid, Acrylsäureester, Methacrylsäureester, Itaconsäuremono- und -diester, Vinylpyrrolidon, Vinylether und Vinylester.
Bevorzugte anionische Copolymere sind beispielsweise Copolymere aus Acrylsäure, Methacryl- säure oder deren C1- bis C6-Alkylestern, wie sie unter der INCI-Deklaration Acrylates Copolymere vertrieben werden. Ein bevorzugtes Handelsprodukt ist beispielsweise Aculyn® 33 der Firma Rohm & Haas. Weiterhin bevorzugt sind aber auch Copolymere aus Acrylsäure, Methacrylsäure oder deren Cr bis C6-Alkylestern und den Estern einer ethylenisch ungesättigten Säure und einem alkoxylierten Fettalkohol. Geeignete ethylenisch ungesättigte Säuren sind insbesondere Acrylsäure, Methacrylsäure und Itaconsäure; geeignete alkoxylierte Fettalkohole sind insbesondere Steareth-20 oder Ceteth-20. Derartige Copolymere werden von der Firma Rohm & Haas unter der Handelsbezeichnung Aculyn® 22 sowie von der Firma National Starch unter den Handelsbezeichnungen Structure® 2001 und Structure® 3001 vertrieben.
Bevorzugte anionische Copolymere sind weiterhin Acrylsäure-Acrylamid-Copolymere sowie insbesondere Polyacrylamidcopolymere mit Sulfonsäuregruppen-haltigen Monomeren. Ein besonders bevorzugtes anionisches Copolymer besteht aus 70 bis 55 Mol-% Acrylamid und 30 bis 45 Mol-% 2-Acrylamido-2-methylpropansulfonsäure, wobei die Sulfonsäuregruppe ganz oder teilweise als Natrium-, Kalium-, Ammonium-, Mono- oder Triethanolammonium-Salz vorliegt. Dieses Copolymer kann auch vernetzt vorliegen, wobei als Vemetzungsagentien bevorzugt polyolefinisch ungesättigte Verbindungen wie Tetraallyloxythan, Allylsucrose, Allylpentaerythrit und Methylen-bisacrylamid zum Einsatz kommen. Ein solches Polymer ist in den Handelsprodukten Sepigel®305 und Simulgel® 600 der Firma SEPPIC enthalten. Die Verwendung dieser Compounds, die neben der Polymerkomponente eine Kohlenwasserstoffmischung (C13- C14-lsoparaffin beziehungsweise Isohexadecan) und einen nichtionogenen Emulgator (Laureth-7 beziehungsweise Polysorbate-80) enthalten, hat sich im Rahmen der erfindungsgemäßen Lehre als besonders vorteilhaft erwiesen.
Auch Polymere aus Maleinsäureanhydrid und Methylvinylether, insbesondere solche mit Vernetzungen, sind bevorzugte Verdickungsmittel. Ein mit 1 ,9-Decadien vernetztes Maleinsäure- Methylvinylether-Copolymer ist unter der Bezeichnung Stabileze® QM im Handel erhältlich.
Gemäß einer weiteren Ausführungsform handelt es sich bei dem Verdickungsmittel um ein kationisches synthetisches Polymer. Bevorzugte kationische Gruppen sind quartäre Ammoniumgruppen. Insbesondere solche Polymere, bei denen die quartäre Ammoniumgruppe über eine C1. 4-Kohlenwasserstoffgruppe an eine aus Acrylsäure, Methacrylsäure oder deren Derivaten aufgebaute Polymerhauptkette gebunden sind, haben sich als besonders geeignet erwiesen.
Homopolymere der allgemeinen Formel (I),
R1 [CH2 C]n
COO-(CH2WNR2R3R4 X ' 0)
in der R1 = -H oder -CH3 ist, R2, R3 und R4 unabhängig voneinander ausgewählt sind aus C-i. 4-Alkyl-, -Alkenyl- oder -Hydroxyalkylgruppen, m = 1, 2, 3 oder 4, n eine natürliche Zahl und X' ein physiologisch verträgliches organisches oder anorganisches Anion ist, sowie Copolymere, bestehend im wesentlichen aus den in Formel (I) aufgeführten Monomereinheiten sowie nicht- ionogenen Monomereinheiten, sind besonders bevorzugte kationische Verdickungsmittel. Im Rahmen dieser Polymeren sind diejenigen erfindungsgemäß bevorzugt, für die mindestens eine der folgenden Bedingungen gilt: R1 steht für eine Methylgruppe R2, R3 und R4 stehen für Methylgruppen m hat den Wert 2.
Als physiologisch verträgliches Gegenionen X' kommen beispielsweise Halogenidionen, Sulfationen, Phosphationen, Methosulfationen sowie organische Ionen wie Lactat-, Citrat-, Tartrat- und Acetationen in Betracht. Bevorzugt sind Halogenidionen, insbesondere Chlorid.
Ein besonders geeignetes Homopolymer ist das, gewünschtenfalls vernetzte, Poly(methacryloyl- oxyethyltrimethylammoniumchlorid) mit der INCI-Bezeichnung Polyquaternium-37. Die Vernetzung kann gewünschtenfalls mit Hilfe mehrfach olefinisch ungesättigter Verbindungen, beispielsweise Divinylbenzol, Tetraallyloxyethan, Methylenbisacrylamid, Diallylether, Polyallylpolyglycerylether, oder Allylethern von Zuckern oder Zuckerderivaten wie Erythritol, Pentaerythritol, Arabitol, Monnitol, Sorbitol, Sucrose oder Glucose erfolgen. Methylenbisacrylamid ist ein bevorzugtes Vernetzungsagens.
Das Homopolymer wird bevorzugt in Form einer nichtwässrigen Polymerdispersion, die einen Polymeranteil nicht unter 30 Gew.-% aufweisen sollte, eingesetzt. Solche Polymerdispersionen sind unter den Bezeichnungen Salcare® SC 95 (ca. 50 % Polymeranteil, weitere Komponente: Mineralöl (INCI-Bezeichnung: Mineral OiI) und Tridecyl-polyoxypropylen-polyoxyethylen-ether (INCI-Bezeichnung: PPG-1-Trideceth-6)) und Salcare® SC 96 (ca. 50 % Polymeranteil, weitere Komponenten: Mischung von Diestern des Propylenglykols mit einer Mischung aus Capryl- und Caprinsäure (INCI-Bezeichnung: Propylene Glycol Dicaprylate/Dicaprate) und Tridecyl- polyoxypropylen-polyoxyethylen-ether (INCI-Bezeichnung: PPG-1-Trideceth-6) im Handel erhältlich.
Copolymere mit Monomereinheiten gemäß Formel (I) enthalten als nichtionogene Monomereinheiten bevorzugt Acrylamid, Methacrylamid, Acrylsäure-CM-Alkylester und Methacrylsäure-C1-4-Alkylester. Unter diesen nichtionogenen Monomeren ist das Acrylamid besonders bevorzugt. Auch diese Copolymere können, wie im Falle der Homopolymeren oben beschrieben, vernetzt sein. Ein erfindungsgemäß bevorzugtes Copolymer ist das vernetzte Acrylamid- Methacryloyloxyethyltrimethylammoniumchlorid-Copolymer. Solche Copolymere, bei denen die Monomeren in einem Gewichtsverhältnis von etwa 20:80 vorliegen, sind im Handel als ca. 50 %ige nichtwässrige Polymerdispersion unter der Bezeichnung Salcare® SC 92 erhältlich.
In einer weiteren Ausführungsform werden natürlich vorkommende Verdickungsmittel eingesetzt. Bevorzugte Verdickungsmittel dieser Ausführungsform sind beispielsweise nichtionischen Guargums. Erfindungsgemäß können sowohl modifizierte als auch unmodifizierte Guargums zum Einsatz kommen. Nichtmodifizierte Guargums werden beispielsweise unter der Handelsbezeichnung Jaguar® C von der Firma Rhone Poulenc vertrieben. Erfindungsgemäß bevorzugte modifizierte Guargums enthalten Cr bis C6-Hydroxyalkylgruppen. Bevorzugt sind die Gruppen Hydroxymethyl, Hydroxyethyl, Hydroxypropyl und Hydroxybutyl. Derart modifizierte Guargums sind im Stand der Technik bekannt und können beispielsweise durch Reaktion der Guargums mit Alkylenoxiden hergestellt werden. Der Grad der Hydroxyalkylierung, der der Anzahl der verbrauchten Alkylenoxidmoleküle im Verhältnis zur Zahl der freien Hydroxygruppen der Guargums entspricht, liegt bevorzugt zwischen 0,4 und 1 ,2. Derart modifizierte Guar Gums sind unter den Handelsbezeichnungen Jaguar® HP8, Jaguar® HP60, Jaguar® HP120, Jaguar® DC 293 und Jaguar® HP105 der Firma Rhone Poulenc im Handel erhältlich.
Weiterhin geeignete natürliche Verdickungsmittel sind ebenfalls bereits aus dem Stand der Technik bekannt. Es wird daher explizit auf das Werk von Robert L. Davidson mit dem Titel "Handbook of Water soluble gums and resins", erschienen bei Mc Graw Hill Book Company (1980) verwiesen.
Gemäß dieser Ausführungsform bevorzugt sind weiterhin Biosaccharidgums mikrobiellen Ursprungs, wie die Skleroglucangums oder Xanthangums, Gums aus pflanzlichen Exsudaten, wie beispielsweise Gummi arabicum, Ghatti-Gummi, Karaya-Gummi, Tragant-Gummi, Carrageen- Gummi, Agar-Agar, Johannisbrotkernmehl, Pektine, Alginate, Stärke-Fraktionen und Derivate wie Amylose, Amylopektin und Dextrine, Cellulosederivate, wie beispielsweise Methylcellulose, Carboxyalkylcellulosen und Hydroxyalkylcellulosen. Bevorzugte Hydroxyalkylcellulosen sind insbesondere die Hydroxyethylcellulosen, die unter den Bezeichnungen Cellosize® der Firma Amerchol und Natrosol® der Firma Hercules vertrieben werden. Geeignete Carboxyalkylcellulosen sind insbesondere die Carboxymethylcellulosen, wie sie unter den Bezeichnungen Blanose® von der Firma Aqualon, Aquasorb® und Ambergum® von der Firma Hercules und Cellgon® von der Firma Montello vertrieben werden.
Als anorganische Verdickungsmittel haben sich Schichtsilikate als besonders geeignet im Sinne der vorliegenden Erfindung erwiesen. Insbesondere Tone, wie beispielsweise Bentonit, und synthetische Schichtsilikate, wie beispielsweise das von der Firma Süd Chemie unter der Handelsbezeichnung Optigel® vertriebene Magnesiumschichtsilikat, sind bevorzugt.
Die Verdickungsmittel sind in den Formkörpern bevorzugt in einer Menge von 10 bis 40 Gew.-%, insbesondere von 15 bis 30 Gew.-%, enthalten.
In einer bevorzugten Ausführungsform der vorliegenden Erfindung enthalten die Formkörper zur Frisurengestaltung mindestens ein anorganisches und mindestens ein organisches Verdickungsmittel.
Die Formkörper zur Frisurengestaltung können weiterhin die Hilfs- und Zusatzstoffe enthalten, die üblicherweise herkömmlichen Stylingmitteln zugesetzt werden.
Als geeignete Hilfs- und Zusatzstoffe sind insbesondere Pflegestoffe zu nennen.
Als Pflegestoff kann beispielsweise ein Silikonöl und/oder ein Silikongum eingesetzt werden.
Erfindungsgemäß geeignete Silikonöle oder Silikongums sind insbesondere Dialkyl- und Alkylarylsiloxane, wie beispielsweise Dimethylpolysiloxan und Methylphenylpolysiloxan, sowie deren alkoxylierte, quaternierte oder auch anionische Derivate. Bevorzugt sind cyclische und lineare Polydialkylsiloxane, deren alkoxylierte und/oder aminierte Derivate, Dihydroxypoly- dimethylsiloxane und Polyphenylalkylsiloxane.
Silikonöle bewirken dabei die unterschiedlichsten Effekte. So beeinflussen sie beispielsweise gleichzeitig die Trocken- und Nasskämmbarkeiten, den Griff des trockenen und nassen Haares sowie den Glanz. Unter dem Begriff Silikonöle versteht der Fachmann mehrere Strukturen Silicium-organischer Verbindungen. Hierunter werden zunächst Dimethiconole und Dimethicone, etwa das von der Firma Dow Corning unter der Bezeichnung Dow Corning ® 193 Surfactant vertriebene PEG-12 Dimethicone, verstanden. Diese können sowohl linear als auch verzweigt als auch cyclisch oder cyclisch und verzweigt sein. Weiterhin fallen darunter Dimethiconcopolyole, wie sie beispielsweise von der Firma Dow Corning unter der Bezeichnung Dow Corning ® 5330 Fluid vertrieben werden, und aminofunktionelle Silikone, insbesondere die Silikone, die unter der INCI-Bezeichnung Amodimethicone zusammengefasst sind.
Als Pflegestoff kann auch ein kationisches Tensid eingesetzt werden. Bevorzugt sind dabei kationische Tenside vom Typ der quartären Ammoniumverbindungen, der Esterquats und der Amidoamine. Bevorzugte quartäre Ammoniumverbindungen sind Ammoniumhalogenide, insbesondere Chloride und Bromide, wie Alkyltrimethylammoniumchloride, Dialkyldimethyl- ammoniumchloride und Thalkylmethylammoniumchloride, z. B. Cetyltrimethylammoniumchlorid, Stearyltrimethylammoniumchlorid, Distearyldimethylammoniumchlorid, Lauryldimethylammo- niumchlorid, Lauryldimethylbenzylammoniumchlorid und Tricetylmethylammoniumchlorid, sowie die unter den INCI-Bezeichnungen Quaternium-27 und Quaternium-83 bekannten Imidazolium- Verbindungen. Die langen Alkylketten der oben genannten Tenside weisen bevorzugt 10 bis 18 Kohlenstoffatome auf. Da sich der Zusatz oberflächenaktiver Substanzen jedoch negativ auf die hydrophoben Eigenschaften des hydrophobierten Siliciumdioxids und damit auf die Stabilität der verwendeten pulverförmigen Zusammensetzungen auswirken kann, ist die Menge an pflegendem Tensid sorgfältig auf die Gesamtzusammensetzung abzustimmen. Vorzugsweise wird auf den Zusatz tensidischer Bestandteile verzichtet.
Als Pflegestoff eignen sich ebenfalls pflegende Polymere.
Eine erste Gruppe der pflegenden Polymere sind die kationischen Polymere. Unter kationischen Polymeren sind Polymere zu verstehen, welche in der Haupt- und/oder Seitenkette eine Gruppe aufweisen, welche "temporär" oder "permanent" kationisch sein kann. Als "permanent kationisch" werden erfindungsgemäß solche Polymere bezeichnet, die unabhängig vom pH-Wert des Mittels eine kationische Gruppe aufweisen. Dies sind in der Regel Polymere, die ein quartäres Stickstoffatom, beispielsweise in Form einer Ammoniumgruppe, enthalten. Bevorzugte kationische Gruppen sind quartäre Ammoniumgruppen. Insbesondere solche Polymere, bei denen die quartäre Ammoniumgruppe über eine C^-Kohlenwasserstoffgruppe an eine aus Acrylsäure, Methacrylsäure oder deren Derivaten aufgebaute Polymerhauptkette gebunden sind, haben sich als besonders geeignet erwiesen.
Ein besonders geeignetes Homopolymer ist das, gewünschtenfalls vernetzte, Poly(meth- acryloyloxyethyltrimethylammoniumchlorid) mit der INCI-Bezeichnung Polyquaternium-37. Die Vernetzung kann gewünschtenfalls mit Hilfe mehrfach olefinisch ungesättigter Verbindungen, beispielsweise Divinylbenzol, Tetraallyloxyethan, Methylenbisacrylamid, Diallylether, Polyallylpolyglycerylether, oder Allylethern von Zuckern oder Zuckerderivaten wie Erythritol, Pentaerythritol, Arabitol, Mannitol, Sorbitol, Sucrose oder Glucose erfolgen. Methylenbisacrylamid ist ein bevorzugtes Vernetzungsagens. Weiterhin sind kationiserte Proteinhydrolysate zu den kationischen Polymeren zu zahlen, wobei das zugrunde liegende Proteinhydrolysat vom Tier, beispielsweise aus Collagen, Milch oder Keratin, von der Pflanze, beispielsweise aus Weizen, Mais, Reis, Kartoffeln, Soja oder Mandeln, von marinen Lebensformen, beispielsweise aus Fischcollagen oder Algen, oder biotechnologisch gewonnenen Proteinhydrolysaten, stammen kann. Die den erfindungsgemäßen kationischen Derivaten zugrunde liegenden Proteinhydrolysate können aus den entsprechenden Proteinen durch eine chemische, insbesondere alkalische oder saure Hydrolyse, durch eine enzymatische Hydrolyse und/oder eine Kombination aus beiden Hydrolysearten gewonnen werden. Die Hydrolyse von Proteinen ergibt in der Regel ein Proteinhydrolysat mit einer Molekulargewichtsverteilung von etwa 100 Dalton bis hin zu mehreren tausend Dalton. Bevorzugt sind solche kationischen Proteinhydrolysate, deren zugrunde liegender Proteinanteil ein Molekulargewicht von 100 bis zu 25000 Dalton, bevorzugt 250 bis 5000 Dalton aufweist. Weiterhin sind unter kationischen Proteinhydrolysaten quaternierte Aminosäuren und deren Gemische zu verstehen. Die Quaternisierung der Proteinhydrolysate oder der Aminosäuren wird häufig mittels quartären Ammoniumsalzen wie beispielsweise N,N-Dimethyl-N-(n-Alkyl)-N-(2- hydroxy-3-chloro-n-propyl)-ammoniumhalogeniden durchgeführt. Weiterhin können die kationischen Proteinhydrolysate auch noch weiter derivatisiert sein. Als typische Beispiele für die erfindungsgemäßen kationischen Proteinhydrolysate und -derivate seien die unter den INCI - Bezeichnungen im "International Cosmetic Ingredient Dictionary and Handbook", (seventh edition 1997, The Cosmetic, Toiletry, and Fragrance Association 1101 17th Street, N.W., Suite 300, Washington, DC 20036-4702) genannten und im Handel erhältlichen Produkte genannt: Cocodimonium Hydroxypropyl Hydrolyzed Collagen, Cocodimonium Hydroxypropyl Hydrolyzed Casein, Cocodimonium Hydroxypropyl Hydrolyzed Collagen, Cocodimonium Hydroxypropyl Hydrolyzed Hair Keratin, Cocodimonium Hydroxypropyl Hydrolyzed Keratin, Cocodimonium Hydroxypropyl Hydrolyzed Rice Protein, Cocodimonium Hydroxypropyl Hydrolyzed Soy Protein, Cocodimonium Hydroxypropyl Hydrolyzed Wheat Protein, Hydroxypropyl Arginine Lauryl/Myristyl Ether HCl, Hydroxypropyltrimonium Gelatin, Hydroxypropyltrimonium Hydrolyzed Casein, Hydroxypropyltrimonium Hydrolyzed Collagen, Hydroxypropyltrimonium Hydrolyzed Conchiolin Protein, Hydroxypropyltrimonium Hydrolyzed Keratin, Hydroxypropyltrimonium Hydrolyzed Rice Bran Protein, Hydroxypropyltrimonium Hydrolyzed Soy Protein, Hydroxypropyl Hydrolyzed Vegetable Protein, Hydroxypropyltrimonium Hydrolyzed Wheat Protein, Hydroxypropyltrimonium Hydrolyzed Wheat Protein/Siloxysilicate, Laurdimonium Hydroxypropyl Hydrolyzed Soy Protein, Laurdimonium Hydroxypropyl Hydrolyzed Wheat Protein, Laurdimonium Hydroxypropyl Hydrolyzed Wheat Protein/Siloxysilicate, Lauryldimonium Hydroxypropyl Hydrolyzed Casein, Lauryldimonium Hydroxypropyl Hydrolyzed Collagen, Lauryldimonium Hydroxypropyl Hydrolyzed Keratin, Lauryldimonium Hydroxypropyl Hydrolyzed Soy Protein, Steardimonium Hydroxypropyl Hydrolyzed Casein, Steardimonium Hydroxypropyl Hydrolyzed Collagen, Steardimonium Hydroxypropyl Hydrolyzed Keratin, Steardimonium Hydroxypropyl Hydrolyzed Rice Protein, Steardimonium Hydroxypropyl Hydrolyzed Soy Protein, Steardimonium Hydroxypropyl Hydrolyzed Vegetable Protein, Steardimonium Hydroxypropyl Hydrolyzed Wheat Protein, Steartrimonium Hydroxyethyl Hydrolyzed Collagen, Quaternium-76 Hydrolyzed Collagen, Quaternium-79 Hydrolyzed Collagen, Quaternium-79 Hydrolyzed Keratin, Quaternium-79 Hydrolyzed Milk Protein, Quaternium-79 Hydrolyzed Soy Protein, Quaternium-79 Hydrolyzed Wheat Protein.
Bevorzugt sind die kationischen Proteinhydrolysate und -derivate auf pflanzlicher Basis.
Weitere erfindungsgemäß einsetzbare pflegende Polymere sind amphotere Polymere.
Als Pflegestoff kann weiterhin mindestens ein Vitamin, ein Provitamin, eine Vitaminvorstufe und/oder eines derer Derivate eingesetzt werden.
Dabei sind erfindungsgemäß solche Vitamine, Pro-Vitamine und Vitaminvorstufen bevorzugt, die üblicherweise den Gruppen A, B, C, E, F und H zugeordnet werden. Besonders bevorzugt sind Vitamine, die zur B-Gruppe oder zu dem Vitamin B-Komplex gehören, ganz besonders bevorzugt Vitamin B5 (Pantothensäure, Panthenol und Pantolacton).
Als Pflegestoff kann weiterhin mindestens ein Pflanzenextrakt eingesetzt werden.
Üblicherweise werden diese Extrakte durch Extraktion der gesamten Pflanze hergestellt. Es kann aber in einzelnen Fällen auch bevorzugt sein, die Extrakte ausschließlich aus Blüten und/oder Blättern der Pflanze herzustellen.
Hinsichtlich der erfindungsgemäß bevorzugten Pflanzenextrakte wird insbesondere auf die Extrakte hingewiesen, die in der auf Seite 44 der 3. Auflage des Leitfadens zur Inhaltsstoffdeklaration kosmetischer Mittel, herausgegeben vom Industrieverband Körperpflege- und Waschmittel e.V. (IKW), Frankfurt, beginnenden Tabelle aufgeführt sind.
Erfindungsgemäß sind vor allem die Extrakte aus Seerose, Grünem Tee, Eichenrinde, Brennnessel, Hamamelis, Hopfen, Henna, Kamille, Klettenwurzel, Schachtelhalm, Weißdorn, Lindenblüten, Mandel, Aloe Vera, Fichtennadel, Rosskastanie, Sandelholz, Wacholder, Kokos- nuss, Mango, Aprikose, Limone, Weizen, Kiwi, Melone, Orange, Grapefruit, Salbei, Rosmarin, Birke, Malve, Wiesenschaumkraut, Quendel, Schafgarbe, Thymian, Melisse, Hauhechel, Huflattich, Eibisch, Meristem, Ginseng und Ingwerwurzel bevorzugt.
Als Pflegestoff eignen sich weiterhin eine Reihe von Carbonsäuren.
Vorteilhaft im Sinne der Erfindung können insbesondere kurzkettige Carbonsäuren sein. Unter kurzkettigen Carbonsäuren und deren Derivaten im Sinne der Erfindung werden Carbonsäuren verstanden, welche gesättigt oder ungesättigt und/oder geradkettig oder verzweigt oder cyclisch und/oder aromatisch und/oder heterocyclisch sein können und ein Molekulargewicht kleiner 750 aufweisen. Bevorzugt im Sinne der Erfindung können gesättigte oder ungesättigte geradkettige oder verzweigte Carbonsäuren mit einer Kettenlänge von 1 bis zu 16 C-Atomen in der Kette sein, ganz besonders bevorzugt sind solche mit einer Kettenlänge von 1 bis zu 12 C - Atomen in der Kette.
Weitere geeignete Pflegestoffe sind Proteinhydrolysate und/oder deren Derivate, wobei die Verwendung von Proteinhydrolysaten pflanzlichen Ursprungs, z. B. Soja-, Mandel-, Erbsen-, Kartoffel- und Weizenproteinhydrolysaten, bevorzugt ist. Solche Produkte sind beispielsweise unter den Warenzeichen Gluadin® (Cognis), DiaMin® (Diamalt), Lexein® (Inolex), Hydrosoy® (Croda), Hydrolupin® (Croda), Hydrosesame® (Croda), Hydrotritium® (Croda) und Crotein® (Croda) erhältlich.
Wenngleich der Einsatz der Proteinhydrolysate als solche bevorzugt ist, können an deren Stelle gegebenenfalls auch anderweitig erhaltene Aminosäuregemische eingesetzt werden. Ebenfalls möglich ist der Einsatz von Derivaten der Proteinhydrolysate, beispielsweise in Form ihrer Fettsäure-Kondensationsprodukte. Solche Produkte werden beispielsweise unter den Bezeichnungen Lamepon® (Cognis), Lexein® (Inolex), Crolastin® (Croda), Crosilk® (Croda) oder Crotein® (Croda) vertrieben.
Selbstverständlich umfasst die erfindungsgemäße Lehre alle isomeren Formen, wie eis - trans - Isomere, Diastereomere und chirale Isomere.
Erfindungsgemäß ist es auch möglich, eine Mischung aus mehreren Proteinhydrolysaten einzusetzen.
Weiterhin sind als Pflegestoff Enzyme, Perlenextrakte und Lipide und ölkörper, beispielsweise pflanzliche öle, flüssige Paraffinöle, Isoparaffinöle, synthetische Kohlenwasserstoffe und Esteröle, geeignet.
Neben den Pflegestoffen können auch weitere Hilfs- und Zusatzstoffe zugegeben werden.
Durch Zugabe eines UV-Filters können sowohl die Formkörper selbst, als auch die behandelten Fasern vor schädlichen Einflüssen von UV-Strahlung geschützt werden. Es kann daher vorteilhaft sein, den Formkörpern mindestens einen UV-Filter zuzugeben. Die geeigneten UV-Filter unterliegen hinsichtlich ihrer Struktur und ihrer physikalischen Eigenschaften keinen generellen Einschränkungen. Vielmehr eignen sich alle im Kosmetikbereich einsetzbaren UV-Filter, deren Absorptionsmaximum im UVA(315-400 nm)-, im UVB(280-315nm)- oder im UVC(<280 nm)- Bereich liegt. UV-Filter mit einem Absorptionsmaximum im UVB-Bereich, insbesondere im Bereich von etwa 280 bis etwa 300 nm, sind besonders bevorzugt.
Die erfindungsgemäß bevorzugten UV-Filter können beispielsweise ausgewählt werden aus substituierten Benzophenonen, p-Aminobenzoesäureestern, Diphenylacrylsäureestern, Zimtsäureestern, Salicylsäureestern, Benzimidazolen und o-Aminobenzoesäureestern. Beispielhaft sei hier 2-Hydroxy-4-methoxybenzophenon-5-sulfonsäure und deren Natriumsalz (Benzophenone-4; Uvinul®MS 40; Uvasorb®S 5) genannt.
In einer besonderen Ausführungsform enthalten die Formkörper zur Frisurengestaltung weiterhin mindestens einen oder mehrere direktziehende Farbstoffe. Dies ermöglicht, dass bei Anwendung des Mittels die behandelte keratinische Faser nicht nur temporär strukturiert, sondern zugleich auch gefärbt wird. Das kann insbesondere dann wünschenswert sein, wenn nur eine temporäre Färbung beispielsweise mit auffälligen Modefarben gewünscht wird, die sich durch einfaches Waschen wieder aus der keratinischen Faser entfernen lässt.
Auch die Zugabe eines Tensids, wobei prinzipiell sowohl anionische als auch zwitterionische, am- pholytische, nichtionische und kationische Tenside geeignet sind, von Parfümkomponenten und Konservierungsmitteln ist möglich.
Weiterhin können die Formkörper zur Frisurengestaltung Alkalisierungsmittel, üblicherweise Alkali- oder Erdalkalihydroxide, Ammoniak oder organische Amine, enthalten. Bevorzugte Alkalisierungsmittel sind Monoethanolamin, Monoisopropanolamin, 2-Amino-2-methyl-propanol, 2-Amino-2-methyl-1 ,3-propandiol, 2-Amino-2-ethyl-1 ,3-propandiol, 2-Amino-2-methylbutanol und Triethanolamin sowie Alkali- und Erdalkalimetallhydroxide. Insbesondere Monoethanolamin, Triethanolamin sowie 2-Amino-2-methyl-propanol und 2-Amino-2-methyl-1 ,3-propandiol sind im Rahmen dieser Gruppe bevorzugt. Auch die Verwendung von ω-Aminosäuren wie ω- Aminocapronsäure als Alkalisierungsmittel ist möglich.
Die Formkörper zur Frisurengestaltung können jedwede geometrische Form annehmen, wie beispielsweise konkave, konvexe, bikonkave, bikonvexe, kubische, tetragonale, orthorhombische, zylindrische, sphärische, zylindersegmentartige, scheibenförmige, tetrahedrale, dodecahedrale, octahedrale, konische, pyramidale, ellipsoide, fünf-, sieben- und achteckig-prismatische sowie rhombohedrische Formen. Auch völlig irreguläre Grundflächen wie Pfeil- oder Tierformen, Bäume, Wolken usw. können realisiert werden.
Die geometrische Form ist jedoch auf die Dosiervorrichtung abzustimmen. In der Regel empfiehlt es sich, eine einfache geometrische Form, etwa Würfel, Quader, Kugeln und entsprechende Raumelemente mit ebenen Seitenflächen sowie insbesondere zylinderförmige Ausgestaltungen mit kreisförmigem oder ovalem Querschnitt zu wählen. Diese zylinderförmige Ausgestaltung erfasst dabei die Darbietungsform von der Tablette bis zu kompakten Zylinderstücken mit einem Verhältnis von Höhe zu Durchmesser größer 1. Weist der Basisformkörper Ecken und Kanten auf, so sind diese vorzugsweise abgerundet. Als zusätzliche optische Differenzierung ist eine Ausführungsform mit abgerundeten Ecken und abgeschrägten ("angefasten") Kanten bevorzugt.
Es ist auch möglich, dass die verschiedenen Komponenten des Formkörpers nicht zu einer einheitlichen Tablette verpresst, sondern bei der Tablettierung Formkörper hergestellt werden, die mehrere Schichten, also mindestens zwei Schichten, aufweisen. Dabei ist es auch möglich, dass diese verschiedenen Schichten unterschiedliche Lösegeschwindigkeiten aufweisen. Hieraus können vorteilhafte anwendungstechnische Eigenschaften der Formkörper resultieren. Falls beispielsweise Komponenten in den Formkörpern enthalten sind, die sich wechselseitig negativ beeinflussen, so ist es möglich, die eine Komponente in der schneller löslichen Schicht zu integrieren und die andere Komponente in eine langsamer lösliche Schicht einzuarbeiten, so dass die Komponenten nicht bereits während des Lösevorgangs miteinander reagieren.
Die Formkörper lassen sich in der Regel durch Verpressen in handelsüblichen Hydraulikpressen, Exzenterpressen oder Rundläuferpressen herstellen. Geeignete Vorgehensweisen werden beispielsweise in WO 01/45647 A2 auf den Seiten 16-20 beschrieben, auf die hier explizit Bezug genommen wird.
In dem erfindungsgemäßen Produkt zur Behandlung keratinischer Fasern sind die Formkörper in einer Dosiervorrichtung konfektioniert. Dies erlaubt die sichere und zuverlässige Dosierung und Entnahme der Formkörper.
Die Dosiervorrichtung ist vorzugsweise so ausgestaltet, dass durch manuelle Betätigung eines Verschlusselements die Formkörper einzeln einer Vorratskammer entnommen werden können.
Als Dosiervorrichtung sind beispielsweise Spendervorrichtungen für dosierbares Stückgut geeignet, die zur Dosierung von Tabletten, Süßstoff oder anderen festen, stückigen Lebensmitteln in der Pharma- und Lebensmittelindustrie eingesetzt werden.
Bevorzugt werden als Dosiervorrichtung handelsübliche Süßstoffspender oder ein Fallschacht- Tablettenspender gemäß DE 197 37 746 A1 und DE 197 37 747 A1 eingesetzt, insbesondere bevorzugt handelt es sich bei der Dosiervorrichtung um einen handelsüblichen Süßstoffspender.
Ein zweiter Gegenstand der Erfindung ist ein Verfahren zum temporären Verformen keratinischer Fasern, wobei dem erfindungsgemäßen Produkt mindestens ein Formkörper entnommen, dieser in Wasser aufgelöst und die resultierende viskose Zubereitung auf die Fasern aufgetragen wird. Das Aufbringen der resultierenden Anwendungszubereitung erfolgt in üblicher Weise, beispielsweise durch Verteilen der Zubereitung mit den Händen oder einem Kamm im Haar.
Dieses Vorgehen hat den Vorteil, dass nur die Menge an tatsächlich benötigten Formkörpern entnommen wird. Die im Produkt verbleibenden Formkörper werden nicht berührt und kommen daher nicht mit Feuchtigkeit oder Schmutzpartikeln in Kontakt.

Claims

Patentansprüche
1. Produkt zur Behandlung keratinischer Fasern, bestehend aus
(A) einer Dosiervorrichtung, umfassend mindestens eine Vorratskammer und mindestens ein Verschlusselement, und
(B) mindestens einem Formkörper zur Frisurengestaltung, enthaltend mindestens ein filmbildendes und/oder festigendes Polymer, wobei die Vorratskammer den oder die Formkörper enthält.
2. Produkt gemäß Anspruch 1, dadurch gekennzeichnet, dass der Formkörper 5 bis 100 Gew.-% mindestens eines filmbildenden und/oder festigenden Polymers enthält.
3. Produkt gemäß wenigstens eines der Ansprüche 1 bis 2, dadurch gekennzeichnet, dass der Formkörper mindestens ein filmbildendes und/oder festigendes Polymer enthält, das aus mindestens einem der folgenden Monomere aufgebaut ist: Vinylpyrrolidon, Vinylcaprolactam, Vinylester, Vinylalkohol, Acrylamid, Methacrylamid, Ci- bis C7-Alkyl- und C1- bis C7-Dialkylacrylamid, C1- bis C7-Alkyl- und C1- bis C7-Dialkylmethacrylamid, C1- bis C7-Alkylacrylat, C1- bis C7-Alkylmethacrylat, Propylenglykol und Ethylenglykol.
4. Produkt gemäß Anspruch 3, dadurch gekennzeichnet, dass die filmbildenden und/oder festigenden Polymere ausgewählt sind aus Vinylpyrrolidon-Vinylacetat-Copolymeren, Vinylacetat-Crotonsäure-Copolymeren, Vinylacetat-Butylmaleat-Isobornylacrylat- Copolymeren, Octylacrylamid-Acrylat-Butylaminoethyl-Methacrylat-Copolymeren und quaternierten Vinylpyrrolidon-Dimethylaminoethylmethacrylat-Copolymeren.
5. Produkt gemäß wenigstens eines der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass der Formkörper mindestens ein natürliches filmbildendes und/oder festigendes Polymer enthält, ausgewählt aus Cellulose, Cellulosederivaten, Stärke und Stärkederivaten.
6. Produkt gemäß wenigstens eines der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass der Formkörper 5 bis 80 Gew.-% eines Zerfallshilfsmittels enthält.
7. Produkt gemäß Anspruch 6, dadurch gekennzeichnet, dass der Formkörper ein Zerfallshilfsmittel auf Cellulosebasis enthält.
8. Produkt gemäß wenigstens eines der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass der Formkörper 5 bis 40 Gew.-% eines Verdickungsmittels enthält.
9. Produkt gemäß Anspruch 8, dadurch gekennzeichnet, dass der Formkörper als Verdickungsmittel eine Mischung aus mindestens einer anorganischen Komponente und mindestens einer organischen Komponente enthält.
10. Produkt gemäß wenigstens eines der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass die Dosiervorrichtung mehrere Formkörper enthält und durch manuelle Betätigung des Verschlusselements die Dosiervorrichtung jeweils einen Formkörper abgibt.
11. Verfahren zum temporären Verformen keratinischer Fasern, dadurch gekennzeichnet, dass dem Produkt gemäß wenigstens eines der Ansprüche 1 bis 10 mindestens ein Formkörper entnommen, dieser in Wasser aufgelöst und die resultierende viskose Zubereitung auf die Fasern aufgetragen wird.
PCT/EP2006/010680 2005-12-05 2006-11-08 Stylingprodukt WO2007093203A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005058159.5 2005-12-05
DE200510058159 DE102005058159A1 (de) 2005-12-05 2005-12-05 Stylingprodukt

Publications (1)

Publication Number Publication Date
WO2007093203A1 true WO2007093203A1 (de) 2007-08-23

Family

ID=37745802

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2006/010680 WO2007093203A1 (de) 2005-12-05 2006-11-08 Stylingprodukt

Country Status (2)

Country Link
DE (1) DE102005058159A1 (de)
WO (1) WO2007093203A1 (de)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5824629A (en) * 1993-12-10 1998-10-20 Petritsch; Erich Effervescent hair cleansing and care tablets
WO2001045647A2 (de) * 1999-12-20 2001-06-28 Henkel Kommanditgesellschaft Auf Aktien Tablettierung verdickender systeme
WO2001089462A2 (de) * 2000-05-24 2001-11-29 Adamantan Cosmetics Ag Mund- und zahnpflegemittel und vorrichtung zu dessen aufbewahrung und ausgabe
WO2004082650A1 (de) * 2003-03-19 2004-09-30 Henkel Kommanditgesellschaft Auf Aktien Formkörper zur behandlung keratinischer fasern
EP1577375A2 (de) * 2004-03-18 2005-09-21 Torben Reindahl Jahnsen Handseifeprodukt und Seifenspender

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5824629A (en) * 1993-12-10 1998-10-20 Petritsch; Erich Effervescent hair cleansing and care tablets
WO2001045647A2 (de) * 1999-12-20 2001-06-28 Henkel Kommanditgesellschaft Auf Aktien Tablettierung verdickender systeme
WO2001089462A2 (de) * 2000-05-24 2001-11-29 Adamantan Cosmetics Ag Mund- und zahnpflegemittel und vorrichtung zu dessen aufbewahrung und ausgabe
WO2004082650A1 (de) * 2003-03-19 2004-09-30 Henkel Kommanditgesellschaft Auf Aktien Formkörper zur behandlung keratinischer fasern
EP1577375A2 (de) * 2004-03-18 2005-09-21 Torben Reindahl Jahnsen Handseifeprodukt und Seifenspender

Also Published As

Publication number Publication date
DE102005058159A1 (de) 2007-06-06

Similar Documents

Publication Publication Date Title
EP1942988B1 (de) Pulverförmiges stylingmittel
EP1962962B1 (de) Pulverförmige stylingmittel und deren spendersysteme
EP2416752B1 (de) Pulverförmige zusammensetzung zur form- und glanzgebung keratinischer fasern
EP2203148A2 (de) Mattwachs
EP3268092B1 (de) Mittel und verfahren zur temporären verformung keratinhaltiger fasern
EP1059076B1 (de) Verwendung von festen, gasifizierten Teilchen für Haarbehandlungen und diese enthaltendes Haarbehandlungsmittel
DE102014226410A1 (de) Mittel zur temporären Verformung keratinhaltiger Fasern mit einer Mischung aus konditionierendenPolymeren
EP2054025B1 (de) Stylingmittel für keratinische fasern
WO2016062446A1 (de) Verwendung einer kombination von polyurethane-2/polymethyl methacrylate und polyvinylpyrrolidon
EP3267973B1 (de) Mittel und verfahren zur temporären verformung keratinhaltiger fasern
EP2456415A2 (de) Mittel für keratinhaltige fasern, enthaltend mindestens ein acrylat/glycerylacrylat-copolymer, mindestens ein filmbildendes und/oder festigendes polymer und mindestens ein esteröl
DE102011088818A1 (de) Pulverförmige Haarkosmetika
EP1603522A1 (de) Formkörper zur behandlung keratinischer fasern
EP2451530A2 (de) Mittel für keratinhaltige fasern, enthaltend mindestens eine spezielle cellulose und mindestens ein zusätzliches filmbildendes und/oder festigendes polymer
DE102017206087A1 (de) Verfahren und Kit zum Färben von Haaren mit Säurefarbstoffen
EP2448547B1 (de) Kompaktes haarspray
WO2007093203A1 (de) Stylingprodukt
DE102014225442A1 (de) Mittel und Verfahren zur temporären Verformung keratinhaltiger Fasern
DE102011089404A1 (de) Verwendung mindestens einer anteiso-(C8-C30)-Carbonsäure für feuchtigkeitsbeständiges Hitzestyling
DE102011077420A1 (de) Zustandsverbesserungs- insbesondere Hitzeschutzmittel
DE102011077418A1 (de) Verfahren zur Umformung keratinhaltiger Fasern
EP4190307A1 (de) Kosmetische leave-on-produkte zur verbesserung der frisiereigenschaften
WO2005018588A2 (de) Kompakthaarspray
EP2524685B1 (de) Mittel für keratinhaltige fasern enthaltend wasser, mindestens einen carbonsäureester von pentaerythritol, mindestens ein diol und mindestens ein polyol
DE102011088841A1 (de) Haarkosmetika

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06849385

Country of ref document: EP

Kind code of ref document: A1