WO2007093082A1 - Procédé de production de tranche de silicium utilisant la méthode du flottage et appareil correspondant - Google Patents

Procédé de production de tranche de silicium utilisant la méthode du flottage et appareil correspondant Download PDF

Info

Publication number
WO2007093082A1
WO2007093082A1 PCT/CN2006/000229 CN2006000229W WO2007093082A1 WO 2007093082 A1 WO2007093082 A1 WO 2007093082A1 CN 2006000229 W CN2006000229 W CN 2006000229W WO 2007093082 A1 WO2007093082 A1 WO 2007093082A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon
liquid
crucible
wafer
melting point
Prior art date
Application number
PCT/CN2006/000229
Other languages
English (en)
French (fr)
Inventor
Yonggang Jin
Original Assignee
Yonggang Jin
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yonggang Jin filed Critical Yonggang Jin
Priority to CN2006800019054A priority Critical patent/CN101133194B/zh
Priority to PCT/CN2006/000229 priority patent/WO2007093082A1/zh
Publication of WO2007093082A1 publication Critical patent/WO2007093082A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B11/00Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
    • C30B11/001Continuous growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B11/00Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
    • C30B11/002Crucibles or containers for supporting the melt
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B11/00Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
    • C30B11/007Mechanisms for moving either the charge or the heater
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B35/00Apparatus not otherwise provided for, specially adapted for the growth, production or after-treatment of single crystals or of a homogeneous polycrystalline material with defined structure

Definitions

  • the invention belongs to crystal growth, and in particular relates to a manufacturing process and equipment for a silicon wafer.
  • Silicon is a non-metal, with an atomic number of 14, and an atomic weight of 28.0855 g.mol- 1 .
  • Silicon materials are widely used in industries such as semiconductors and solar cells. Production of semiconductor grade silicon wafers or CZochralski (CZ method) or zone melting methods for the fabrication of solar cell wafers. Single crystal silicon is often used for semiconductor silicon materials, and single crystal silicon or polycrystalline silicon is used for solar cells.
  • the single crystal silicon fabrication process mainly uses a Czochralski (CZochralski, CZ) method and a floating zone melting method (FZ method).
  • the crystal pulling method for example, US Pat. No. 3,679,370 (CRYSTAL GROWER WITH EXPANDABLE CHAMBER), CN1150355 (Crystal continuous pulling method and apparatus), is basically used to put a raw material polycrystalline silicon in a quartz crucible in a single crystal furnace.
  • a rod-shaped seed crystal (called seed crystal) having a diameter of only 10 mm is immersed in the melt.
  • seed crystal a rod-shaped seed crystal having a diameter of only 10 mm is immersed in the melt.
  • the silicon atoms in the melt form regular crystals at the solid-liquid interface along the arrangement of the silicon atoms of the seed crystal, becoming a single crystal.
  • the silicon atoms in the melt continue to crystallize on the previously formed single crystal and continue its regular atomic arrangement. If the entire crystallization environment is stable, crystals can be formed in a recurring manner, and finally a cylindrical silicon single crystal crystal in which the atoms are arranged neatly, that is, a silicon single crystal ingot is formed.
  • the crystal diameter becomes thicker, and the increase in the speed can make the diameter thinner, and the increase in temperature can suppress the crystallization rate.
  • the crystal becomes slower and the diameter becomes thinner it is controlled by lowering the pulling speed and lowering the temperature. After seeding and crystal pulling, a narrow neck with a diameter of 3 to 5 mm is taken out to eliminate crystal dislocations. This process is called seeding.
  • the single crystal diameter is then amplified to the process requirements and entered into the equal diameter growth stage until most of the silicon melt crystallizes into a single crystal ingot, and then a small amount of residual material remains.
  • the floating zone melting method for example, similar to the CN1139678 patent (method of single crystal growth), is to vertically fix the pre-treated polycrystalline silicon rod and the seed crystal together in the zone melting furnace to sense the polycrystalline silicon rod by high frequency. The heating is directed from the beginning to the end to form a crystal of the molten zone, and the silicon rod is repeatedly purified several times.
  • the technical solution disclosed in the patent of CN1095505 (the straight-pull zone melting method for producing single crystal silicon) combines the above two methods.
  • the present invention is directed to an apparatus and process for producing silicon wafers in a continuous, large-scale and low-cost manner in order to increase wafer productivity and reduce production costs.
  • the technical solution adopted by the present invention is as follows:
  • a manufacturing process of a float silicon wafer which is obtained by a continuous process of melting, crystal forming, grinding and cutting:
  • A The silicon raw material is melted, and the silicon raw material is added to the crucible by a feeding device.
  • the temperature in the crucible is set to be higher than the melting point of the silicon by 1421 ° C, and the solid silicon raw material is melted into liquid silicon at a temperature above 1421 ° C.
  • Argon gas or other inert gas is continuously removed from the top of the silicon through the feeding port;
  • the crystallization zone trough is connected with the crucible liquid discharge port, the tank is filled with liquid tin metal or other alloy whose melting point is lower than the melting point of silicon as the carrier, and the temperature near the discharge port is higher than the melting point of silicon 1421 ° C The temperature at the other end is between 1421 ° C and 400 ° C.
  • the liquid silicon moves to the end of the float forming zone, the liquid silicon solidifies into a solid state, and the upper layer of the corresponding silicon surface in the crystallization zone is relatively close to the drain of the crucible.
  • the plate is adjusted to control the thickness of the wafer, and the temperature is set in a molten state in which the molten metal having a melting point lower than the melting point of the silicon is filled in the bottom of the trough, and the upper layer of the corresponding silicon surface is relatively close to the baffle discharge opening of the crucible discharge port. Control the thickness of the wafer;
  • the metal having a melting point lower than the melting point of silicon at the bottom of the crystallization zone is tin metal.
  • the device adopting the manufacturing process of the float silicon wafer the crucible is rectangular, the feeding port is provided with a gas nozzle in the direction of the pot, and the argon gas or other inert gas is continuously discharged, and the crystallization zone trough is connected with the dip pan discharge port, crystallizing
  • the upper layer of the corresponding silicon surface is provided with a baffle relatively close to the drain port of the crucible.
  • the liquid discharge port of the crucible is set to U shape, and the liquid discharge port is lower than the liquid level of the carrier such as liquid tin in the float crystal region.
  • the invention adopts a continuous process for preparing polycrystals or single crystals, and in particular, the crystal forming process adopts tin metal which has a large difference from the melting point of silicon, so that the invention achieves an unexpected effect.
  • Tin has a melting point of 292 V and a boiling point of 2270 ° C.
  • the use of tin not only allows the silicon to float on the surface layer of the tin liquid, but also allows harmful heavy metal impurities of the silicon single crystal to diffuse to the surface of the silicon single crystal, and finally to the molten tin. in.
  • the drawing is a schematic diagram of the equipment for the production process of a float silicon wafer.
  • 1-feeding device 2-tank, 3-tank drain, 4-crystallization zone chute, 5-baffle, 6-cooling section, 7-grinding section, 8-cut wafer area.
  • the silicon raw material is added to the crucible 2 through a feeding device, and the temperature in the crucible is set to be higher than the melting point of the silicon by 1421 ° C, and the solid silicon raw material is melted into liquid silicon at 1421 ° C or higher.
  • the design of the crucible is different from that of ordinary crucibles. Gas nozzles can be installed near the feeding device 1 to continuously remove argon or other inert gases to avoid air contact.
  • the shape of the crucible is rectangular, one end is the feeding device 1, the other end is the crucible liquid discharge port 3, and the crucible liquid discharge port 3 is designed at the bottom of the crucible.
  • Such a crucible design allows continuous feeding and continuous smelting to produce liquid silicon. Unlike the existing Czochralski single crystal method and the casting method, the two can only be intermittently produced, with low productivity and high cost.
  • the liquid discharge port 3 of the crucible is set to a U shape, and the discharge port is lower than the liquid surface of the carrier such as liquid tin in the float crystal region. Since the density of the liquid silicon is smaller than the density of the liquid carrier, the liquid silicon will automatically float, which can reduce the liquid. Splash caused by discharge.
  • a float crystallized zone Connected to the drain port 3 of the crucible is a float crystallized zone.
  • the crystal zone is filled with liquid tin metal or other germanium as a carrier. Since the buoyancy of the liquid silicon is smaller than the carrier, the liquid silicon floats on it.
  • the carrier temperature near the discharge port is higher than the melting point of silicon. Liquid silicon will continue to move forward along the crystallization zone along with gravity.
  • the high temperature resistant baffle 5 passes, the liquid silicon flowing there will be formed to a certain thickness due to the gap between the baffle 5 and the carrier. 5
  • High-precision stepper motor and computer control can control the gap between the baffle and the carrier to the micron level, and control the thickness of the solidified wafer to 1000 microns.
  • the carrier temperature drops to 1300 - 1400 °C.
  • the liquid silicon crystallizes into solid silicon to form a solid silicon plate of a certain thickness.
  • seed crystal flat single crystal seed crystal
  • the silicon atoms in the molten metal are aligned along the silicon atom arrangement of the seed crystal.
  • a regular crystal is formed on the liquid interface to form a single crystal.
  • the seed crystal is slightly rotated and stretched forward, and the silicon atoms in the melt continue to crystallize on the previously formed single crystal and continue its regular atomic arrangement.
  • the condensed silicon plate is mechanically transferred to the cooling section 6.
  • the cooling method is conductive hot plate cooling, or it can be designed as a convection type for airflow cooling.
  • the cooling method affects the shape and size of the grains in the silicon plate.
  • the silicon plate After cooling, the silicon plate continues to advance to the sanding and polishing section 7, where the entire silicon plate is polished and polished, and the process here is continuous and uninterrupted.
  • the abrasive sheet is mounted on the top and reciprocally moved in the horizontal direction. Different grades of abrasive sheets can be arranged along the direction of advancement of the silicon plate, from rough grinding to precision polishing. Whether it is CZ Czochralski single crystal method or zone melting method, it is first made into ingot, then cut into silicon wafer, and then polished and polished. Since silicon is a brittle material, the cutting method is different from that of metal, and it is technically in the form of sanding. The cutter is used to squeeze the material section.
  • microcracks are formed on the fracture surface, and it is necessary to remove a certain thickness of the material by grinding to completely eliminate the microcrack. Nearly half of the material is wasted during the production process.
  • the invention is pre-formed to a certain thickness, eliminating the need for cutting, which can greatly reduce the cost of the material, which is about 50% or more.
  • the polished wafer is cut into silicon wafers of different sizes by a diamond cutter or laser cutter in the cutting zone (8).
  • the wafers are turned away from the production line, polished, and placed in a package.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Description

浮法硅晶片的制作工艺和设备
技术领域
本发明属晶体生长, 具体涉及一种硅晶片的制作工艺和设备。
背景技术
硅属于非金属, 原子序数为 14, 原子量 28.0855 g.mol—1 ,硅材料广泛应 用于半导体、 太阳能电池等工业领域。 生产半导体级别的硅片或制造太阳能 电池硅片多釆用的直拉单晶制造法(Czochralski, CZ法)或区熔法。 半导体 用的硅材料多使用单晶硅, 太阳能电池有使用单晶硅或者是多晶硅。
公知技术中, 多晶硅的制备方法很多, 主要有以四氯化硅为原料的还原 法、 以三氯化硅为原料氯还原和热分解法, 以及以硅烷热分解法等。 单晶硅 制作工艺主要采用用直拉单晶制造法( Czochralski, CZ法)和浮动区熔法( FZ 法)。 拉晶法, 例如 US3679370 号专利 (CRYSTAL GROWER WITH EXPANDABLE CHAMBER), CN1150355号专利 (结晶的连续提拉方法和装 置), 基本釆用将原料多硅晶块放入石英坩埚中, 在单晶炉中加热熔化, 再将 一根直径只有 10mm的棒状晶种 (称籽晶) 浸入熔液中。 在合适的温度下, 熔液中的硅原子会顺着晶种的硅原子排列结构在固液交界面上形成规则的结 晶, 成为单晶体。 把晶种微微的旋转向上提升, 熔液中的硅原子会在前面形 成的单晶体上继续结晶, 并延续其规则的原子排列结构。 若整个结晶环境稳 定, 就可以周而复始的形成结晶, 最后形成一根圆柱形的原子排列整齐的硅 单晶晶体, 即硅单晶锭。 当结晶加快时, 晶体直径会***, 提高升速可以使 直径变细, 增加温度能抑制结晶速度。 反之, 若结晶变慢, 直径变细, 则通 过降低拉速和降温去控制。 经引晶、 拉晶幵始, 先引出一定长度, 直径为 3〜 5mm的细颈, 以消除结晶位错, 这个过程叫做引晶。 然后放大单晶体直径至 工艺要求, 进入等径生长阶段, 直至大部分硅熔液都结晶成单晶锭, 再经收 尾, 只剩下少量剩料。 浮动区熔法(FZ法), 例如类似于 CN1139678号专利 (单晶生长的方法), 是将预先处理好的多晶硅棒和籽晶一起竖直固定在区熔 炉中, 以高频感应对多晶硅棒从头至尾定向移动加热, 形成熔融区结晶, 反 复多次使硅棒提纯。 CN1095505号专利 (生产单晶硅的直拉区熔法)公开的 技术方案将上述两种方法结合使用。
确认本 上述技术方案都是非连续性生产, 效率低, 设备投资较大, 耗时长。 且 制成单晶棒后还需切片、 打磨和抛光, 增加工序, 加大损耗。
发明内容
本发明是为了提高硅片生产率,降低生产成本, 提供一种连续性、 大规模 和低成本生产硅片的设备和工艺。 本发明采取的技术方案如下:
一种浮法硅晶片的制作工艺, 其釆取融熔、 结晶成型、 打磨切割连续工 艺制取:
A: 融熔硅原料, 将硅原料通过加料装置加入到坩锅中, 坩锅内的温度设 在高于硅熔点 1421° C以上, 固态的硅原料在 1421° C以上熔化成液态硅, 液 态硅上方经加料口连续排除氩气或其他惰性气体;
B: 结晶成型, 结晶区料槽与坩锅排液口相连通, 槽内充满液态的锡金属 或其他熔点低于硅熔点的合金为载体,靠近出料口温度高于硅的熔点 1421° C, 另一端的温度介于 1421° C到 400°C, 当液态硅移至浮法成型区末端时, 液态 硅会凝固成固态, 结晶区相应硅表面上层相对靠近坩锅排液口设置的挡板调 节控制晶片的厚度, 其温度设定在使料槽底部盛放的熔点低于硅熔点温度的 金属液呈熔融态, 结晶区相应硅表面上层相对靠近坩锅排液口设置的挡板调 节控制晶片的厚度;
C: 成型结晶硅片经冷却段冷却、 打磨抛光后, 根据需要在切割晶片区切 割晶片。
结晶区料槽底部盛放的熔点低于硅熔点温度的金属为锡金属。
采用浮法硅晶片的制作工艺的设备, 坩锅为长方形, 加料口向锅内方向 设置气体喷嘴, 连续排出氩气或其他惰性气体, 结晶区料槽与坩锅排液口连 接为一体, 结晶区相应硅表面上层相对靠近坩锅排液口设置挡板。 坩锅排液 口设置为 U型, 排液口低于浮法结晶区内液态锡等载体的液面。
本发明采取连续工艺制取多晶体或单晶体, 特别是结晶成型工艺采取了 与硅熔点差别较大的锡金属, 使发明取得了料想不到的效果。锡的熔点为 292 V, 沸点为 2270°C, 使用锡不但可使硅浮于锡液表层凝固成型, 还可使硅单 晶的有害重金属杂质通过扩散到达硅单晶表面, 最后进入到熔锡中。
附图说明 附图为浮法硅晶片制作工艺的设备原理图
图中, 1-加料装置, 2-坩锅, 3-坩锅排液口, 4-结晶区料槽, 5-挡板, 6- 冷却段, 7-打磨抛光段, 8-切割晶片区。
具体实施方式
以下为本发明的具体实施例。 实施例是用来说明本发明的, 而不是对本 发明作任何限制。
将硅原料通过加料装置加入到坩锅 2 中, 坩锅内的温度设在高于硅熔点 1421° C以上, 固态的硅原料在 1421° C以上熔化成液态硅。 为防止硅和空气 中的氧气和氮气反应, 坩锅的设计和普通坩锅有所不同, 加料装置 1 附近可 装有气体喷嘴, 会连续排除氩气或其他惰性气体, 避免于空气接触。 坩锅的 形状为长方形, 一端为加料装置 1, 另一端为坩锅排液口 3, 坩锅排液口 3设 计在坩锅的底部。 这样的坩锅设计可以实现连续加料, 连续熔炼生成液态硅。 和现有的直拉单晶法和铸造法不同, 二者只能是断续生产, 生产率低, 成本 高。
坩锅排液口 3设置为 U型, 出料口低于浮法结晶区内液态锡等载体的液 面, 由于液体硅的密度小于液态载体的密度, 液态硅会自动上浮, 这样可以 减少液体排出时所产生的喷溅现象。
与坩锅排液口 3 衔接的是浮法结晶区, 结晶区内是充满液态的锡金属或 其他的瑢点的金属作为载体, 由于液态硅的浮力小于载体, 液态硅就会浮在 上面, 靠近出料口的载体温度高于硅的熔点。 液态硅会随着重力的因素继续 沿着结晶区向前移动, 经过耐高温的挡板 5时, 会因为挡板 5与载体的空隙 使流到此处的液态硅形成一定的厚度, 挡板 5 可通过高精密度的步进电机与 电脑控制, 可以将挡板与载体的空隙控制到微米级别的精度, 使凝固后的硅 片厚度控制到 1000微米。 在挡板的另一端 10厘米, 载体温度会降至 1300 -1400°C。 这时液态硅就会结晶变成固态硅, 形成一定厚度的固体硅板。 如果 要制作单晶硅片, 需要使用平板状的单晶体晶种 (籽晶)浸入到熔液中, 在合适 的温度下, 熔液中的硅原子会顺着晶种的硅原子排列结构在固液交界面上形 成规则的结晶, 成为单晶体。 把晶种微微的旋转并向前拉伸, 熔液中的硅原 子会在前面形成的单晶体上继续结晶, 并延续其规则的原子排列结构。 若整 个结晶环境稳定, 就可以周而复始的形成结晶, 形成单晶体的硅片。 这个方 法基本上和 CZ直拉单晶法类似,对原材料的纯度要求高,通常对杂质含量要 少过 ppb。 但是此发明因为是连续结晶, 只需要使用一次晶种。 如果要制作 多晶体的硅片, 则不需要晶种就可将液态硅凝固。 控制好适当的温度梯度, 就会得到更加细化的晶粒。 这种方法会比铸造法优异, 避免在铸模周围形成 枝状晶。 在此区域, 会有惰性气体将硅材料与空气隔绝, 避免形成氧化硅和 氮化硅等不良杂质。
凝结的硅板会通过机械方式传送到冷却段 6, 在此区域里, 高温凝固的硅 板会继续冷却, 直到室温。 在这个区域里, 冷却方式有传导式的热板冷却, 也可以设计成气流冷却的对流式。 冷却方式会影响到硅板中晶粒的形状和大 小。
经过降温,硅板继续前进到打磨及抛光段 7, 在这里整块的硅板会经过打 磨及抛光, 这里的工艺是连续不间断的进行。 研磨片是安装在上方, 在水平 方向做往复性移动。 沿着硅板前进的方向排列不同级别的研磨片, 可以完成 从粗磨到精密拋光。无论是 CZ直拉单晶法,还是区熔法法,都是先做成晶锭, 然后切割成硅片, 再做研磨和拋光。 由于硅属于一种脆性材料, 切割方式和 金属不同, 再技术上属于打磨的形式, 用切割器将材料断面挤开。 此外在断 面上会形成微裂纹, 需要用研磨的方式去掉一定厚度的材料才可以完全消除 微裂纹。 在生产过程中, 近一半的材料会被浪费掉。 此发明是预先做成一定 厚度, 省去了切割, 这样就可以大大减少材料的成本, 约在 50%以上。
抛光后的晶片会在切割区 (8)被钻石切割器或激光切割器切割成不同尺寸 的硅片, 硅片会转离生产线, 进行晶边的打磨, 然后放置到包装箱内。

Claims

权 利 要 求
1、 一种浮法硅晶片的制作工艺, 其特征是釆取融熔、 结晶成型、 打磨切 割连续工艺制取-
A: 融熔硅原料, 将硅原料通过加料装置 (1 )加入到坩锅 (2) 中, 坩锅 内的温度设在高于硅熔点 1421° C以上, 固态的硅原料在 1421° C以上熔化成 液态硅, 液态硅上方经加料口连续排除氩气或其他惰性气体;
B: 结晶成型, 结晶区料槽(4) 与坩锅排液口 (3 )相连通, 槽内充满液 态的锡金属或其他熔点低于硅熔点的合金为载体, 靠近出料口温度高于硅的 熔点 1421° C, 另一端的温度介于 1421° C到 400°C, 当液态硅移至浮法成型区 末端 (4) 时, 液态硅会凝固成固态, 结晶区相应硅表面上层相对靠近坩锅排 液口 (3 ) 设置的挡板 (5) 调节控制晶片的厚度;
C: 成型结晶硅片经冷却段 (6)冷却、 打磨抛光段 (7) 后, 根据需要在 切割晶片区 (8) 切割晶片。
2、 根据权利要求 1所述的浮法硅晶片的制作工艺, 其特征是结晶区料槽 (4) 底部盛放的熔点低于硅熔点温度的金属为锡金属。
3、 一种采用浮法硅晶片的制作工艺的设备, 其特征是:坩锅 (2)为长方形, 加料口 (1 ) 向锅内方向设置气体喷嘴, 连续排出氩气或其他惰性气体, 结晶 区料槽 (4) 与坩锅排液口 (3 ) 连接为一体, 结晶区相应硅表面上层相对靠 近坩锅排液口 (3 ) 设置挡板 (5 )。
4、 根据权利要求 3所述的浮法硅晶片制作工艺的设备, 其特征是结晶区 料槽 (4) 后端可联接冷却段 (6)、 打磨抛光段 (7) 和切割晶片区 (8)。
5、 根据权利要求 3所述的浮法硅晶片制作工艺的设备, 其特征是坩锅排 液口 (3 ) 设置为 U型, 坩锅排液口 (3 )低于浮法结晶区 (4) 内液态锡等载 体的液面。
PCT/CN2006/000229 2006-02-16 2006-02-16 Procédé de production de tranche de silicium utilisant la méthode du flottage et appareil correspondant WO2007093082A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2006800019054A CN101133194B (zh) 2006-02-16 2006-02-16 浮法硅晶片的制作工艺和设备
PCT/CN2006/000229 WO2007093082A1 (fr) 2006-02-16 2006-02-16 Procédé de production de tranche de silicium utilisant la méthode du flottage et appareil correspondant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2006/000229 WO2007093082A1 (fr) 2006-02-16 2006-02-16 Procédé de production de tranche de silicium utilisant la méthode du flottage et appareil correspondant

Publications (1)

Publication Number Publication Date
WO2007093082A1 true WO2007093082A1 (fr) 2007-08-23

Family

ID=38371167

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2006/000229 WO2007093082A1 (fr) 2006-02-16 2006-02-16 Procédé de production de tranche de silicium utilisant la méthode du flottage et appareil correspondant

Country Status (2)

Country Link
CN (1) CN101133194B (zh)
WO (1) WO2007093082A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010056350A2 (en) * 2008-11-14 2010-05-20 Carnegie Mellon University Methods for casting by a float process and associated appratuses
EP2319089A2 (en) * 2008-08-15 2011-05-11 Varian Semiconductor Equipment Associates Sheet thickness control
CN109778307A (zh) * 2019-02-15 2019-05-21 江苏大学 一种适用于单晶硅水平生长机构的过程控制***

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8764901B2 (en) * 2010-05-06 2014-07-01 Varian Semiconductor Equipment Associates, Inc. Removing a sheet from the surface of a melt using elasticity and buoyancy
CN102071405B (zh) * 2010-12-03 2012-04-18 湖南大学 一种多晶硅薄膜制备方法
CN102260903B (zh) * 2011-07-11 2013-07-24 浙江碧晶科技有限公司 一种生长薄板硅晶体的方法
CN103063692A (zh) * 2012-12-31 2013-04-24 上海申和热磁电子有限公司 一种硅片体内重金属的焙烤方法及检测方法
CN110172729B (zh) * 2019-06-19 2020-12-08 江阴市广跃新材料科技有限公司 一种浮法硅片的生产设备及其生产方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59102891A (ja) * 1982-11-30 1984-06-14 Shin Etsu Handotai Co Ltd シリコン単結晶の製造方法
CN1033981A (zh) * 1987-01-02 1989-07-19 Ppg工业公司 均化平板玻璃的方法及其装置
CN1037050A (zh) * 1988-03-11 1989-11-08 单一检索有限公司 改进的溶液生长硅薄膜的方法
CN1095505C (zh) * 2000-03-30 2002-12-04 天津市环欧半导体材料技术有限公司 生产硅单晶的直拉区熔法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59102891A (ja) * 1982-11-30 1984-06-14 Shin Etsu Handotai Co Ltd シリコン単結晶の製造方法
CN1033981A (zh) * 1987-01-02 1989-07-19 Ppg工业公司 均化平板玻璃的方法及其装置
CN1037050A (zh) * 1988-03-11 1989-11-08 单一检索有限公司 改进的溶液生长硅薄膜的方法
CN1095505C (zh) * 2000-03-30 2002-12-04 天津市环欧半导体材料技术有限公司 生产硅单晶的直拉区熔法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHANG ET AL.: "Xianhua: Tin defect of the float glass", GLASS, vol. 24, no. 2, 1997, pages 36 - 37 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2319089A2 (en) * 2008-08-15 2011-05-11 Varian Semiconductor Equipment Associates Sheet thickness control
EP2319089A4 (en) * 2008-08-15 2011-10-26 Varian Semiconductor Equipment CONTROLLING THE THICKNESS OF A SHEET
US8475591B2 (en) 2008-08-15 2013-07-02 Varian Semiconductor Equipment Associates, Inc. Method of controlling a thickness of a sheet formed from a melt
WO2010056350A2 (en) * 2008-11-14 2010-05-20 Carnegie Mellon University Methods for casting by a float process and associated appratuses
WO2010056350A3 (en) * 2008-11-14 2011-04-14 Carnegie Mellon University Methods for casting by a float process and associated appratuses
US9050652B2 (en) 2008-11-14 2015-06-09 Carnegie Mellon University Methods for casting by a float process and associated apparatuses
CN109778307A (zh) * 2019-02-15 2019-05-21 江苏大学 一种适用于单晶硅水平生长机构的过程控制***

Also Published As

Publication number Publication date
CN101133194A (zh) 2008-02-27
CN101133194B (zh) 2010-12-08

Similar Documents

Publication Publication Date Title
TWI463043B (zh) 板厚控制
WO2007093082A1 (fr) Procédé de production de tranche de silicium utilisant la méthode du flottage et appareil correspondant
Ciszek Techniques for the crystal growth of silicon ingots and ribbons
JP4203603B2 (ja) 半導体バルク多結晶の作製方法
US8617447B2 (en) Methods of making an unsupported article of pure or doped semiconducting material
US8398768B2 (en) Methods of making an article of semiconducting material on a mold comprising semiconducting material
WO1993012272A1 (en) Method of and apparatus for casting crystalline silicon ingot by electron beam melting
WO2013007108A1 (zh) 一种生长薄板硅晶体的方法
Arnberg et al. State-of-the-art growth of silicon for PV applications
US20110168081A1 (en) Apparatus and Method for Continuous Casting of Monocrystalline Silicon Ribbon
JPWO2002068732A1 (ja) 固形状多結晶原料のリチャージ管及びそれを用いた単結晶の製造方法
US20100291380A1 (en) Methods of making an article of semiconducting material on a mold comprising particles of a semiconducting material
JP4060106B2 (ja) 一方向凝固シリコンインゴット及びこの製造方法並びにシリコン板及び太陽電池用基板及びスパッタリング用ターゲット素材
KR101756402B1 (ko) 용융물 정제 및 배송 시스템
US8603242B2 (en) Floating semiconductor foils
KR20100113925A (ko) 연속주조법을 이용한 태양전지용 실리콘 기판 직접 제조 장치, 이를 이용하여 제조된 태양전지용 실리콘 기판 및 그 제조 방법
US4561930A (en) Process for the production of coarsely crystalline silicon
JP5201446B2 (ja) ターゲット材およびその製造方法
WO2003029143A1 (fr) Plaque de silicium et cellule solaire comprenant cette plaque
RU2641760C1 (ru) Способ очистки поверхности расплава при выращивании монокристаллов германия
JP2000001308A (ja) 多結晶シリコン鋳塊の製造方法及びその製造装置
CN111270302B (zh) 一种高品质半导体硅材料耗材生长方法
Arnberg et al. Solidification of silicon for electronic and solar applications
US11661672B2 (en) Method for producing a sheet from a melt by imposing a periodic change in the rate of pull
US8501139B2 (en) Floating Si and/or Ge foils

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680001905.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06705650

Country of ref document: EP

Kind code of ref document: A1